xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 4dc7ccf7)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53 #include "xfs_trace.h"
54 
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
57 
58 /*
59  * Used in xfs_itruncate().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	xfs_exntfmt_t		fmt)
79 {
80 	xfs_bmbt_irec_t		irec;
81 	xfs_bmbt_rec_host_t	rec;
82 	int			i;
83 
84 	for (i = 0; i < nrecs; i++) {
85 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 		rec.l0 = get_unaligned(&ep->l0);
87 		rec.l1 = get_unaligned(&ep->l1);
88 		xfs_bmbt_get_all(&rec, &irec);
89 		if (fmt == XFS_EXTFMT_NOSTATE)
90 			ASSERT(irec.br_state == XFS_EXT_NORM);
91 	}
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96 
97 /*
98  * Check that none of the inode's in the buffer have a next
99  * unlinked field of 0.
100  */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 	xfs_mount_t	*mp,
105 	xfs_buf_t	*bp)
106 {
107 	int		i;
108 	int		j;
109 	xfs_dinode_t	*dip;
110 
111 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 
113 	for (i = 0; i < j; i++) {
114 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 					i * mp->m_sb.sb_inodesize);
116 		if (!dip->di_next_unlinked)  {
117 			xfs_fs_cmn_err(CE_ALERT, mp,
118 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
119 				bp);
120 			ASSERT(dip->di_next_unlinked);
121 		}
122 	}
123 }
124 #endif
125 
126 /*
127  * Find the buffer associated with the given inode map
128  * We do basic validation checks on the buffer once it has been
129  * retrieved from disk.
130  */
131 STATIC int
132 xfs_imap_to_bp(
133 	xfs_mount_t	*mp,
134 	xfs_trans_t	*tp,
135 	struct xfs_imap	*imap,
136 	xfs_buf_t	**bpp,
137 	uint		buf_flags,
138 	uint		iget_flags)
139 {
140 	int		error;
141 	int		i;
142 	int		ni;
143 	xfs_buf_t	*bp;
144 
145 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 				   (int)imap->im_len, buf_flags, &bp);
147 	if (error) {
148 		if (error != EAGAIN) {
149 			cmn_err(CE_WARN,
150 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 				"an error %d on %s.  Returning error.",
152 				error, mp->m_fsname);
153 		} else {
154 			ASSERT(buf_flags & XBF_TRYLOCK);
155 		}
156 		return error;
157 	}
158 
159 	/*
160 	 * Validate the magic number and version of every inode in the buffer
161 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
162 	 */
163 #ifdef DEBUG
164 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else	/* usual case */
166 	ni = 1;
167 #endif
168 
169 	for (i = 0; i < ni; i++) {
170 		int		di_ok;
171 		xfs_dinode_t	*dip;
172 
173 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 					(i << mp->m_sb.sb_inodelog));
175 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
177 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 						XFS_ERRTAG_ITOBP_INOTOBP,
179 						XFS_RANDOM_ITOBP_INOTOBP))) {
180 			if (iget_flags & XFS_IGET_BULKSTAT) {
181 				xfs_trans_brelse(tp, bp);
182 				return XFS_ERROR(EINVAL);
183 			}
184 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 						XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 			cmn_err(CE_PANIC,
188 					"Device %s - bad inode magic/vsn "
189 					"daddr %lld #%d (magic=%x)",
190 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 				(unsigned long long)imap->im_blkno, i,
192 				be16_to_cpu(dip->di_magic));
193 #endif
194 			xfs_trans_brelse(tp, bp);
195 			return XFS_ERROR(EFSCORRUPTED);
196 		}
197 	}
198 
199 	xfs_inobp_check(mp, bp);
200 
201 	/*
202 	 * Mark the buffer as an inode buffer now that it looks good
203 	 */
204 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
205 
206 	*bpp = bp;
207 	return 0;
208 }
209 
210 /*
211  * This routine is called to map an inode number within a file
212  * system to the buffer containing the on-disk version of the
213  * inode.  It returns a pointer to the buffer containing the
214  * on-disk inode in the bpp parameter, and in the dip parameter
215  * it returns a pointer to the on-disk inode within that buffer.
216  *
217  * If a non-zero error is returned, then the contents of bpp and
218  * dipp are undefined.
219  *
220  * Use xfs_imap() to determine the size and location of the
221  * buffer to read from disk.
222  */
223 int
224 xfs_inotobp(
225 	xfs_mount_t	*mp,
226 	xfs_trans_t	*tp,
227 	xfs_ino_t	ino,
228 	xfs_dinode_t	**dipp,
229 	xfs_buf_t	**bpp,
230 	int		*offset,
231 	uint		imap_flags)
232 {
233 	struct xfs_imap	imap;
234 	xfs_buf_t	*bp;
235 	int		error;
236 
237 	imap.im_blkno = 0;
238 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 	if (error)
240 		return error;
241 
242 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
243 	if (error)
244 		return error;
245 
246 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 	*bpp = bp;
248 	*offset = imap.im_boffset;
249 	return 0;
250 }
251 
252 
253 /*
254  * This routine is called to map an inode to the buffer containing
255  * the on-disk version of the inode.  It returns a pointer to the
256  * buffer containing the on-disk inode in the bpp parameter, and in
257  * the dip parameter it returns a pointer to the on-disk inode within
258  * that buffer.
259  *
260  * If a non-zero error is returned, then the contents of bpp and
261  * dipp are undefined.
262  *
263  * The inode is expected to already been mapped to its buffer and read
264  * in once, thus we can use the mapping information stored in the inode
265  * rather than calling xfs_imap().  This allows us to avoid the overhead
266  * of looking at the inode btree for small block file systems
267  * (see xfs_imap()).
268  */
269 int
270 xfs_itobp(
271 	xfs_mount_t	*mp,
272 	xfs_trans_t	*tp,
273 	xfs_inode_t	*ip,
274 	xfs_dinode_t	**dipp,
275 	xfs_buf_t	**bpp,
276 	uint		buf_flags)
277 {
278 	xfs_buf_t	*bp;
279 	int		error;
280 
281 	ASSERT(ip->i_imap.im_blkno != 0);
282 
283 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 	if (error)
285 		return error;
286 
287 	if (!bp) {
288 		ASSERT(buf_flags & XBF_TRYLOCK);
289 		ASSERT(tp == NULL);
290 		*bpp = NULL;
291 		return EAGAIN;
292 	}
293 
294 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 	*bpp = bp;
296 	return 0;
297 }
298 
299 /*
300  * Move inode type and inode format specific information from the
301  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
302  * this means set if_rdev to the proper value.  For files, directories,
303  * and symlinks this means to bring in the in-line data or extent
304  * pointers.  For a file in B-tree format, only the root is immediately
305  * brought in-core.  The rest will be in-lined in if_extents when it
306  * is first referenced (see xfs_iread_extents()).
307  */
308 STATIC int
309 xfs_iformat(
310 	xfs_inode_t		*ip,
311 	xfs_dinode_t		*dip)
312 {
313 	xfs_attr_shortform_t	*atp;
314 	int			size;
315 	int			error;
316 	xfs_fsize_t             di_size;
317 	ip->i_df.if_ext_max =
318 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 	error = 0;
320 
321 	if (unlikely(be32_to_cpu(dip->di_nextents) +
322 		     be16_to_cpu(dip->di_anextents) >
323 		     be64_to_cpu(dip->di_nblocks))) {
324 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 			(unsigned long long)ip->i_ino,
327 			(int)(be32_to_cpu(dip->di_nextents) +
328 			      be16_to_cpu(dip->di_anextents)),
329 			(unsigned long long)
330 				be64_to_cpu(dip->di_nblocks));
331 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 				     ip->i_mount, dip);
333 		return XFS_ERROR(EFSCORRUPTED);
334 	}
335 
336 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 			"corrupt dinode %Lu, forkoff = 0x%x.",
339 			(unsigned long long)ip->i_ino,
340 			dip->di_forkoff);
341 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 				     ip->i_mount, dip);
343 		return XFS_ERROR(EFSCORRUPTED);
344 	}
345 
346 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
347 		     !ip->i_mount->m_rtdev_targp)) {
348 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
349 			"corrupt dinode %Lu, has realtime flag set.",
350 			ip->i_ino);
351 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
353 		return XFS_ERROR(EFSCORRUPTED);
354 	}
355 
356 	switch (ip->i_d.di_mode & S_IFMT) {
357 	case S_IFIFO:
358 	case S_IFCHR:
359 	case S_IFBLK:
360 	case S_IFSOCK:
361 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
362 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
363 					      ip->i_mount, dip);
364 			return XFS_ERROR(EFSCORRUPTED);
365 		}
366 		ip->i_d.di_size = 0;
367 		ip->i_size = 0;
368 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
369 		break;
370 
371 	case S_IFREG:
372 	case S_IFLNK:
373 	case S_IFDIR:
374 		switch (dip->di_format) {
375 		case XFS_DINODE_FMT_LOCAL:
376 			/*
377 			 * no local regular files yet
378 			 */
379 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
380 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
381 					"corrupt inode %Lu "
382 					"(local format for regular file).",
383 					(unsigned long long) ip->i_ino);
384 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
385 						     XFS_ERRLEVEL_LOW,
386 						     ip->i_mount, dip);
387 				return XFS_ERROR(EFSCORRUPTED);
388 			}
389 
390 			di_size = be64_to_cpu(dip->di_size);
391 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
392 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
393 					"corrupt inode %Lu "
394 					"(bad size %Ld for local inode).",
395 					(unsigned long long) ip->i_ino,
396 					(long long) di_size);
397 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
398 						     XFS_ERRLEVEL_LOW,
399 						     ip->i_mount, dip);
400 				return XFS_ERROR(EFSCORRUPTED);
401 			}
402 
403 			size = (int)di_size;
404 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
405 			break;
406 		case XFS_DINODE_FMT_EXTENTS:
407 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
408 			break;
409 		case XFS_DINODE_FMT_BTREE:
410 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
411 			break;
412 		default:
413 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
414 					 ip->i_mount);
415 			return XFS_ERROR(EFSCORRUPTED);
416 		}
417 		break;
418 
419 	default:
420 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 	if (error) {
424 		return error;
425 	}
426 	if (!XFS_DFORK_Q(dip))
427 		return 0;
428 	ASSERT(ip->i_afp == NULL);
429 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
430 	ip->i_afp->if_ext_max =
431 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
432 	switch (dip->di_aformat) {
433 	case XFS_DINODE_FMT_LOCAL:
434 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
435 		size = be16_to_cpu(atp->hdr.totsize);
436 
437 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
438 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
439 				"corrupt inode %Lu "
440 				"(bad attr fork size %Ld).",
441 				(unsigned long long) ip->i_ino,
442 				(long long) size);
443 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
444 					     XFS_ERRLEVEL_LOW,
445 					     ip->i_mount, dip);
446 			return XFS_ERROR(EFSCORRUPTED);
447 		}
448 
449 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
450 		break;
451 	case XFS_DINODE_FMT_EXTENTS:
452 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
453 		break;
454 	case XFS_DINODE_FMT_BTREE:
455 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
456 		break;
457 	default:
458 		error = XFS_ERROR(EFSCORRUPTED);
459 		break;
460 	}
461 	if (error) {
462 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
463 		ip->i_afp = NULL;
464 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
465 	}
466 	return error;
467 }
468 
469 /*
470  * The file is in-lined in the on-disk inode.
471  * If it fits into if_inline_data, then copy
472  * it there, otherwise allocate a buffer for it
473  * and copy the data there.  Either way, set
474  * if_data to point at the data.
475  * If we allocate a buffer for the data, make
476  * sure that its size is a multiple of 4 and
477  * record the real size in i_real_bytes.
478  */
479 STATIC int
480 xfs_iformat_local(
481 	xfs_inode_t	*ip,
482 	xfs_dinode_t	*dip,
483 	int		whichfork,
484 	int		size)
485 {
486 	xfs_ifork_t	*ifp;
487 	int		real_size;
488 
489 	/*
490 	 * If the size is unreasonable, then something
491 	 * is wrong and we just bail out rather than crash in
492 	 * kmem_alloc() or memcpy() below.
493 	 */
494 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
495 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
496 			"corrupt inode %Lu "
497 			"(bad size %d for local fork, size = %d).",
498 			(unsigned long long) ip->i_ino, size,
499 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
500 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
501 				     ip->i_mount, dip);
502 		return XFS_ERROR(EFSCORRUPTED);
503 	}
504 	ifp = XFS_IFORK_PTR(ip, whichfork);
505 	real_size = 0;
506 	if (size == 0)
507 		ifp->if_u1.if_data = NULL;
508 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
509 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
510 	else {
511 		real_size = roundup(size, 4);
512 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
513 	}
514 	ifp->if_bytes = size;
515 	ifp->if_real_bytes = real_size;
516 	if (size)
517 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
518 	ifp->if_flags &= ~XFS_IFEXTENTS;
519 	ifp->if_flags |= XFS_IFINLINE;
520 	return 0;
521 }
522 
523 /*
524  * The file consists of a set of extents all
525  * of which fit into the on-disk inode.
526  * If there are few enough extents to fit into
527  * the if_inline_ext, then copy them there.
528  * Otherwise allocate a buffer for them and copy
529  * them into it.  Either way, set if_extents
530  * to point at the extents.
531  */
532 STATIC int
533 xfs_iformat_extents(
534 	xfs_inode_t	*ip,
535 	xfs_dinode_t	*dip,
536 	int		whichfork)
537 {
538 	xfs_bmbt_rec_t	*dp;
539 	xfs_ifork_t	*ifp;
540 	int		nex;
541 	int		size;
542 	int		i;
543 
544 	ifp = XFS_IFORK_PTR(ip, whichfork);
545 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
546 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
547 
548 	/*
549 	 * If the number of extents is unreasonable, then something
550 	 * is wrong and we just bail out rather than crash in
551 	 * kmem_alloc() or memcpy() below.
552 	 */
553 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 			"corrupt inode %Lu ((a)extents = %d).",
556 			(unsigned long long) ip->i_ino, nex);
557 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
558 				     ip->i_mount, dip);
559 		return XFS_ERROR(EFSCORRUPTED);
560 	}
561 
562 	ifp->if_real_bytes = 0;
563 	if (nex == 0)
564 		ifp->if_u1.if_extents = NULL;
565 	else if (nex <= XFS_INLINE_EXTS)
566 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
567 	else
568 		xfs_iext_add(ifp, 0, nex);
569 
570 	ifp->if_bytes = size;
571 	if (size) {
572 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
573 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
574 		for (i = 0; i < nex; i++, dp++) {
575 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
576 			ep->l0 = get_unaligned_be64(&dp->l0);
577 			ep->l1 = get_unaligned_be64(&dp->l1);
578 		}
579 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
580 		if (whichfork != XFS_DATA_FORK ||
581 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
582 				if (unlikely(xfs_check_nostate_extents(
583 				    ifp, 0, nex))) {
584 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
585 							 XFS_ERRLEVEL_LOW,
586 							 ip->i_mount);
587 					return XFS_ERROR(EFSCORRUPTED);
588 				}
589 	}
590 	ifp->if_flags |= XFS_IFEXTENTS;
591 	return 0;
592 }
593 
594 /*
595  * The file has too many extents to fit into
596  * the inode, so they are in B-tree format.
597  * Allocate a buffer for the root of the B-tree
598  * and copy the root into it.  The i_extents
599  * field will remain NULL until all of the
600  * extents are read in (when they are needed).
601  */
602 STATIC int
603 xfs_iformat_btree(
604 	xfs_inode_t		*ip,
605 	xfs_dinode_t		*dip,
606 	int			whichfork)
607 {
608 	xfs_bmdr_block_t	*dfp;
609 	xfs_ifork_t		*ifp;
610 	/* REFERENCED */
611 	int			nrecs;
612 	int			size;
613 
614 	ifp = XFS_IFORK_PTR(ip, whichfork);
615 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
616 	size = XFS_BMAP_BROOT_SPACE(dfp);
617 	nrecs = be16_to_cpu(dfp->bb_numrecs);
618 
619 	/*
620 	 * blow out if -- fork has less extents than can fit in
621 	 * fork (fork shouldn't be a btree format), root btree
622 	 * block has more records than can fit into the fork,
623 	 * or the number of extents is greater than the number of
624 	 * blocks.
625 	 */
626 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
627 	    || XFS_BMDR_SPACE_CALC(nrecs) >
628 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
629 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
630 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
631 			"corrupt inode %Lu (btree).",
632 			(unsigned long long) ip->i_ino);
633 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
634 				 ip->i_mount);
635 		return XFS_ERROR(EFSCORRUPTED);
636 	}
637 
638 	ifp->if_broot_bytes = size;
639 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
640 	ASSERT(ifp->if_broot != NULL);
641 	/*
642 	 * Copy and convert from the on-disk structure
643 	 * to the in-memory structure.
644 	 */
645 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
646 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
647 			 ifp->if_broot, size);
648 	ifp->if_flags &= ~XFS_IFEXTENTS;
649 	ifp->if_flags |= XFS_IFBROOT;
650 
651 	return 0;
652 }
653 
654 STATIC void
655 xfs_dinode_from_disk(
656 	xfs_icdinode_t		*to,
657 	xfs_dinode_t		*from)
658 {
659 	to->di_magic = be16_to_cpu(from->di_magic);
660 	to->di_mode = be16_to_cpu(from->di_mode);
661 	to->di_version = from ->di_version;
662 	to->di_format = from->di_format;
663 	to->di_onlink = be16_to_cpu(from->di_onlink);
664 	to->di_uid = be32_to_cpu(from->di_uid);
665 	to->di_gid = be32_to_cpu(from->di_gid);
666 	to->di_nlink = be32_to_cpu(from->di_nlink);
667 	to->di_projid = be16_to_cpu(from->di_projid);
668 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
669 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
670 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
671 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
672 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
673 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
674 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
675 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
676 	to->di_size = be64_to_cpu(from->di_size);
677 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
678 	to->di_extsize = be32_to_cpu(from->di_extsize);
679 	to->di_nextents = be32_to_cpu(from->di_nextents);
680 	to->di_anextents = be16_to_cpu(from->di_anextents);
681 	to->di_forkoff = from->di_forkoff;
682 	to->di_aformat	= from->di_aformat;
683 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
684 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
685 	to->di_flags	= be16_to_cpu(from->di_flags);
686 	to->di_gen	= be32_to_cpu(from->di_gen);
687 }
688 
689 void
690 xfs_dinode_to_disk(
691 	xfs_dinode_t		*to,
692 	xfs_icdinode_t		*from)
693 {
694 	to->di_magic = cpu_to_be16(from->di_magic);
695 	to->di_mode = cpu_to_be16(from->di_mode);
696 	to->di_version = from ->di_version;
697 	to->di_format = from->di_format;
698 	to->di_onlink = cpu_to_be16(from->di_onlink);
699 	to->di_uid = cpu_to_be32(from->di_uid);
700 	to->di_gid = cpu_to_be32(from->di_gid);
701 	to->di_nlink = cpu_to_be32(from->di_nlink);
702 	to->di_projid = cpu_to_be16(from->di_projid);
703 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
704 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
705 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
706 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
707 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
708 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
709 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
710 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
711 	to->di_size = cpu_to_be64(from->di_size);
712 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
713 	to->di_extsize = cpu_to_be32(from->di_extsize);
714 	to->di_nextents = cpu_to_be32(from->di_nextents);
715 	to->di_anextents = cpu_to_be16(from->di_anextents);
716 	to->di_forkoff = from->di_forkoff;
717 	to->di_aformat = from->di_aformat;
718 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
719 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
720 	to->di_flags = cpu_to_be16(from->di_flags);
721 	to->di_gen = cpu_to_be32(from->di_gen);
722 }
723 
724 STATIC uint
725 _xfs_dic2xflags(
726 	__uint16_t		di_flags)
727 {
728 	uint			flags = 0;
729 
730 	if (di_flags & XFS_DIFLAG_ANY) {
731 		if (di_flags & XFS_DIFLAG_REALTIME)
732 			flags |= XFS_XFLAG_REALTIME;
733 		if (di_flags & XFS_DIFLAG_PREALLOC)
734 			flags |= XFS_XFLAG_PREALLOC;
735 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
736 			flags |= XFS_XFLAG_IMMUTABLE;
737 		if (di_flags & XFS_DIFLAG_APPEND)
738 			flags |= XFS_XFLAG_APPEND;
739 		if (di_flags & XFS_DIFLAG_SYNC)
740 			flags |= XFS_XFLAG_SYNC;
741 		if (di_flags & XFS_DIFLAG_NOATIME)
742 			flags |= XFS_XFLAG_NOATIME;
743 		if (di_flags & XFS_DIFLAG_NODUMP)
744 			flags |= XFS_XFLAG_NODUMP;
745 		if (di_flags & XFS_DIFLAG_RTINHERIT)
746 			flags |= XFS_XFLAG_RTINHERIT;
747 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
748 			flags |= XFS_XFLAG_PROJINHERIT;
749 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
750 			flags |= XFS_XFLAG_NOSYMLINKS;
751 		if (di_flags & XFS_DIFLAG_EXTSIZE)
752 			flags |= XFS_XFLAG_EXTSIZE;
753 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
754 			flags |= XFS_XFLAG_EXTSZINHERIT;
755 		if (di_flags & XFS_DIFLAG_NODEFRAG)
756 			flags |= XFS_XFLAG_NODEFRAG;
757 		if (di_flags & XFS_DIFLAG_FILESTREAM)
758 			flags |= XFS_XFLAG_FILESTREAM;
759 	}
760 
761 	return flags;
762 }
763 
764 uint
765 xfs_ip2xflags(
766 	xfs_inode_t		*ip)
767 {
768 	xfs_icdinode_t		*dic = &ip->i_d;
769 
770 	return _xfs_dic2xflags(dic->di_flags) |
771 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
772 }
773 
774 uint
775 xfs_dic2xflags(
776 	xfs_dinode_t		*dip)
777 {
778 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
779 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
780 }
781 
782 /*
783  * Read the disk inode attributes into the in-core inode structure.
784  */
785 int
786 xfs_iread(
787 	xfs_mount_t	*mp,
788 	xfs_trans_t	*tp,
789 	xfs_inode_t	*ip,
790 	xfs_daddr_t	bno,
791 	uint		iget_flags)
792 {
793 	xfs_buf_t	*bp;
794 	xfs_dinode_t	*dip;
795 	int		error;
796 
797 	/*
798 	 * Fill in the location information in the in-core inode.
799 	 */
800 	ip->i_imap.im_blkno = bno;
801 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
802 	if (error)
803 		return error;
804 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
805 
806 	/*
807 	 * Get pointers to the on-disk inode and the buffer containing it.
808 	 */
809 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
810 			       XBF_LOCK, iget_flags);
811 	if (error)
812 		return error;
813 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
814 
815 	/*
816 	 * If we got something that isn't an inode it means someone
817 	 * (nfs or dmi) has a stale handle.
818 	 */
819 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
820 #ifdef DEBUG
821 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
822 				"dip->di_magic (0x%x) != "
823 				"XFS_DINODE_MAGIC (0x%x)",
824 				be16_to_cpu(dip->di_magic),
825 				XFS_DINODE_MAGIC);
826 #endif /* DEBUG */
827 		error = XFS_ERROR(EINVAL);
828 		goto out_brelse;
829 	}
830 
831 	/*
832 	 * If the on-disk inode is already linked to a directory
833 	 * entry, copy all of the inode into the in-core inode.
834 	 * xfs_iformat() handles copying in the inode format
835 	 * specific information.
836 	 * Otherwise, just get the truly permanent information.
837 	 */
838 	if (dip->di_mode) {
839 		xfs_dinode_from_disk(&ip->i_d, dip);
840 		error = xfs_iformat(ip, dip);
841 		if (error)  {
842 #ifdef DEBUG
843 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
844 					"xfs_iformat() returned error %d",
845 					error);
846 #endif /* DEBUG */
847 			goto out_brelse;
848 		}
849 	} else {
850 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
851 		ip->i_d.di_version = dip->di_version;
852 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
853 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
854 		/*
855 		 * Make sure to pull in the mode here as well in
856 		 * case the inode is released without being used.
857 		 * This ensures that xfs_inactive() will see that
858 		 * the inode is already free and not try to mess
859 		 * with the uninitialized part of it.
860 		 */
861 		ip->i_d.di_mode = 0;
862 		/*
863 		 * Initialize the per-fork minima and maxima for a new
864 		 * inode here.  xfs_iformat will do it for old inodes.
865 		 */
866 		ip->i_df.if_ext_max =
867 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
868 	}
869 
870 	/*
871 	 * The inode format changed when we moved the link count and
872 	 * made it 32 bits long.  If this is an old format inode,
873 	 * convert it in memory to look like a new one.  If it gets
874 	 * flushed to disk we will convert back before flushing or
875 	 * logging it.  We zero out the new projid field and the old link
876 	 * count field.  We'll handle clearing the pad field (the remains
877 	 * of the old uuid field) when we actually convert the inode to
878 	 * the new format. We don't change the version number so that we
879 	 * can distinguish this from a real new format inode.
880 	 */
881 	if (ip->i_d.di_version == 1) {
882 		ip->i_d.di_nlink = ip->i_d.di_onlink;
883 		ip->i_d.di_onlink = 0;
884 		ip->i_d.di_projid = 0;
885 	}
886 
887 	ip->i_delayed_blks = 0;
888 	ip->i_size = ip->i_d.di_size;
889 
890 	/*
891 	 * Mark the buffer containing the inode as something to keep
892 	 * around for a while.  This helps to keep recently accessed
893 	 * meta-data in-core longer.
894 	 */
895 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
896 
897 	/*
898 	 * Use xfs_trans_brelse() to release the buffer containing the
899 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
900 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
901 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
902 	 * will only release the buffer if it is not dirty within the
903 	 * transaction.  It will be OK to release the buffer in this case,
904 	 * because inodes on disk are never destroyed and we will be
905 	 * locking the new in-core inode before putting it in the hash
906 	 * table where other processes can find it.  Thus we don't have
907 	 * to worry about the inode being changed just because we released
908 	 * the buffer.
909 	 */
910  out_brelse:
911 	xfs_trans_brelse(tp, bp);
912 	return error;
913 }
914 
915 /*
916  * Read in extents from a btree-format inode.
917  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
918  */
919 int
920 xfs_iread_extents(
921 	xfs_trans_t	*tp,
922 	xfs_inode_t	*ip,
923 	int		whichfork)
924 {
925 	int		error;
926 	xfs_ifork_t	*ifp;
927 	xfs_extnum_t	nextents;
928 	size_t		size;
929 
930 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
931 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
932 				 ip->i_mount);
933 		return XFS_ERROR(EFSCORRUPTED);
934 	}
935 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
936 	size = nextents * sizeof(xfs_bmbt_rec_t);
937 	ifp = XFS_IFORK_PTR(ip, whichfork);
938 
939 	/*
940 	 * We know that the size is valid (it's checked in iformat_btree)
941 	 */
942 	ifp->if_lastex = NULLEXTNUM;
943 	ifp->if_bytes = ifp->if_real_bytes = 0;
944 	ifp->if_flags |= XFS_IFEXTENTS;
945 	xfs_iext_add(ifp, 0, nextents);
946 	error = xfs_bmap_read_extents(tp, ip, whichfork);
947 	if (error) {
948 		xfs_iext_destroy(ifp);
949 		ifp->if_flags &= ~XFS_IFEXTENTS;
950 		return error;
951 	}
952 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
953 	return 0;
954 }
955 
956 /*
957  * Allocate an inode on disk and return a copy of its in-core version.
958  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
959  * appropriately within the inode.  The uid and gid for the inode are
960  * set according to the contents of the given cred structure.
961  *
962  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
963  * has a free inode available, call xfs_iget()
964  * to obtain the in-core version of the allocated inode.  Finally,
965  * fill in the inode and log its initial contents.  In this case,
966  * ialloc_context would be set to NULL and call_again set to false.
967  *
968  * If xfs_dialloc() does not have an available inode,
969  * it will replenish its supply by doing an allocation. Since we can
970  * only do one allocation within a transaction without deadlocks, we
971  * must commit the current transaction before returning the inode itself.
972  * In this case, therefore, we will set call_again to true and return.
973  * The caller should then commit the current transaction, start a new
974  * transaction, and call xfs_ialloc() again to actually get the inode.
975  *
976  * To ensure that some other process does not grab the inode that
977  * was allocated during the first call to xfs_ialloc(), this routine
978  * also returns the [locked] bp pointing to the head of the freelist
979  * as ialloc_context.  The caller should hold this buffer across
980  * the commit and pass it back into this routine on the second call.
981  *
982  * If we are allocating quota inodes, we do not have a parent inode
983  * to attach to or associate with (i.e. pip == NULL) because they
984  * are not linked into the directory structure - they are attached
985  * directly to the superblock - and so have no parent.
986  */
987 int
988 xfs_ialloc(
989 	xfs_trans_t	*tp,
990 	xfs_inode_t	*pip,
991 	mode_t		mode,
992 	xfs_nlink_t	nlink,
993 	xfs_dev_t	rdev,
994 	cred_t		*cr,
995 	xfs_prid_t	prid,
996 	int		okalloc,
997 	xfs_buf_t	**ialloc_context,
998 	boolean_t	*call_again,
999 	xfs_inode_t	**ipp)
1000 {
1001 	xfs_ino_t	ino;
1002 	xfs_inode_t	*ip;
1003 	uint		flags;
1004 	int		error;
1005 	timespec_t	tv;
1006 	int		filestreams = 0;
1007 
1008 	/*
1009 	 * Call the space management code to pick
1010 	 * the on-disk inode to be allocated.
1011 	 */
1012 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1013 			    ialloc_context, call_again, &ino);
1014 	if (error)
1015 		return error;
1016 	if (*call_again || ino == NULLFSINO) {
1017 		*ipp = NULL;
1018 		return 0;
1019 	}
1020 	ASSERT(*ialloc_context == NULL);
1021 
1022 	/*
1023 	 * Get the in-core inode with the lock held exclusively.
1024 	 * This is because we're setting fields here we need
1025 	 * to prevent others from looking at until we're done.
1026 	 */
1027 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1028 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1029 	if (error)
1030 		return error;
1031 	ASSERT(ip != NULL);
1032 
1033 	ip->i_d.di_mode = (__uint16_t)mode;
1034 	ip->i_d.di_onlink = 0;
1035 	ip->i_d.di_nlink = nlink;
1036 	ASSERT(ip->i_d.di_nlink == nlink);
1037 	ip->i_d.di_uid = current_fsuid();
1038 	ip->i_d.di_gid = current_fsgid();
1039 	ip->i_d.di_projid = prid;
1040 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1041 
1042 	/*
1043 	 * If the superblock version is up to where we support new format
1044 	 * inodes and this is currently an old format inode, then change
1045 	 * the inode version number now.  This way we only do the conversion
1046 	 * here rather than here and in the flush/logging code.
1047 	 */
1048 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1049 	    ip->i_d.di_version == 1) {
1050 		ip->i_d.di_version = 2;
1051 		/*
1052 		 * We've already zeroed the old link count, the projid field,
1053 		 * and the pad field.
1054 		 */
1055 	}
1056 
1057 	/*
1058 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1059 	 */
1060 	if ((prid != 0) && (ip->i_d.di_version == 1))
1061 		xfs_bump_ino_vers2(tp, ip);
1062 
1063 	if (pip && XFS_INHERIT_GID(pip)) {
1064 		ip->i_d.di_gid = pip->i_d.di_gid;
1065 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1066 			ip->i_d.di_mode |= S_ISGID;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * If the group ID of the new file does not match the effective group
1072 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1073 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1074 	 */
1075 	if ((irix_sgid_inherit) &&
1076 	    (ip->i_d.di_mode & S_ISGID) &&
1077 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1078 		ip->i_d.di_mode &= ~S_ISGID;
1079 	}
1080 
1081 	ip->i_d.di_size = 0;
1082 	ip->i_size = 0;
1083 	ip->i_d.di_nextents = 0;
1084 	ASSERT(ip->i_d.di_nblocks == 0);
1085 
1086 	nanotime(&tv);
1087 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1088 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1089 	ip->i_d.di_atime = ip->i_d.di_mtime;
1090 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1091 
1092 	/*
1093 	 * di_gen will have been taken care of in xfs_iread.
1094 	 */
1095 	ip->i_d.di_extsize = 0;
1096 	ip->i_d.di_dmevmask = 0;
1097 	ip->i_d.di_dmstate = 0;
1098 	ip->i_d.di_flags = 0;
1099 	flags = XFS_ILOG_CORE;
1100 	switch (mode & S_IFMT) {
1101 	case S_IFIFO:
1102 	case S_IFCHR:
1103 	case S_IFBLK:
1104 	case S_IFSOCK:
1105 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1106 		ip->i_df.if_u2.if_rdev = rdev;
1107 		ip->i_df.if_flags = 0;
1108 		flags |= XFS_ILOG_DEV;
1109 		break;
1110 	case S_IFREG:
1111 		/*
1112 		 * we can't set up filestreams until after the VFS inode
1113 		 * is set up properly.
1114 		 */
1115 		if (pip && xfs_inode_is_filestream(pip))
1116 			filestreams = 1;
1117 		/* fall through */
1118 	case S_IFDIR:
1119 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1120 			uint	di_flags = 0;
1121 
1122 			if ((mode & S_IFMT) == S_IFDIR) {
1123 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1124 					di_flags |= XFS_DIFLAG_RTINHERIT;
1125 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1126 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1127 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1128 				}
1129 			} else if ((mode & S_IFMT) == S_IFREG) {
1130 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1131 					di_flags |= XFS_DIFLAG_REALTIME;
1132 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1133 					di_flags |= XFS_DIFLAG_EXTSIZE;
1134 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1135 				}
1136 			}
1137 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1138 			    xfs_inherit_noatime)
1139 				di_flags |= XFS_DIFLAG_NOATIME;
1140 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1141 			    xfs_inherit_nodump)
1142 				di_flags |= XFS_DIFLAG_NODUMP;
1143 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1144 			    xfs_inherit_sync)
1145 				di_flags |= XFS_DIFLAG_SYNC;
1146 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1147 			    xfs_inherit_nosymlinks)
1148 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1149 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1150 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1151 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1152 			    xfs_inherit_nodefrag)
1153 				di_flags |= XFS_DIFLAG_NODEFRAG;
1154 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1155 				di_flags |= XFS_DIFLAG_FILESTREAM;
1156 			ip->i_d.di_flags |= di_flags;
1157 		}
1158 		/* FALLTHROUGH */
1159 	case S_IFLNK:
1160 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1161 		ip->i_df.if_flags = XFS_IFEXTENTS;
1162 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1163 		ip->i_df.if_u1.if_extents = NULL;
1164 		break;
1165 	default:
1166 		ASSERT(0);
1167 	}
1168 	/*
1169 	 * Attribute fork settings for new inode.
1170 	 */
1171 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1172 	ip->i_d.di_anextents = 0;
1173 
1174 	/*
1175 	 * Log the new values stuffed into the inode.
1176 	 */
1177 	xfs_trans_log_inode(tp, ip, flags);
1178 
1179 	/* now that we have an i_mode we can setup inode ops and unlock */
1180 	xfs_setup_inode(ip);
1181 
1182 	/* now we have set up the vfs inode we can associate the filestream */
1183 	if (filestreams) {
1184 		error = xfs_filestream_associate(pip, ip);
1185 		if (error < 0)
1186 			return -error;
1187 		if (!error)
1188 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1189 	}
1190 
1191 	*ipp = ip;
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Check to make sure that there are no blocks allocated to the
1197  * file beyond the size of the file.  We don't check this for
1198  * files with fixed size extents or real time extents, but we
1199  * at least do it for regular files.
1200  */
1201 #ifdef DEBUG
1202 void
1203 xfs_isize_check(
1204 	xfs_mount_t	*mp,
1205 	xfs_inode_t	*ip,
1206 	xfs_fsize_t	isize)
1207 {
1208 	xfs_fileoff_t	map_first;
1209 	int		nimaps;
1210 	xfs_bmbt_irec_t	imaps[2];
1211 
1212 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1213 		return;
1214 
1215 	if (XFS_IS_REALTIME_INODE(ip))
1216 		return;
1217 
1218 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1219 		return;
1220 
1221 	nimaps = 2;
1222 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1223 	/*
1224 	 * The filesystem could be shutting down, so bmapi may return
1225 	 * an error.
1226 	 */
1227 	if (xfs_bmapi(NULL, ip, map_first,
1228 			 (XFS_B_TO_FSB(mp,
1229 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1230 			  map_first),
1231 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1232 			 NULL, NULL))
1233 	    return;
1234 	ASSERT(nimaps == 1);
1235 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1236 }
1237 #endif	/* DEBUG */
1238 
1239 /*
1240  * Calculate the last possible buffered byte in a file.  This must
1241  * include data that was buffered beyond the EOF by the write code.
1242  * This also needs to deal with overflowing the xfs_fsize_t type
1243  * which can happen for sizes near the limit.
1244  *
1245  * We also need to take into account any blocks beyond the EOF.  It
1246  * may be the case that they were buffered by a write which failed.
1247  * In that case the pages will still be in memory, but the inode size
1248  * will never have been updated.
1249  */
1250 STATIC xfs_fsize_t
1251 xfs_file_last_byte(
1252 	xfs_inode_t	*ip)
1253 {
1254 	xfs_mount_t	*mp;
1255 	xfs_fsize_t	last_byte;
1256 	xfs_fileoff_t	last_block;
1257 	xfs_fileoff_t	size_last_block;
1258 	int		error;
1259 
1260 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1261 
1262 	mp = ip->i_mount;
1263 	/*
1264 	 * Only check for blocks beyond the EOF if the extents have
1265 	 * been read in.  This eliminates the need for the inode lock,
1266 	 * and it also saves us from looking when it really isn't
1267 	 * necessary.
1268 	 */
1269 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1270 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1271 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1272 			XFS_DATA_FORK);
1273 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1274 		if (error) {
1275 			last_block = 0;
1276 		}
1277 	} else {
1278 		last_block = 0;
1279 	}
1280 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1281 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1282 
1283 	last_byte = XFS_FSB_TO_B(mp, last_block);
1284 	if (last_byte < 0) {
1285 		return XFS_MAXIOFFSET(mp);
1286 	}
1287 	last_byte += (1 << mp->m_writeio_log);
1288 	if (last_byte < 0) {
1289 		return XFS_MAXIOFFSET(mp);
1290 	}
1291 	return last_byte;
1292 }
1293 
1294 /*
1295  * Start the truncation of the file to new_size.  The new size
1296  * must be smaller than the current size.  This routine will
1297  * clear the buffer and page caches of file data in the removed
1298  * range, and xfs_itruncate_finish() will remove the underlying
1299  * disk blocks.
1300  *
1301  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1302  * must NOT have the inode lock held at all.  This is because we're
1303  * calling into the buffer/page cache code and we can't hold the
1304  * inode lock when we do so.
1305  *
1306  * We need to wait for any direct I/Os in flight to complete before we
1307  * proceed with the truncate. This is needed to prevent the extents
1308  * being read or written by the direct I/Os from being removed while the
1309  * I/O is in flight as there is no other method of synchronising
1310  * direct I/O with the truncate operation.  Also, because we hold
1311  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1312  * started until the truncate completes and drops the lock. Essentially,
1313  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1314  * ordering between direct I/Os and the truncate operation.
1315  *
1316  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1317  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1318  * in the case that the caller is locking things out of order and
1319  * may not be able to call xfs_itruncate_finish() with the inode lock
1320  * held without dropping the I/O lock.  If the caller must drop the
1321  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1322  * must be called again with all the same restrictions as the initial
1323  * call.
1324  */
1325 int
1326 xfs_itruncate_start(
1327 	xfs_inode_t	*ip,
1328 	uint		flags,
1329 	xfs_fsize_t	new_size)
1330 {
1331 	xfs_fsize_t	last_byte;
1332 	xfs_off_t	toss_start;
1333 	xfs_mount_t	*mp;
1334 	int		error = 0;
1335 
1336 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1337 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1338 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1339 	       (flags == XFS_ITRUNC_MAYBE));
1340 
1341 	mp = ip->i_mount;
1342 
1343 	/* wait for the completion of any pending DIOs */
1344 	if (new_size == 0 || new_size < ip->i_size)
1345 		xfs_ioend_wait(ip);
1346 
1347 	/*
1348 	 * Call toss_pages or flushinval_pages to get rid of pages
1349 	 * overlapping the region being removed.  We have to use
1350 	 * the less efficient flushinval_pages in the case that the
1351 	 * caller may not be able to finish the truncate without
1352 	 * dropping the inode's I/O lock.  Make sure
1353 	 * to catch any pages brought in by buffers overlapping
1354 	 * the EOF by searching out beyond the isize by our
1355 	 * block size. We round new_size up to a block boundary
1356 	 * so that we don't toss things on the same block as
1357 	 * new_size but before it.
1358 	 *
1359 	 * Before calling toss_page or flushinval_pages, make sure to
1360 	 * call remapf() over the same region if the file is mapped.
1361 	 * This frees up mapped file references to the pages in the
1362 	 * given range and for the flushinval_pages case it ensures
1363 	 * that we get the latest mapped changes flushed out.
1364 	 */
1365 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1366 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1367 	if (toss_start < 0) {
1368 		/*
1369 		 * The place to start tossing is beyond our maximum
1370 		 * file size, so there is no way that the data extended
1371 		 * out there.
1372 		 */
1373 		return 0;
1374 	}
1375 	last_byte = xfs_file_last_byte(ip);
1376 	trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1377 	if (last_byte > toss_start) {
1378 		if (flags & XFS_ITRUNC_DEFINITE) {
1379 			xfs_tosspages(ip, toss_start,
1380 					-1, FI_REMAPF_LOCKED);
1381 		} else {
1382 			error = xfs_flushinval_pages(ip, toss_start,
1383 					-1, FI_REMAPF_LOCKED);
1384 		}
1385 	}
1386 
1387 #ifdef DEBUG
1388 	if (new_size == 0) {
1389 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1390 	}
1391 #endif
1392 	return error;
1393 }
1394 
1395 /*
1396  * Shrink the file to the given new_size.  The new size must be smaller than
1397  * the current size.  This will free up the underlying blocks in the removed
1398  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1399  *
1400  * The transaction passed to this routine must have made a permanent log
1401  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1402  * given transaction and start new ones, so make sure everything involved in
1403  * the transaction is tidy before calling here.  Some transaction will be
1404  * returned to the caller to be committed.  The incoming transaction must
1405  * already include the inode, and both inode locks must be held exclusively.
1406  * The inode must also be "held" within the transaction.  On return the inode
1407  * will be "held" within the returned transaction.  This routine does NOT
1408  * require any disk space to be reserved for it within the transaction.
1409  *
1410  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1411  * indicates the fork which is to be truncated.  For the attribute fork we only
1412  * support truncation to size 0.
1413  *
1414  * We use the sync parameter to indicate whether or not the first transaction
1415  * we perform might have to be synchronous.  For the attr fork, it needs to be
1416  * so if the unlink of the inode is not yet known to be permanent in the log.
1417  * This keeps us from freeing and reusing the blocks of the attribute fork
1418  * before the unlink of the inode becomes permanent.
1419  *
1420  * For the data fork, we normally have to run synchronously if we're being
1421  * called out of the inactive path or we're being called out of the create path
1422  * where we're truncating an existing file.  Either way, the truncate needs to
1423  * be sync so blocks don't reappear in the file with altered data in case of a
1424  * crash.  wsync filesystems can run the first case async because anything that
1425  * shrinks the inode has to run sync so by the time we're called here from
1426  * inactive, the inode size is permanently set to 0.
1427  *
1428  * Calls from the truncate path always need to be sync unless we're in a wsync
1429  * filesystem and the file has already been unlinked.
1430  *
1431  * The caller is responsible for correctly setting the sync parameter.  It gets
1432  * too hard for us to guess here which path we're being called out of just
1433  * based on inode state.
1434  *
1435  * If we get an error, we must return with the inode locked and linked into the
1436  * current transaction. This keeps things simple for the higher level code,
1437  * because it always knows that the inode is locked and held in the transaction
1438  * that returns to it whether errors occur or not.  We don't mark the inode
1439  * dirty on error so that transactions can be easily aborted if possible.
1440  */
1441 int
1442 xfs_itruncate_finish(
1443 	xfs_trans_t	**tp,
1444 	xfs_inode_t	*ip,
1445 	xfs_fsize_t	new_size,
1446 	int		fork,
1447 	int		sync)
1448 {
1449 	xfs_fsblock_t	first_block;
1450 	xfs_fileoff_t	first_unmap_block;
1451 	xfs_fileoff_t	last_block;
1452 	xfs_filblks_t	unmap_len=0;
1453 	xfs_mount_t	*mp;
1454 	xfs_trans_t	*ntp;
1455 	int		done;
1456 	int		committed;
1457 	xfs_bmap_free_t	free_list;
1458 	int		error;
1459 
1460 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1461 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1462 	ASSERT(*tp != NULL);
1463 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1464 	ASSERT(ip->i_transp == *tp);
1465 	ASSERT(ip->i_itemp != NULL);
1466 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1467 
1468 
1469 	ntp = *tp;
1470 	mp = (ntp)->t_mountp;
1471 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1472 
1473 	/*
1474 	 * We only support truncating the entire attribute fork.
1475 	 */
1476 	if (fork == XFS_ATTR_FORK) {
1477 		new_size = 0LL;
1478 	}
1479 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1480 	trace_xfs_itruncate_finish_start(ip, new_size);
1481 
1482 	/*
1483 	 * The first thing we do is set the size to new_size permanently
1484 	 * on disk.  This way we don't have to worry about anyone ever
1485 	 * being able to look at the data being freed even in the face
1486 	 * of a crash.  What we're getting around here is the case where
1487 	 * we free a block, it is allocated to another file, it is written
1488 	 * to, and then we crash.  If the new data gets written to the
1489 	 * file but the log buffers containing the free and reallocation
1490 	 * don't, then we'd end up with garbage in the blocks being freed.
1491 	 * As long as we make the new_size permanent before actually
1492 	 * freeing any blocks it doesn't matter if they get writtten to.
1493 	 *
1494 	 * The callers must signal into us whether or not the size
1495 	 * setting here must be synchronous.  There are a few cases
1496 	 * where it doesn't have to be synchronous.  Those cases
1497 	 * occur if the file is unlinked and we know the unlink is
1498 	 * permanent or if the blocks being truncated are guaranteed
1499 	 * to be beyond the inode eof (regardless of the link count)
1500 	 * and the eof value is permanent.  Both of these cases occur
1501 	 * only on wsync-mounted filesystems.  In those cases, we're
1502 	 * guaranteed that no user will ever see the data in the blocks
1503 	 * that are being truncated so the truncate can run async.
1504 	 * In the free beyond eof case, the file may wind up with
1505 	 * more blocks allocated to it than it needs if we crash
1506 	 * and that won't get fixed until the next time the file
1507 	 * is re-opened and closed but that's ok as that shouldn't
1508 	 * be too many blocks.
1509 	 *
1510 	 * However, we can't just make all wsync xactions run async
1511 	 * because there's one call out of the create path that needs
1512 	 * to run sync where it's truncating an existing file to size
1513 	 * 0 whose size is > 0.
1514 	 *
1515 	 * It's probably possible to come up with a test in this
1516 	 * routine that would correctly distinguish all the above
1517 	 * cases from the values of the function parameters and the
1518 	 * inode state but for sanity's sake, I've decided to let the
1519 	 * layers above just tell us.  It's simpler to correctly figure
1520 	 * out in the layer above exactly under what conditions we
1521 	 * can run async and I think it's easier for others read and
1522 	 * follow the logic in case something has to be changed.
1523 	 * cscope is your friend -- rcc.
1524 	 *
1525 	 * The attribute fork is much simpler.
1526 	 *
1527 	 * For the attribute fork we allow the caller to tell us whether
1528 	 * the unlink of the inode that led to this call is yet permanent
1529 	 * in the on disk log.  If it is not and we will be freeing extents
1530 	 * in this inode then we make the first transaction synchronous
1531 	 * to make sure that the unlink is permanent by the time we free
1532 	 * the blocks.
1533 	 */
1534 	if (fork == XFS_DATA_FORK) {
1535 		if (ip->i_d.di_nextents > 0) {
1536 			/*
1537 			 * If we are not changing the file size then do
1538 			 * not update the on-disk file size - we may be
1539 			 * called from xfs_inactive_free_eofblocks().  If we
1540 			 * update the on-disk file size and then the system
1541 			 * crashes before the contents of the file are
1542 			 * flushed to disk then the files may be full of
1543 			 * holes (ie NULL files bug).
1544 			 */
1545 			if (ip->i_size != new_size) {
1546 				ip->i_d.di_size = new_size;
1547 				ip->i_size = new_size;
1548 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1549 			}
1550 		}
1551 	} else if (sync) {
1552 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1553 		if (ip->i_d.di_anextents > 0)
1554 			xfs_trans_set_sync(ntp);
1555 	}
1556 	ASSERT(fork == XFS_DATA_FORK ||
1557 		(fork == XFS_ATTR_FORK &&
1558 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1559 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1560 
1561 	/*
1562 	 * Since it is possible for space to become allocated beyond
1563 	 * the end of the file (in a crash where the space is allocated
1564 	 * but the inode size is not yet updated), simply remove any
1565 	 * blocks which show up between the new EOF and the maximum
1566 	 * possible file size.  If the first block to be removed is
1567 	 * beyond the maximum file size (ie it is the same as last_block),
1568 	 * then there is nothing to do.
1569 	 */
1570 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1571 	ASSERT(first_unmap_block <= last_block);
1572 	done = 0;
1573 	if (last_block == first_unmap_block) {
1574 		done = 1;
1575 	} else {
1576 		unmap_len = last_block - first_unmap_block + 1;
1577 	}
1578 	while (!done) {
1579 		/*
1580 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1581 		 * will tell us whether it freed the entire range or
1582 		 * not.  If this is a synchronous mount (wsync),
1583 		 * then we can tell bunmapi to keep all the
1584 		 * transactions asynchronous since the unlink
1585 		 * transaction that made this inode inactive has
1586 		 * already hit the disk.  There's no danger of
1587 		 * the freed blocks being reused, there being a
1588 		 * crash, and the reused blocks suddenly reappearing
1589 		 * in this file with garbage in them once recovery
1590 		 * runs.
1591 		 */
1592 		xfs_bmap_init(&free_list, &first_block);
1593 		error = xfs_bunmapi(ntp, ip,
1594 				    first_unmap_block, unmap_len,
1595 				    xfs_bmapi_aflag(fork) |
1596 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1597 				    XFS_ITRUNC_MAX_EXTENTS,
1598 				    &first_block, &free_list,
1599 				    NULL, &done);
1600 		if (error) {
1601 			/*
1602 			 * If the bunmapi call encounters an error,
1603 			 * return to the caller where the transaction
1604 			 * can be properly aborted.  We just need to
1605 			 * make sure we're not holding any resources
1606 			 * that we were not when we came in.
1607 			 */
1608 			xfs_bmap_cancel(&free_list);
1609 			return error;
1610 		}
1611 
1612 		/*
1613 		 * Duplicate the transaction that has the permanent
1614 		 * reservation and commit the old transaction.
1615 		 */
1616 		error = xfs_bmap_finish(tp, &free_list, &committed);
1617 		ntp = *tp;
1618 		if (committed) {
1619 			/* link the inode into the next xact in the chain */
1620 			xfs_trans_ijoin(ntp, ip,
1621 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1622 			xfs_trans_ihold(ntp, ip);
1623 		}
1624 
1625 		if (error) {
1626 			/*
1627 			 * If the bmap finish call encounters an error, return
1628 			 * to the caller where the transaction can be properly
1629 			 * aborted.  We just need to make sure we're not
1630 			 * holding any resources that we were not when we came
1631 			 * in.
1632 			 *
1633 			 * Aborting from this point might lose some blocks in
1634 			 * the file system, but oh well.
1635 			 */
1636 			xfs_bmap_cancel(&free_list);
1637 			return error;
1638 		}
1639 
1640 		if (committed) {
1641 			/*
1642 			 * Mark the inode dirty so it will be logged and
1643 			 * moved forward in the log as part of every commit.
1644 			 */
1645 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1646 		}
1647 
1648 		ntp = xfs_trans_dup(ntp);
1649 		error = xfs_trans_commit(*tp, 0);
1650 		*tp = ntp;
1651 
1652 		/* link the inode into the next transaction in the chain */
1653 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1654 		xfs_trans_ihold(ntp, ip);
1655 
1656 		if (error)
1657 			return error;
1658 		/*
1659 		 * transaction commit worked ok so we can drop the extra ticket
1660 		 * reference that we gained in xfs_trans_dup()
1661 		 */
1662 		xfs_log_ticket_put(ntp->t_ticket);
1663 		error = xfs_trans_reserve(ntp, 0,
1664 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1665 					XFS_TRANS_PERM_LOG_RES,
1666 					XFS_ITRUNCATE_LOG_COUNT);
1667 		if (error)
1668 			return error;
1669 	}
1670 	/*
1671 	 * Only update the size in the case of the data fork, but
1672 	 * always re-log the inode so that our permanent transaction
1673 	 * can keep on rolling it forward in the log.
1674 	 */
1675 	if (fork == XFS_DATA_FORK) {
1676 		xfs_isize_check(mp, ip, new_size);
1677 		/*
1678 		 * If we are not changing the file size then do
1679 		 * not update the on-disk file size - we may be
1680 		 * called from xfs_inactive_free_eofblocks().  If we
1681 		 * update the on-disk file size and then the system
1682 		 * crashes before the contents of the file are
1683 		 * flushed to disk then the files may be full of
1684 		 * holes (ie NULL files bug).
1685 		 */
1686 		if (ip->i_size != new_size) {
1687 			ip->i_d.di_size = new_size;
1688 			ip->i_size = new_size;
1689 		}
1690 	}
1691 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1692 	ASSERT((new_size != 0) ||
1693 	       (fork == XFS_ATTR_FORK) ||
1694 	       (ip->i_delayed_blks == 0));
1695 	ASSERT((new_size != 0) ||
1696 	       (fork == XFS_ATTR_FORK) ||
1697 	       (ip->i_d.di_nextents == 0));
1698 	trace_xfs_itruncate_finish_end(ip, new_size);
1699 	return 0;
1700 }
1701 
1702 /*
1703  * This is called when the inode's link count goes to 0.
1704  * We place the on-disk inode on a list in the AGI.  It
1705  * will be pulled from this list when the inode is freed.
1706  */
1707 int
1708 xfs_iunlink(
1709 	xfs_trans_t	*tp,
1710 	xfs_inode_t	*ip)
1711 {
1712 	xfs_mount_t	*mp;
1713 	xfs_agi_t	*agi;
1714 	xfs_dinode_t	*dip;
1715 	xfs_buf_t	*agibp;
1716 	xfs_buf_t	*ibp;
1717 	xfs_agino_t	agino;
1718 	short		bucket_index;
1719 	int		offset;
1720 	int		error;
1721 
1722 	ASSERT(ip->i_d.di_nlink == 0);
1723 	ASSERT(ip->i_d.di_mode != 0);
1724 	ASSERT(ip->i_transp == tp);
1725 
1726 	mp = tp->t_mountp;
1727 
1728 	/*
1729 	 * Get the agi buffer first.  It ensures lock ordering
1730 	 * on the list.
1731 	 */
1732 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1733 	if (error)
1734 		return error;
1735 	agi = XFS_BUF_TO_AGI(agibp);
1736 
1737 	/*
1738 	 * Get the index into the agi hash table for the
1739 	 * list this inode will go on.
1740 	 */
1741 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1742 	ASSERT(agino != 0);
1743 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1744 	ASSERT(agi->agi_unlinked[bucket_index]);
1745 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1746 
1747 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1748 		/*
1749 		 * There is already another inode in the bucket we need
1750 		 * to add ourselves to.  Add us at the front of the list.
1751 		 * Here we put the head pointer into our next pointer,
1752 		 * and then we fall through to point the head at us.
1753 		 */
1754 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1755 		if (error)
1756 			return error;
1757 
1758 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1759 		/* both on-disk, don't endian flip twice */
1760 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1761 		offset = ip->i_imap.im_boffset +
1762 			offsetof(xfs_dinode_t, di_next_unlinked);
1763 		xfs_trans_inode_buf(tp, ibp);
1764 		xfs_trans_log_buf(tp, ibp, offset,
1765 				  (offset + sizeof(xfs_agino_t) - 1));
1766 		xfs_inobp_check(mp, ibp);
1767 	}
1768 
1769 	/*
1770 	 * Point the bucket head pointer at the inode being inserted.
1771 	 */
1772 	ASSERT(agino != 0);
1773 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1774 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1775 		(sizeof(xfs_agino_t) * bucket_index);
1776 	xfs_trans_log_buf(tp, agibp, offset,
1777 			  (offset + sizeof(xfs_agino_t) - 1));
1778 	return 0;
1779 }
1780 
1781 /*
1782  * Pull the on-disk inode from the AGI unlinked list.
1783  */
1784 STATIC int
1785 xfs_iunlink_remove(
1786 	xfs_trans_t	*tp,
1787 	xfs_inode_t	*ip)
1788 {
1789 	xfs_ino_t	next_ino;
1790 	xfs_mount_t	*mp;
1791 	xfs_agi_t	*agi;
1792 	xfs_dinode_t	*dip;
1793 	xfs_buf_t	*agibp;
1794 	xfs_buf_t	*ibp;
1795 	xfs_agnumber_t	agno;
1796 	xfs_agino_t	agino;
1797 	xfs_agino_t	next_agino;
1798 	xfs_buf_t	*last_ibp;
1799 	xfs_dinode_t	*last_dip = NULL;
1800 	short		bucket_index;
1801 	int		offset, last_offset = 0;
1802 	int		error;
1803 
1804 	mp = tp->t_mountp;
1805 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1806 
1807 	/*
1808 	 * Get the agi buffer first.  It ensures lock ordering
1809 	 * on the list.
1810 	 */
1811 	error = xfs_read_agi(mp, tp, agno, &agibp);
1812 	if (error)
1813 		return error;
1814 
1815 	agi = XFS_BUF_TO_AGI(agibp);
1816 
1817 	/*
1818 	 * Get the index into the agi hash table for the
1819 	 * list this inode will go on.
1820 	 */
1821 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1822 	ASSERT(agino != 0);
1823 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1824 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1825 	ASSERT(agi->agi_unlinked[bucket_index]);
1826 
1827 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1828 		/*
1829 		 * We're at the head of the list.  Get the inode's
1830 		 * on-disk buffer to see if there is anyone after us
1831 		 * on the list.  Only modify our next pointer if it
1832 		 * is not already NULLAGINO.  This saves us the overhead
1833 		 * of dealing with the buffer when there is no need to
1834 		 * change it.
1835 		 */
1836 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1837 		if (error) {
1838 			cmn_err(CE_WARN,
1839 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1840 				error, mp->m_fsname);
1841 			return error;
1842 		}
1843 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1844 		ASSERT(next_agino != 0);
1845 		if (next_agino != NULLAGINO) {
1846 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1847 			offset = ip->i_imap.im_boffset +
1848 				offsetof(xfs_dinode_t, di_next_unlinked);
1849 			xfs_trans_inode_buf(tp, ibp);
1850 			xfs_trans_log_buf(tp, ibp, offset,
1851 					  (offset + sizeof(xfs_agino_t) - 1));
1852 			xfs_inobp_check(mp, ibp);
1853 		} else {
1854 			xfs_trans_brelse(tp, ibp);
1855 		}
1856 		/*
1857 		 * Point the bucket head pointer at the next inode.
1858 		 */
1859 		ASSERT(next_agino != 0);
1860 		ASSERT(next_agino != agino);
1861 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1862 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1863 			(sizeof(xfs_agino_t) * bucket_index);
1864 		xfs_trans_log_buf(tp, agibp, offset,
1865 				  (offset + sizeof(xfs_agino_t) - 1));
1866 	} else {
1867 		/*
1868 		 * We need to search the list for the inode being freed.
1869 		 */
1870 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1871 		last_ibp = NULL;
1872 		while (next_agino != agino) {
1873 			/*
1874 			 * If the last inode wasn't the one pointing to
1875 			 * us, then release its buffer since we're not
1876 			 * going to do anything with it.
1877 			 */
1878 			if (last_ibp != NULL) {
1879 				xfs_trans_brelse(tp, last_ibp);
1880 			}
1881 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1882 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1883 					    &last_ibp, &last_offset, 0);
1884 			if (error) {
1885 				cmn_err(CE_WARN,
1886 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1887 					error, mp->m_fsname);
1888 				return error;
1889 			}
1890 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1891 			ASSERT(next_agino != NULLAGINO);
1892 			ASSERT(next_agino != 0);
1893 		}
1894 		/*
1895 		 * Now last_ibp points to the buffer previous to us on
1896 		 * the unlinked list.  Pull us from the list.
1897 		 */
1898 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1899 		if (error) {
1900 			cmn_err(CE_WARN,
1901 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1902 				error, mp->m_fsname);
1903 			return error;
1904 		}
1905 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1906 		ASSERT(next_agino != 0);
1907 		ASSERT(next_agino != agino);
1908 		if (next_agino != NULLAGINO) {
1909 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1910 			offset = ip->i_imap.im_boffset +
1911 				offsetof(xfs_dinode_t, di_next_unlinked);
1912 			xfs_trans_inode_buf(tp, ibp);
1913 			xfs_trans_log_buf(tp, ibp, offset,
1914 					  (offset + sizeof(xfs_agino_t) - 1));
1915 			xfs_inobp_check(mp, ibp);
1916 		} else {
1917 			xfs_trans_brelse(tp, ibp);
1918 		}
1919 		/*
1920 		 * Point the previous inode on the list to the next inode.
1921 		 */
1922 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1923 		ASSERT(next_agino != 0);
1924 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1925 		xfs_trans_inode_buf(tp, last_ibp);
1926 		xfs_trans_log_buf(tp, last_ibp, offset,
1927 				  (offset + sizeof(xfs_agino_t) - 1));
1928 		xfs_inobp_check(mp, last_ibp);
1929 	}
1930 	return 0;
1931 }
1932 
1933 STATIC void
1934 xfs_ifree_cluster(
1935 	xfs_inode_t	*free_ip,
1936 	xfs_trans_t	*tp,
1937 	xfs_ino_t	inum)
1938 {
1939 	xfs_mount_t		*mp = free_ip->i_mount;
1940 	int			blks_per_cluster;
1941 	int			nbufs;
1942 	int			ninodes;
1943 	int			i, j, found, pre_flushed;
1944 	xfs_daddr_t		blkno;
1945 	xfs_buf_t		*bp;
1946 	xfs_inode_t		*ip, **ip_found;
1947 	xfs_inode_log_item_t	*iip;
1948 	xfs_log_item_t		*lip;
1949 	struct xfs_perag	*pag;
1950 
1951 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1952 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1953 		blks_per_cluster = 1;
1954 		ninodes = mp->m_sb.sb_inopblock;
1955 		nbufs = XFS_IALLOC_BLOCKS(mp);
1956 	} else {
1957 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1958 					mp->m_sb.sb_blocksize;
1959 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1960 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1961 	}
1962 
1963 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1964 
1965 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1966 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1967 					 XFS_INO_TO_AGBNO(mp, inum));
1968 
1969 
1970 		/*
1971 		 * Look for each inode in memory and attempt to lock it,
1972 		 * we can be racing with flush and tail pushing here.
1973 		 * any inode we get the locks on, add to an array of
1974 		 * inode items to process later.
1975 		 *
1976 		 * The get the buffer lock, we could beat a flush
1977 		 * or tail pushing thread to the lock here, in which
1978 		 * case they will go looking for the inode buffer
1979 		 * and fail, we need some other form of interlock
1980 		 * here.
1981 		 */
1982 		found = 0;
1983 		for (i = 0; i < ninodes; i++) {
1984 			read_lock(&pag->pag_ici_lock);
1985 			ip = radix_tree_lookup(&pag->pag_ici_root,
1986 					XFS_INO_TO_AGINO(mp, (inum + i)));
1987 
1988 			/* Inode not in memory or we found it already,
1989 			 * nothing to do
1990 			 */
1991 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
1992 				read_unlock(&pag->pag_ici_lock);
1993 				continue;
1994 			}
1995 
1996 			if (xfs_inode_clean(ip)) {
1997 				read_unlock(&pag->pag_ici_lock);
1998 				continue;
1999 			}
2000 
2001 			/* If we can get the locks then add it to the
2002 			 * list, otherwise by the time we get the bp lock
2003 			 * below it will already be attached to the
2004 			 * inode buffer.
2005 			 */
2006 
2007 			/* This inode will already be locked - by us, lets
2008 			 * keep it that way.
2009 			 */
2010 
2011 			if (ip == free_ip) {
2012 				if (xfs_iflock_nowait(ip)) {
2013 					xfs_iflags_set(ip, XFS_ISTALE);
2014 					if (xfs_inode_clean(ip)) {
2015 						xfs_ifunlock(ip);
2016 					} else {
2017 						ip_found[found++] = ip;
2018 					}
2019 				}
2020 				read_unlock(&pag->pag_ici_lock);
2021 				continue;
2022 			}
2023 
2024 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2025 				if (xfs_iflock_nowait(ip)) {
2026 					xfs_iflags_set(ip, XFS_ISTALE);
2027 
2028 					if (xfs_inode_clean(ip)) {
2029 						xfs_ifunlock(ip);
2030 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2031 					} else {
2032 						ip_found[found++] = ip;
2033 					}
2034 				} else {
2035 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2036 				}
2037 			}
2038 			read_unlock(&pag->pag_ici_lock);
2039 		}
2040 
2041 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2042 					mp->m_bsize * blks_per_cluster,
2043 					XBF_LOCK);
2044 
2045 		pre_flushed = 0;
2046 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2047 		while (lip) {
2048 			if (lip->li_type == XFS_LI_INODE) {
2049 				iip = (xfs_inode_log_item_t *)lip;
2050 				ASSERT(iip->ili_logged == 1);
2051 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2052 				xfs_trans_ail_copy_lsn(mp->m_ail,
2053 							&iip->ili_flush_lsn,
2054 							&iip->ili_item.li_lsn);
2055 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2056 				pre_flushed++;
2057 			}
2058 			lip = lip->li_bio_list;
2059 		}
2060 
2061 		for (i = 0; i < found; i++) {
2062 			ip = ip_found[i];
2063 			iip = ip->i_itemp;
2064 
2065 			if (!iip) {
2066 				ip->i_update_core = 0;
2067 				xfs_ifunlock(ip);
2068 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2069 				continue;
2070 			}
2071 
2072 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2073 			iip->ili_format.ilf_fields = 0;
2074 			iip->ili_logged = 1;
2075 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2076 						&iip->ili_item.li_lsn);
2077 
2078 			xfs_buf_attach_iodone(bp,
2079 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2080 				xfs_istale_done, (xfs_log_item_t *)iip);
2081 			if (ip != free_ip) {
2082 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2083 			}
2084 		}
2085 
2086 		if (found || pre_flushed)
2087 			xfs_trans_stale_inode_buf(tp, bp);
2088 		xfs_trans_binval(tp, bp);
2089 	}
2090 
2091 	kmem_free(ip_found);
2092 	xfs_perag_put(pag);
2093 }
2094 
2095 /*
2096  * This is called to return an inode to the inode free list.
2097  * The inode should already be truncated to 0 length and have
2098  * no pages associated with it.  This routine also assumes that
2099  * the inode is already a part of the transaction.
2100  *
2101  * The on-disk copy of the inode will have been added to the list
2102  * of unlinked inodes in the AGI. We need to remove the inode from
2103  * that list atomically with respect to freeing it here.
2104  */
2105 int
2106 xfs_ifree(
2107 	xfs_trans_t	*tp,
2108 	xfs_inode_t	*ip,
2109 	xfs_bmap_free_t	*flist)
2110 {
2111 	int			error;
2112 	int			delete;
2113 	xfs_ino_t		first_ino;
2114 	xfs_dinode_t    	*dip;
2115 	xfs_buf_t       	*ibp;
2116 
2117 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2118 	ASSERT(ip->i_transp == tp);
2119 	ASSERT(ip->i_d.di_nlink == 0);
2120 	ASSERT(ip->i_d.di_nextents == 0);
2121 	ASSERT(ip->i_d.di_anextents == 0);
2122 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2123 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2124 	ASSERT(ip->i_d.di_nblocks == 0);
2125 
2126 	/*
2127 	 * Pull the on-disk inode from the AGI unlinked list.
2128 	 */
2129 	error = xfs_iunlink_remove(tp, ip);
2130 	if (error != 0) {
2131 		return error;
2132 	}
2133 
2134 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2135 	if (error != 0) {
2136 		return error;
2137 	}
2138 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2139 	ip->i_d.di_flags = 0;
2140 	ip->i_d.di_dmevmask = 0;
2141 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2142 	ip->i_df.if_ext_max =
2143 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2144 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2145 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2146 	/*
2147 	 * Bump the generation count so no one will be confused
2148 	 * by reincarnations of this inode.
2149 	 */
2150 	ip->i_d.di_gen++;
2151 
2152 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2153 
2154 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2155 	if (error)
2156 		return error;
2157 
2158         /*
2159 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2160 	* from picking up this inode when it is reclaimed (its incore state
2161 	* initialzed but not flushed to disk yet). The in-core di_mode is
2162 	* already cleared  and a corresponding transaction logged.
2163 	* The hack here just synchronizes the in-core to on-disk
2164 	* di_mode value in advance before the actual inode sync to disk.
2165 	* This is OK because the inode is already unlinked and would never
2166 	* change its di_mode again for this inode generation.
2167 	* This is a temporary hack that would require a proper fix
2168 	* in the future.
2169 	*/
2170 	dip->di_mode = 0;
2171 
2172 	if (delete) {
2173 		xfs_ifree_cluster(ip, tp, first_ino);
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 /*
2180  * Reallocate the space for if_broot based on the number of records
2181  * being added or deleted as indicated in rec_diff.  Move the records
2182  * and pointers in if_broot to fit the new size.  When shrinking this
2183  * will eliminate holes between the records and pointers created by
2184  * the caller.  When growing this will create holes to be filled in
2185  * by the caller.
2186  *
2187  * The caller must not request to add more records than would fit in
2188  * the on-disk inode root.  If the if_broot is currently NULL, then
2189  * if we adding records one will be allocated.  The caller must also
2190  * not request that the number of records go below zero, although
2191  * it can go to zero.
2192  *
2193  * ip -- the inode whose if_broot area is changing
2194  * ext_diff -- the change in the number of records, positive or negative,
2195  *	 requested for the if_broot array.
2196  */
2197 void
2198 xfs_iroot_realloc(
2199 	xfs_inode_t		*ip,
2200 	int			rec_diff,
2201 	int			whichfork)
2202 {
2203 	struct xfs_mount	*mp = ip->i_mount;
2204 	int			cur_max;
2205 	xfs_ifork_t		*ifp;
2206 	struct xfs_btree_block	*new_broot;
2207 	int			new_max;
2208 	size_t			new_size;
2209 	char			*np;
2210 	char			*op;
2211 
2212 	/*
2213 	 * Handle the degenerate case quietly.
2214 	 */
2215 	if (rec_diff == 0) {
2216 		return;
2217 	}
2218 
2219 	ifp = XFS_IFORK_PTR(ip, whichfork);
2220 	if (rec_diff > 0) {
2221 		/*
2222 		 * If there wasn't any memory allocated before, just
2223 		 * allocate it now and get out.
2224 		 */
2225 		if (ifp->if_broot_bytes == 0) {
2226 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2227 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2228 			ifp->if_broot_bytes = (int)new_size;
2229 			return;
2230 		}
2231 
2232 		/*
2233 		 * If there is already an existing if_broot, then we need
2234 		 * to realloc() it and shift the pointers to their new
2235 		 * location.  The records don't change location because
2236 		 * they are kept butted up against the btree block header.
2237 		 */
2238 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2239 		new_max = cur_max + rec_diff;
2240 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2241 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2242 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2243 				KM_SLEEP);
2244 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2245 						     ifp->if_broot_bytes);
2246 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2247 						     (int)new_size);
2248 		ifp->if_broot_bytes = (int)new_size;
2249 		ASSERT(ifp->if_broot_bytes <=
2250 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2251 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2252 		return;
2253 	}
2254 
2255 	/*
2256 	 * rec_diff is less than 0.  In this case, we are shrinking the
2257 	 * if_broot buffer.  It must already exist.  If we go to zero
2258 	 * records, just get rid of the root and clear the status bit.
2259 	 */
2260 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2261 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2262 	new_max = cur_max + rec_diff;
2263 	ASSERT(new_max >= 0);
2264 	if (new_max > 0)
2265 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2266 	else
2267 		new_size = 0;
2268 	if (new_size > 0) {
2269 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2270 		/*
2271 		 * First copy over the btree block header.
2272 		 */
2273 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2274 	} else {
2275 		new_broot = NULL;
2276 		ifp->if_flags &= ~XFS_IFBROOT;
2277 	}
2278 
2279 	/*
2280 	 * Only copy the records and pointers if there are any.
2281 	 */
2282 	if (new_max > 0) {
2283 		/*
2284 		 * First copy the records.
2285 		 */
2286 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2287 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2288 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2289 
2290 		/*
2291 		 * Then copy the pointers.
2292 		 */
2293 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2294 						     ifp->if_broot_bytes);
2295 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2296 						     (int)new_size);
2297 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2298 	}
2299 	kmem_free(ifp->if_broot);
2300 	ifp->if_broot = new_broot;
2301 	ifp->if_broot_bytes = (int)new_size;
2302 	ASSERT(ifp->if_broot_bytes <=
2303 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2304 	return;
2305 }
2306 
2307 
2308 /*
2309  * This is called when the amount of space needed for if_data
2310  * is increased or decreased.  The change in size is indicated by
2311  * the number of bytes that need to be added or deleted in the
2312  * byte_diff parameter.
2313  *
2314  * If the amount of space needed has decreased below the size of the
2315  * inline buffer, then switch to using the inline buffer.  Otherwise,
2316  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2317  * to what is needed.
2318  *
2319  * ip -- the inode whose if_data area is changing
2320  * byte_diff -- the change in the number of bytes, positive or negative,
2321  *	 requested for the if_data array.
2322  */
2323 void
2324 xfs_idata_realloc(
2325 	xfs_inode_t	*ip,
2326 	int		byte_diff,
2327 	int		whichfork)
2328 {
2329 	xfs_ifork_t	*ifp;
2330 	int		new_size;
2331 	int		real_size;
2332 
2333 	if (byte_diff == 0) {
2334 		return;
2335 	}
2336 
2337 	ifp = XFS_IFORK_PTR(ip, whichfork);
2338 	new_size = (int)ifp->if_bytes + byte_diff;
2339 	ASSERT(new_size >= 0);
2340 
2341 	if (new_size == 0) {
2342 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2343 			kmem_free(ifp->if_u1.if_data);
2344 		}
2345 		ifp->if_u1.if_data = NULL;
2346 		real_size = 0;
2347 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2348 		/*
2349 		 * If the valid extents/data can fit in if_inline_ext/data,
2350 		 * copy them from the malloc'd vector and free it.
2351 		 */
2352 		if (ifp->if_u1.if_data == NULL) {
2353 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2354 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2355 			ASSERT(ifp->if_real_bytes != 0);
2356 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2357 			      new_size);
2358 			kmem_free(ifp->if_u1.if_data);
2359 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2360 		}
2361 		real_size = 0;
2362 	} else {
2363 		/*
2364 		 * Stuck with malloc/realloc.
2365 		 * For inline data, the underlying buffer must be
2366 		 * a multiple of 4 bytes in size so that it can be
2367 		 * logged and stay on word boundaries.  We enforce
2368 		 * that here.
2369 		 */
2370 		real_size = roundup(new_size, 4);
2371 		if (ifp->if_u1.if_data == NULL) {
2372 			ASSERT(ifp->if_real_bytes == 0);
2373 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2374 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2375 			/*
2376 			 * Only do the realloc if the underlying size
2377 			 * is really changing.
2378 			 */
2379 			if (ifp->if_real_bytes != real_size) {
2380 				ifp->if_u1.if_data =
2381 					kmem_realloc(ifp->if_u1.if_data,
2382 							real_size,
2383 							ifp->if_real_bytes,
2384 							KM_SLEEP);
2385 			}
2386 		} else {
2387 			ASSERT(ifp->if_real_bytes == 0);
2388 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2389 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2390 				ifp->if_bytes);
2391 		}
2392 	}
2393 	ifp->if_real_bytes = real_size;
2394 	ifp->if_bytes = new_size;
2395 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2396 }
2397 
2398 void
2399 xfs_idestroy_fork(
2400 	xfs_inode_t	*ip,
2401 	int		whichfork)
2402 {
2403 	xfs_ifork_t	*ifp;
2404 
2405 	ifp = XFS_IFORK_PTR(ip, whichfork);
2406 	if (ifp->if_broot != NULL) {
2407 		kmem_free(ifp->if_broot);
2408 		ifp->if_broot = NULL;
2409 	}
2410 
2411 	/*
2412 	 * If the format is local, then we can't have an extents
2413 	 * array so just look for an inline data array.  If we're
2414 	 * not local then we may or may not have an extents list,
2415 	 * so check and free it up if we do.
2416 	 */
2417 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2418 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2419 		    (ifp->if_u1.if_data != NULL)) {
2420 			ASSERT(ifp->if_real_bytes != 0);
2421 			kmem_free(ifp->if_u1.if_data);
2422 			ifp->if_u1.if_data = NULL;
2423 			ifp->if_real_bytes = 0;
2424 		}
2425 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2426 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2427 		    ((ifp->if_u1.if_extents != NULL) &&
2428 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2429 		ASSERT(ifp->if_real_bytes != 0);
2430 		xfs_iext_destroy(ifp);
2431 	}
2432 	ASSERT(ifp->if_u1.if_extents == NULL ||
2433 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2434 	ASSERT(ifp->if_real_bytes == 0);
2435 	if (whichfork == XFS_ATTR_FORK) {
2436 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2437 		ip->i_afp = NULL;
2438 	}
2439 }
2440 
2441 /*
2442  * This is called to unpin an inode.  The caller must have the inode locked
2443  * in at least shared mode so that the buffer cannot be subsequently pinned
2444  * once someone is waiting for it to be unpinned.
2445  */
2446 static void
2447 xfs_iunpin_nowait(
2448 	struct xfs_inode	*ip)
2449 {
2450 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2451 
2452 	/* Give the log a push to start the unpinning I/O */
2453 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2454 
2455 }
2456 
2457 void
2458 xfs_iunpin_wait(
2459 	struct xfs_inode	*ip)
2460 {
2461 	if (xfs_ipincount(ip)) {
2462 		xfs_iunpin_nowait(ip);
2463 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2464 	}
2465 }
2466 
2467 /*
2468  * xfs_iextents_copy()
2469  *
2470  * This is called to copy the REAL extents (as opposed to the delayed
2471  * allocation extents) from the inode into the given buffer.  It
2472  * returns the number of bytes copied into the buffer.
2473  *
2474  * If there are no delayed allocation extents, then we can just
2475  * memcpy() the extents into the buffer.  Otherwise, we need to
2476  * examine each extent in turn and skip those which are delayed.
2477  */
2478 int
2479 xfs_iextents_copy(
2480 	xfs_inode_t		*ip,
2481 	xfs_bmbt_rec_t		*dp,
2482 	int			whichfork)
2483 {
2484 	int			copied;
2485 	int			i;
2486 	xfs_ifork_t		*ifp;
2487 	int			nrecs;
2488 	xfs_fsblock_t		start_block;
2489 
2490 	ifp = XFS_IFORK_PTR(ip, whichfork);
2491 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2492 	ASSERT(ifp->if_bytes > 0);
2493 
2494 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2495 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2496 	ASSERT(nrecs > 0);
2497 
2498 	/*
2499 	 * There are some delayed allocation extents in the
2500 	 * inode, so copy the extents one at a time and skip
2501 	 * the delayed ones.  There must be at least one
2502 	 * non-delayed extent.
2503 	 */
2504 	copied = 0;
2505 	for (i = 0; i < nrecs; i++) {
2506 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2507 		start_block = xfs_bmbt_get_startblock(ep);
2508 		if (isnullstartblock(start_block)) {
2509 			/*
2510 			 * It's a delayed allocation extent, so skip it.
2511 			 */
2512 			continue;
2513 		}
2514 
2515 		/* Translate to on disk format */
2516 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2517 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2518 		dp++;
2519 		copied++;
2520 	}
2521 	ASSERT(copied != 0);
2522 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2523 
2524 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2525 }
2526 
2527 /*
2528  * Each of the following cases stores data into the same region
2529  * of the on-disk inode, so only one of them can be valid at
2530  * any given time. While it is possible to have conflicting formats
2531  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2532  * in EXTENTS format, this can only happen when the fork has
2533  * changed formats after being modified but before being flushed.
2534  * In these cases, the format always takes precedence, because the
2535  * format indicates the current state of the fork.
2536  */
2537 /*ARGSUSED*/
2538 STATIC void
2539 xfs_iflush_fork(
2540 	xfs_inode_t		*ip,
2541 	xfs_dinode_t		*dip,
2542 	xfs_inode_log_item_t	*iip,
2543 	int			whichfork,
2544 	xfs_buf_t		*bp)
2545 {
2546 	char			*cp;
2547 	xfs_ifork_t		*ifp;
2548 	xfs_mount_t		*mp;
2549 #ifdef XFS_TRANS_DEBUG
2550 	int			first;
2551 #endif
2552 	static const short	brootflag[2] =
2553 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2554 	static const short	dataflag[2] =
2555 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2556 	static const short	extflag[2] =
2557 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2558 
2559 	if (!iip)
2560 		return;
2561 	ifp = XFS_IFORK_PTR(ip, whichfork);
2562 	/*
2563 	 * This can happen if we gave up in iformat in an error path,
2564 	 * for the attribute fork.
2565 	 */
2566 	if (!ifp) {
2567 		ASSERT(whichfork == XFS_ATTR_FORK);
2568 		return;
2569 	}
2570 	cp = XFS_DFORK_PTR(dip, whichfork);
2571 	mp = ip->i_mount;
2572 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2573 	case XFS_DINODE_FMT_LOCAL:
2574 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2575 		    (ifp->if_bytes > 0)) {
2576 			ASSERT(ifp->if_u1.if_data != NULL);
2577 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2578 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2579 		}
2580 		break;
2581 
2582 	case XFS_DINODE_FMT_EXTENTS:
2583 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2584 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2585 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2586 			(ifp->if_bytes == 0));
2587 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2588 			(ifp->if_bytes > 0));
2589 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2590 		    (ifp->if_bytes > 0)) {
2591 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2592 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2593 				whichfork);
2594 		}
2595 		break;
2596 
2597 	case XFS_DINODE_FMT_BTREE:
2598 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2599 		    (ifp->if_broot_bytes > 0)) {
2600 			ASSERT(ifp->if_broot != NULL);
2601 			ASSERT(ifp->if_broot_bytes <=
2602 			       (XFS_IFORK_SIZE(ip, whichfork) +
2603 				XFS_BROOT_SIZE_ADJ));
2604 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2605 				(xfs_bmdr_block_t *)cp,
2606 				XFS_DFORK_SIZE(dip, mp, whichfork));
2607 		}
2608 		break;
2609 
2610 	case XFS_DINODE_FMT_DEV:
2611 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2612 			ASSERT(whichfork == XFS_DATA_FORK);
2613 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2614 		}
2615 		break;
2616 
2617 	case XFS_DINODE_FMT_UUID:
2618 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2619 			ASSERT(whichfork == XFS_DATA_FORK);
2620 			memcpy(XFS_DFORK_DPTR(dip),
2621 			       &ip->i_df.if_u2.if_uuid,
2622 			       sizeof(uuid_t));
2623 		}
2624 		break;
2625 
2626 	default:
2627 		ASSERT(0);
2628 		break;
2629 	}
2630 }
2631 
2632 STATIC int
2633 xfs_iflush_cluster(
2634 	xfs_inode_t	*ip,
2635 	xfs_buf_t	*bp)
2636 {
2637 	xfs_mount_t		*mp = ip->i_mount;
2638 	struct xfs_perag	*pag;
2639 	unsigned long		first_index, mask;
2640 	unsigned long		inodes_per_cluster;
2641 	int			ilist_size;
2642 	xfs_inode_t		**ilist;
2643 	xfs_inode_t		*iq;
2644 	int			nr_found;
2645 	int			clcount = 0;
2646 	int			bufwasdelwri;
2647 	int			i;
2648 
2649 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2650 	ASSERT(pag->pagi_inodeok);
2651 	ASSERT(pag->pag_ici_init);
2652 
2653 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2654 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2655 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2656 	if (!ilist)
2657 		goto out_put;
2658 
2659 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2660 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2661 	read_lock(&pag->pag_ici_lock);
2662 	/* really need a gang lookup range call here */
2663 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2664 					first_index, inodes_per_cluster);
2665 	if (nr_found == 0)
2666 		goto out_free;
2667 
2668 	for (i = 0; i < nr_found; i++) {
2669 		iq = ilist[i];
2670 		if (iq == ip)
2671 			continue;
2672 		/* if the inode lies outside this cluster, we're done. */
2673 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2674 			break;
2675 		/*
2676 		 * Do an un-protected check to see if the inode is dirty and
2677 		 * is a candidate for flushing.  These checks will be repeated
2678 		 * later after the appropriate locks are acquired.
2679 		 */
2680 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2681 			continue;
2682 
2683 		/*
2684 		 * Try to get locks.  If any are unavailable or it is pinned,
2685 		 * then this inode cannot be flushed and is skipped.
2686 		 */
2687 
2688 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2689 			continue;
2690 		if (!xfs_iflock_nowait(iq)) {
2691 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2692 			continue;
2693 		}
2694 		if (xfs_ipincount(iq)) {
2695 			xfs_ifunlock(iq);
2696 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2697 			continue;
2698 		}
2699 
2700 		/*
2701 		 * arriving here means that this inode can be flushed.  First
2702 		 * re-check that it's dirty before flushing.
2703 		 */
2704 		if (!xfs_inode_clean(iq)) {
2705 			int	error;
2706 			error = xfs_iflush_int(iq, bp);
2707 			if (error) {
2708 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2709 				goto cluster_corrupt_out;
2710 			}
2711 			clcount++;
2712 		} else {
2713 			xfs_ifunlock(iq);
2714 		}
2715 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2716 	}
2717 
2718 	if (clcount) {
2719 		XFS_STATS_INC(xs_icluster_flushcnt);
2720 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2721 	}
2722 
2723 out_free:
2724 	read_unlock(&pag->pag_ici_lock);
2725 	kmem_free(ilist);
2726 out_put:
2727 	xfs_perag_put(pag);
2728 	return 0;
2729 
2730 
2731 cluster_corrupt_out:
2732 	/*
2733 	 * Corruption detected in the clustering loop.  Invalidate the
2734 	 * inode buffer and shut down the filesystem.
2735 	 */
2736 	read_unlock(&pag->pag_ici_lock);
2737 	/*
2738 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2739 	 * brelse can handle it with no problems.  If not, shut down the
2740 	 * filesystem before releasing the buffer.
2741 	 */
2742 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2743 	if (bufwasdelwri)
2744 		xfs_buf_relse(bp);
2745 
2746 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2747 
2748 	if (!bufwasdelwri) {
2749 		/*
2750 		 * Just like incore_relse: if we have b_iodone functions,
2751 		 * mark the buffer as an error and call them.  Otherwise
2752 		 * mark it as stale and brelse.
2753 		 */
2754 		if (XFS_BUF_IODONE_FUNC(bp)) {
2755 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2756 			XFS_BUF_UNDONE(bp);
2757 			XFS_BUF_STALE(bp);
2758 			XFS_BUF_ERROR(bp,EIO);
2759 			xfs_biodone(bp);
2760 		} else {
2761 			XFS_BUF_STALE(bp);
2762 			xfs_buf_relse(bp);
2763 		}
2764 	}
2765 
2766 	/*
2767 	 * Unlocks the flush lock
2768 	 */
2769 	xfs_iflush_abort(iq);
2770 	kmem_free(ilist);
2771 	xfs_perag_put(pag);
2772 	return XFS_ERROR(EFSCORRUPTED);
2773 }
2774 
2775 /*
2776  * xfs_iflush() will write a modified inode's changes out to the
2777  * inode's on disk home.  The caller must have the inode lock held
2778  * in at least shared mode and the inode flush completion must be
2779  * active as well.  The inode lock will still be held upon return from
2780  * the call and the caller is free to unlock it.
2781  * The inode flush will be completed when the inode reaches the disk.
2782  * The flags indicate how the inode's buffer should be written out.
2783  */
2784 int
2785 xfs_iflush(
2786 	xfs_inode_t		*ip,
2787 	uint			flags)
2788 {
2789 	xfs_inode_log_item_t	*iip;
2790 	xfs_buf_t		*bp;
2791 	xfs_dinode_t		*dip;
2792 	xfs_mount_t		*mp;
2793 	int			error;
2794 
2795 	XFS_STATS_INC(xs_iflush_count);
2796 
2797 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2798 	ASSERT(!completion_done(&ip->i_flush));
2799 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2800 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2801 
2802 	iip = ip->i_itemp;
2803 	mp = ip->i_mount;
2804 
2805 	/*
2806 	 * We can't flush the inode until it is unpinned, so wait for it if we
2807 	 * are allowed to block.  We know noone new can pin it, because we are
2808 	 * holding the inode lock shared and you need to hold it exclusively to
2809 	 * pin the inode.
2810 	 *
2811 	 * If we are not allowed to block, force the log out asynchronously so
2812 	 * that when we come back the inode will be unpinned. If other inodes
2813 	 * in the same cluster are dirty, they will probably write the inode
2814 	 * out for us if they occur after the log force completes.
2815 	 */
2816 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2817 		xfs_iunpin_nowait(ip);
2818 		xfs_ifunlock(ip);
2819 		return EAGAIN;
2820 	}
2821 	xfs_iunpin_wait(ip);
2822 
2823 	/*
2824 	 * For stale inodes we cannot rely on the backing buffer remaining
2825 	 * stale in cache for the remaining life of the stale inode and so
2826 	 * xfs_itobp() below may give us a buffer that no longer contains
2827 	 * inodes below. We have to check this after ensuring the inode is
2828 	 * unpinned so that it is safe to reclaim the stale inode after the
2829 	 * flush call.
2830 	 */
2831 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2832 		xfs_ifunlock(ip);
2833 		return 0;
2834 	}
2835 
2836 	/*
2837 	 * This may have been unpinned because the filesystem is shutting
2838 	 * down forcibly. If that's the case we must not write this inode
2839 	 * to disk, because the log record didn't make it to disk!
2840 	 */
2841 	if (XFS_FORCED_SHUTDOWN(mp)) {
2842 		ip->i_update_core = 0;
2843 		if (iip)
2844 			iip->ili_format.ilf_fields = 0;
2845 		xfs_ifunlock(ip);
2846 		return XFS_ERROR(EIO);
2847 	}
2848 
2849 	/*
2850 	 * Get the buffer containing the on-disk inode.
2851 	 */
2852 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2853 				(flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2854 	if (error || !bp) {
2855 		xfs_ifunlock(ip);
2856 		return error;
2857 	}
2858 
2859 	/*
2860 	 * First flush out the inode that xfs_iflush was called with.
2861 	 */
2862 	error = xfs_iflush_int(ip, bp);
2863 	if (error)
2864 		goto corrupt_out;
2865 
2866 	/*
2867 	 * If the buffer is pinned then push on the log now so we won't
2868 	 * get stuck waiting in the write for too long.
2869 	 */
2870 	if (XFS_BUF_ISPINNED(bp))
2871 		xfs_log_force(mp, 0);
2872 
2873 	/*
2874 	 * inode clustering:
2875 	 * see if other inodes can be gathered into this write
2876 	 */
2877 	error = xfs_iflush_cluster(ip, bp);
2878 	if (error)
2879 		goto cluster_corrupt_out;
2880 
2881 	if (flags & SYNC_WAIT)
2882 		error = xfs_bwrite(mp, bp);
2883 	else
2884 		xfs_bdwrite(mp, bp);
2885 	return error;
2886 
2887 corrupt_out:
2888 	xfs_buf_relse(bp);
2889 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2890 cluster_corrupt_out:
2891 	/*
2892 	 * Unlocks the flush lock
2893 	 */
2894 	xfs_iflush_abort(ip);
2895 	return XFS_ERROR(EFSCORRUPTED);
2896 }
2897 
2898 
2899 STATIC int
2900 xfs_iflush_int(
2901 	xfs_inode_t		*ip,
2902 	xfs_buf_t		*bp)
2903 {
2904 	xfs_inode_log_item_t	*iip;
2905 	xfs_dinode_t		*dip;
2906 	xfs_mount_t		*mp;
2907 #ifdef XFS_TRANS_DEBUG
2908 	int			first;
2909 #endif
2910 
2911 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2912 	ASSERT(!completion_done(&ip->i_flush));
2913 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2914 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2915 
2916 	iip = ip->i_itemp;
2917 	mp = ip->i_mount;
2918 
2919 	/* set *dip = inode's place in the buffer */
2920 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2921 
2922 	/*
2923 	 * Clear i_update_core before copying out the data.
2924 	 * This is for coordination with our timestamp updates
2925 	 * that don't hold the inode lock. They will always
2926 	 * update the timestamps BEFORE setting i_update_core,
2927 	 * so if we clear i_update_core after they set it we
2928 	 * are guaranteed to see their updates to the timestamps.
2929 	 * I believe that this depends on strongly ordered memory
2930 	 * semantics, but we have that.  We use the SYNCHRONIZE
2931 	 * macro to make sure that the compiler does not reorder
2932 	 * the i_update_core access below the data copy below.
2933 	 */
2934 	ip->i_update_core = 0;
2935 	SYNCHRONIZE();
2936 
2937 	/*
2938 	 * Make sure to get the latest timestamps from the Linux inode.
2939 	 */
2940 	xfs_synchronize_times(ip);
2941 
2942 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2943 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2944 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2945 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2946 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2947 		goto corrupt_out;
2948 	}
2949 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2950 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2951 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2952 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2953 			ip->i_ino, ip, ip->i_d.di_magic);
2954 		goto corrupt_out;
2955 	}
2956 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2957 		if (XFS_TEST_ERROR(
2958 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2959 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2960 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2961 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2962 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2963 				ip->i_ino, ip);
2964 			goto corrupt_out;
2965 		}
2966 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2967 		if (XFS_TEST_ERROR(
2968 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2969 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2970 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2971 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2972 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2973 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2974 				ip->i_ino, ip);
2975 			goto corrupt_out;
2976 		}
2977 	}
2978 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2979 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2980 				XFS_RANDOM_IFLUSH_5)) {
2981 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2982 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2983 			ip->i_ino,
2984 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2985 			ip->i_d.di_nblocks,
2986 			ip);
2987 		goto corrupt_out;
2988 	}
2989 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2990 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2991 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2992 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2993 			ip->i_ino, ip->i_d.di_forkoff, ip);
2994 		goto corrupt_out;
2995 	}
2996 	/*
2997 	 * bump the flush iteration count, used to detect flushes which
2998 	 * postdate a log record during recovery.
2999 	 */
3000 
3001 	ip->i_d.di_flushiter++;
3002 
3003 	/*
3004 	 * Copy the dirty parts of the inode into the on-disk
3005 	 * inode.  We always copy out the core of the inode,
3006 	 * because if the inode is dirty at all the core must
3007 	 * be.
3008 	 */
3009 	xfs_dinode_to_disk(dip, &ip->i_d);
3010 
3011 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3012 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3013 		ip->i_d.di_flushiter = 0;
3014 
3015 	/*
3016 	 * If this is really an old format inode and the superblock version
3017 	 * has not been updated to support only new format inodes, then
3018 	 * convert back to the old inode format.  If the superblock version
3019 	 * has been updated, then make the conversion permanent.
3020 	 */
3021 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3022 	if (ip->i_d.di_version == 1) {
3023 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3024 			/*
3025 			 * Convert it back.
3026 			 */
3027 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3028 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3029 		} else {
3030 			/*
3031 			 * The superblock version has already been bumped,
3032 			 * so just make the conversion to the new inode
3033 			 * format permanent.
3034 			 */
3035 			ip->i_d.di_version = 2;
3036 			dip->di_version = 2;
3037 			ip->i_d.di_onlink = 0;
3038 			dip->di_onlink = 0;
3039 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3040 			memset(&(dip->di_pad[0]), 0,
3041 			      sizeof(dip->di_pad));
3042 			ASSERT(ip->i_d.di_projid == 0);
3043 		}
3044 	}
3045 
3046 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3047 	if (XFS_IFORK_Q(ip))
3048 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3049 	xfs_inobp_check(mp, bp);
3050 
3051 	/*
3052 	 * We've recorded everything logged in the inode, so we'd
3053 	 * like to clear the ilf_fields bits so we don't log and
3054 	 * flush things unnecessarily.  However, we can't stop
3055 	 * logging all this information until the data we've copied
3056 	 * into the disk buffer is written to disk.  If we did we might
3057 	 * overwrite the copy of the inode in the log with all the
3058 	 * data after re-logging only part of it, and in the face of
3059 	 * a crash we wouldn't have all the data we need to recover.
3060 	 *
3061 	 * What we do is move the bits to the ili_last_fields field.
3062 	 * When logging the inode, these bits are moved back to the
3063 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3064 	 * clear ili_last_fields, since we know that the information
3065 	 * those bits represent is permanently on disk.  As long as
3066 	 * the flush completes before the inode is logged again, then
3067 	 * both ilf_fields and ili_last_fields will be cleared.
3068 	 *
3069 	 * We can play with the ilf_fields bits here, because the inode
3070 	 * lock must be held exclusively in order to set bits there
3071 	 * and the flush lock protects the ili_last_fields bits.
3072 	 * Set ili_logged so the flush done
3073 	 * routine can tell whether or not to look in the AIL.
3074 	 * Also, store the current LSN of the inode so that we can tell
3075 	 * whether the item has moved in the AIL from xfs_iflush_done().
3076 	 * In order to read the lsn we need the AIL lock, because
3077 	 * it is a 64 bit value that cannot be read atomically.
3078 	 */
3079 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3080 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3081 		iip->ili_format.ilf_fields = 0;
3082 		iip->ili_logged = 1;
3083 
3084 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3085 					&iip->ili_item.li_lsn);
3086 
3087 		/*
3088 		 * Attach the function xfs_iflush_done to the inode's
3089 		 * buffer.  This will remove the inode from the AIL
3090 		 * and unlock the inode's flush lock when the inode is
3091 		 * completely written to disk.
3092 		 */
3093 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3094 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3095 
3096 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3097 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3098 	} else {
3099 		/*
3100 		 * We're flushing an inode which is not in the AIL and has
3101 		 * not been logged but has i_update_core set.  For this
3102 		 * case we can use a B_DELWRI flush and immediately drop
3103 		 * the inode flush lock because we can avoid the whole
3104 		 * AIL state thing.  It's OK to drop the flush lock now,
3105 		 * because we've already locked the buffer and to do anything
3106 		 * you really need both.
3107 		 */
3108 		if (iip != NULL) {
3109 			ASSERT(iip->ili_logged == 0);
3110 			ASSERT(iip->ili_last_fields == 0);
3111 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3112 		}
3113 		xfs_ifunlock(ip);
3114 	}
3115 
3116 	return 0;
3117 
3118 corrupt_out:
3119 	return XFS_ERROR(EFSCORRUPTED);
3120 }
3121 
3122 /*
3123  * Return a pointer to the extent record at file index idx.
3124  */
3125 xfs_bmbt_rec_host_t *
3126 xfs_iext_get_ext(
3127 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3128 	xfs_extnum_t	idx)		/* index of target extent */
3129 {
3130 	ASSERT(idx >= 0);
3131 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3132 		return ifp->if_u1.if_ext_irec->er_extbuf;
3133 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3134 		xfs_ext_irec_t	*erp;		/* irec pointer */
3135 		int		erp_idx = 0;	/* irec index */
3136 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3137 
3138 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3139 		return &erp->er_extbuf[page_idx];
3140 	} else if (ifp->if_bytes) {
3141 		return &ifp->if_u1.if_extents[idx];
3142 	} else {
3143 		return NULL;
3144 	}
3145 }
3146 
3147 /*
3148  * Insert new item(s) into the extent records for incore inode
3149  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3150  */
3151 void
3152 xfs_iext_insert(
3153 	xfs_inode_t	*ip,		/* incore inode pointer */
3154 	xfs_extnum_t	idx,		/* starting index of new items */
3155 	xfs_extnum_t	count,		/* number of inserted items */
3156 	xfs_bmbt_irec_t	*new,		/* items to insert */
3157 	int		state)		/* type of extent conversion */
3158 {
3159 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3160 	xfs_extnum_t	i;		/* extent record index */
3161 
3162 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3163 
3164 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3165 	xfs_iext_add(ifp, idx, count);
3166 	for (i = idx; i < idx + count; i++, new++)
3167 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3168 }
3169 
3170 /*
3171  * This is called when the amount of space required for incore file
3172  * extents needs to be increased. The ext_diff parameter stores the
3173  * number of new extents being added and the idx parameter contains
3174  * the extent index where the new extents will be added. If the new
3175  * extents are being appended, then we just need to (re)allocate and
3176  * initialize the space. Otherwise, if the new extents are being
3177  * inserted into the middle of the existing entries, a bit more work
3178  * is required to make room for the new extents to be inserted. The
3179  * caller is responsible for filling in the new extent entries upon
3180  * return.
3181  */
3182 void
3183 xfs_iext_add(
3184 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3185 	xfs_extnum_t	idx,		/* index to begin adding exts */
3186 	int		ext_diff)	/* number of extents to add */
3187 {
3188 	int		byte_diff;	/* new bytes being added */
3189 	int		new_size;	/* size of extents after adding */
3190 	xfs_extnum_t	nextents;	/* number of extents in file */
3191 
3192 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3193 	ASSERT((idx >= 0) && (idx <= nextents));
3194 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3195 	new_size = ifp->if_bytes + byte_diff;
3196 	/*
3197 	 * If the new number of extents (nextents + ext_diff)
3198 	 * fits inside the inode, then continue to use the inline
3199 	 * extent buffer.
3200 	 */
3201 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3202 		if (idx < nextents) {
3203 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3204 				&ifp->if_u2.if_inline_ext[idx],
3205 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3206 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3207 		}
3208 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3209 		ifp->if_real_bytes = 0;
3210 		ifp->if_lastex = nextents + ext_diff;
3211 	}
3212 	/*
3213 	 * Otherwise use a linear (direct) extent list.
3214 	 * If the extents are currently inside the inode,
3215 	 * xfs_iext_realloc_direct will switch us from
3216 	 * inline to direct extent allocation mode.
3217 	 */
3218 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3219 		xfs_iext_realloc_direct(ifp, new_size);
3220 		if (idx < nextents) {
3221 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3222 				&ifp->if_u1.if_extents[idx],
3223 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3224 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3225 		}
3226 	}
3227 	/* Indirection array */
3228 	else {
3229 		xfs_ext_irec_t	*erp;
3230 		int		erp_idx = 0;
3231 		int		page_idx = idx;
3232 
3233 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3234 		if (ifp->if_flags & XFS_IFEXTIREC) {
3235 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3236 		} else {
3237 			xfs_iext_irec_init(ifp);
3238 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3239 			erp = ifp->if_u1.if_ext_irec;
3240 		}
3241 		/* Extents fit in target extent page */
3242 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3243 			if (page_idx < erp->er_extcount) {
3244 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3245 					&erp->er_extbuf[page_idx],
3246 					(erp->er_extcount - page_idx) *
3247 					sizeof(xfs_bmbt_rec_t));
3248 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3249 			}
3250 			erp->er_extcount += ext_diff;
3251 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3252 		}
3253 		/* Insert a new extent page */
3254 		else if (erp) {
3255 			xfs_iext_add_indirect_multi(ifp,
3256 				erp_idx, page_idx, ext_diff);
3257 		}
3258 		/*
3259 		 * If extent(s) are being appended to the last page in
3260 		 * the indirection array and the new extent(s) don't fit
3261 		 * in the page, then erp is NULL and erp_idx is set to
3262 		 * the next index needed in the indirection array.
3263 		 */
3264 		else {
3265 			int	count = ext_diff;
3266 
3267 			while (count) {
3268 				erp = xfs_iext_irec_new(ifp, erp_idx);
3269 				erp->er_extcount = count;
3270 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3271 				if (count) {
3272 					erp_idx++;
3273 				}
3274 			}
3275 		}
3276 	}
3277 	ifp->if_bytes = new_size;
3278 }
3279 
3280 /*
3281  * This is called when incore extents are being added to the indirection
3282  * array and the new extents do not fit in the target extent list. The
3283  * erp_idx parameter contains the irec index for the target extent list
3284  * in the indirection array, and the idx parameter contains the extent
3285  * index within the list. The number of extents being added is stored
3286  * in the count parameter.
3287  *
3288  *    |-------|   |-------|
3289  *    |       |   |       |    idx - number of extents before idx
3290  *    |  idx  |   | count |
3291  *    |       |   |       |    count - number of extents being inserted at idx
3292  *    |-------|   |-------|
3293  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3294  *    |-------|   |-------|
3295  */
3296 void
3297 xfs_iext_add_indirect_multi(
3298 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3299 	int		erp_idx,		/* target extent irec index */
3300 	xfs_extnum_t	idx,			/* index within target list */
3301 	int		count)			/* new extents being added */
3302 {
3303 	int		byte_diff;		/* new bytes being added */
3304 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3305 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3306 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3307 	xfs_extnum_t	nex2;			/* extents after idx + count */
3308 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3309 	int		nlists;			/* number of irec's (lists) */
3310 
3311 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3312 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3313 	nex2 = erp->er_extcount - idx;
3314 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3315 
3316 	/*
3317 	 * Save second part of target extent list
3318 	 * (all extents past */
3319 	if (nex2) {
3320 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3321 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3322 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3323 		erp->er_extcount -= nex2;
3324 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3325 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3326 	}
3327 
3328 	/*
3329 	 * Add the new extents to the end of the target
3330 	 * list, then allocate new irec record(s) and
3331 	 * extent buffer(s) as needed to store the rest
3332 	 * of the new extents.
3333 	 */
3334 	ext_cnt = count;
3335 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3336 	if (ext_diff) {
3337 		erp->er_extcount += ext_diff;
3338 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3339 		ext_cnt -= ext_diff;
3340 	}
3341 	while (ext_cnt) {
3342 		erp_idx++;
3343 		erp = xfs_iext_irec_new(ifp, erp_idx);
3344 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3345 		erp->er_extcount = ext_diff;
3346 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3347 		ext_cnt -= ext_diff;
3348 	}
3349 
3350 	/* Add nex2 extents back to indirection array */
3351 	if (nex2) {
3352 		xfs_extnum_t	ext_avail;
3353 		int		i;
3354 
3355 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3356 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3357 		i = 0;
3358 		/*
3359 		 * If nex2 extents fit in the current page, append
3360 		 * nex2_ep after the new extents.
3361 		 */
3362 		if (nex2 <= ext_avail) {
3363 			i = erp->er_extcount;
3364 		}
3365 		/*
3366 		 * Otherwise, check if space is available in the
3367 		 * next page.
3368 		 */
3369 		else if ((erp_idx < nlists - 1) &&
3370 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3371 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3372 			erp_idx++;
3373 			erp++;
3374 			/* Create a hole for nex2 extents */
3375 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3376 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3377 		}
3378 		/*
3379 		 * Final choice, create a new extent page for
3380 		 * nex2 extents.
3381 		 */
3382 		else {
3383 			erp_idx++;
3384 			erp = xfs_iext_irec_new(ifp, erp_idx);
3385 		}
3386 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3387 		kmem_free(nex2_ep);
3388 		erp->er_extcount += nex2;
3389 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3390 	}
3391 }
3392 
3393 /*
3394  * This is called when the amount of space required for incore file
3395  * extents needs to be decreased. The ext_diff parameter stores the
3396  * number of extents to be removed and the idx parameter contains
3397  * the extent index where the extents will be removed from.
3398  *
3399  * If the amount of space needed has decreased below the linear
3400  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3401  * extent array.  Otherwise, use kmem_realloc() to adjust the
3402  * size to what is needed.
3403  */
3404 void
3405 xfs_iext_remove(
3406 	xfs_inode_t	*ip,		/* incore inode pointer */
3407 	xfs_extnum_t	idx,		/* index to begin removing exts */
3408 	int		ext_diff,	/* number of extents to remove */
3409 	int		state)		/* type of extent conversion */
3410 {
3411 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3412 	xfs_extnum_t	nextents;	/* number of extents in file */
3413 	int		new_size;	/* size of extents after removal */
3414 
3415 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3416 
3417 	ASSERT(ext_diff > 0);
3418 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3419 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3420 
3421 	if (new_size == 0) {
3422 		xfs_iext_destroy(ifp);
3423 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3424 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3425 	} else if (ifp->if_real_bytes) {
3426 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3427 	} else {
3428 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3429 	}
3430 	ifp->if_bytes = new_size;
3431 }
3432 
3433 /*
3434  * This removes ext_diff extents from the inline buffer, beginning
3435  * at extent index idx.
3436  */
3437 void
3438 xfs_iext_remove_inline(
3439 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3440 	xfs_extnum_t	idx,		/* index to begin removing exts */
3441 	int		ext_diff)	/* number of extents to remove */
3442 {
3443 	int		nextents;	/* number of extents in file */
3444 
3445 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3446 	ASSERT(idx < XFS_INLINE_EXTS);
3447 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3448 	ASSERT(((nextents - ext_diff) > 0) &&
3449 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3450 
3451 	if (idx + ext_diff < nextents) {
3452 		memmove(&ifp->if_u2.if_inline_ext[idx],
3453 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3454 			(nextents - (idx + ext_diff)) *
3455 			 sizeof(xfs_bmbt_rec_t));
3456 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3457 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3458 	} else {
3459 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3460 			ext_diff * sizeof(xfs_bmbt_rec_t));
3461 	}
3462 }
3463 
3464 /*
3465  * This removes ext_diff extents from a linear (direct) extent list,
3466  * beginning at extent index idx. If the extents are being removed
3467  * from the end of the list (ie. truncate) then we just need to re-
3468  * allocate the list to remove the extra space. Otherwise, if the
3469  * extents are being removed from the middle of the existing extent
3470  * entries, then we first need to move the extent records beginning
3471  * at idx + ext_diff up in the list to overwrite the records being
3472  * removed, then remove the extra space via kmem_realloc.
3473  */
3474 void
3475 xfs_iext_remove_direct(
3476 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3477 	xfs_extnum_t	idx,		/* index to begin removing exts */
3478 	int		ext_diff)	/* number of extents to remove */
3479 {
3480 	xfs_extnum_t	nextents;	/* number of extents in file */
3481 	int		new_size;	/* size of extents after removal */
3482 
3483 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3484 	new_size = ifp->if_bytes -
3485 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3486 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3487 
3488 	if (new_size == 0) {
3489 		xfs_iext_destroy(ifp);
3490 		return;
3491 	}
3492 	/* Move extents up in the list (if needed) */
3493 	if (idx + ext_diff < nextents) {
3494 		memmove(&ifp->if_u1.if_extents[idx],
3495 			&ifp->if_u1.if_extents[idx + ext_diff],
3496 			(nextents - (idx + ext_diff)) *
3497 			 sizeof(xfs_bmbt_rec_t));
3498 	}
3499 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3500 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3501 	/*
3502 	 * Reallocate the direct extent list. If the extents
3503 	 * will fit inside the inode then xfs_iext_realloc_direct
3504 	 * will switch from direct to inline extent allocation
3505 	 * mode for us.
3506 	 */
3507 	xfs_iext_realloc_direct(ifp, new_size);
3508 	ifp->if_bytes = new_size;
3509 }
3510 
3511 /*
3512  * This is called when incore extents are being removed from the
3513  * indirection array and the extents being removed span multiple extent
3514  * buffers. The idx parameter contains the file extent index where we
3515  * want to begin removing extents, and the count parameter contains
3516  * how many extents need to be removed.
3517  *
3518  *    |-------|   |-------|
3519  *    | nex1  |   |       |    nex1 - number of extents before idx
3520  *    |-------|   | count |
3521  *    |       |   |       |    count - number of extents being removed at idx
3522  *    | count |   |-------|
3523  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3524  *    |-------|   |-------|
3525  */
3526 void
3527 xfs_iext_remove_indirect(
3528 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3529 	xfs_extnum_t	idx,		/* index to begin removing extents */
3530 	int		count)		/* number of extents to remove */
3531 {
3532 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3533 	int		erp_idx = 0;	/* indirection array index */
3534 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3535 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3536 	xfs_extnum_t	nex1;		/* number of extents before idx */
3537 	xfs_extnum_t	nex2;		/* extents after idx + count */
3538 	int		nlists;		/* entries in indirection array */
3539 	int		page_idx = idx;	/* index in target extent list */
3540 
3541 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3542 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3543 	ASSERT(erp != NULL);
3544 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3545 	nex1 = page_idx;
3546 	ext_cnt = count;
3547 	while (ext_cnt) {
3548 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3549 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3550 		/*
3551 		 * Check for deletion of entire list;
3552 		 * xfs_iext_irec_remove() updates extent offsets.
3553 		 */
3554 		if (ext_diff == erp->er_extcount) {
3555 			xfs_iext_irec_remove(ifp, erp_idx);
3556 			ext_cnt -= ext_diff;
3557 			nex1 = 0;
3558 			if (ext_cnt) {
3559 				ASSERT(erp_idx < ifp->if_real_bytes /
3560 					XFS_IEXT_BUFSZ);
3561 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3562 				nex1 = 0;
3563 				continue;
3564 			} else {
3565 				break;
3566 			}
3567 		}
3568 		/* Move extents up (if needed) */
3569 		if (nex2) {
3570 			memmove(&erp->er_extbuf[nex1],
3571 				&erp->er_extbuf[nex1 + ext_diff],
3572 				nex2 * sizeof(xfs_bmbt_rec_t));
3573 		}
3574 		/* Zero out rest of page */
3575 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3576 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3577 		/* Update remaining counters */
3578 		erp->er_extcount -= ext_diff;
3579 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3580 		ext_cnt -= ext_diff;
3581 		nex1 = 0;
3582 		erp_idx++;
3583 		erp++;
3584 	}
3585 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3586 	xfs_iext_irec_compact(ifp);
3587 }
3588 
3589 /*
3590  * Create, destroy, or resize a linear (direct) block of extents.
3591  */
3592 void
3593 xfs_iext_realloc_direct(
3594 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3595 	int		new_size)	/* new size of extents */
3596 {
3597 	int		rnew_size;	/* real new size of extents */
3598 
3599 	rnew_size = new_size;
3600 
3601 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3602 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3603 		 (new_size != ifp->if_real_bytes)));
3604 
3605 	/* Free extent records */
3606 	if (new_size == 0) {
3607 		xfs_iext_destroy(ifp);
3608 	}
3609 	/* Resize direct extent list and zero any new bytes */
3610 	else if (ifp->if_real_bytes) {
3611 		/* Check if extents will fit inside the inode */
3612 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3613 			xfs_iext_direct_to_inline(ifp, new_size /
3614 				(uint)sizeof(xfs_bmbt_rec_t));
3615 			ifp->if_bytes = new_size;
3616 			return;
3617 		}
3618 		if (!is_power_of_2(new_size)){
3619 			rnew_size = roundup_pow_of_two(new_size);
3620 		}
3621 		if (rnew_size != ifp->if_real_bytes) {
3622 			ifp->if_u1.if_extents =
3623 				kmem_realloc(ifp->if_u1.if_extents,
3624 						rnew_size,
3625 						ifp->if_real_bytes, KM_NOFS);
3626 		}
3627 		if (rnew_size > ifp->if_real_bytes) {
3628 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3629 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3630 				rnew_size - ifp->if_real_bytes);
3631 		}
3632 	}
3633 	/*
3634 	 * Switch from the inline extent buffer to a direct
3635 	 * extent list. Be sure to include the inline extent
3636 	 * bytes in new_size.
3637 	 */
3638 	else {
3639 		new_size += ifp->if_bytes;
3640 		if (!is_power_of_2(new_size)) {
3641 			rnew_size = roundup_pow_of_two(new_size);
3642 		}
3643 		xfs_iext_inline_to_direct(ifp, rnew_size);
3644 	}
3645 	ifp->if_real_bytes = rnew_size;
3646 	ifp->if_bytes = new_size;
3647 }
3648 
3649 /*
3650  * Switch from linear (direct) extent records to inline buffer.
3651  */
3652 void
3653 xfs_iext_direct_to_inline(
3654 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3655 	xfs_extnum_t	nextents)	/* number of extents in file */
3656 {
3657 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3658 	ASSERT(nextents <= XFS_INLINE_EXTS);
3659 	/*
3660 	 * The inline buffer was zeroed when we switched
3661 	 * from inline to direct extent allocation mode,
3662 	 * so we don't need to clear it here.
3663 	 */
3664 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3665 		nextents * sizeof(xfs_bmbt_rec_t));
3666 	kmem_free(ifp->if_u1.if_extents);
3667 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3668 	ifp->if_real_bytes = 0;
3669 }
3670 
3671 /*
3672  * Switch from inline buffer to linear (direct) extent records.
3673  * new_size should already be rounded up to the next power of 2
3674  * by the caller (when appropriate), so use new_size as it is.
3675  * However, since new_size may be rounded up, we can't update
3676  * if_bytes here. It is the caller's responsibility to update
3677  * if_bytes upon return.
3678  */
3679 void
3680 xfs_iext_inline_to_direct(
3681 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3682 	int		new_size)	/* number of extents in file */
3683 {
3684 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3685 	memset(ifp->if_u1.if_extents, 0, new_size);
3686 	if (ifp->if_bytes) {
3687 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3688 			ifp->if_bytes);
3689 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3690 			sizeof(xfs_bmbt_rec_t));
3691 	}
3692 	ifp->if_real_bytes = new_size;
3693 }
3694 
3695 /*
3696  * Resize an extent indirection array to new_size bytes.
3697  */
3698 STATIC void
3699 xfs_iext_realloc_indirect(
3700 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3701 	int		new_size)	/* new indirection array size */
3702 {
3703 	int		nlists;		/* number of irec's (ex lists) */
3704 	int		size;		/* current indirection array size */
3705 
3706 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3707 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3708 	size = nlists * sizeof(xfs_ext_irec_t);
3709 	ASSERT(ifp->if_real_bytes);
3710 	ASSERT((new_size >= 0) && (new_size != size));
3711 	if (new_size == 0) {
3712 		xfs_iext_destroy(ifp);
3713 	} else {
3714 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3715 			kmem_realloc(ifp->if_u1.if_ext_irec,
3716 				new_size, size, KM_NOFS);
3717 	}
3718 }
3719 
3720 /*
3721  * Switch from indirection array to linear (direct) extent allocations.
3722  */
3723 STATIC void
3724 xfs_iext_indirect_to_direct(
3725 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3726 {
3727 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3728 	xfs_extnum_t	nextents;	/* number of extents in file */
3729 	int		size;		/* size of file extents */
3730 
3731 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3732 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3733 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3734 	size = nextents * sizeof(xfs_bmbt_rec_t);
3735 
3736 	xfs_iext_irec_compact_pages(ifp);
3737 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3738 
3739 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3740 	kmem_free(ifp->if_u1.if_ext_irec);
3741 	ifp->if_flags &= ~XFS_IFEXTIREC;
3742 	ifp->if_u1.if_extents = ep;
3743 	ifp->if_bytes = size;
3744 	if (nextents < XFS_LINEAR_EXTS) {
3745 		xfs_iext_realloc_direct(ifp, size);
3746 	}
3747 }
3748 
3749 /*
3750  * Free incore file extents.
3751  */
3752 void
3753 xfs_iext_destroy(
3754 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3755 {
3756 	if (ifp->if_flags & XFS_IFEXTIREC) {
3757 		int	erp_idx;
3758 		int	nlists;
3759 
3760 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3761 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3762 			xfs_iext_irec_remove(ifp, erp_idx);
3763 		}
3764 		ifp->if_flags &= ~XFS_IFEXTIREC;
3765 	} else if (ifp->if_real_bytes) {
3766 		kmem_free(ifp->if_u1.if_extents);
3767 	} else if (ifp->if_bytes) {
3768 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3769 			sizeof(xfs_bmbt_rec_t));
3770 	}
3771 	ifp->if_u1.if_extents = NULL;
3772 	ifp->if_real_bytes = 0;
3773 	ifp->if_bytes = 0;
3774 }
3775 
3776 /*
3777  * Return a pointer to the extent record for file system block bno.
3778  */
3779 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3780 xfs_iext_bno_to_ext(
3781 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3782 	xfs_fileoff_t	bno,		/* block number to search for */
3783 	xfs_extnum_t	*idxp)		/* index of target extent */
3784 {
3785 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3786 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3787 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3788 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3789 	int		high;		/* upper boundary in search */
3790 	xfs_extnum_t	idx = 0;	/* index of target extent */
3791 	int		low;		/* lower boundary in search */
3792 	xfs_extnum_t	nextents;	/* number of file extents */
3793 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3794 
3795 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3796 	if (nextents == 0) {
3797 		*idxp = 0;
3798 		return NULL;
3799 	}
3800 	low = 0;
3801 	if (ifp->if_flags & XFS_IFEXTIREC) {
3802 		/* Find target extent list */
3803 		int	erp_idx = 0;
3804 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3805 		base = erp->er_extbuf;
3806 		high = erp->er_extcount - 1;
3807 	} else {
3808 		base = ifp->if_u1.if_extents;
3809 		high = nextents - 1;
3810 	}
3811 	/* Binary search extent records */
3812 	while (low <= high) {
3813 		idx = (low + high) >> 1;
3814 		ep = base + idx;
3815 		startoff = xfs_bmbt_get_startoff(ep);
3816 		blockcount = xfs_bmbt_get_blockcount(ep);
3817 		if (bno < startoff) {
3818 			high = idx - 1;
3819 		} else if (bno >= startoff + blockcount) {
3820 			low = idx + 1;
3821 		} else {
3822 			/* Convert back to file-based extent index */
3823 			if (ifp->if_flags & XFS_IFEXTIREC) {
3824 				idx += erp->er_extoff;
3825 			}
3826 			*idxp = idx;
3827 			return ep;
3828 		}
3829 	}
3830 	/* Convert back to file-based extent index */
3831 	if (ifp->if_flags & XFS_IFEXTIREC) {
3832 		idx += erp->er_extoff;
3833 	}
3834 	if (bno >= startoff + blockcount) {
3835 		if (++idx == nextents) {
3836 			ep = NULL;
3837 		} else {
3838 			ep = xfs_iext_get_ext(ifp, idx);
3839 		}
3840 	}
3841 	*idxp = idx;
3842 	return ep;
3843 }
3844 
3845 /*
3846  * Return a pointer to the indirection array entry containing the
3847  * extent record for filesystem block bno. Store the index of the
3848  * target irec in *erp_idxp.
3849  */
3850 xfs_ext_irec_t *			/* pointer to found extent record */
3851 xfs_iext_bno_to_irec(
3852 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3853 	xfs_fileoff_t	bno,		/* block number to search for */
3854 	int		*erp_idxp)	/* irec index of target ext list */
3855 {
3856 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3857 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3858 	int		erp_idx;	/* indirection array index */
3859 	int		nlists;		/* number of extent irec's (lists) */
3860 	int		high;		/* binary search upper limit */
3861 	int		low;		/* binary search lower limit */
3862 
3863 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3864 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3865 	erp_idx = 0;
3866 	low = 0;
3867 	high = nlists - 1;
3868 	while (low <= high) {
3869 		erp_idx = (low + high) >> 1;
3870 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3871 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3872 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3873 			high = erp_idx - 1;
3874 		} else if (erp_next && bno >=
3875 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3876 			low = erp_idx + 1;
3877 		} else {
3878 			break;
3879 		}
3880 	}
3881 	*erp_idxp = erp_idx;
3882 	return erp;
3883 }
3884 
3885 /*
3886  * Return a pointer to the indirection array entry containing the
3887  * extent record at file extent index *idxp. Store the index of the
3888  * target irec in *erp_idxp and store the page index of the target
3889  * extent record in *idxp.
3890  */
3891 xfs_ext_irec_t *
3892 xfs_iext_idx_to_irec(
3893 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3894 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3895 	int		*erp_idxp,	/* pointer to target irec */
3896 	int		realloc)	/* new bytes were just added */
3897 {
3898 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3899 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3900 	int		erp_idx;	/* indirection array index */
3901 	int		nlists;		/* number of irec's (ex lists) */
3902 	int		high;		/* binary search upper limit */
3903 	int		low;		/* binary search lower limit */
3904 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3905 
3906 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3907 	ASSERT(page_idx >= 0 && page_idx <=
3908 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3909 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3910 	erp_idx = 0;
3911 	low = 0;
3912 	high = nlists - 1;
3913 
3914 	/* Binary search extent irec's */
3915 	while (low <= high) {
3916 		erp_idx = (low + high) >> 1;
3917 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3918 		prev = erp_idx > 0 ? erp - 1 : NULL;
3919 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3920 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3921 			high = erp_idx - 1;
3922 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3923 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3924 			    !realloc)) {
3925 			low = erp_idx + 1;
3926 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3927 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3928 			ASSERT(realloc);
3929 			page_idx = 0;
3930 			erp_idx++;
3931 			erp = erp_idx < nlists ? erp + 1 : NULL;
3932 			break;
3933 		} else {
3934 			page_idx -= erp->er_extoff;
3935 			break;
3936 		}
3937 	}
3938 	*idxp = page_idx;
3939 	*erp_idxp = erp_idx;
3940 	return(erp);
3941 }
3942 
3943 /*
3944  * Allocate and initialize an indirection array once the space needed
3945  * for incore extents increases above XFS_IEXT_BUFSZ.
3946  */
3947 void
3948 xfs_iext_irec_init(
3949 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3950 {
3951 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3952 	xfs_extnum_t	nextents;	/* number of extents in file */
3953 
3954 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3955 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3956 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3957 
3958 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3959 
3960 	if (nextents == 0) {
3961 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3962 	} else if (!ifp->if_real_bytes) {
3963 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3964 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3965 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3966 	}
3967 	erp->er_extbuf = ifp->if_u1.if_extents;
3968 	erp->er_extcount = nextents;
3969 	erp->er_extoff = 0;
3970 
3971 	ifp->if_flags |= XFS_IFEXTIREC;
3972 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3973 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3974 	ifp->if_u1.if_ext_irec = erp;
3975 
3976 	return;
3977 }
3978 
3979 /*
3980  * Allocate and initialize a new entry in the indirection array.
3981  */
3982 xfs_ext_irec_t *
3983 xfs_iext_irec_new(
3984 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3985 	int		erp_idx)	/* index for new irec */
3986 {
3987 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3988 	int		i;		/* loop counter */
3989 	int		nlists;		/* number of irec's (ex lists) */
3990 
3991 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3992 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3993 
3994 	/* Resize indirection array */
3995 	xfs_iext_realloc_indirect(ifp, ++nlists *
3996 				  sizeof(xfs_ext_irec_t));
3997 	/*
3998 	 * Move records down in the array so the
3999 	 * new page can use erp_idx.
4000 	 */
4001 	erp = ifp->if_u1.if_ext_irec;
4002 	for (i = nlists - 1; i > erp_idx; i--) {
4003 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4004 	}
4005 	ASSERT(i == erp_idx);
4006 
4007 	/* Initialize new extent record */
4008 	erp = ifp->if_u1.if_ext_irec;
4009 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4010 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4011 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4012 	erp[erp_idx].er_extcount = 0;
4013 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4014 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4015 	return (&erp[erp_idx]);
4016 }
4017 
4018 /*
4019  * Remove a record from the indirection array.
4020  */
4021 void
4022 xfs_iext_irec_remove(
4023 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4024 	int		erp_idx)	/* irec index to remove */
4025 {
4026 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4027 	int		i;		/* loop counter */
4028 	int		nlists;		/* number of irec's (ex lists) */
4029 
4030 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4031 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4032 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4033 	if (erp->er_extbuf) {
4034 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4035 			-erp->er_extcount);
4036 		kmem_free(erp->er_extbuf);
4037 	}
4038 	/* Compact extent records */
4039 	erp = ifp->if_u1.if_ext_irec;
4040 	for (i = erp_idx; i < nlists - 1; i++) {
4041 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4042 	}
4043 	/*
4044 	 * Manually free the last extent record from the indirection
4045 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4046 	 * of zero would result in a call to xfs_iext_destroy() which
4047 	 * would in turn call this function again, creating a nasty
4048 	 * infinite loop.
4049 	 */
4050 	if (--nlists) {
4051 		xfs_iext_realloc_indirect(ifp,
4052 			nlists * sizeof(xfs_ext_irec_t));
4053 	} else {
4054 		kmem_free(ifp->if_u1.if_ext_irec);
4055 	}
4056 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4057 }
4058 
4059 /*
4060  * This is called to clean up large amounts of unused memory allocated
4061  * by the indirection array.  Before compacting anything though, verify
4062  * that the indirection array is still needed and switch back to the
4063  * linear extent list (or even the inline buffer) if possible.  The
4064  * compaction policy is as follows:
4065  *
4066  *    Full Compaction: Extents fit into a single page (or inline buffer)
4067  * Partial Compaction: Extents occupy less than 50% of allocated space
4068  *      No Compaction: Extents occupy at least 50% of allocated space
4069  */
4070 void
4071 xfs_iext_irec_compact(
4072 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4073 {
4074 	xfs_extnum_t	nextents;	/* number of extents in file */
4075 	int		nlists;		/* number of irec's (ex lists) */
4076 
4077 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4078 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4079 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4080 
4081 	if (nextents == 0) {
4082 		xfs_iext_destroy(ifp);
4083 	} else if (nextents <= XFS_INLINE_EXTS) {
4084 		xfs_iext_indirect_to_direct(ifp);
4085 		xfs_iext_direct_to_inline(ifp, nextents);
4086 	} else if (nextents <= XFS_LINEAR_EXTS) {
4087 		xfs_iext_indirect_to_direct(ifp);
4088 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4089 		xfs_iext_irec_compact_pages(ifp);
4090 	}
4091 }
4092 
4093 /*
4094  * Combine extents from neighboring extent pages.
4095  */
4096 void
4097 xfs_iext_irec_compact_pages(
4098 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4099 {
4100 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4101 	int		erp_idx = 0;	/* indirection array index */
4102 	int		nlists;		/* number of irec's (ex lists) */
4103 
4104 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4105 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4106 	while (erp_idx < nlists - 1) {
4107 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4108 		erp_next = erp + 1;
4109 		if (erp_next->er_extcount <=
4110 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4111 			memcpy(&erp->er_extbuf[erp->er_extcount],
4112 				erp_next->er_extbuf, erp_next->er_extcount *
4113 				sizeof(xfs_bmbt_rec_t));
4114 			erp->er_extcount += erp_next->er_extcount;
4115 			/*
4116 			 * Free page before removing extent record
4117 			 * so er_extoffs don't get modified in
4118 			 * xfs_iext_irec_remove.
4119 			 */
4120 			kmem_free(erp_next->er_extbuf);
4121 			erp_next->er_extbuf = NULL;
4122 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4123 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4124 		} else {
4125 			erp_idx++;
4126 		}
4127 	}
4128 }
4129 
4130 /*
4131  * This is called to update the er_extoff field in the indirection
4132  * array when extents have been added or removed from one of the
4133  * extent lists. erp_idx contains the irec index to begin updating
4134  * at and ext_diff contains the number of extents that were added
4135  * or removed.
4136  */
4137 void
4138 xfs_iext_irec_update_extoffs(
4139 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4140 	int		erp_idx,	/* irec index to update */
4141 	int		ext_diff)	/* number of new extents */
4142 {
4143 	int		i;		/* loop counter */
4144 	int		nlists;		/* number of irec's (ex lists */
4145 
4146 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4147 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4148 	for (i = erp_idx; i < nlists; i++) {
4149 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4150 	}
4151 }
4152