1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_imap.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dmapi.h" 31 #include "xfs_mount.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dir2_sf.h" 36 #include "xfs_attr_sf.h" 37 #include "xfs_dinode.h" 38 #include "xfs_inode.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_inode_item.h" 41 #include "xfs_btree.h" 42 #include "xfs_alloc.h" 43 #include "xfs_ialloc.h" 44 #include "xfs_bmap.h" 45 #include "xfs_rw.h" 46 #include "xfs_error.h" 47 #include "xfs_utils.h" 48 #include "xfs_dir2_trace.h" 49 #include "xfs_quota.h" 50 #include "xfs_acl.h" 51 #include "xfs_filestream.h" 52 #include "xfs_vnodeops.h" 53 54 kmem_zone_t *xfs_ifork_zone; 55 kmem_zone_t *xfs_inode_zone; 56 kmem_zone_t *xfs_icluster_zone; 57 58 /* 59 * Used in xfs_itruncate(). This is the maximum number of extents 60 * freed from a file in a single transaction. 61 */ 62 #define XFS_ITRUNC_MAX_EXTENTS 2 63 64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 68 69 #ifdef DEBUG 70 /* 71 * Make sure that the extents in the given memory buffer 72 * are valid. 73 */ 74 STATIC void 75 xfs_validate_extents( 76 xfs_ifork_t *ifp, 77 int nrecs, 78 xfs_exntfmt_t fmt) 79 { 80 xfs_bmbt_irec_t irec; 81 xfs_bmbt_rec_host_t rec; 82 int i; 83 84 for (i = 0; i < nrecs; i++) { 85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 86 rec.l0 = get_unaligned(&ep->l0); 87 rec.l1 = get_unaligned(&ep->l1); 88 xfs_bmbt_get_all(&rec, &irec); 89 if (fmt == XFS_EXTFMT_NOSTATE) 90 ASSERT(irec.br_state == XFS_EXT_NORM); 91 } 92 } 93 #else /* DEBUG */ 94 #define xfs_validate_extents(ifp, nrecs, fmt) 95 #endif /* DEBUG */ 96 97 /* 98 * Check that none of the inode's in the buffer have a next 99 * unlinked field of 0. 100 */ 101 #if defined(DEBUG) 102 void 103 xfs_inobp_check( 104 xfs_mount_t *mp, 105 xfs_buf_t *bp) 106 { 107 int i; 108 int j; 109 xfs_dinode_t *dip; 110 111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 112 113 for (i = 0; i < j; i++) { 114 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 115 i * mp->m_sb.sb_inodesize); 116 if (!dip->di_next_unlinked) { 117 xfs_fs_cmn_err(CE_ALERT, mp, 118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 119 bp); 120 ASSERT(dip->di_next_unlinked); 121 } 122 } 123 } 124 #endif 125 126 /* 127 * This routine is called to map an inode number within a file 128 * system to the buffer containing the on-disk version of the 129 * inode. It returns a pointer to the buffer containing the 130 * on-disk inode in the bpp parameter, and in the dip parameter 131 * it returns a pointer to the on-disk inode within that buffer. 132 * 133 * If a non-zero error is returned, then the contents of bpp and 134 * dipp are undefined. 135 * 136 * Use xfs_imap() to determine the size and location of the 137 * buffer to read from disk. 138 */ 139 STATIC int 140 xfs_inotobp( 141 xfs_mount_t *mp, 142 xfs_trans_t *tp, 143 xfs_ino_t ino, 144 xfs_dinode_t **dipp, 145 xfs_buf_t **bpp, 146 int *offset) 147 { 148 int di_ok; 149 xfs_imap_t imap; 150 xfs_buf_t *bp; 151 int error; 152 xfs_dinode_t *dip; 153 154 /* 155 * Call the space management code to find the location of the 156 * inode on disk. 157 */ 158 imap.im_blkno = 0; 159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 160 if (error != 0) { 161 cmn_err(CE_WARN, 162 "xfs_inotobp: xfs_imap() returned an " 163 "error %d on %s. Returning error.", error, mp->m_fsname); 164 return error; 165 } 166 167 /* 168 * If the inode number maps to a block outside the bounds of the 169 * file system then return NULL rather than calling read_buf 170 * and panicing when we get an error from the driver. 171 */ 172 if ((imap.im_blkno + imap.im_len) > 173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 174 cmn_err(CE_WARN, 175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " 176 "of the file system %s. Returning EINVAL.", 177 (unsigned long long)imap.im_blkno, 178 imap.im_len, mp->m_fsname); 179 return XFS_ERROR(EINVAL); 180 } 181 182 /* 183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 184 * default to just a read_buf() call. 185 */ 186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 187 (int)imap.im_len, XFS_BUF_LOCK, &bp); 188 189 if (error) { 190 cmn_err(CE_WARN, 191 "xfs_inotobp: xfs_trans_read_buf() returned an " 192 "error %d on %s. Returning error.", error, mp->m_fsname); 193 return error; 194 } 195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); 196 di_ok = 197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC && 198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version); 199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 200 XFS_RANDOM_ITOBP_INOTOBP))) { 201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); 202 xfs_trans_brelse(tp, bp); 203 cmn_err(CE_WARN, 204 "xfs_inotobp: XFS_TEST_ERROR() returned an " 205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); 206 return XFS_ERROR(EFSCORRUPTED); 207 } 208 209 xfs_inobp_check(mp, bp); 210 211 /* 212 * Set *dipp to point to the on-disk inode in the buffer. 213 */ 214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 215 *bpp = bp; 216 *offset = imap.im_boffset; 217 return 0; 218 } 219 220 221 /* 222 * This routine is called to map an inode to the buffer containing 223 * the on-disk version of the inode. It returns a pointer to the 224 * buffer containing the on-disk inode in the bpp parameter, and in 225 * the dip parameter it returns a pointer to the on-disk inode within 226 * that buffer. 227 * 228 * If a non-zero error is returned, then the contents of bpp and 229 * dipp are undefined. 230 * 231 * If the inode is new and has not yet been initialized, use xfs_imap() 232 * to determine the size and location of the buffer to read from disk. 233 * If the inode has already been mapped to its buffer and read in once, 234 * then use the mapping information stored in the inode rather than 235 * calling xfs_imap(). This allows us to avoid the overhead of looking 236 * at the inode btree for small block file systems (see xfs_dilocate()). 237 * We can tell whether the inode has been mapped in before by comparing 238 * its disk block address to 0. Only uninitialized inodes will have 239 * 0 for the disk block address. 240 */ 241 int 242 xfs_itobp( 243 xfs_mount_t *mp, 244 xfs_trans_t *tp, 245 xfs_inode_t *ip, 246 xfs_dinode_t **dipp, 247 xfs_buf_t **bpp, 248 xfs_daddr_t bno, 249 uint imap_flags) 250 { 251 xfs_imap_t imap; 252 xfs_buf_t *bp; 253 int error; 254 int i; 255 int ni; 256 257 if (ip->i_blkno == (xfs_daddr_t)0) { 258 /* 259 * Call the space management code to find the location of the 260 * inode on disk. 261 */ 262 imap.im_blkno = bno; 263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap, 264 XFS_IMAP_LOOKUP | imap_flags))) 265 return error; 266 267 /* 268 * If the inode number maps to a block outside the bounds 269 * of the file system then return NULL rather than calling 270 * read_buf and panicing when we get an error from the 271 * driver. 272 */ 273 if ((imap.im_blkno + imap.im_len) > 274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 275 #ifdef DEBUG 276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 277 "(imap.im_blkno (0x%llx) " 278 "+ imap.im_len (0x%llx)) > " 279 " XFS_FSB_TO_BB(mp, " 280 "mp->m_sb.sb_dblocks) (0x%llx)", 281 (unsigned long long) imap.im_blkno, 282 (unsigned long long) imap.im_len, 283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 284 #endif /* DEBUG */ 285 return XFS_ERROR(EINVAL); 286 } 287 288 /* 289 * Fill in the fields in the inode that will be used to 290 * map the inode to its buffer from now on. 291 */ 292 ip->i_blkno = imap.im_blkno; 293 ip->i_len = imap.im_len; 294 ip->i_boffset = imap.im_boffset; 295 } else { 296 /* 297 * We've already mapped the inode once, so just use the 298 * mapping that we saved the first time. 299 */ 300 imap.im_blkno = ip->i_blkno; 301 imap.im_len = ip->i_len; 302 imap.im_boffset = ip->i_boffset; 303 } 304 ASSERT(bno == 0 || bno == imap.im_blkno); 305 306 /* 307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 308 * default to just a read_buf() call. 309 */ 310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 311 (int)imap.im_len, XFS_BUF_LOCK, &bp); 312 if (error) { 313 #ifdef DEBUG 314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 315 "xfs_trans_read_buf() returned error %d, " 316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx", 317 error, (unsigned long long) imap.im_blkno, 318 (unsigned long long) imap.im_len); 319 #endif /* DEBUG */ 320 return error; 321 } 322 323 /* 324 * Validate the magic number and version of every inode in the buffer 325 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 326 * No validation is done here in userspace (xfs_repair). 327 */ 328 #if !defined(__KERNEL__) 329 ni = 0; 330 #elif defined(DEBUG) 331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; 332 #else /* usual case */ 333 ni = 1; 334 #endif 335 336 for (i = 0; i < ni; i++) { 337 int di_ok; 338 xfs_dinode_t *dip; 339 340 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 341 (i << mp->m_sb.sb_inodelog)); 342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC && 343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version); 344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 345 XFS_ERRTAG_ITOBP_INOTOBP, 346 XFS_RANDOM_ITOBP_INOTOBP))) { 347 if (imap_flags & XFS_IMAP_BULKSTAT) { 348 xfs_trans_brelse(tp, bp); 349 return XFS_ERROR(EINVAL); 350 } 351 #ifdef DEBUG 352 cmn_err(CE_ALERT, 353 "Device %s - bad inode magic/vsn " 354 "daddr %lld #%d (magic=%x)", 355 XFS_BUFTARG_NAME(mp->m_ddev_targp), 356 (unsigned long long)imap.im_blkno, i, 357 be16_to_cpu(dip->di_core.di_magic)); 358 #endif 359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, 360 mp, dip); 361 xfs_trans_brelse(tp, bp); 362 return XFS_ERROR(EFSCORRUPTED); 363 } 364 } 365 366 xfs_inobp_check(mp, bp); 367 368 /* 369 * Mark the buffer as an inode buffer now that it looks good 370 */ 371 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 372 373 /* 374 * Set *dipp to point to the on-disk inode in the buffer. 375 */ 376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 377 *bpp = bp; 378 return 0; 379 } 380 381 /* 382 * Move inode type and inode format specific information from the 383 * on-disk inode to the in-core inode. For fifos, devs, and sockets 384 * this means set if_rdev to the proper value. For files, directories, 385 * and symlinks this means to bring in the in-line data or extent 386 * pointers. For a file in B-tree format, only the root is immediately 387 * brought in-core. The rest will be in-lined in if_extents when it 388 * is first referenced (see xfs_iread_extents()). 389 */ 390 STATIC int 391 xfs_iformat( 392 xfs_inode_t *ip, 393 xfs_dinode_t *dip) 394 { 395 xfs_attr_shortform_t *atp; 396 int size; 397 int error; 398 xfs_fsize_t di_size; 399 ip->i_df.if_ext_max = 400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 401 error = 0; 402 403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) + 404 be16_to_cpu(dip->di_core.di_anextents) > 405 be64_to_cpu(dip->di_core.di_nblocks))) { 406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 408 (unsigned long long)ip->i_ino, 409 (int)(be32_to_cpu(dip->di_core.di_nextents) + 410 be16_to_cpu(dip->di_core.di_anextents)), 411 (unsigned long long) 412 be64_to_cpu(dip->di_core.di_nblocks)); 413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 414 ip->i_mount, dip); 415 return XFS_ERROR(EFSCORRUPTED); 416 } 417 418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 420 "corrupt dinode %Lu, forkoff = 0x%x.", 421 (unsigned long long)ip->i_ino, 422 dip->di_core.di_forkoff); 423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 424 ip->i_mount, dip); 425 return XFS_ERROR(EFSCORRUPTED); 426 } 427 428 switch (ip->i_d.di_mode & S_IFMT) { 429 case S_IFIFO: 430 case S_IFCHR: 431 case S_IFBLK: 432 case S_IFSOCK: 433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) { 434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 435 ip->i_mount, dip); 436 return XFS_ERROR(EFSCORRUPTED); 437 } 438 ip->i_d.di_size = 0; 439 ip->i_size = 0; 440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev); 441 break; 442 443 case S_IFREG: 444 case S_IFLNK: 445 case S_IFDIR: 446 switch (dip->di_core.di_format) { 447 case XFS_DINODE_FMT_LOCAL: 448 /* 449 * no local regular files yet 450 */ 451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) { 452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 453 "corrupt inode %Lu " 454 "(local format for regular file).", 455 (unsigned long long) ip->i_ino); 456 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 457 XFS_ERRLEVEL_LOW, 458 ip->i_mount, dip); 459 return XFS_ERROR(EFSCORRUPTED); 460 } 461 462 di_size = be64_to_cpu(dip->di_core.di_size); 463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 465 "corrupt inode %Lu " 466 "(bad size %Ld for local inode).", 467 (unsigned long long) ip->i_ino, 468 (long long) di_size); 469 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 470 XFS_ERRLEVEL_LOW, 471 ip->i_mount, dip); 472 return XFS_ERROR(EFSCORRUPTED); 473 } 474 475 size = (int)di_size; 476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 477 break; 478 case XFS_DINODE_FMT_EXTENTS: 479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 480 break; 481 case XFS_DINODE_FMT_BTREE: 482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 483 break; 484 default: 485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 486 ip->i_mount); 487 return XFS_ERROR(EFSCORRUPTED); 488 } 489 break; 490 491 default: 492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 493 return XFS_ERROR(EFSCORRUPTED); 494 } 495 if (error) { 496 return error; 497 } 498 if (!XFS_DFORK_Q(dip)) 499 return 0; 500 ASSERT(ip->i_afp == NULL); 501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 502 ip->i_afp->if_ext_max = 503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 504 switch (dip->di_core.di_aformat) { 505 case XFS_DINODE_FMT_LOCAL: 506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 507 size = be16_to_cpu(atp->hdr.totsize); 508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 509 break; 510 case XFS_DINODE_FMT_EXTENTS: 511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 512 break; 513 case XFS_DINODE_FMT_BTREE: 514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 515 break; 516 default: 517 error = XFS_ERROR(EFSCORRUPTED); 518 break; 519 } 520 if (error) { 521 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 522 ip->i_afp = NULL; 523 xfs_idestroy_fork(ip, XFS_DATA_FORK); 524 } 525 return error; 526 } 527 528 /* 529 * The file is in-lined in the on-disk inode. 530 * If it fits into if_inline_data, then copy 531 * it there, otherwise allocate a buffer for it 532 * and copy the data there. Either way, set 533 * if_data to point at the data. 534 * If we allocate a buffer for the data, make 535 * sure that its size is a multiple of 4 and 536 * record the real size in i_real_bytes. 537 */ 538 STATIC int 539 xfs_iformat_local( 540 xfs_inode_t *ip, 541 xfs_dinode_t *dip, 542 int whichfork, 543 int size) 544 { 545 xfs_ifork_t *ifp; 546 int real_size; 547 548 /* 549 * If the size is unreasonable, then something 550 * is wrong and we just bail out rather than crash in 551 * kmem_alloc() or memcpy() below. 552 */ 553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 555 "corrupt inode %Lu " 556 "(bad size %d for local fork, size = %d).", 557 (unsigned long long) ip->i_ino, size, 558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 560 ip->i_mount, dip); 561 return XFS_ERROR(EFSCORRUPTED); 562 } 563 ifp = XFS_IFORK_PTR(ip, whichfork); 564 real_size = 0; 565 if (size == 0) 566 ifp->if_u1.if_data = NULL; 567 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 569 else { 570 real_size = roundup(size, 4); 571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 572 } 573 ifp->if_bytes = size; 574 ifp->if_real_bytes = real_size; 575 if (size) 576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 577 ifp->if_flags &= ~XFS_IFEXTENTS; 578 ifp->if_flags |= XFS_IFINLINE; 579 return 0; 580 } 581 582 /* 583 * The file consists of a set of extents all 584 * of which fit into the on-disk inode. 585 * If there are few enough extents to fit into 586 * the if_inline_ext, then copy them there. 587 * Otherwise allocate a buffer for them and copy 588 * them into it. Either way, set if_extents 589 * to point at the extents. 590 */ 591 STATIC int 592 xfs_iformat_extents( 593 xfs_inode_t *ip, 594 xfs_dinode_t *dip, 595 int whichfork) 596 { 597 xfs_bmbt_rec_t *dp; 598 xfs_ifork_t *ifp; 599 int nex; 600 int size; 601 int i; 602 603 ifp = XFS_IFORK_PTR(ip, whichfork); 604 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 605 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 606 607 /* 608 * If the number of extents is unreasonable, then something 609 * is wrong and we just bail out rather than crash in 610 * kmem_alloc() or memcpy() below. 611 */ 612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 614 "corrupt inode %Lu ((a)extents = %d).", 615 (unsigned long long) ip->i_ino, nex); 616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 617 ip->i_mount, dip); 618 return XFS_ERROR(EFSCORRUPTED); 619 } 620 621 ifp->if_real_bytes = 0; 622 if (nex == 0) 623 ifp->if_u1.if_extents = NULL; 624 else if (nex <= XFS_INLINE_EXTS) 625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 626 else 627 xfs_iext_add(ifp, 0, nex); 628 629 ifp->if_bytes = size; 630 if (size) { 631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 633 for (i = 0; i < nex; i++, dp++) { 634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0)); 636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1)); 637 } 638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 639 if (whichfork != XFS_DATA_FORK || 640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 641 if (unlikely(xfs_check_nostate_extents( 642 ifp, 0, nex))) { 643 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 644 XFS_ERRLEVEL_LOW, 645 ip->i_mount); 646 return XFS_ERROR(EFSCORRUPTED); 647 } 648 } 649 ifp->if_flags |= XFS_IFEXTENTS; 650 return 0; 651 } 652 653 /* 654 * The file has too many extents to fit into 655 * the inode, so they are in B-tree format. 656 * Allocate a buffer for the root of the B-tree 657 * and copy the root into it. The i_extents 658 * field will remain NULL until all of the 659 * extents are read in (when they are needed). 660 */ 661 STATIC int 662 xfs_iformat_btree( 663 xfs_inode_t *ip, 664 xfs_dinode_t *dip, 665 int whichfork) 666 { 667 xfs_bmdr_block_t *dfp; 668 xfs_ifork_t *ifp; 669 /* REFERENCED */ 670 int nrecs; 671 int size; 672 673 ifp = XFS_IFORK_PTR(ip, whichfork); 674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 675 size = XFS_BMAP_BROOT_SPACE(dfp); 676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 677 678 /* 679 * blow out if -- fork has less extents than can fit in 680 * fork (fork shouldn't be a btree format), root btree 681 * block has more records than can fit into the fork, 682 * or the number of extents is greater than the number of 683 * blocks. 684 */ 685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 686 || XFS_BMDR_SPACE_CALC(nrecs) > 687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 690 "corrupt inode %Lu (btree).", 691 (unsigned long long) ip->i_ino); 692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 693 ip->i_mount); 694 return XFS_ERROR(EFSCORRUPTED); 695 } 696 697 ifp->if_broot_bytes = size; 698 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 699 ASSERT(ifp->if_broot != NULL); 700 /* 701 * Copy and convert from the on-disk structure 702 * to the in-memory structure. 703 */ 704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 705 ifp->if_broot, size); 706 ifp->if_flags &= ~XFS_IFEXTENTS; 707 ifp->if_flags |= XFS_IFBROOT; 708 709 return 0; 710 } 711 712 void 713 xfs_dinode_from_disk( 714 xfs_icdinode_t *to, 715 xfs_dinode_core_t *from) 716 { 717 to->di_magic = be16_to_cpu(from->di_magic); 718 to->di_mode = be16_to_cpu(from->di_mode); 719 to->di_version = from ->di_version; 720 to->di_format = from->di_format; 721 to->di_onlink = be16_to_cpu(from->di_onlink); 722 to->di_uid = be32_to_cpu(from->di_uid); 723 to->di_gid = be32_to_cpu(from->di_gid); 724 to->di_nlink = be32_to_cpu(from->di_nlink); 725 to->di_projid = be16_to_cpu(from->di_projid); 726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 727 to->di_flushiter = be16_to_cpu(from->di_flushiter); 728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 734 to->di_size = be64_to_cpu(from->di_size); 735 to->di_nblocks = be64_to_cpu(from->di_nblocks); 736 to->di_extsize = be32_to_cpu(from->di_extsize); 737 to->di_nextents = be32_to_cpu(from->di_nextents); 738 to->di_anextents = be16_to_cpu(from->di_anextents); 739 to->di_forkoff = from->di_forkoff; 740 to->di_aformat = from->di_aformat; 741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 742 to->di_dmstate = be16_to_cpu(from->di_dmstate); 743 to->di_flags = be16_to_cpu(from->di_flags); 744 to->di_gen = be32_to_cpu(from->di_gen); 745 } 746 747 void 748 xfs_dinode_to_disk( 749 xfs_dinode_core_t *to, 750 xfs_icdinode_t *from) 751 { 752 to->di_magic = cpu_to_be16(from->di_magic); 753 to->di_mode = cpu_to_be16(from->di_mode); 754 to->di_version = from ->di_version; 755 to->di_format = from->di_format; 756 to->di_onlink = cpu_to_be16(from->di_onlink); 757 to->di_uid = cpu_to_be32(from->di_uid); 758 to->di_gid = cpu_to_be32(from->di_gid); 759 to->di_nlink = cpu_to_be32(from->di_nlink); 760 to->di_projid = cpu_to_be16(from->di_projid); 761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 762 to->di_flushiter = cpu_to_be16(from->di_flushiter); 763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 769 to->di_size = cpu_to_be64(from->di_size); 770 to->di_nblocks = cpu_to_be64(from->di_nblocks); 771 to->di_extsize = cpu_to_be32(from->di_extsize); 772 to->di_nextents = cpu_to_be32(from->di_nextents); 773 to->di_anextents = cpu_to_be16(from->di_anextents); 774 to->di_forkoff = from->di_forkoff; 775 to->di_aformat = from->di_aformat; 776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 777 to->di_dmstate = cpu_to_be16(from->di_dmstate); 778 to->di_flags = cpu_to_be16(from->di_flags); 779 to->di_gen = cpu_to_be32(from->di_gen); 780 } 781 782 STATIC uint 783 _xfs_dic2xflags( 784 __uint16_t di_flags) 785 { 786 uint flags = 0; 787 788 if (di_flags & XFS_DIFLAG_ANY) { 789 if (di_flags & XFS_DIFLAG_REALTIME) 790 flags |= XFS_XFLAG_REALTIME; 791 if (di_flags & XFS_DIFLAG_PREALLOC) 792 flags |= XFS_XFLAG_PREALLOC; 793 if (di_flags & XFS_DIFLAG_IMMUTABLE) 794 flags |= XFS_XFLAG_IMMUTABLE; 795 if (di_flags & XFS_DIFLAG_APPEND) 796 flags |= XFS_XFLAG_APPEND; 797 if (di_flags & XFS_DIFLAG_SYNC) 798 flags |= XFS_XFLAG_SYNC; 799 if (di_flags & XFS_DIFLAG_NOATIME) 800 flags |= XFS_XFLAG_NOATIME; 801 if (di_flags & XFS_DIFLAG_NODUMP) 802 flags |= XFS_XFLAG_NODUMP; 803 if (di_flags & XFS_DIFLAG_RTINHERIT) 804 flags |= XFS_XFLAG_RTINHERIT; 805 if (di_flags & XFS_DIFLAG_PROJINHERIT) 806 flags |= XFS_XFLAG_PROJINHERIT; 807 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 808 flags |= XFS_XFLAG_NOSYMLINKS; 809 if (di_flags & XFS_DIFLAG_EXTSIZE) 810 flags |= XFS_XFLAG_EXTSIZE; 811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 812 flags |= XFS_XFLAG_EXTSZINHERIT; 813 if (di_flags & XFS_DIFLAG_NODEFRAG) 814 flags |= XFS_XFLAG_NODEFRAG; 815 if (di_flags & XFS_DIFLAG_FILESTREAM) 816 flags |= XFS_XFLAG_FILESTREAM; 817 } 818 819 return flags; 820 } 821 822 uint 823 xfs_ip2xflags( 824 xfs_inode_t *ip) 825 { 826 xfs_icdinode_t *dic = &ip->i_d; 827 828 return _xfs_dic2xflags(dic->di_flags) | 829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); 830 } 831 832 uint 833 xfs_dic2xflags( 834 xfs_dinode_core_t *dic) 835 { 836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) | 837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); 838 } 839 840 /* 841 * Given a mount structure and an inode number, return a pointer 842 * to a newly allocated in-core inode corresponding to the given 843 * inode number. 844 * 845 * Initialize the inode's attributes and extent pointers if it 846 * already has them (it will not if the inode has no links). 847 */ 848 int 849 xfs_iread( 850 xfs_mount_t *mp, 851 xfs_trans_t *tp, 852 xfs_ino_t ino, 853 xfs_inode_t **ipp, 854 xfs_daddr_t bno, 855 uint imap_flags) 856 { 857 xfs_buf_t *bp; 858 xfs_dinode_t *dip; 859 xfs_inode_t *ip; 860 int error; 861 862 ASSERT(xfs_inode_zone != NULL); 863 864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 865 ip->i_ino = ino; 866 ip->i_mount = mp; 867 atomic_set(&ip->i_iocount, 0); 868 spin_lock_init(&ip->i_flags_lock); 869 870 /* 871 * Get pointer's to the on-disk inode and the buffer containing it. 872 * If the inode number refers to a block outside the file system 873 * then xfs_itobp() will return NULL. In this case we should 874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 875 * know that this is a new incore inode. 876 */ 877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags); 878 if (error) { 879 kmem_zone_free(xfs_inode_zone, ip); 880 return error; 881 } 882 883 /* 884 * Initialize inode's trace buffers. 885 * Do this before xfs_iformat in case it adds entries. 886 */ 887 #ifdef XFS_VNODE_TRACE 888 ip->i_trace = ktrace_alloc(VNODE_TRACE_SIZE, KM_SLEEP); 889 #endif 890 #ifdef XFS_BMAP_TRACE 891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); 892 #endif 893 #ifdef XFS_BMBT_TRACE 894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); 895 #endif 896 #ifdef XFS_RW_TRACE 897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); 898 #endif 899 #ifdef XFS_ILOCK_TRACE 900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); 901 #endif 902 #ifdef XFS_DIR2_TRACE 903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); 904 #endif 905 906 /* 907 * If we got something that isn't an inode it means someone 908 * (nfs or dmi) has a stale handle. 909 */ 910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) { 911 kmem_zone_free(xfs_inode_zone, ip); 912 xfs_trans_brelse(tp, bp); 913 #ifdef DEBUG 914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 915 "dip->di_core.di_magic (0x%x) != " 916 "XFS_DINODE_MAGIC (0x%x)", 917 be16_to_cpu(dip->di_core.di_magic), 918 XFS_DINODE_MAGIC); 919 #endif /* DEBUG */ 920 return XFS_ERROR(EINVAL); 921 } 922 923 /* 924 * If the on-disk inode is already linked to a directory 925 * entry, copy all of the inode into the in-core inode. 926 * xfs_iformat() handles copying in the inode format 927 * specific information. 928 * Otherwise, just get the truly permanent information. 929 */ 930 if (dip->di_core.di_mode) { 931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core); 932 error = xfs_iformat(ip, dip); 933 if (error) { 934 kmem_zone_free(xfs_inode_zone, ip); 935 xfs_trans_brelse(tp, bp); 936 #ifdef DEBUG 937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 938 "xfs_iformat() returned error %d", 939 error); 940 #endif /* DEBUG */ 941 return error; 942 } 943 } else { 944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic); 945 ip->i_d.di_version = dip->di_core.di_version; 946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen); 947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter); 948 /* 949 * Make sure to pull in the mode here as well in 950 * case the inode is released without being used. 951 * This ensures that xfs_inactive() will see that 952 * the inode is already free and not try to mess 953 * with the uninitialized part of it. 954 */ 955 ip->i_d.di_mode = 0; 956 /* 957 * Initialize the per-fork minima and maxima for a new 958 * inode here. xfs_iformat will do it for old inodes. 959 */ 960 ip->i_df.if_ext_max = 961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 962 } 963 964 INIT_LIST_HEAD(&ip->i_reclaim); 965 966 /* 967 * The inode format changed when we moved the link count and 968 * made it 32 bits long. If this is an old format inode, 969 * convert it in memory to look like a new one. If it gets 970 * flushed to disk we will convert back before flushing or 971 * logging it. We zero out the new projid field and the old link 972 * count field. We'll handle clearing the pad field (the remains 973 * of the old uuid field) when we actually convert the inode to 974 * the new format. We don't change the version number so that we 975 * can distinguish this from a real new format inode. 976 */ 977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 978 ip->i_d.di_nlink = ip->i_d.di_onlink; 979 ip->i_d.di_onlink = 0; 980 ip->i_d.di_projid = 0; 981 } 982 983 ip->i_delayed_blks = 0; 984 ip->i_size = ip->i_d.di_size; 985 986 /* 987 * Mark the buffer containing the inode as something to keep 988 * around for a while. This helps to keep recently accessed 989 * meta-data in-core longer. 990 */ 991 XFS_BUF_SET_REF(bp, XFS_INO_REF); 992 993 /* 994 * Use xfs_trans_brelse() to release the buffer containing the 995 * on-disk inode, because it was acquired with xfs_trans_read_buf() 996 * in xfs_itobp() above. If tp is NULL, this is just a normal 997 * brelse(). If we're within a transaction, then xfs_trans_brelse() 998 * will only release the buffer if it is not dirty within the 999 * transaction. It will be OK to release the buffer in this case, 1000 * because inodes on disk are never destroyed and we will be 1001 * locking the new in-core inode before putting it in the hash 1002 * table where other processes can find it. Thus we don't have 1003 * to worry about the inode being changed just because we released 1004 * the buffer. 1005 */ 1006 xfs_trans_brelse(tp, bp); 1007 *ipp = ip; 1008 return 0; 1009 } 1010 1011 /* 1012 * Read in extents from a btree-format inode. 1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1014 */ 1015 int 1016 xfs_iread_extents( 1017 xfs_trans_t *tp, 1018 xfs_inode_t *ip, 1019 int whichfork) 1020 { 1021 int error; 1022 xfs_ifork_t *ifp; 1023 xfs_extnum_t nextents; 1024 size_t size; 1025 1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1028 ip->i_mount); 1029 return XFS_ERROR(EFSCORRUPTED); 1030 } 1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1032 size = nextents * sizeof(xfs_bmbt_rec_t); 1033 ifp = XFS_IFORK_PTR(ip, whichfork); 1034 1035 /* 1036 * We know that the size is valid (it's checked in iformat_btree) 1037 */ 1038 ifp->if_lastex = NULLEXTNUM; 1039 ifp->if_bytes = ifp->if_real_bytes = 0; 1040 ifp->if_flags |= XFS_IFEXTENTS; 1041 xfs_iext_add(ifp, 0, nextents); 1042 error = xfs_bmap_read_extents(tp, ip, whichfork); 1043 if (error) { 1044 xfs_iext_destroy(ifp); 1045 ifp->if_flags &= ~XFS_IFEXTENTS; 1046 return error; 1047 } 1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 1049 return 0; 1050 } 1051 1052 /* 1053 * Allocate an inode on disk and return a copy of its in-core version. 1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1055 * appropriately within the inode. The uid and gid for the inode are 1056 * set according to the contents of the given cred structure. 1057 * 1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1059 * has a free inode available, call xfs_iget() 1060 * to obtain the in-core version of the allocated inode. Finally, 1061 * fill in the inode and log its initial contents. In this case, 1062 * ialloc_context would be set to NULL and call_again set to false. 1063 * 1064 * If xfs_dialloc() does not have an available inode, 1065 * it will replenish its supply by doing an allocation. Since we can 1066 * only do one allocation within a transaction without deadlocks, we 1067 * must commit the current transaction before returning the inode itself. 1068 * In this case, therefore, we will set call_again to true and return. 1069 * The caller should then commit the current transaction, start a new 1070 * transaction, and call xfs_ialloc() again to actually get the inode. 1071 * 1072 * To ensure that some other process does not grab the inode that 1073 * was allocated during the first call to xfs_ialloc(), this routine 1074 * also returns the [locked] bp pointing to the head of the freelist 1075 * as ialloc_context. The caller should hold this buffer across 1076 * the commit and pass it back into this routine on the second call. 1077 * 1078 * If we are allocating quota inodes, we do not have a parent inode 1079 * to attach to or associate with (i.e. pip == NULL) because they 1080 * are not linked into the directory structure - they are attached 1081 * directly to the superblock - and so have no parent. 1082 */ 1083 int 1084 xfs_ialloc( 1085 xfs_trans_t *tp, 1086 xfs_inode_t *pip, 1087 mode_t mode, 1088 xfs_nlink_t nlink, 1089 xfs_dev_t rdev, 1090 cred_t *cr, 1091 xfs_prid_t prid, 1092 int okalloc, 1093 xfs_buf_t **ialloc_context, 1094 boolean_t *call_again, 1095 xfs_inode_t **ipp) 1096 { 1097 xfs_ino_t ino; 1098 xfs_inode_t *ip; 1099 bhv_vnode_t *vp; 1100 uint flags; 1101 int error; 1102 1103 /* 1104 * Call the space management code to pick 1105 * the on-disk inode to be allocated. 1106 */ 1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1108 ialloc_context, call_again, &ino); 1109 if (error != 0) { 1110 return error; 1111 } 1112 if (*call_again || ino == NULLFSINO) { 1113 *ipp = NULL; 1114 return 0; 1115 } 1116 ASSERT(*ialloc_context == NULL); 1117 1118 /* 1119 * Get the in-core inode with the lock held exclusively. 1120 * This is because we're setting fields here we need 1121 * to prevent others from looking at until we're done. 1122 */ 1123 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1125 if (error != 0) { 1126 return error; 1127 } 1128 ASSERT(ip != NULL); 1129 1130 vp = XFS_ITOV(ip); 1131 ip->i_d.di_mode = (__uint16_t)mode; 1132 ip->i_d.di_onlink = 0; 1133 ip->i_d.di_nlink = nlink; 1134 ASSERT(ip->i_d.di_nlink == nlink); 1135 ip->i_d.di_uid = current_fsuid(cr); 1136 ip->i_d.di_gid = current_fsgid(cr); 1137 ip->i_d.di_projid = prid; 1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1139 1140 /* 1141 * If the superblock version is up to where we support new format 1142 * inodes and this is currently an old format inode, then change 1143 * the inode version number now. This way we only do the conversion 1144 * here rather than here and in the flush/logging code. 1145 */ 1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && 1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1148 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1149 /* 1150 * We've already zeroed the old link count, the projid field, 1151 * and the pad field. 1152 */ 1153 } 1154 1155 /* 1156 * Project ids won't be stored on disk if we are using a version 1 inode. 1157 */ 1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1159 xfs_bump_ino_vers2(tp, ip); 1160 1161 if (pip && XFS_INHERIT_GID(pip)) { 1162 ip->i_d.di_gid = pip->i_d.di_gid; 1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1164 ip->i_d.di_mode |= S_ISGID; 1165 } 1166 } 1167 1168 /* 1169 * If the group ID of the new file does not match the effective group 1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1171 * (and only if the irix_sgid_inherit compatibility variable is set). 1172 */ 1173 if ((irix_sgid_inherit) && 1174 (ip->i_d.di_mode & S_ISGID) && 1175 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1176 ip->i_d.di_mode &= ~S_ISGID; 1177 } 1178 1179 ip->i_d.di_size = 0; 1180 ip->i_size = 0; 1181 ip->i_d.di_nextents = 0; 1182 ASSERT(ip->i_d.di_nblocks == 0); 1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); 1184 /* 1185 * di_gen will have been taken care of in xfs_iread. 1186 */ 1187 ip->i_d.di_extsize = 0; 1188 ip->i_d.di_dmevmask = 0; 1189 ip->i_d.di_dmstate = 0; 1190 ip->i_d.di_flags = 0; 1191 flags = XFS_ILOG_CORE; 1192 switch (mode & S_IFMT) { 1193 case S_IFIFO: 1194 case S_IFCHR: 1195 case S_IFBLK: 1196 case S_IFSOCK: 1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1198 ip->i_df.if_u2.if_rdev = rdev; 1199 ip->i_df.if_flags = 0; 1200 flags |= XFS_ILOG_DEV; 1201 break; 1202 case S_IFREG: 1203 if (pip && xfs_inode_is_filestream(pip)) { 1204 error = xfs_filestream_associate(pip, ip); 1205 if (error < 0) 1206 return -error; 1207 if (!error) 1208 xfs_iflags_set(ip, XFS_IFILESTREAM); 1209 } 1210 /* fall through */ 1211 case S_IFDIR: 1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1213 uint di_flags = 0; 1214 1215 if ((mode & S_IFMT) == S_IFDIR) { 1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1217 di_flags |= XFS_DIFLAG_RTINHERIT; 1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1220 ip->i_d.di_extsize = pip->i_d.di_extsize; 1221 } 1222 } else if ((mode & S_IFMT) == S_IFREG) { 1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { 1224 di_flags |= XFS_DIFLAG_REALTIME; 1225 ip->i_iocore.io_flags |= XFS_IOCORE_RT; 1226 } 1227 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1228 di_flags |= XFS_DIFLAG_EXTSIZE; 1229 ip->i_d.di_extsize = pip->i_d.di_extsize; 1230 } 1231 } 1232 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1233 xfs_inherit_noatime) 1234 di_flags |= XFS_DIFLAG_NOATIME; 1235 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1236 xfs_inherit_nodump) 1237 di_flags |= XFS_DIFLAG_NODUMP; 1238 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1239 xfs_inherit_sync) 1240 di_flags |= XFS_DIFLAG_SYNC; 1241 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1242 xfs_inherit_nosymlinks) 1243 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1244 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1245 di_flags |= XFS_DIFLAG_PROJINHERIT; 1246 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1247 xfs_inherit_nodefrag) 1248 di_flags |= XFS_DIFLAG_NODEFRAG; 1249 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1250 di_flags |= XFS_DIFLAG_FILESTREAM; 1251 ip->i_d.di_flags |= di_flags; 1252 } 1253 /* FALLTHROUGH */ 1254 case S_IFLNK: 1255 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1256 ip->i_df.if_flags = XFS_IFEXTENTS; 1257 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1258 ip->i_df.if_u1.if_extents = NULL; 1259 break; 1260 default: 1261 ASSERT(0); 1262 } 1263 /* 1264 * Attribute fork settings for new inode. 1265 */ 1266 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1267 ip->i_d.di_anextents = 0; 1268 1269 /* 1270 * Log the new values stuffed into the inode. 1271 */ 1272 xfs_trans_log_inode(tp, ip, flags); 1273 1274 /* now that we have an i_mode we can setup inode ops and unlock */ 1275 xfs_initialize_vnode(tp->t_mountp, vp, ip); 1276 1277 *ipp = ip; 1278 return 0; 1279 } 1280 1281 /* 1282 * Check to make sure that there are no blocks allocated to the 1283 * file beyond the size of the file. We don't check this for 1284 * files with fixed size extents or real time extents, but we 1285 * at least do it for regular files. 1286 */ 1287 #ifdef DEBUG 1288 void 1289 xfs_isize_check( 1290 xfs_mount_t *mp, 1291 xfs_inode_t *ip, 1292 xfs_fsize_t isize) 1293 { 1294 xfs_fileoff_t map_first; 1295 int nimaps; 1296 xfs_bmbt_irec_t imaps[2]; 1297 1298 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1299 return; 1300 1301 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE)) 1302 return; 1303 1304 nimaps = 2; 1305 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1306 /* 1307 * The filesystem could be shutting down, so bmapi may return 1308 * an error. 1309 */ 1310 if (xfs_bmapi(NULL, ip, map_first, 1311 (XFS_B_TO_FSB(mp, 1312 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1313 map_first), 1314 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1315 NULL, NULL)) 1316 return; 1317 ASSERT(nimaps == 1); 1318 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1319 } 1320 #endif /* DEBUG */ 1321 1322 /* 1323 * Calculate the last possible buffered byte in a file. This must 1324 * include data that was buffered beyond the EOF by the write code. 1325 * This also needs to deal with overflowing the xfs_fsize_t type 1326 * which can happen for sizes near the limit. 1327 * 1328 * We also need to take into account any blocks beyond the EOF. It 1329 * may be the case that they were buffered by a write which failed. 1330 * In that case the pages will still be in memory, but the inode size 1331 * will never have been updated. 1332 */ 1333 xfs_fsize_t 1334 xfs_file_last_byte( 1335 xfs_inode_t *ip) 1336 { 1337 xfs_mount_t *mp; 1338 xfs_fsize_t last_byte; 1339 xfs_fileoff_t last_block; 1340 xfs_fileoff_t size_last_block; 1341 int error; 1342 1343 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); 1344 1345 mp = ip->i_mount; 1346 /* 1347 * Only check for blocks beyond the EOF if the extents have 1348 * been read in. This eliminates the need for the inode lock, 1349 * and it also saves us from looking when it really isn't 1350 * necessary. 1351 */ 1352 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1353 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1354 XFS_DATA_FORK); 1355 if (error) { 1356 last_block = 0; 1357 } 1358 } else { 1359 last_block = 0; 1360 } 1361 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1362 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1363 1364 last_byte = XFS_FSB_TO_B(mp, last_block); 1365 if (last_byte < 0) { 1366 return XFS_MAXIOFFSET(mp); 1367 } 1368 last_byte += (1 << mp->m_writeio_log); 1369 if (last_byte < 0) { 1370 return XFS_MAXIOFFSET(mp); 1371 } 1372 return last_byte; 1373 } 1374 1375 #if defined(XFS_RW_TRACE) 1376 STATIC void 1377 xfs_itrunc_trace( 1378 int tag, 1379 xfs_inode_t *ip, 1380 int flag, 1381 xfs_fsize_t new_size, 1382 xfs_off_t toss_start, 1383 xfs_off_t toss_finish) 1384 { 1385 if (ip->i_rwtrace == NULL) { 1386 return; 1387 } 1388 1389 ktrace_enter(ip->i_rwtrace, 1390 (void*)((long)tag), 1391 (void*)ip, 1392 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1393 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1394 (void*)((long)flag), 1395 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1396 (void*)(unsigned long)(new_size & 0xffffffff), 1397 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1398 (void*)(unsigned long)(toss_start & 0xffffffff), 1399 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1400 (void*)(unsigned long)(toss_finish & 0xffffffff), 1401 (void*)(unsigned long)current_cpu(), 1402 (void*)(unsigned long)current_pid(), 1403 (void*)NULL, 1404 (void*)NULL, 1405 (void*)NULL); 1406 } 1407 #else 1408 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1409 #endif 1410 1411 /* 1412 * Start the truncation of the file to new_size. The new size 1413 * must be smaller than the current size. This routine will 1414 * clear the buffer and page caches of file data in the removed 1415 * range, and xfs_itruncate_finish() will remove the underlying 1416 * disk blocks. 1417 * 1418 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1419 * must NOT have the inode lock held at all. This is because we're 1420 * calling into the buffer/page cache code and we can't hold the 1421 * inode lock when we do so. 1422 * 1423 * We need to wait for any direct I/Os in flight to complete before we 1424 * proceed with the truncate. This is needed to prevent the extents 1425 * being read or written by the direct I/Os from being removed while the 1426 * I/O is in flight as there is no other method of synchronising 1427 * direct I/O with the truncate operation. Also, because we hold 1428 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1429 * started until the truncate completes and drops the lock. Essentially, 1430 * the vn_iowait() call forms an I/O barrier that provides strict ordering 1431 * between direct I/Os and the truncate operation. 1432 * 1433 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1434 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1435 * in the case that the caller is locking things out of order and 1436 * may not be able to call xfs_itruncate_finish() with the inode lock 1437 * held without dropping the I/O lock. If the caller must drop the 1438 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1439 * must be called again with all the same restrictions as the initial 1440 * call. 1441 */ 1442 int 1443 xfs_itruncate_start( 1444 xfs_inode_t *ip, 1445 uint flags, 1446 xfs_fsize_t new_size) 1447 { 1448 xfs_fsize_t last_byte; 1449 xfs_off_t toss_start; 1450 xfs_mount_t *mp; 1451 bhv_vnode_t *vp; 1452 int error = 0; 1453 1454 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1455 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1456 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1457 (flags == XFS_ITRUNC_MAYBE)); 1458 1459 mp = ip->i_mount; 1460 vp = XFS_ITOV(ip); 1461 1462 /* wait for the completion of any pending DIOs */ 1463 if (new_size < ip->i_size) 1464 vn_iowait(ip); 1465 1466 /* 1467 * Call toss_pages or flushinval_pages to get rid of pages 1468 * overlapping the region being removed. We have to use 1469 * the less efficient flushinval_pages in the case that the 1470 * caller may not be able to finish the truncate without 1471 * dropping the inode's I/O lock. Make sure 1472 * to catch any pages brought in by buffers overlapping 1473 * the EOF by searching out beyond the isize by our 1474 * block size. We round new_size up to a block boundary 1475 * so that we don't toss things on the same block as 1476 * new_size but before it. 1477 * 1478 * Before calling toss_page or flushinval_pages, make sure to 1479 * call remapf() over the same region if the file is mapped. 1480 * This frees up mapped file references to the pages in the 1481 * given range and for the flushinval_pages case it ensures 1482 * that we get the latest mapped changes flushed out. 1483 */ 1484 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1485 toss_start = XFS_FSB_TO_B(mp, toss_start); 1486 if (toss_start < 0) { 1487 /* 1488 * The place to start tossing is beyond our maximum 1489 * file size, so there is no way that the data extended 1490 * out there. 1491 */ 1492 return 0; 1493 } 1494 last_byte = xfs_file_last_byte(ip); 1495 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1496 last_byte); 1497 if (last_byte > toss_start) { 1498 if (flags & XFS_ITRUNC_DEFINITE) { 1499 xfs_tosspages(ip, toss_start, 1500 -1, FI_REMAPF_LOCKED); 1501 } else { 1502 error = xfs_flushinval_pages(ip, toss_start, 1503 -1, FI_REMAPF_LOCKED); 1504 } 1505 } 1506 1507 #ifdef DEBUG 1508 if (new_size == 0) { 1509 ASSERT(VN_CACHED(vp) == 0); 1510 } 1511 #endif 1512 return error; 1513 } 1514 1515 /* 1516 * Shrink the file to the given new_size. The new 1517 * size must be smaller than the current size. 1518 * This will free up the underlying blocks 1519 * in the removed range after a call to xfs_itruncate_start() 1520 * or xfs_atruncate_start(). 1521 * 1522 * The transaction passed to this routine must have made 1523 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. 1524 * This routine may commit the given transaction and 1525 * start new ones, so make sure everything involved in 1526 * the transaction is tidy before calling here. 1527 * Some transaction will be returned to the caller to be 1528 * committed. The incoming transaction must already include 1529 * the inode, and both inode locks must be held exclusively. 1530 * The inode must also be "held" within the transaction. On 1531 * return the inode will be "held" within the returned transaction. 1532 * This routine does NOT require any disk space to be reserved 1533 * for it within the transaction. 1534 * 1535 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, 1536 * and it indicates the fork which is to be truncated. For the 1537 * attribute fork we only support truncation to size 0. 1538 * 1539 * We use the sync parameter to indicate whether or not the first 1540 * transaction we perform might have to be synchronous. For the attr fork, 1541 * it needs to be so if the unlink of the inode is not yet known to be 1542 * permanent in the log. This keeps us from freeing and reusing the 1543 * blocks of the attribute fork before the unlink of the inode becomes 1544 * permanent. 1545 * 1546 * For the data fork, we normally have to run synchronously if we're 1547 * being called out of the inactive path or we're being called 1548 * out of the create path where we're truncating an existing file. 1549 * Either way, the truncate needs to be sync so blocks don't reappear 1550 * in the file with altered data in case of a crash. wsync filesystems 1551 * can run the first case async because anything that shrinks the inode 1552 * has to run sync so by the time we're called here from inactive, the 1553 * inode size is permanently set to 0. 1554 * 1555 * Calls from the truncate path always need to be sync unless we're 1556 * in a wsync filesystem and the file has already been unlinked. 1557 * 1558 * The caller is responsible for correctly setting the sync parameter. 1559 * It gets too hard for us to guess here which path we're being called 1560 * out of just based on inode state. 1561 */ 1562 int 1563 xfs_itruncate_finish( 1564 xfs_trans_t **tp, 1565 xfs_inode_t *ip, 1566 xfs_fsize_t new_size, 1567 int fork, 1568 int sync) 1569 { 1570 xfs_fsblock_t first_block; 1571 xfs_fileoff_t first_unmap_block; 1572 xfs_fileoff_t last_block; 1573 xfs_filblks_t unmap_len=0; 1574 xfs_mount_t *mp; 1575 xfs_trans_t *ntp; 1576 int done; 1577 int committed; 1578 xfs_bmap_free_t free_list; 1579 int error; 1580 1581 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1582 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); 1583 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1584 ASSERT(*tp != NULL); 1585 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1586 ASSERT(ip->i_transp == *tp); 1587 ASSERT(ip->i_itemp != NULL); 1588 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1589 1590 1591 ntp = *tp; 1592 mp = (ntp)->t_mountp; 1593 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1594 1595 /* 1596 * We only support truncating the entire attribute fork. 1597 */ 1598 if (fork == XFS_ATTR_FORK) { 1599 new_size = 0LL; 1600 } 1601 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1602 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1603 /* 1604 * The first thing we do is set the size to new_size permanently 1605 * on disk. This way we don't have to worry about anyone ever 1606 * being able to look at the data being freed even in the face 1607 * of a crash. What we're getting around here is the case where 1608 * we free a block, it is allocated to another file, it is written 1609 * to, and then we crash. If the new data gets written to the 1610 * file but the log buffers containing the free and reallocation 1611 * don't, then we'd end up with garbage in the blocks being freed. 1612 * As long as we make the new_size permanent before actually 1613 * freeing any blocks it doesn't matter if they get writtten to. 1614 * 1615 * The callers must signal into us whether or not the size 1616 * setting here must be synchronous. There are a few cases 1617 * where it doesn't have to be synchronous. Those cases 1618 * occur if the file is unlinked and we know the unlink is 1619 * permanent or if the blocks being truncated are guaranteed 1620 * to be beyond the inode eof (regardless of the link count) 1621 * and the eof value is permanent. Both of these cases occur 1622 * only on wsync-mounted filesystems. In those cases, we're 1623 * guaranteed that no user will ever see the data in the blocks 1624 * that are being truncated so the truncate can run async. 1625 * In the free beyond eof case, the file may wind up with 1626 * more blocks allocated to it than it needs if we crash 1627 * and that won't get fixed until the next time the file 1628 * is re-opened and closed but that's ok as that shouldn't 1629 * be too many blocks. 1630 * 1631 * However, we can't just make all wsync xactions run async 1632 * because there's one call out of the create path that needs 1633 * to run sync where it's truncating an existing file to size 1634 * 0 whose size is > 0. 1635 * 1636 * It's probably possible to come up with a test in this 1637 * routine that would correctly distinguish all the above 1638 * cases from the values of the function parameters and the 1639 * inode state but for sanity's sake, I've decided to let the 1640 * layers above just tell us. It's simpler to correctly figure 1641 * out in the layer above exactly under what conditions we 1642 * can run async and I think it's easier for others read and 1643 * follow the logic in case something has to be changed. 1644 * cscope is your friend -- rcc. 1645 * 1646 * The attribute fork is much simpler. 1647 * 1648 * For the attribute fork we allow the caller to tell us whether 1649 * the unlink of the inode that led to this call is yet permanent 1650 * in the on disk log. If it is not and we will be freeing extents 1651 * in this inode then we make the first transaction synchronous 1652 * to make sure that the unlink is permanent by the time we free 1653 * the blocks. 1654 */ 1655 if (fork == XFS_DATA_FORK) { 1656 if (ip->i_d.di_nextents > 0) { 1657 /* 1658 * If we are not changing the file size then do 1659 * not update the on-disk file size - we may be 1660 * called from xfs_inactive_free_eofblocks(). If we 1661 * update the on-disk file size and then the system 1662 * crashes before the contents of the file are 1663 * flushed to disk then the files may be full of 1664 * holes (ie NULL files bug). 1665 */ 1666 if (ip->i_size != new_size) { 1667 ip->i_d.di_size = new_size; 1668 ip->i_size = new_size; 1669 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1670 } 1671 } 1672 } else if (sync) { 1673 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1674 if (ip->i_d.di_anextents > 0) 1675 xfs_trans_set_sync(ntp); 1676 } 1677 ASSERT(fork == XFS_DATA_FORK || 1678 (fork == XFS_ATTR_FORK && 1679 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1680 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1681 1682 /* 1683 * Since it is possible for space to become allocated beyond 1684 * the end of the file (in a crash where the space is allocated 1685 * but the inode size is not yet updated), simply remove any 1686 * blocks which show up between the new EOF and the maximum 1687 * possible file size. If the first block to be removed is 1688 * beyond the maximum file size (ie it is the same as last_block), 1689 * then there is nothing to do. 1690 */ 1691 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1692 ASSERT(first_unmap_block <= last_block); 1693 done = 0; 1694 if (last_block == first_unmap_block) { 1695 done = 1; 1696 } else { 1697 unmap_len = last_block - first_unmap_block + 1; 1698 } 1699 while (!done) { 1700 /* 1701 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1702 * will tell us whether it freed the entire range or 1703 * not. If this is a synchronous mount (wsync), 1704 * then we can tell bunmapi to keep all the 1705 * transactions asynchronous since the unlink 1706 * transaction that made this inode inactive has 1707 * already hit the disk. There's no danger of 1708 * the freed blocks being reused, there being a 1709 * crash, and the reused blocks suddenly reappearing 1710 * in this file with garbage in them once recovery 1711 * runs. 1712 */ 1713 XFS_BMAP_INIT(&free_list, &first_block); 1714 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore, 1715 first_unmap_block, unmap_len, 1716 XFS_BMAPI_AFLAG(fork) | 1717 (sync ? 0 : XFS_BMAPI_ASYNC), 1718 XFS_ITRUNC_MAX_EXTENTS, 1719 &first_block, &free_list, 1720 NULL, &done); 1721 if (error) { 1722 /* 1723 * If the bunmapi call encounters an error, 1724 * return to the caller where the transaction 1725 * can be properly aborted. We just need to 1726 * make sure we're not holding any resources 1727 * that we were not when we came in. 1728 */ 1729 xfs_bmap_cancel(&free_list); 1730 return error; 1731 } 1732 1733 /* 1734 * Duplicate the transaction that has the permanent 1735 * reservation and commit the old transaction. 1736 */ 1737 error = xfs_bmap_finish(tp, &free_list, &committed); 1738 ntp = *tp; 1739 if (error) { 1740 /* 1741 * If the bmap finish call encounters an error, 1742 * return to the caller where the transaction 1743 * can be properly aborted. We just need to 1744 * make sure we're not holding any resources 1745 * that we were not when we came in. 1746 * 1747 * Aborting from this point might lose some 1748 * blocks in the file system, but oh well. 1749 */ 1750 xfs_bmap_cancel(&free_list); 1751 if (committed) { 1752 /* 1753 * If the passed in transaction committed 1754 * in xfs_bmap_finish(), then we want to 1755 * add the inode to this one before returning. 1756 * This keeps things simple for the higher 1757 * level code, because it always knows that 1758 * the inode is locked and held in the 1759 * transaction that returns to it whether 1760 * errors occur or not. We don't mark the 1761 * inode dirty so that this transaction can 1762 * be easily aborted if possible. 1763 */ 1764 xfs_trans_ijoin(ntp, ip, 1765 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1766 xfs_trans_ihold(ntp, ip); 1767 } 1768 return error; 1769 } 1770 1771 if (committed) { 1772 /* 1773 * The first xact was committed, 1774 * so add the inode to the new one. 1775 * Mark it dirty so it will be logged 1776 * and moved forward in the log as 1777 * part of every commit. 1778 */ 1779 xfs_trans_ijoin(ntp, ip, 1780 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1781 xfs_trans_ihold(ntp, ip); 1782 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1783 } 1784 ntp = xfs_trans_dup(ntp); 1785 (void) xfs_trans_commit(*tp, 0); 1786 *tp = ntp; 1787 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 1788 XFS_TRANS_PERM_LOG_RES, 1789 XFS_ITRUNCATE_LOG_COUNT); 1790 /* 1791 * Add the inode being truncated to the next chained 1792 * transaction. 1793 */ 1794 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1795 xfs_trans_ihold(ntp, ip); 1796 if (error) 1797 return (error); 1798 } 1799 /* 1800 * Only update the size in the case of the data fork, but 1801 * always re-log the inode so that our permanent transaction 1802 * can keep on rolling it forward in the log. 1803 */ 1804 if (fork == XFS_DATA_FORK) { 1805 xfs_isize_check(mp, ip, new_size); 1806 /* 1807 * If we are not changing the file size then do 1808 * not update the on-disk file size - we may be 1809 * called from xfs_inactive_free_eofblocks(). If we 1810 * update the on-disk file size and then the system 1811 * crashes before the contents of the file are 1812 * flushed to disk then the files may be full of 1813 * holes (ie NULL files bug). 1814 */ 1815 if (ip->i_size != new_size) { 1816 ip->i_d.di_size = new_size; 1817 ip->i_size = new_size; 1818 } 1819 } 1820 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1821 ASSERT((new_size != 0) || 1822 (fork == XFS_ATTR_FORK) || 1823 (ip->i_delayed_blks == 0)); 1824 ASSERT((new_size != 0) || 1825 (fork == XFS_ATTR_FORK) || 1826 (ip->i_d.di_nextents == 0)); 1827 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1828 return 0; 1829 } 1830 1831 1832 /* 1833 * xfs_igrow_start 1834 * 1835 * Do the first part of growing a file: zero any data in the last 1836 * block that is beyond the old EOF. We need to do this before 1837 * the inode is joined to the transaction to modify the i_size. 1838 * That way we can drop the inode lock and call into the buffer 1839 * cache to get the buffer mapping the EOF. 1840 */ 1841 int 1842 xfs_igrow_start( 1843 xfs_inode_t *ip, 1844 xfs_fsize_t new_size, 1845 cred_t *credp) 1846 { 1847 int error; 1848 1849 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1850 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1851 ASSERT(new_size > ip->i_size); 1852 1853 /* 1854 * Zero any pages that may have been created by 1855 * xfs_write_file() beyond the end of the file 1856 * and any blocks between the old and new file sizes. 1857 */ 1858 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, 1859 ip->i_size); 1860 return error; 1861 } 1862 1863 /* 1864 * xfs_igrow_finish 1865 * 1866 * This routine is called to extend the size of a file. 1867 * The inode must have both the iolock and the ilock locked 1868 * for update and it must be a part of the current transaction. 1869 * The xfs_igrow_start() function must have been called previously. 1870 * If the change_flag is not zero, the inode change timestamp will 1871 * be updated. 1872 */ 1873 void 1874 xfs_igrow_finish( 1875 xfs_trans_t *tp, 1876 xfs_inode_t *ip, 1877 xfs_fsize_t new_size, 1878 int change_flag) 1879 { 1880 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1881 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1882 ASSERT(ip->i_transp == tp); 1883 ASSERT(new_size > ip->i_size); 1884 1885 /* 1886 * Update the file size. Update the inode change timestamp 1887 * if change_flag set. 1888 */ 1889 ip->i_d.di_size = new_size; 1890 ip->i_size = new_size; 1891 if (change_flag) 1892 xfs_ichgtime(ip, XFS_ICHGTIME_CHG); 1893 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1894 1895 } 1896 1897 1898 /* 1899 * This is called when the inode's link count goes to 0. 1900 * We place the on-disk inode on a list in the AGI. It 1901 * will be pulled from this list when the inode is freed. 1902 */ 1903 int 1904 xfs_iunlink( 1905 xfs_trans_t *tp, 1906 xfs_inode_t *ip) 1907 { 1908 xfs_mount_t *mp; 1909 xfs_agi_t *agi; 1910 xfs_dinode_t *dip; 1911 xfs_buf_t *agibp; 1912 xfs_buf_t *ibp; 1913 xfs_agnumber_t agno; 1914 xfs_daddr_t agdaddr; 1915 xfs_agino_t agino; 1916 short bucket_index; 1917 int offset; 1918 int error; 1919 int agi_ok; 1920 1921 ASSERT(ip->i_d.di_nlink == 0); 1922 ASSERT(ip->i_d.di_mode != 0); 1923 ASSERT(ip->i_transp == tp); 1924 1925 mp = tp->t_mountp; 1926 1927 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1928 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1929 1930 /* 1931 * Get the agi buffer first. It ensures lock ordering 1932 * on the list. 1933 */ 1934 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1935 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1936 if (error) 1937 return error; 1938 1939 /* 1940 * Validate the magic number of the agi block. 1941 */ 1942 agi = XFS_BUF_TO_AGI(agibp); 1943 agi_ok = 1944 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1945 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1946 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1947 XFS_RANDOM_IUNLINK))) { 1948 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1949 xfs_trans_brelse(tp, agibp); 1950 return XFS_ERROR(EFSCORRUPTED); 1951 } 1952 /* 1953 * Get the index into the agi hash table for the 1954 * list this inode will go on. 1955 */ 1956 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1957 ASSERT(agino != 0); 1958 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1959 ASSERT(agi->agi_unlinked[bucket_index]); 1960 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1961 1962 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 1963 if (error) 1964 return error; 1965 1966 /* 1967 * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat 1968 * from picking up this inode when it is reclaimed (its incore state 1969 * initialzed but not flushed to disk yet). The in-core di_nlink is 1970 * already cleared in xfs_droplink() and a corresponding transaction 1971 * logged. The hack here just synchronizes the in-core to on-disk 1972 * di_nlink value in advance before the actual inode sync to disk. 1973 * This is OK because the inode is already unlinked and would never 1974 * change its di_nlink again for this inode generation. 1975 * This is a temporary hack that would require a proper fix 1976 * in the future. 1977 */ 1978 dip->di_core.di_nlink = 0; 1979 1980 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1981 /* 1982 * There is already another inode in the bucket we need 1983 * to add ourselves to. Add us at the front of the list. 1984 * Here we put the head pointer into our next pointer, 1985 * and then we fall through to point the head at us. 1986 */ 1987 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1988 /* both on-disk, don't endian flip twice */ 1989 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1990 offset = ip->i_boffset + 1991 offsetof(xfs_dinode_t, di_next_unlinked); 1992 xfs_trans_inode_buf(tp, ibp); 1993 xfs_trans_log_buf(tp, ibp, offset, 1994 (offset + sizeof(xfs_agino_t) - 1)); 1995 xfs_inobp_check(mp, ibp); 1996 } 1997 1998 /* 1999 * Point the bucket head pointer at the inode being inserted. 2000 */ 2001 ASSERT(agino != 0); 2002 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2003 offset = offsetof(xfs_agi_t, agi_unlinked) + 2004 (sizeof(xfs_agino_t) * bucket_index); 2005 xfs_trans_log_buf(tp, agibp, offset, 2006 (offset + sizeof(xfs_agino_t) - 1)); 2007 return 0; 2008 } 2009 2010 /* 2011 * Pull the on-disk inode from the AGI unlinked list. 2012 */ 2013 STATIC int 2014 xfs_iunlink_remove( 2015 xfs_trans_t *tp, 2016 xfs_inode_t *ip) 2017 { 2018 xfs_ino_t next_ino; 2019 xfs_mount_t *mp; 2020 xfs_agi_t *agi; 2021 xfs_dinode_t *dip; 2022 xfs_buf_t *agibp; 2023 xfs_buf_t *ibp; 2024 xfs_agnumber_t agno; 2025 xfs_daddr_t agdaddr; 2026 xfs_agino_t agino; 2027 xfs_agino_t next_agino; 2028 xfs_buf_t *last_ibp; 2029 xfs_dinode_t *last_dip = NULL; 2030 short bucket_index; 2031 int offset, last_offset = 0; 2032 int error; 2033 int agi_ok; 2034 2035 /* 2036 * First pull the on-disk inode from the AGI unlinked list. 2037 */ 2038 mp = tp->t_mountp; 2039 2040 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2041 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 2042 2043 /* 2044 * Get the agi buffer first. It ensures lock ordering 2045 * on the list. 2046 */ 2047 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 2048 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 2049 if (error) { 2050 cmn_err(CE_WARN, 2051 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 2052 error, mp->m_fsname); 2053 return error; 2054 } 2055 /* 2056 * Validate the magic number of the agi block. 2057 */ 2058 agi = XFS_BUF_TO_AGI(agibp); 2059 agi_ok = 2060 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 2061 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 2062 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 2063 XFS_RANDOM_IUNLINK_REMOVE))) { 2064 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 2065 mp, agi); 2066 xfs_trans_brelse(tp, agibp); 2067 cmn_err(CE_WARN, 2068 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 2069 mp->m_fsname); 2070 return XFS_ERROR(EFSCORRUPTED); 2071 } 2072 /* 2073 * Get the index into the agi hash table for the 2074 * list this inode will go on. 2075 */ 2076 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2077 ASSERT(agino != 0); 2078 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2079 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 2080 ASSERT(agi->agi_unlinked[bucket_index]); 2081 2082 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2083 /* 2084 * We're at the head of the list. Get the inode's 2085 * on-disk buffer to see if there is anyone after us 2086 * on the list. Only modify our next pointer if it 2087 * is not already NULLAGINO. This saves us the overhead 2088 * of dealing with the buffer when there is no need to 2089 * change it. 2090 */ 2091 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2092 if (error) { 2093 cmn_err(CE_WARN, 2094 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2095 error, mp->m_fsname); 2096 return error; 2097 } 2098 next_agino = be32_to_cpu(dip->di_next_unlinked); 2099 ASSERT(next_agino != 0); 2100 if (next_agino != NULLAGINO) { 2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2102 offset = ip->i_boffset + 2103 offsetof(xfs_dinode_t, di_next_unlinked); 2104 xfs_trans_inode_buf(tp, ibp); 2105 xfs_trans_log_buf(tp, ibp, offset, 2106 (offset + sizeof(xfs_agino_t) - 1)); 2107 xfs_inobp_check(mp, ibp); 2108 } else { 2109 xfs_trans_brelse(tp, ibp); 2110 } 2111 /* 2112 * Point the bucket head pointer at the next inode. 2113 */ 2114 ASSERT(next_agino != 0); 2115 ASSERT(next_agino != agino); 2116 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2117 offset = offsetof(xfs_agi_t, agi_unlinked) + 2118 (sizeof(xfs_agino_t) * bucket_index); 2119 xfs_trans_log_buf(tp, agibp, offset, 2120 (offset + sizeof(xfs_agino_t) - 1)); 2121 } else { 2122 /* 2123 * We need to search the list for the inode being freed. 2124 */ 2125 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2126 last_ibp = NULL; 2127 while (next_agino != agino) { 2128 /* 2129 * If the last inode wasn't the one pointing to 2130 * us, then release its buffer since we're not 2131 * going to do anything with it. 2132 */ 2133 if (last_ibp != NULL) { 2134 xfs_trans_brelse(tp, last_ibp); 2135 } 2136 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2137 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 2138 &last_ibp, &last_offset); 2139 if (error) { 2140 cmn_err(CE_WARN, 2141 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2142 error, mp->m_fsname); 2143 return error; 2144 } 2145 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2146 ASSERT(next_agino != NULLAGINO); 2147 ASSERT(next_agino != 0); 2148 } 2149 /* 2150 * Now last_ibp points to the buffer previous to us on 2151 * the unlinked list. Pull us from the list. 2152 */ 2153 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2154 if (error) { 2155 cmn_err(CE_WARN, 2156 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2157 error, mp->m_fsname); 2158 return error; 2159 } 2160 next_agino = be32_to_cpu(dip->di_next_unlinked); 2161 ASSERT(next_agino != 0); 2162 ASSERT(next_agino != agino); 2163 if (next_agino != NULLAGINO) { 2164 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2165 offset = ip->i_boffset + 2166 offsetof(xfs_dinode_t, di_next_unlinked); 2167 xfs_trans_inode_buf(tp, ibp); 2168 xfs_trans_log_buf(tp, ibp, offset, 2169 (offset + sizeof(xfs_agino_t) - 1)); 2170 xfs_inobp_check(mp, ibp); 2171 } else { 2172 xfs_trans_brelse(tp, ibp); 2173 } 2174 /* 2175 * Point the previous inode on the list to the next inode. 2176 */ 2177 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2178 ASSERT(next_agino != 0); 2179 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2180 xfs_trans_inode_buf(tp, last_ibp); 2181 xfs_trans_log_buf(tp, last_ibp, offset, 2182 (offset + sizeof(xfs_agino_t) - 1)); 2183 xfs_inobp_check(mp, last_ibp); 2184 } 2185 return 0; 2186 } 2187 2188 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip) 2189 { 2190 return (((ip->i_itemp == NULL) || 2191 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && 2192 (ip->i_update_core == 0)); 2193 } 2194 2195 STATIC void 2196 xfs_ifree_cluster( 2197 xfs_inode_t *free_ip, 2198 xfs_trans_t *tp, 2199 xfs_ino_t inum) 2200 { 2201 xfs_mount_t *mp = free_ip->i_mount; 2202 int blks_per_cluster; 2203 int nbufs; 2204 int ninodes; 2205 int i, j, found, pre_flushed; 2206 xfs_daddr_t blkno; 2207 xfs_buf_t *bp; 2208 xfs_inode_t *ip, **ip_found; 2209 xfs_inode_log_item_t *iip; 2210 xfs_log_item_t *lip; 2211 xfs_perag_t *pag = xfs_get_perag(mp, inum); 2212 SPLDECL(s); 2213 2214 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2215 blks_per_cluster = 1; 2216 ninodes = mp->m_sb.sb_inopblock; 2217 nbufs = XFS_IALLOC_BLOCKS(mp); 2218 } else { 2219 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2220 mp->m_sb.sb_blocksize; 2221 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2222 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2223 } 2224 2225 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2226 2227 for (j = 0; j < nbufs; j++, inum += ninodes) { 2228 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2229 XFS_INO_TO_AGBNO(mp, inum)); 2230 2231 2232 /* 2233 * Look for each inode in memory and attempt to lock it, 2234 * we can be racing with flush and tail pushing here. 2235 * any inode we get the locks on, add to an array of 2236 * inode items to process later. 2237 * 2238 * The get the buffer lock, we could beat a flush 2239 * or tail pushing thread to the lock here, in which 2240 * case they will go looking for the inode buffer 2241 * and fail, we need some other form of interlock 2242 * here. 2243 */ 2244 found = 0; 2245 for (i = 0; i < ninodes; i++) { 2246 read_lock(&pag->pag_ici_lock); 2247 ip = radix_tree_lookup(&pag->pag_ici_root, 2248 XFS_INO_TO_AGINO(mp, (inum + i))); 2249 2250 /* Inode not in memory or we found it already, 2251 * nothing to do 2252 */ 2253 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2254 read_unlock(&pag->pag_ici_lock); 2255 continue; 2256 } 2257 2258 if (xfs_inode_clean(ip)) { 2259 read_unlock(&pag->pag_ici_lock); 2260 continue; 2261 } 2262 2263 /* If we can get the locks then add it to the 2264 * list, otherwise by the time we get the bp lock 2265 * below it will already be attached to the 2266 * inode buffer. 2267 */ 2268 2269 /* This inode will already be locked - by us, lets 2270 * keep it that way. 2271 */ 2272 2273 if (ip == free_ip) { 2274 if (xfs_iflock_nowait(ip)) { 2275 xfs_iflags_set(ip, XFS_ISTALE); 2276 if (xfs_inode_clean(ip)) { 2277 xfs_ifunlock(ip); 2278 } else { 2279 ip_found[found++] = ip; 2280 } 2281 } 2282 read_unlock(&pag->pag_ici_lock); 2283 continue; 2284 } 2285 2286 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2287 if (xfs_iflock_nowait(ip)) { 2288 xfs_iflags_set(ip, XFS_ISTALE); 2289 2290 if (xfs_inode_clean(ip)) { 2291 xfs_ifunlock(ip); 2292 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2293 } else { 2294 ip_found[found++] = ip; 2295 } 2296 } else { 2297 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2298 } 2299 } 2300 read_unlock(&pag->pag_ici_lock); 2301 } 2302 2303 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2304 mp->m_bsize * blks_per_cluster, 2305 XFS_BUF_LOCK); 2306 2307 pre_flushed = 0; 2308 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2309 while (lip) { 2310 if (lip->li_type == XFS_LI_INODE) { 2311 iip = (xfs_inode_log_item_t *)lip; 2312 ASSERT(iip->ili_logged == 1); 2313 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2314 AIL_LOCK(mp,s); 2315 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2316 AIL_UNLOCK(mp, s); 2317 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2318 pre_flushed++; 2319 } 2320 lip = lip->li_bio_list; 2321 } 2322 2323 for (i = 0; i < found; i++) { 2324 ip = ip_found[i]; 2325 iip = ip->i_itemp; 2326 2327 if (!iip) { 2328 ip->i_update_core = 0; 2329 xfs_ifunlock(ip); 2330 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2331 continue; 2332 } 2333 2334 iip->ili_last_fields = iip->ili_format.ilf_fields; 2335 iip->ili_format.ilf_fields = 0; 2336 iip->ili_logged = 1; 2337 AIL_LOCK(mp,s); 2338 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2339 AIL_UNLOCK(mp, s); 2340 2341 xfs_buf_attach_iodone(bp, 2342 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2343 xfs_istale_done, (xfs_log_item_t *)iip); 2344 if (ip != free_ip) { 2345 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2346 } 2347 } 2348 2349 if (found || pre_flushed) 2350 xfs_trans_stale_inode_buf(tp, bp); 2351 xfs_trans_binval(tp, bp); 2352 } 2353 2354 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); 2355 xfs_put_perag(mp, pag); 2356 } 2357 2358 /* 2359 * This is called to return an inode to the inode free list. 2360 * The inode should already be truncated to 0 length and have 2361 * no pages associated with it. This routine also assumes that 2362 * the inode is already a part of the transaction. 2363 * 2364 * The on-disk copy of the inode will have been added to the list 2365 * of unlinked inodes in the AGI. We need to remove the inode from 2366 * that list atomically with respect to freeing it here. 2367 */ 2368 int 2369 xfs_ifree( 2370 xfs_trans_t *tp, 2371 xfs_inode_t *ip, 2372 xfs_bmap_free_t *flist) 2373 { 2374 int error; 2375 int delete; 2376 xfs_ino_t first_ino; 2377 2378 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2379 ASSERT(ip->i_transp == tp); 2380 ASSERT(ip->i_d.di_nlink == 0); 2381 ASSERT(ip->i_d.di_nextents == 0); 2382 ASSERT(ip->i_d.di_anextents == 0); 2383 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2384 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2385 ASSERT(ip->i_d.di_nblocks == 0); 2386 2387 /* 2388 * Pull the on-disk inode from the AGI unlinked list. 2389 */ 2390 error = xfs_iunlink_remove(tp, ip); 2391 if (error != 0) { 2392 return error; 2393 } 2394 2395 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2396 if (error != 0) { 2397 return error; 2398 } 2399 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2400 ip->i_d.di_flags = 0; 2401 ip->i_d.di_dmevmask = 0; 2402 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2403 ip->i_df.if_ext_max = 2404 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2405 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2406 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2407 /* 2408 * Bump the generation count so no one will be confused 2409 * by reincarnations of this inode. 2410 */ 2411 ip->i_d.di_gen++; 2412 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2413 2414 if (delete) { 2415 xfs_ifree_cluster(ip, tp, first_ino); 2416 } 2417 2418 return 0; 2419 } 2420 2421 /* 2422 * Reallocate the space for if_broot based on the number of records 2423 * being added or deleted as indicated in rec_diff. Move the records 2424 * and pointers in if_broot to fit the new size. When shrinking this 2425 * will eliminate holes between the records and pointers created by 2426 * the caller. When growing this will create holes to be filled in 2427 * by the caller. 2428 * 2429 * The caller must not request to add more records than would fit in 2430 * the on-disk inode root. If the if_broot is currently NULL, then 2431 * if we adding records one will be allocated. The caller must also 2432 * not request that the number of records go below zero, although 2433 * it can go to zero. 2434 * 2435 * ip -- the inode whose if_broot area is changing 2436 * ext_diff -- the change in the number of records, positive or negative, 2437 * requested for the if_broot array. 2438 */ 2439 void 2440 xfs_iroot_realloc( 2441 xfs_inode_t *ip, 2442 int rec_diff, 2443 int whichfork) 2444 { 2445 int cur_max; 2446 xfs_ifork_t *ifp; 2447 xfs_bmbt_block_t *new_broot; 2448 int new_max; 2449 size_t new_size; 2450 char *np; 2451 char *op; 2452 2453 /* 2454 * Handle the degenerate case quietly. 2455 */ 2456 if (rec_diff == 0) { 2457 return; 2458 } 2459 2460 ifp = XFS_IFORK_PTR(ip, whichfork); 2461 if (rec_diff > 0) { 2462 /* 2463 * If there wasn't any memory allocated before, just 2464 * allocate it now and get out. 2465 */ 2466 if (ifp->if_broot_bytes == 0) { 2467 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2468 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2469 KM_SLEEP); 2470 ifp->if_broot_bytes = (int)new_size; 2471 return; 2472 } 2473 2474 /* 2475 * If there is already an existing if_broot, then we need 2476 * to realloc() it and shift the pointers to their new 2477 * location. The records don't change location because 2478 * they are kept butted up against the btree block header. 2479 */ 2480 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2481 new_max = cur_max + rec_diff; 2482 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2483 ifp->if_broot = (xfs_bmbt_block_t *) 2484 kmem_realloc(ifp->if_broot, 2485 new_size, 2486 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2487 KM_SLEEP); 2488 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2489 ifp->if_broot_bytes); 2490 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2491 (int)new_size); 2492 ifp->if_broot_bytes = (int)new_size; 2493 ASSERT(ifp->if_broot_bytes <= 2494 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2495 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2496 return; 2497 } 2498 2499 /* 2500 * rec_diff is less than 0. In this case, we are shrinking the 2501 * if_broot buffer. It must already exist. If we go to zero 2502 * records, just get rid of the root and clear the status bit. 2503 */ 2504 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2505 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2506 new_max = cur_max + rec_diff; 2507 ASSERT(new_max >= 0); 2508 if (new_max > 0) 2509 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2510 else 2511 new_size = 0; 2512 if (new_size > 0) { 2513 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2514 /* 2515 * First copy over the btree block header. 2516 */ 2517 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2518 } else { 2519 new_broot = NULL; 2520 ifp->if_flags &= ~XFS_IFBROOT; 2521 } 2522 2523 /* 2524 * Only copy the records and pointers if there are any. 2525 */ 2526 if (new_max > 0) { 2527 /* 2528 * First copy the records. 2529 */ 2530 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2531 ifp->if_broot_bytes); 2532 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2533 (int)new_size); 2534 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2535 2536 /* 2537 * Then copy the pointers. 2538 */ 2539 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2540 ifp->if_broot_bytes); 2541 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2542 (int)new_size); 2543 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2544 } 2545 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2546 ifp->if_broot = new_broot; 2547 ifp->if_broot_bytes = (int)new_size; 2548 ASSERT(ifp->if_broot_bytes <= 2549 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2550 return; 2551 } 2552 2553 2554 /* 2555 * This is called when the amount of space needed for if_data 2556 * is increased or decreased. The change in size is indicated by 2557 * the number of bytes that need to be added or deleted in the 2558 * byte_diff parameter. 2559 * 2560 * If the amount of space needed has decreased below the size of the 2561 * inline buffer, then switch to using the inline buffer. Otherwise, 2562 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2563 * to what is needed. 2564 * 2565 * ip -- the inode whose if_data area is changing 2566 * byte_diff -- the change in the number of bytes, positive or negative, 2567 * requested for the if_data array. 2568 */ 2569 void 2570 xfs_idata_realloc( 2571 xfs_inode_t *ip, 2572 int byte_diff, 2573 int whichfork) 2574 { 2575 xfs_ifork_t *ifp; 2576 int new_size; 2577 int real_size; 2578 2579 if (byte_diff == 0) { 2580 return; 2581 } 2582 2583 ifp = XFS_IFORK_PTR(ip, whichfork); 2584 new_size = (int)ifp->if_bytes + byte_diff; 2585 ASSERT(new_size >= 0); 2586 2587 if (new_size == 0) { 2588 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2589 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2590 } 2591 ifp->if_u1.if_data = NULL; 2592 real_size = 0; 2593 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2594 /* 2595 * If the valid extents/data can fit in if_inline_ext/data, 2596 * copy them from the malloc'd vector and free it. 2597 */ 2598 if (ifp->if_u1.if_data == NULL) { 2599 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2600 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2601 ASSERT(ifp->if_real_bytes != 0); 2602 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2603 new_size); 2604 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2605 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2606 } 2607 real_size = 0; 2608 } else { 2609 /* 2610 * Stuck with malloc/realloc. 2611 * For inline data, the underlying buffer must be 2612 * a multiple of 4 bytes in size so that it can be 2613 * logged and stay on word boundaries. We enforce 2614 * that here. 2615 */ 2616 real_size = roundup(new_size, 4); 2617 if (ifp->if_u1.if_data == NULL) { 2618 ASSERT(ifp->if_real_bytes == 0); 2619 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2620 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2621 /* 2622 * Only do the realloc if the underlying size 2623 * is really changing. 2624 */ 2625 if (ifp->if_real_bytes != real_size) { 2626 ifp->if_u1.if_data = 2627 kmem_realloc(ifp->if_u1.if_data, 2628 real_size, 2629 ifp->if_real_bytes, 2630 KM_SLEEP); 2631 } 2632 } else { 2633 ASSERT(ifp->if_real_bytes == 0); 2634 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2635 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2636 ifp->if_bytes); 2637 } 2638 } 2639 ifp->if_real_bytes = real_size; 2640 ifp->if_bytes = new_size; 2641 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2642 } 2643 2644 2645 2646 2647 /* 2648 * Map inode to disk block and offset. 2649 * 2650 * mp -- the mount point structure for the current file system 2651 * tp -- the current transaction 2652 * ino -- the inode number of the inode to be located 2653 * imap -- this structure is filled in with the information necessary 2654 * to retrieve the given inode from disk 2655 * flags -- flags to pass to xfs_dilocate indicating whether or not 2656 * lookups in the inode btree were OK or not 2657 */ 2658 int 2659 xfs_imap( 2660 xfs_mount_t *mp, 2661 xfs_trans_t *tp, 2662 xfs_ino_t ino, 2663 xfs_imap_t *imap, 2664 uint flags) 2665 { 2666 xfs_fsblock_t fsbno; 2667 int len; 2668 int off; 2669 int error; 2670 2671 fsbno = imap->im_blkno ? 2672 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2673 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2674 if (error != 0) { 2675 return error; 2676 } 2677 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2678 imap->im_len = XFS_FSB_TO_BB(mp, len); 2679 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2680 imap->im_ioffset = (ushort)off; 2681 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2682 return 0; 2683 } 2684 2685 void 2686 xfs_idestroy_fork( 2687 xfs_inode_t *ip, 2688 int whichfork) 2689 { 2690 xfs_ifork_t *ifp; 2691 2692 ifp = XFS_IFORK_PTR(ip, whichfork); 2693 if (ifp->if_broot != NULL) { 2694 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2695 ifp->if_broot = NULL; 2696 } 2697 2698 /* 2699 * If the format is local, then we can't have an extents 2700 * array so just look for an inline data array. If we're 2701 * not local then we may or may not have an extents list, 2702 * so check and free it up if we do. 2703 */ 2704 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2705 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2706 (ifp->if_u1.if_data != NULL)) { 2707 ASSERT(ifp->if_real_bytes != 0); 2708 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2709 ifp->if_u1.if_data = NULL; 2710 ifp->if_real_bytes = 0; 2711 } 2712 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2713 ((ifp->if_flags & XFS_IFEXTIREC) || 2714 ((ifp->if_u1.if_extents != NULL) && 2715 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2716 ASSERT(ifp->if_real_bytes != 0); 2717 xfs_iext_destroy(ifp); 2718 } 2719 ASSERT(ifp->if_u1.if_extents == NULL || 2720 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2721 ASSERT(ifp->if_real_bytes == 0); 2722 if (whichfork == XFS_ATTR_FORK) { 2723 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2724 ip->i_afp = NULL; 2725 } 2726 } 2727 2728 /* 2729 * This is called free all the memory associated with an inode. 2730 * It must free the inode itself and any buffers allocated for 2731 * if_extents/if_data and if_broot. It must also free the lock 2732 * associated with the inode. 2733 */ 2734 void 2735 xfs_idestroy( 2736 xfs_inode_t *ip) 2737 { 2738 2739 switch (ip->i_d.di_mode & S_IFMT) { 2740 case S_IFREG: 2741 case S_IFDIR: 2742 case S_IFLNK: 2743 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2744 break; 2745 } 2746 if (ip->i_afp) 2747 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2748 mrfree(&ip->i_lock); 2749 mrfree(&ip->i_iolock); 2750 freesema(&ip->i_flock); 2751 2752 #ifdef XFS_VNODE_TRACE 2753 ktrace_free(ip->i_trace); 2754 #endif 2755 #ifdef XFS_BMAP_TRACE 2756 ktrace_free(ip->i_xtrace); 2757 #endif 2758 #ifdef XFS_BMBT_TRACE 2759 ktrace_free(ip->i_btrace); 2760 #endif 2761 #ifdef XFS_RW_TRACE 2762 ktrace_free(ip->i_rwtrace); 2763 #endif 2764 #ifdef XFS_ILOCK_TRACE 2765 ktrace_free(ip->i_lock_trace); 2766 #endif 2767 #ifdef XFS_DIR2_TRACE 2768 ktrace_free(ip->i_dir_trace); 2769 #endif 2770 if (ip->i_itemp) { 2771 /* 2772 * Only if we are shutting down the fs will we see an 2773 * inode still in the AIL. If it is there, we should remove 2774 * it to prevent a use-after-free from occurring. 2775 */ 2776 xfs_mount_t *mp = ip->i_mount; 2777 xfs_log_item_t *lip = &ip->i_itemp->ili_item; 2778 int s; 2779 2780 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || 2781 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2782 if (lip->li_flags & XFS_LI_IN_AIL) { 2783 AIL_LOCK(mp, s); 2784 if (lip->li_flags & XFS_LI_IN_AIL) 2785 xfs_trans_delete_ail(mp, lip, s); 2786 else 2787 AIL_UNLOCK(mp, s); 2788 } 2789 xfs_inode_item_destroy(ip); 2790 } 2791 kmem_zone_free(xfs_inode_zone, ip); 2792 } 2793 2794 2795 /* 2796 * Increment the pin count of the given buffer. 2797 * This value is protected by ipinlock spinlock in the mount structure. 2798 */ 2799 void 2800 xfs_ipin( 2801 xfs_inode_t *ip) 2802 { 2803 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2804 2805 atomic_inc(&ip->i_pincount); 2806 } 2807 2808 /* 2809 * Decrement the pin count of the given inode, and wake up 2810 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2811 * inode must have been previously pinned with a call to xfs_ipin(). 2812 */ 2813 void 2814 xfs_iunpin( 2815 xfs_inode_t *ip) 2816 { 2817 ASSERT(atomic_read(&ip->i_pincount) > 0); 2818 2819 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) { 2820 2821 /* 2822 * If the inode is currently being reclaimed, the link between 2823 * the bhv_vnode and the xfs_inode will be broken after the 2824 * XFS_IRECLAIM* flag is set. Hence, if these flags are not 2825 * set, then we can move forward and mark the linux inode dirty 2826 * knowing that it is still valid as it won't freed until after 2827 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The 2828 * i_flags_lock is used to synchronise the setting of the 2829 * XFS_IRECLAIM* flags and the breaking of the link, and so we 2830 * can execute atomically w.r.t to reclaim by holding this lock 2831 * here. 2832 * 2833 * However, we still need to issue the unpin wakeup call as the 2834 * inode reclaim may be blocked waiting for the inode to become 2835 * unpinned. 2836 */ 2837 2838 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) { 2839 bhv_vnode_t *vp = XFS_ITOV_NULL(ip); 2840 struct inode *inode = NULL; 2841 2842 BUG_ON(vp == NULL); 2843 inode = vn_to_inode(vp); 2844 BUG_ON(inode->i_state & I_CLEAR); 2845 2846 /* make sync come back and flush this inode */ 2847 if (!(inode->i_state & (I_NEW|I_FREEING))) 2848 mark_inode_dirty_sync(inode); 2849 } 2850 spin_unlock(&ip->i_flags_lock); 2851 wake_up(&ip->i_ipin_wait); 2852 } 2853 } 2854 2855 /* 2856 * This is called to wait for the given inode to be unpinned. 2857 * It will sleep until this happens. The caller must have the 2858 * inode locked in at least shared mode so that the buffer cannot 2859 * be subsequently pinned once someone is waiting for it to be 2860 * unpinned. 2861 */ 2862 STATIC void 2863 xfs_iunpin_wait( 2864 xfs_inode_t *ip) 2865 { 2866 xfs_inode_log_item_t *iip; 2867 xfs_lsn_t lsn; 2868 2869 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); 2870 2871 if (atomic_read(&ip->i_pincount) == 0) { 2872 return; 2873 } 2874 2875 iip = ip->i_itemp; 2876 if (iip && iip->ili_last_lsn) { 2877 lsn = iip->ili_last_lsn; 2878 } else { 2879 lsn = (xfs_lsn_t)0; 2880 } 2881 2882 /* 2883 * Give the log a push so we don't wait here too long. 2884 */ 2885 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); 2886 2887 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2888 } 2889 2890 2891 /* 2892 * xfs_iextents_copy() 2893 * 2894 * This is called to copy the REAL extents (as opposed to the delayed 2895 * allocation extents) from the inode into the given buffer. It 2896 * returns the number of bytes copied into the buffer. 2897 * 2898 * If there are no delayed allocation extents, then we can just 2899 * memcpy() the extents into the buffer. Otherwise, we need to 2900 * examine each extent in turn and skip those which are delayed. 2901 */ 2902 int 2903 xfs_iextents_copy( 2904 xfs_inode_t *ip, 2905 xfs_bmbt_rec_t *dp, 2906 int whichfork) 2907 { 2908 int copied; 2909 int i; 2910 xfs_ifork_t *ifp; 2911 int nrecs; 2912 xfs_fsblock_t start_block; 2913 2914 ifp = XFS_IFORK_PTR(ip, whichfork); 2915 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 2916 ASSERT(ifp->if_bytes > 0); 2917 2918 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2919 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2920 ASSERT(nrecs > 0); 2921 2922 /* 2923 * There are some delayed allocation extents in the 2924 * inode, so copy the extents one at a time and skip 2925 * the delayed ones. There must be at least one 2926 * non-delayed extent. 2927 */ 2928 copied = 0; 2929 for (i = 0; i < nrecs; i++) { 2930 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2931 start_block = xfs_bmbt_get_startblock(ep); 2932 if (ISNULLSTARTBLOCK(start_block)) { 2933 /* 2934 * It's a delayed allocation extent, so skip it. 2935 */ 2936 continue; 2937 } 2938 2939 /* Translate to on disk format */ 2940 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2941 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2942 dp++; 2943 copied++; 2944 } 2945 ASSERT(copied != 0); 2946 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2947 2948 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2949 } 2950 2951 /* 2952 * Each of the following cases stores data into the same region 2953 * of the on-disk inode, so only one of them can be valid at 2954 * any given time. While it is possible to have conflicting formats 2955 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2956 * in EXTENTS format, this can only happen when the fork has 2957 * changed formats after being modified but before being flushed. 2958 * In these cases, the format always takes precedence, because the 2959 * format indicates the current state of the fork. 2960 */ 2961 /*ARGSUSED*/ 2962 STATIC int 2963 xfs_iflush_fork( 2964 xfs_inode_t *ip, 2965 xfs_dinode_t *dip, 2966 xfs_inode_log_item_t *iip, 2967 int whichfork, 2968 xfs_buf_t *bp) 2969 { 2970 char *cp; 2971 xfs_ifork_t *ifp; 2972 xfs_mount_t *mp; 2973 #ifdef XFS_TRANS_DEBUG 2974 int first; 2975 #endif 2976 static const short brootflag[2] = 2977 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2978 static const short dataflag[2] = 2979 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2980 static const short extflag[2] = 2981 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2982 2983 if (iip == NULL) 2984 return 0; 2985 ifp = XFS_IFORK_PTR(ip, whichfork); 2986 /* 2987 * This can happen if we gave up in iformat in an error path, 2988 * for the attribute fork. 2989 */ 2990 if (ifp == NULL) { 2991 ASSERT(whichfork == XFS_ATTR_FORK); 2992 return 0; 2993 } 2994 cp = XFS_DFORK_PTR(dip, whichfork); 2995 mp = ip->i_mount; 2996 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2997 case XFS_DINODE_FMT_LOCAL: 2998 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2999 (ifp->if_bytes > 0)) { 3000 ASSERT(ifp->if_u1.if_data != NULL); 3001 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 3002 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 3003 } 3004 break; 3005 3006 case XFS_DINODE_FMT_EXTENTS: 3007 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 3008 !(iip->ili_format.ilf_fields & extflag[whichfork])); 3009 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 3010 (ifp->if_bytes == 0)); 3011 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 3012 (ifp->if_bytes > 0)); 3013 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 3014 (ifp->if_bytes > 0)) { 3015 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 3016 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 3017 whichfork); 3018 } 3019 break; 3020 3021 case XFS_DINODE_FMT_BTREE: 3022 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 3023 (ifp->if_broot_bytes > 0)) { 3024 ASSERT(ifp->if_broot != NULL); 3025 ASSERT(ifp->if_broot_bytes <= 3026 (XFS_IFORK_SIZE(ip, whichfork) + 3027 XFS_BROOT_SIZE_ADJ)); 3028 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 3029 (xfs_bmdr_block_t *)cp, 3030 XFS_DFORK_SIZE(dip, mp, whichfork)); 3031 } 3032 break; 3033 3034 case XFS_DINODE_FMT_DEV: 3035 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 3036 ASSERT(whichfork == XFS_DATA_FORK); 3037 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev); 3038 } 3039 break; 3040 3041 case XFS_DINODE_FMT_UUID: 3042 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 3043 ASSERT(whichfork == XFS_DATA_FORK); 3044 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 3045 sizeof(uuid_t)); 3046 } 3047 break; 3048 3049 default: 3050 ASSERT(0); 3051 break; 3052 } 3053 3054 return 0; 3055 } 3056 3057 /* 3058 * xfs_iflush() will write a modified inode's changes out to the 3059 * inode's on disk home. The caller must have the inode lock held 3060 * in at least shared mode and the inode flush semaphore must be 3061 * held as well. The inode lock will still be held upon return from 3062 * the call and the caller is free to unlock it. 3063 * The inode flush lock will be unlocked when the inode reaches the disk. 3064 * The flags indicate how the inode's buffer should be written out. 3065 */ 3066 int 3067 xfs_iflush( 3068 xfs_inode_t *ip, 3069 uint flags) 3070 { 3071 xfs_inode_log_item_t *iip; 3072 xfs_buf_t *bp; 3073 xfs_dinode_t *dip; 3074 xfs_mount_t *mp; 3075 int error; 3076 /* REFERENCED */ 3077 xfs_inode_t *iq; 3078 int clcount; /* count of inodes clustered */ 3079 int bufwasdelwri; 3080 struct hlist_node *entry; 3081 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3082 3083 XFS_STATS_INC(xs_iflush_count); 3084 3085 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3086 ASSERT(issemalocked(&(ip->i_flock))); 3087 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3088 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3089 3090 iip = ip->i_itemp; 3091 mp = ip->i_mount; 3092 3093 /* 3094 * If the inode isn't dirty, then just release the inode 3095 * flush lock and do nothing. 3096 */ 3097 if ((ip->i_update_core == 0) && 3098 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3099 ASSERT((iip != NULL) ? 3100 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); 3101 xfs_ifunlock(ip); 3102 return 0; 3103 } 3104 3105 /* 3106 * We can't flush the inode until it is unpinned, so 3107 * wait for it. We know noone new can pin it, because 3108 * we are holding the inode lock shared and you need 3109 * to hold it exclusively to pin the inode. 3110 */ 3111 xfs_iunpin_wait(ip); 3112 3113 /* 3114 * This may have been unpinned because the filesystem is shutting 3115 * down forcibly. If that's the case we must not write this inode 3116 * to disk, because the log record didn't make it to disk! 3117 */ 3118 if (XFS_FORCED_SHUTDOWN(mp)) { 3119 ip->i_update_core = 0; 3120 if (iip) 3121 iip->ili_format.ilf_fields = 0; 3122 xfs_ifunlock(ip); 3123 return XFS_ERROR(EIO); 3124 } 3125 3126 /* 3127 * Get the buffer containing the on-disk inode. 3128 */ 3129 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0); 3130 if (error) { 3131 xfs_ifunlock(ip); 3132 return error; 3133 } 3134 3135 /* 3136 * Decide how buffer will be flushed out. This is done before 3137 * the call to xfs_iflush_int because this field is zeroed by it. 3138 */ 3139 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3140 /* 3141 * Flush out the inode buffer according to the directions 3142 * of the caller. In the cases where the caller has given 3143 * us a choice choose the non-delwri case. This is because 3144 * the inode is in the AIL and we need to get it out soon. 3145 */ 3146 switch (flags) { 3147 case XFS_IFLUSH_SYNC: 3148 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3149 flags = 0; 3150 break; 3151 case XFS_IFLUSH_ASYNC: 3152 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3153 flags = INT_ASYNC; 3154 break; 3155 case XFS_IFLUSH_DELWRI: 3156 flags = INT_DELWRI; 3157 break; 3158 default: 3159 ASSERT(0); 3160 flags = 0; 3161 break; 3162 } 3163 } else { 3164 switch (flags) { 3165 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3166 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3167 case XFS_IFLUSH_DELWRI: 3168 flags = INT_DELWRI; 3169 break; 3170 case XFS_IFLUSH_ASYNC: 3171 flags = INT_ASYNC; 3172 break; 3173 case XFS_IFLUSH_SYNC: 3174 flags = 0; 3175 break; 3176 default: 3177 ASSERT(0); 3178 flags = 0; 3179 break; 3180 } 3181 } 3182 3183 /* 3184 * First flush out the inode that xfs_iflush was called with. 3185 */ 3186 error = xfs_iflush_int(ip, bp); 3187 if (error) { 3188 goto corrupt_out; 3189 } 3190 3191 /* 3192 * inode clustering: 3193 * see if other inodes can be gathered into this write 3194 */ 3195 spin_lock(&ip->i_cluster->icl_lock); 3196 ip->i_cluster->icl_buf = bp; 3197 3198 clcount = 0; 3199 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) { 3200 if (iq == ip) 3201 continue; 3202 3203 /* 3204 * Do an un-protected check to see if the inode is dirty and 3205 * is a candidate for flushing. These checks will be repeated 3206 * later after the appropriate locks are acquired. 3207 */ 3208 iip = iq->i_itemp; 3209 if ((iq->i_update_core == 0) && 3210 ((iip == NULL) || 3211 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && 3212 xfs_ipincount(iq) == 0) { 3213 continue; 3214 } 3215 3216 /* 3217 * Try to get locks. If any are unavailable, 3218 * then this inode cannot be flushed and is skipped. 3219 */ 3220 3221 /* get inode locks (just i_lock) */ 3222 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { 3223 /* get inode flush lock */ 3224 if (xfs_iflock_nowait(iq)) { 3225 /* check if pinned */ 3226 if (xfs_ipincount(iq) == 0) { 3227 /* arriving here means that 3228 * this inode can be flushed. 3229 * first re-check that it's 3230 * dirty 3231 */ 3232 iip = iq->i_itemp; 3233 if ((iq->i_update_core != 0)|| 3234 ((iip != NULL) && 3235 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3236 clcount++; 3237 error = xfs_iflush_int(iq, bp); 3238 if (error) { 3239 xfs_iunlock(iq, 3240 XFS_ILOCK_SHARED); 3241 goto cluster_corrupt_out; 3242 } 3243 } else { 3244 xfs_ifunlock(iq); 3245 } 3246 } else { 3247 xfs_ifunlock(iq); 3248 } 3249 } 3250 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3251 } 3252 } 3253 spin_unlock(&ip->i_cluster->icl_lock); 3254 3255 if (clcount) { 3256 XFS_STATS_INC(xs_icluster_flushcnt); 3257 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3258 } 3259 3260 /* 3261 * If the buffer is pinned then push on the log so we won't 3262 * get stuck waiting in the write for too long. 3263 */ 3264 if (XFS_BUF_ISPINNED(bp)){ 3265 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3266 } 3267 3268 if (flags & INT_DELWRI) { 3269 xfs_bdwrite(mp, bp); 3270 } else if (flags & INT_ASYNC) { 3271 xfs_bawrite(mp, bp); 3272 } else { 3273 error = xfs_bwrite(mp, bp); 3274 } 3275 return error; 3276 3277 corrupt_out: 3278 xfs_buf_relse(bp); 3279 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3280 xfs_iflush_abort(ip); 3281 /* 3282 * Unlocks the flush lock 3283 */ 3284 return XFS_ERROR(EFSCORRUPTED); 3285 3286 cluster_corrupt_out: 3287 /* Corruption detected in the clustering loop. Invalidate the 3288 * inode buffer and shut down the filesystem. 3289 */ 3290 spin_unlock(&ip->i_cluster->icl_lock); 3291 3292 /* 3293 * Clean up the buffer. If it was B_DELWRI, just release it -- 3294 * brelse can handle it with no problems. If not, shut down the 3295 * filesystem before releasing the buffer. 3296 */ 3297 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { 3298 xfs_buf_relse(bp); 3299 } 3300 3301 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3302 3303 if(!bufwasdelwri) { 3304 /* 3305 * Just like incore_relse: if we have b_iodone functions, 3306 * mark the buffer as an error and call them. Otherwise 3307 * mark it as stale and brelse. 3308 */ 3309 if (XFS_BUF_IODONE_FUNC(bp)) { 3310 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3311 XFS_BUF_UNDONE(bp); 3312 XFS_BUF_STALE(bp); 3313 XFS_BUF_SHUT(bp); 3314 XFS_BUF_ERROR(bp,EIO); 3315 xfs_biodone(bp); 3316 } else { 3317 XFS_BUF_STALE(bp); 3318 xfs_buf_relse(bp); 3319 } 3320 } 3321 3322 xfs_iflush_abort(iq); 3323 /* 3324 * Unlocks the flush lock 3325 */ 3326 return XFS_ERROR(EFSCORRUPTED); 3327 } 3328 3329 3330 STATIC int 3331 xfs_iflush_int( 3332 xfs_inode_t *ip, 3333 xfs_buf_t *bp) 3334 { 3335 xfs_inode_log_item_t *iip; 3336 xfs_dinode_t *dip; 3337 xfs_mount_t *mp; 3338 #ifdef XFS_TRANS_DEBUG 3339 int first; 3340 #endif 3341 SPLDECL(s); 3342 3343 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3344 ASSERT(issemalocked(&(ip->i_flock))); 3345 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3346 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3347 3348 iip = ip->i_itemp; 3349 mp = ip->i_mount; 3350 3351 3352 /* 3353 * If the inode isn't dirty, then just release the inode 3354 * flush lock and do nothing. 3355 */ 3356 if ((ip->i_update_core == 0) && 3357 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3358 xfs_ifunlock(ip); 3359 return 0; 3360 } 3361 3362 /* set *dip = inode's place in the buffer */ 3363 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3364 3365 /* 3366 * Clear i_update_core before copying out the data. 3367 * This is for coordination with our timestamp updates 3368 * that don't hold the inode lock. They will always 3369 * update the timestamps BEFORE setting i_update_core, 3370 * so if we clear i_update_core after they set it we 3371 * are guaranteed to see their updates to the timestamps. 3372 * I believe that this depends on strongly ordered memory 3373 * semantics, but we have that. We use the SYNCHRONIZE 3374 * macro to make sure that the compiler does not reorder 3375 * the i_update_core access below the data copy below. 3376 */ 3377 ip->i_update_core = 0; 3378 SYNCHRONIZE(); 3379 3380 /* 3381 * Make sure to get the latest atime from the Linux inode. 3382 */ 3383 xfs_synchronize_atime(ip); 3384 3385 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC, 3386 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3387 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3388 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3389 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip); 3390 goto corrupt_out; 3391 } 3392 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3393 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3394 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3395 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3396 ip->i_ino, ip, ip->i_d.di_magic); 3397 goto corrupt_out; 3398 } 3399 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3400 if (XFS_TEST_ERROR( 3401 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3402 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3403 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3404 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3405 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3406 ip->i_ino, ip); 3407 goto corrupt_out; 3408 } 3409 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3410 if (XFS_TEST_ERROR( 3411 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3412 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3413 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3414 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3415 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3416 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3417 ip->i_ino, ip); 3418 goto corrupt_out; 3419 } 3420 } 3421 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3422 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3423 XFS_RANDOM_IFLUSH_5)) { 3424 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3425 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3426 ip->i_ino, 3427 ip->i_d.di_nextents + ip->i_d.di_anextents, 3428 ip->i_d.di_nblocks, 3429 ip); 3430 goto corrupt_out; 3431 } 3432 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3433 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3434 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3435 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3436 ip->i_ino, ip->i_d.di_forkoff, ip); 3437 goto corrupt_out; 3438 } 3439 /* 3440 * bump the flush iteration count, used to detect flushes which 3441 * postdate a log record during recovery. 3442 */ 3443 3444 ip->i_d.di_flushiter++; 3445 3446 /* 3447 * Copy the dirty parts of the inode into the on-disk 3448 * inode. We always copy out the core of the inode, 3449 * because if the inode is dirty at all the core must 3450 * be. 3451 */ 3452 xfs_dinode_to_disk(&dip->di_core, &ip->i_d); 3453 3454 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3455 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3456 ip->i_d.di_flushiter = 0; 3457 3458 /* 3459 * If this is really an old format inode and the superblock version 3460 * has not been updated to support only new format inodes, then 3461 * convert back to the old inode format. If the superblock version 3462 * has been updated, then make the conversion permanent. 3463 */ 3464 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3465 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 3466 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3467 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 3468 /* 3469 * Convert it back. 3470 */ 3471 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3472 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3473 } else { 3474 /* 3475 * The superblock version has already been bumped, 3476 * so just make the conversion to the new inode 3477 * format permanent. 3478 */ 3479 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3480 dip->di_core.di_version = XFS_DINODE_VERSION_2; 3481 ip->i_d.di_onlink = 0; 3482 dip->di_core.di_onlink = 0; 3483 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3484 memset(&(dip->di_core.di_pad[0]), 0, 3485 sizeof(dip->di_core.di_pad)); 3486 ASSERT(ip->i_d.di_projid == 0); 3487 } 3488 } 3489 3490 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { 3491 goto corrupt_out; 3492 } 3493 3494 if (XFS_IFORK_Q(ip)) { 3495 /* 3496 * The only error from xfs_iflush_fork is on the data fork. 3497 */ 3498 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3499 } 3500 xfs_inobp_check(mp, bp); 3501 3502 /* 3503 * We've recorded everything logged in the inode, so we'd 3504 * like to clear the ilf_fields bits so we don't log and 3505 * flush things unnecessarily. However, we can't stop 3506 * logging all this information until the data we've copied 3507 * into the disk buffer is written to disk. If we did we might 3508 * overwrite the copy of the inode in the log with all the 3509 * data after re-logging only part of it, and in the face of 3510 * a crash we wouldn't have all the data we need to recover. 3511 * 3512 * What we do is move the bits to the ili_last_fields field. 3513 * When logging the inode, these bits are moved back to the 3514 * ilf_fields field. In the xfs_iflush_done() routine we 3515 * clear ili_last_fields, since we know that the information 3516 * those bits represent is permanently on disk. As long as 3517 * the flush completes before the inode is logged again, then 3518 * both ilf_fields and ili_last_fields will be cleared. 3519 * 3520 * We can play with the ilf_fields bits here, because the inode 3521 * lock must be held exclusively in order to set bits there 3522 * and the flush lock protects the ili_last_fields bits. 3523 * Set ili_logged so the flush done 3524 * routine can tell whether or not to look in the AIL. 3525 * Also, store the current LSN of the inode so that we can tell 3526 * whether the item has moved in the AIL from xfs_iflush_done(). 3527 * In order to read the lsn we need the AIL lock, because 3528 * it is a 64 bit value that cannot be read atomically. 3529 */ 3530 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3531 iip->ili_last_fields = iip->ili_format.ilf_fields; 3532 iip->ili_format.ilf_fields = 0; 3533 iip->ili_logged = 1; 3534 3535 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3536 AIL_LOCK(mp,s); 3537 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3538 AIL_UNLOCK(mp, s); 3539 3540 /* 3541 * Attach the function xfs_iflush_done to the inode's 3542 * buffer. This will remove the inode from the AIL 3543 * and unlock the inode's flush lock when the inode is 3544 * completely written to disk. 3545 */ 3546 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3547 xfs_iflush_done, (xfs_log_item_t *)iip); 3548 3549 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3550 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3551 } else { 3552 /* 3553 * We're flushing an inode which is not in the AIL and has 3554 * not been logged but has i_update_core set. For this 3555 * case we can use a B_DELWRI flush and immediately drop 3556 * the inode flush lock because we can avoid the whole 3557 * AIL state thing. It's OK to drop the flush lock now, 3558 * because we've already locked the buffer and to do anything 3559 * you really need both. 3560 */ 3561 if (iip != NULL) { 3562 ASSERT(iip->ili_logged == 0); 3563 ASSERT(iip->ili_last_fields == 0); 3564 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3565 } 3566 xfs_ifunlock(ip); 3567 } 3568 3569 return 0; 3570 3571 corrupt_out: 3572 return XFS_ERROR(EFSCORRUPTED); 3573 } 3574 3575 3576 /* 3577 * Flush all inactive inodes in mp. 3578 */ 3579 void 3580 xfs_iflush_all( 3581 xfs_mount_t *mp) 3582 { 3583 xfs_inode_t *ip; 3584 bhv_vnode_t *vp; 3585 3586 again: 3587 XFS_MOUNT_ILOCK(mp); 3588 ip = mp->m_inodes; 3589 if (ip == NULL) 3590 goto out; 3591 3592 do { 3593 /* Make sure we skip markers inserted by sync */ 3594 if (ip->i_mount == NULL) { 3595 ip = ip->i_mnext; 3596 continue; 3597 } 3598 3599 vp = XFS_ITOV_NULL(ip); 3600 if (!vp) { 3601 XFS_MOUNT_IUNLOCK(mp); 3602 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3603 goto again; 3604 } 3605 3606 ASSERT(vn_count(vp) == 0); 3607 3608 ip = ip->i_mnext; 3609 } while (ip != mp->m_inodes); 3610 out: 3611 XFS_MOUNT_IUNLOCK(mp); 3612 } 3613 3614 /* 3615 * xfs_iaccess: check accessibility of inode for mode. 3616 */ 3617 int 3618 xfs_iaccess( 3619 xfs_inode_t *ip, 3620 mode_t mode, 3621 cred_t *cr) 3622 { 3623 int error; 3624 mode_t orgmode = mode; 3625 struct inode *inode = vn_to_inode(XFS_ITOV(ip)); 3626 3627 if (mode & S_IWUSR) { 3628 umode_t imode = inode->i_mode; 3629 3630 if (IS_RDONLY(inode) && 3631 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) 3632 return XFS_ERROR(EROFS); 3633 3634 if (IS_IMMUTABLE(inode)) 3635 return XFS_ERROR(EACCES); 3636 } 3637 3638 /* 3639 * If there's an Access Control List it's used instead of 3640 * the mode bits. 3641 */ 3642 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) 3643 return error ? XFS_ERROR(error) : 0; 3644 3645 if (current_fsuid(cr) != ip->i_d.di_uid) { 3646 mode >>= 3; 3647 if (!in_group_p((gid_t)ip->i_d.di_gid)) 3648 mode >>= 3; 3649 } 3650 3651 /* 3652 * If the DACs are ok we don't need any capability check. 3653 */ 3654 if ((ip->i_d.di_mode & mode) == mode) 3655 return 0; 3656 /* 3657 * Read/write DACs are always overridable. 3658 * Executable DACs are overridable if at least one exec bit is set. 3659 */ 3660 if (!(orgmode & S_IXUSR) || 3661 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 3662 if (capable_cred(cr, CAP_DAC_OVERRIDE)) 3663 return 0; 3664 3665 if ((orgmode == S_IRUSR) || 3666 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { 3667 if (capable_cred(cr, CAP_DAC_READ_SEARCH)) 3668 return 0; 3669 #ifdef NOISE 3670 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); 3671 #endif /* NOISE */ 3672 return XFS_ERROR(EACCES); 3673 } 3674 return XFS_ERROR(EACCES); 3675 } 3676 3677 /* 3678 * xfs_iroundup: round up argument to next power of two 3679 */ 3680 uint 3681 xfs_iroundup( 3682 uint v) 3683 { 3684 int i; 3685 uint m; 3686 3687 if ((v & (v - 1)) == 0) 3688 return v; 3689 ASSERT((v & 0x80000000) == 0); 3690 if ((v & (v + 1)) == 0) 3691 return v + 1; 3692 for (i = 0, m = 1; i < 31; i++, m <<= 1) { 3693 if (v & m) 3694 continue; 3695 v |= m; 3696 if ((v & (v + 1)) == 0) 3697 return v + 1; 3698 } 3699 ASSERT(0); 3700 return( 0 ); 3701 } 3702 3703 #ifdef XFS_ILOCK_TRACE 3704 ktrace_t *xfs_ilock_trace_buf; 3705 3706 void 3707 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3708 { 3709 ktrace_enter(ip->i_lock_trace, 3710 (void *)ip, 3711 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3712 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3713 (void *)ra, /* caller of ilock */ 3714 (void *)(unsigned long)current_cpu(), 3715 (void *)(unsigned long)current_pid(), 3716 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3717 } 3718 #endif 3719 3720 /* 3721 * Return a pointer to the extent record at file index idx. 3722 */ 3723 xfs_bmbt_rec_host_t * 3724 xfs_iext_get_ext( 3725 xfs_ifork_t *ifp, /* inode fork pointer */ 3726 xfs_extnum_t idx) /* index of target extent */ 3727 { 3728 ASSERT(idx >= 0); 3729 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3730 return ifp->if_u1.if_ext_irec->er_extbuf; 3731 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3732 xfs_ext_irec_t *erp; /* irec pointer */ 3733 int erp_idx = 0; /* irec index */ 3734 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3735 3736 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3737 return &erp->er_extbuf[page_idx]; 3738 } else if (ifp->if_bytes) { 3739 return &ifp->if_u1.if_extents[idx]; 3740 } else { 3741 return NULL; 3742 } 3743 } 3744 3745 /* 3746 * Insert new item(s) into the extent records for incore inode 3747 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3748 */ 3749 void 3750 xfs_iext_insert( 3751 xfs_ifork_t *ifp, /* inode fork pointer */ 3752 xfs_extnum_t idx, /* starting index of new items */ 3753 xfs_extnum_t count, /* number of inserted items */ 3754 xfs_bmbt_irec_t *new) /* items to insert */ 3755 { 3756 xfs_extnum_t i; /* extent record index */ 3757 3758 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3759 xfs_iext_add(ifp, idx, count); 3760 for (i = idx; i < idx + count; i++, new++) 3761 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3762 } 3763 3764 /* 3765 * This is called when the amount of space required for incore file 3766 * extents needs to be increased. The ext_diff parameter stores the 3767 * number of new extents being added and the idx parameter contains 3768 * the extent index where the new extents will be added. If the new 3769 * extents are being appended, then we just need to (re)allocate and 3770 * initialize the space. Otherwise, if the new extents are being 3771 * inserted into the middle of the existing entries, a bit more work 3772 * is required to make room for the new extents to be inserted. The 3773 * caller is responsible for filling in the new extent entries upon 3774 * return. 3775 */ 3776 void 3777 xfs_iext_add( 3778 xfs_ifork_t *ifp, /* inode fork pointer */ 3779 xfs_extnum_t idx, /* index to begin adding exts */ 3780 int ext_diff) /* number of extents to add */ 3781 { 3782 int byte_diff; /* new bytes being added */ 3783 int new_size; /* size of extents after adding */ 3784 xfs_extnum_t nextents; /* number of extents in file */ 3785 3786 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3787 ASSERT((idx >= 0) && (idx <= nextents)); 3788 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3789 new_size = ifp->if_bytes + byte_diff; 3790 /* 3791 * If the new number of extents (nextents + ext_diff) 3792 * fits inside the inode, then continue to use the inline 3793 * extent buffer. 3794 */ 3795 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3796 if (idx < nextents) { 3797 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3798 &ifp->if_u2.if_inline_ext[idx], 3799 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3800 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3801 } 3802 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3803 ifp->if_real_bytes = 0; 3804 ifp->if_lastex = nextents + ext_diff; 3805 } 3806 /* 3807 * Otherwise use a linear (direct) extent list. 3808 * If the extents are currently inside the inode, 3809 * xfs_iext_realloc_direct will switch us from 3810 * inline to direct extent allocation mode. 3811 */ 3812 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3813 xfs_iext_realloc_direct(ifp, new_size); 3814 if (idx < nextents) { 3815 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3816 &ifp->if_u1.if_extents[idx], 3817 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3818 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3819 } 3820 } 3821 /* Indirection array */ 3822 else { 3823 xfs_ext_irec_t *erp; 3824 int erp_idx = 0; 3825 int page_idx = idx; 3826 3827 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3828 if (ifp->if_flags & XFS_IFEXTIREC) { 3829 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3830 } else { 3831 xfs_iext_irec_init(ifp); 3832 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3833 erp = ifp->if_u1.if_ext_irec; 3834 } 3835 /* Extents fit in target extent page */ 3836 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3837 if (page_idx < erp->er_extcount) { 3838 memmove(&erp->er_extbuf[page_idx + ext_diff], 3839 &erp->er_extbuf[page_idx], 3840 (erp->er_extcount - page_idx) * 3841 sizeof(xfs_bmbt_rec_t)); 3842 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3843 } 3844 erp->er_extcount += ext_diff; 3845 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3846 } 3847 /* Insert a new extent page */ 3848 else if (erp) { 3849 xfs_iext_add_indirect_multi(ifp, 3850 erp_idx, page_idx, ext_diff); 3851 } 3852 /* 3853 * If extent(s) are being appended to the last page in 3854 * the indirection array and the new extent(s) don't fit 3855 * in the page, then erp is NULL and erp_idx is set to 3856 * the next index needed in the indirection array. 3857 */ 3858 else { 3859 int count = ext_diff; 3860 3861 while (count) { 3862 erp = xfs_iext_irec_new(ifp, erp_idx); 3863 erp->er_extcount = count; 3864 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3865 if (count) { 3866 erp_idx++; 3867 } 3868 } 3869 } 3870 } 3871 ifp->if_bytes = new_size; 3872 } 3873 3874 /* 3875 * This is called when incore extents are being added to the indirection 3876 * array and the new extents do not fit in the target extent list. The 3877 * erp_idx parameter contains the irec index for the target extent list 3878 * in the indirection array, and the idx parameter contains the extent 3879 * index within the list. The number of extents being added is stored 3880 * in the count parameter. 3881 * 3882 * |-------| |-------| 3883 * | | | | idx - number of extents before idx 3884 * | idx | | count | 3885 * | | | | count - number of extents being inserted at idx 3886 * |-------| |-------| 3887 * | count | | nex2 | nex2 - number of extents after idx + count 3888 * |-------| |-------| 3889 */ 3890 void 3891 xfs_iext_add_indirect_multi( 3892 xfs_ifork_t *ifp, /* inode fork pointer */ 3893 int erp_idx, /* target extent irec index */ 3894 xfs_extnum_t idx, /* index within target list */ 3895 int count) /* new extents being added */ 3896 { 3897 int byte_diff; /* new bytes being added */ 3898 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3899 xfs_extnum_t ext_diff; /* number of extents to add */ 3900 xfs_extnum_t ext_cnt; /* new extents still needed */ 3901 xfs_extnum_t nex2; /* extents after idx + count */ 3902 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3903 int nlists; /* number of irec's (lists) */ 3904 3905 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3906 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3907 nex2 = erp->er_extcount - idx; 3908 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3909 3910 /* 3911 * Save second part of target extent list 3912 * (all extents past */ 3913 if (nex2) { 3914 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3915 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP); 3916 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3917 erp->er_extcount -= nex2; 3918 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3919 memset(&erp->er_extbuf[idx], 0, byte_diff); 3920 } 3921 3922 /* 3923 * Add the new extents to the end of the target 3924 * list, then allocate new irec record(s) and 3925 * extent buffer(s) as needed to store the rest 3926 * of the new extents. 3927 */ 3928 ext_cnt = count; 3929 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3930 if (ext_diff) { 3931 erp->er_extcount += ext_diff; 3932 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3933 ext_cnt -= ext_diff; 3934 } 3935 while (ext_cnt) { 3936 erp_idx++; 3937 erp = xfs_iext_irec_new(ifp, erp_idx); 3938 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3939 erp->er_extcount = ext_diff; 3940 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3941 ext_cnt -= ext_diff; 3942 } 3943 3944 /* Add nex2 extents back to indirection array */ 3945 if (nex2) { 3946 xfs_extnum_t ext_avail; 3947 int i; 3948 3949 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3950 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3951 i = 0; 3952 /* 3953 * If nex2 extents fit in the current page, append 3954 * nex2_ep after the new extents. 3955 */ 3956 if (nex2 <= ext_avail) { 3957 i = erp->er_extcount; 3958 } 3959 /* 3960 * Otherwise, check if space is available in the 3961 * next page. 3962 */ 3963 else if ((erp_idx < nlists - 1) && 3964 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3965 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3966 erp_idx++; 3967 erp++; 3968 /* Create a hole for nex2 extents */ 3969 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3970 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3971 } 3972 /* 3973 * Final choice, create a new extent page for 3974 * nex2 extents. 3975 */ 3976 else { 3977 erp_idx++; 3978 erp = xfs_iext_irec_new(ifp, erp_idx); 3979 } 3980 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3981 kmem_free(nex2_ep, byte_diff); 3982 erp->er_extcount += nex2; 3983 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3984 } 3985 } 3986 3987 /* 3988 * This is called when the amount of space required for incore file 3989 * extents needs to be decreased. The ext_diff parameter stores the 3990 * number of extents to be removed and the idx parameter contains 3991 * the extent index where the extents will be removed from. 3992 * 3993 * If the amount of space needed has decreased below the linear 3994 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3995 * extent array. Otherwise, use kmem_realloc() to adjust the 3996 * size to what is needed. 3997 */ 3998 void 3999 xfs_iext_remove( 4000 xfs_ifork_t *ifp, /* inode fork pointer */ 4001 xfs_extnum_t idx, /* index to begin removing exts */ 4002 int ext_diff) /* number of extents to remove */ 4003 { 4004 xfs_extnum_t nextents; /* number of extents in file */ 4005 int new_size; /* size of extents after removal */ 4006 4007 ASSERT(ext_diff > 0); 4008 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4009 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 4010 4011 if (new_size == 0) { 4012 xfs_iext_destroy(ifp); 4013 } else if (ifp->if_flags & XFS_IFEXTIREC) { 4014 xfs_iext_remove_indirect(ifp, idx, ext_diff); 4015 } else if (ifp->if_real_bytes) { 4016 xfs_iext_remove_direct(ifp, idx, ext_diff); 4017 } else { 4018 xfs_iext_remove_inline(ifp, idx, ext_diff); 4019 } 4020 ifp->if_bytes = new_size; 4021 } 4022 4023 /* 4024 * This removes ext_diff extents from the inline buffer, beginning 4025 * at extent index idx. 4026 */ 4027 void 4028 xfs_iext_remove_inline( 4029 xfs_ifork_t *ifp, /* inode fork pointer */ 4030 xfs_extnum_t idx, /* index to begin removing exts */ 4031 int ext_diff) /* number of extents to remove */ 4032 { 4033 int nextents; /* number of extents in file */ 4034 4035 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4036 ASSERT(idx < XFS_INLINE_EXTS); 4037 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4038 ASSERT(((nextents - ext_diff) > 0) && 4039 (nextents - ext_diff) < XFS_INLINE_EXTS); 4040 4041 if (idx + ext_diff < nextents) { 4042 memmove(&ifp->if_u2.if_inline_ext[idx], 4043 &ifp->if_u2.if_inline_ext[idx + ext_diff], 4044 (nextents - (idx + ext_diff)) * 4045 sizeof(xfs_bmbt_rec_t)); 4046 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 4047 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 4048 } else { 4049 memset(&ifp->if_u2.if_inline_ext[idx], 0, 4050 ext_diff * sizeof(xfs_bmbt_rec_t)); 4051 } 4052 } 4053 4054 /* 4055 * This removes ext_diff extents from a linear (direct) extent list, 4056 * beginning at extent index idx. If the extents are being removed 4057 * from the end of the list (ie. truncate) then we just need to re- 4058 * allocate the list to remove the extra space. Otherwise, if the 4059 * extents are being removed from the middle of the existing extent 4060 * entries, then we first need to move the extent records beginning 4061 * at idx + ext_diff up in the list to overwrite the records being 4062 * removed, then remove the extra space via kmem_realloc. 4063 */ 4064 void 4065 xfs_iext_remove_direct( 4066 xfs_ifork_t *ifp, /* inode fork pointer */ 4067 xfs_extnum_t idx, /* index to begin removing exts */ 4068 int ext_diff) /* number of extents to remove */ 4069 { 4070 xfs_extnum_t nextents; /* number of extents in file */ 4071 int new_size; /* size of extents after removal */ 4072 4073 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4074 new_size = ifp->if_bytes - 4075 (ext_diff * sizeof(xfs_bmbt_rec_t)); 4076 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4077 4078 if (new_size == 0) { 4079 xfs_iext_destroy(ifp); 4080 return; 4081 } 4082 /* Move extents up in the list (if needed) */ 4083 if (idx + ext_diff < nextents) { 4084 memmove(&ifp->if_u1.if_extents[idx], 4085 &ifp->if_u1.if_extents[idx + ext_diff], 4086 (nextents - (idx + ext_diff)) * 4087 sizeof(xfs_bmbt_rec_t)); 4088 } 4089 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 4090 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 4091 /* 4092 * Reallocate the direct extent list. If the extents 4093 * will fit inside the inode then xfs_iext_realloc_direct 4094 * will switch from direct to inline extent allocation 4095 * mode for us. 4096 */ 4097 xfs_iext_realloc_direct(ifp, new_size); 4098 ifp->if_bytes = new_size; 4099 } 4100 4101 /* 4102 * This is called when incore extents are being removed from the 4103 * indirection array and the extents being removed span multiple extent 4104 * buffers. The idx parameter contains the file extent index where we 4105 * want to begin removing extents, and the count parameter contains 4106 * how many extents need to be removed. 4107 * 4108 * |-------| |-------| 4109 * | nex1 | | | nex1 - number of extents before idx 4110 * |-------| | count | 4111 * | | | | count - number of extents being removed at idx 4112 * | count | |-------| 4113 * | | | nex2 | nex2 - number of extents after idx + count 4114 * |-------| |-------| 4115 */ 4116 void 4117 xfs_iext_remove_indirect( 4118 xfs_ifork_t *ifp, /* inode fork pointer */ 4119 xfs_extnum_t idx, /* index to begin removing extents */ 4120 int count) /* number of extents to remove */ 4121 { 4122 xfs_ext_irec_t *erp; /* indirection array pointer */ 4123 int erp_idx = 0; /* indirection array index */ 4124 xfs_extnum_t ext_cnt; /* extents left to remove */ 4125 xfs_extnum_t ext_diff; /* extents to remove in current list */ 4126 xfs_extnum_t nex1; /* number of extents before idx */ 4127 xfs_extnum_t nex2; /* extents after idx + count */ 4128 int nlists; /* entries in indirection array */ 4129 int page_idx = idx; /* index in target extent list */ 4130 4131 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4132 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 4133 ASSERT(erp != NULL); 4134 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4135 nex1 = page_idx; 4136 ext_cnt = count; 4137 while (ext_cnt) { 4138 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 4139 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 4140 /* 4141 * Check for deletion of entire list; 4142 * xfs_iext_irec_remove() updates extent offsets. 4143 */ 4144 if (ext_diff == erp->er_extcount) { 4145 xfs_iext_irec_remove(ifp, erp_idx); 4146 ext_cnt -= ext_diff; 4147 nex1 = 0; 4148 if (ext_cnt) { 4149 ASSERT(erp_idx < ifp->if_real_bytes / 4150 XFS_IEXT_BUFSZ); 4151 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4152 nex1 = 0; 4153 continue; 4154 } else { 4155 break; 4156 } 4157 } 4158 /* Move extents up (if needed) */ 4159 if (nex2) { 4160 memmove(&erp->er_extbuf[nex1], 4161 &erp->er_extbuf[nex1 + ext_diff], 4162 nex2 * sizeof(xfs_bmbt_rec_t)); 4163 } 4164 /* Zero out rest of page */ 4165 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 4166 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 4167 /* Update remaining counters */ 4168 erp->er_extcount -= ext_diff; 4169 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 4170 ext_cnt -= ext_diff; 4171 nex1 = 0; 4172 erp_idx++; 4173 erp++; 4174 } 4175 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 4176 xfs_iext_irec_compact(ifp); 4177 } 4178 4179 /* 4180 * Create, destroy, or resize a linear (direct) block of extents. 4181 */ 4182 void 4183 xfs_iext_realloc_direct( 4184 xfs_ifork_t *ifp, /* inode fork pointer */ 4185 int new_size) /* new size of extents */ 4186 { 4187 int rnew_size; /* real new size of extents */ 4188 4189 rnew_size = new_size; 4190 4191 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 4192 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 4193 (new_size != ifp->if_real_bytes))); 4194 4195 /* Free extent records */ 4196 if (new_size == 0) { 4197 xfs_iext_destroy(ifp); 4198 } 4199 /* Resize direct extent list and zero any new bytes */ 4200 else if (ifp->if_real_bytes) { 4201 /* Check if extents will fit inside the inode */ 4202 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 4203 xfs_iext_direct_to_inline(ifp, new_size / 4204 (uint)sizeof(xfs_bmbt_rec_t)); 4205 ifp->if_bytes = new_size; 4206 return; 4207 } 4208 if (!is_power_of_2(new_size)){ 4209 rnew_size = xfs_iroundup(new_size); 4210 } 4211 if (rnew_size != ifp->if_real_bytes) { 4212 ifp->if_u1.if_extents = 4213 kmem_realloc(ifp->if_u1.if_extents, 4214 rnew_size, 4215 ifp->if_real_bytes, 4216 KM_SLEEP); 4217 } 4218 if (rnew_size > ifp->if_real_bytes) { 4219 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 4220 (uint)sizeof(xfs_bmbt_rec_t)], 0, 4221 rnew_size - ifp->if_real_bytes); 4222 } 4223 } 4224 /* 4225 * Switch from the inline extent buffer to a direct 4226 * extent list. Be sure to include the inline extent 4227 * bytes in new_size. 4228 */ 4229 else { 4230 new_size += ifp->if_bytes; 4231 if (!is_power_of_2(new_size)) { 4232 rnew_size = xfs_iroundup(new_size); 4233 } 4234 xfs_iext_inline_to_direct(ifp, rnew_size); 4235 } 4236 ifp->if_real_bytes = rnew_size; 4237 ifp->if_bytes = new_size; 4238 } 4239 4240 /* 4241 * Switch from linear (direct) extent records to inline buffer. 4242 */ 4243 void 4244 xfs_iext_direct_to_inline( 4245 xfs_ifork_t *ifp, /* inode fork pointer */ 4246 xfs_extnum_t nextents) /* number of extents in file */ 4247 { 4248 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 4249 ASSERT(nextents <= XFS_INLINE_EXTS); 4250 /* 4251 * The inline buffer was zeroed when we switched 4252 * from inline to direct extent allocation mode, 4253 * so we don't need to clear it here. 4254 */ 4255 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 4256 nextents * sizeof(xfs_bmbt_rec_t)); 4257 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4258 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 4259 ifp->if_real_bytes = 0; 4260 } 4261 4262 /* 4263 * Switch from inline buffer to linear (direct) extent records. 4264 * new_size should already be rounded up to the next power of 2 4265 * by the caller (when appropriate), so use new_size as it is. 4266 * However, since new_size may be rounded up, we can't update 4267 * if_bytes here. It is the caller's responsibility to update 4268 * if_bytes upon return. 4269 */ 4270 void 4271 xfs_iext_inline_to_direct( 4272 xfs_ifork_t *ifp, /* inode fork pointer */ 4273 int new_size) /* number of extents in file */ 4274 { 4275 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP); 4276 memset(ifp->if_u1.if_extents, 0, new_size); 4277 if (ifp->if_bytes) { 4278 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 4279 ifp->if_bytes); 4280 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4281 sizeof(xfs_bmbt_rec_t)); 4282 } 4283 ifp->if_real_bytes = new_size; 4284 } 4285 4286 /* 4287 * Resize an extent indirection array to new_size bytes. 4288 */ 4289 void 4290 xfs_iext_realloc_indirect( 4291 xfs_ifork_t *ifp, /* inode fork pointer */ 4292 int new_size) /* new indirection array size */ 4293 { 4294 int nlists; /* number of irec's (ex lists) */ 4295 int size; /* current indirection array size */ 4296 4297 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4298 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4299 size = nlists * sizeof(xfs_ext_irec_t); 4300 ASSERT(ifp->if_real_bytes); 4301 ASSERT((new_size >= 0) && (new_size != size)); 4302 if (new_size == 0) { 4303 xfs_iext_destroy(ifp); 4304 } else { 4305 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 4306 kmem_realloc(ifp->if_u1.if_ext_irec, 4307 new_size, size, KM_SLEEP); 4308 } 4309 } 4310 4311 /* 4312 * Switch from indirection array to linear (direct) extent allocations. 4313 */ 4314 void 4315 xfs_iext_indirect_to_direct( 4316 xfs_ifork_t *ifp) /* inode fork pointer */ 4317 { 4318 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 4319 xfs_extnum_t nextents; /* number of extents in file */ 4320 int size; /* size of file extents */ 4321 4322 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4323 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4324 ASSERT(nextents <= XFS_LINEAR_EXTS); 4325 size = nextents * sizeof(xfs_bmbt_rec_t); 4326 4327 xfs_iext_irec_compact_full(ifp); 4328 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 4329 4330 ep = ifp->if_u1.if_ext_irec->er_extbuf; 4331 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t)); 4332 ifp->if_flags &= ~XFS_IFEXTIREC; 4333 ifp->if_u1.if_extents = ep; 4334 ifp->if_bytes = size; 4335 if (nextents < XFS_LINEAR_EXTS) { 4336 xfs_iext_realloc_direct(ifp, size); 4337 } 4338 } 4339 4340 /* 4341 * Free incore file extents. 4342 */ 4343 void 4344 xfs_iext_destroy( 4345 xfs_ifork_t *ifp) /* inode fork pointer */ 4346 { 4347 if (ifp->if_flags & XFS_IFEXTIREC) { 4348 int erp_idx; 4349 int nlists; 4350 4351 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4352 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 4353 xfs_iext_irec_remove(ifp, erp_idx); 4354 } 4355 ifp->if_flags &= ~XFS_IFEXTIREC; 4356 } else if (ifp->if_real_bytes) { 4357 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4358 } else if (ifp->if_bytes) { 4359 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4360 sizeof(xfs_bmbt_rec_t)); 4361 } 4362 ifp->if_u1.if_extents = NULL; 4363 ifp->if_real_bytes = 0; 4364 ifp->if_bytes = 0; 4365 } 4366 4367 /* 4368 * Return a pointer to the extent record for file system block bno. 4369 */ 4370 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 4371 xfs_iext_bno_to_ext( 4372 xfs_ifork_t *ifp, /* inode fork pointer */ 4373 xfs_fileoff_t bno, /* block number to search for */ 4374 xfs_extnum_t *idxp) /* index of target extent */ 4375 { 4376 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 4377 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 4378 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 4379 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4380 int high; /* upper boundary in search */ 4381 xfs_extnum_t idx = 0; /* index of target extent */ 4382 int low; /* lower boundary in search */ 4383 xfs_extnum_t nextents; /* number of file extents */ 4384 xfs_fileoff_t startoff = 0; /* start offset of extent */ 4385 4386 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4387 if (nextents == 0) { 4388 *idxp = 0; 4389 return NULL; 4390 } 4391 low = 0; 4392 if (ifp->if_flags & XFS_IFEXTIREC) { 4393 /* Find target extent list */ 4394 int erp_idx = 0; 4395 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 4396 base = erp->er_extbuf; 4397 high = erp->er_extcount - 1; 4398 } else { 4399 base = ifp->if_u1.if_extents; 4400 high = nextents - 1; 4401 } 4402 /* Binary search extent records */ 4403 while (low <= high) { 4404 idx = (low + high) >> 1; 4405 ep = base + idx; 4406 startoff = xfs_bmbt_get_startoff(ep); 4407 blockcount = xfs_bmbt_get_blockcount(ep); 4408 if (bno < startoff) { 4409 high = idx - 1; 4410 } else if (bno >= startoff + blockcount) { 4411 low = idx + 1; 4412 } else { 4413 /* Convert back to file-based extent index */ 4414 if (ifp->if_flags & XFS_IFEXTIREC) { 4415 idx += erp->er_extoff; 4416 } 4417 *idxp = idx; 4418 return ep; 4419 } 4420 } 4421 /* Convert back to file-based extent index */ 4422 if (ifp->if_flags & XFS_IFEXTIREC) { 4423 idx += erp->er_extoff; 4424 } 4425 if (bno >= startoff + blockcount) { 4426 if (++idx == nextents) { 4427 ep = NULL; 4428 } else { 4429 ep = xfs_iext_get_ext(ifp, idx); 4430 } 4431 } 4432 *idxp = idx; 4433 return ep; 4434 } 4435 4436 /* 4437 * Return a pointer to the indirection array entry containing the 4438 * extent record for filesystem block bno. Store the index of the 4439 * target irec in *erp_idxp. 4440 */ 4441 xfs_ext_irec_t * /* pointer to found extent record */ 4442 xfs_iext_bno_to_irec( 4443 xfs_ifork_t *ifp, /* inode fork pointer */ 4444 xfs_fileoff_t bno, /* block number to search for */ 4445 int *erp_idxp) /* irec index of target ext list */ 4446 { 4447 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4448 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4449 int erp_idx; /* indirection array index */ 4450 int nlists; /* number of extent irec's (lists) */ 4451 int high; /* binary search upper limit */ 4452 int low; /* binary search lower limit */ 4453 4454 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4455 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4456 erp_idx = 0; 4457 low = 0; 4458 high = nlists - 1; 4459 while (low <= high) { 4460 erp_idx = (low + high) >> 1; 4461 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4462 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4463 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4464 high = erp_idx - 1; 4465 } else if (erp_next && bno >= 4466 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4467 low = erp_idx + 1; 4468 } else { 4469 break; 4470 } 4471 } 4472 *erp_idxp = erp_idx; 4473 return erp; 4474 } 4475 4476 /* 4477 * Return a pointer to the indirection array entry containing the 4478 * extent record at file extent index *idxp. Store the index of the 4479 * target irec in *erp_idxp and store the page index of the target 4480 * extent record in *idxp. 4481 */ 4482 xfs_ext_irec_t * 4483 xfs_iext_idx_to_irec( 4484 xfs_ifork_t *ifp, /* inode fork pointer */ 4485 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4486 int *erp_idxp, /* pointer to target irec */ 4487 int realloc) /* new bytes were just added */ 4488 { 4489 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4490 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4491 int erp_idx; /* indirection array index */ 4492 int nlists; /* number of irec's (ex lists) */ 4493 int high; /* binary search upper limit */ 4494 int low; /* binary search lower limit */ 4495 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4496 4497 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4498 ASSERT(page_idx >= 0 && page_idx <= 4499 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4500 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4501 erp_idx = 0; 4502 low = 0; 4503 high = nlists - 1; 4504 4505 /* Binary search extent irec's */ 4506 while (low <= high) { 4507 erp_idx = (low + high) >> 1; 4508 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4509 prev = erp_idx > 0 ? erp - 1 : NULL; 4510 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4511 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4512 high = erp_idx - 1; 4513 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4514 (page_idx == erp->er_extoff + erp->er_extcount && 4515 !realloc)) { 4516 low = erp_idx + 1; 4517 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4518 erp->er_extcount == XFS_LINEAR_EXTS) { 4519 ASSERT(realloc); 4520 page_idx = 0; 4521 erp_idx++; 4522 erp = erp_idx < nlists ? erp + 1 : NULL; 4523 break; 4524 } else { 4525 page_idx -= erp->er_extoff; 4526 break; 4527 } 4528 } 4529 *idxp = page_idx; 4530 *erp_idxp = erp_idx; 4531 return(erp); 4532 } 4533 4534 /* 4535 * Allocate and initialize an indirection array once the space needed 4536 * for incore extents increases above XFS_IEXT_BUFSZ. 4537 */ 4538 void 4539 xfs_iext_irec_init( 4540 xfs_ifork_t *ifp) /* inode fork pointer */ 4541 { 4542 xfs_ext_irec_t *erp; /* indirection array pointer */ 4543 xfs_extnum_t nextents; /* number of extents in file */ 4544 4545 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4546 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4547 ASSERT(nextents <= XFS_LINEAR_EXTS); 4548 4549 erp = (xfs_ext_irec_t *) 4550 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP); 4551 4552 if (nextents == 0) { 4553 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4554 } else if (!ifp->if_real_bytes) { 4555 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4556 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4557 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4558 } 4559 erp->er_extbuf = ifp->if_u1.if_extents; 4560 erp->er_extcount = nextents; 4561 erp->er_extoff = 0; 4562 4563 ifp->if_flags |= XFS_IFEXTIREC; 4564 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4565 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4566 ifp->if_u1.if_ext_irec = erp; 4567 4568 return; 4569 } 4570 4571 /* 4572 * Allocate and initialize a new entry in the indirection array. 4573 */ 4574 xfs_ext_irec_t * 4575 xfs_iext_irec_new( 4576 xfs_ifork_t *ifp, /* inode fork pointer */ 4577 int erp_idx) /* index for new irec */ 4578 { 4579 xfs_ext_irec_t *erp; /* indirection array pointer */ 4580 int i; /* loop counter */ 4581 int nlists; /* number of irec's (ex lists) */ 4582 4583 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4584 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4585 4586 /* Resize indirection array */ 4587 xfs_iext_realloc_indirect(ifp, ++nlists * 4588 sizeof(xfs_ext_irec_t)); 4589 /* 4590 * Move records down in the array so the 4591 * new page can use erp_idx. 4592 */ 4593 erp = ifp->if_u1.if_ext_irec; 4594 for (i = nlists - 1; i > erp_idx; i--) { 4595 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4596 } 4597 ASSERT(i == erp_idx); 4598 4599 /* Initialize new extent record */ 4600 erp = ifp->if_u1.if_ext_irec; 4601 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4602 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4603 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4604 erp[erp_idx].er_extcount = 0; 4605 erp[erp_idx].er_extoff = erp_idx > 0 ? 4606 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4607 return (&erp[erp_idx]); 4608 } 4609 4610 /* 4611 * Remove a record from the indirection array. 4612 */ 4613 void 4614 xfs_iext_irec_remove( 4615 xfs_ifork_t *ifp, /* inode fork pointer */ 4616 int erp_idx) /* irec index to remove */ 4617 { 4618 xfs_ext_irec_t *erp; /* indirection array pointer */ 4619 int i; /* loop counter */ 4620 int nlists; /* number of irec's (ex lists) */ 4621 4622 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4623 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4624 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4625 if (erp->er_extbuf) { 4626 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4627 -erp->er_extcount); 4628 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ); 4629 } 4630 /* Compact extent records */ 4631 erp = ifp->if_u1.if_ext_irec; 4632 for (i = erp_idx; i < nlists - 1; i++) { 4633 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4634 } 4635 /* 4636 * Manually free the last extent record from the indirection 4637 * array. A call to xfs_iext_realloc_indirect() with a size 4638 * of zero would result in a call to xfs_iext_destroy() which 4639 * would in turn call this function again, creating a nasty 4640 * infinite loop. 4641 */ 4642 if (--nlists) { 4643 xfs_iext_realloc_indirect(ifp, 4644 nlists * sizeof(xfs_ext_irec_t)); 4645 } else { 4646 kmem_free(ifp->if_u1.if_ext_irec, 4647 sizeof(xfs_ext_irec_t)); 4648 } 4649 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4650 } 4651 4652 /* 4653 * This is called to clean up large amounts of unused memory allocated 4654 * by the indirection array. Before compacting anything though, verify 4655 * that the indirection array is still needed and switch back to the 4656 * linear extent list (or even the inline buffer) if possible. The 4657 * compaction policy is as follows: 4658 * 4659 * Full Compaction: Extents fit into a single page (or inline buffer) 4660 * Full Compaction: Extents occupy less than 10% of allocated space 4661 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space 4662 * No Compaction: Extents occupy at least 50% of allocated space 4663 */ 4664 void 4665 xfs_iext_irec_compact( 4666 xfs_ifork_t *ifp) /* inode fork pointer */ 4667 { 4668 xfs_extnum_t nextents; /* number of extents in file */ 4669 int nlists; /* number of irec's (ex lists) */ 4670 4671 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4672 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4673 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4674 4675 if (nextents == 0) { 4676 xfs_iext_destroy(ifp); 4677 } else if (nextents <= XFS_INLINE_EXTS) { 4678 xfs_iext_indirect_to_direct(ifp); 4679 xfs_iext_direct_to_inline(ifp, nextents); 4680 } else if (nextents <= XFS_LINEAR_EXTS) { 4681 xfs_iext_indirect_to_direct(ifp); 4682 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) { 4683 xfs_iext_irec_compact_full(ifp); 4684 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4685 xfs_iext_irec_compact_pages(ifp); 4686 } 4687 } 4688 4689 /* 4690 * Combine extents from neighboring extent pages. 4691 */ 4692 void 4693 xfs_iext_irec_compact_pages( 4694 xfs_ifork_t *ifp) /* inode fork pointer */ 4695 { 4696 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4697 int erp_idx = 0; /* indirection array index */ 4698 int nlists; /* number of irec's (ex lists) */ 4699 4700 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4701 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4702 while (erp_idx < nlists - 1) { 4703 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4704 erp_next = erp + 1; 4705 if (erp_next->er_extcount <= 4706 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4707 memmove(&erp->er_extbuf[erp->er_extcount], 4708 erp_next->er_extbuf, erp_next->er_extcount * 4709 sizeof(xfs_bmbt_rec_t)); 4710 erp->er_extcount += erp_next->er_extcount; 4711 /* 4712 * Free page before removing extent record 4713 * so er_extoffs don't get modified in 4714 * xfs_iext_irec_remove. 4715 */ 4716 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ); 4717 erp_next->er_extbuf = NULL; 4718 xfs_iext_irec_remove(ifp, erp_idx + 1); 4719 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4720 } else { 4721 erp_idx++; 4722 } 4723 } 4724 } 4725 4726 /* 4727 * Fully compact the extent records managed by the indirection array. 4728 */ 4729 void 4730 xfs_iext_irec_compact_full( 4731 xfs_ifork_t *ifp) /* inode fork pointer */ 4732 { 4733 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */ 4734 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */ 4735 int erp_idx = 0; /* extent irec index */ 4736 int ext_avail; /* empty entries in ex list */ 4737 int ext_diff; /* number of exts to add */ 4738 int nlists; /* number of irec's (ex lists) */ 4739 4740 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4741 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4742 erp = ifp->if_u1.if_ext_irec; 4743 ep = &erp->er_extbuf[erp->er_extcount]; 4744 erp_next = erp + 1; 4745 ep_next = erp_next->er_extbuf; 4746 while (erp_idx < nlists - 1) { 4747 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 4748 ext_diff = MIN(ext_avail, erp_next->er_extcount); 4749 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t)); 4750 erp->er_extcount += ext_diff; 4751 erp_next->er_extcount -= ext_diff; 4752 /* Remove next page */ 4753 if (erp_next->er_extcount == 0) { 4754 /* 4755 * Free page before removing extent record 4756 * so er_extoffs don't get modified in 4757 * xfs_iext_irec_remove. 4758 */ 4759 kmem_free(erp_next->er_extbuf, 4760 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4761 erp_next->er_extbuf = NULL; 4762 xfs_iext_irec_remove(ifp, erp_idx + 1); 4763 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4764 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4765 /* Update next page */ 4766 } else { 4767 /* Move rest of page up to become next new page */ 4768 memmove(erp_next->er_extbuf, ep_next, 4769 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4770 ep_next = erp_next->er_extbuf; 4771 memset(&ep_next[erp_next->er_extcount], 0, 4772 (XFS_LINEAR_EXTS - erp_next->er_extcount) * 4773 sizeof(xfs_bmbt_rec_t)); 4774 } 4775 if (erp->er_extcount == XFS_LINEAR_EXTS) { 4776 erp_idx++; 4777 if (erp_idx < nlists) 4778 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4779 else 4780 break; 4781 } 4782 ep = &erp->er_extbuf[erp->er_extcount]; 4783 erp_next = erp + 1; 4784 ep_next = erp_next->er_extbuf; 4785 } 4786 } 4787 4788 /* 4789 * This is called to update the er_extoff field in the indirection 4790 * array when extents have been added or removed from one of the 4791 * extent lists. erp_idx contains the irec index to begin updating 4792 * at and ext_diff contains the number of extents that were added 4793 * or removed. 4794 */ 4795 void 4796 xfs_iext_irec_update_extoffs( 4797 xfs_ifork_t *ifp, /* inode fork pointer */ 4798 int erp_idx, /* irec index to update */ 4799 int ext_diff) /* number of new extents */ 4800 { 4801 int i; /* loop counter */ 4802 int nlists; /* number of irec's (ex lists */ 4803 4804 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4805 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4806 for (i = erp_idx; i < nlists; i++) { 4807 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4808 } 4809 } 4810