xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 4bacd796)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 #ifdef DEBUG
66 /*
67  * Make sure that the extents in the given memory buffer
68  * are valid.
69  */
70 STATIC void
71 xfs_validate_extents(
72 	xfs_ifork_t		*ifp,
73 	int			nrecs,
74 	xfs_exntfmt_t		fmt)
75 {
76 	xfs_bmbt_irec_t		irec;
77 	xfs_bmbt_rec_host_t	rec;
78 	int			i;
79 
80 	for (i = 0; i < nrecs; i++) {
81 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 		rec.l0 = get_unaligned(&ep->l0);
83 		rec.l1 = get_unaligned(&ep->l1);
84 		xfs_bmbt_get_all(&rec, &irec);
85 		if (fmt == XFS_EXTFMT_NOSTATE)
86 			ASSERT(irec.br_state == XFS_EXT_NORM);
87 	}
88 }
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
92 
93 /*
94  * Check that none of the inode's in the buffer have a next
95  * unlinked field of 0.
96  */
97 #if defined(DEBUG)
98 void
99 xfs_inobp_check(
100 	xfs_mount_t	*mp,
101 	xfs_buf_t	*bp)
102 {
103 	int		i;
104 	int		j;
105 	xfs_dinode_t	*dip;
106 
107 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108 
109 	for (i = 0; i < j; i++) {
110 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 					i * mp->m_sb.sb_inodesize);
112 		if (!dip->di_next_unlinked)  {
113 			xfs_fs_cmn_err(CE_ALERT, mp,
114 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
115 				bp);
116 			ASSERT(dip->di_next_unlinked);
117 		}
118 	}
119 }
120 #endif
121 
122 /*
123  * Find the buffer associated with the given inode map
124  * We do basic validation checks on the buffer once it has been
125  * retrieved from disk.
126  */
127 STATIC int
128 xfs_imap_to_bp(
129 	xfs_mount_t	*mp,
130 	xfs_trans_t	*tp,
131 	struct xfs_imap	*imap,
132 	xfs_buf_t	**bpp,
133 	uint		buf_flags,
134 	uint		iget_flags)
135 {
136 	int		error;
137 	int		i;
138 	int		ni;
139 	xfs_buf_t	*bp;
140 
141 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 				   (int)imap->im_len, buf_flags, &bp);
143 	if (error) {
144 		if (error != EAGAIN) {
145 			cmn_err(CE_WARN,
146 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 				"an error %d on %s.  Returning error.",
148 				error, mp->m_fsname);
149 		} else {
150 			ASSERT(buf_flags & XBF_TRYLOCK);
151 		}
152 		return error;
153 	}
154 
155 	/*
156 	 * Validate the magic number and version of every inode in the buffer
157 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 	 */
159 #ifdef DEBUG
160 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161 #else	/* usual case */
162 	ni = 1;
163 #endif
164 
165 	for (i = 0; i < ni; i++) {
166 		int		di_ok;
167 		xfs_dinode_t	*dip;
168 
169 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 					(i << mp->m_sb.sb_inodelog));
171 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
173 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 						XFS_ERRTAG_ITOBP_INOTOBP,
175 						XFS_RANDOM_ITOBP_INOTOBP))) {
176 			if (iget_flags & XFS_IGET_UNTRUSTED) {
177 				xfs_trans_brelse(tp, bp);
178 				return XFS_ERROR(EINVAL);
179 			}
180 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 						XFS_ERRLEVEL_HIGH, mp, dip);
182 #ifdef DEBUG
183 			cmn_err(CE_PANIC,
184 					"Device %s - bad inode magic/vsn "
185 					"daddr %lld #%d (magic=%x)",
186 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 				(unsigned long long)imap->im_blkno, i,
188 				be16_to_cpu(dip->di_magic));
189 #endif
190 			xfs_trans_brelse(tp, bp);
191 			return XFS_ERROR(EFSCORRUPTED);
192 		}
193 	}
194 
195 	xfs_inobp_check(mp, bp);
196 
197 	/*
198 	 * Mark the buffer as an inode buffer now that it looks good
199 	 */
200 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
201 
202 	*bpp = bp;
203 	return 0;
204 }
205 
206 /*
207  * This routine is called to map an inode number within a file
208  * system to the buffer containing the on-disk version of the
209  * inode.  It returns a pointer to the buffer containing the
210  * on-disk inode in the bpp parameter, and in the dip parameter
211  * it returns a pointer to the on-disk inode within that buffer.
212  *
213  * If a non-zero error is returned, then the contents of bpp and
214  * dipp are undefined.
215  *
216  * Use xfs_imap() to determine the size and location of the
217  * buffer to read from disk.
218  */
219 int
220 xfs_inotobp(
221 	xfs_mount_t	*mp,
222 	xfs_trans_t	*tp,
223 	xfs_ino_t	ino,
224 	xfs_dinode_t	**dipp,
225 	xfs_buf_t	**bpp,
226 	int		*offset,
227 	uint		imap_flags)
228 {
229 	struct xfs_imap	imap;
230 	xfs_buf_t	*bp;
231 	int		error;
232 
233 	imap.im_blkno = 0;
234 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
235 	if (error)
236 		return error;
237 
238 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
239 	if (error)
240 		return error;
241 
242 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 	*bpp = bp;
244 	*offset = imap.im_boffset;
245 	return 0;
246 }
247 
248 
249 /*
250  * This routine is called to map an inode to the buffer containing
251  * the on-disk version of the inode.  It returns a pointer to the
252  * buffer containing the on-disk inode in the bpp parameter, and in
253  * the dip parameter it returns a pointer to the on-disk inode within
254  * that buffer.
255  *
256  * If a non-zero error is returned, then the contents of bpp and
257  * dipp are undefined.
258  *
259  * The inode is expected to already been mapped to its buffer and read
260  * in once, thus we can use the mapping information stored in the inode
261  * rather than calling xfs_imap().  This allows us to avoid the overhead
262  * of looking at the inode btree for small block file systems
263  * (see xfs_imap()).
264  */
265 int
266 xfs_itobp(
267 	xfs_mount_t	*mp,
268 	xfs_trans_t	*tp,
269 	xfs_inode_t	*ip,
270 	xfs_dinode_t	**dipp,
271 	xfs_buf_t	**bpp,
272 	uint		buf_flags)
273 {
274 	xfs_buf_t	*bp;
275 	int		error;
276 
277 	ASSERT(ip->i_imap.im_blkno != 0);
278 
279 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
280 	if (error)
281 		return error;
282 
283 	if (!bp) {
284 		ASSERT(buf_flags & XBF_TRYLOCK);
285 		ASSERT(tp == NULL);
286 		*bpp = NULL;
287 		return EAGAIN;
288 	}
289 
290 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
291 	*bpp = bp;
292 	return 0;
293 }
294 
295 /*
296  * Move inode type and inode format specific information from the
297  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
298  * this means set if_rdev to the proper value.  For files, directories,
299  * and symlinks this means to bring in the in-line data or extent
300  * pointers.  For a file in B-tree format, only the root is immediately
301  * brought in-core.  The rest will be in-lined in if_extents when it
302  * is first referenced (see xfs_iread_extents()).
303  */
304 STATIC int
305 xfs_iformat(
306 	xfs_inode_t		*ip,
307 	xfs_dinode_t		*dip)
308 {
309 	xfs_attr_shortform_t	*atp;
310 	int			size;
311 	int			error;
312 	xfs_fsize_t             di_size;
313 	ip->i_df.if_ext_max =
314 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 	error = 0;
316 
317 	if (unlikely(be32_to_cpu(dip->di_nextents) +
318 		     be16_to_cpu(dip->di_anextents) >
319 		     be64_to_cpu(dip->di_nblocks))) {
320 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
321 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 			(unsigned long long)ip->i_ino,
323 			(int)(be32_to_cpu(dip->di_nextents) +
324 			      be16_to_cpu(dip->di_anextents)),
325 			(unsigned long long)
326 				be64_to_cpu(dip->di_nblocks));
327 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 				     ip->i_mount, dip);
329 		return XFS_ERROR(EFSCORRUPTED);
330 	}
331 
332 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
333 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
334 			"corrupt dinode %Lu, forkoff = 0x%x.",
335 			(unsigned long long)ip->i_ino,
336 			dip->di_forkoff);
337 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
338 				     ip->i_mount, dip);
339 		return XFS_ERROR(EFSCORRUPTED);
340 	}
341 
342 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
343 		     !ip->i_mount->m_rtdev_targp)) {
344 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
345 			"corrupt dinode %Lu, has realtime flag set.",
346 			ip->i_ino);
347 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
349 		return XFS_ERROR(EFSCORRUPTED);
350 	}
351 
352 	switch (ip->i_d.di_mode & S_IFMT) {
353 	case S_IFIFO:
354 	case S_IFCHR:
355 	case S_IFBLK:
356 	case S_IFSOCK:
357 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
358 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
359 					      ip->i_mount, dip);
360 			return XFS_ERROR(EFSCORRUPTED);
361 		}
362 		ip->i_d.di_size = 0;
363 		ip->i_size = 0;
364 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
365 		break;
366 
367 	case S_IFREG:
368 	case S_IFLNK:
369 	case S_IFDIR:
370 		switch (dip->di_format) {
371 		case XFS_DINODE_FMT_LOCAL:
372 			/*
373 			 * no local regular files yet
374 			 */
375 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
376 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
377 					"corrupt inode %Lu "
378 					"(local format for regular file).",
379 					(unsigned long long) ip->i_ino);
380 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
381 						     XFS_ERRLEVEL_LOW,
382 						     ip->i_mount, dip);
383 				return XFS_ERROR(EFSCORRUPTED);
384 			}
385 
386 			di_size = be64_to_cpu(dip->di_size);
387 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
388 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
389 					"corrupt inode %Lu "
390 					"(bad size %Ld for local inode).",
391 					(unsigned long long) ip->i_ino,
392 					(long long) di_size);
393 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
394 						     XFS_ERRLEVEL_LOW,
395 						     ip->i_mount, dip);
396 				return XFS_ERROR(EFSCORRUPTED);
397 			}
398 
399 			size = (int)di_size;
400 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
401 			break;
402 		case XFS_DINODE_FMT_EXTENTS:
403 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
404 			break;
405 		case XFS_DINODE_FMT_BTREE:
406 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
407 			break;
408 		default:
409 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
410 					 ip->i_mount);
411 			return XFS_ERROR(EFSCORRUPTED);
412 		}
413 		break;
414 
415 	default:
416 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
417 		return XFS_ERROR(EFSCORRUPTED);
418 	}
419 	if (error) {
420 		return error;
421 	}
422 	if (!XFS_DFORK_Q(dip))
423 		return 0;
424 	ASSERT(ip->i_afp == NULL);
425 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
426 	ip->i_afp->if_ext_max =
427 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
428 	switch (dip->di_aformat) {
429 	case XFS_DINODE_FMT_LOCAL:
430 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
431 		size = be16_to_cpu(atp->hdr.totsize);
432 
433 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
434 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
435 				"corrupt inode %Lu "
436 				"(bad attr fork size %Ld).",
437 				(unsigned long long) ip->i_ino,
438 				(long long) size);
439 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
440 					     XFS_ERRLEVEL_LOW,
441 					     ip->i_mount, dip);
442 			return XFS_ERROR(EFSCORRUPTED);
443 		}
444 
445 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
446 		break;
447 	case XFS_DINODE_FMT_EXTENTS:
448 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
449 		break;
450 	case XFS_DINODE_FMT_BTREE:
451 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
452 		break;
453 	default:
454 		error = XFS_ERROR(EFSCORRUPTED);
455 		break;
456 	}
457 	if (error) {
458 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
459 		ip->i_afp = NULL;
460 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 	}
462 	return error;
463 }
464 
465 /*
466  * The file is in-lined in the on-disk inode.
467  * If it fits into if_inline_data, then copy
468  * it there, otherwise allocate a buffer for it
469  * and copy the data there.  Either way, set
470  * if_data to point at the data.
471  * If we allocate a buffer for the data, make
472  * sure that its size is a multiple of 4 and
473  * record the real size in i_real_bytes.
474  */
475 STATIC int
476 xfs_iformat_local(
477 	xfs_inode_t	*ip,
478 	xfs_dinode_t	*dip,
479 	int		whichfork,
480 	int		size)
481 {
482 	xfs_ifork_t	*ifp;
483 	int		real_size;
484 
485 	/*
486 	 * If the size is unreasonable, then something
487 	 * is wrong and we just bail out rather than crash in
488 	 * kmem_alloc() or memcpy() below.
489 	 */
490 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
491 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
492 			"corrupt inode %Lu "
493 			"(bad size %d for local fork, size = %d).",
494 			(unsigned long long) ip->i_ino, size,
495 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
496 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
497 				     ip->i_mount, dip);
498 		return XFS_ERROR(EFSCORRUPTED);
499 	}
500 	ifp = XFS_IFORK_PTR(ip, whichfork);
501 	real_size = 0;
502 	if (size == 0)
503 		ifp->if_u1.if_data = NULL;
504 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
505 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
506 	else {
507 		real_size = roundup(size, 4);
508 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
509 	}
510 	ifp->if_bytes = size;
511 	ifp->if_real_bytes = real_size;
512 	if (size)
513 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
514 	ifp->if_flags &= ~XFS_IFEXTENTS;
515 	ifp->if_flags |= XFS_IFINLINE;
516 	return 0;
517 }
518 
519 /*
520  * The file consists of a set of extents all
521  * of which fit into the on-disk inode.
522  * If there are few enough extents to fit into
523  * the if_inline_ext, then copy them there.
524  * Otherwise allocate a buffer for them and copy
525  * them into it.  Either way, set if_extents
526  * to point at the extents.
527  */
528 STATIC int
529 xfs_iformat_extents(
530 	xfs_inode_t	*ip,
531 	xfs_dinode_t	*dip,
532 	int		whichfork)
533 {
534 	xfs_bmbt_rec_t	*dp;
535 	xfs_ifork_t	*ifp;
536 	int		nex;
537 	int		size;
538 	int		i;
539 
540 	ifp = XFS_IFORK_PTR(ip, whichfork);
541 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
542 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
543 
544 	/*
545 	 * If the number of extents is unreasonable, then something
546 	 * is wrong and we just bail out rather than crash in
547 	 * kmem_alloc() or memcpy() below.
548 	 */
549 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
550 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
551 			"corrupt inode %Lu ((a)extents = %d).",
552 			(unsigned long long) ip->i_ino, nex);
553 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
554 				     ip->i_mount, dip);
555 		return XFS_ERROR(EFSCORRUPTED);
556 	}
557 
558 	ifp->if_real_bytes = 0;
559 	if (nex == 0)
560 		ifp->if_u1.if_extents = NULL;
561 	else if (nex <= XFS_INLINE_EXTS)
562 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
563 	else
564 		xfs_iext_add(ifp, 0, nex);
565 
566 	ifp->if_bytes = size;
567 	if (size) {
568 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
569 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
570 		for (i = 0; i < nex; i++, dp++) {
571 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
572 			ep->l0 = get_unaligned_be64(&dp->l0);
573 			ep->l1 = get_unaligned_be64(&dp->l1);
574 		}
575 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
576 		if (whichfork != XFS_DATA_FORK ||
577 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
578 				if (unlikely(xfs_check_nostate_extents(
579 				    ifp, 0, nex))) {
580 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
581 							 XFS_ERRLEVEL_LOW,
582 							 ip->i_mount);
583 					return XFS_ERROR(EFSCORRUPTED);
584 				}
585 	}
586 	ifp->if_flags |= XFS_IFEXTENTS;
587 	return 0;
588 }
589 
590 /*
591  * The file has too many extents to fit into
592  * the inode, so they are in B-tree format.
593  * Allocate a buffer for the root of the B-tree
594  * and copy the root into it.  The i_extents
595  * field will remain NULL until all of the
596  * extents are read in (when they are needed).
597  */
598 STATIC int
599 xfs_iformat_btree(
600 	xfs_inode_t		*ip,
601 	xfs_dinode_t		*dip,
602 	int			whichfork)
603 {
604 	xfs_bmdr_block_t	*dfp;
605 	xfs_ifork_t		*ifp;
606 	/* REFERENCED */
607 	int			nrecs;
608 	int			size;
609 
610 	ifp = XFS_IFORK_PTR(ip, whichfork);
611 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
612 	size = XFS_BMAP_BROOT_SPACE(dfp);
613 	nrecs = be16_to_cpu(dfp->bb_numrecs);
614 
615 	/*
616 	 * blow out if -- fork has less extents than can fit in
617 	 * fork (fork shouldn't be a btree format), root btree
618 	 * block has more records than can fit into the fork,
619 	 * or the number of extents is greater than the number of
620 	 * blocks.
621 	 */
622 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
623 	    || XFS_BMDR_SPACE_CALC(nrecs) >
624 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
625 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
626 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
627 			"corrupt inode %Lu (btree).",
628 			(unsigned long long) ip->i_ino);
629 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
630 				 ip->i_mount);
631 		return XFS_ERROR(EFSCORRUPTED);
632 	}
633 
634 	ifp->if_broot_bytes = size;
635 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
636 	ASSERT(ifp->if_broot != NULL);
637 	/*
638 	 * Copy and convert from the on-disk structure
639 	 * to the in-memory structure.
640 	 */
641 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
642 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
643 			 ifp->if_broot, size);
644 	ifp->if_flags &= ~XFS_IFEXTENTS;
645 	ifp->if_flags |= XFS_IFBROOT;
646 
647 	return 0;
648 }
649 
650 STATIC void
651 xfs_dinode_from_disk(
652 	xfs_icdinode_t		*to,
653 	xfs_dinode_t		*from)
654 {
655 	to->di_magic = be16_to_cpu(from->di_magic);
656 	to->di_mode = be16_to_cpu(from->di_mode);
657 	to->di_version = from ->di_version;
658 	to->di_format = from->di_format;
659 	to->di_onlink = be16_to_cpu(from->di_onlink);
660 	to->di_uid = be32_to_cpu(from->di_uid);
661 	to->di_gid = be32_to_cpu(from->di_gid);
662 	to->di_nlink = be32_to_cpu(from->di_nlink);
663 	to->di_projid = be16_to_cpu(from->di_projid);
664 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
665 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
666 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
667 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
668 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
669 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
670 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
671 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
672 	to->di_size = be64_to_cpu(from->di_size);
673 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
674 	to->di_extsize = be32_to_cpu(from->di_extsize);
675 	to->di_nextents = be32_to_cpu(from->di_nextents);
676 	to->di_anextents = be16_to_cpu(from->di_anextents);
677 	to->di_forkoff = from->di_forkoff;
678 	to->di_aformat	= from->di_aformat;
679 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
680 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
681 	to->di_flags	= be16_to_cpu(from->di_flags);
682 	to->di_gen	= be32_to_cpu(from->di_gen);
683 }
684 
685 void
686 xfs_dinode_to_disk(
687 	xfs_dinode_t		*to,
688 	xfs_icdinode_t		*from)
689 {
690 	to->di_magic = cpu_to_be16(from->di_magic);
691 	to->di_mode = cpu_to_be16(from->di_mode);
692 	to->di_version = from ->di_version;
693 	to->di_format = from->di_format;
694 	to->di_onlink = cpu_to_be16(from->di_onlink);
695 	to->di_uid = cpu_to_be32(from->di_uid);
696 	to->di_gid = cpu_to_be32(from->di_gid);
697 	to->di_nlink = cpu_to_be32(from->di_nlink);
698 	to->di_projid = cpu_to_be16(from->di_projid);
699 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
700 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
701 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
702 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
703 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
704 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
705 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
706 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
707 	to->di_size = cpu_to_be64(from->di_size);
708 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
709 	to->di_extsize = cpu_to_be32(from->di_extsize);
710 	to->di_nextents = cpu_to_be32(from->di_nextents);
711 	to->di_anextents = cpu_to_be16(from->di_anextents);
712 	to->di_forkoff = from->di_forkoff;
713 	to->di_aformat = from->di_aformat;
714 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
715 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
716 	to->di_flags = cpu_to_be16(from->di_flags);
717 	to->di_gen = cpu_to_be32(from->di_gen);
718 }
719 
720 STATIC uint
721 _xfs_dic2xflags(
722 	__uint16_t		di_flags)
723 {
724 	uint			flags = 0;
725 
726 	if (di_flags & XFS_DIFLAG_ANY) {
727 		if (di_flags & XFS_DIFLAG_REALTIME)
728 			flags |= XFS_XFLAG_REALTIME;
729 		if (di_flags & XFS_DIFLAG_PREALLOC)
730 			flags |= XFS_XFLAG_PREALLOC;
731 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
732 			flags |= XFS_XFLAG_IMMUTABLE;
733 		if (di_flags & XFS_DIFLAG_APPEND)
734 			flags |= XFS_XFLAG_APPEND;
735 		if (di_flags & XFS_DIFLAG_SYNC)
736 			flags |= XFS_XFLAG_SYNC;
737 		if (di_flags & XFS_DIFLAG_NOATIME)
738 			flags |= XFS_XFLAG_NOATIME;
739 		if (di_flags & XFS_DIFLAG_NODUMP)
740 			flags |= XFS_XFLAG_NODUMP;
741 		if (di_flags & XFS_DIFLAG_RTINHERIT)
742 			flags |= XFS_XFLAG_RTINHERIT;
743 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
744 			flags |= XFS_XFLAG_PROJINHERIT;
745 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
746 			flags |= XFS_XFLAG_NOSYMLINKS;
747 		if (di_flags & XFS_DIFLAG_EXTSIZE)
748 			flags |= XFS_XFLAG_EXTSIZE;
749 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
750 			flags |= XFS_XFLAG_EXTSZINHERIT;
751 		if (di_flags & XFS_DIFLAG_NODEFRAG)
752 			flags |= XFS_XFLAG_NODEFRAG;
753 		if (di_flags & XFS_DIFLAG_FILESTREAM)
754 			flags |= XFS_XFLAG_FILESTREAM;
755 	}
756 
757 	return flags;
758 }
759 
760 uint
761 xfs_ip2xflags(
762 	xfs_inode_t		*ip)
763 {
764 	xfs_icdinode_t		*dic = &ip->i_d;
765 
766 	return _xfs_dic2xflags(dic->di_flags) |
767 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
768 }
769 
770 uint
771 xfs_dic2xflags(
772 	xfs_dinode_t		*dip)
773 {
774 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
775 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
776 }
777 
778 /*
779  * Read the disk inode attributes into the in-core inode structure.
780  */
781 int
782 xfs_iread(
783 	xfs_mount_t	*mp,
784 	xfs_trans_t	*tp,
785 	xfs_inode_t	*ip,
786 	uint		iget_flags)
787 {
788 	xfs_buf_t	*bp;
789 	xfs_dinode_t	*dip;
790 	int		error;
791 
792 	/*
793 	 * Fill in the location information in the in-core inode.
794 	 */
795 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
796 	if (error)
797 		return error;
798 
799 	/*
800 	 * Get pointers to the on-disk inode and the buffer containing it.
801 	 */
802 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
803 			       XBF_LOCK, iget_flags);
804 	if (error)
805 		return error;
806 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
807 
808 	/*
809 	 * If we got something that isn't an inode it means someone
810 	 * (nfs or dmi) has a stale handle.
811 	 */
812 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
813 #ifdef DEBUG
814 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
815 				"dip->di_magic (0x%x) != "
816 				"XFS_DINODE_MAGIC (0x%x)",
817 				be16_to_cpu(dip->di_magic),
818 				XFS_DINODE_MAGIC);
819 #endif /* DEBUG */
820 		error = XFS_ERROR(EINVAL);
821 		goto out_brelse;
822 	}
823 
824 	/*
825 	 * If the on-disk inode is already linked to a directory
826 	 * entry, copy all of the inode into the in-core inode.
827 	 * xfs_iformat() handles copying in the inode format
828 	 * specific information.
829 	 * Otherwise, just get the truly permanent information.
830 	 */
831 	if (dip->di_mode) {
832 		xfs_dinode_from_disk(&ip->i_d, dip);
833 		error = xfs_iformat(ip, dip);
834 		if (error)  {
835 #ifdef DEBUG
836 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
837 					"xfs_iformat() returned error %d",
838 					error);
839 #endif /* DEBUG */
840 			goto out_brelse;
841 		}
842 	} else {
843 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
844 		ip->i_d.di_version = dip->di_version;
845 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
846 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
847 		/*
848 		 * Make sure to pull in the mode here as well in
849 		 * case the inode is released without being used.
850 		 * This ensures that xfs_inactive() will see that
851 		 * the inode is already free and not try to mess
852 		 * with the uninitialized part of it.
853 		 */
854 		ip->i_d.di_mode = 0;
855 		/*
856 		 * Initialize the per-fork minima and maxima for a new
857 		 * inode here.  xfs_iformat will do it for old inodes.
858 		 */
859 		ip->i_df.if_ext_max =
860 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
861 	}
862 
863 	/*
864 	 * The inode format changed when we moved the link count and
865 	 * made it 32 bits long.  If this is an old format inode,
866 	 * convert it in memory to look like a new one.  If it gets
867 	 * flushed to disk we will convert back before flushing or
868 	 * logging it.  We zero out the new projid field and the old link
869 	 * count field.  We'll handle clearing the pad field (the remains
870 	 * of the old uuid field) when we actually convert the inode to
871 	 * the new format. We don't change the version number so that we
872 	 * can distinguish this from a real new format inode.
873 	 */
874 	if (ip->i_d.di_version == 1) {
875 		ip->i_d.di_nlink = ip->i_d.di_onlink;
876 		ip->i_d.di_onlink = 0;
877 		ip->i_d.di_projid = 0;
878 	}
879 
880 	ip->i_delayed_blks = 0;
881 	ip->i_size = ip->i_d.di_size;
882 
883 	/*
884 	 * Mark the buffer containing the inode as something to keep
885 	 * around for a while.  This helps to keep recently accessed
886 	 * meta-data in-core longer.
887 	 */
888 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
889 
890 	/*
891 	 * Use xfs_trans_brelse() to release the buffer containing the
892 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
893 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
894 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
895 	 * will only release the buffer if it is not dirty within the
896 	 * transaction.  It will be OK to release the buffer in this case,
897 	 * because inodes on disk are never destroyed and we will be
898 	 * locking the new in-core inode before putting it in the hash
899 	 * table where other processes can find it.  Thus we don't have
900 	 * to worry about the inode being changed just because we released
901 	 * the buffer.
902 	 */
903  out_brelse:
904 	xfs_trans_brelse(tp, bp);
905 	return error;
906 }
907 
908 /*
909  * Read in extents from a btree-format inode.
910  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
911  */
912 int
913 xfs_iread_extents(
914 	xfs_trans_t	*tp,
915 	xfs_inode_t	*ip,
916 	int		whichfork)
917 {
918 	int		error;
919 	xfs_ifork_t	*ifp;
920 	xfs_extnum_t	nextents;
921 
922 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
923 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
924 				 ip->i_mount);
925 		return XFS_ERROR(EFSCORRUPTED);
926 	}
927 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
928 	ifp = XFS_IFORK_PTR(ip, whichfork);
929 
930 	/*
931 	 * We know that the size is valid (it's checked in iformat_btree)
932 	 */
933 	ifp->if_lastex = NULLEXTNUM;
934 	ifp->if_bytes = ifp->if_real_bytes = 0;
935 	ifp->if_flags |= XFS_IFEXTENTS;
936 	xfs_iext_add(ifp, 0, nextents);
937 	error = xfs_bmap_read_extents(tp, ip, whichfork);
938 	if (error) {
939 		xfs_iext_destroy(ifp);
940 		ifp->if_flags &= ~XFS_IFEXTENTS;
941 		return error;
942 	}
943 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
944 	return 0;
945 }
946 
947 /*
948  * Allocate an inode on disk and return a copy of its in-core version.
949  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
950  * appropriately within the inode.  The uid and gid for the inode are
951  * set according to the contents of the given cred structure.
952  *
953  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954  * has a free inode available, call xfs_iget()
955  * to obtain the in-core version of the allocated inode.  Finally,
956  * fill in the inode and log its initial contents.  In this case,
957  * ialloc_context would be set to NULL and call_again set to false.
958  *
959  * If xfs_dialloc() does not have an available inode,
960  * it will replenish its supply by doing an allocation. Since we can
961  * only do one allocation within a transaction without deadlocks, we
962  * must commit the current transaction before returning the inode itself.
963  * In this case, therefore, we will set call_again to true and return.
964  * The caller should then commit the current transaction, start a new
965  * transaction, and call xfs_ialloc() again to actually get the inode.
966  *
967  * To ensure that some other process does not grab the inode that
968  * was allocated during the first call to xfs_ialloc(), this routine
969  * also returns the [locked] bp pointing to the head of the freelist
970  * as ialloc_context.  The caller should hold this buffer across
971  * the commit and pass it back into this routine on the second call.
972  *
973  * If we are allocating quota inodes, we do not have a parent inode
974  * to attach to or associate with (i.e. pip == NULL) because they
975  * are not linked into the directory structure - they are attached
976  * directly to the superblock - and so have no parent.
977  */
978 int
979 xfs_ialloc(
980 	xfs_trans_t	*tp,
981 	xfs_inode_t	*pip,
982 	mode_t		mode,
983 	xfs_nlink_t	nlink,
984 	xfs_dev_t	rdev,
985 	cred_t		*cr,
986 	xfs_prid_t	prid,
987 	int		okalloc,
988 	xfs_buf_t	**ialloc_context,
989 	boolean_t	*call_again,
990 	xfs_inode_t	**ipp)
991 {
992 	xfs_ino_t	ino;
993 	xfs_inode_t	*ip;
994 	uint		flags;
995 	int		error;
996 	timespec_t	tv;
997 	int		filestreams = 0;
998 
999 	/*
1000 	 * Call the space management code to pick
1001 	 * the on-disk inode to be allocated.
1002 	 */
1003 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1004 			    ialloc_context, call_again, &ino);
1005 	if (error)
1006 		return error;
1007 	if (*call_again || ino == NULLFSINO) {
1008 		*ipp = NULL;
1009 		return 0;
1010 	}
1011 	ASSERT(*ialloc_context == NULL);
1012 
1013 	/*
1014 	 * Get the in-core inode with the lock held exclusively.
1015 	 * This is because we're setting fields here we need
1016 	 * to prevent others from looking at until we're done.
1017 	 */
1018 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1019 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1020 	if (error)
1021 		return error;
1022 	ASSERT(ip != NULL);
1023 
1024 	ip->i_d.di_mode = (__uint16_t)mode;
1025 	ip->i_d.di_onlink = 0;
1026 	ip->i_d.di_nlink = nlink;
1027 	ASSERT(ip->i_d.di_nlink == nlink);
1028 	ip->i_d.di_uid = current_fsuid();
1029 	ip->i_d.di_gid = current_fsgid();
1030 	ip->i_d.di_projid = prid;
1031 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1032 
1033 	/*
1034 	 * If the superblock version is up to where we support new format
1035 	 * inodes and this is currently an old format inode, then change
1036 	 * the inode version number now.  This way we only do the conversion
1037 	 * here rather than here and in the flush/logging code.
1038 	 */
1039 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1040 	    ip->i_d.di_version == 1) {
1041 		ip->i_d.di_version = 2;
1042 		/*
1043 		 * We've already zeroed the old link count, the projid field,
1044 		 * and the pad field.
1045 		 */
1046 	}
1047 
1048 	/*
1049 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1050 	 */
1051 	if ((prid != 0) && (ip->i_d.di_version == 1))
1052 		xfs_bump_ino_vers2(tp, ip);
1053 
1054 	if (pip && XFS_INHERIT_GID(pip)) {
1055 		ip->i_d.di_gid = pip->i_d.di_gid;
1056 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1057 			ip->i_d.di_mode |= S_ISGID;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * If the group ID of the new file does not match the effective group
1063 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1065 	 */
1066 	if ((irix_sgid_inherit) &&
1067 	    (ip->i_d.di_mode & S_ISGID) &&
1068 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1069 		ip->i_d.di_mode &= ~S_ISGID;
1070 	}
1071 
1072 	ip->i_d.di_size = 0;
1073 	ip->i_size = 0;
1074 	ip->i_d.di_nextents = 0;
1075 	ASSERT(ip->i_d.di_nblocks == 0);
1076 
1077 	nanotime(&tv);
1078 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1079 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1080 	ip->i_d.di_atime = ip->i_d.di_mtime;
1081 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1082 
1083 	/*
1084 	 * di_gen will have been taken care of in xfs_iread.
1085 	 */
1086 	ip->i_d.di_extsize = 0;
1087 	ip->i_d.di_dmevmask = 0;
1088 	ip->i_d.di_dmstate = 0;
1089 	ip->i_d.di_flags = 0;
1090 	flags = XFS_ILOG_CORE;
1091 	switch (mode & S_IFMT) {
1092 	case S_IFIFO:
1093 	case S_IFCHR:
1094 	case S_IFBLK:
1095 	case S_IFSOCK:
1096 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1097 		ip->i_df.if_u2.if_rdev = rdev;
1098 		ip->i_df.if_flags = 0;
1099 		flags |= XFS_ILOG_DEV;
1100 		break;
1101 	case S_IFREG:
1102 		/*
1103 		 * we can't set up filestreams until after the VFS inode
1104 		 * is set up properly.
1105 		 */
1106 		if (pip && xfs_inode_is_filestream(pip))
1107 			filestreams = 1;
1108 		/* fall through */
1109 	case S_IFDIR:
1110 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1111 			uint	di_flags = 0;
1112 
1113 			if ((mode & S_IFMT) == S_IFDIR) {
1114 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1115 					di_flags |= XFS_DIFLAG_RTINHERIT;
1116 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1117 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1118 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1119 				}
1120 			} else if ((mode & S_IFMT) == S_IFREG) {
1121 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1122 					di_flags |= XFS_DIFLAG_REALTIME;
1123 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1124 					di_flags |= XFS_DIFLAG_EXTSIZE;
1125 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1126 				}
1127 			}
1128 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1129 			    xfs_inherit_noatime)
1130 				di_flags |= XFS_DIFLAG_NOATIME;
1131 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1132 			    xfs_inherit_nodump)
1133 				di_flags |= XFS_DIFLAG_NODUMP;
1134 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1135 			    xfs_inherit_sync)
1136 				di_flags |= XFS_DIFLAG_SYNC;
1137 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1138 			    xfs_inherit_nosymlinks)
1139 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1140 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1141 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1142 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1143 			    xfs_inherit_nodefrag)
1144 				di_flags |= XFS_DIFLAG_NODEFRAG;
1145 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1146 				di_flags |= XFS_DIFLAG_FILESTREAM;
1147 			ip->i_d.di_flags |= di_flags;
1148 		}
1149 		/* FALLTHROUGH */
1150 	case S_IFLNK:
1151 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1152 		ip->i_df.if_flags = XFS_IFEXTENTS;
1153 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1154 		ip->i_df.if_u1.if_extents = NULL;
1155 		break;
1156 	default:
1157 		ASSERT(0);
1158 	}
1159 	/*
1160 	 * Attribute fork settings for new inode.
1161 	 */
1162 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1163 	ip->i_d.di_anextents = 0;
1164 
1165 	/*
1166 	 * Log the new values stuffed into the inode.
1167 	 */
1168 	xfs_trans_log_inode(tp, ip, flags);
1169 
1170 	/* now that we have an i_mode we can setup inode ops and unlock */
1171 	xfs_setup_inode(ip);
1172 
1173 	/* now we have set up the vfs inode we can associate the filestream */
1174 	if (filestreams) {
1175 		error = xfs_filestream_associate(pip, ip);
1176 		if (error < 0)
1177 			return -error;
1178 		if (!error)
1179 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1180 	}
1181 
1182 	*ipp = ip;
1183 	return 0;
1184 }
1185 
1186 /*
1187  * Check to make sure that there are no blocks allocated to the
1188  * file beyond the size of the file.  We don't check this for
1189  * files with fixed size extents or real time extents, but we
1190  * at least do it for regular files.
1191  */
1192 #ifdef DEBUG
1193 void
1194 xfs_isize_check(
1195 	xfs_mount_t	*mp,
1196 	xfs_inode_t	*ip,
1197 	xfs_fsize_t	isize)
1198 {
1199 	xfs_fileoff_t	map_first;
1200 	int		nimaps;
1201 	xfs_bmbt_irec_t	imaps[2];
1202 
1203 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1204 		return;
1205 
1206 	if (XFS_IS_REALTIME_INODE(ip))
1207 		return;
1208 
1209 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1210 		return;
1211 
1212 	nimaps = 2;
1213 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1214 	/*
1215 	 * The filesystem could be shutting down, so bmapi may return
1216 	 * an error.
1217 	 */
1218 	if (xfs_bmapi(NULL, ip, map_first,
1219 			 (XFS_B_TO_FSB(mp,
1220 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1221 			  map_first),
1222 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1223 			 NULL))
1224 	    return;
1225 	ASSERT(nimaps == 1);
1226 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1227 }
1228 #endif	/* DEBUG */
1229 
1230 /*
1231  * Calculate the last possible buffered byte in a file.  This must
1232  * include data that was buffered beyond the EOF by the write code.
1233  * This also needs to deal with overflowing the xfs_fsize_t type
1234  * which can happen for sizes near the limit.
1235  *
1236  * We also need to take into account any blocks beyond the EOF.  It
1237  * may be the case that they were buffered by a write which failed.
1238  * In that case the pages will still be in memory, but the inode size
1239  * will never have been updated.
1240  */
1241 STATIC xfs_fsize_t
1242 xfs_file_last_byte(
1243 	xfs_inode_t	*ip)
1244 {
1245 	xfs_mount_t	*mp;
1246 	xfs_fsize_t	last_byte;
1247 	xfs_fileoff_t	last_block;
1248 	xfs_fileoff_t	size_last_block;
1249 	int		error;
1250 
1251 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1252 
1253 	mp = ip->i_mount;
1254 	/*
1255 	 * Only check for blocks beyond the EOF if the extents have
1256 	 * been read in.  This eliminates the need for the inode lock,
1257 	 * and it also saves us from looking when it really isn't
1258 	 * necessary.
1259 	 */
1260 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1261 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1262 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1263 			XFS_DATA_FORK);
1264 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1265 		if (error) {
1266 			last_block = 0;
1267 		}
1268 	} else {
1269 		last_block = 0;
1270 	}
1271 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1272 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1273 
1274 	last_byte = XFS_FSB_TO_B(mp, last_block);
1275 	if (last_byte < 0) {
1276 		return XFS_MAXIOFFSET(mp);
1277 	}
1278 	last_byte += (1 << mp->m_writeio_log);
1279 	if (last_byte < 0) {
1280 		return XFS_MAXIOFFSET(mp);
1281 	}
1282 	return last_byte;
1283 }
1284 
1285 /*
1286  * Start the truncation of the file to new_size.  The new size
1287  * must be smaller than the current size.  This routine will
1288  * clear the buffer and page caches of file data in the removed
1289  * range, and xfs_itruncate_finish() will remove the underlying
1290  * disk blocks.
1291  *
1292  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1293  * must NOT have the inode lock held at all.  This is because we're
1294  * calling into the buffer/page cache code and we can't hold the
1295  * inode lock when we do so.
1296  *
1297  * We need to wait for any direct I/Os in flight to complete before we
1298  * proceed with the truncate. This is needed to prevent the extents
1299  * being read or written by the direct I/Os from being removed while the
1300  * I/O is in flight as there is no other method of synchronising
1301  * direct I/O with the truncate operation.  Also, because we hold
1302  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1303  * started until the truncate completes and drops the lock. Essentially,
1304  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1305  * ordering between direct I/Os and the truncate operation.
1306  *
1307  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1308  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1309  * in the case that the caller is locking things out of order and
1310  * may not be able to call xfs_itruncate_finish() with the inode lock
1311  * held without dropping the I/O lock.  If the caller must drop the
1312  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1313  * must be called again with all the same restrictions as the initial
1314  * call.
1315  */
1316 int
1317 xfs_itruncate_start(
1318 	xfs_inode_t	*ip,
1319 	uint		flags,
1320 	xfs_fsize_t	new_size)
1321 {
1322 	xfs_fsize_t	last_byte;
1323 	xfs_off_t	toss_start;
1324 	xfs_mount_t	*mp;
1325 	int		error = 0;
1326 
1327 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1328 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1329 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1330 	       (flags == XFS_ITRUNC_MAYBE));
1331 
1332 	mp = ip->i_mount;
1333 
1334 	/* wait for the completion of any pending DIOs */
1335 	if (new_size == 0 || new_size < ip->i_size)
1336 		xfs_ioend_wait(ip);
1337 
1338 	/*
1339 	 * Call toss_pages or flushinval_pages to get rid of pages
1340 	 * overlapping the region being removed.  We have to use
1341 	 * the less efficient flushinval_pages in the case that the
1342 	 * caller may not be able to finish the truncate without
1343 	 * dropping the inode's I/O lock.  Make sure
1344 	 * to catch any pages brought in by buffers overlapping
1345 	 * the EOF by searching out beyond the isize by our
1346 	 * block size. We round new_size up to a block boundary
1347 	 * so that we don't toss things on the same block as
1348 	 * new_size but before it.
1349 	 *
1350 	 * Before calling toss_page or flushinval_pages, make sure to
1351 	 * call remapf() over the same region if the file is mapped.
1352 	 * This frees up mapped file references to the pages in the
1353 	 * given range and for the flushinval_pages case it ensures
1354 	 * that we get the latest mapped changes flushed out.
1355 	 */
1356 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1357 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1358 	if (toss_start < 0) {
1359 		/*
1360 		 * The place to start tossing is beyond our maximum
1361 		 * file size, so there is no way that the data extended
1362 		 * out there.
1363 		 */
1364 		return 0;
1365 	}
1366 	last_byte = xfs_file_last_byte(ip);
1367 	trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1368 	if (last_byte > toss_start) {
1369 		if (flags & XFS_ITRUNC_DEFINITE) {
1370 			xfs_tosspages(ip, toss_start,
1371 					-1, FI_REMAPF_LOCKED);
1372 		} else {
1373 			error = xfs_flushinval_pages(ip, toss_start,
1374 					-1, FI_REMAPF_LOCKED);
1375 		}
1376 	}
1377 
1378 #ifdef DEBUG
1379 	if (new_size == 0) {
1380 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1381 	}
1382 #endif
1383 	return error;
1384 }
1385 
1386 /*
1387  * Shrink the file to the given new_size.  The new size must be smaller than
1388  * the current size.  This will free up the underlying blocks in the removed
1389  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1390  *
1391  * The transaction passed to this routine must have made a permanent log
1392  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1393  * given transaction and start new ones, so make sure everything involved in
1394  * the transaction is tidy before calling here.  Some transaction will be
1395  * returned to the caller to be committed.  The incoming transaction must
1396  * already include the inode, and both inode locks must be held exclusively.
1397  * The inode must also be "held" within the transaction.  On return the inode
1398  * will be "held" within the returned transaction.  This routine does NOT
1399  * require any disk space to be reserved for it within the transaction.
1400  *
1401  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1402  * indicates the fork which is to be truncated.  For the attribute fork we only
1403  * support truncation to size 0.
1404  *
1405  * We use the sync parameter to indicate whether or not the first transaction
1406  * we perform might have to be synchronous.  For the attr fork, it needs to be
1407  * so if the unlink of the inode is not yet known to be permanent in the log.
1408  * This keeps us from freeing and reusing the blocks of the attribute fork
1409  * before the unlink of the inode becomes permanent.
1410  *
1411  * For the data fork, we normally have to run synchronously if we're being
1412  * called out of the inactive path or we're being called out of the create path
1413  * where we're truncating an existing file.  Either way, the truncate needs to
1414  * be sync so blocks don't reappear in the file with altered data in case of a
1415  * crash.  wsync filesystems can run the first case async because anything that
1416  * shrinks the inode has to run sync so by the time we're called here from
1417  * inactive, the inode size is permanently set to 0.
1418  *
1419  * Calls from the truncate path always need to be sync unless we're in a wsync
1420  * filesystem and the file has already been unlinked.
1421  *
1422  * The caller is responsible for correctly setting the sync parameter.  It gets
1423  * too hard for us to guess here which path we're being called out of just
1424  * based on inode state.
1425  *
1426  * If we get an error, we must return with the inode locked and linked into the
1427  * current transaction. This keeps things simple for the higher level code,
1428  * because it always knows that the inode is locked and held in the transaction
1429  * that returns to it whether errors occur or not.  We don't mark the inode
1430  * dirty on error so that transactions can be easily aborted if possible.
1431  */
1432 int
1433 xfs_itruncate_finish(
1434 	xfs_trans_t	**tp,
1435 	xfs_inode_t	*ip,
1436 	xfs_fsize_t	new_size,
1437 	int		fork,
1438 	int		sync)
1439 {
1440 	xfs_fsblock_t	first_block;
1441 	xfs_fileoff_t	first_unmap_block;
1442 	xfs_fileoff_t	last_block;
1443 	xfs_filblks_t	unmap_len=0;
1444 	xfs_mount_t	*mp;
1445 	xfs_trans_t	*ntp;
1446 	int		done;
1447 	int		committed;
1448 	xfs_bmap_free_t	free_list;
1449 	int		error;
1450 
1451 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1452 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1453 	ASSERT(*tp != NULL);
1454 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1455 	ASSERT(ip->i_transp == *tp);
1456 	ASSERT(ip->i_itemp != NULL);
1457 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1458 
1459 
1460 	ntp = *tp;
1461 	mp = (ntp)->t_mountp;
1462 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1463 
1464 	/*
1465 	 * We only support truncating the entire attribute fork.
1466 	 */
1467 	if (fork == XFS_ATTR_FORK) {
1468 		new_size = 0LL;
1469 	}
1470 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1471 	trace_xfs_itruncate_finish_start(ip, new_size);
1472 
1473 	/*
1474 	 * The first thing we do is set the size to new_size permanently
1475 	 * on disk.  This way we don't have to worry about anyone ever
1476 	 * being able to look at the data being freed even in the face
1477 	 * of a crash.  What we're getting around here is the case where
1478 	 * we free a block, it is allocated to another file, it is written
1479 	 * to, and then we crash.  If the new data gets written to the
1480 	 * file but the log buffers containing the free and reallocation
1481 	 * don't, then we'd end up with garbage in the blocks being freed.
1482 	 * As long as we make the new_size permanent before actually
1483 	 * freeing any blocks it doesn't matter if they get writtten to.
1484 	 *
1485 	 * The callers must signal into us whether or not the size
1486 	 * setting here must be synchronous.  There are a few cases
1487 	 * where it doesn't have to be synchronous.  Those cases
1488 	 * occur if the file is unlinked and we know the unlink is
1489 	 * permanent or if the blocks being truncated are guaranteed
1490 	 * to be beyond the inode eof (regardless of the link count)
1491 	 * and the eof value is permanent.  Both of these cases occur
1492 	 * only on wsync-mounted filesystems.  In those cases, we're
1493 	 * guaranteed that no user will ever see the data in the blocks
1494 	 * that are being truncated so the truncate can run async.
1495 	 * In the free beyond eof case, the file may wind up with
1496 	 * more blocks allocated to it than it needs if we crash
1497 	 * and that won't get fixed until the next time the file
1498 	 * is re-opened and closed but that's ok as that shouldn't
1499 	 * be too many blocks.
1500 	 *
1501 	 * However, we can't just make all wsync xactions run async
1502 	 * because there's one call out of the create path that needs
1503 	 * to run sync where it's truncating an existing file to size
1504 	 * 0 whose size is > 0.
1505 	 *
1506 	 * It's probably possible to come up with a test in this
1507 	 * routine that would correctly distinguish all the above
1508 	 * cases from the values of the function parameters and the
1509 	 * inode state but for sanity's sake, I've decided to let the
1510 	 * layers above just tell us.  It's simpler to correctly figure
1511 	 * out in the layer above exactly under what conditions we
1512 	 * can run async and I think it's easier for others read and
1513 	 * follow the logic in case something has to be changed.
1514 	 * cscope is your friend -- rcc.
1515 	 *
1516 	 * The attribute fork is much simpler.
1517 	 *
1518 	 * For the attribute fork we allow the caller to tell us whether
1519 	 * the unlink of the inode that led to this call is yet permanent
1520 	 * in the on disk log.  If it is not and we will be freeing extents
1521 	 * in this inode then we make the first transaction synchronous
1522 	 * to make sure that the unlink is permanent by the time we free
1523 	 * the blocks.
1524 	 */
1525 	if (fork == XFS_DATA_FORK) {
1526 		if (ip->i_d.di_nextents > 0) {
1527 			/*
1528 			 * If we are not changing the file size then do
1529 			 * not update the on-disk file size - we may be
1530 			 * called from xfs_inactive_free_eofblocks().  If we
1531 			 * update the on-disk file size and then the system
1532 			 * crashes before the contents of the file are
1533 			 * flushed to disk then the files may be full of
1534 			 * holes (ie NULL files bug).
1535 			 */
1536 			if (ip->i_size != new_size) {
1537 				ip->i_d.di_size = new_size;
1538 				ip->i_size = new_size;
1539 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1540 			}
1541 		}
1542 	} else if (sync) {
1543 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1544 		if (ip->i_d.di_anextents > 0)
1545 			xfs_trans_set_sync(ntp);
1546 	}
1547 	ASSERT(fork == XFS_DATA_FORK ||
1548 		(fork == XFS_ATTR_FORK &&
1549 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1550 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1551 
1552 	/*
1553 	 * Since it is possible for space to become allocated beyond
1554 	 * the end of the file (in a crash where the space is allocated
1555 	 * but the inode size is not yet updated), simply remove any
1556 	 * blocks which show up between the new EOF and the maximum
1557 	 * possible file size.  If the first block to be removed is
1558 	 * beyond the maximum file size (ie it is the same as last_block),
1559 	 * then there is nothing to do.
1560 	 */
1561 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1562 	ASSERT(first_unmap_block <= last_block);
1563 	done = 0;
1564 	if (last_block == first_unmap_block) {
1565 		done = 1;
1566 	} else {
1567 		unmap_len = last_block - first_unmap_block + 1;
1568 	}
1569 	while (!done) {
1570 		/*
1571 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1572 		 * will tell us whether it freed the entire range or
1573 		 * not.  If this is a synchronous mount (wsync),
1574 		 * then we can tell bunmapi to keep all the
1575 		 * transactions asynchronous since the unlink
1576 		 * transaction that made this inode inactive has
1577 		 * already hit the disk.  There's no danger of
1578 		 * the freed blocks being reused, there being a
1579 		 * crash, and the reused blocks suddenly reappearing
1580 		 * in this file with garbage in them once recovery
1581 		 * runs.
1582 		 */
1583 		xfs_bmap_init(&free_list, &first_block);
1584 		error = xfs_bunmapi(ntp, ip,
1585 				    first_unmap_block, unmap_len,
1586 				    xfs_bmapi_aflag(fork),
1587 				    XFS_ITRUNC_MAX_EXTENTS,
1588 				    &first_block, &free_list,
1589 				    &done);
1590 		if (error) {
1591 			/*
1592 			 * If the bunmapi call encounters an error,
1593 			 * return to the caller where the transaction
1594 			 * can be properly aborted.  We just need to
1595 			 * make sure we're not holding any resources
1596 			 * that we were not when we came in.
1597 			 */
1598 			xfs_bmap_cancel(&free_list);
1599 			return error;
1600 		}
1601 
1602 		/*
1603 		 * Duplicate the transaction that has the permanent
1604 		 * reservation and commit the old transaction.
1605 		 */
1606 		error = xfs_bmap_finish(tp, &free_list, &committed);
1607 		ntp = *tp;
1608 		if (committed)
1609 			xfs_trans_ijoin(ntp, ip);
1610 
1611 		if (error) {
1612 			/*
1613 			 * If the bmap finish call encounters an error, return
1614 			 * to the caller where the transaction can be properly
1615 			 * aborted.  We just need to make sure we're not
1616 			 * holding any resources that we were not when we came
1617 			 * in.
1618 			 *
1619 			 * Aborting from this point might lose some blocks in
1620 			 * the file system, but oh well.
1621 			 */
1622 			xfs_bmap_cancel(&free_list);
1623 			return error;
1624 		}
1625 
1626 		if (committed) {
1627 			/*
1628 			 * Mark the inode dirty so it will be logged and
1629 			 * moved forward in the log as part of every commit.
1630 			 */
1631 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1632 		}
1633 
1634 		ntp = xfs_trans_dup(ntp);
1635 		error = xfs_trans_commit(*tp, 0);
1636 		*tp = ntp;
1637 
1638 		xfs_trans_ijoin(ntp, ip);
1639 
1640 		if (error)
1641 			return error;
1642 		/*
1643 		 * transaction commit worked ok so we can drop the extra ticket
1644 		 * reference that we gained in xfs_trans_dup()
1645 		 */
1646 		xfs_log_ticket_put(ntp->t_ticket);
1647 		error = xfs_trans_reserve(ntp, 0,
1648 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1649 					XFS_TRANS_PERM_LOG_RES,
1650 					XFS_ITRUNCATE_LOG_COUNT);
1651 		if (error)
1652 			return error;
1653 	}
1654 	/*
1655 	 * Only update the size in the case of the data fork, but
1656 	 * always re-log the inode so that our permanent transaction
1657 	 * can keep on rolling it forward in the log.
1658 	 */
1659 	if (fork == XFS_DATA_FORK) {
1660 		xfs_isize_check(mp, ip, new_size);
1661 		/*
1662 		 * If we are not changing the file size then do
1663 		 * not update the on-disk file size - we may be
1664 		 * called from xfs_inactive_free_eofblocks().  If we
1665 		 * update the on-disk file size and then the system
1666 		 * crashes before the contents of the file are
1667 		 * flushed to disk then the files may be full of
1668 		 * holes (ie NULL files bug).
1669 		 */
1670 		if (ip->i_size != new_size) {
1671 			ip->i_d.di_size = new_size;
1672 			ip->i_size = new_size;
1673 		}
1674 	}
1675 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1676 	ASSERT((new_size != 0) ||
1677 	       (fork == XFS_ATTR_FORK) ||
1678 	       (ip->i_delayed_blks == 0));
1679 	ASSERT((new_size != 0) ||
1680 	       (fork == XFS_ATTR_FORK) ||
1681 	       (ip->i_d.di_nextents == 0));
1682 	trace_xfs_itruncate_finish_end(ip, new_size);
1683 	return 0;
1684 }
1685 
1686 /*
1687  * This is called when the inode's link count goes to 0.
1688  * We place the on-disk inode on a list in the AGI.  It
1689  * will be pulled from this list when the inode is freed.
1690  */
1691 int
1692 xfs_iunlink(
1693 	xfs_trans_t	*tp,
1694 	xfs_inode_t	*ip)
1695 {
1696 	xfs_mount_t	*mp;
1697 	xfs_agi_t	*agi;
1698 	xfs_dinode_t	*dip;
1699 	xfs_buf_t	*agibp;
1700 	xfs_buf_t	*ibp;
1701 	xfs_agino_t	agino;
1702 	short		bucket_index;
1703 	int		offset;
1704 	int		error;
1705 
1706 	ASSERT(ip->i_d.di_nlink == 0);
1707 	ASSERT(ip->i_d.di_mode != 0);
1708 	ASSERT(ip->i_transp == tp);
1709 
1710 	mp = tp->t_mountp;
1711 
1712 	/*
1713 	 * Get the agi buffer first.  It ensures lock ordering
1714 	 * on the list.
1715 	 */
1716 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1717 	if (error)
1718 		return error;
1719 	agi = XFS_BUF_TO_AGI(agibp);
1720 
1721 	/*
1722 	 * Get the index into the agi hash table for the
1723 	 * list this inode will go on.
1724 	 */
1725 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1726 	ASSERT(agino != 0);
1727 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1728 	ASSERT(agi->agi_unlinked[bucket_index]);
1729 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1730 
1731 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1732 		/*
1733 		 * There is already another inode in the bucket we need
1734 		 * to add ourselves to.  Add us at the front of the list.
1735 		 * Here we put the head pointer into our next pointer,
1736 		 * and then we fall through to point the head at us.
1737 		 */
1738 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1739 		if (error)
1740 			return error;
1741 
1742 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1743 		/* both on-disk, don't endian flip twice */
1744 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1745 		offset = ip->i_imap.im_boffset +
1746 			offsetof(xfs_dinode_t, di_next_unlinked);
1747 		xfs_trans_inode_buf(tp, ibp);
1748 		xfs_trans_log_buf(tp, ibp, offset,
1749 				  (offset + sizeof(xfs_agino_t) - 1));
1750 		xfs_inobp_check(mp, ibp);
1751 	}
1752 
1753 	/*
1754 	 * Point the bucket head pointer at the inode being inserted.
1755 	 */
1756 	ASSERT(agino != 0);
1757 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1758 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1759 		(sizeof(xfs_agino_t) * bucket_index);
1760 	xfs_trans_log_buf(tp, agibp, offset,
1761 			  (offset + sizeof(xfs_agino_t) - 1));
1762 	return 0;
1763 }
1764 
1765 /*
1766  * Pull the on-disk inode from the AGI unlinked list.
1767  */
1768 STATIC int
1769 xfs_iunlink_remove(
1770 	xfs_trans_t	*tp,
1771 	xfs_inode_t	*ip)
1772 {
1773 	xfs_ino_t	next_ino;
1774 	xfs_mount_t	*mp;
1775 	xfs_agi_t	*agi;
1776 	xfs_dinode_t	*dip;
1777 	xfs_buf_t	*agibp;
1778 	xfs_buf_t	*ibp;
1779 	xfs_agnumber_t	agno;
1780 	xfs_agino_t	agino;
1781 	xfs_agino_t	next_agino;
1782 	xfs_buf_t	*last_ibp;
1783 	xfs_dinode_t	*last_dip = NULL;
1784 	short		bucket_index;
1785 	int		offset, last_offset = 0;
1786 	int		error;
1787 
1788 	mp = tp->t_mountp;
1789 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1790 
1791 	/*
1792 	 * Get the agi buffer first.  It ensures lock ordering
1793 	 * on the list.
1794 	 */
1795 	error = xfs_read_agi(mp, tp, agno, &agibp);
1796 	if (error)
1797 		return error;
1798 
1799 	agi = XFS_BUF_TO_AGI(agibp);
1800 
1801 	/*
1802 	 * Get the index into the agi hash table for the
1803 	 * list this inode will go on.
1804 	 */
1805 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1806 	ASSERT(agino != 0);
1807 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1808 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1809 	ASSERT(agi->agi_unlinked[bucket_index]);
1810 
1811 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1812 		/*
1813 		 * We're at the head of the list.  Get the inode's
1814 		 * on-disk buffer to see if there is anyone after us
1815 		 * on the list.  Only modify our next pointer if it
1816 		 * is not already NULLAGINO.  This saves us the overhead
1817 		 * of dealing with the buffer when there is no need to
1818 		 * change it.
1819 		 */
1820 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1821 		if (error) {
1822 			cmn_err(CE_WARN,
1823 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1824 				error, mp->m_fsname);
1825 			return error;
1826 		}
1827 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1828 		ASSERT(next_agino != 0);
1829 		if (next_agino != NULLAGINO) {
1830 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1831 			offset = ip->i_imap.im_boffset +
1832 				offsetof(xfs_dinode_t, di_next_unlinked);
1833 			xfs_trans_inode_buf(tp, ibp);
1834 			xfs_trans_log_buf(tp, ibp, offset,
1835 					  (offset + sizeof(xfs_agino_t) - 1));
1836 			xfs_inobp_check(mp, ibp);
1837 		} else {
1838 			xfs_trans_brelse(tp, ibp);
1839 		}
1840 		/*
1841 		 * Point the bucket head pointer at the next inode.
1842 		 */
1843 		ASSERT(next_agino != 0);
1844 		ASSERT(next_agino != agino);
1845 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1846 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1847 			(sizeof(xfs_agino_t) * bucket_index);
1848 		xfs_trans_log_buf(tp, agibp, offset,
1849 				  (offset + sizeof(xfs_agino_t) - 1));
1850 	} else {
1851 		/*
1852 		 * We need to search the list for the inode being freed.
1853 		 */
1854 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1855 		last_ibp = NULL;
1856 		while (next_agino != agino) {
1857 			/*
1858 			 * If the last inode wasn't the one pointing to
1859 			 * us, then release its buffer since we're not
1860 			 * going to do anything with it.
1861 			 */
1862 			if (last_ibp != NULL) {
1863 				xfs_trans_brelse(tp, last_ibp);
1864 			}
1865 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1866 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1867 					    &last_ibp, &last_offset, 0);
1868 			if (error) {
1869 				cmn_err(CE_WARN,
1870 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1871 					error, mp->m_fsname);
1872 				return error;
1873 			}
1874 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1875 			ASSERT(next_agino != NULLAGINO);
1876 			ASSERT(next_agino != 0);
1877 		}
1878 		/*
1879 		 * Now last_ibp points to the buffer previous to us on
1880 		 * the unlinked list.  Pull us from the list.
1881 		 */
1882 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1883 		if (error) {
1884 			cmn_err(CE_WARN,
1885 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1886 				error, mp->m_fsname);
1887 			return error;
1888 		}
1889 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1890 		ASSERT(next_agino != 0);
1891 		ASSERT(next_agino != agino);
1892 		if (next_agino != NULLAGINO) {
1893 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1894 			offset = ip->i_imap.im_boffset +
1895 				offsetof(xfs_dinode_t, di_next_unlinked);
1896 			xfs_trans_inode_buf(tp, ibp);
1897 			xfs_trans_log_buf(tp, ibp, offset,
1898 					  (offset + sizeof(xfs_agino_t) - 1));
1899 			xfs_inobp_check(mp, ibp);
1900 		} else {
1901 			xfs_trans_brelse(tp, ibp);
1902 		}
1903 		/*
1904 		 * Point the previous inode on the list to the next inode.
1905 		 */
1906 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1907 		ASSERT(next_agino != 0);
1908 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1909 		xfs_trans_inode_buf(tp, last_ibp);
1910 		xfs_trans_log_buf(tp, last_ibp, offset,
1911 				  (offset + sizeof(xfs_agino_t) - 1));
1912 		xfs_inobp_check(mp, last_ibp);
1913 	}
1914 	return 0;
1915 }
1916 
1917 STATIC void
1918 xfs_ifree_cluster(
1919 	xfs_inode_t	*free_ip,
1920 	xfs_trans_t	*tp,
1921 	xfs_ino_t	inum)
1922 {
1923 	xfs_mount_t		*mp = free_ip->i_mount;
1924 	int			blks_per_cluster;
1925 	int			nbufs;
1926 	int			ninodes;
1927 	int			i, j;
1928 	xfs_daddr_t		blkno;
1929 	xfs_buf_t		*bp;
1930 	xfs_inode_t		*ip;
1931 	xfs_inode_log_item_t	*iip;
1932 	xfs_log_item_t		*lip;
1933 	struct xfs_perag	*pag;
1934 
1935 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1936 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1937 		blks_per_cluster = 1;
1938 		ninodes = mp->m_sb.sb_inopblock;
1939 		nbufs = XFS_IALLOC_BLOCKS(mp);
1940 	} else {
1941 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1942 					mp->m_sb.sb_blocksize;
1943 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1944 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1945 	}
1946 
1947 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1948 		int	found = 0;
1949 
1950 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1951 					 XFS_INO_TO_AGBNO(mp, inum));
1952 
1953 		/*
1954 		 * We obtain and lock the backing buffer first in the process
1955 		 * here, as we have to ensure that any dirty inode that we
1956 		 * can't get the flush lock on is attached to the buffer.
1957 		 * If we scan the in-memory inodes first, then buffer IO can
1958 		 * complete before we get a lock on it, and hence we may fail
1959 		 * to mark all the active inodes on the buffer stale.
1960 		 */
1961 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1962 					mp->m_bsize * blks_per_cluster,
1963 					XBF_LOCK);
1964 
1965 		/*
1966 		 * Walk the inodes already attached to the buffer and mark them
1967 		 * stale. These will all have the flush locks held, so an
1968 		 * in-memory inode walk can't lock them.
1969 		 */
1970 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1971 		while (lip) {
1972 			if (lip->li_type == XFS_LI_INODE) {
1973 				iip = (xfs_inode_log_item_t *)lip;
1974 				ASSERT(iip->ili_logged == 1);
1975 				lip->li_cb = xfs_istale_done;
1976 				xfs_trans_ail_copy_lsn(mp->m_ail,
1977 							&iip->ili_flush_lsn,
1978 							&iip->ili_item.li_lsn);
1979 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1980 				found++;
1981 			}
1982 			lip = lip->li_bio_list;
1983 		}
1984 
1985 		/*
1986 		 * For each inode in memory attempt to add it to the inode
1987 		 * buffer and set it up for being staled on buffer IO
1988 		 * completion.  This is safe as we've locked out tail pushing
1989 		 * and flushing by locking the buffer.
1990 		 *
1991 		 * We have already marked every inode that was part of a
1992 		 * transaction stale above, which means there is no point in
1993 		 * even trying to lock them.
1994 		 */
1995 		for (i = 0; i < ninodes; i++) {
1996 			read_lock(&pag->pag_ici_lock);
1997 			ip = radix_tree_lookup(&pag->pag_ici_root,
1998 					XFS_INO_TO_AGINO(mp, (inum + i)));
1999 
2000 			/* Inode not in memory or stale, nothing to do */
2001 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2002 				read_unlock(&pag->pag_ici_lock);
2003 				continue;
2004 			}
2005 
2006 			/* don't try to lock/unlock the current inode */
2007 			if (ip != free_ip &&
2008 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2009 				read_unlock(&pag->pag_ici_lock);
2010 				continue;
2011 			}
2012 			read_unlock(&pag->pag_ici_lock);
2013 
2014 			if (!xfs_iflock_nowait(ip)) {
2015 				if (ip != free_ip)
2016 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2017 				continue;
2018 			}
2019 
2020 			xfs_iflags_set(ip, XFS_ISTALE);
2021 			if (xfs_inode_clean(ip)) {
2022 				ASSERT(ip != free_ip);
2023 				xfs_ifunlock(ip);
2024 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2025 				continue;
2026 			}
2027 
2028 			iip = ip->i_itemp;
2029 			if (!iip) {
2030 				/* inode with unlogged changes only */
2031 				ASSERT(ip != free_ip);
2032 				ip->i_update_core = 0;
2033 				xfs_ifunlock(ip);
2034 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2035 				continue;
2036 			}
2037 			found++;
2038 
2039 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2040 			iip->ili_format.ilf_fields = 0;
2041 			iip->ili_logged = 1;
2042 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2043 						&iip->ili_item.li_lsn);
2044 
2045 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2046 						  &iip->ili_item);
2047 
2048 			if (ip != free_ip)
2049 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2050 		}
2051 
2052 		if (found)
2053 			xfs_trans_stale_inode_buf(tp, bp);
2054 		xfs_trans_binval(tp, bp);
2055 	}
2056 
2057 	xfs_perag_put(pag);
2058 }
2059 
2060 /*
2061  * This is called to return an inode to the inode free list.
2062  * The inode should already be truncated to 0 length and have
2063  * no pages associated with it.  This routine also assumes that
2064  * the inode is already a part of the transaction.
2065  *
2066  * The on-disk copy of the inode will have been added to the list
2067  * of unlinked inodes in the AGI. We need to remove the inode from
2068  * that list atomically with respect to freeing it here.
2069  */
2070 int
2071 xfs_ifree(
2072 	xfs_trans_t	*tp,
2073 	xfs_inode_t	*ip,
2074 	xfs_bmap_free_t	*flist)
2075 {
2076 	int			error;
2077 	int			delete;
2078 	xfs_ino_t		first_ino;
2079 	xfs_dinode_t    	*dip;
2080 	xfs_buf_t       	*ibp;
2081 
2082 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2083 	ASSERT(ip->i_transp == tp);
2084 	ASSERT(ip->i_d.di_nlink == 0);
2085 	ASSERT(ip->i_d.di_nextents == 0);
2086 	ASSERT(ip->i_d.di_anextents == 0);
2087 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2088 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2089 	ASSERT(ip->i_d.di_nblocks == 0);
2090 
2091 	/*
2092 	 * Pull the on-disk inode from the AGI unlinked list.
2093 	 */
2094 	error = xfs_iunlink_remove(tp, ip);
2095 	if (error != 0) {
2096 		return error;
2097 	}
2098 
2099 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2100 	if (error != 0) {
2101 		return error;
2102 	}
2103 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2104 	ip->i_d.di_flags = 0;
2105 	ip->i_d.di_dmevmask = 0;
2106 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2107 	ip->i_df.if_ext_max =
2108 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2109 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2110 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2111 	/*
2112 	 * Bump the generation count so no one will be confused
2113 	 * by reincarnations of this inode.
2114 	 */
2115 	ip->i_d.di_gen++;
2116 
2117 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2118 
2119 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2120 	if (error)
2121 		return error;
2122 
2123         /*
2124 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2125 	* from picking up this inode when it is reclaimed (its incore state
2126 	* initialzed but not flushed to disk yet). The in-core di_mode is
2127 	* already cleared  and a corresponding transaction logged.
2128 	* The hack here just synchronizes the in-core to on-disk
2129 	* di_mode value in advance before the actual inode sync to disk.
2130 	* This is OK because the inode is already unlinked and would never
2131 	* change its di_mode again for this inode generation.
2132 	* This is a temporary hack that would require a proper fix
2133 	* in the future.
2134 	*/
2135 	dip->di_mode = 0;
2136 
2137 	if (delete) {
2138 		xfs_ifree_cluster(ip, tp, first_ino);
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 /*
2145  * Reallocate the space for if_broot based on the number of records
2146  * being added or deleted as indicated in rec_diff.  Move the records
2147  * and pointers in if_broot to fit the new size.  When shrinking this
2148  * will eliminate holes between the records and pointers created by
2149  * the caller.  When growing this will create holes to be filled in
2150  * by the caller.
2151  *
2152  * The caller must not request to add more records than would fit in
2153  * the on-disk inode root.  If the if_broot is currently NULL, then
2154  * if we adding records one will be allocated.  The caller must also
2155  * not request that the number of records go below zero, although
2156  * it can go to zero.
2157  *
2158  * ip -- the inode whose if_broot area is changing
2159  * ext_diff -- the change in the number of records, positive or negative,
2160  *	 requested for the if_broot array.
2161  */
2162 void
2163 xfs_iroot_realloc(
2164 	xfs_inode_t		*ip,
2165 	int			rec_diff,
2166 	int			whichfork)
2167 {
2168 	struct xfs_mount	*mp = ip->i_mount;
2169 	int			cur_max;
2170 	xfs_ifork_t		*ifp;
2171 	struct xfs_btree_block	*new_broot;
2172 	int			new_max;
2173 	size_t			new_size;
2174 	char			*np;
2175 	char			*op;
2176 
2177 	/*
2178 	 * Handle the degenerate case quietly.
2179 	 */
2180 	if (rec_diff == 0) {
2181 		return;
2182 	}
2183 
2184 	ifp = XFS_IFORK_PTR(ip, whichfork);
2185 	if (rec_diff > 0) {
2186 		/*
2187 		 * If there wasn't any memory allocated before, just
2188 		 * allocate it now and get out.
2189 		 */
2190 		if (ifp->if_broot_bytes == 0) {
2191 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2192 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2193 			ifp->if_broot_bytes = (int)new_size;
2194 			return;
2195 		}
2196 
2197 		/*
2198 		 * If there is already an existing if_broot, then we need
2199 		 * to realloc() it and shift the pointers to their new
2200 		 * location.  The records don't change location because
2201 		 * they are kept butted up against the btree block header.
2202 		 */
2203 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2204 		new_max = cur_max + rec_diff;
2205 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2206 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2207 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2208 				KM_SLEEP | KM_NOFS);
2209 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2210 						     ifp->if_broot_bytes);
2211 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2212 						     (int)new_size);
2213 		ifp->if_broot_bytes = (int)new_size;
2214 		ASSERT(ifp->if_broot_bytes <=
2215 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2216 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2217 		return;
2218 	}
2219 
2220 	/*
2221 	 * rec_diff is less than 0.  In this case, we are shrinking the
2222 	 * if_broot buffer.  It must already exist.  If we go to zero
2223 	 * records, just get rid of the root and clear the status bit.
2224 	 */
2225 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2226 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2227 	new_max = cur_max + rec_diff;
2228 	ASSERT(new_max >= 0);
2229 	if (new_max > 0)
2230 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2231 	else
2232 		new_size = 0;
2233 	if (new_size > 0) {
2234 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2235 		/*
2236 		 * First copy over the btree block header.
2237 		 */
2238 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2239 	} else {
2240 		new_broot = NULL;
2241 		ifp->if_flags &= ~XFS_IFBROOT;
2242 	}
2243 
2244 	/*
2245 	 * Only copy the records and pointers if there are any.
2246 	 */
2247 	if (new_max > 0) {
2248 		/*
2249 		 * First copy the records.
2250 		 */
2251 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2252 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2253 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2254 
2255 		/*
2256 		 * Then copy the pointers.
2257 		 */
2258 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2259 						     ifp->if_broot_bytes);
2260 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2261 						     (int)new_size);
2262 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2263 	}
2264 	kmem_free(ifp->if_broot);
2265 	ifp->if_broot = new_broot;
2266 	ifp->if_broot_bytes = (int)new_size;
2267 	ASSERT(ifp->if_broot_bytes <=
2268 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2269 	return;
2270 }
2271 
2272 
2273 /*
2274  * This is called when the amount of space needed for if_data
2275  * is increased or decreased.  The change in size is indicated by
2276  * the number of bytes that need to be added or deleted in the
2277  * byte_diff parameter.
2278  *
2279  * If the amount of space needed has decreased below the size of the
2280  * inline buffer, then switch to using the inline buffer.  Otherwise,
2281  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2282  * to what is needed.
2283  *
2284  * ip -- the inode whose if_data area is changing
2285  * byte_diff -- the change in the number of bytes, positive or negative,
2286  *	 requested for the if_data array.
2287  */
2288 void
2289 xfs_idata_realloc(
2290 	xfs_inode_t	*ip,
2291 	int		byte_diff,
2292 	int		whichfork)
2293 {
2294 	xfs_ifork_t	*ifp;
2295 	int		new_size;
2296 	int		real_size;
2297 
2298 	if (byte_diff == 0) {
2299 		return;
2300 	}
2301 
2302 	ifp = XFS_IFORK_PTR(ip, whichfork);
2303 	new_size = (int)ifp->if_bytes + byte_diff;
2304 	ASSERT(new_size >= 0);
2305 
2306 	if (new_size == 0) {
2307 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2308 			kmem_free(ifp->if_u1.if_data);
2309 		}
2310 		ifp->if_u1.if_data = NULL;
2311 		real_size = 0;
2312 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2313 		/*
2314 		 * If the valid extents/data can fit in if_inline_ext/data,
2315 		 * copy them from the malloc'd vector and free it.
2316 		 */
2317 		if (ifp->if_u1.if_data == NULL) {
2318 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2319 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2320 			ASSERT(ifp->if_real_bytes != 0);
2321 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2322 			      new_size);
2323 			kmem_free(ifp->if_u1.if_data);
2324 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2325 		}
2326 		real_size = 0;
2327 	} else {
2328 		/*
2329 		 * Stuck with malloc/realloc.
2330 		 * For inline data, the underlying buffer must be
2331 		 * a multiple of 4 bytes in size so that it can be
2332 		 * logged and stay on word boundaries.  We enforce
2333 		 * that here.
2334 		 */
2335 		real_size = roundup(new_size, 4);
2336 		if (ifp->if_u1.if_data == NULL) {
2337 			ASSERT(ifp->if_real_bytes == 0);
2338 			ifp->if_u1.if_data = kmem_alloc(real_size,
2339 							KM_SLEEP | KM_NOFS);
2340 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2341 			/*
2342 			 * Only do the realloc if the underlying size
2343 			 * is really changing.
2344 			 */
2345 			if (ifp->if_real_bytes != real_size) {
2346 				ifp->if_u1.if_data =
2347 					kmem_realloc(ifp->if_u1.if_data,
2348 							real_size,
2349 							ifp->if_real_bytes,
2350 							KM_SLEEP | KM_NOFS);
2351 			}
2352 		} else {
2353 			ASSERT(ifp->if_real_bytes == 0);
2354 			ifp->if_u1.if_data = kmem_alloc(real_size,
2355 							KM_SLEEP | KM_NOFS);
2356 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2357 				ifp->if_bytes);
2358 		}
2359 	}
2360 	ifp->if_real_bytes = real_size;
2361 	ifp->if_bytes = new_size;
2362 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2363 }
2364 
2365 void
2366 xfs_idestroy_fork(
2367 	xfs_inode_t	*ip,
2368 	int		whichfork)
2369 {
2370 	xfs_ifork_t	*ifp;
2371 
2372 	ifp = XFS_IFORK_PTR(ip, whichfork);
2373 	if (ifp->if_broot != NULL) {
2374 		kmem_free(ifp->if_broot);
2375 		ifp->if_broot = NULL;
2376 	}
2377 
2378 	/*
2379 	 * If the format is local, then we can't have an extents
2380 	 * array so just look for an inline data array.  If we're
2381 	 * not local then we may or may not have an extents list,
2382 	 * so check and free it up if we do.
2383 	 */
2384 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2385 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2386 		    (ifp->if_u1.if_data != NULL)) {
2387 			ASSERT(ifp->if_real_bytes != 0);
2388 			kmem_free(ifp->if_u1.if_data);
2389 			ifp->if_u1.if_data = NULL;
2390 			ifp->if_real_bytes = 0;
2391 		}
2392 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2393 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2394 		    ((ifp->if_u1.if_extents != NULL) &&
2395 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2396 		ASSERT(ifp->if_real_bytes != 0);
2397 		xfs_iext_destroy(ifp);
2398 	}
2399 	ASSERT(ifp->if_u1.if_extents == NULL ||
2400 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2401 	ASSERT(ifp->if_real_bytes == 0);
2402 	if (whichfork == XFS_ATTR_FORK) {
2403 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2404 		ip->i_afp = NULL;
2405 	}
2406 }
2407 
2408 /*
2409  * This is called to unpin an inode.  The caller must have the inode locked
2410  * in at least shared mode so that the buffer cannot be subsequently pinned
2411  * once someone is waiting for it to be unpinned.
2412  */
2413 static void
2414 xfs_iunpin_nowait(
2415 	struct xfs_inode	*ip)
2416 {
2417 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2418 
2419 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2420 
2421 	/* Give the log a push to start the unpinning I/O */
2422 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2423 
2424 }
2425 
2426 void
2427 xfs_iunpin_wait(
2428 	struct xfs_inode	*ip)
2429 {
2430 	if (xfs_ipincount(ip)) {
2431 		xfs_iunpin_nowait(ip);
2432 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2433 	}
2434 }
2435 
2436 /*
2437  * xfs_iextents_copy()
2438  *
2439  * This is called to copy the REAL extents (as opposed to the delayed
2440  * allocation extents) from the inode into the given buffer.  It
2441  * returns the number of bytes copied into the buffer.
2442  *
2443  * If there are no delayed allocation extents, then we can just
2444  * memcpy() the extents into the buffer.  Otherwise, we need to
2445  * examine each extent in turn and skip those which are delayed.
2446  */
2447 int
2448 xfs_iextents_copy(
2449 	xfs_inode_t		*ip,
2450 	xfs_bmbt_rec_t		*dp,
2451 	int			whichfork)
2452 {
2453 	int			copied;
2454 	int			i;
2455 	xfs_ifork_t		*ifp;
2456 	int			nrecs;
2457 	xfs_fsblock_t		start_block;
2458 
2459 	ifp = XFS_IFORK_PTR(ip, whichfork);
2460 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2461 	ASSERT(ifp->if_bytes > 0);
2462 
2463 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2464 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2465 	ASSERT(nrecs > 0);
2466 
2467 	/*
2468 	 * There are some delayed allocation extents in the
2469 	 * inode, so copy the extents one at a time and skip
2470 	 * the delayed ones.  There must be at least one
2471 	 * non-delayed extent.
2472 	 */
2473 	copied = 0;
2474 	for (i = 0; i < nrecs; i++) {
2475 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2476 		start_block = xfs_bmbt_get_startblock(ep);
2477 		if (isnullstartblock(start_block)) {
2478 			/*
2479 			 * It's a delayed allocation extent, so skip it.
2480 			 */
2481 			continue;
2482 		}
2483 
2484 		/* Translate to on disk format */
2485 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2486 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2487 		dp++;
2488 		copied++;
2489 	}
2490 	ASSERT(copied != 0);
2491 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2492 
2493 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2494 }
2495 
2496 /*
2497  * Each of the following cases stores data into the same region
2498  * of the on-disk inode, so only one of them can be valid at
2499  * any given time. While it is possible to have conflicting formats
2500  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2501  * in EXTENTS format, this can only happen when the fork has
2502  * changed formats after being modified but before being flushed.
2503  * In these cases, the format always takes precedence, because the
2504  * format indicates the current state of the fork.
2505  */
2506 /*ARGSUSED*/
2507 STATIC void
2508 xfs_iflush_fork(
2509 	xfs_inode_t		*ip,
2510 	xfs_dinode_t		*dip,
2511 	xfs_inode_log_item_t	*iip,
2512 	int			whichfork,
2513 	xfs_buf_t		*bp)
2514 {
2515 	char			*cp;
2516 	xfs_ifork_t		*ifp;
2517 	xfs_mount_t		*mp;
2518 #ifdef XFS_TRANS_DEBUG
2519 	int			first;
2520 #endif
2521 	static const short	brootflag[2] =
2522 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2523 	static const short	dataflag[2] =
2524 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2525 	static const short	extflag[2] =
2526 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2527 
2528 	if (!iip)
2529 		return;
2530 	ifp = XFS_IFORK_PTR(ip, whichfork);
2531 	/*
2532 	 * This can happen if we gave up in iformat in an error path,
2533 	 * for the attribute fork.
2534 	 */
2535 	if (!ifp) {
2536 		ASSERT(whichfork == XFS_ATTR_FORK);
2537 		return;
2538 	}
2539 	cp = XFS_DFORK_PTR(dip, whichfork);
2540 	mp = ip->i_mount;
2541 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2542 	case XFS_DINODE_FMT_LOCAL:
2543 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2544 		    (ifp->if_bytes > 0)) {
2545 			ASSERT(ifp->if_u1.if_data != NULL);
2546 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2547 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2548 		}
2549 		break;
2550 
2551 	case XFS_DINODE_FMT_EXTENTS:
2552 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2553 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2554 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2555 			(ifp->if_bytes == 0));
2556 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2557 			(ifp->if_bytes > 0));
2558 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2559 		    (ifp->if_bytes > 0)) {
2560 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2561 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2562 				whichfork);
2563 		}
2564 		break;
2565 
2566 	case XFS_DINODE_FMT_BTREE:
2567 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2568 		    (ifp->if_broot_bytes > 0)) {
2569 			ASSERT(ifp->if_broot != NULL);
2570 			ASSERT(ifp->if_broot_bytes <=
2571 			       (XFS_IFORK_SIZE(ip, whichfork) +
2572 				XFS_BROOT_SIZE_ADJ));
2573 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2574 				(xfs_bmdr_block_t *)cp,
2575 				XFS_DFORK_SIZE(dip, mp, whichfork));
2576 		}
2577 		break;
2578 
2579 	case XFS_DINODE_FMT_DEV:
2580 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2581 			ASSERT(whichfork == XFS_DATA_FORK);
2582 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2583 		}
2584 		break;
2585 
2586 	case XFS_DINODE_FMT_UUID:
2587 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2588 			ASSERT(whichfork == XFS_DATA_FORK);
2589 			memcpy(XFS_DFORK_DPTR(dip),
2590 			       &ip->i_df.if_u2.if_uuid,
2591 			       sizeof(uuid_t));
2592 		}
2593 		break;
2594 
2595 	default:
2596 		ASSERT(0);
2597 		break;
2598 	}
2599 }
2600 
2601 STATIC int
2602 xfs_iflush_cluster(
2603 	xfs_inode_t	*ip,
2604 	xfs_buf_t	*bp)
2605 {
2606 	xfs_mount_t		*mp = ip->i_mount;
2607 	struct xfs_perag	*pag;
2608 	unsigned long		first_index, mask;
2609 	unsigned long		inodes_per_cluster;
2610 	int			ilist_size;
2611 	xfs_inode_t		**ilist;
2612 	xfs_inode_t		*iq;
2613 	int			nr_found;
2614 	int			clcount = 0;
2615 	int			bufwasdelwri;
2616 	int			i;
2617 
2618 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2619 
2620 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2621 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2622 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2623 	if (!ilist)
2624 		goto out_put;
2625 
2626 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2627 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2628 	read_lock(&pag->pag_ici_lock);
2629 	/* really need a gang lookup range call here */
2630 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2631 					first_index, inodes_per_cluster);
2632 	if (nr_found == 0)
2633 		goto out_free;
2634 
2635 	for (i = 0; i < nr_found; i++) {
2636 		iq = ilist[i];
2637 		if (iq == ip)
2638 			continue;
2639 		/* if the inode lies outside this cluster, we're done. */
2640 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2641 			break;
2642 		/*
2643 		 * Do an un-protected check to see if the inode is dirty and
2644 		 * is a candidate for flushing.  These checks will be repeated
2645 		 * later after the appropriate locks are acquired.
2646 		 */
2647 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2648 			continue;
2649 
2650 		/*
2651 		 * Try to get locks.  If any are unavailable or it is pinned,
2652 		 * then this inode cannot be flushed and is skipped.
2653 		 */
2654 
2655 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2656 			continue;
2657 		if (!xfs_iflock_nowait(iq)) {
2658 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2659 			continue;
2660 		}
2661 		if (xfs_ipincount(iq)) {
2662 			xfs_ifunlock(iq);
2663 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2664 			continue;
2665 		}
2666 
2667 		/*
2668 		 * arriving here means that this inode can be flushed.  First
2669 		 * re-check that it's dirty before flushing.
2670 		 */
2671 		if (!xfs_inode_clean(iq)) {
2672 			int	error;
2673 			error = xfs_iflush_int(iq, bp);
2674 			if (error) {
2675 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2676 				goto cluster_corrupt_out;
2677 			}
2678 			clcount++;
2679 		} else {
2680 			xfs_ifunlock(iq);
2681 		}
2682 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2683 	}
2684 
2685 	if (clcount) {
2686 		XFS_STATS_INC(xs_icluster_flushcnt);
2687 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2688 	}
2689 
2690 out_free:
2691 	read_unlock(&pag->pag_ici_lock);
2692 	kmem_free(ilist);
2693 out_put:
2694 	xfs_perag_put(pag);
2695 	return 0;
2696 
2697 
2698 cluster_corrupt_out:
2699 	/*
2700 	 * Corruption detected in the clustering loop.  Invalidate the
2701 	 * inode buffer and shut down the filesystem.
2702 	 */
2703 	read_unlock(&pag->pag_ici_lock);
2704 	/*
2705 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2706 	 * brelse can handle it with no problems.  If not, shut down the
2707 	 * filesystem before releasing the buffer.
2708 	 */
2709 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2710 	if (bufwasdelwri)
2711 		xfs_buf_relse(bp);
2712 
2713 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2714 
2715 	if (!bufwasdelwri) {
2716 		/*
2717 		 * Just like incore_relse: if we have b_iodone functions,
2718 		 * mark the buffer as an error and call them.  Otherwise
2719 		 * mark it as stale and brelse.
2720 		 */
2721 		if (XFS_BUF_IODONE_FUNC(bp)) {
2722 			XFS_BUF_UNDONE(bp);
2723 			XFS_BUF_STALE(bp);
2724 			XFS_BUF_ERROR(bp,EIO);
2725 			xfs_biodone(bp);
2726 		} else {
2727 			XFS_BUF_STALE(bp);
2728 			xfs_buf_relse(bp);
2729 		}
2730 	}
2731 
2732 	/*
2733 	 * Unlocks the flush lock
2734 	 */
2735 	xfs_iflush_abort(iq);
2736 	kmem_free(ilist);
2737 	xfs_perag_put(pag);
2738 	return XFS_ERROR(EFSCORRUPTED);
2739 }
2740 
2741 /*
2742  * xfs_iflush() will write a modified inode's changes out to the
2743  * inode's on disk home.  The caller must have the inode lock held
2744  * in at least shared mode and the inode flush completion must be
2745  * active as well.  The inode lock will still be held upon return from
2746  * the call and the caller is free to unlock it.
2747  * The inode flush will be completed when the inode reaches the disk.
2748  * The flags indicate how the inode's buffer should be written out.
2749  */
2750 int
2751 xfs_iflush(
2752 	xfs_inode_t		*ip,
2753 	uint			flags)
2754 {
2755 	xfs_inode_log_item_t	*iip;
2756 	xfs_buf_t		*bp;
2757 	xfs_dinode_t		*dip;
2758 	xfs_mount_t		*mp;
2759 	int			error;
2760 
2761 	XFS_STATS_INC(xs_iflush_count);
2762 
2763 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2764 	ASSERT(!completion_done(&ip->i_flush));
2765 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2766 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2767 
2768 	iip = ip->i_itemp;
2769 	mp = ip->i_mount;
2770 
2771 	/*
2772 	 * We can't flush the inode until it is unpinned, so wait for it if we
2773 	 * are allowed to block.  We know noone new can pin it, because we are
2774 	 * holding the inode lock shared and you need to hold it exclusively to
2775 	 * pin the inode.
2776 	 *
2777 	 * If we are not allowed to block, force the log out asynchronously so
2778 	 * that when we come back the inode will be unpinned. If other inodes
2779 	 * in the same cluster are dirty, they will probably write the inode
2780 	 * out for us if they occur after the log force completes.
2781 	 */
2782 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2783 		xfs_iunpin_nowait(ip);
2784 		xfs_ifunlock(ip);
2785 		return EAGAIN;
2786 	}
2787 	xfs_iunpin_wait(ip);
2788 
2789 	/*
2790 	 * For stale inodes we cannot rely on the backing buffer remaining
2791 	 * stale in cache for the remaining life of the stale inode and so
2792 	 * xfs_itobp() below may give us a buffer that no longer contains
2793 	 * inodes below. We have to check this after ensuring the inode is
2794 	 * unpinned so that it is safe to reclaim the stale inode after the
2795 	 * flush call.
2796 	 */
2797 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2798 		xfs_ifunlock(ip);
2799 		return 0;
2800 	}
2801 
2802 	/*
2803 	 * This may have been unpinned because the filesystem is shutting
2804 	 * down forcibly. If that's the case we must not write this inode
2805 	 * to disk, because the log record didn't make it to disk!
2806 	 */
2807 	if (XFS_FORCED_SHUTDOWN(mp)) {
2808 		ip->i_update_core = 0;
2809 		if (iip)
2810 			iip->ili_format.ilf_fields = 0;
2811 		xfs_ifunlock(ip);
2812 		return XFS_ERROR(EIO);
2813 	}
2814 
2815 	/*
2816 	 * Get the buffer containing the on-disk inode.
2817 	 */
2818 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2819 				(flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2820 	if (error || !bp) {
2821 		xfs_ifunlock(ip);
2822 		return error;
2823 	}
2824 
2825 	/*
2826 	 * First flush out the inode that xfs_iflush was called with.
2827 	 */
2828 	error = xfs_iflush_int(ip, bp);
2829 	if (error)
2830 		goto corrupt_out;
2831 
2832 	/*
2833 	 * If the buffer is pinned then push on the log now so we won't
2834 	 * get stuck waiting in the write for too long.
2835 	 */
2836 	if (XFS_BUF_ISPINNED(bp))
2837 		xfs_log_force(mp, 0);
2838 
2839 	/*
2840 	 * inode clustering:
2841 	 * see if other inodes can be gathered into this write
2842 	 */
2843 	error = xfs_iflush_cluster(ip, bp);
2844 	if (error)
2845 		goto cluster_corrupt_out;
2846 
2847 	if (flags & SYNC_WAIT)
2848 		error = xfs_bwrite(mp, bp);
2849 	else
2850 		xfs_bdwrite(mp, bp);
2851 	return error;
2852 
2853 corrupt_out:
2854 	xfs_buf_relse(bp);
2855 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2856 cluster_corrupt_out:
2857 	/*
2858 	 * Unlocks the flush lock
2859 	 */
2860 	xfs_iflush_abort(ip);
2861 	return XFS_ERROR(EFSCORRUPTED);
2862 }
2863 
2864 
2865 STATIC int
2866 xfs_iflush_int(
2867 	xfs_inode_t		*ip,
2868 	xfs_buf_t		*bp)
2869 {
2870 	xfs_inode_log_item_t	*iip;
2871 	xfs_dinode_t		*dip;
2872 	xfs_mount_t		*mp;
2873 #ifdef XFS_TRANS_DEBUG
2874 	int			first;
2875 #endif
2876 
2877 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2878 	ASSERT(!completion_done(&ip->i_flush));
2879 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2880 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2881 
2882 	iip = ip->i_itemp;
2883 	mp = ip->i_mount;
2884 
2885 	/* set *dip = inode's place in the buffer */
2886 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2887 
2888 	/*
2889 	 * Clear i_update_core before copying out the data.
2890 	 * This is for coordination with our timestamp updates
2891 	 * that don't hold the inode lock. They will always
2892 	 * update the timestamps BEFORE setting i_update_core,
2893 	 * so if we clear i_update_core after they set it we
2894 	 * are guaranteed to see their updates to the timestamps.
2895 	 * I believe that this depends on strongly ordered memory
2896 	 * semantics, but we have that.  We use the SYNCHRONIZE
2897 	 * macro to make sure that the compiler does not reorder
2898 	 * the i_update_core access below the data copy below.
2899 	 */
2900 	ip->i_update_core = 0;
2901 	SYNCHRONIZE();
2902 
2903 	/*
2904 	 * Make sure to get the latest timestamps from the Linux inode.
2905 	 */
2906 	xfs_synchronize_times(ip);
2907 
2908 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2909 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2910 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2911 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2912 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2913 		goto corrupt_out;
2914 	}
2915 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2916 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2917 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2918 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2919 			ip->i_ino, ip, ip->i_d.di_magic);
2920 		goto corrupt_out;
2921 	}
2922 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2923 		if (XFS_TEST_ERROR(
2924 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2925 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2926 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2927 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2928 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2929 				ip->i_ino, ip);
2930 			goto corrupt_out;
2931 		}
2932 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2933 		if (XFS_TEST_ERROR(
2934 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2935 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2936 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2937 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2938 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2939 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2940 				ip->i_ino, ip);
2941 			goto corrupt_out;
2942 		}
2943 	}
2944 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2945 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2946 				XFS_RANDOM_IFLUSH_5)) {
2947 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2948 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2949 			ip->i_ino,
2950 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2951 			ip->i_d.di_nblocks,
2952 			ip);
2953 		goto corrupt_out;
2954 	}
2955 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2956 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2957 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2958 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2959 			ip->i_ino, ip->i_d.di_forkoff, ip);
2960 		goto corrupt_out;
2961 	}
2962 	/*
2963 	 * bump the flush iteration count, used to detect flushes which
2964 	 * postdate a log record during recovery.
2965 	 */
2966 
2967 	ip->i_d.di_flushiter++;
2968 
2969 	/*
2970 	 * Copy the dirty parts of the inode into the on-disk
2971 	 * inode.  We always copy out the core of the inode,
2972 	 * because if the inode is dirty at all the core must
2973 	 * be.
2974 	 */
2975 	xfs_dinode_to_disk(dip, &ip->i_d);
2976 
2977 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2978 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2979 		ip->i_d.di_flushiter = 0;
2980 
2981 	/*
2982 	 * If this is really an old format inode and the superblock version
2983 	 * has not been updated to support only new format inodes, then
2984 	 * convert back to the old inode format.  If the superblock version
2985 	 * has been updated, then make the conversion permanent.
2986 	 */
2987 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2988 	if (ip->i_d.di_version == 1) {
2989 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2990 			/*
2991 			 * Convert it back.
2992 			 */
2993 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2994 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2995 		} else {
2996 			/*
2997 			 * The superblock version has already been bumped,
2998 			 * so just make the conversion to the new inode
2999 			 * format permanent.
3000 			 */
3001 			ip->i_d.di_version = 2;
3002 			dip->di_version = 2;
3003 			ip->i_d.di_onlink = 0;
3004 			dip->di_onlink = 0;
3005 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3006 			memset(&(dip->di_pad[0]), 0,
3007 			      sizeof(dip->di_pad));
3008 			ASSERT(ip->i_d.di_projid == 0);
3009 		}
3010 	}
3011 
3012 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3013 	if (XFS_IFORK_Q(ip))
3014 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3015 	xfs_inobp_check(mp, bp);
3016 
3017 	/*
3018 	 * We've recorded everything logged in the inode, so we'd
3019 	 * like to clear the ilf_fields bits so we don't log and
3020 	 * flush things unnecessarily.  However, we can't stop
3021 	 * logging all this information until the data we've copied
3022 	 * into the disk buffer is written to disk.  If we did we might
3023 	 * overwrite the copy of the inode in the log with all the
3024 	 * data after re-logging only part of it, and in the face of
3025 	 * a crash we wouldn't have all the data we need to recover.
3026 	 *
3027 	 * What we do is move the bits to the ili_last_fields field.
3028 	 * When logging the inode, these bits are moved back to the
3029 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3030 	 * clear ili_last_fields, since we know that the information
3031 	 * those bits represent is permanently on disk.  As long as
3032 	 * the flush completes before the inode is logged again, then
3033 	 * both ilf_fields and ili_last_fields will be cleared.
3034 	 *
3035 	 * We can play with the ilf_fields bits here, because the inode
3036 	 * lock must be held exclusively in order to set bits there
3037 	 * and the flush lock protects the ili_last_fields bits.
3038 	 * Set ili_logged so the flush done
3039 	 * routine can tell whether or not to look in the AIL.
3040 	 * Also, store the current LSN of the inode so that we can tell
3041 	 * whether the item has moved in the AIL from xfs_iflush_done().
3042 	 * In order to read the lsn we need the AIL lock, because
3043 	 * it is a 64 bit value that cannot be read atomically.
3044 	 */
3045 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3046 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3047 		iip->ili_format.ilf_fields = 0;
3048 		iip->ili_logged = 1;
3049 
3050 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3051 					&iip->ili_item.li_lsn);
3052 
3053 		/*
3054 		 * Attach the function xfs_iflush_done to the inode's
3055 		 * buffer.  This will remove the inode from the AIL
3056 		 * and unlock the inode's flush lock when the inode is
3057 		 * completely written to disk.
3058 		 */
3059 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3060 
3061 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3062 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3063 	} else {
3064 		/*
3065 		 * We're flushing an inode which is not in the AIL and has
3066 		 * not been logged but has i_update_core set.  For this
3067 		 * case we can use a B_DELWRI flush and immediately drop
3068 		 * the inode flush lock because we can avoid the whole
3069 		 * AIL state thing.  It's OK to drop the flush lock now,
3070 		 * because we've already locked the buffer and to do anything
3071 		 * you really need both.
3072 		 */
3073 		if (iip != NULL) {
3074 			ASSERT(iip->ili_logged == 0);
3075 			ASSERT(iip->ili_last_fields == 0);
3076 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3077 		}
3078 		xfs_ifunlock(ip);
3079 	}
3080 
3081 	return 0;
3082 
3083 corrupt_out:
3084 	return XFS_ERROR(EFSCORRUPTED);
3085 }
3086 
3087 /*
3088  * Return a pointer to the extent record at file index idx.
3089  */
3090 xfs_bmbt_rec_host_t *
3091 xfs_iext_get_ext(
3092 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3093 	xfs_extnum_t	idx)		/* index of target extent */
3094 {
3095 	ASSERT(idx >= 0);
3096 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3097 		return ifp->if_u1.if_ext_irec->er_extbuf;
3098 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3099 		xfs_ext_irec_t	*erp;		/* irec pointer */
3100 		int		erp_idx = 0;	/* irec index */
3101 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3102 
3103 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3104 		return &erp->er_extbuf[page_idx];
3105 	} else if (ifp->if_bytes) {
3106 		return &ifp->if_u1.if_extents[idx];
3107 	} else {
3108 		return NULL;
3109 	}
3110 }
3111 
3112 /*
3113  * Insert new item(s) into the extent records for incore inode
3114  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3115  */
3116 void
3117 xfs_iext_insert(
3118 	xfs_inode_t	*ip,		/* incore inode pointer */
3119 	xfs_extnum_t	idx,		/* starting index of new items */
3120 	xfs_extnum_t	count,		/* number of inserted items */
3121 	xfs_bmbt_irec_t	*new,		/* items to insert */
3122 	int		state)		/* type of extent conversion */
3123 {
3124 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3125 	xfs_extnum_t	i;		/* extent record index */
3126 
3127 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3128 
3129 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3130 	xfs_iext_add(ifp, idx, count);
3131 	for (i = idx; i < idx + count; i++, new++)
3132 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3133 }
3134 
3135 /*
3136  * This is called when the amount of space required for incore file
3137  * extents needs to be increased. The ext_diff parameter stores the
3138  * number of new extents being added and the idx parameter contains
3139  * the extent index where the new extents will be added. If the new
3140  * extents are being appended, then we just need to (re)allocate and
3141  * initialize the space. Otherwise, if the new extents are being
3142  * inserted into the middle of the existing entries, a bit more work
3143  * is required to make room for the new extents to be inserted. The
3144  * caller is responsible for filling in the new extent entries upon
3145  * return.
3146  */
3147 void
3148 xfs_iext_add(
3149 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3150 	xfs_extnum_t	idx,		/* index to begin adding exts */
3151 	int		ext_diff)	/* number of extents to add */
3152 {
3153 	int		byte_diff;	/* new bytes being added */
3154 	int		new_size;	/* size of extents after adding */
3155 	xfs_extnum_t	nextents;	/* number of extents in file */
3156 
3157 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3158 	ASSERT((idx >= 0) && (idx <= nextents));
3159 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3160 	new_size = ifp->if_bytes + byte_diff;
3161 	/*
3162 	 * If the new number of extents (nextents + ext_diff)
3163 	 * fits inside the inode, then continue to use the inline
3164 	 * extent buffer.
3165 	 */
3166 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3167 		if (idx < nextents) {
3168 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3169 				&ifp->if_u2.if_inline_ext[idx],
3170 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3171 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3172 		}
3173 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3174 		ifp->if_real_bytes = 0;
3175 		ifp->if_lastex = nextents + ext_diff;
3176 	}
3177 	/*
3178 	 * Otherwise use a linear (direct) extent list.
3179 	 * If the extents are currently inside the inode,
3180 	 * xfs_iext_realloc_direct will switch us from
3181 	 * inline to direct extent allocation mode.
3182 	 */
3183 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3184 		xfs_iext_realloc_direct(ifp, new_size);
3185 		if (idx < nextents) {
3186 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3187 				&ifp->if_u1.if_extents[idx],
3188 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3189 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3190 		}
3191 	}
3192 	/* Indirection array */
3193 	else {
3194 		xfs_ext_irec_t	*erp;
3195 		int		erp_idx = 0;
3196 		int		page_idx = idx;
3197 
3198 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3199 		if (ifp->if_flags & XFS_IFEXTIREC) {
3200 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3201 		} else {
3202 			xfs_iext_irec_init(ifp);
3203 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3204 			erp = ifp->if_u1.if_ext_irec;
3205 		}
3206 		/* Extents fit in target extent page */
3207 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3208 			if (page_idx < erp->er_extcount) {
3209 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3210 					&erp->er_extbuf[page_idx],
3211 					(erp->er_extcount - page_idx) *
3212 					sizeof(xfs_bmbt_rec_t));
3213 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3214 			}
3215 			erp->er_extcount += ext_diff;
3216 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3217 		}
3218 		/* Insert a new extent page */
3219 		else if (erp) {
3220 			xfs_iext_add_indirect_multi(ifp,
3221 				erp_idx, page_idx, ext_diff);
3222 		}
3223 		/*
3224 		 * If extent(s) are being appended to the last page in
3225 		 * the indirection array and the new extent(s) don't fit
3226 		 * in the page, then erp is NULL and erp_idx is set to
3227 		 * the next index needed in the indirection array.
3228 		 */
3229 		else {
3230 			int	count = ext_diff;
3231 
3232 			while (count) {
3233 				erp = xfs_iext_irec_new(ifp, erp_idx);
3234 				erp->er_extcount = count;
3235 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3236 				if (count) {
3237 					erp_idx++;
3238 				}
3239 			}
3240 		}
3241 	}
3242 	ifp->if_bytes = new_size;
3243 }
3244 
3245 /*
3246  * This is called when incore extents are being added to the indirection
3247  * array and the new extents do not fit in the target extent list. The
3248  * erp_idx parameter contains the irec index for the target extent list
3249  * in the indirection array, and the idx parameter contains the extent
3250  * index within the list. The number of extents being added is stored
3251  * in the count parameter.
3252  *
3253  *    |-------|   |-------|
3254  *    |       |   |       |    idx - number of extents before idx
3255  *    |  idx  |   | count |
3256  *    |       |   |       |    count - number of extents being inserted at idx
3257  *    |-------|   |-------|
3258  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3259  *    |-------|   |-------|
3260  */
3261 void
3262 xfs_iext_add_indirect_multi(
3263 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3264 	int		erp_idx,		/* target extent irec index */
3265 	xfs_extnum_t	idx,			/* index within target list */
3266 	int		count)			/* new extents being added */
3267 {
3268 	int		byte_diff;		/* new bytes being added */
3269 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3270 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3271 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3272 	xfs_extnum_t	nex2;			/* extents after idx + count */
3273 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3274 	int		nlists;			/* number of irec's (lists) */
3275 
3276 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3277 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3278 	nex2 = erp->er_extcount - idx;
3279 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3280 
3281 	/*
3282 	 * Save second part of target extent list
3283 	 * (all extents past */
3284 	if (nex2) {
3285 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3286 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3287 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3288 		erp->er_extcount -= nex2;
3289 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3290 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3291 	}
3292 
3293 	/*
3294 	 * Add the new extents to the end of the target
3295 	 * list, then allocate new irec record(s) and
3296 	 * extent buffer(s) as needed to store the rest
3297 	 * of the new extents.
3298 	 */
3299 	ext_cnt = count;
3300 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3301 	if (ext_diff) {
3302 		erp->er_extcount += ext_diff;
3303 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3304 		ext_cnt -= ext_diff;
3305 	}
3306 	while (ext_cnt) {
3307 		erp_idx++;
3308 		erp = xfs_iext_irec_new(ifp, erp_idx);
3309 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3310 		erp->er_extcount = ext_diff;
3311 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3312 		ext_cnt -= ext_diff;
3313 	}
3314 
3315 	/* Add nex2 extents back to indirection array */
3316 	if (nex2) {
3317 		xfs_extnum_t	ext_avail;
3318 		int		i;
3319 
3320 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3321 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3322 		i = 0;
3323 		/*
3324 		 * If nex2 extents fit in the current page, append
3325 		 * nex2_ep after the new extents.
3326 		 */
3327 		if (nex2 <= ext_avail) {
3328 			i = erp->er_extcount;
3329 		}
3330 		/*
3331 		 * Otherwise, check if space is available in the
3332 		 * next page.
3333 		 */
3334 		else if ((erp_idx < nlists - 1) &&
3335 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3336 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3337 			erp_idx++;
3338 			erp++;
3339 			/* Create a hole for nex2 extents */
3340 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3341 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3342 		}
3343 		/*
3344 		 * Final choice, create a new extent page for
3345 		 * nex2 extents.
3346 		 */
3347 		else {
3348 			erp_idx++;
3349 			erp = xfs_iext_irec_new(ifp, erp_idx);
3350 		}
3351 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3352 		kmem_free(nex2_ep);
3353 		erp->er_extcount += nex2;
3354 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3355 	}
3356 }
3357 
3358 /*
3359  * This is called when the amount of space required for incore file
3360  * extents needs to be decreased. The ext_diff parameter stores the
3361  * number of extents to be removed and the idx parameter contains
3362  * the extent index where the extents will be removed from.
3363  *
3364  * If the amount of space needed has decreased below the linear
3365  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3366  * extent array.  Otherwise, use kmem_realloc() to adjust the
3367  * size to what is needed.
3368  */
3369 void
3370 xfs_iext_remove(
3371 	xfs_inode_t	*ip,		/* incore inode pointer */
3372 	xfs_extnum_t	idx,		/* index to begin removing exts */
3373 	int		ext_diff,	/* number of extents to remove */
3374 	int		state)		/* type of extent conversion */
3375 {
3376 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3377 	xfs_extnum_t	nextents;	/* number of extents in file */
3378 	int		new_size;	/* size of extents after removal */
3379 
3380 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3381 
3382 	ASSERT(ext_diff > 0);
3383 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3384 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3385 
3386 	if (new_size == 0) {
3387 		xfs_iext_destroy(ifp);
3388 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3389 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3390 	} else if (ifp->if_real_bytes) {
3391 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3392 	} else {
3393 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3394 	}
3395 	ifp->if_bytes = new_size;
3396 }
3397 
3398 /*
3399  * This removes ext_diff extents from the inline buffer, beginning
3400  * at extent index idx.
3401  */
3402 void
3403 xfs_iext_remove_inline(
3404 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3405 	xfs_extnum_t	idx,		/* index to begin removing exts */
3406 	int		ext_diff)	/* number of extents to remove */
3407 {
3408 	int		nextents;	/* number of extents in file */
3409 
3410 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3411 	ASSERT(idx < XFS_INLINE_EXTS);
3412 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3413 	ASSERT(((nextents - ext_diff) > 0) &&
3414 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3415 
3416 	if (idx + ext_diff < nextents) {
3417 		memmove(&ifp->if_u2.if_inline_ext[idx],
3418 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3419 			(nextents - (idx + ext_diff)) *
3420 			 sizeof(xfs_bmbt_rec_t));
3421 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3422 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3423 	} else {
3424 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3425 			ext_diff * sizeof(xfs_bmbt_rec_t));
3426 	}
3427 }
3428 
3429 /*
3430  * This removes ext_diff extents from a linear (direct) extent list,
3431  * beginning at extent index idx. If the extents are being removed
3432  * from the end of the list (ie. truncate) then we just need to re-
3433  * allocate the list to remove the extra space. Otherwise, if the
3434  * extents are being removed from the middle of the existing extent
3435  * entries, then we first need to move the extent records beginning
3436  * at idx + ext_diff up in the list to overwrite the records being
3437  * removed, then remove the extra space via kmem_realloc.
3438  */
3439 void
3440 xfs_iext_remove_direct(
3441 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3442 	xfs_extnum_t	idx,		/* index to begin removing exts */
3443 	int		ext_diff)	/* number of extents to remove */
3444 {
3445 	xfs_extnum_t	nextents;	/* number of extents in file */
3446 	int		new_size;	/* size of extents after removal */
3447 
3448 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3449 	new_size = ifp->if_bytes -
3450 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3451 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3452 
3453 	if (new_size == 0) {
3454 		xfs_iext_destroy(ifp);
3455 		return;
3456 	}
3457 	/* Move extents up in the list (if needed) */
3458 	if (idx + ext_diff < nextents) {
3459 		memmove(&ifp->if_u1.if_extents[idx],
3460 			&ifp->if_u1.if_extents[idx + ext_diff],
3461 			(nextents - (idx + ext_diff)) *
3462 			 sizeof(xfs_bmbt_rec_t));
3463 	}
3464 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3465 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3466 	/*
3467 	 * Reallocate the direct extent list. If the extents
3468 	 * will fit inside the inode then xfs_iext_realloc_direct
3469 	 * will switch from direct to inline extent allocation
3470 	 * mode for us.
3471 	 */
3472 	xfs_iext_realloc_direct(ifp, new_size);
3473 	ifp->if_bytes = new_size;
3474 }
3475 
3476 /*
3477  * This is called when incore extents are being removed from the
3478  * indirection array and the extents being removed span multiple extent
3479  * buffers. The idx parameter contains the file extent index where we
3480  * want to begin removing extents, and the count parameter contains
3481  * how many extents need to be removed.
3482  *
3483  *    |-------|   |-------|
3484  *    | nex1  |   |       |    nex1 - number of extents before idx
3485  *    |-------|   | count |
3486  *    |       |   |       |    count - number of extents being removed at idx
3487  *    | count |   |-------|
3488  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3489  *    |-------|   |-------|
3490  */
3491 void
3492 xfs_iext_remove_indirect(
3493 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3494 	xfs_extnum_t	idx,		/* index to begin removing extents */
3495 	int		count)		/* number of extents to remove */
3496 {
3497 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3498 	int		erp_idx = 0;	/* indirection array index */
3499 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3500 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3501 	xfs_extnum_t	nex1;		/* number of extents before idx */
3502 	xfs_extnum_t	nex2;		/* extents after idx + count */
3503 	int		page_idx = idx;	/* index in target extent list */
3504 
3505 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3506 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3507 	ASSERT(erp != NULL);
3508 	nex1 = page_idx;
3509 	ext_cnt = count;
3510 	while (ext_cnt) {
3511 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3512 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3513 		/*
3514 		 * Check for deletion of entire list;
3515 		 * xfs_iext_irec_remove() updates extent offsets.
3516 		 */
3517 		if (ext_diff == erp->er_extcount) {
3518 			xfs_iext_irec_remove(ifp, erp_idx);
3519 			ext_cnt -= ext_diff;
3520 			nex1 = 0;
3521 			if (ext_cnt) {
3522 				ASSERT(erp_idx < ifp->if_real_bytes /
3523 					XFS_IEXT_BUFSZ);
3524 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3525 				nex1 = 0;
3526 				continue;
3527 			} else {
3528 				break;
3529 			}
3530 		}
3531 		/* Move extents up (if needed) */
3532 		if (nex2) {
3533 			memmove(&erp->er_extbuf[nex1],
3534 				&erp->er_extbuf[nex1 + ext_diff],
3535 				nex2 * sizeof(xfs_bmbt_rec_t));
3536 		}
3537 		/* Zero out rest of page */
3538 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3539 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3540 		/* Update remaining counters */
3541 		erp->er_extcount -= ext_diff;
3542 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3543 		ext_cnt -= ext_diff;
3544 		nex1 = 0;
3545 		erp_idx++;
3546 		erp++;
3547 	}
3548 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3549 	xfs_iext_irec_compact(ifp);
3550 }
3551 
3552 /*
3553  * Create, destroy, or resize a linear (direct) block of extents.
3554  */
3555 void
3556 xfs_iext_realloc_direct(
3557 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3558 	int		new_size)	/* new size of extents */
3559 {
3560 	int		rnew_size;	/* real new size of extents */
3561 
3562 	rnew_size = new_size;
3563 
3564 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3565 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3566 		 (new_size != ifp->if_real_bytes)));
3567 
3568 	/* Free extent records */
3569 	if (new_size == 0) {
3570 		xfs_iext_destroy(ifp);
3571 	}
3572 	/* Resize direct extent list and zero any new bytes */
3573 	else if (ifp->if_real_bytes) {
3574 		/* Check if extents will fit inside the inode */
3575 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3576 			xfs_iext_direct_to_inline(ifp, new_size /
3577 				(uint)sizeof(xfs_bmbt_rec_t));
3578 			ifp->if_bytes = new_size;
3579 			return;
3580 		}
3581 		if (!is_power_of_2(new_size)){
3582 			rnew_size = roundup_pow_of_two(new_size);
3583 		}
3584 		if (rnew_size != ifp->if_real_bytes) {
3585 			ifp->if_u1.if_extents =
3586 				kmem_realloc(ifp->if_u1.if_extents,
3587 						rnew_size,
3588 						ifp->if_real_bytes, KM_NOFS);
3589 		}
3590 		if (rnew_size > ifp->if_real_bytes) {
3591 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3592 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3593 				rnew_size - ifp->if_real_bytes);
3594 		}
3595 	}
3596 	/*
3597 	 * Switch from the inline extent buffer to a direct
3598 	 * extent list. Be sure to include the inline extent
3599 	 * bytes in new_size.
3600 	 */
3601 	else {
3602 		new_size += ifp->if_bytes;
3603 		if (!is_power_of_2(new_size)) {
3604 			rnew_size = roundup_pow_of_two(new_size);
3605 		}
3606 		xfs_iext_inline_to_direct(ifp, rnew_size);
3607 	}
3608 	ifp->if_real_bytes = rnew_size;
3609 	ifp->if_bytes = new_size;
3610 }
3611 
3612 /*
3613  * Switch from linear (direct) extent records to inline buffer.
3614  */
3615 void
3616 xfs_iext_direct_to_inline(
3617 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3618 	xfs_extnum_t	nextents)	/* number of extents in file */
3619 {
3620 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3621 	ASSERT(nextents <= XFS_INLINE_EXTS);
3622 	/*
3623 	 * The inline buffer was zeroed when we switched
3624 	 * from inline to direct extent allocation mode,
3625 	 * so we don't need to clear it here.
3626 	 */
3627 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3628 		nextents * sizeof(xfs_bmbt_rec_t));
3629 	kmem_free(ifp->if_u1.if_extents);
3630 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3631 	ifp->if_real_bytes = 0;
3632 }
3633 
3634 /*
3635  * Switch from inline buffer to linear (direct) extent records.
3636  * new_size should already be rounded up to the next power of 2
3637  * by the caller (when appropriate), so use new_size as it is.
3638  * However, since new_size may be rounded up, we can't update
3639  * if_bytes here. It is the caller's responsibility to update
3640  * if_bytes upon return.
3641  */
3642 void
3643 xfs_iext_inline_to_direct(
3644 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3645 	int		new_size)	/* number of extents in file */
3646 {
3647 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3648 	memset(ifp->if_u1.if_extents, 0, new_size);
3649 	if (ifp->if_bytes) {
3650 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3651 			ifp->if_bytes);
3652 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3653 			sizeof(xfs_bmbt_rec_t));
3654 	}
3655 	ifp->if_real_bytes = new_size;
3656 }
3657 
3658 /*
3659  * Resize an extent indirection array to new_size bytes.
3660  */
3661 STATIC void
3662 xfs_iext_realloc_indirect(
3663 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3664 	int		new_size)	/* new indirection array size */
3665 {
3666 	int		nlists;		/* number of irec's (ex lists) */
3667 	int		size;		/* current indirection array size */
3668 
3669 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3670 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3671 	size = nlists * sizeof(xfs_ext_irec_t);
3672 	ASSERT(ifp->if_real_bytes);
3673 	ASSERT((new_size >= 0) && (new_size != size));
3674 	if (new_size == 0) {
3675 		xfs_iext_destroy(ifp);
3676 	} else {
3677 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3678 			kmem_realloc(ifp->if_u1.if_ext_irec,
3679 				new_size, size, KM_NOFS);
3680 	}
3681 }
3682 
3683 /*
3684  * Switch from indirection array to linear (direct) extent allocations.
3685  */
3686 STATIC void
3687 xfs_iext_indirect_to_direct(
3688 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3689 {
3690 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3691 	xfs_extnum_t	nextents;	/* number of extents in file */
3692 	int		size;		/* size of file extents */
3693 
3694 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3695 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3696 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3697 	size = nextents * sizeof(xfs_bmbt_rec_t);
3698 
3699 	xfs_iext_irec_compact_pages(ifp);
3700 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3701 
3702 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3703 	kmem_free(ifp->if_u1.if_ext_irec);
3704 	ifp->if_flags &= ~XFS_IFEXTIREC;
3705 	ifp->if_u1.if_extents = ep;
3706 	ifp->if_bytes = size;
3707 	if (nextents < XFS_LINEAR_EXTS) {
3708 		xfs_iext_realloc_direct(ifp, size);
3709 	}
3710 }
3711 
3712 /*
3713  * Free incore file extents.
3714  */
3715 void
3716 xfs_iext_destroy(
3717 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3718 {
3719 	if (ifp->if_flags & XFS_IFEXTIREC) {
3720 		int	erp_idx;
3721 		int	nlists;
3722 
3723 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3724 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3725 			xfs_iext_irec_remove(ifp, erp_idx);
3726 		}
3727 		ifp->if_flags &= ~XFS_IFEXTIREC;
3728 	} else if (ifp->if_real_bytes) {
3729 		kmem_free(ifp->if_u1.if_extents);
3730 	} else if (ifp->if_bytes) {
3731 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3732 			sizeof(xfs_bmbt_rec_t));
3733 	}
3734 	ifp->if_u1.if_extents = NULL;
3735 	ifp->if_real_bytes = 0;
3736 	ifp->if_bytes = 0;
3737 }
3738 
3739 /*
3740  * Return a pointer to the extent record for file system block bno.
3741  */
3742 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3743 xfs_iext_bno_to_ext(
3744 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3745 	xfs_fileoff_t	bno,		/* block number to search for */
3746 	xfs_extnum_t	*idxp)		/* index of target extent */
3747 {
3748 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3749 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3750 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3751 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3752 	int		high;		/* upper boundary in search */
3753 	xfs_extnum_t	idx = 0;	/* index of target extent */
3754 	int		low;		/* lower boundary in search */
3755 	xfs_extnum_t	nextents;	/* number of file extents */
3756 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3757 
3758 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3759 	if (nextents == 0) {
3760 		*idxp = 0;
3761 		return NULL;
3762 	}
3763 	low = 0;
3764 	if (ifp->if_flags & XFS_IFEXTIREC) {
3765 		/* Find target extent list */
3766 		int	erp_idx = 0;
3767 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3768 		base = erp->er_extbuf;
3769 		high = erp->er_extcount - 1;
3770 	} else {
3771 		base = ifp->if_u1.if_extents;
3772 		high = nextents - 1;
3773 	}
3774 	/* Binary search extent records */
3775 	while (low <= high) {
3776 		idx = (low + high) >> 1;
3777 		ep = base + idx;
3778 		startoff = xfs_bmbt_get_startoff(ep);
3779 		blockcount = xfs_bmbt_get_blockcount(ep);
3780 		if (bno < startoff) {
3781 			high = idx - 1;
3782 		} else if (bno >= startoff + blockcount) {
3783 			low = idx + 1;
3784 		} else {
3785 			/* Convert back to file-based extent index */
3786 			if (ifp->if_flags & XFS_IFEXTIREC) {
3787 				idx += erp->er_extoff;
3788 			}
3789 			*idxp = idx;
3790 			return ep;
3791 		}
3792 	}
3793 	/* Convert back to file-based extent index */
3794 	if (ifp->if_flags & XFS_IFEXTIREC) {
3795 		idx += erp->er_extoff;
3796 	}
3797 	if (bno >= startoff + blockcount) {
3798 		if (++idx == nextents) {
3799 			ep = NULL;
3800 		} else {
3801 			ep = xfs_iext_get_ext(ifp, idx);
3802 		}
3803 	}
3804 	*idxp = idx;
3805 	return ep;
3806 }
3807 
3808 /*
3809  * Return a pointer to the indirection array entry containing the
3810  * extent record for filesystem block bno. Store the index of the
3811  * target irec in *erp_idxp.
3812  */
3813 xfs_ext_irec_t *			/* pointer to found extent record */
3814 xfs_iext_bno_to_irec(
3815 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3816 	xfs_fileoff_t	bno,		/* block number to search for */
3817 	int		*erp_idxp)	/* irec index of target ext list */
3818 {
3819 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3820 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3821 	int		erp_idx;	/* indirection array index */
3822 	int		nlists;		/* number of extent irec's (lists) */
3823 	int		high;		/* binary search upper limit */
3824 	int		low;		/* binary search lower limit */
3825 
3826 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3827 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3828 	erp_idx = 0;
3829 	low = 0;
3830 	high = nlists - 1;
3831 	while (low <= high) {
3832 		erp_idx = (low + high) >> 1;
3833 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3834 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3835 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3836 			high = erp_idx - 1;
3837 		} else if (erp_next && bno >=
3838 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3839 			low = erp_idx + 1;
3840 		} else {
3841 			break;
3842 		}
3843 	}
3844 	*erp_idxp = erp_idx;
3845 	return erp;
3846 }
3847 
3848 /*
3849  * Return a pointer to the indirection array entry containing the
3850  * extent record at file extent index *idxp. Store the index of the
3851  * target irec in *erp_idxp and store the page index of the target
3852  * extent record in *idxp.
3853  */
3854 xfs_ext_irec_t *
3855 xfs_iext_idx_to_irec(
3856 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3857 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3858 	int		*erp_idxp,	/* pointer to target irec */
3859 	int		realloc)	/* new bytes were just added */
3860 {
3861 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3862 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3863 	int		erp_idx;	/* indirection array index */
3864 	int		nlists;		/* number of irec's (ex lists) */
3865 	int		high;		/* binary search upper limit */
3866 	int		low;		/* binary search lower limit */
3867 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3868 
3869 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3870 	ASSERT(page_idx >= 0 && page_idx <=
3871 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3872 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3873 	erp_idx = 0;
3874 	low = 0;
3875 	high = nlists - 1;
3876 
3877 	/* Binary search extent irec's */
3878 	while (low <= high) {
3879 		erp_idx = (low + high) >> 1;
3880 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3881 		prev = erp_idx > 0 ? erp - 1 : NULL;
3882 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3883 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3884 			high = erp_idx - 1;
3885 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3886 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3887 			    !realloc)) {
3888 			low = erp_idx + 1;
3889 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3890 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3891 			ASSERT(realloc);
3892 			page_idx = 0;
3893 			erp_idx++;
3894 			erp = erp_idx < nlists ? erp + 1 : NULL;
3895 			break;
3896 		} else {
3897 			page_idx -= erp->er_extoff;
3898 			break;
3899 		}
3900 	}
3901 	*idxp = page_idx;
3902 	*erp_idxp = erp_idx;
3903 	return(erp);
3904 }
3905 
3906 /*
3907  * Allocate and initialize an indirection array once the space needed
3908  * for incore extents increases above XFS_IEXT_BUFSZ.
3909  */
3910 void
3911 xfs_iext_irec_init(
3912 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3913 {
3914 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3915 	xfs_extnum_t	nextents;	/* number of extents in file */
3916 
3917 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3918 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3919 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3920 
3921 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3922 
3923 	if (nextents == 0) {
3924 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3925 	} else if (!ifp->if_real_bytes) {
3926 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3927 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3928 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3929 	}
3930 	erp->er_extbuf = ifp->if_u1.if_extents;
3931 	erp->er_extcount = nextents;
3932 	erp->er_extoff = 0;
3933 
3934 	ifp->if_flags |= XFS_IFEXTIREC;
3935 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3936 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3937 	ifp->if_u1.if_ext_irec = erp;
3938 
3939 	return;
3940 }
3941 
3942 /*
3943  * Allocate and initialize a new entry in the indirection array.
3944  */
3945 xfs_ext_irec_t *
3946 xfs_iext_irec_new(
3947 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3948 	int		erp_idx)	/* index for new irec */
3949 {
3950 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3951 	int		i;		/* loop counter */
3952 	int		nlists;		/* number of irec's (ex lists) */
3953 
3954 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3955 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3956 
3957 	/* Resize indirection array */
3958 	xfs_iext_realloc_indirect(ifp, ++nlists *
3959 				  sizeof(xfs_ext_irec_t));
3960 	/*
3961 	 * Move records down in the array so the
3962 	 * new page can use erp_idx.
3963 	 */
3964 	erp = ifp->if_u1.if_ext_irec;
3965 	for (i = nlists - 1; i > erp_idx; i--) {
3966 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3967 	}
3968 	ASSERT(i == erp_idx);
3969 
3970 	/* Initialize new extent record */
3971 	erp = ifp->if_u1.if_ext_irec;
3972 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3973 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3974 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3975 	erp[erp_idx].er_extcount = 0;
3976 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3977 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3978 	return (&erp[erp_idx]);
3979 }
3980 
3981 /*
3982  * Remove a record from the indirection array.
3983  */
3984 void
3985 xfs_iext_irec_remove(
3986 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3987 	int		erp_idx)	/* irec index to remove */
3988 {
3989 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3990 	int		i;		/* loop counter */
3991 	int		nlists;		/* number of irec's (ex lists) */
3992 
3993 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3994 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3995 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3996 	if (erp->er_extbuf) {
3997 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3998 			-erp->er_extcount);
3999 		kmem_free(erp->er_extbuf);
4000 	}
4001 	/* Compact extent records */
4002 	erp = ifp->if_u1.if_ext_irec;
4003 	for (i = erp_idx; i < nlists - 1; i++) {
4004 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4005 	}
4006 	/*
4007 	 * Manually free the last extent record from the indirection
4008 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4009 	 * of zero would result in a call to xfs_iext_destroy() which
4010 	 * would in turn call this function again, creating a nasty
4011 	 * infinite loop.
4012 	 */
4013 	if (--nlists) {
4014 		xfs_iext_realloc_indirect(ifp,
4015 			nlists * sizeof(xfs_ext_irec_t));
4016 	} else {
4017 		kmem_free(ifp->if_u1.if_ext_irec);
4018 	}
4019 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4020 }
4021 
4022 /*
4023  * This is called to clean up large amounts of unused memory allocated
4024  * by the indirection array.  Before compacting anything though, verify
4025  * that the indirection array is still needed and switch back to the
4026  * linear extent list (or even the inline buffer) if possible.  The
4027  * compaction policy is as follows:
4028  *
4029  *    Full Compaction: Extents fit into a single page (or inline buffer)
4030  * Partial Compaction: Extents occupy less than 50% of allocated space
4031  *      No Compaction: Extents occupy at least 50% of allocated space
4032  */
4033 void
4034 xfs_iext_irec_compact(
4035 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4036 {
4037 	xfs_extnum_t	nextents;	/* number of extents in file */
4038 	int		nlists;		/* number of irec's (ex lists) */
4039 
4040 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4041 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4042 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4043 
4044 	if (nextents == 0) {
4045 		xfs_iext_destroy(ifp);
4046 	} else if (nextents <= XFS_INLINE_EXTS) {
4047 		xfs_iext_indirect_to_direct(ifp);
4048 		xfs_iext_direct_to_inline(ifp, nextents);
4049 	} else if (nextents <= XFS_LINEAR_EXTS) {
4050 		xfs_iext_indirect_to_direct(ifp);
4051 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4052 		xfs_iext_irec_compact_pages(ifp);
4053 	}
4054 }
4055 
4056 /*
4057  * Combine extents from neighboring extent pages.
4058  */
4059 void
4060 xfs_iext_irec_compact_pages(
4061 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4062 {
4063 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4064 	int		erp_idx = 0;	/* indirection array index */
4065 	int		nlists;		/* number of irec's (ex lists) */
4066 
4067 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4068 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4069 	while (erp_idx < nlists - 1) {
4070 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4071 		erp_next = erp + 1;
4072 		if (erp_next->er_extcount <=
4073 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4074 			memcpy(&erp->er_extbuf[erp->er_extcount],
4075 				erp_next->er_extbuf, erp_next->er_extcount *
4076 				sizeof(xfs_bmbt_rec_t));
4077 			erp->er_extcount += erp_next->er_extcount;
4078 			/*
4079 			 * Free page before removing extent record
4080 			 * so er_extoffs don't get modified in
4081 			 * xfs_iext_irec_remove.
4082 			 */
4083 			kmem_free(erp_next->er_extbuf);
4084 			erp_next->er_extbuf = NULL;
4085 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4086 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4087 		} else {
4088 			erp_idx++;
4089 		}
4090 	}
4091 }
4092 
4093 /*
4094  * This is called to update the er_extoff field in the indirection
4095  * array when extents have been added or removed from one of the
4096  * extent lists. erp_idx contains the irec index to begin updating
4097  * at and ext_diff contains the number of extents that were added
4098  * or removed.
4099  */
4100 void
4101 xfs_iext_irec_update_extoffs(
4102 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4103 	int		erp_idx,	/* irec index to update */
4104 	int		ext_diff)	/* number of new extents */
4105 {
4106 	int		i;		/* loop counter */
4107 	int		nlists;		/* number of irec's (ex lists */
4108 
4109 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4110 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4111 	for (i = erp_idx; i < nlists; i++) {
4112 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4113 	}
4114 }
4115