xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 643d1f7f)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53 
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_icluster_zone;
57 
58 /*
59  * Used in xfs_itruncate().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	xfs_exntfmt_t		fmt)
79 {
80 	xfs_bmbt_irec_t		irec;
81 	xfs_bmbt_rec_host_t	rec;
82 	int			i;
83 
84 	for (i = 0; i < nrecs; i++) {
85 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 		rec.l0 = get_unaligned(&ep->l0);
87 		rec.l1 = get_unaligned(&ep->l1);
88 		xfs_bmbt_get_all(&rec, &irec);
89 		if (fmt == XFS_EXTFMT_NOSTATE)
90 			ASSERT(irec.br_state == XFS_EXT_NORM);
91 	}
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96 
97 /*
98  * Check that none of the inode's in the buffer have a next
99  * unlinked field of 0.
100  */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 	xfs_mount_t	*mp,
105 	xfs_buf_t	*bp)
106 {
107 	int		i;
108 	int		j;
109 	xfs_dinode_t	*dip;
110 
111 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 
113 	for (i = 0; i < j; i++) {
114 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 					i * mp->m_sb.sb_inodesize);
116 		if (!dip->di_next_unlinked)  {
117 			xfs_fs_cmn_err(CE_ALERT, mp,
118 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
119 				bp);
120 			ASSERT(dip->di_next_unlinked);
121 		}
122 	}
123 }
124 #endif
125 
126 /*
127  * This routine is called to map an inode number within a file
128  * system to the buffer containing the on-disk version of the
129  * inode.  It returns a pointer to the buffer containing the
130  * on-disk inode in the bpp parameter, and in the dip parameter
131  * it returns a pointer to the on-disk inode within that buffer.
132  *
133  * If a non-zero error is returned, then the contents of bpp and
134  * dipp are undefined.
135  *
136  * Use xfs_imap() to determine the size and location of the
137  * buffer to read from disk.
138  */
139 STATIC int
140 xfs_inotobp(
141 	xfs_mount_t	*mp,
142 	xfs_trans_t	*tp,
143 	xfs_ino_t	ino,
144 	xfs_dinode_t	**dipp,
145 	xfs_buf_t	**bpp,
146 	int		*offset)
147 {
148 	int		di_ok;
149 	xfs_imap_t	imap;
150 	xfs_buf_t	*bp;
151 	int		error;
152 	xfs_dinode_t	*dip;
153 
154 	/*
155 	 * Call the space management code to find the location of the
156 	 * inode on disk.
157 	 */
158 	imap.im_blkno = 0;
159 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 	if (error != 0) {
161 		cmn_err(CE_WARN,
162 	"xfs_inotobp: xfs_imap()  returned an "
163 	"error %d on %s.  Returning error.", error, mp->m_fsname);
164 		return error;
165 	}
166 
167 	/*
168 	 * If the inode number maps to a block outside the bounds of the
169 	 * file system then return NULL rather than calling read_buf
170 	 * and panicing when we get an error from the driver.
171 	 */
172 	if ((imap.im_blkno + imap.im_len) >
173 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 		cmn_err(CE_WARN,
175 	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 	"of the file system %s.  Returning EINVAL.",
177 			(unsigned long long)imap.im_blkno,
178 			imap.im_len, mp->m_fsname);
179 		return XFS_ERROR(EINVAL);
180 	}
181 
182 	/*
183 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
184 	 * default to just a read_buf() call.
185 	 */
186 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
188 
189 	if (error) {
190 		cmn_err(CE_WARN,
191 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
192 	"error %d on %s.  Returning error.", error, mp->m_fsname);
193 		return error;
194 	}
195 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 	di_ok =
197 		be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 		XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
199 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 			XFS_RANDOM_ITOBP_INOTOBP))) {
201 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 		xfs_trans_brelse(tp, bp);
203 		cmn_err(CE_WARN,
204 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
205 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
206 		return XFS_ERROR(EFSCORRUPTED);
207 	}
208 
209 	xfs_inobp_check(mp, bp);
210 
211 	/*
212 	 * Set *dipp to point to the on-disk inode in the buffer.
213 	 */
214 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 	*bpp = bp;
216 	*offset = imap.im_boffset;
217 	return 0;
218 }
219 
220 
221 /*
222  * This routine is called to map an inode to the buffer containing
223  * the on-disk version of the inode.  It returns a pointer to the
224  * buffer containing the on-disk inode in the bpp parameter, and in
225  * the dip parameter it returns a pointer to the on-disk inode within
226  * that buffer.
227  *
228  * If a non-zero error is returned, then the contents of bpp and
229  * dipp are undefined.
230  *
231  * If the inode is new and has not yet been initialized, use xfs_imap()
232  * to determine the size and location of the buffer to read from disk.
233  * If the inode has already been mapped to its buffer and read in once,
234  * then use the mapping information stored in the inode rather than
235  * calling xfs_imap().  This allows us to avoid the overhead of looking
236  * at the inode btree for small block file systems (see xfs_dilocate()).
237  * We can tell whether the inode has been mapped in before by comparing
238  * its disk block address to 0.  Only uninitialized inodes will have
239  * 0 for the disk block address.
240  */
241 int
242 xfs_itobp(
243 	xfs_mount_t	*mp,
244 	xfs_trans_t	*tp,
245 	xfs_inode_t	*ip,
246 	xfs_dinode_t	**dipp,
247 	xfs_buf_t	**bpp,
248 	xfs_daddr_t	bno,
249 	uint		imap_flags)
250 {
251 	xfs_imap_t	imap;
252 	xfs_buf_t	*bp;
253 	int		error;
254 	int		i;
255 	int		ni;
256 
257 	if (ip->i_blkno == (xfs_daddr_t)0) {
258 		/*
259 		 * Call the space management code to find the location of the
260 		 * inode on disk.
261 		 */
262 		imap.im_blkno = bno;
263 		if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 					XFS_IMAP_LOOKUP | imap_flags)))
265 			return error;
266 
267 		/*
268 		 * If the inode number maps to a block outside the bounds
269 		 * of the file system then return NULL rather than calling
270 		 * read_buf and panicing when we get an error from the
271 		 * driver.
272 		 */
273 		if ((imap.im_blkno + imap.im_len) >
274 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275 #ifdef DEBUG
276 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 					"(imap.im_blkno (0x%llx) "
278 					"+ imap.im_len (0x%llx)) > "
279 					" XFS_FSB_TO_BB(mp, "
280 					"mp->m_sb.sb_dblocks) (0x%llx)",
281 					(unsigned long long) imap.im_blkno,
282 					(unsigned long long) imap.im_len,
283 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284 #endif /* DEBUG */
285 			return XFS_ERROR(EINVAL);
286 		}
287 
288 		/*
289 		 * Fill in the fields in the inode that will be used to
290 		 * map the inode to its buffer from now on.
291 		 */
292 		ip->i_blkno = imap.im_blkno;
293 		ip->i_len = imap.im_len;
294 		ip->i_boffset = imap.im_boffset;
295 	} else {
296 		/*
297 		 * We've already mapped the inode once, so just use the
298 		 * mapping that we saved the first time.
299 		 */
300 		imap.im_blkno = ip->i_blkno;
301 		imap.im_len = ip->i_len;
302 		imap.im_boffset = ip->i_boffset;
303 	}
304 	ASSERT(bno == 0 || bno == imap.im_blkno);
305 
306 	/*
307 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
308 	 * default to just a read_buf() call.
309 	 */
310 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
312 	if (error) {
313 #ifdef DEBUG
314 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 				"xfs_trans_read_buf() returned error %d, "
316 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 				error, (unsigned long long) imap.im_blkno,
318 				(unsigned long long) imap.im_len);
319 #endif /* DEBUG */
320 		return error;
321 	}
322 
323 	/*
324 	 * Validate the magic number and version of every inode in the buffer
325 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 	 * No validation is done here in userspace (xfs_repair).
327 	 */
328 #if !defined(__KERNEL__)
329 	ni = 0;
330 #elif defined(DEBUG)
331 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
332 #else	/* usual case */
333 	ni = 1;
334 #endif
335 
336 	for (i = 0; i < ni; i++) {
337 		int		di_ok;
338 		xfs_dinode_t	*dip;
339 
340 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 					(i << mp->m_sb.sb_inodelog));
342 		di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 			    XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
344 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 						XFS_ERRTAG_ITOBP_INOTOBP,
346 						XFS_RANDOM_ITOBP_INOTOBP))) {
347 			if (imap_flags & XFS_IMAP_BULKSTAT) {
348 				xfs_trans_brelse(tp, bp);
349 				return XFS_ERROR(EINVAL);
350 			}
351 #ifdef DEBUG
352 			cmn_err(CE_ALERT,
353 					"Device %s - bad inode magic/vsn "
354 					"daddr %lld #%d (magic=%x)",
355 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
356 				(unsigned long long)imap.im_blkno, i,
357 				be16_to_cpu(dip->di_core.di_magic));
358 #endif
359 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 					     mp, dip);
361 			xfs_trans_brelse(tp, bp);
362 			return XFS_ERROR(EFSCORRUPTED);
363 		}
364 	}
365 
366 	xfs_inobp_check(mp, bp);
367 
368 	/*
369 	 * Mark the buffer as an inode buffer now that it looks good
370 	 */
371 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372 
373 	/*
374 	 * Set *dipp to point to the on-disk inode in the buffer.
375 	 */
376 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 	*bpp = bp;
378 	return 0;
379 }
380 
381 /*
382  * Move inode type and inode format specific information from the
383  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
384  * this means set if_rdev to the proper value.  For files, directories,
385  * and symlinks this means to bring in the in-line data or extent
386  * pointers.  For a file in B-tree format, only the root is immediately
387  * brought in-core.  The rest will be in-lined in if_extents when it
388  * is first referenced (see xfs_iread_extents()).
389  */
390 STATIC int
391 xfs_iformat(
392 	xfs_inode_t		*ip,
393 	xfs_dinode_t		*dip)
394 {
395 	xfs_attr_shortform_t	*atp;
396 	int			size;
397 	int			error;
398 	xfs_fsize_t             di_size;
399 	ip->i_df.if_ext_max =
400 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 	error = 0;
402 
403 	if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 		     be16_to_cpu(dip->di_core.di_anextents) >
405 		     be64_to_cpu(dip->di_core.di_nblocks))) {
406 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 			(unsigned long long)ip->i_ino,
409 			(int)(be32_to_cpu(dip->di_core.di_nextents) +
410 			      be16_to_cpu(dip->di_core.di_anextents)),
411 			(unsigned long long)
412 				be64_to_cpu(dip->di_core.di_nblocks));
413 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 				     ip->i_mount, dip);
415 		return XFS_ERROR(EFSCORRUPTED);
416 	}
417 
418 	if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
419 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 			"corrupt dinode %Lu, forkoff = 0x%x.",
421 			(unsigned long long)ip->i_ino,
422 			dip->di_core.di_forkoff);
423 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 				     ip->i_mount, dip);
425 		return XFS_ERROR(EFSCORRUPTED);
426 	}
427 
428 	switch (ip->i_d.di_mode & S_IFMT) {
429 	case S_IFIFO:
430 	case S_IFCHR:
431 	case S_IFBLK:
432 	case S_IFSOCK:
433 		if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
434 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 					      ip->i_mount, dip);
436 			return XFS_ERROR(EFSCORRUPTED);
437 		}
438 		ip->i_d.di_size = 0;
439 		ip->i_size = 0;
440 		ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
441 		break;
442 
443 	case S_IFREG:
444 	case S_IFLNK:
445 	case S_IFDIR:
446 		switch (dip->di_core.di_format) {
447 		case XFS_DINODE_FMT_LOCAL:
448 			/*
449 			 * no local regular files yet
450 			 */
451 			if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
452 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 					"corrupt inode %Lu "
454 					"(local format for regular file).",
455 					(unsigned long long) ip->i_ino);
456 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 						     XFS_ERRLEVEL_LOW,
458 						     ip->i_mount, dip);
459 				return XFS_ERROR(EFSCORRUPTED);
460 			}
461 
462 			di_size = be64_to_cpu(dip->di_core.di_size);
463 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 					"corrupt inode %Lu "
466 					"(bad size %Ld for local inode).",
467 					(unsigned long long) ip->i_ino,
468 					(long long) di_size);
469 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 						     XFS_ERRLEVEL_LOW,
471 						     ip->i_mount, dip);
472 				return XFS_ERROR(EFSCORRUPTED);
473 			}
474 
475 			size = (int)di_size;
476 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 			break;
478 		case XFS_DINODE_FMT_EXTENTS:
479 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 			break;
481 		case XFS_DINODE_FMT_BTREE:
482 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 			break;
484 		default:
485 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 					 ip->i_mount);
487 			return XFS_ERROR(EFSCORRUPTED);
488 		}
489 		break;
490 
491 	default:
492 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 		return XFS_ERROR(EFSCORRUPTED);
494 	}
495 	if (error) {
496 		return error;
497 	}
498 	if (!XFS_DFORK_Q(dip))
499 		return 0;
500 	ASSERT(ip->i_afp == NULL);
501 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 	ip->i_afp->if_ext_max =
503 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 	switch (dip->di_core.di_aformat) {
505 	case XFS_DINODE_FMT_LOCAL:
506 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 		size = be16_to_cpu(atp->hdr.totsize);
508 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 		break;
510 	case XFS_DINODE_FMT_EXTENTS:
511 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 		break;
513 	case XFS_DINODE_FMT_BTREE:
514 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 		break;
516 	default:
517 		error = XFS_ERROR(EFSCORRUPTED);
518 		break;
519 	}
520 	if (error) {
521 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 		ip->i_afp = NULL;
523 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 	}
525 	return error;
526 }
527 
528 /*
529  * The file is in-lined in the on-disk inode.
530  * If it fits into if_inline_data, then copy
531  * it there, otherwise allocate a buffer for it
532  * and copy the data there.  Either way, set
533  * if_data to point at the data.
534  * If we allocate a buffer for the data, make
535  * sure that its size is a multiple of 4 and
536  * record the real size in i_real_bytes.
537  */
538 STATIC int
539 xfs_iformat_local(
540 	xfs_inode_t	*ip,
541 	xfs_dinode_t	*dip,
542 	int		whichfork,
543 	int		size)
544 {
545 	xfs_ifork_t	*ifp;
546 	int		real_size;
547 
548 	/*
549 	 * If the size is unreasonable, then something
550 	 * is wrong and we just bail out rather than crash in
551 	 * kmem_alloc() or memcpy() below.
552 	 */
553 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 			"corrupt inode %Lu "
556 			"(bad size %d for local fork, size = %d).",
557 			(unsigned long long) ip->i_ino, size,
558 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 				     ip->i_mount, dip);
561 		return XFS_ERROR(EFSCORRUPTED);
562 	}
563 	ifp = XFS_IFORK_PTR(ip, whichfork);
564 	real_size = 0;
565 	if (size == 0)
566 		ifp->if_u1.if_data = NULL;
567 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 	else {
570 		real_size = roundup(size, 4);
571 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 	}
573 	ifp->if_bytes = size;
574 	ifp->if_real_bytes = real_size;
575 	if (size)
576 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 	ifp->if_flags &= ~XFS_IFEXTENTS;
578 	ifp->if_flags |= XFS_IFINLINE;
579 	return 0;
580 }
581 
582 /*
583  * The file consists of a set of extents all
584  * of which fit into the on-disk inode.
585  * If there are few enough extents to fit into
586  * the if_inline_ext, then copy them there.
587  * Otherwise allocate a buffer for them and copy
588  * them into it.  Either way, set if_extents
589  * to point at the extents.
590  */
591 STATIC int
592 xfs_iformat_extents(
593 	xfs_inode_t	*ip,
594 	xfs_dinode_t	*dip,
595 	int		whichfork)
596 {
597 	xfs_bmbt_rec_t	*dp;
598 	xfs_ifork_t	*ifp;
599 	int		nex;
600 	int		size;
601 	int		i;
602 
603 	ifp = XFS_IFORK_PTR(ip, whichfork);
604 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606 
607 	/*
608 	 * If the number of extents is unreasonable, then something
609 	 * is wrong and we just bail out rather than crash in
610 	 * kmem_alloc() or memcpy() below.
611 	 */
612 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 			"corrupt inode %Lu ((a)extents = %d).",
615 			(unsigned long long) ip->i_ino, nex);
616 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 				     ip->i_mount, dip);
618 		return XFS_ERROR(EFSCORRUPTED);
619 	}
620 
621 	ifp->if_real_bytes = 0;
622 	if (nex == 0)
623 		ifp->if_u1.if_extents = NULL;
624 	else if (nex <= XFS_INLINE_EXTS)
625 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 	else
627 		xfs_iext_add(ifp, 0, nex);
628 
629 	ifp->if_bytes = size;
630 	if (size) {
631 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 		for (i = 0; i < nex; i++, dp++) {
634 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 			ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 			ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
637 		}
638 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 		if (whichfork != XFS_DATA_FORK ||
640 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 				if (unlikely(xfs_check_nostate_extents(
642 				    ifp, 0, nex))) {
643 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 							 XFS_ERRLEVEL_LOW,
645 							 ip->i_mount);
646 					return XFS_ERROR(EFSCORRUPTED);
647 				}
648 	}
649 	ifp->if_flags |= XFS_IFEXTENTS;
650 	return 0;
651 }
652 
653 /*
654  * The file has too many extents to fit into
655  * the inode, so they are in B-tree format.
656  * Allocate a buffer for the root of the B-tree
657  * and copy the root into it.  The i_extents
658  * field will remain NULL until all of the
659  * extents are read in (when they are needed).
660  */
661 STATIC int
662 xfs_iformat_btree(
663 	xfs_inode_t		*ip,
664 	xfs_dinode_t		*dip,
665 	int			whichfork)
666 {
667 	xfs_bmdr_block_t	*dfp;
668 	xfs_ifork_t		*ifp;
669 	/* REFERENCED */
670 	int			nrecs;
671 	int			size;
672 
673 	ifp = XFS_IFORK_PTR(ip, whichfork);
674 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 	size = XFS_BMAP_BROOT_SPACE(dfp);
676 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
677 
678 	/*
679 	 * blow out if -- fork has less extents than can fit in
680 	 * fork (fork shouldn't be a btree format), root btree
681 	 * block has more records than can fit into the fork,
682 	 * or the number of extents is greater than the number of
683 	 * blocks.
684 	 */
685 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 	    || XFS_BMDR_SPACE_CALC(nrecs) >
687 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 			"corrupt inode %Lu (btree).",
691 			(unsigned long long) ip->i_ino);
692 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 				 ip->i_mount);
694 		return XFS_ERROR(EFSCORRUPTED);
695 	}
696 
697 	ifp->if_broot_bytes = size;
698 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 	ASSERT(ifp->if_broot != NULL);
700 	/*
701 	 * Copy and convert from the on-disk structure
702 	 * to the in-memory structure.
703 	 */
704 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 		ifp->if_broot, size);
706 	ifp->if_flags &= ~XFS_IFEXTENTS;
707 	ifp->if_flags |= XFS_IFBROOT;
708 
709 	return 0;
710 }
711 
712 void
713 xfs_dinode_from_disk(
714 	xfs_icdinode_t		*to,
715 	xfs_dinode_core_t	*from)
716 {
717 	to->di_magic = be16_to_cpu(from->di_magic);
718 	to->di_mode = be16_to_cpu(from->di_mode);
719 	to->di_version = from ->di_version;
720 	to->di_format = from->di_format;
721 	to->di_onlink = be16_to_cpu(from->di_onlink);
722 	to->di_uid = be32_to_cpu(from->di_uid);
723 	to->di_gid = be32_to_cpu(from->di_gid);
724 	to->di_nlink = be32_to_cpu(from->di_nlink);
725 	to->di_projid = be16_to_cpu(from->di_projid);
726 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 	to->di_size = be64_to_cpu(from->di_size);
735 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 	to->di_extsize = be32_to_cpu(from->di_extsize);
737 	to->di_nextents = be32_to_cpu(from->di_nextents);
738 	to->di_anextents = be16_to_cpu(from->di_anextents);
739 	to->di_forkoff = from->di_forkoff;
740 	to->di_aformat	= from->di_aformat;
741 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
742 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
743 	to->di_flags	= be16_to_cpu(from->di_flags);
744 	to->di_gen	= be32_to_cpu(from->di_gen);
745 }
746 
747 void
748 xfs_dinode_to_disk(
749 	xfs_dinode_core_t	*to,
750 	xfs_icdinode_t		*from)
751 {
752 	to->di_magic = cpu_to_be16(from->di_magic);
753 	to->di_mode = cpu_to_be16(from->di_mode);
754 	to->di_version = from ->di_version;
755 	to->di_format = from->di_format;
756 	to->di_onlink = cpu_to_be16(from->di_onlink);
757 	to->di_uid = cpu_to_be32(from->di_uid);
758 	to->di_gid = cpu_to_be32(from->di_gid);
759 	to->di_nlink = cpu_to_be32(from->di_nlink);
760 	to->di_projid = cpu_to_be16(from->di_projid);
761 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 	to->di_size = cpu_to_be64(from->di_size);
770 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 	to->di_extsize = cpu_to_be32(from->di_extsize);
772 	to->di_nextents = cpu_to_be32(from->di_nextents);
773 	to->di_anextents = cpu_to_be16(from->di_anextents);
774 	to->di_forkoff = from->di_forkoff;
775 	to->di_aformat = from->di_aformat;
776 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 	to->di_flags = cpu_to_be16(from->di_flags);
779 	to->di_gen = cpu_to_be32(from->di_gen);
780 }
781 
782 STATIC uint
783 _xfs_dic2xflags(
784 	__uint16_t		di_flags)
785 {
786 	uint			flags = 0;
787 
788 	if (di_flags & XFS_DIFLAG_ANY) {
789 		if (di_flags & XFS_DIFLAG_REALTIME)
790 			flags |= XFS_XFLAG_REALTIME;
791 		if (di_flags & XFS_DIFLAG_PREALLOC)
792 			flags |= XFS_XFLAG_PREALLOC;
793 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 			flags |= XFS_XFLAG_IMMUTABLE;
795 		if (di_flags & XFS_DIFLAG_APPEND)
796 			flags |= XFS_XFLAG_APPEND;
797 		if (di_flags & XFS_DIFLAG_SYNC)
798 			flags |= XFS_XFLAG_SYNC;
799 		if (di_flags & XFS_DIFLAG_NOATIME)
800 			flags |= XFS_XFLAG_NOATIME;
801 		if (di_flags & XFS_DIFLAG_NODUMP)
802 			flags |= XFS_XFLAG_NODUMP;
803 		if (di_flags & XFS_DIFLAG_RTINHERIT)
804 			flags |= XFS_XFLAG_RTINHERIT;
805 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 			flags |= XFS_XFLAG_PROJINHERIT;
807 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 			flags |= XFS_XFLAG_NOSYMLINKS;
809 		if (di_flags & XFS_DIFLAG_EXTSIZE)
810 			flags |= XFS_XFLAG_EXTSIZE;
811 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 			flags |= XFS_XFLAG_EXTSZINHERIT;
813 		if (di_flags & XFS_DIFLAG_NODEFRAG)
814 			flags |= XFS_XFLAG_NODEFRAG;
815 		if (di_flags & XFS_DIFLAG_FILESTREAM)
816 			flags |= XFS_XFLAG_FILESTREAM;
817 	}
818 
819 	return flags;
820 }
821 
822 uint
823 xfs_ip2xflags(
824 	xfs_inode_t		*ip)
825 {
826 	xfs_icdinode_t		*dic = &ip->i_d;
827 
828 	return _xfs_dic2xflags(dic->di_flags) |
829 				(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
830 }
831 
832 uint
833 xfs_dic2xflags(
834 	xfs_dinode_core_t	*dic)
835 {
836 	return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
837 				(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
838 }
839 
840 /*
841  * Given a mount structure and an inode number, return a pointer
842  * to a newly allocated in-core inode corresponding to the given
843  * inode number.
844  *
845  * Initialize the inode's attributes and extent pointers if it
846  * already has them (it will not if the inode has no links).
847  */
848 int
849 xfs_iread(
850 	xfs_mount_t	*mp,
851 	xfs_trans_t	*tp,
852 	xfs_ino_t	ino,
853 	xfs_inode_t	**ipp,
854 	xfs_daddr_t	bno,
855 	uint		imap_flags)
856 {
857 	xfs_buf_t	*bp;
858 	xfs_dinode_t	*dip;
859 	xfs_inode_t	*ip;
860 	int		error;
861 
862 	ASSERT(xfs_inode_zone != NULL);
863 
864 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 	ip->i_ino = ino;
866 	ip->i_mount = mp;
867 	atomic_set(&ip->i_iocount, 0);
868 	spin_lock_init(&ip->i_flags_lock);
869 
870 	/*
871 	 * Get pointer's to the on-disk inode and the buffer containing it.
872 	 * If the inode number refers to a block outside the file system
873 	 * then xfs_itobp() will return NULL.  In this case we should
874 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
875 	 * know that this is a new incore inode.
876 	 */
877 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
878 	if (error) {
879 		kmem_zone_free(xfs_inode_zone, ip);
880 		return error;
881 	}
882 
883 	/*
884 	 * Initialize inode's trace buffers.
885 	 * Do this before xfs_iformat in case it adds entries.
886 	 */
887 #ifdef	XFS_VNODE_TRACE
888 	ip->i_trace = ktrace_alloc(VNODE_TRACE_SIZE, KM_SLEEP);
889 #endif
890 #ifdef XFS_BMAP_TRACE
891 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892 #endif
893 #ifdef XFS_BMBT_TRACE
894 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895 #endif
896 #ifdef XFS_RW_TRACE
897 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898 #endif
899 #ifdef XFS_ILOCK_TRACE
900 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901 #endif
902 #ifdef XFS_DIR2_TRACE
903 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904 #endif
905 
906 	/*
907 	 * If we got something that isn't an inode it means someone
908 	 * (nfs or dmi) has a stale handle.
909 	 */
910 	if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
911 		kmem_zone_free(xfs_inode_zone, ip);
912 		xfs_trans_brelse(tp, bp);
913 #ifdef DEBUG
914 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 				"dip->di_core.di_magic (0x%x) != "
916 				"XFS_DINODE_MAGIC (0x%x)",
917 				be16_to_cpu(dip->di_core.di_magic),
918 				XFS_DINODE_MAGIC);
919 #endif /* DEBUG */
920 		return XFS_ERROR(EINVAL);
921 	}
922 
923 	/*
924 	 * If the on-disk inode is already linked to a directory
925 	 * entry, copy all of the inode into the in-core inode.
926 	 * xfs_iformat() handles copying in the inode format
927 	 * specific information.
928 	 * Otherwise, just get the truly permanent information.
929 	 */
930 	if (dip->di_core.di_mode) {
931 		xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
932 		error = xfs_iformat(ip, dip);
933 		if (error)  {
934 			kmem_zone_free(xfs_inode_zone, ip);
935 			xfs_trans_brelse(tp, bp);
936 #ifdef DEBUG
937 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 					"xfs_iformat() returned error %d",
939 					error);
940 #endif /* DEBUG */
941 			return error;
942 		}
943 	} else {
944 		ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 		ip->i_d.di_version = dip->di_core.di_version;
946 		ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
948 		/*
949 		 * Make sure to pull in the mode here as well in
950 		 * case the inode is released without being used.
951 		 * This ensures that xfs_inactive() will see that
952 		 * the inode is already free and not try to mess
953 		 * with the uninitialized part of it.
954 		 */
955 		ip->i_d.di_mode = 0;
956 		/*
957 		 * Initialize the per-fork minima and maxima for a new
958 		 * inode here.  xfs_iformat will do it for old inodes.
959 		 */
960 		ip->i_df.if_ext_max =
961 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 	}
963 
964 	INIT_LIST_HEAD(&ip->i_reclaim);
965 
966 	/*
967 	 * The inode format changed when we moved the link count and
968 	 * made it 32 bits long.  If this is an old format inode,
969 	 * convert it in memory to look like a new one.  If it gets
970 	 * flushed to disk we will convert back before flushing or
971 	 * logging it.  We zero out the new projid field and the old link
972 	 * count field.  We'll handle clearing the pad field (the remains
973 	 * of the old uuid field) when we actually convert the inode to
974 	 * the new format. We don't change the version number so that we
975 	 * can distinguish this from a real new format inode.
976 	 */
977 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 		ip->i_d.di_nlink = ip->i_d.di_onlink;
979 		ip->i_d.di_onlink = 0;
980 		ip->i_d.di_projid = 0;
981 	}
982 
983 	ip->i_delayed_blks = 0;
984 	ip->i_size = ip->i_d.di_size;
985 
986 	/*
987 	 * Mark the buffer containing the inode as something to keep
988 	 * around for a while.  This helps to keep recently accessed
989 	 * meta-data in-core longer.
990 	 */
991 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992 
993 	/*
994 	 * Use xfs_trans_brelse() to release the buffer containing the
995 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
997 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
998 	 * will only release the buffer if it is not dirty within the
999 	 * transaction.  It will be OK to release the buffer in this case,
1000 	 * because inodes on disk are never destroyed and we will be
1001 	 * locking the new in-core inode before putting it in the hash
1002 	 * table where other processes can find it.  Thus we don't have
1003 	 * to worry about the inode being changed just because we released
1004 	 * the buffer.
1005 	 */
1006 	xfs_trans_brelse(tp, bp);
1007 	*ipp = ip;
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Read in extents from a btree-format inode.
1013  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1014  */
1015 int
1016 xfs_iread_extents(
1017 	xfs_trans_t	*tp,
1018 	xfs_inode_t	*ip,
1019 	int		whichfork)
1020 {
1021 	int		error;
1022 	xfs_ifork_t	*ifp;
1023 	xfs_extnum_t	nextents;
1024 	size_t		size;
1025 
1026 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 				 ip->i_mount);
1029 		return XFS_ERROR(EFSCORRUPTED);
1030 	}
1031 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 	size = nextents * sizeof(xfs_bmbt_rec_t);
1033 	ifp = XFS_IFORK_PTR(ip, whichfork);
1034 
1035 	/*
1036 	 * We know that the size is valid (it's checked in iformat_btree)
1037 	 */
1038 	ifp->if_lastex = NULLEXTNUM;
1039 	ifp->if_bytes = ifp->if_real_bytes = 0;
1040 	ifp->if_flags |= XFS_IFEXTENTS;
1041 	xfs_iext_add(ifp, 0, nextents);
1042 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 	if (error) {
1044 		xfs_iext_destroy(ifp);
1045 		ifp->if_flags &= ~XFS_IFEXTENTS;
1046 		return error;
1047 	}
1048 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Allocate an inode on disk and return a copy of its in-core version.
1054  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1055  * appropriately within the inode.  The uid and gid for the inode are
1056  * set according to the contents of the given cred structure.
1057  *
1058  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059  * has a free inode available, call xfs_iget()
1060  * to obtain the in-core version of the allocated inode.  Finally,
1061  * fill in the inode and log its initial contents.  In this case,
1062  * ialloc_context would be set to NULL and call_again set to false.
1063  *
1064  * If xfs_dialloc() does not have an available inode,
1065  * it will replenish its supply by doing an allocation. Since we can
1066  * only do one allocation within a transaction without deadlocks, we
1067  * must commit the current transaction before returning the inode itself.
1068  * In this case, therefore, we will set call_again to true and return.
1069  * The caller should then commit the current transaction, start a new
1070  * transaction, and call xfs_ialloc() again to actually get the inode.
1071  *
1072  * To ensure that some other process does not grab the inode that
1073  * was allocated during the first call to xfs_ialloc(), this routine
1074  * also returns the [locked] bp pointing to the head of the freelist
1075  * as ialloc_context.  The caller should hold this buffer across
1076  * the commit and pass it back into this routine on the second call.
1077  *
1078  * If we are allocating quota inodes, we do not have a parent inode
1079  * to attach to or associate with (i.e. pip == NULL) because they
1080  * are not linked into the directory structure - they are attached
1081  * directly to the superblock - and so have no parent.
1082  */
1083 int
1084 xfs_ialloc(
1085 	xfs_trans_t	*tp,
1086 	xfs_inode_t	*pip,
1087 	mode_t		mode,
1088 	xfs_nlink_t	nlink,
1089 	xfs_dev_t	rdev,
1090 	cred_t		*cr,
1091 	xfs_prid_t	prid,
1092 	int		okalloc,
1093 	xfs_buf_t	**ialloc_context,
1094 	boolean_t	*call_again,
1095 	xfs_inode_t	**ipp)
1096 {
1097 	xfs_ino_t	ino;
1098 	xfs_inode_t	*ip;
1099 	bhv_vnode_t	*vp;
1100 	uint		flags;
1101 	int		error;
1102 
1103 	/*
1104 	 * Call the space management code to pick
1105 	 * the on-disk inode to be allocated.
1106 	 */
1107 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1108 			    ialloc_context, call_again, &ino);
1109 	if (error != 0) {
1110 		return error;
1111 	}
1112 	if (*call_again || ino == NULLFSINO) {
1113 		*ipp = NULL;
1114 		return 0;
1115 	}
1116 	ASSERT(*ialloc_context == NULL);
1117 
1118 	/*
1119 	 * Get the in-core inode with the lock held exclusively.
1120 	 * This is because we're setting fields here we need
1121 	 * to prevent others from looking at until we're done.
1122 	 */
1123 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 	if (error != 0) {
1126 		return error;
1127 	}
1128 	ASSERT(ip != NULL);
1129 
1130 	vp = XFS_ITOV(ip);
1131 	ip->i_d.di_mode = (__uint16_t)mode;
1132 	ip->i_d.di_onlink = 0;
1133 	ip->i_d.di_nlink = nlink;
1134 	ASSERT(ip->i_d.di_nlink == nlink);
1135 	ip->i_d.di_uid = current_fsuid(cr);
1136 	ip->i_d.di_gid = current_fsgid(cr);
1137 	ip->i_d.di_projid = prid;
1138 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1139 
1140 	/*
1141 	 * If the superblock version is up to where we support new format
1142 	 * inodes and this is currently an old format inode, then change
1143 	 * the inode version number now.  This way we only do the conversion
1144 	 * here rather than here and in the flush/logging code.
1145 	 */
1146 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1149 		/*
1150 		 * We've already zeroed the old link count, the projid field,
1151 		 * and the pad field.
1152 		 */
1153 	}
1154 
1155 	/*
1156 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1157 	 */
1158 	if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 		xfs_bump_ino_vers2(tp, ip);
1160 
1161 	if (pip && XFS_INHERIT_GID(pip)) {
1162 		ip->i_d.di_gid = pip->i_d.di_gid;
1163 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 			ip->i_d.di_mode |= S_ISGID;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * If the group ID of the new file does not match the effective group
1170 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1172 	 */
1173 	if ((irix_sgid_inherit) &&
1174 	    (ip->i_d.di_mode & S_ISGID) &&
1175 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 		ip->i_d.di_mode &= ~S_ISGID;
1177 	}
1178 
1179 	ip->i_d.di_size = 0;
1180 	ip->i_size = 0;
1181 	ip->i_d.di_nextents = 0;
1182 	ASSERT(ip->i_d.di_nblocks == 0);
1183 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 	/*
1185 	 * di_gen will have been taken care of in xfs_iread.
1186 	 */
1187 	ip->i_d.di_extsize = 0;
1188 	ip->i_d.di_dmevmask = 0;
1189 	ip->i_d.di_dmstate = 0;
1190 	ip->i_d.di_flags = 0;
1191 	flags = XFS_ILOG_CORE;
1192 	switch (mode & S_IFMT) {
1193 	case S_IFIFO:
1194 	case S_IFCHR:
1195 	case S_IFBLK:
1196 	case S_IFSOCK:
1197 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 		ip->i_df.if_u2.if_rdev = rdev;
1199 		ip->i_df.if_flags = 0;
1200 		flags |= XFS_ILOG_DEV;
1201 		break;
1202 	case S_IFREG:
1203 		if (pip && xfs_inode_is_filestream(pip)) {
1204 			error = xfs_filestream_associate(pip, ip);
1205 			if (error < 0)
1206 				return -error;
1207 			if (!error)
1208 				xfs_iflags_set(ip, XFS_IFILESTREAM);
1209 		}
1210 		/* fall through */
1211 	case S_IFDIR:
1212 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1213 			uint	di_flags = 0;
1214 
1215 			if ((mode & S_IFMT) == S_IFDIR) {
1216 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 					di_flags |= XFS_DIFLAG_RTINHERIT;
1218 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1221 				}
1222 			} else if ((mode & S_IFMT) == S_IFREG) {
1223 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1224 					di_flags |= XFS_DIFLAG_REALTIME;
1225 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1226 				}
1227 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1228 					di_flags |= XFS_DIFLAG_EXTSIZE;
1229 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1230 				}
1231 			}
1232 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1233 			    xfs_inherit_noatime)
1234 				di_flags |= XFS_DIFLAG_NOATIME;
1235 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1236 			    xfs_inherit_nodump)
1237 				di_flags |= XFS_DIFLAG_NODUMP;
1238 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1239 			    xfs_inherit_sync)
1240 				di_flags |= XFS_DIFLAG_SYNC;
1241 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1242 			    xfs_inherit_nosymlinks)
1243 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1244 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1245 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1246 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1247 			    xfs_inherit_nodefrag)
1248 				di_flags |= XFS_DIFLAG_NODEFRAG;
1249 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1250 				di_flags |= XFS_DIFLAG_FILESTREAM;
1251 			ip->i_d.di_flags |= di_flags;
1252 		}
1253 		/* FALLTHROUGH */
1254 	case S_IFLNK:
1255 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1256 		ip->i_df.if_flags = XFS_IFEXTENTS;
1257 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1258 		ip->i_df.if_u1.if_extents = NULL;
1259 		break;
1260 	default:
1261 		ASSERT(0);
1262 	}
1263 	/*
1264 	 * Attribute fork settings for new inode.
1265 	 */
1266 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1267 	ip->i_d.di_anextents = 0;
1268 
1269 	/*
1270 	 * Log the new values stuffed into the inode.
1271 	 */
1272 	xfs_trans_log_inode(tp, ip, flags);
1273 
1274 	/* now that we have an i_mode we can setup inode ops and unlock */
1275 	xfs_initialize_vnode(tp->t_mountp, vp, ip);
1276 
1277 	*ipp = ip;
1278 	return 0;
1279 }
1280 
1281 /*
1282  * Check to make sure that there are no blocks allocated to the
1283  * file beyond the size of the file.  We don't check this for
1284  * files with fixed size extents or real time extents, but we
1285  * at least do it for regular files.
1286  */
1287 #ifdef DEBUG
1288 void
1289 xfs_isize_check(
1290 	xfs_mount_t	*mp,
1291 	xfs_inode_t	*ip,
1292 	xfs_fsize_t	isize)
1293 {
1294 	xfs_fileoff_t	map_first;
1295 	int		nimaps;
1296 	xfs_bmbt_irec_t	imaps[2];
1297 
1298 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1299 		return;
1300 
1301 	if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1302 		return;
1303 
1304 	nimaps = 2;
1305 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1306 	/*
1307 	 * The filesystem could be shutting down, so bmapi may return
1308 	 * an error.
1309 	 */
1310 	if (xfs_bmapi(NULL, ip, map_first,
1311 			 (XFS_B_TO_FSB(mp,
1312 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1313 			  map_first),
1314 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1315 			 NULL, NULL))
1316 	    return;
1317 	ASSERT(nimaps == 1);
1318 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1319 }
1320 #endif	/* DEBUG */
1321 
1322 /*
1323  * Calculate the last possible buffered byte in a file.  This must
1324  * include data that was buffered beyond the EOF by the write code.
1325  * This also needs to deal with overflowing the xfs_fsize_t type
1326  * which can happen for sizes near the limit.
1327  *
1328  * We also need to take into account any blocks beyond the EOF.  It
1329  * may be the case that they were buffered by a write which failed.
1330  * In that case the pages will still be in memory, but the inode size
1331  * will never have been updated.
1332  */
1333 xfs_fsize_t
1334 xfs_file_last_byte(
1335 	xfs_inode_t	*ip)
1336 {
1337 	xfs_mount_t	*mp;
1338 	xfs_fsize_t	last_byte;
1339 	xfs_fileoff_t	last_block;
1340 	xfs_fileoff_t	size_last_block;
1341 	int		error;
1342 
1343 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1344 
1345 	mp = ip->i_mount;
1346 	/*
1347 	 * Only check for blocks beyond the EOF if the extents have
1348 	 * been read in.  This eliminates the need for the inode lock,
1349 	 * and it also saves us from looking when it really isn't
1350 	 * necessary.
1351 	 */
1352 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1353 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1354 			XFS_DATA_FORK);
1355 		if (error) {
1356 			last_block = 0;
1357 		}
1358 	} else {
1359 		last_block = 0;
1360 	}
1361 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1362 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1363 
1364 	last_byte = XFS_FSB_TO_B(mp, last_block);
1365 	if (last_byte < 0) {
1366 		return XFS_MAXIOFFSET(mp);
1367 	}
1368 	last_byte += (1 << mp->m_writeio_log);
1369 	if (last_byte < 0) {
1370 		return XFS_MAXIOFFSET(mp);
1371 	}
1372 	return last_byte;
1373 }
1374 
1375 #if defined(XFS_RW_TRACE)
1376 STATIC void
1377 xfs_itrunc_trace(
1378 	int		tag,
1379 	xfs_inode_t	*ip,
1380 	int		flag,
1381 	xfs_fsize_t	new_size,
1382 	xfs_off_t	toss_start,
1383 	xfs_off_t	toss_finish)
1384 {
1385 	if (ip->i_rwtrace == NULL) {
1386 		return;
1387 	}
1388 
1389 	ktrace_enter(ip->i_rwtrace,
1390 		     (void*)((long)tag),
1391 		     (void*)ip,
1392 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1393 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1394 		     (void*)((long)flag),
1395 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1396 		     (void*)(unsigned long)(new_size & 0xffffffff),
1397 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1398 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1399 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1400 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1401 		     (void*)(unsigned long)current_cpu(),
1402 		     (void*)(unsigned long)current_pid(),
1403 		     (void*)NULL,
1404 		     (void*)NULL,
1405 		     (void*)NULL);
1406 }
1407 #else
1408 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1409 #endif
1410 
1411 /*
1412  * Start the truncation of the file to new_size.  The new size
1413  * must be smaller than the current size.  This routine will
1414  * clear the buffer and page caches of file data in the removed
1415  * range, and xfs_itruncate_finish() will remove the underlying
1416  * disk blocks.
1417  *
1418  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1419  * must NOT have the inode lock held at all.  This is because we're
1420  * calling into the buffer/page cache code and we can't hold the
1421  * inode lock when we do so.
1422  *
1423  * We need to wait for any direct I/Os in flight to complete before we
1424  * proceed with the truncate. This is needed to prevent the extents
1425  * being read or written by the direct I/Os from being removed while the
1426  * I/O is in flight as there is no other method of synchronising
1427  * direct I/O with the truncate operation.  Also, because we hold
1428  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1429  * started until the truncate completes and drops the lock. Essentially,
1430  * the vn_iowait() call forms an I/O barrier that provides strict ordering
1431  * between direct I/Os and the truncate operation.
1432  *
1433  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1434  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1435  * in the case that the caller is locking things out of order and
1436  * may not be able to call xfs_itruncate_finish() with the inode lock
1437  * held without dropping the I/O lock.  If the caller must drop the
1438  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1439  * must be called again with all the same restrictions as the initial
1440  * call.
1441  */
1442 int
1443 xfs_itruncate_start(
1444 	xfs_inode_t	*ip,
1445 	uint		flags,
1446 	xfs_fsize_t	new_size)
1447 {
1448 	xfs_fsize_t	last_byte;
1449 	xfs_off_t	toss_start;
1450 	xfs_mount_t	*mp;
1451 	bhv_vnode_t	*vp;
1452 	int		error = 0;
1453 
1454 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1455 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1456 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1457 	       (flags == XFS_ITRUNC_MAYBE));
1458 
1459 	mp = ip->i_mount;
1460 	vp = XFS_ITOV(ip);
1461 
1462 	/* wait for the completion of any pending DIOs */
1463 	if (new_size < ip->i_size)
1464 		vn_iowait(ip);
1465 
1466 	/*
1467 	 * Call toss_pages or flushinval_pages to get rid of pages
1468 	 * overlapping the region being removed.  We have to use
1469 	 * the less efficient flushinval_pages in the case that the
1470 	 * caller may not be able to finish the truncate without
1471 	 * dropping the inode's I/O lock.  Make sure
1472 	 * to catch any pages brought in by buffers overlapping
1473 	 * the EOF by searching out beyond the isize by our
1474 	 * block size. We round new_size up to a block boundary
1475 	 * so that we don't toss things on the same block as
1476 	 * new_size but before it.
1477 	 *
1478 	 * Before calling toss_page or flushinval_pages, make sure to
1479 	 * call remapf() over the same region if the file is mapped.
1480 	 * This frees up mapped file references to the pages in the
1481 	 * given range and for the flushinval_pages case it ensures
1482 	 * that we get the latest mapped changes flushed out.
1483 	 */
1484 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1485 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1486 	if (toss_start < 0) {
1487 		/*
1488 		 * The place to start tossing is beyond our maximum
1489 		 * file size, so there is no way that the data extended
1490 		 * out there.
1491 		 */
1492 		return 0;
1493 	}
1494 	last_byte = xfs_file_last_byte(ip);
1495 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1496 			 last_byte);
1497 	if (last_byte > toss_start) {
1498 		if (flags & XFS_ITRUNC_DEFINITE) {
1499 			xfs_tosspages(ip, toss_start,
1500 					-1, FI_REMAPF_LOCKED);
1501 		} else {
1502 			error = xfs_flushinval_pages(ip, toss_start,
1503 					-1, FI_REMAPF_LOCKED);
1504 		}
1505 	}
1506 
1507 #ifdef DEBUG
1508 	if (new_size == 0) {
1509 		ASSERT(VN_CACHED(vp) == 0);
1510 	}
1511 #endif
1512 	return error;
1513 }
1514 
1515 /*
1516  * Shrink the file to the given new_size.  The new
1517  * size must be smaller than the current size.
1518  * This will free up the underlying blocks
1519  * in the removed range after a call to xfs_itruncate_start()
1520  * or xfs_atruncate_start().
1521  *
1522  * The transaction passed to this routine must have made
1523  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1524  * This routine may commit the given transaction and
1525  * start new ones, so make sure everything involved in
1526  * the transaction is tidy before calling here.
1527  * Some transaction will be returned to the caller to be
1528  * committed.  The incoming transaction must already include
1529  * the inode, and both inode locks must be held exclusively.
1530  * The inode must also be "held" within the transaction.  On
1531  * return the inode will be "held" within the returned transaction.
1532  * This routine does NOT require any disk space to be reserved
1533  * for it within the transaction.
1534  *
1535  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1536  * and it indicates the fork which is to be truncated.  For the
1537  * attribute fork we only support truncation to size 0.
1538  *
1539  * We use the sync parameter to indicate whether or not the first
1540  * transaction we perform might have to be synchronous.  For the attr fork,
1541  * it needs to be so if the unlink of the inode is not yet known to be
1542  * permanent in the log.  This keeps us from freeing and reusing the
1543  * blocks of the attribute fork before the unlink of the inode becomes
1544  * permanent.
1545  *
1546  * For the data fork, we normally have to run synchronously if we're
1547  * being called out of the inactive path or we're being called
1548  * out of the create path where we're truncating an existing file.
1549  * Either way, the truncate needs to be sync so blocks don't reappear
1550  * in the file with altered data in case of a crash.  wsync filesystems
1551  * can run the first case async because anything that shrinks the inode
1552  * has to run sync so by the time we're called here from inactive, the
1553  * inode size is permanently set to 0.
1554  *
1555  * Calls from the truncate path always need to be sync unless we're
1556  * in a wsync filesystem and the file has already been unlinked.
1557  *
1558  * The caller is responsible for correctly setting the sync parameter.
1559  * It gets too hard for us to guess here which path we're being called
1560  * out of just based on inode state.
1561  */
1562 int
1563 xfs_itruncate_finish(
1564 	xfs_trans_t	**tp,
1565 	xfs_inode_t	*ip,
1566 	xfs_fsize_t	new_size,
1567 	int		fork,
1568 	int		sync)
1569 {
1570 	xfs_fsblock_t	first_block;
1571 	xfs_fileoff_t	first_unmap_block;
1572 	xfs_fileoff_t	last_block;
1573 	xfs_filblks_t	unmap_len=0;
1574 	xfs_mount_t	*mp;
1575 	xfs_trans_t	*ntp;
1576 	int		done;
1577 	int		committed;
1578 	xfs_bmap_free_t	free_list;
1579 	int		error;
1580 
1581 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1582 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1583 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1584 	ASSERT(*tp != NULL);
1585 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1586 	ASSERT(ip->i_transp == *tp);
1587 	ASSERT(ip->i_itemp != NULL);
1588 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1589 
1590 
1591 	ntp = *tp;
1592 	mp = (ntp)->t_mountp;
1593 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1594 
1595 	/*
1596 	 * We only support truncating the entire attribute fork.
1597 	 */
1598 	if (fork == XFS_ATTR_FORK) {
1599 		new_size = 0LL;
1600 	}
1601 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1602 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1603 	/*
1604 	 * The first thing we do is set the size to new_size permanently
1605 	 * on disk.  This way we don't have to worry about anyone ever
1606 	 * being able to look at the data being freed even in the face
1607 	 * of a crash.  What we're getting around here is the case where
1608 	 * we free a block, it is allocated to another file, it is written
1609 	 * to, and then we crash.  If the new data gets written to the
1610 	 * file but the log buffers containing the free and reallocation
1611 	 * don't, then we'd end up with garbage in the blocks being freed.
1612 	 * As long as we make the new_size permanent before actually
1613 	 * freeing any blocks it doesn't matter if they get writtten to.
1614 	 *
1615 	 * The callers must signal into us whether or not the size
1616 	 * setting here must be synchronous.  There are a few cases
1617 	 * where it doesn't have to be synchronous.  Those cases
1618 	 * occur if the file is unlinked and we know the unlink is
1619 	 * permanent or if the blocks being truncated are guaranteed
1620 	 * to be beyond the inode eof (regardless of the link count)
1621 	 * and the eof value is permanent.  Both of these cases occur
1622 	 * only on wsync-mounted filesystems.  In those cases, we're
1623 	 * guaranteed that no user will ever see the data in the blocks
1624 	 * that are being truncated so the truncate can run async.
1625 	 * In the free beyond eof case, the file may wind up with
1626 	 * more blocks allocated to it than it needs if we crash
1627 	 * and that won't get fixed until the next time the file
1628 	 * is re-opened and closed but that's ok as that shouldn't
1629 	 * be too many blocks.
1630 	 *
1631 	 * However, we can't just make all wsync xactions run async
1632 	 * because there's one call out of the create path that needs
1633 	 * to run sync where it's truncating an existing file to size
1634 	 * 0 whose size is > 0.
1635 	 *
1636 	 * It's probably possible to come up with a test in this
1637 	 * routine that would correctly distinguish all the above
1638 	 * cases from the values of the function parameters and the
1639 	 * inode state but for sanity's sake, I've decided to let the
1640 	 * layers above just tell us.  It's simpler to correctly figure
1641 	 * out in the layer above exactly under what conditions we
1642 	 * can run async and I think it's easier for others read and
1643 	 * follow the logic in case something has to be changed.
1644 	 * cscope is your friend -- rcc.
1645 	 *
1646 	 * The attribute fork is much simpler.
1647 	 *
1648 	 * For the attribute fork we allow the caller to tell us whether
1649 	 * the unlink of the inode that led to this call is yet permanent
1650 	 * in the on disk log.  If it is not and we will be freeing extents
1651 	 * in this inode then we make the first transaction synchronous
1652 	 * to make sure that the unlink is permanent by the time we free
1653 	 * the blocks.
1654 	 */
1655 	if (fork == XFS_DATA_FORK) {
1656 		if (ip->i_d.di_nextents > 0) {
1657 			/*
1658 			 * If we are not changing the file size then do
1659 			 * not update the on-disk file size - we may be
1660 			 * called from xfs_inactive_free_eofblocks().  If we
1661 			 * update the on-disk file size and then the system
1662 			 * crashes before the contents of the file are
1663 			 * flushed to disk then the files may be full of
1664 			 * holes (ie NULL files bug).
1665 			 */
1666 			if (ip->i_size != new_size) {
1667 				ip->i_d.di_size = new_size;
1668 				ip->i_size = new_size;
1669 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1670 			}
1671 		}
1672 	} else if (sync) {
1673 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1674 		if (ip->i_d.di_anextents > 0)
1675 			xfs_trans_set_sync(ntp);
1676 	}
1677 	ASSERT(fork == XFS_DATA_FORK ||
1678 		(fork == XFS_ATTR_FORK &&
1679 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1680 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1681 
1682 	/*
1683 	 * Since it is possible for space to become allocated beyond
1684 	 * the end of the file (in a crash where the space is allocated
1685 	 * but the inode size is not yet updated), simply remove any
1686 	 * blocks which show up between the new EOF and the maximum
1687 	 * possible file size.  If the first block to be removed is
1688 	 * beyond the maximum file size (ie it is the same as last_block),
1689 	 * then there is nothing to do.
1690 	 */
1691 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1692 	ASSERT(first_unmap_block <= last_block);
1693 	done = 0;
1694 	if (last_block == first_unmap_block) {
1695 		done = 1;
1696 	} else {
1697 		unmap_len = last_block - first_unmap_block + 1;
1698 	}
1699 	while (!done) {
1700 		/*
1701 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1702 		 * will tell us whether it freed the entire range or
1703 		 * not.  If this is a synchronous mount (wsync),
1704 		 * then we can tell bunmapi to keep all the
1705 		 * transactions asynchronous since the unlink
1706 		 * transaction that made this inode inactive has
1707 		 * already hit the disk.  There's no danger of
1708 		 * the freed blocks being reused, there being a
1709 		 * crash, and the reused blocks suddenly reappearing
1710 		 * in this file with garbage in them once recovery
1711 		 * runs.
1712 		 */
1713 		XFS_BMAP_INIT(&free_list, &first_block);
1714 		error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1715 				    first_unmap_block, unmap_len,
1716 				    XFS_BMAPI_AFLAG(fork) |
1717 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1718 				    XFS_ITRUNC_MAX_EXTENTS,
1719 				    &first_block, &free_list,
1720 				    NULL, &done);
1721 		if (error) {
1722 			/*
1723 			 * If the bunmapi call encounters an error,
1724 			 * return to the caller where the transaction
1725 			 * can be properly aborted.  We just need to
1726 			 * make sure we're not holding any resources
1727 			 * that we were not when we came in.
1728 			 */
1729 			xfs_bmap_cancel(&free_list);
1730 			return error;
1731 		}
1732 
1733 		/*
1734 		 * Duplicate the transaction that has the permanent
1735 		 * reservation and commit the old transaction.
1736 		 */
1737 		error = xfs_bmap_finish(tp, &free_list, &committed);
1738 		ntp = *tp;
1739 		if (error) {
1740 			/*
1741 			 * If the bmap finish call encounters an error,
1742 			 * return to the caller where the transaction
1743 			 * can be properly aborted.  We just need to
1744 			 * make sure we're not holding any resources
1745 			 * that we were not when we came in.
1746 			 *
1747 			 * Aborting from this point might lose some
1748 			 * blocks in the file system, but oh well.
1749 			 */
1750 			xfs_bmap_cancel(&free_list);
1751 			if (committed) {
1752 				/*
1753 				 * If the passed in transaction committed
1754 				 * in xfs_bmap_finish(), then we want to
1755 				 * add the inode to this one before returning.
1756 				 * This keeps things simple for the higher
1757 				 * level code, because it always knows that
1758 				 * the inode is locked and held in the
1759 				 * transaction that returns to it whether
1760 				 * errors occur or not.  We don't mark the
1761 				 * inode dirty so that this transaction can
1762 				 * be easily aborted if possible.
1763 				 */
1764 				xfs_trans_ijoin(ntp, ip,
1765 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1766 				xfs_trans_ihold(ntp, ip);
1767 			}
1768 			return error;
1769 		}
1770 
1771 		if (committed) {
1772 			/*
1773 			 * The first xact was committed,
1774 			 * so add the inode to the new one.
1775 			 * Mark it dirty so it will be logged
1776 			 * and moved forward in the log as
1777 			 * part of every commit.
1778 			 */
1779 			xfs_trans_ijoin(ntp, ip,
1780 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1781 			xfs_trans_ihold(ntp, ip);
1782 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1783 		}
1784 		ntp = xfs_trans_dup(ntp);
1785 		(void) xfs_trans_commit(*tp, 0);
1786 		*tp = ntp;
1787 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1788 					  XFS_TRANS_PERM_LOG_RES,
1789 					  XFS_ITRUNCATE_LOG_COUNT);
1790 		/*
1791 		 * Add the inode being truncated to the next chained
1792 		 * transaction.
1793 		 */
1794 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1795 		xfs_trans_ihold(ntp, ip);
1796 		if (error)
1797 			return (error);
1798 	}
1799 	/*
1800 	 * Only update the size in the case of the data fork, but
1801 	 * always re-log the inode so that our permanent transaction
1802 	 * can keep on rolling it forward in the log.
1803 	 */
1804 	if (fork == XFS_DATA_FORK) {
1805 		xfs_isize_check(mp, ip, new_size);
1806 		/*
1807 		 * If we are not changing the file size then do
1808 		 * not update the on-disk file size - we may be
1809 		 * called from xfs_inactive_free_eofblocks().  If we
1810 		 * update the on-disk file size and then the system
1811 		 * crashes before the contents of the file are
1812 		 * flushed to disk then the files may be full of
1813 		 * holes (ie NULL files bug).
1814 		 */
1815 		if (ip->i_size != new_size) {
1816 			ip->i_d.di_size = new_size;
1817 			ip->i_size = new_size;
1818 		}
1819 	}
1820 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1821 	ASSERT((new_size != 0) ||
1822 	       (fork == XFS_ATTR_FORK) ||
1823 	       (ip->i_delayed_blks == 0));
1824 	ASSERT((new_size != 0) ||
1825 	       (fork == XFS_ATTR_FORK) ||
1826 	       (ip->i_d.di_nextents == 0));
1827 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1828 	return 0;
1829 }
1830 
1831 
1832 /*
1833  * xfs_igrow_start
1834  *
1835  * Do the first part of growing a file: zero any data in the last
1836  * block that is beyond the old EOF.  We need to do this before
1837  * the inode is joined to the transaction to modify the i_size.
1838  * That way we can drop the inode lock and call into the buffer
1839  * cache to get the buffer mapping the EOF.
1840  */
1841 int
1842 xfs_igrow_start(
1843 	xfs_inode_t	*ip,
1844 	xfs_fsize_t	new_size,
1845 	cred_t		*credp)
1846 {
1847 	int		error;
1848 
1849 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1850 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1851 	ASSERT(new_size > ip->i_size);
1852 
1853 	/*
1854 	 * Zero any pages that may have been created by
1855 	 * xfs_write_file() beyond the end of the file
1856 	 * and any blocks between the old and new file sizes.
1857 	 */
1858 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1859 			     ip->i_size);
1860 	return error;
1861 }
1862 
1863 /*
1864  * xfs_igrow_finish
1865  *
1866  * This routine is called to extend the size of a file.
1867  * The inode must have both the iolock and the ilock locked
1868  * for update and it must be a part of the current transaction.
1869  * The xfs_igrow_start() function must have been called previously.
1870  * If the change_flag is not zero, the inode change timestamp will
1871  * be updated.
1872  */
1873 void
1874 xfs_igrow_finish(
1875 	xfs_trans_t	*tp,
1876 	xfs_inode_t	*ip,
1877 	xfs_fsize_t	new_size,
1878 	int		change_flag)
1879 {
1880 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1881 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1882 	ASSERT(ip->i_transp == tp);
1883 	ASSERT(new_size > ip->i_size);
1884 
1885 	/*
1886 	 * Update the file size.  Update the inode change timestamp
1887 	 * if change_flag set.
1888 	 */
1889 	ip->i_d.di_size = new_size;
1890 	ip->i_size = new_size;
1891 	if (change_flag)
1892 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1893 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1894 
1895 }
1896 
1897 
1898 /*
1899  * This is called when the inode's link count goes to 0.
1900  * We place the on-disk inode on a list in the AGI.  It
1901  * will be pulled from this list when the inode is freed.
1902  */
1903 int
1904 xfs_iunlink(
1905 	xfs_trans_t	*tp,
1906 	xfs_inode_t	*ip)
1907 {
1908 	xfs_mount_t	*mp;
1909 	xfs_agi_t	*agi;
1910 	xfs_dinode_t	*dip;
1911 	xfs_buf_t	*agibp;
1912 	xfs_buf_t	*ibp;
1913 	xfs_agnumber_t	agno;
1914 	xfs_daddr_t	agdaddr;
1915 	xfs_agino_t	agino;
1916 	short		bucket_index;
1917 	int		offset;
1918 	int		error;
1919 	int		agi_ok;
1920 
1921 	ASSERT(ip->i_d.di_nlink == 0);
1922 	ASSERT(ip->i_d.di_mode != 0);
1923 	ASSERT(ip->i_transp == tp);
1924 
1925 	mp = tp->t_mountp;
1926 
1927 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1928 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1929 
1930 	/*
1931 	 * Get the agi buffer first.  It ensures lock ordering
1932 	 * on the list.
1933 	 */
1934 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1935 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1936 	if (error)
1937 		return error;
1938 
1939 	/*
1940 	 * Validate the magic number of the agi block.
1941 	 */
1942 	agi = XFS_BUF_TO_AGI(agibp);
1943 	agi_ok =
1944 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1945 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1946 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1947 			XFS_RANDOM_IUNLINK))) {
1948 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1949 		xfs_trans_brelse(tp, agibp);
1950 		return XFS_ERROR(EFSCORRUPTED);
1951 	}
1952 	/*
1953 	 * Get the index into the agi hash table for the
1954 	 * list this inode will go on.
1955 	 */
1956 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1957 	ASSERT(agino != 0);
1958 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1959 	ASSERT(agi->agi_unlinked[bucket_index]);
1960 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1961 
1962 	error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1963 	if (error)
1964 		return error;
1965 
1966 	/*
1967 	 * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
1968 	 * from picking up this inode when it is reclaimed (its incore state
1969 	 * initialzed but not flushed to disk yet). The in-core di_nlink is
1970 	 * already cleared in xfs_droplink() and a corresponding transaction
1971 	 * logged. The hack here just synchronizes the in-core to on-disk
1972 	 * di_nlink value in advance before the actual inode sync to disk.
1973 	 * This is OK because the inode is already unlinked and would never
1974 	 * change its di_nlink again for this inode generation.
1975 	 * This is a temporary hack that would require a proper fix
1976 	 * in the future.
1977 	 */
1978 	dip->di_core.di_nlink = 0;
1979 
1980 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1981 		/*
1982 		 * There is already another inode in the bucket we need
1983 		 * to add ourselves to.  Add us at the front of the list.
1984 		 * Here we put the head pointer into our next pointer,
1985 		 * and then we fall through to point the head at us.
1986 		 */
1987 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1988 		/* both on-disk, don't endian flip twice */
1989 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1990 		offset = ip->i_boffset +
1991 			offsetof(xfs_dinode_t, di_next_unlinked);
1992 		xfs_trans_inode_buf(tp, ibp);
1993 		xfs_trans_log_buf(tp, ibp, offset,
1994 				  (offset + sizeof(xfs_agino_t) - 1));
1995 		xfs_inobp_check(mp, ibp);
1996 	}
1997 
1998 	/*
1999 	 * Point the bucket head pointer at the inode being inserted.
2000 	 */
2001 	ASSERT(agino != 0);
2002 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2003 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2004 		(sizeof(xfs_agino_t) * bucket_index);
2005 	xfs_trans_log_buf(tp, agibp, offset,
2006 			  (offset + sizeof(xfs_agino_t) - 1));
2007 	return 0;
2008 }
2009 
2010 /*
2011  * Pull the on-disk inode from the AGI unlinked list.
2012  */
2013 STATIC int
2014 xfs_iunlink_remove(
2015 	xfs_trans_t	*tp,
2016 	xfs_inode_t	*ip)
2017 {
2018 	xfs_ino_t	next_ino;
2019 	xfs_mount_t	*mp;
2020 	xfs_agi_t	*agi;
2021 	xfs_dinode_t	*dip;
2022 	xfs_buf_t	*agibp;
2023 	xfs_buf_t	*ibp;
2024 	xfs_agnumber_t	agno;
2025 	xfs_daddr_t	agdaddr;
2026 	xfs_agino_t	agino;
2027 	xfs_agino_t	next_agino;
2028 	xfs_buf_t	*last_ibp;
2029 	xfs_dinode_t	*last_dip = NULL;
2030 	short		bucket_index;
2031 	int		offset, last_offset = 0;
2032 	int		error;
2033 	int		agi_ok;
2034 
2035 	/*
2036 	 * First pull the on-disk inode from the AGI unlinked list.
2037 	 */
2038 	mp = tp->t_mountp;
2039 
2040 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2041 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2042 
2043 	/*
2044 	 * Get the agi buffer first.  It ensures lock ordering
2045 	 * on the list.
2046 	 */
2047 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2048 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2049 	if (error) {
2050 		cmn_err(CE_WARN,
2051 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
2052 			error, mp->m_fsname);
2053 		return error;
2054 	}
2055 	/*
2056 	 * Validate the magic number of the agi block.
2057 	 */
2058 	agi = XFS_BUF_TO_AGI(agibp);
2059 	agi_ok =
2060 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2061 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2062 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2063 			XFS_RANDOM_IUNLINK_REMOVE))) {
2064 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2065 				     mp, agi);
2066 		xfs_trans_brelse(tp, agibp);
2067 		cmn_err(CE_WARN,
2068 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
2069 			 mp->m_fsname);
2070 		return XFS_ERROR(EFSCORRUPTED);
2071 	}
2072 	/*
2073 	 * Get the index into the agi hash table for the
2074 	 * list this inode will go on.
2075 	 */
2076 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2077 	ASSERT(agino != 0);
2078 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2079 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2080 	ASSERT(agi->agi_unlinked[bucket_index]);
2081 
2082 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2083 		/*
2084 		 * We're at the head of the list.  Get the inode's
2085 		 * on-disk buffer to see if there is anyone after us
2086 		 * on the list.  Only modify our next pointer if it
2087 		 * is not already NULLAGINO.  This saves us the overhead
2088 		 * of dealing with the buffer when there is no need to
2089 		 * change it.
2090 		 */
2091 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2092 		if (error) {
2093 			cmn_err(CE_WARN,
2094 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2095 				error, mp->m_fsname);
2096 			return error;
2097 		}
2098 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2099 		ASSERT(next_agino != 0);
2100 		if (next_agino != NULLAGINO) {
2101 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2102 			offset = ip->i_boffset +
2103 				offsetof(xfs_dinode_t, di_next_unlinked);
2104 			xfs_trans_inode_buf(tp, ibp);
2105 			xfs_trans_log_buf(tp, ibp, offset,
2106 					  (offset + sizeof(xfs_agino_t) - 1));
2107 			xfs_inobp_check(mp, ibp);
2108 		} else {
2109 			xfs_trans_brelse(tp, ibp);
2110 		}
2111 		/*
2112 		 * Point the bucket head pointer at the next inode.
2113 		 */
2114 		ASSERT(next_agino != 0);
2115 		ASSERT(next_agino != agino);
2116 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2117 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2118 			(sizeof(xfs_agino_t) * bucket_index);
2119 		xfs_trans_log_buf(tp, agibp, offset,
2120 				  (offset + sizeof(xfs_agino_t) - 1));
2121 	} else {
2122 		/*
2123 		 * We need to search the list for the inode being freed.
2124 		 */
2125 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126 		last_ibp = NULL;
2127 		while (next_agino != agino) {
2128 			/*
2129 			 * If the last inode wasn't the one pointing to
2130 			 * us, then release its buffer since we're not
2131 			 * going to do anything with it.
2132 			 */
2133 			if (last_ibp != NULL) {
2134 				xfs_trans_brelse(tp, last_ibp);
2135 			}
2136 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2137 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2138 					    &last_ibp, &last_offset);
2139 			if (error) {
2140 				cmn_err(CE_WARN,
2141 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2142 					error, mp->m_fsname);
2143 				return error;
2144 			}
2145 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2146 			ASSERT(next_agino != NULLAGINO);
2147 			ASSERT(next_agino != 0);
2148 		}
2149 		/*
2150 		 * Now last_ibp points to the buffer previous to us on
2151 		 * the unlinked list.  Pull us from the list.
2152 		 */
2153 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2154 		if (error) {
2155 			cmn_err(CE_WARN,
2156 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2157 				error, mp->m_fsname);
2158 			return error;
2159 		}
2160 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2161 		ASSERT(next_agino != 0);
2162 		ASSERT(next_agino != agino);
2163 		if (next_agino != NULLAGINO) {
2164 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2165 			offset = ip->i_boffset +
2166 				offsetof(xfs_dinode_t, di_next_unlinked);
2167 			xfs_trans_inode_buf(tp, ibp);
2168 			xfs_trans_log_buf(tp, ibp, offset,
2169 					  (offset + sizeof(xfs_agino_t) - 1));
2170 			xfs_inobp_check(mp, ibp);
2171 		} else {
2172 			xfs_trans_brelse(tp, ibp);
2173 		}
2174 		/*
2175 		 * Point the previous inode on the list to the next inode.
2176 		 */
2177 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2178 		ASSERT(next_agino != 0);
2179 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2180 		xfs_trans_inode_buf(tp, last_ibp);
2181 		xfs_trans_log_buf(tp, last_ibp, offset,
2182 				  (offset + sizeof(xfs_agino_t) - 1));
2183 		xfs_inobp_check(mp, last_ibp);
2184 	}
2185 	return 0;
2186 }
2187 
2188 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2189 {
2190 	return (((ip->i_itemp == NULL) ||
2191 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2192 		(ip->i_update_core == 0));
2193 }
2194 
2195 STATIC void
2196 xfs_ifree_cluster(
2197 	xfs_inode_t	*free_ip,
2198 	xfs_trans_t	*tp,
2199 	xfs_ino_t	inum)
2200 {
2201 	xfs_mount_t		*mp = free_ip->i_mount;
2202 	int			blks_per_cluster;
2203 	int			nbufs;
2204 	int			ninodes;
2205 	int			i, j, found, pre_flushed;
2206 	xfs_daddr_t		blkno;
2207 	xfs_buf_t		*bp;
2208 	xfs_inode_t		*ip, **ip_found;
2209 	xfs_inode_log_item_t	*iip;
2210 	xfs_log_item_t		*lip;
2211 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
2212 	SPLDECL(s);
2213 
2214 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2215 		blks_per_cluster = 1;
2216 		ninodes = mp->m_sb.sb_inopblock;
2217 		nbufs = XFS_IALLOC_BLOCKS(mp);
2218 	} else {
2219 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2220 					mp->m_sb.sb_blocksize;
2221 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2222 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2223 	}
2224 
2225 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2226 
2227 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2228 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2229 					 XFS_INO_TO_AGBNO(mp, inum));
2230 
2231 
2232 		/*
2233 		 * Look for each inode in memory and attempt to lock it,
2234 		 * we can be racing with flush and tail pushing here.
2235 		 * any inode we get the locks on, add to an array of
2236 		 * inode items to process later.
2237 		 *
2238 		 * The get the buffer lock, we could beat a flush
2239 		 * or tail pushing thread to the lock here, in which
2240 		 * case they will go looking for the inode buffer
2241 		 * and fail, we need some other form of interlock
2242 		 * here.
2243 		 */
2244 		found = 0;
2245 		for (i = 0; i < ninodes; i++) {
2246 			read_lock(&pag->pag_ici_lock);
2247 			ip = radix_tree_lookup(&pag->pag_ici_root,
2248 					XFS_INO_TO_AGINO(mp, (inum + i)));
2249 
2250 			/* Inode not in memory or we found it already,
2251 			 * nothing to do
2252 			 */
2253 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2254 				read_unlock(&pag->pag_ici_lock);
2255 				continue;
2256 			}
2257 
2258 			if (xfs_inode_clean(ip)) {
2259 				read_unlock(&pag->pag_ici_lock);
2260 				continue;
2261 			}
2262 
2263 			/* If we can get the locks then add it to the
2264 			 * list, otherwise by the time we get the bp lock
2265 			 * below it will already be attached to the
2266 			 * inode buffer.
2267 			 */
2268 
2269 			/* This inode will already be locked - by us, lets
2270 			 * keep it that way.
2271 			 */
2272 
2273 			if (ip == free_ip) {
2274 				if (xfs_iflock_nowait(ip)) {
2275 					xfs_iflags_set(ip, XFS_ISTALE);
2276 					if (xfs_inode_clean(ip)) {
2277 						xfs_ifunlock(ip);
2278 					} else {
2279 						ip_found[found++] = ip;
2280 					}
2281 				}
2282 				read_unlock(&pag->pag_ici_lock);
2283 				continue;
2284 			}
2285 
2286 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2287 				if (xfs_iflock_nowait(ip)) {
2288 					xfs_iflags_set(ip, XFS_ISTALE);
2289 
2290 					if (xfs_inode_clean(ip)) {
2291 						xfs_ifunlock(ip);
2292 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2293 					} else {
2294 						ip_found[found++] = ip;
2295 					}
2296 				} else {
2297 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2298 				}
2299 			}
2300 			read_unlock(&pag->pag_ici_lock);
2301 		}
2302 
2303 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2304 					mp->m_bsize * blks_per_cluster,
2305 					XFS_BUF_LOCK);
2306 
2307 		pre_flushed = 0;
2308 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2309 		while (lip) {
2310 			if (lip->li_type == XFS_LI_INODE) {
2311 				iip = (xfs_inode_log_item_t *)lip;
2312 				ASSERT(iip->ili_logged == 1);
2313 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2314 				AIL_LOCK(mp,s);
2315 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2316 				AIL_UNLOCK(mp, s);
2317 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2318 				pre_flushed++;
2319 			}
2320 			lip = lip->li_bio_list;
2321 		}
2322 
2323 		for (i = 0; i < found; i++) {
2324 			ip = ip_found[i];
2325 			iip = ip->i_itemp;
2326 
2327 			if (!iip) {
2328 				ip->i_update_core = 0;
2329 				xfs_ifunlock(ip);
2330 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2331 				continue;
2332 			}
2333 
2334 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2335 			iip->ili_format.ilf_fields = 0;
2336 			iip->ili_logged = 1;
2337 			AIL_LOCK(mp,s);
2338 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2339 			AIL_UNLOCK(mp, s);
2340 
2341 			xfs_buf_attach_iodone(bp,
2342 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2343 				xfs_istale_done, (xfs_log_item_t *)iip);
2344 			if (ip != free_ip) {
2345 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2346 			}
2347 		}
2348 
2349 		if (found || pre_flushed)
2350 			xfs_trans_stale_inode_buf(tp, bp);
2351 		xfs_trans_binval(tp, bp);
2352 	}
2353 
2354 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2355 	xfs_put_perag(mp, pag);
2356 }
2357 
2358 /*
2359  * This is called to return an inode to the inode free list.
2360  * The inode should already be truncated to 0 length and have
2361  * no pages associated with it.  This routine also assumes that
2362  * the inode is already a part of the transaction.
2363  *
2364  * The on-disk copy of the inode will have been added to the list
2365  * of unlinked inodes in the AGI. We need to remove the inode from
2366  * that list atomically with respect to freeing it here.
2367  */
2368 int
2369 xfs_ifree(
2370 	xfs_trans_t	*tp,
2371 	xfs_inode_t	*ip,
2372 	xfs_bmap_free_t	*flist)
2373 {
2374 	int			error;
2375 	int			delete;
2376 	xfs_ino_t		first_ino;
2377 
2378 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2379 	ASSERT(ip->i_transp == tp);
2380 	ASSERT(ip->i_d.di_nlink == 0);
2381 	ASSERT(ip->i_d.di_nextents == 0);
2382 	ASSERT(ip->i_d.di_anextents == 0);
2383 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2384 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2385 	ASSERT(ip->i_d.di_nblocks == 0);
2386 
2387 	/*
2388 	 * Pull the on-disk inode from the AGI unlinked list.
2389 	 */
2390 	error = xfs_iunlink_remove(tp, ip);
2391 	if (error != 0) {
2392 		return error;
2393 	}
2394 
2395 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2396 	if (error != 0) {
2397 		return error;
2398 	}
2399 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2400 	ip->i_d.di_flags = 0;
2401 	ip->i_d.di_dmevmask = 0;
2402 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2403 	ip->i_df.if_ext_max =
2404 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2405 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2406 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2407 	/*
2408 	 * Bump the generation count so no one will be confused
2409 	 * by reincarnations of this inode.
2410 	 */
2411 	ip->i_d.di_gen++;
2412 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2413 
2414 	if (delete) {
2415 		xfs_ifree_cluster(ip, tp, first_ino);
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 /*
2422  * Reallocate the space for if_broot based on the number of records
2423  * being added or deleted as indicated in rec_diff.  Move the records
2424  * and pointers in if_broot to fit the new size.  When shrinking this
2425  * will eliminate holes between the records and pointers created by
2426  * the caller.  When growing this will create holes to be filled in
2427  * by the caller.
2428  *
2429  * The caller must not request to add more records than would fit in
2430  * the on-disk inode root.  If the if_broot is currently NULL, then
2431  * if we adding records one will be allocated.  The caller must also
2432  * not request that the number of records go below zero, although
2433  * it can go to zero.
2434  *
2435  * ip -- the inode whose if_broot area is changing
2436  * ext_diff -- the change in the number of records, positive or negative,
2437  *	 requested for the if_broot array.
2438  */
2439 void
2440 xfs_iroot_realloc(
2441 	xfs_inode_t		*ip,
2442 	int			rec_diff,
2443 	int			whichfork)
2444 {
2445 	int			cur_max;
2446 	xfs_ifork_t		*ifp;
2447 	xfs_bmbt_block_t	*new_broot;
2448 	int			new_max;
2449 	size_t			new_size;
2450 	char			*np;
2451 	char			*op;
2452 
2453 	/*
2454 	 * Handle the degenerate case quietly.
2455 	 */
2456 	if (rec_diff == 0) {
2457 		return;
2458 	}
2459 
2460 	ifp = XFS_IFORK_PTR(ip, whichfork);
2461 	if (rec_diff > 0) {
2462 		/*
2463 		 * If there wasn't any memory allocated before, just
2464 		 * allocate it now and get out.
2465 		 */
2466 		if (ifp->if_broot_bytes == 0) {
2467 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2468 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2469 								     KM_SLEEP);
2470 			ifp->if_broot_bytes = (int)new_size;
2471 			return;
2472 		}
2473 
2474 		/*
2475 		 * If there is already an existing if_broot, then we need
2476 		 * to realloc() it and shift the pointers to their new
2477 		 * location.  The records don't change location because
2478 		 * they are kept butted up against the btree block header.
2479 		 */
2480 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2481 		new_max = cur_max + rec_diff;
2482 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2483 		ifp->if_broot = (xfs_bmbt_block_t *)
2484 		  kmem_realloc(ifp->if_broot,
2485 				new_size,
2486 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2487 				KM_SLEEP);
2488 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2489 						      ifp->if_broot_bytes);
2490 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2491 						      (int)new_size);
2492 		ifp->if_broot_bytes = (int)new_size;
2493 		ASSERT(ifp->if_broot_bytes <=
2494 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2495 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2496 		return;
2497 	}
2498 
2499 	/*
2500 	 * rec_diff is less than 0.  In this case, we are shrinking the
2501 	 * if_broot buffer.  It must already exist.  If we go to zero
2502 	 * records, just get rid of the root and clear the status bit.
2503 	 */
2504 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2505 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2506 	new_max = cur_max + rec_diff;
2507 	ASSERT(new_max >= 0);
2508 	if (new_max > 0)
2509 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2510 	else
2511 		new_size = 0;
2512 	if (new_size > 0) {
2513 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2514 		/*
2515 		 * First copy over the btree block header.
2516 		 */
2517 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2518 	} else {
2519 		new_broot = NULL;
2520 		ifp->if_flags &= ~XFS_IFBROOT;
2521 	}
2522 
2523 	/*
2524 	 * Only copy the records and pointers if there are any.
2525 	 */
2526 	if (new_max > 0) {
2527 		/*
2528 		 * First copy the records.
2529 		 */
2530 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2531 						     ifp->if_broot_bytes);
2532 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2533 						     (int)new_size);
2534 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2535 
2536 		/*
2537 		 * Then copy the pointers.
2538 		 */
2539 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2540 						     ifp->if_broot_bytes);
2541 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2542 						     (int)new_size);
2543 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2544 	}
2545 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2546 	ifp->if_broot = new_broot;
2547 	ifp->if_broot_bytes = (int)new_size;
2548 	ASSERT(ifp->if_broot_bytes <=
2549 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2550 	return;
2551 }
2552 
2553 
2554 /*
2555  * This is called when the amount of space needed for if_data
2556  * is increased or decreased.  The change in size is indicated by
2557  * the number of bytes that need to be added or deleted in the
2558  * byte_diff parameter.
2559  *
2560  * If the amount of space needed has decreased below the size of the
2561  * inline buffer, then switch to using the inline buffer.  Otherwise,
2562  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2563  * to what is needed.
2564  *
2565  * ip -- the inode whose if_data area is changing
2566  * byte_diff -- the change in the number of bytes, positive or negative,
2567  *	 requested for the if_data array.
2568  */
2569 void
2570 xfs_idata_realloc(
2571 	xfs_inode_t	*ip,
2572 	int		byte_diff,
2573 	int		whichfork)
2574 {
2575 	xfs_ifork_t	*ifp;
2576 	int		new_size;
2577 	int		real_size;
2578 
2579 	if (byte_diff == 0) {
2580 		return;
2581 	}
2582 
2583 	ifp = XFS_IFORK_PTR(ip, whichfork);
2584 	new_size = (int)ifp->if_bytes + byte_diff;
2585 	ASSERT(new_size >= 0);
2586 
2587 	if (new_size == 0) {
2588 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2589 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2590 		}
2591 		ifp->if_u1.if_data = NULL;
2592 		real_size = 0;
2593 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2594 		/*
2595 		 * If the valid extents/data can fit in if_inline_ext/data,
2596 		 * copy them from the malloc'd vector and free it.
2597 		 */
2598 		if (ifp->if_u1.if_data == NULL) {
2599 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2600 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 			ASSERT(ifp->if_real_bytes != 0);
2602 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2603 			      new_size);
2604 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2605 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2606 		}
2607 		real_size = 0;
2608 	} else {
2609 		/*
2610 		 * Stuck with malloc/realloc.
2611 		 * For inline data, the underlying buffer must be
2612 		 * a multiple of 4 bytes in size so that it can be
2613 		 * logged and stay on word boundaries.  We enforce
2614 		 * that here.
2615 		 */
2616 		real_size = roundup(new_size, 4);
2617 		if (ifp->if_u1.if_data == NULL) {
2618 			ASSERT(ifp->if_real_bytes == 0);
2619 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2620 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2621 			/*
2622 			 * Only do the realloc if the underlying size
2623 			 * is really changing.
2624 			 */
2625 			if (ifp->if_real_bytes != real_size) {
2626 				ifp->if_u1.if_data =
2627 					kmem_realloc(ifp->if_u1.if_data,
2628 							real_size,
2629 							ifp->if_real_bytes,
2630 							KM_SLEEP);
2631 			}
2632 		} else {
2633 			ASSERT(ifp->if_real_bytes == 0);
2634 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2635 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2636 				ifp->if_bytes);
2637 		}
2638 	}
2639 	ifp->if_real_bytes = real_size;
2640 	ifp->if_bytes = new_size;
2641 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2642 }
2643 
2644 
2645 
2646 
2647 /*
2648  * Map inode to disk block and offset.
2649  *
2650  * mp -- the mount point structure for the current file system
2651  * tp -- the current transaction
2652  * ino -- the inode number of the inode to be located
2653  * imap -- this structure is filled in with the information necessary
2654  *	 to retrieve the given inode from disk
2655  * flags -- flags to pass to xfs_dilocate indicating whether or not
2656  *	 lookups in the inode btree were OK or not
2657  */
2658 int
2659 xfs_imap(
2660 	xfs_mount_t	*mp,
2661 	xfs_trans_t	*tp,
2662 	xfs_ino_t	ino,
2663 	xfs_imap_t	*imap,
2664 	uint		flags)
2665 {
2666 	xfs_fsblock_t	fsbno;
2667 	int		len;
2668 	int		off;
2669 	int		error;
2670 
2671 	fsbno = imap->im_blkno ?
2672 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2673 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2674 	if (error != 0) {
2675 		return error;
2676 	}
2677 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2678 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2679 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2680 	imap->im_ioffset = (ushort)off;
2681 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2682 	return 0;
2683 }
2684 
2685 void
2686 xfs_idestroy_fork(
2687 	xfs_inode_t	*ip,
2688 	int		whichfork)
2689 {
2690 	xfs_ifork_t	*ifp;
2691 
2692 	ifp = XFS_IFORK_PTR(ip, whichfork);
2693 	if (ifp->if_broot != NULL) {
2694 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2695 		ifp->if_broot = NULL;
2696 	}
2697 
2698 	/*
2699 	 * If the format is local, then we can't have an extents
2700 	 * array so just look for an inline data array.  If we're
2701 	 * not local then we may or may not have an extents list,
2702 	 * so check and free it up if we do.
2703 	 */
2704 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2705 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2706 		    (ifp->if_u1.if_data != NULL)) {
2707 			ASSERT(ifp->if_real_bytes != 0);
2708 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2709 			ifp->if_u1.if_data = NULL;
2710 			ifp->if_real_bytes = 0;
2711 		}
2712 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2713 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2714 		    ((ifp->if_u1.if_extents != NULL) &&
2715 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2716 		ASSERT(ifp->if_real_bytes != 0);
2717 		xfs_iext_destroy(ifp);
2718 	}
2719 	ASSERT(ifp->if_u1.if_extents == NULL ||
2720 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2721 	ASSERT(ifp->if_real_bytes == 0);
2722 	if (whichfork == XFS_ATTR_FORK) {
2723 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2724 		ip->i_afp = NULL;
2725 	}
2726 }
2727 
2728 /*
2729  * This is called free all the memory associated with an inode.
2730  * It must free the inode itself and any buffers allocated for
2731  * if_extents/if_data and if_broot.  It must also free the lock
2732  * associated with the inode.
2733  */
2734 void
2735 xfs_idestroy(
2736 	xfs_inode_t	*ip)
2737 {
2738 
2739 	switch (ip->i_d.di_mode & S_IFMT) {
2740 	case S_IFREG:
2741 	case S_IFDIR:
2742 	case S_IFLNK:
2743 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2744 		break;
2745 	}
2746 	if (ip->i_afp)
2747 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2748 	mrfree(&ip->i_lock);
2749 	mrfree(&ip->i_iolock);
2750 	freesema(&ip->i_flock);
2751 
2752 #ifdef XFS_VNODE_TRACE
2753 	ktrace_free(ip->i_trace);
2754 #endif
2755 #ifdef XFS_BMAP_TRACE
2756 	ktrace_free(ip->i_xtrace);
2757 #endif
2758 #ifdef XFS_BMBT_TRACE
2759 	ktrace_free(ip->i_btrace);
2760 #endif
2761 #ifdef XFS_RW_TRACE
2762 	ktrace_free(ip->i_rwtrace);
2763 #endif
2764 #ifdef XFS_ILOCK_TRACE
2765 	ktrace_free(ip->i_lock_trace);
2766 #endif
2767 #ifdef XFS_DIR2_TRACE
2768 	ktrace_free(ip->i_dir_trace);
2769 #endif
2770 	if (ip->i_itemp) {
2771 		/*
2772 		 * Only if we are shutting down the fs will we see an
2773 		 * inode still in the AIL. If it is there, we should remove
2774 		 * it to prevent a use-after-free from occurring.
2775 		 */
2776 		xfs_mount_t	*mp = ip->i_mount;
2777 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
2778 		int		s;
2779 
2780 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2781 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
2782 		if (lip->li_flags & XFS_LI_IN_AIL) {
2783 			AIL_LOCK(mp, s);
2784 			if (lip->li_flags & XFS_LI_IN_AIL)
2785 				xfs_trans_delete_ail(mp, lip, s);
2786 			else
2787 				AIL_UNLOCK(mp, s);
2788 		}
2789 		xfs_inode_item_destroy(ip);
2790 	}
2791 	kmem_zone_free(xfs_inode_zone, ip);
2792 }
2793 
2794 
2795 /*
2796  * Increment the pin count of the given buffer.
2797  * This value is protected by ipinlock spinlock in the mount structure.
2798  */
2799 void
2800 xfs_ipin(
2801 	xfs_inode_t	*ip)
2802 {
2803 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2804 
2805 	atomic_inc(&ip->i_pincount);
2806 }
2807 
2808 /*
2809  * Decrement the pin count of the given inode, and wake up
2810  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2811  * inode must have been previously pinned with a call to xfs_ipin().
2812  */
2813 void
2814 xfs_iunpin(
2815 	xfs_inode_t	*ip)
2816 {
2817 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2818 
2819 	if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2820 
2821 		/*
2822 		 * If the inode is currently being reclaimed, the link between
2823 		 * the bhv_vnode and the xfs_inode will be broken after the
2824 		 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2825 		 * set, then we can move forward and mark the linux inode dirty
2826 		 * knowing that it is still valid as it won't freed until after
2827 		 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2828 		 * i_flags_lock is used to synchronise the setting of the
2829 		 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2830 		 * can execute atomically w.r.t to reclaim by holding this lock
2831 		 * here.
2832 		 *
2833 		 * However, we still need to issue the unpin wakeup call as the
2834 		 * inode reclaim may be blocked waiting for the inode to become
2835 		 * unpinned.
2836 		 */
2837 
2838 		if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2839 			bhv_vnode_t	*vp = XFS_ITOV_NULL(ip);
2840 			struct inode *inode = NULL;
2841 
2842 			BUG_ON(vp == NULL);
2843 			inode = vn_to_inode(vp);
2844 			BUG_ON(inode->i_state & I_CLEAR);
2845 
2846 			/* make sync come back and flush this inode */
2847 			if (!(inode->i_state & (I_NEW|I_FREEING)))
2848 				mark_inode_dirty_sync(inode);
2849 		}
2850 		spin_unlock(&ip->i_flags_lock);
2851 		wake_up(&ip->i_ipin_wait);
2852 	}
2853 }
2854 
2855 /*
2856  * This is called to wait for the given inode to be unpinned.
2857  * It will sleep until this happens.  The caller must have the
2858  * inode locked in at least shared mode so that the buffer cannot
2859  * be subsequently pinned once someone is waiting for it to be
2860  * unpinned.
2861  */
2862 STATIC void
2863 xfs_iunpin_wait(
2864 	xfs_inode_t	*ip)
2865 {
2866 	xfs_inode_log_item_t	*iip;
2867 	xfs_lsn_t	lsn;
2868 
2869 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2870 
2871 	if (atomic_read(&ip->i_pincount) == 0) {
2872 		return;
2873 	}
2874 
2875 	iip = ip->i_itemp;
2876 	if (iip && iip->ili_last_lsn) {
2877 		lsn = iip->ili_last_lsn;
2878 	} else {
2879 		lsn = (xfs_lsn_t)0;
2880 	}
2881 
2882 	/*
2883 	 * Give the log a push so we don't wait here too long.
2884 	 */
2885 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2886 
2887 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2888 }
2889 
2890 
2891 /*
2892  * xfs_iextents_copy()
2893  *
2894  * This is called to copy the REAL extents (as opposed to the delayed
2895  * allocation extents) from the inode into the given buffer.  It
2896  * returns the number of bytes copied into the buffer.
2897  *
2898  * If there are no delayed allocation extents, then we can just
2899  * memcpy() the extents into the buffer.  Otherwise, we need to
2900  * examine each extent in turn and skip those which are delayed.
2901  */
2902 int
2903 xfs_iextents_copy(
2904 	xfs_inode_t		*ip,
2905 	xfs_bmbt_rec_t		*dp,
2906 	int			whichfork)
2907 {
2908 	int			copied;
2909 	int			i;
2910 	xfs_ifork_t		*ifp;
2911 	int			nrecs;
2912 	xfs_fsblock_t		start_block;
2913 
2914 	ifp = XFS_IFORK_PTR(ip, whichfork);
2915 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2916 	ASSERT(ifp->if_bytes > 0);
2917 
2918 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2919 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2920 	ASSERT(nrecs > 0);
2921 
2922 	/*
2923 	 * There are some delayed allocation extents in the
2924 	 * inode, so copy the extents one at a time and skip
2925 	 * the delayed ones.  There must be at least one
2926 	 * non-delayed extent.
2927 	 */
2928 	copied = 0;
2929 	for (i = 0; i < nrecs; i++) {
2930 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2931 		start_block = xfs_bmbt_get_startblock(ep);
2932 		if (ISNULLSTARTBLOCK(start_block)) {
2933 			/*
2934 			 * It's a delayed allocation extent, so skip it.
2935 			 */
2936 			continue;
2937 		}
2938 
2939 		/* Translate to on disk format */
2940 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2941 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2942 		dp++;
2943 		copied++;
2944 	}
2945 	ASSERT(copied != 0);
2946 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2947 
2948 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2949 }
2950 
2951 /*
2952  * Each of the following cases stores data into the same region
2953  * of the on-disk inode, so only one of them can be valid at
2954  * any given time. While it is possible to have conflicting formats
2955  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2956  * in EXTENTS format, this can only happen when the fork has
2957  * changed formats after being modified but before being flushed.
2958  * In these cases, the format always takes precedence, because the
2959  * format indicates the current state of the fork.
2960  */
2961 /*ARGSUSED*/
2962 STATIC int
2963 xfs_iflush_fork(
2964 	xfs_inode_t		*ip,
2965 	xfs_dinode_t		*dip,
2966 	xfs_inode_log_item_t	*iip,
2967 	int			whichfork,
2968 	xfs_buf_t		*bp)
2969 {
2970 	char			*cp;
2971 	xfs_ifork_t		*ifp;
2972 	xfs_mount_t		*mp;
2973 #ifdef XFS_TRANS_DEBUG
2974 	int			first;
2975 #endif
2976 	static const short	brootflag[2] =
2977 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2978 	static const short	dataflag[2] =
2979 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2980 	static const short	extflag[2] =
2981 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2982 
2983 	if (iip == NULL)
2984 		return 0;
2985 	ifp = XFS_IFORK_PTR(ip, whichfork);
2986 	/*
2987 	 * This can happen if we gave up in iformat in an error path,
2988 	 * for the attribute fork.
2989 	 */
2990 	if (ifp == NULL) {
2991 		ASSERT(whichfork == XFS_ATTR_FORK);
2992 		return 0;
2993 	}
2994 	cp = XFS_DFORK_PTR(dip, whichfork);
2995 	mp = ip->i_mount;
2996 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2997 	case XFS_DINODE_FMT_LOCAL:
2998 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2999 		    (ifp->if_bytes > 0)) {
3000 			ASSERT(ifp->if_u1.if_data != NULL);
3001 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
3002 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
3003 		}
3004 		break;
3005 
3006 	case XFS_DINODE_FMT_EXTENTS:
3007 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3008 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
3009 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
3010 			(ifp->if_bytes == 0));
3011 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
3012 			(ifp->if_bytes > 0));
3013 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3014 		    (ifp->if_bytes > 0)) {
3015 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3016 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3017 				whichfork);
3018 		}
3019 		break;
3020 
3021 	case XFS_DINODE_FMT_BTREE:
3022 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3023 		    (ifp->if_broot_bytes > 0)) {
3024 			ASSERT(ifp->if_broot != NULL);
3025 			ASSERT(ifp->if_broot_bytes <=
3026 			       (XFS_IFORK_SIZE(ip, whichfork) +
3027 				XFS_BROOT_SIZE_ADJ));
3028 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3029 				(xfs_bmdr_block_t *)cp,
3030 				XFS_DFORK_SIZE(dip, mp, whichfork));
3031 		}
3032 		break;
3033 
3034 	case XFS_DINODE_FMT_DEV:
3035 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3036 			ASSERT(whichfork == XFS_DATA_FORK);
3037 			dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3038 		}
3039 		break;
3040 
3041 	case XFS_DINODE_FMT_UUID:
3042 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3043 			ASSERT(whichfork == XFS_DATA_FORK);
3044 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3045 				sizeof(uuid_t));
3046 		}
3047 		break;
3048 
3049 	default:
3050 		ASSERT(0);
3051 		break;
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 /*
3058  * xfs_iflush() will write a modified inode's changes out to the
3059  * inode's on disk home.  The caller must have the inode lock held
3060  * in at least shared mode and the inode flush semaphore must be
3061  * held as well.  The inode lock will still be held upon return from
3062  * the call and the caller is free to unlock it.
3063  * The inode flush lock will be unlocked when the inode reaches the disk.
3064  * The flags indicate how the inode's buffer should be written out.
3065  */
3066 int
3067 xfs_iflush(
3068 	xfs_inode_t		*ip,
3069 	uint			flags)
3070 {
3071 	xfs_inode_log_item_t	*iip;
3072 	xfs_buf_t		*bp;
3073 	xfs_dinode_t		*dip;
3074 	xfs_mount_t		*mp;
3075 	int			error;
3076 	/* REFERENCED */
3077 	xfs_inode_t		*iq;
3078 	int			clcount;	/* count of inodes clustered */
3079 	int			bufwasdelwri;
3080 	struct hlist_node	*entry;
3081 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3082 
3083 	XFS_STATS_INC(xs_iflush_count);
3084 
3085 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3086 	ASSERT(issemalocked(&(ip->i_flock)));
3087 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3088 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3089 
3090 	iip = ip->i_itemp;
3091 	mp = ip->i_mount;
3092 
3093 	/*
3094 	 * If the inode isn't dirty, then just release the inode
3095 	 * flush lock and do nothing.
3096 	 */
3097 	if ((ip->i_update_core == 0) &&
3098 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3099 		ASSERT((iip != NULL) ?
3100 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3101 		xfs_ifunlock(ip);
3102 		return 0;
3103 	}
3104 
3105 	/*
3106 	 * We can't flush the inode until it is unpinned, so
3107 	 * wait for it.  We know noone new can pin it, because
3108 	 * we are holding the inode lock shared and you need
3109 	 * to hold it exclusively to pin the inode.
3110 	 */
3111 	xfs_iunpin_wait(ip);
3112 
3113 	/*
3114 	 * This may have been unpinned because the filesystem is shutting
3115 	 * down forcibly. If that's the case we must not write this inode
3116 	 * to disk, because the log record didn't make it to disk!
3117 	 */
3118 	if (XFS_FORCED_SHUTDOWN(mp)) {
3119 		ip->i_update_core = 0;
3120 		if (iip)
3121 			iip->ili_format.ilf_fields = 0;
3122 		xfs_ifunlock(ip);
3123 		return XFS_ERROR(EIO);
3124 	}
3125 
3126 	/*
3127 	 * Get the buffer containing the on-disk inode.
3128 	 */
3129 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3130 	if (error) {
3131 		xfs_ifunlock(ip);
3132 		return error;
3133 	}
3134 
3135 	/*
3136 	 * Decide how buffer will be flushed out.  This is done before
3137 	 * the call to xfs_iflush_int because this field is zeroed by it.
3138 	 */
3139 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3140 		/*
3141 		 * Flush out the inode buffer according to the directions
3142 		 * of the caller.  In the cases where the caller has given
3143 		 * us a choice choose the non-delwri case.  This is because
3144 		 * the inode is in the AIL and we need to get it out soon.
3145 		 */
3146 		switch (flags) {
3147 		case XFS_IFLUSH_SYNC:
3148 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3149 			flags = 0;
3150 			break;
3151 		case XFS_IFLUSH_ASYNC:
3152 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3153 			flags = INT_ASYNC;
3154 			break;
3155 		case XFS_IFLUSH_DELWRI:
3156 			flags = INT_DELWRI;
3157 			break;
3158 		default:
3159 			ASSERT(0);
3160 			flags = 0;
3161 			break;
3162 		}
3163 	} else {
3164 		switch (flags) {
3165 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3166 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3167 		case XFS_IFLUSH_DELWRI:
3168 			flags = INT_DELWRI;
3169 			break;
3170 		case XFS_IFLUSH_ASYNC:
3171 			flags = INT_ASYNC;
3172 			break;
3173 		case XFS_IFLUSH_SYNC:
3174 			flags = 0;
3175 			break;
3176 		default:
3177 			ASSERT(0);
3178 			flags = 0;
3179 			break;
3180 		}
3181 	}
3182 
3183 	/*
3184 	 * First flush out the inode that xfs_iflush was called with.
3185 	 */
3186 	error = xfs_iflush_int(ip, bp);
3187 	if (error) {
3188 		goto corrupt_out;
3189 	}
3190 
3191 	/*
3192 	 * inode clustering:
3193 	 * see if other inodes can be gathered into this write
3194 	 */
3195 	spin_lock(&ip->i_cluster->icl_lock);
3196 	ip->i_cluster->icl_buf = bp;
3197 
3198 	clcount = 0;
3199 	hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3200 		if (iq == ip)
3201 			continue;
3202 
3203 		/*
3204 		 * Do an un-protected check to see if the inode is dirty and
3205 		 * is a candidate for flushing.  These checks will be repeated
3206 		 * later after the appropriate locks are acquired.
3207 		 */
3208 		iip = iq->i_itemp;
3209 		if ((iq->i_update_core == 0) &&
3210 		    ((iip == NULL) ||
3211 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3212 		      xfs_ipincount(iq) == 0) {
3213 			continue;
3214 		}
3215 
3216 		/*
3217 		 * Try to get locks.  If any are unavailable,
3218 		 * then this inode cannot be flushed and is skipped.
3219 		 */
3220 
3221 		/* get inode locks (just i_lock) */
3222 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3223 			/* get inode flush lock */
3224 			if (xfs_iflock_nowait(iq)) {
3225 				/* check if pinned */
3226 				if (xfs_ipincount(iq) == 0) {
3227 					/* arriving here means that
3228 					 * this inode can be flushed.
3229 					 * first re-check that it's
3230 					 * dirty
3231 					 */
3232 					iip = iq->i_itemp;
3233 					if ((iq->i_update_core != 0)||
3234 					    ((iip != NULL) &&
3235 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3236 						clcount++;
3237 						error = xfs_iflush_int(iq, bp);
3238 						if (error) {
3239 							xfs_iunlock(iq,
3240 								    XFS_ILOCK_SHARED);
3241 							goto cluster_corrupt_out;
3242 						}
3243 					} else {
3244 						xfs_ifunlock(iq);
3245 					}
3246 				} else {
3247 					xfs_ifunlock(iq);
3248 				}
3249 			}
3250 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3251 		}
3252 	}
3253 	spin_unlock(&ip->i_cluster->icl_lock);
3254 
3255 	if (clcount) {
3256 		XFS_STATS_INC(xs_icluster_flushcnt);
3257 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3258 	}
3259 
3260 	/*
3261 	 * If the buffer is pinned then push on the log so we won't
3262 	 * get stuck waiting in the write for too long.
3263 	 */
3264 	if (XFS_BUF_ISPINNED(bp)){
3265 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3266 	}
3267 
3268 	if (flags & INT_DELWRI) {
3269 		xfs_bdwrite(mp, bp);
3270 	} else if (flags & INT_ASYNC) {
3271 		xfs_bawrite(mp, bp);
3272 	} else {
3273 		error = xfs_bwrite(mp, bp);
3274 	}
3275 	return error;
3276 
3277 corrupt_out:
3278 	xfs_buf_relse(bp);
3279 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3280 	xfs_iflush_abort(ip);
3281 	/*
3282 	 * Unlocks the flush lock
3283 	 */
3284 	return XFS_ERROR(EFSCORRUPTED);
3285 
3286 cluster_corrupt_out:
3287 	/* Corruption detected in the clustering loop.  Invalidate the
3288 	 * inode buffer and shut down the filesystem.
3289 	 */
3290 	spin_unlock(&ip->i_cluster->icl_lock);
3291 
3292 	/*
3293 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3294 	 * brelse can handle it with no problems.  If not, shut down the
3295 	 * filesystem before releasing the buffer.
3296 	 */
3297 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3298 		xfs_buf_relse(bp);
3299 	}
3300 
3301 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3302 
3303 	if(!bufwasdelwri)  {
3304 		/*
3305 		 * Just like incore_relse: if we have b_iodone functions,
3306 		 * mark the buffer as an error and call them.  Otherwise
3307 		 * mark it as stale and brelse.
3308 		 */
3309 		if (XFS_BUF_IODONE_FUNC(bp)) {
3310 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3311 			XFS_BUF_UNDONE(bp);
3312 			XFS_BUF_STALE(bp);
3313 			XFS_BUF_SHUT(bp);
3314 			XFS_BUF_ERROR(bp,EIO);
3315 			xfs_biodone(bp);
3316 		} else {
3317 			XFS_BUF_STALE(bp);
3318 			xfs_buf_relse(bp);
3319 		}
3320 	}
3321 
3322 	xfs_iflush_abort(iq);
3323 	/*
3324 	 * Unlocks the flush lock
3325 	 */
3326 	return XFS_ERROR(EFSCORRUPTED);
3327 }
3328 
3329 
3330 STATIC int
3331 xfs_iflush_int(
3332 	xfs_inode_t		*ip,
3333 	xfs_buf_t		*bp)
3334 {
3335 	xfs_inode_log_item_t	*iip;
3336 	xfs_dinode_t		*dip;
3337 	xfs_mount_t		*mp;
3338 #ifdef XFS_TRANS_DEBUG
3339 	int			first;
3340 #endif
3341 	SPLDECL(s);
3342 
3343 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3344 	ASSERT(issemalocked(&(ip->i_flock)));
3345 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3346 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3347 
3348 	iip = ip->i_itemp;
3349 	mp = ip->i_mount;
3350 
3351 
3352 	/*
3353 	 * If the inode isn't dirty, then just release the inode
3354 	 * flush lock and do nothing.
3355 	 */
3356 	if ((ip->i_update_core == 0) &&
3357 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3358 		xfs_ifunlock(ip);
3359 		return 0;
3360 	}
3361 
3362 	/* set *dip = inode's place in the buffer */
3363 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3364 
3365 	/*
3366 	 * Clear i_update_core before copying out the data.
3367 	 * This is for coordination with our timestamp updates
3368 	 * that don't hold the inode lock. They will always
3369 	 * update the timestamps BEFORE setting i_update_core,
3370 	 * so if we clear i_update_core after they set it we
3371 	 * are guaranteed to see their updates to the timestamps.
3372 	 * I believe that this depends on strongly ordered memory
3373 	 * semantics, but we have that.  We use the SYNCHRONIZE
3374 	 * macro to make sure that the compiler does not reorder
3375 	 * the i_update_core access below the data copy below.
3376 	 */
3377 	ip->i_update_core = 0;
3378 	SYNCHRONIZE();
3379 
3380 	/*
3381 	 * Make sure to get the latest atime from the Linux inode.
3382 	 */
3383 	xfs_synchronize_atime(ip);
3384 
3385 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3386 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3387 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3388 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3389 			ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3390 		goto corrupt_out;
3391 	}
3392 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3393 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3394 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3395 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3396 			ip->i_ino, ip, ip->i_d.di_magic);
3397 		goto corrupt_out;
3398 	}
3399 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3400 		if (XFS_TEST_ERROR(
3401 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3402 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3403 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3404 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3405 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3406 				ip->i_ino, ip);
3407 			goto corrupt_out;
3408 		}
3409 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3410 		if (XFS_TEST_ERROR(
3411 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3412 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3413 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3414 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3415 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3416 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3417 				ip->i_ino, ip);
3418 			goto corrupt_out;
3419 		}
3420 	}
3421 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3422 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3423 				XFS_RANDOM_IFLUSH_5)) {
3424 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3425 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3426 			ip->i_ino,
3427 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3428 			ip->i_d.di_nblocks,
3429 			ip);
3430 		goto corrupt_out;
3431 	}
3432 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3433 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3434 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3435 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3436 			ip->i_ino, ip->i_d.di_forkoff, ip);
3437 		goto corrupt_out;
3438 	}
3439 	/*
3440 	 * bump the flush iteration count, used to detect flushes which
3441 	 * postdate a log record during recovery.
3442 	 */
3443 
3444 	ip->i_d.di_flushiter++;
3445 
3446 	/*
3447 	 * Copy the dirty parts of the inode into the on-disk
3448 	 * inode.  We always copy out the core of the inode,
3449 	 * because if the inode is dirty at all the core must
3450 	 * be.
3451 	 */
3452 	xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3453 
3454 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3455 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3456 		ip->i_d.di_flushiter = 0;
3457 
3458 	/*
3459 	 * If this is really an old format inode and the superblock version
3460 	 * has not been updated to support only new format inodes, then
3461 	 * convert back to the old inode format.  If the superblock version
3462 	 * has been updated, then make the conversion permanent.
3463 	 */
3464 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3465 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3466 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3467 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3468 			/*
3469 			 * Convert it back.
3470 			 */
3471 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3472 			dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3473 		} else {
3474 			/*
3475 			 * The superblock version has already been bumped,
3476 			 * so just make the conversion to the new inode
3477 			 * format permanent.
3478 			 */
3479 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3480 			dip->di_core.di_version =  XFS_DINODE_VERSION_2;
3481 			ip->i_d.di_onlink = 0;
3482 			dip->di_core.di_onlink = 0;
3483 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3484 			memset(&(dip->di_core.di_pad[0]), 0,
3485 			      sizeof(dip->di_core.di_pad));
3486 			ASSERT(ip->i_d.di_projid == 0);
3487 		}
3488 	}
3489 
3490 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3491 		goto corrupt_out;
3492 	}
3493 
3494 	if (XFS_IFORK_Q(ip)) {
3495 		/*
3496 		 * The only error from xfs_iflush_fork is on the data fork.
3497 		 */
3498 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3499 	}
3500 	xfs_inobp_check(mp, bp);
3501 
3502 	/*
3503 	 * We've recorded everything logged in the inode, so we'd
3504 	 * like to clear the ilf_fields bits so we don't log and
3505 	 * flush things unnecessarily.  However, we can't stop
3506 	 * logging all this information until the data we've copied
3507 	 * into the disk buffer is written to disk.  If we did we might
3508 	 * overwrite the copy of the inode in the log with all the
3509 	 * data after re-logging only part of it, and in the face of
3510 	 * a crash we wouldn't have all the data we need to recover.
3511 	 *
3512 	 * What we do is move the bits to the ili_last_fields field.
3513 	 * When logging the inode, these bits are moved back to the
3514 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3515 	 * clear ili_last_fields, since we know that the information
3516 	 * those bits represent is permanently on disk.  As long as
3517 	 * the flush completes before the inode is logged again, then
3518 	 * both ilf_fields and ili_last_fields will be cleared.
3519 	 *
3520 	 * We can play with the ilf_fields bits here, because the inode
3521 	 * lock must be held exclusively in order to set bits there
3522 	 * and the flush lock protects the ili_last_fields bits.
3523 	 * Set ili_logged so the flush done
3524 	 * routine can tell whether or not to look in the AIL.
3525 	 * Also, store the current LSN of the inode so that we can tell
3526 	 * whether the item has moved in the AIL from xfs_iflush_done().
3527 	 * In order to read the lsn we need the AIL lock, because
3528 	 * it is a 64 bit value that cannot be read atomically.
3529 	 */
3530 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3531 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3532 		iip->ili_format.ilf_fields = 0;
3533 		iip->ili_logged = 1;
3534 
3535 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3536 		AIL_LOCK(mp,s);
3537 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3538 		AIL_UNLOCK(mp, s);
3539 
3540 		/*
3541 		 * Attach the function xfs_iflush_done to the inode's
3542 		 * buffer.  This will remove the inode from the AIL
3543 		 * and unlock the inode's flush lock when the inode is
3544 		 * completely written to disk.
3545 		 */
3546 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3547 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3548 
3549 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3550 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3551 	} else {
3552 		/*
3553 		 * We're flushing an inode which is not in the AIL and has
3554 		 * not been logged but has i_update_core set.  For this
3555 		 * case we can use a B_DELWRI flush and immediately drop
3556 		 * the inode flush lock because we can avoid the whole
3557 		 * AIL state thing.  It's OK to drop the flush lock now,
3558 		 * because we've already locked the buffer and to do anything
3559 		 * you really need both.
3560 		 */
3561 		if (iip != NULL) {
3562 			ASSERT(iip->ili_logged == 0);
3563 			ASSERT(iip->ili_last_fields == 0);
3564 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3565 		}
3566 		xfs_ifunlock(ip);
3567 	}
3568 
3569 	return 0;
3570 
3571 corrupt_out:
3572 	return XFS_ERROR(EFSCORRUPTED);
3573 }
3574 
3575 
3576 /*
3577  * Flush all inactive inodes in mp.
3578  */
3579 void
3580 xfs_iflush_all(
3581 	xfs_mount_t	*mp)
3582 {
3583 	xfs_inode_t	*ip;
3584 	bhv_vnode_t	*vp;
3585 
3586  again:
3587 	XFS_MOUNT_ILOCK(mp);
3588 	ip = mp->m_inodes;
3589 	if (ip == NULL)
3590 		goto out;
3591 
3592 	do {
3593 		/* Make sure we skip markers inserted by sync */
3594 		if (ip->i_mount == NULL) {
3595 			ip = ip->i_mnext;
3596 			continue;
3597 		}
3598 
3599 		vp = XFS_ITOV_NULL(ip);
3600 		if (!vp) {
3601 			XFS_MOUNT_IUNLOCK(mp);
3602 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3603 			goto again;
3604 		}
3605 
3606 		ASSERT(vn_count(vp) == 0);
3607 
3608 		ip = ip->i_mnext;
3609 	} while (ip != mp->m_inodes);
3610  out:
3611 	XFS_MOUNT_IUNLOCK(mp);
3612 }
3613 
3614 /*
3615  * xfs_iaccess: check accessibility of inode for mode.
3616  */
3617 int
3618 xfs_iaccess(
3619 	xfs_inode_t	*ip,
3620 	mode_t		mode,
3621 	cred_t		*cr)
3622 {
3623 	int		error;
3624 	mode_t		orgmode = mode;
3625 	struct inode	*inode = vn_to_inode(XFS_ITOV(ip));
3626 
3627 	if (mode & S_IWUSR) {
3628 		umode_t		imode = inode->i_mode;
3629 
3630 		if (IS_RDONLY(inode) &&
3631 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3632 			return XFS_ERROR(EROFS);
3633 
3634 		if (IS_IMMUTABLE(inode))
3635 			return XFS_ERROR(EACCES);
3636 	}
3637 
3638 	/*
3639 	 * If there's an Access Control List it's used instead of
3640 	 * the mode bits.
3641 	 */
3642 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3643 		return error ? XFS_ERROR(error) : 0;
3644 
3645 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3646 		mode >>= 3;
3647 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3648 			mode >>= 3;
3649 	}
3650 
3651 	/*
3652 	 * If the DACs are ok we don't need any capability check.
3653 	 */
3654 	if ((ip->i_d.di_mode & mode) == mode)
3655 		return 0;
3656 	/*
3657 	 * Read/write DACs are always overridable.
3658 	 * Executable DACs are overridable if at least one exec bit is set.
3659 	 */
3660 	if (!(orgmode & S_IXUSR) ||
3661 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3662 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3663 			return 0;
3664 
3665 	if ((orgmode == S_IRUSR) ||
3666 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3667 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3668 			return 0;
3669 #ifdef	NOISE
3670 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3671 #endif	/* NOISE */
3672 		return XFS_ERROR(EACCES);
3673 	}
3674 	return XFS_ERROR(EACCES);
3675 }
3676 
3677 /*
3678  * xfs_iroundup: round up argument to next power of two
3679  */
3680 uint
3681 xfs_iroundup(
3682 	uint	v)
3683 {
3684 	int i;
3685 	uint m;
3686 
3687 	if ((v & (v - 1)) == 0)
3688 		return v;
3689 	ASSERT((v & 0x80000000) == 0);
3690 	if ((v & (v + 1)) == 0)
3691 		return v + 1;
3692 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3693 		if (v & m)
3694 			continue;
3695 		v |= m;
3696 		if ((v & (v + 1)) == 0)
3697 			return v + 1;
3698 	}
3699 	ASSERT(0);
3700 	return( 0 );
3701 }
3702 
3703 #ifdef XFS_ILOCK_TRACE
3704 ktrace_t	*xfs_ilock_trace_buf;
3705 
3706 void
3707 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3708 {
3709 	ktrace_enter(ip->i_lock_trace,
3710 		     (void *)ip,
3711 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3712 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3713 		     (void *)ra,		/* caller of ilock */
3714 		     (void *)(unsigned long)current_cpu(),
3715 		     (void *)(unsigned long)current_pid(),
3716 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3717 }
3718 #endif
3719 
3720 /*
3721  * Return a pointer to the extent record at file index idx.
3722  */
3723 xfs_bmbt_rec_host_t *
3724 xfs_iext_get_ext(
3725 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3726 	xfs_extnum_t	idx)		/* index of target extent */
3727 {
3728 	ASSERT(idx >= 0);
3729 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3730 		return ifp->if_u1.if_ext_irec->er_extbuf;
3731 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3732 		xfs_ext_irec_t	*erp;		/* irec pointer */
3733 		int		erp_idx = 0;	/* irec index */
3734 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3735 
3736 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3737 		return &erp->er_extbuf[page_idx];
3738 	} else if (ifp->if_bytes) {
3739 		return &ifp->if_u1.if_extents[idx];
3740 	} else {
3741 		return NULL;
3742 	}
3743 }
3744 
3745 /*
3746  * Insert new item(s) into the extent records for incore inode
3747  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3748  */
3749 void
3750 xfs_iext_insert(
3751 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3752 	xfs_extnum_t	idx,		/* starting index of new items */
3753 	xfs_extnum_t	count,		/* number of inserted items */
3754 	xfs_bmbt_irec_t	*new)		/* items to insert */
3755 {
3756 	xfs_extnum_t	i;		/* extent record index */
3757 
3758 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3759 	xfs_iext_add(ifp, idx, count);
3760 	for (i = idx; i < idx + count; i++, new++)
3761 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3762 }
3763 
3764 /*
3765  * This is called when the amount of space required for incore file
3766  * extents needs to be increased. The ext_diff parameter stores the
3767  * number of new extents being added and the idx parameter contains
3768  * the extent index where the new extents will be added. If the new
3769  * extents are being appended, then we just need to (re)allocate and
3770  * initialize the space. Otherwise, if the new extents are being
3771  * inserted into the middle of the existing entries, a bit more work
3772  * is required to make room for the new extents to be inserted. The
3773  * caller is responsible for filling in the new extent entries upon
3774  * return.
3775  */
3776 void
3777 xfs_iext_add(
3778 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3779 	xfs_extnum_t	idx,		/* index to begin adding exts */
3780 	int		ext_diff)	/* number of extents to add */
3781 {
3782 	int		byte_diff;	/* new bytes being added */
3783 	int		new_size;	/* size of extents after adding */
3784 	xfs_extnum_t	nextents;	/* number of extents in file */
3785 
3786 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3787 	ASSERT((idx >= 0) && (idx <= nextents));
3788 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3789 	new_size = ifp->if_bytes + byte_diff;
3790 	/*
3791 	 * If the new number of extents (nextents + ext_diff)
3792 	 * fits inside the inode, then continue to use the inline
3793 	 * extent buffer.
3794 	 */
3795 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3796 		if (idx < nextents) {
3797 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3798 				&ifp->if_u2.if_inline_ext[idx],
3799 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3800 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3801 		}
3802 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3803 		ifp->if_real_bytes = 0;
3804 		ifp->if_lastex = nextents + ext_diff;
3805 	}
3806 	/*
3807 	 * Otherwise use a linear (direct) extent list.
3808 	 * If the extents are currently inside the inode,
3809 	 * xfs_iext_realloc_direct will switch us from
3810 	 * inline to direct extent allocation mode.
3811 	 */
3812 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3813 		xfs_iext_realloc_direct(ifp, new_size);
3814 		if (idx < nextents) {
3815 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3816 				&ifp->if_u1.if_extents[idx],
3817 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3818 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3819 		}
3820 	}
3821 	/* Indirection array */
3822 	else {
3823 		xfs_ext_irec_t	*erp;
3824 		int		erp_idx = 0;
3825 		int		page_idx = idx;
3826 
3827 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3828 		if (ifp->if_flags & XFS_IFEXTIREC) {
3829 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3830 		} else {
3831 			xfs_iext_irec_init(ifp);
3832 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3833 			erp = ifp->if_u1.if_ext_irec;
3834 		}
3835 		/* Extents fit in target extent page */
3836 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3837 			if (page_idx < erp->er_extcount) {
3838 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3839 					&erp->er_extbuf[page_idx],
3840 					(erp->er_extcount - page_idx) *
3841 					sizeof(xfs_bmbt_rec_t));
3842 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3843 			}
3844 			erp->er_extcount += ext_diff;
3845 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3846 		}
3847 		/* Insert a new extent page */
3848 		else if (erp) {
3849 			xfs_iext_add_indirect_multi(ifp,
3850 				erp_idx, page_idx, ext_diff);
3851 		}
3852 		/*
3853 		 * If extent(s) are being appended to the last page in
3854 		 * the indirection array and the new extent(s) don't fit
3855 		 * in the page, then erp is NULL and erp_idx is set to
3856 		 * the next index needed in the indirection array.
3857 		 */
3858 		else {
3859 			int	count = ext_diff;
3860 
3861 			while (count) {
3862 				erp = xfs_iext_irec_new(ifp, erp_idx);
3863 				erp->er_extcount = count;
3864 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3865 				if (count) {
3866 					erp_idx++;
3867 				}
3868 			}
3869 		}
3870 	}
3871 	ifp->if_bytes = new_size;
3872 }
3873 
3874 /*
3875  * This is called when incore extents are being added to the indirection
3876  * array and the new extents do not fit in the target extent list. The
3877  * erp_idx parameter contains the irec index for the target extent list
3878  * in the indirection array, and the idx parameter contains the extent
3879  * index within the list. The number of extents being added is stored
3880  * in the count parameter.
3881  *
3882  *    |-------|   |-------|
3883  *    |       |   |       |    idx - number of extents before idx
3884  *    |  idx  |   | count |
3885  *    |       |   |       |    count - number of extents being inserted at idx
3886  *    |-------|   |-------|
3887  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3888  *    |-------|   |-------|
3889  */
3890 void
3891 xfs_iext_add_indirect_multi(
3892 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3893 	int		erp_idx,		/* target extent irec index */
3894 	xfs_extnum_t	idx,			/* index within target list */
3895 	int		count)			/* new extents being added */
3896 {
3897 	int		byte_diff;		/* new bytes being added */
3898 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3899 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3900 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3901 	xfs_extnum_t	nex2;			/* extents after idx + count */
3902 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3903 	int		nlists;			/* number of irec's (lists) */
3904 
3905 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3906 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3907 	nex2 = erp->er_extcount - idx;
3908 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3909 
3910 	/*
3911 	 * Save second part of target extent list
3912 	 * (all extents past */
3913 	if (nex2) {
3914 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3915 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3916 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3917 		erp->er_extcount -= nex2;
3918 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3919 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3920 	}
3921 
3922 	/*
3923 	 * Add the new extents to the end of the target
3924 	 * list, then allocate new irec record(s) and
3925 	 * extent buffer(s) as needed to store the rest
3926 	 * of the new extents.
3927 	 */
3928 	ext_cnt = count;
3929 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3930 	if (ext_diff) {
3931 		erp->er_extcount += ext_diff;
3932 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3933 		ext_cnt -= ext_diff;
3934 	}
3935 	while (ext_cnt) {
3936 		erp_idx++;
3937 		erp = xfs_iext_irec_new(ifp, erp_idx);
3938 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3939 		erp->er_extcount = ext_diff;
3940 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3941 		ext_cnt -= ext_diff;
3942 	}
3943 
3944 	/* Add nex2 extents back to indirection array */
3945 	if (nex2) {
3946 		xfs_extnum_t	ext_avail;
3947 		int		i;
3948 
3949 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3950 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3951 		i = 0;
3952 		/*
3953 		 * If nex2 extents fit in the current page, append
3954 		 * nex2_ep after the new extents.
3955 		 */
3956 		if (nex2 <= ext_avail) {
3957 			i = erp->er_extcount;
3958 		}
3959 		/*
3960 		 * Otherwise, check if space is available in the
3961 		 * next page.
3962 		 */
3963 		else if ((erp_idx < nlists - 1) &&
3964 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3965 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3966 			erp_idx++;
3967 			erp++;
3968 			/* Create a hole for nex2 extents */
3969 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3970 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3971 		}
3972 		/*
3973 		 * Final choice, create a new extent page for
3974 		 * nex2 extents.
3975 		 */
3976 		else {
3977 			erp_idx++;
3978 			erp = xfs_iext_irec_new(ifp, erp_idx);
3979 		}
3980 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3981 		kmem_free(nex2_ep, byte_diff);
3982 		erp->er_extcount += nex2;
3983 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3984 	}
3985 }
3986 
3987 /*
3988  * This is called when the amount of space required for incore file
3989  * extents needs to be decreased. The ext_diff parameter stores the
3990  * number of extents to be removed and the idx parameter contains
3991  * the extent index where the extents will be removed from.
3992  *
3993  * If the amount of space needed has decreased below the linear
3994  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3995  * extent array.  Otherwise, use kmem_realloc() to adjust the
3996  * size to what is needed.
3997  */
3998 void
3999 xfs_iext_remove(
4000 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4001 	xfs_extnum_t	idx,		/* index to begin removing exts */
4002 	int		ext_diff)	/* number of extents to remove */
4003 {
4004 	xfs_extnum_t	nextents;	/* number of extents in file */
4005 	int		new_size;	/* size of extents after removal */
4006 
4007 	ASSERT(ext_diff > 0);
4008 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4009 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
4010 
4011 	if (new_size == 0) {
4012 		xfs_iext_destroy(ifp);
4013 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
4014 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
4015 	} else if (ifp->if_real_bytes) {
4016 		xfs_iext_remove_direct(ifp, idx, ext_diff);
4017 	} else {
4018 		xfs_iext_remove_inline(ifp, idx, ext_diff);
4019 	}
4020 	ifp->if_bytes = new_size;
4021 }
4022 
4023 /*
4024  * This removes ext_diff extents from the inline buffer, beginning
4025  * at extent index idx.
4026  */
4027 void
4028 xfs_iext_remove_inline(
4029 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4030 	xfs_extnum_t	idx,		/* index to begin removing exts */
4031 	int		ext_diff)	/* number of extents to remove */
4032 {
4033 	int		nextents;	/* number of extents in file */
4034 
4035 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4036 	ASSERT(idx < XFS_INLINE_EXTS);
4037 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4038 	ASSERT(((nextents - ext_diff) > 0) &&
4039 		(nextents - ext_diff) < XFS_INLINE_EXTS);
4040 
4041 	if (idx + ext_diff < nextents) {
4042 		memmove(&ifp->if_u2.if_inline_ext[idx],
4043 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
4044 			(nextents - (idx + ext_diff)) *
4045 			 sizeof(xfs_bmbt_rec_t));
4046 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4047 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
4048 	} else {
4049 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
4050 			ext_diff * sizeof(xfs_bmbt_rec_t));
4051 	}
4052 }
4053 
4054 /*
4055  * This removes ext_diff extents from a linear (direct) extent list,
4056  * beginning at extent index idx. If the extents are being removed
4057  * from the end of the list (ie. truncate) then we just need to re-
4058  * allocate the list to remove the extra space. Otherwise, if the
4059  * extents are being removed from the middle of the existing extent
4060  * entries, then we first need to move the extent records beginning
4061  * at idx + ext_diff up in the list to overwrite the records being
4062  * removed, then remove the extra space via kmem_realloc.
4063  */
4064 void
4065 xfs_iext_remove_direct(
4066 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4067 	xfs_extnum_t	idx,		/* index to begin removing exts */
4068 	int		ext_diff)	/* number of extents to remove */
4069 {
4070 	xfs_extnum_t	nextents;	/* number of extents in file */
4071 	int		new_size;	/* size of extents after removal */
4072 
4073 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4074 	new_size = ifp->if_bytes -
4075 		(ext_diff * sizeof(xfs_bmbt_rec_t));
4076 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4077 
4078 	if (new_size == 0) {
4079 		xfs_iext_destroy(ifp);
4080 		return;
4081 	}
4082 	/* Move extents up in the list (if needed) */
4083 	if (idx + ext_diff < nextents) {
4084 		memmove(&ifp->if_u1.if_extents[idx],
4085 			&ifp->if_u1.if_extents[idx + ext_diff],
4086 			(nextents - (idx + ext_diff)) *
4087 			 sizeof(xfs_bmbt_rec_t));
4088 	}
4089 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4090 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
4091 	/*
4092 	 * Reallocate the direct extent list. If the extents
4093 	 * will fit inside the inode then xfs_iext_realloc_direct
4094 	 * will switch from direct to inline extent allocation
4095 	 * mode for us.
4096 	 */
4097 	xfs_iext_realloc_direct(ifp, new_size);
4098 	ifp->if_bytes = new_size;
4099 }
4100 
4101 /*
4102  * This is called when incore extents are being removed from the
4103  * indirection array and the extents being removed span multiple extent
4104  * buffers. The idx parameter contains the file extent index where we
4105  * want to begin removing extents, and the count parameter contains
4106  * how many extents need to be removed.
4107  *
4108  *    |-------|   |-------|
4109  *    | nex1  |   |       |    nex1 - number of extents before idx
4110  *    |-------|   | count |
4111  *    |       |   |       |    count - number of extents being removed at idx
4112  *    | count |   |-------|
4113  *    |       |   | nex2  |    nex2 - number of extents after idx + count
4114  *    |-------|   |-------|
4115  */
4116 void
4117 xfs_iext_remove_indirect(
4118 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4119 	xfs_extnum_t	idx,		/* index to begin removing extents */
4120 	int		count)		/* number of extents to remove */
4121 {
4122 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4123 	int		erp_idx = 0;	/* indirection array index */
4124 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
4125 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
4126 	xfs_extnum_t	nex1;		/* number of extents before idx */
4127 	xfs_extnum_t	nex2;		/* extents after idx + count */
4128 	int		nlists;		/* entries in indirection array */
4129 	int		page_idx = idx;	/* index in target extent list */
4130 
4131 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4132 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
4133 	ASSERT(erp != NULL);
4134 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4135 	nex1 = page_idx;
4136 	ext_cnt = count;
4137 	while (ext_cnt) {
4138 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4139 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4140 		/*
4141 		 * Check for deletion of entire list;
4142 		 * xfs_iext_irec_remove() updates extent offsets.
4143 		 */
4144 		if (ext_diff == erp->er_extcount) {
4145 			xfs_iext_irec_remove(ifp, erp_idx);
4146 			ext_cnt -= ext_diff;
4147 			nex1 = 0;
4148 			if (ext_cnt) {
4149 				ASSERT(erp_idx < ifp->if_real_bytes /
4150 					XFS_IEXT_BUFSZ);
4151 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4152 				nex1 = 0;
4153 				continue;
4154 			} else {
4155 				break;
4156 			}
4157 		}
4158 		/* Move extents up (if needed) */
4159 		if (nex2) {
4160 			memmove(&erp->er_extbuf[nex1],
4161 				&erp->er_extbuf[nex1 + ext_diff],
4162 				nex2 * sizeof(xfs_bmbt_rec_t));
4163 		}
4164 		/* Zero out rest of page */
4165 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4166 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4167 		/* Update remaining counters */
4168 		erp->er_extcount -= ext_diff;
4169 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4170 		ext_cnt -= ext_diff;
4171 		nex1 = 0;
4172 		erp_idx++;
4173 		erp++;
4174 	}
4175 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4176 	xfs_iext_irec_compact(ifp);
4177 }
4178 
4179 /*
4180  * Create, destroy, or resize a linear (direct) block of extents.
4181  */
4182 void
4183 xfs_iext_realloc_direct(
4184 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4185 	int		new_size)	/* new size of extents */
4186 {
4187 	int		rnew_size;	/* real new size of extents */
4188 
4189 	rnew_size = new_size;
4190 
4191 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4192 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4193 		 (new_size != ifp->if_real_bytes)));
4194 
4195 	/* Free extent records */
4196 	if (new_size == 0) {
4197 		xfs_iext_destroy(ifp);
4198 	}
4199 	/* Resize direct extent list and zero any new bytes */
4200 	else if (ifp->if_real_bytes) {
4201 		/* Check if extents will fit inside the inode */
4202 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4203 			xfs_iext_direct_to_inline(ifp, new_size /
4204 				(uint)sizeof(xfs_bmbt_rec_t));
4205 			ifp->if_bytes = new_size;
4206 			return;
4207 		}
4208 		if (!is_power_of_2(new_size)){
4209 			rnew_size = xfs_iroundup(new_size);
4210 		}
4211 		if (rnew_size != ifp->if_real_bytes) {
4212 			ifp->if_u1.if_extents =
4213 				kmem_realloc(ifp->if_u1.if_extents,
4214 						rnew_size,
4215 						ifp->if_real_bytes,
4216 						KM_SLEEP);
4217 		}
4218 		if (rnew_size > ifp->if_real_bytes) {
4219 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4220 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
4221 				rnew_size - ifp->if_real_bytes);
4222 		}
4223 	}
4224 	/*
4225 	 * Switch from the inline extent buffer to a direct
4226 	 * extent list. Be sure to include the inline extent
4227 	 * bytes in new_size.
4228 	 */
4229 	else {
4230 		new_size += ifp->if_bytes;
4231 		if (!is_power_of_2(new_size)) {
4232 			rnew_size = xfs_iroundup(new_size);
4233 		}
4234 		xfs_iext_inline_to_direct(ifp, rnew_size);
4235 	}
4236 	ifp->if_real_bytes = rnew_size;
4237 	ifp->if_bytes = new_size;
4238 }
4239 
4240 /*
4241  * Switch from linear (direct) extent records to inline buffer.
4242  */
4243 void
4244 xfs_iext_direct_to_inline(
4245 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4246 	xfs_extnum_t	nextents)	/* number of extents in file */
4247 {
4248 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4249 	ASSERT(nextents <= XFS_INLINE_EXTS);
4250 	/*
4251 	 * The inline buffer was zeroed when we switched
4252 	 * from inline to direct extent allocation mode,
4253 	 * so we don't need to clear it here.
4254 	 */
4255 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4256 		nextents * sizeof(xfs_bmbt_rec_t));
4257 	kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4258 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4259 	ifp->if_real_bytes = 0;
4260 }
4261 
4262 /*
4263  * Switch from inline buffer to linear (direct) extent records.
4264  * new_size should already be rounded up to the next power of 2
4265  * by the caller (when appropriate), so use new_size as it is.
4266  * However, since new_size may be rounded up, we can't update
4267  * if_bytes here. It is the caller's responsibility to update
4268  * if_bytes upon return.
4269  */
4270 void
4271 xfs_iext_inline_to_direct(
4272 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4273 	int		new_size)	/* number of extents in file */
4274 {
4275 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4276 	memset(ifp->if_u1.if_extents, 0, new_size);
4277 	if (ifp->if_bytes) {
4278 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4279 			ifp->if_bytes);
4280 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4281 			sizeof(xfs_bmbt_rec_t));
4282 	}
4283 	ifp->if_real_bytes = new_size;
4284 }
4285 
4286 /*
4287  * Resize an extent indirection array to new_size bytes.
4288  */
4289 void
4290 xfs_iext_realloc_indirect(
4291 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4292 	int		new_size)	/* new indirection array size */
4293 {
4294 	int		nlists;		/* number of irec's (ex lists) */
4295 	int		size;		/* current indirection array size */
4296 
4297 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4298 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4299 	size = nlists * sizeof(xfs_ext_irec_t);
4300 	ASSERT(ifp->if_real_bytes);
4301 	ASSERT((new_size >= 0) && (new_size != size));
4302 	if (new_size == 0) {
4303 		xfs_iext_destroy(ifp);
4304 	} else {
4305 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4306 			kmem_realloc(ifp->if_u1.if_ext_irec,
4307 				new_size, size, KM_SLEEP);
4308 	}
4309 }
4310 
4311 /*
4312  * Switch from indirection array to linear (direct) extent allocations.
4313  */
4314 void
4315 xfs_iext_indirect_to_direct(
4316 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4317 {
4318 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
4319 	xfs_extnum_t	nextents;	/* number of extents in file */
4320 	int		size;		/* size of file extents */
4321 
4322 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4323 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4324 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4325 	size = nextents * sizeof(xfs_bmbt_rec_t);
4326 
4327 	xfs_iext_irec_compact_full(ifp);
4328 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4329 
4330 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4331 	kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4332 	ifp->if_flags &= ~XFS_IFEXTIREC;
4333 	ifp->if_u1.if_extents = ep;
4334 	ifp->if_bytes = size;
4335 	if (nextents < XFS_LINEAR_EXTS) {
4336 		xfs_iext_realloc_direct(ifp, size);
4337 	}
4338 }
4339 
4340 /*
4341  * Free incore file extents.
4342  */
4343 void
4344 xfs_iext_destroy(
4345 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4346 {
4347 	if (ifp->if_flags & XFS_IFEXTIREC) {
4348 		int	erp_idx;
4349 		int	nlists;
4350 
4351 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4352 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4353 			xfs_iext_irec_remove(ifp, erp_idx);
4354 		}
4355 		ifp->if_flags &= ~XFS_IFEXTIREC;
4356 	} else if (ifp->if_real_bytes) {
4357 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4358 	} else if (ifp->if_bytes) {
4359 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4360 			sizeof(xfs_bmbt_rec_t));
4361 	}
4362 	ifp->if_u1.if_extents = NULL;
4363 	ifp->if_real_bytes = 0;
4364 	ifp->if_bytes = 0;
4365 }
4366 
4367 /*
4368  * Return a pointer to the extent record for file system block bno.
4369  */
4370 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
4371 xfs_iext_bno_to_ext(
4372 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4373 	xfs_fileoff_t	bno,		/* block number to search for */
4374 	xfs_extnum_t	*idxp)		/* index of target extent */
4375 {
4376 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
4377 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4378 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
4379 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4380 	int		high;		/* upper boundary in search */
4381 	xfs_extnum_t	idx = 0;	/* index of target extent */
4382 	int		low;		/* lower boundary in search */
4383 	xfs_extnum_t	nextents;	/* number of file extents */
4384 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4385 
4386 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4387 	if (nextents == 0) {
4388 		*idxp = 0;
4389 		return NULL;
4390 	}
4391 	low = 0;
4392 	if (ifp->if_flags & XFS_IFEXTIREC) {
4393 		/* Find target extent list */
4394 		int	erp_idx = 0;
4395 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4396 		base = erp->er_extbuf;
4397 		high = erp->er_extcount - 1;
4398 	} else {
4399 		base = ifp->if_u1.if_extents;
4400 		high = nextents - 1;
4401 	}
4402 	/* Binary search extent records */
4403 	while (low <= high) {
4404 		idx = (low + high) >> 1;
4405 		ep = base + idx;
4406 		startoff = xfs_bmbt_get_startoff(ep);
4407 		blockcount = xfs_bmbt_get_blockcount(ep);
4408 		if (bno < startoff) {
4409 			high = idx - 1;
4410 		} else if (bno >= startoff + blockcount) {
4411 			low = idx + 1;
4412 		} else {
4413 			/* Convert back to file-based extent index */
4414 			if (ifp->if_flags & XFS_IFEXTIREC) {
4415 				idx += erp->er_extoff;
4416 			}
4417 			*idxp = idx;
4418 			return ep;
4419 		}
4420 	}
4421 	/* Convert back to file-based extent index */
4422 	if (ifp->if_flags & XFS_IFEXTIREC) {
4423 		idx += erp->er_extoff;
4424 	}
4425 	if (bno >= startoff + blockcount) {
4426 		if (++idx == nextents) {
4427 			ep = NULL;
4428 		} else {
4429 			ep = xfs_iext_get_ext(ifp, idx);
4430 		}
4431 	}
4432 	*idxp = idx;
4433 	return ep;
4434 }
4435 
4436 /*
4437  * Return a pointer to the indirection array entry containing the
4438  * extent record for filesystem block bno. Store the index of the
4439  * target irec in *erp_idxp.
4440  */
4441 xfs_ext_irec_t *			/* pointer to found extent record */
4442 xfs_iext_bno_to_irec(
4443 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4444 	xfs_fileoff_t	bno,		/* block number to search for */
4445 	int		*erp_idxp)	/* irec index of target ext list */
4446 {
4447 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4448 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4449 	int		erp_idx;	/* indirection array index */
4450 	int		nlists;		/* number of extent irec's (lists) */
4451 	int		high;		/* binary search upper limit */
4452 	int		low;		/* binary search lower limit */
4453 
4454 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4455 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4456 	erp_idx = 0;
4457 	low = 0;
4458 	high = nlists - 1;
4459 	while (low <= high) {
4460 		erp_idx = (low + high) >> 1;
4461 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4462 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4463 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4464 			high = erp_idx - 1;
4465 		} else if (erp_next && bno >=
4466 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4467 			low = erp_idx + 1;
4468 		} else {
4469 			break;
4470 		}
4471 	}
4472 	*erp_idxp = erp_idx;
4473 	return erp;
4474 }
4475 
4476 /*
4477  * Return a pointer to the indirection array entry containing the
4478  * extent record at file extent index *idxp. Store the index of the
4479  * target irec in *erp_idxp and store the page index of the target
4480  * extent record in *idxp.
4481  */
4482 xfs_ext_irec_t *
4483 xfs_iext_idx_to_irec(
4484 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4485 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4486 	int		*erp_idxp,	/* pointer to target irec */
4487 	int		realloc)	/* new bytes were just added */
4488 {
4489 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4490 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4491 	int		erp_idx;	/* indirection array index */
4492 	int		nlists;		/* number of irec's (ex lists) */
4493 	int		high;		/* binary search upper limit */
4494 	int		low;		/* binary search lower limit */
4495 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4496 
4497 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4498 	ASSERT(page_idx >= 0 && page_idx <=
4499 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4500 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4501 	erp_idx = 0;
4502 	low = 0;
4503 	high = nlists - 1;
4504 
4505 	/* Binary search extent irec's */
4506 	while (low <= high) {
4507 		erp_idx = (low + high) >> 1;
4508 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4509 		prev = erp_idx > 0 ? erp - 1 : NULL;
4510 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4511 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4512 			high = erp_idx - 1;
4513 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4514 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4515 			    !realloc)) {
4516 			low = erp_idx + 1;
4517 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4518 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4519 			ASSERT(realloc);
4520 			page_idx = 0;
4521 			erp_idx++;
4522 			erp = erp_idx < nlists ? erp + 1 : NULL;
4523 			break;
4524 		} else {
4525 			page_idx -= erp->er_extoff;
4526 			break;
4527 		}
4528 	}
4529 	*idxp = page_idx;
4530 	*erp_idxp = erp_idx;
4531 	return(erp);
4532 }
4533 
4534 /*
4535  * Allocate and initialize an indirection array once the space needed
4536  * for incore extents increases above XFS_IEXT_BUFSZ.
4537  */
4538 void
4539 xfs_iext_irec_init(
4540 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4541 {
4542 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4543 	xfs_extnum_t	nextents;	/* number of extents in file */
4544 
4545 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4546 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4547 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4548 
4549 	erp = (xfs_ext_irec_t *)
4550 		kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4551 
4552 	if (nextents == 0) {
4553 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4554 	} else if (!ifp->if_real_bytes) {
4555 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4556 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4557 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4558 	}
4559 	erp->er_extbuf = ifp->if_u1.if_extents;
4560 	erp->er_extcount = nextents;
4561 	erp->er_extoff = 0;
4562 
4563 	ifp->if_flags |= XFS_IFEXTIREC;
4564 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4565 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4566 	ifp->if_u1.if_ext_irec = erp;
4567 
4568 	return;
4569 }
4570 
4571 /*
4572  * Allocate and initialize a new entry in the indirection array.
4573  */
4574 xfs_ext_irec_t *
4575 xfs_iext_irec_new(
4576 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4577 	int		erp_idx)	/* index for new irec */
4578 {
4579 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4580 	int		i;		/* loop counter */
4581 	int		nlists;		/* number of irec's (ex lists) */
4582 
4583 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4584 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4585 
4586 	/* Resize indirection array */
4587 	xfs_iext_realloc_indirect(ifp, ++nlists *
4588 				  sizeof(xfs_ext_irec_t));
4589 	/*
4590 	 * Move records down in the array so the
4591 	 * new page can use erp_idx.
4592 	 */
4593 	erp = ifp->if_u1.if_ext_irec;
4594 	for (i = nlists - 1; i > erp_idx; i--) {
4595 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4596 	}
4597 	ASSERT(i == erp_idx);
4598 
4599 	/* Initialize new extent record */
4600 	erp = ifp->if_u1.if_ext_irec;
4601 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4602 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4603 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4604 	erp[erp_idx].er_extcount = 0;
4605 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4606 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4607 	return (&erp[erp_idx]);
4608 }
4609 
4610 /*
4611  * Remove a record from the indirection array.
4612  */
4613 void
4614 xfs_iext_irec_remove(
4615 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4616 	int		erp_idx)	/* irec index to remove */
4617 {
4618 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4619 	int		i;		/* loop counter */
4620 	int		nlists;		/* number of irec's (ex lists) */
4621 
4622 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4623 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4624 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4625 	if (erp->er_extbuf) {
4626 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4627 			-erp->er_extcount);
4628 		kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4629 	}
4630 	/* Compact extent records */
4631 	erp = ifp->if_u1.if_ext_irec;
4632 	for (i = erp_idx; i < nlists - 1; i++) {
4633 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4634 	}
4635 	/*
4636 	 * Manually free the last extent record from the indirection
4637 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4638 	 * of zero would result in a call to xfs_iext_destroy() which
4639 	 * would in turn call this function again, creating a nasty
4640 	 * infinite loop.
4641 	 */
4642 	if (--nlists) {
4643 		xfs_iext_realloc_indirect(ifp,
4644 			nlists * sizeof(xfs_ext_irec_t));
4645 	} else {
4646 		kmem_free(ifp->if_u1.if_ext_irec,
4647 			sizeof(xfs_ext_irec_t));
4648 	}
4649 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4650 }
4651 
4652 /*
4653  * This is called to clean up large amounts of unused memory allocated
4654  * by the indirection array.  Before compacting anything though, verify
4655  * that the indirection array is still needed and switch back to the
4656  * linear extent list (or even the inline buffer) if possible.  The
4657  * compaction policy is as follows:
4658  *
4659  *    Full Compaction: Extents fit into a single page (or inline buffer)
4660  *    Full Compaction: Extents occupy less than 10% of allocated space
4661  * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4662  *      No Compaction: Extents occupy at least 50% of allocated space
4663  */
4664 void
4665 xfs_iext_irec_compact(
4666 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4667 {
4668 	xfs_extnum_t	nextents;	/* number of extents in file */
4669 	int		nlists;		/* number of irec's (ex lists) */
4670 
4671 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4672 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4673 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4674 
4675 	if (nextents == 0) {
4676 		xfs_iext_destroy(ifp);
4677 	} else if (nextents <= XFS_INLINE_EXTS) {
4678 		xfs_iext_indirect_to_direct(ifp);
4679 		xfs_iext_direct_to_inline(ifp, nextents);
4680 	} else if (nextents <= XFS_LINEAR_EXTS) {
4681 		xfs_iext_indirect_to_direct(ifp);
4682 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4683 		xfs_iext_irec_compact_full(ifp);
4684 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4685 		xfs_iext_irec_compact_pages(ifp);
4686 	}
4687 }
4688 
4689 /*
4690  * Combine extents from neighboring extent pages.
4691  */
4692 void
4693 xfs_iext_irec_compact_pages(
4694 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4695 {
4696 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4697 	int		erp_idx = 0;	/* indirection array index */
4698 	int		nlists;		/* number of irec's (ex lists) */
4699 
4700 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4701 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4702 	while (erp_idx < nlists - 1) {
4703 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4704 		erp_next = erp + 1;
4705 		if (erp_next->er_extcount <=
4706 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4707 			memmove(&erp->er_extbuf[erp->er_extcount],
4708 				erp_next->er_extbuf, erp_next->er_extcount *
4709 				sizeof(xfs_bmbt_rec_t));
4710 			erp->er_extcount += erp_next->er_extcount;
4711 			/*
4712 			 * Free page before removing extent record
4713 			 * so er_extoffs don't get modified in
4714 			 * xfs_iext_irec_remove.
4715 			 */
4716 			kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4717 			erp_next->er_extbuf = NULL;
4718 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4719 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4720 		} else {
4721 			erp_idx++;
4722 		}
4723 	}
4724 }
4725 
4726 /*
4727  * Fully compact the extent records managed by the indirection array.
4728  */
4729 void
4730 xfs_iext_irec_compact_full(
4731 	xfs_ifork_t	*ifp)			/* inode fork pointer */
4732 {
4733 	xfs_bmbt_rec_host_t *ep, *ep_next;	/* extent record pointers */
4734 	xfs_ext_irec_t	*erp, *erp_next;	/* extent irec pointers */
4735 	int		erp_idx = 0;		/* extent irec index */
4736 	int		ext_avail;		/* empty entries in ex list */
4737 	int		ext_diff;		/* number of exts to add */
4738 	int		nlists;			/* number of irec's (ex lists) */
4739 
4740 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4741 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4742 	erp = ifp->if_u1.if_ext_irec;
4743 	ep = &erp->er_extbuf[erp->er_extcount];
4744 	erp_next = erp + 1;
4745 	ep_next = erp_next->er_extbuf;
4746 	while (erp_idx < nlists - 1) {
4747 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4748 		ext_diff = MIN(ext_avail, erp_next->er_extcount);
4749 		memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4750 		erp->er_extcount += ext_diff;
4751 		erp_next->er_extcount -= ext_diff;
4752 		/* Remove next page */
4753 		if (erp_next->er_extcount == 0) {
4754 			/*
4755 			 * Free page before removing extent record
4756 			 * so er_extoffs don't get modified in
4757 			 * xfs_iext_irec_remove.
4758 			 */
4759 			kmem_free(erp_next->er_extbuf,
4760 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4761 			erp_next->er_extbuf = NULL;
4762 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4763 			erp = &ifp->if_u1.if_ext_irec[erp_idx];
4764 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4765 		/* Update next page */
4766 		} else {
4767 			/* Move rest of page up to become next new page */
4768 			memmove(erp_next->er_extbuf, ep_next,
4769 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4770 			ep_next = erp_next->er_extbuf;
4771 			memset(&ep_next[erp_next->er_extcount], 0,
4772 				(XFS_LINEAR_EXTS - erp_next->er_extcount) *
4773 				sizeof(xfs_bmbt_rec_t));
4774 		}
4775 		if (erp->er_extcount == XFS_LINEAR_EXTS) {
4776 			erp_idx++;
4777 			if (erp_idx < nlists)
4778 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4779 			else
4780 				break;
4781 		}
4782 		ep = &erp->er_extbuf[erp->er_extcount];
4783 		erp_next = erp + 1;
4784 		ep_next = erp_next->er_extbuf;
4785 	}
4786 }
4787 
4788 /*
4789  * This is called to update the er_extoff field in the indirection
4790  * array when extents have been added or removed from one of the
4791  * extent lists. erp_idx contains the irec index to begin updating
4792  * at and ext_diff contains the number of extents that were added
4793  * or removed.
4794  */
4795 void
4796 xfs_iext_irec_update_extoffs(
4797 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4798 	int		erp_idx,	/* irec index to update */
4799 	int		ext_diff)	/* number of new extents */
4800 {
4801 	int		i;		/* loop counter */
4802 	int		nlists;		/* number of irec's (ex lists */
4803 
4804 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4805 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4806 	for (i = erp_idx; i < nlists; i++) {
4807 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4808 	}
4809 }
4810