xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 384740dc)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_imap.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_sb.h"
30 #include "xfs_ag.h"
31 #include "xfs_dir2.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
55 
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 
59 /*
60  * Used in xfs_itruncate().  This is the maximum number of extents
61  * freed from a file in a single transaction.
62  */
63 #define	XFS_ITRUNC_MAX_EXTENTS	2
64 
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 
70 #ifdef DEBUG
71 /*
72  * Make sure that the extents in the given memory buffer
73  * are valid.
74  */
75 STATIC void
76 xfs_validate_extents(
77 	xfs_ifork_t		*ifp,
78 	int			nrecs,
79 	xfs_exntfmt_t		fmt)
80 {
81 	xfs_bmbt_irec_t		irec;
82 	xfs_bmbt_rec_host_t	rec;
83 	int			i;
84 
85 	for (i = 0; i < nrecs; i++) {
86 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 		rec.l0 = get_unaligned(&ep->l0);
88 		rec.l1 = get_unaligned(&ep->l1);
89 		xfs_bmbt_get_all(&rec, &irec);
90 		if (fmt == XFS_EXTFMT_NOSTATE)
91 			ASSERT(irec.br_state == XFS_EXT_NORM);
92 	}
93 }
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
97 
98 /*
99  * Check that none of the inode's in the buffer have a next
100  * unlinked field of 0.
101  */
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 	xfs_mount_t	*mp,
106 	xfs_buf_t	*bp)
107 {
108 	int		i;
109 	int		j;
110 	xfs_dinode_t	*dip;
111 
112 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 
114 	for (i = 0; i < j; i++) {
115 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 					i * mp->m_sb.sb_inodesize);
117 		if (!dip->di_next_unlinked)  {
118 			xfs_fs_cmn_err(CE_ALERT, mp,
119 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
120 				bp);
121 			ASSERT(dip->di_next_unlinked);
122 		}
123 	}
124 }
125 #endif
126 
127 /*
128  * Find the buffer associated with the given inode map
129  * We do basic validation checks on the buffer once it has been
130  * retrieved from disk.
131  */
132 STATIC int
133 xfs_imap_to_bp(
134 	xfs_mount_t	*mp,
135 	xfs_trans_t	*tp,
136 	xfs_imap_t	*imap,
137 	xfs_buf_t	**bpp,
138 	uint		buf_flags,
139 	uint		imap_flags)
140 {
141 	int		error;
142 	int		i;
143 	int		ni;
144 	xfs_buf_t	*bp;
145 
146 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 				   (int)imap->im_len, buf_flags, &bp);
148 	if (error) {
149 		if (error != EAGAIN) {
150 			cmn_err(CE_WARN,
151 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 				"an error %d on %s.  Returning error.",
153 				error, mp->m_fsname);
154 		} else {
155 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 		}
157 		return error;
158 	}
159 
160 	/*
161 	 * Validate the magic number and version of every inode in the buffer
162 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 	 */
164 #ifdef DEBUG
165 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else	/* usual case */
167 	ni = 1;
168 #endif
169 
170 	for (i = 0; i < ni; i++) {
171 		int		di_ok;
172 		xfs_dinode_t	*dip;
173 
174 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 					(i << mp->m_sb.sb_inodelog));
176 		di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 			    XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 						XFS_ERRTAG_ITOBP_INOTOBP,
180 						XFS_RANDOM_ITOBP_INOTOBP))) {
181 			if (imap_flags & XFS_IMAP_BULKSTAT) {
182 				xfs_trans_brelse(tp, bp);
183 				return XFS_ERROR(EINVAL);
184 			}
185 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 						XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 			cmn_err(CE_PANIC,
189 					"Device %s - bad inode magic/vsn "
190 					"daddr %lld #%d (magic=%x)",
191 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 				(unsigned long long)imap->im_blkno, i,
193 				be16_to_cpu(dip->di_core.di_magic));
194 #endif
195 			xfs_trans_brelse(tp, bp);
196 			return XFS_ERROR(EFSCORRUPTED);
197 		}
198 	}
199 
200 	xfs_inobp_check(mp, bp);
201 
202 	/*
203 	 * Mark the buffer as an inode buffer now that it looks good
204 	 */
205 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 
207 	*bpp = bp;
208 	return 0;
209 }
210 
211 /*
212  * This routine is called to map an inode number within a file
213  * system to the buffer containing the on-disk version of the
214  * inode.  It returns a pointer to the buffer containing the
215  * on-disk inode in the bpp parameter, and in the dip parameter
216  * it returns a pointer to the on-disk inode within that buffer.
217  *
218  * If a non-zero error is returned, then the contents of bpp and
219  * dipp are undefined.
220  *
221  * Use xfs_imap() to determine the size and location of the
222  * buffer to read from disk.
223  */
224 STATIC int
225 xfs_inotobp(
226 	xfs_mount_t	*mp,
227 	xfs_trans_t	*tp,
228 	xfs_ino_t	ino,
229 	xfs_dinode_t	**dipp,
230 	xfs_buf_t	**bpp,
231 	int		*offset)
232 {
233 	xfs_imap_t	imap;
234 	xfs_buf_t	*bp;
235 	int		error;
236 
237 	imap.im_blkno = 0;
238 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
239 	if (error)
240 		return error;
241 
242 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
243 	if (error)
244 		return error;
245 
246 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 	*bpp = bp;
248 	*offset = imap.im_boffset;
249 	return 0;
250 }
251 
252 
253 /*
254  * This routine is called to map an inode to the buffer containing
255  * the on-disk version of the inode.  It returns a pointer to the
256  * buffer containing the on-disk inode in the bpp parameter, and in
257  * the dip parameter it returns a pointer to the on-disk inode within
258  * that buffer.
259  *
260  * If a non-zero error is returned, then the contents of bpp and
261  * dipp are undefined.
262  *
263  * If the inode is new and has not yet been initialized, use xfs_imap()
264  * to determine the size and location of the buffer to read from disk.
265  * If the inode has already been mapped to its buffer and read in once,
266  * then use the mapping information stored in the inode rather than
267  * calling xfs_imap().  This allows us to avoid the overhead of looking
268  * at the inode btree for small block file systems (see xfs_dilocate()).
269  * We can tell whether the inode has been mapped in before by comparing
270  * its disk block address to 0.  Only uninitialized inodes will have
271  * 0 for the disk block address.
272  */
273 int
274 xfs_itobp(
275 	xfs_mount_t	*mp,
276 	xfs_trans_t	*tp,
277 	xfs_inode_t	*ip,
278 	xfs_dinode_t	**dipp,
279 	xfs_buf_t	**bpp,
280 	xfs_daddr_t	bno,
281 	uint		imap_flags,
282 	uint		buf_flags)
283 {
284 	xfs_imap_t	imap;
285 	xfs_buf_t	*bp;
286 	int		error;
287 
288 	if (ip->i_blkno == (xfs_daddr_t)0) {
289 		imap.im_blkno = bno;
290 		error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 					XFS_IMAP_LOOKUP | imap_flags);
292 		if (error)
293 			return error;
294 
295 		/*
296 		 * Fill in the fields in the inode that will be used to
297 		 * map the inode to its buffer from now on.
298 		 */
299 		ip->i_blkno = imap.im_blkno;
300 		ip->i_len = imap.im_len;
301 		ip->i_boffset = imap.im_boffset;
302 	} else {
303 		/*
304 		 * We've already mapped the inode once, so just use the
305 		 * mapping that we saved the first time.
306 		 */
307 		imap.im_blkno = ip->i_blkno;
308 		imap.im_len = ip->i_len;
309 		imap.im_boffset = ip->i_boffset;
310 	}
311 	ASSERT(bno == 0 || bno == imap.im_blkno);
312 
313 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
314 	if (error)
315 		return error;
316 
317 	if (!bp) {
318 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
319 		ASSERT(tp == NULL);
320 		*bpp = NULL;
321 		return EAGAIN;
322 	}
323 
324 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
325 	*bpp = bp;
326 	return 0;
327 }
328 
329 /*
330  * Move inode type and inode format specific information from the
331  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
332  * this means set if_rdev to the proper value.  For files, directories,
333  * and symlinks this means to bring in the in-line data or extent
334  * pointers.  For a file in B-tree format, only the root is immediately
335  * brought in-core.  The rest will be in-lined in if_extents when it
336  * is first referenced (see xfs_iread_extents()).
337  */
338 STATIC int
339 xfs_iformat(
340 	xfs_inode_t		*ip,
341 	xfs_dinode_t		*dip)
342 {
343 	xfs_attr_shortform_t	*atp;
344 	int			size;
345 	int			error;
346 	xfs_fsize_t             di_size;
347 	ip->i_df.if_ext_max =
348 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
349 	error = 0;
350 
351 	if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 		     be16_to_cpu(dip->di_core.di_anextents) >
353 		     be64_to_cpu(dip->di_core.di_nblocks))) {
354 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 			(unsigned long long)ip->i_ino,
357 			(int)(be32_to_cpu(dip->di_core.di_nextents) +
358 			      be16_to_cpu(dip->di_core.di_anextents)),
359 			(unsigned long long)
360 				be64_to_cpu(dip->di_core.di_nblocks));
361 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
362 				     ip->i_mount, dip);
363 		return XFS_ERROR(EFSCORRUPTED);
364 	}
365 
366 	if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
367 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 			"corrupt dinode %Lu, forkoff = 0x%x.",
369 			(unsigned long long)ip->i_ino,
370 			dip->di_core.di_forkoff);
371 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
372 				     ip->i_mount, dip);
373 		return XFS_ERROR(EFSCORRUPTED);
374 	}
375 
376 	switch (ip->i_d.di_mode & S_IFMT) {
377 	case S_IFIFO:
378 	case S_IFCHR:
379 	case S_IFBLK:
380 	case S_IFSOCK:
381 		if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
382 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
383 					      ip->i_mount, dip);
384 			return XFS_ERROR(EFSCORRUPTED);
385 		}
386 		ip->i_d.di_size = 0;
387 		ip->i_size = 0;
388 		ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
389 		break;
390 
391 	case S_IFREG:
392 	case S_IFLNK:
393 	case S_IFDIR:
394 		switch (dip->di_core.di_format) {
395 		case XFS_DINODE_FMT_LOCAL:
396 			/*
397 			 * no local regular files yet
398 			 */
399 			if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
400 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
401 					"corrupt inode %Lu "
402 					"(local format for regular file).",
403 					(unsigned long long) ip->i_ino);
404 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
405 						     XFS_ERRLEVEL_LOW,
406 						     ip->i_mount, dip);
407 				return XFS_ERROR(EFSCORRUPTED);
408 			}
409 
410 			di_size = be64_to_cpu(dip->di_core.di_size);
411 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
412 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 					"corrupt inode %Lu "
414 					"(bad size %Ld for local inode).",
415 					(unsigned long long) ip->i_ino,
416 					(long long) di_size);
417 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
418 						     XFS_ERRLEVEL_LOW,
419 						     ip->i_mount, dip);
420 				return XFS_ERROR(EFSCORRUPTED);
421 			}
422 
423 			size = (int)di_size;
424 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
425 			break;
426 		case XFS_DINODE_FMT_EXTENTS:
427 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
428 			break;
429 		case XFS_DINODE_FMT_BTREE:
430 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
431 			break;
432 		default:
433 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
434 					 ip->i_mount);
435 			return XFS_ERROR(EFSCORRUPTED);
436 		}
437 		break;
438 
439 	default:
440 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 		return XFS_ERROR(EFSCORRUPTED);
442 	}
443 	if (error) {
444 		return error;
445 	}
446 	if (!XFS_DFORK_Q(dip))
447 		return 0;
448 	ASSERT(ip->i_afp == NULL);
449 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 	ip->i_afp->if_ext_max =
451 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
452 	switch (dip->di_core.di_aformat) {
453 	case XFS_DINODE_FMT_LOCAL:
454 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
455 		size = be16_to_cpu(atp->hdr.totsize);
456 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
457 		break;
458 	case XFS_DINODE_FMT_EXTENTS:
459 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
460 		break;
461 	case XFS_DINODE_FMT_BTREE:
462 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
463 		break;
464 	default:
465 		error = XFS_ERROR(EFSCORRUPTED);
466 		break;
467 	}
468 	if (error) {
469 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
470 		ip->i_afp = NULL;
471 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
472 	}
473 	return error;
474 }
475 
476 /*
477  * The file is in-lined in the on-disk inode.
478  * If it fits into if_inline_data, then copy
479  * it there, otherwise allocate a buffer for it
480  * and copy the data there.  Either way, set
481  * if_data to point at the data.
482  * If we allocate a buffer for the data, make
483  * sure that its size is a multiple of 4 and
484  * record the real size in i_real_bytes.
485  */
486 STATIC int
487 xfs_iformat_local(
488 	xfs_inode_t	*ip,
489 	xfs_dinode_t	*dip,
490 	int		whichfork,
491 	int		size)
492 {
493 	xfs_ifork_t	*ifp;
494 	int		real_size;
495 
496 	/*
497 	 * If the size is unreasonable, then something
498 	 * is wrong and we just bail out rather than crash in
499 	 * kmem_alloc() or memcpy() below.
500 	 */
501 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
502 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
503 			"corrupt inode %Lu "
504 			"(bad size %d for local fork, size = %d).",
505 			(unsigned long long) ip->i_ino, size,
506 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
508 				     ip->i_mount, dip);
509 		return XFS_ERROR(EFSCORRUPTED);
510 	}
511 	ifp = XFS_IFORK_PTR(ip, whichfork);
512 	real_size = 0;
513 	if (size == 0)
514 		ifp->if_u1.if_data = NULL;
515 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
517 	else {
518 		real_size = roundup(size, 4);
519 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
520 	}
521 	ifp->if_bytes = size;
522 	ifp->if_real_bytes = real_size;
523 	if (size)
524 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 	ifp->if_flags &= ~XFS_IFEXTENTS;
526 	ifp->if_flags |= XFS_IFINLINE;
527 	return 0;
528 }
529 
530 /*
531  * The file consists of a set of extents all
532  * of which fit into the on-disk inode.
533  * If there are few enough extents to fit into
534  * the if_inline_ext, then copy them there.
535  * Otherwise allocate a buffer for them and copy
536  * them into it.  Either way, set if_extents
537  * to point at the extents.
538  */
539 STATIC int
540 xfs_iformat_extents(
541 	xfs_inode_t	*ip,
542 	xfs_dinode_t	*dip,
543 	int		whichfork)
544 {
545 	xfs_bmbt_rec_t	*dp;
546 	xfs_ifork_t	*ifp;
547 	int		nex;
548 	int		size;
549 	int		i;
550 
551 	ifp = XFS_IFORK_PTR(ip, whichfork);
552 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
554 
555 	/*
556 	 * If the number of extents is unreasonable, then something
557 	 * is wrong and we just bail out rather than crash in
558 	 * kmem_alloc() or memcpy() below.
559 	 */
560 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
561 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 			"corrupt inode %Lu ((a)extents = %d).",
563 			(unsigned long long) ip->i_ino, nex);
564 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
565 				     ip->i_mount, dip);
566 		return XFS_ERROR(EFSCORRUPTED);
567 	}
568 
569 	ifp->if_real_bytes = 0;
570 	if (nex == 0)
571 		ifp->if_u1.if_extents = NULL;
572 	else if (nex <= XFS_INLINE_EXTS)
573 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
574 	else
575 		xfs_iext_add(ifp, 0, nex);
576 
577 	ifp->if_bytes = size;
578 	if (size) {
579 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
580 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
581 		for (i = 0; i < nex; i++, dp++) {
582 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
583 			ep->l0 = get_unaligned_be64(&dp->l0);
584 			ep->l1 = get_unaligned_be64(&dp->l1);
585 		}
586 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
587 		if (whichfork != XFS_DATA_FORK ||
588 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 				if (unlikely(xfs_check_nostate_extents(
590 				    ifp, 0, nex))) {
591 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
592 							 XFS_ERRLEVEL_LOW,
593 							 ip->i_mount);
594 					return XFS_ERROR(EFSCORRUPTED);
595 				}
596 	}
597 	ifp->if_flags |= XFS_IFEXTENTS;
598 	return 0;
599 }
600 
601 /*
602  * The file has too many extents to fit into
603  * the inode, so they are in B-tree format.
604  * Allocate a buffer for the root of the B-tree
605  * and copy the root into it.  The i_extents
606  * field will remain NULL until all of the
607  * extents are read in (when they are needed).
608  */
609 STATIC int
610 xfs_iformat_btree(
611 	xfs_inode_t		*ip,
612 	xfs_dinode_t		*dip,
613 	int			whichfork)
614 {
615 	xfs_bmdr_block_t	*dfp;
616 	xfs_ifork_t		*ifp;
617 	/* REFERENCED */
618 	int			nrecs;
619 	int			size;
620 
621 	ifp = XFS_IFORK_PTR(ip, whichfork);
622 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 	size = XFS_BMAP_BROOT_SPACE(dfp);
624 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
625 
626 	/*
627 	 * blow out if -- fork has less extents than can fit in
628 	 * fork (fork shouldn't be a btree format), root btree
629 	 * block has more records than can fit into the fork,
630 	 * or the number of extents is greater than the number of
631 	 * blocks.
632 	 */
633 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 	    || XFS_BMDR_SPACE_CALC(nrecs) >
635 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
637 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 			"corrupt inode %Lu (btree).",
639 			(unsigned long long) ip->i_ino);
640 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
641 				 ip->i_mount);
642 		return XFS_ERROR(EFSCORRUPTED);
643 	}
644 
645 	ifp->if_broot_bytes = size;
646 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 	ASSERT(ifp->if_broot != NULL);
648 	/*
649 	 * Copy and convert from the on-disk structure
650 	 * to the in-memory structure.
651 	 */
652 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 		ifp->if_broot, size);
654 	ifp->if_flags &= ~XFS_IFEXTENTS;
655 	ifp->if_flags |= XFS_IFBROOT;
656 
657 	return 0;
658 }
659 
660 void
661 xfs_dinode_from_disk(
662 	xfs_icdinode_t		*to,
663 	xfs_dinode_core_t	*from)
664 {
665 	to->di_magic = be16_to_cpu(from->di_magic);
666 	to->di_mode = be16_to_cpu(from->di_mode);
667 	to->di_version = from ->di_version;
668 	to->di_format = from->di_format;
669 	to->di_onlink = be16_to_cpu(from->di_onlink);
670 	to->di_uid = be32_to_cpu(from->di_uid);
671 	to->di_gid = be32_to_cpu(from->di_gid);
672 	to->di_nlink = be32_to_cpu(from->di_nlink);
673 	to->di_projid = be16_to_cpu(from->di_projid);
674 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 	to->di_size = be64_to_cpu(from->di_size);
683 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 	to->di_extsize = be32_to_cpu(from->di_extsize);
685 	to->di_nextents = be32_to_cpu(from->di_nextents);
686 	to->di_anextents = be16_to_cpu(from->di_anextents);
687 	to->di_forkoff = from->di_forkoff;
688 	to->di_aformat	= from->di_aformat;
689 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
690 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
691 	to->di_flags	= be16_to_cpu(from->di_flags);
692 	to->di_gen	= be32_to_cpu(from->di_gen);
693 }
694 
695 void
696 xfs_dinode_to_disk(
697 	xfs_dinode_core_t	*to,
698 	xfs_icdinode_t		*from)
699 {
700 	to->di_magic = cpu_to_be16(from->di_magic);
701 	to->di_mode = cpu_to_be16(from->di_mode);
702 	to->di_version = from ->di_version;
703 	to->di_format = from->di_format;
704 	to->di_onlink = cpu_to_be16(from->di_onlink);
705 	to->di_uid = cpu_to_be32(from->di_uid);
706 	to->di_gid = cpu_to_be32(from->di_gid);
707 	to->di_nlink = cpu_to_be32(from->di_nlink);
708 	to->di_projid = cpu_to_be16(from->di_projid);
709 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 	to->di_size = cpu_to_be64(from->di_size);
718 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 	to->di_extsize = cpu_to_be32(from->di_extsize);
720 	to->di_nextents = cpu_to_be32(from->di_nextents);
721 	to->di_anextents = cpu_to_be16(from->di_anextents);
722 	to->di_forkoff = from->di_forkoff;
723 	to->di_aformat = from->di_aformat;
724 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 	to->di_flags = cpu_to_be16(from->di_flags);
727 	to->di_gen = cpu_to_be32(from->di_gen);
728 }
729 
730 STATIC uint
731 _xfs_dic2xflags(
732 	__uint16_t		di_flags)
733 {
734 	uint			flags = 0;
735 
736 	if (di_flags & XFS_DIFLAG_ANY) {
737 		if (di_flags & XFS_DIFLAG_REALTIME)
738 			flags |= XFS_XFLAG_REALTIME;
739 		if (di_flags & XFS_DIFLAG_PREALLOC)
740 			flags |= XFS_XFLAG_PREALLOC;
741 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 			flags |= XFS_XFLAG_IMMUTABLE;
743 		if (di_flags & XFS_DIFLAG_APPEND)
744 			flags |= XFS_XFLAG_APPEND;
745 		if (di_flags & XFS_DIFLAG_SYNC)
746 			flags |= XFS_XFLAG_SYNC;
747 		if (di_flags & XFS_DIFLAG_NOATIME)
748 			flags |= XFS_XFLAG_NOATIME;
749 		if (di_flags & XFS_DIFLAG_NODUMP)
750 			flags |= XFS_XFLAG_NODUMP;
751 		if (di_flags & XFS_DIFLAG_RTINHERIT)
752 			flags |= XFS_XFLAG_RTINHERIT;
753 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 			flags |= XFS_XFLAG_PROJINHERIT;
755 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 			flags |= XFS_XFLAG_NOSYMLINKS;
757 		if (di_flags & XFS_DIFLAG_EXTSIZE)
758 			flags |= XFS_XFLAG_EXTSIZE;
759 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 			flags |= XFS_XFLAG_EXTSZINHERIT;
761 		if (di_flags & XFS_DIFLAG_NODEFRAG)
762 			flags |= XFS_XFLAG_NODEFRAG;
763 		if (di_flags & XFS_DIFLAG_FILESTREAM)
764 			flags |= XFS_XFLAG_FILESTREAM;
765 	}
766 
767 	return flags;
768 }
769 
770 uint
771 xfs_ip2xflags(
772 	xfs_inode_t		*ip)
773 {
774 	xfs_icdinode_t		*dic = &ip->i_d;
775 
776 	return _xfs_dic2xflags(dic->di_flags) |
777 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
778 }
779 
780 uint
781 xfs_dic2xflags(
782 	xfs_dinode_t		*dip)
783 {
784 	xfs_dinode_core_t	*dic = &dip->di_core;
785 
786 	return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
787 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
788 }
789 
790 /*
791  * Given a mount structure and an inode number, return a pointer
792  * to a newly allocated in-core inode corresponding to the given
793  * inode number.
794  *
795  * Initialize the inode's attributes and extent pointers if it
796  * already has them (it will not if the inode has no links).
797  */
798 int
799 xfs_iread(
800 	xfs_mount_t	*mp,
801 	xfs_trans_t	*tp,
802 	xfs_ino_t	ino,
803 	xfs_inode_t	**ipp,
804 	xfs_daddr_t	bno,
805 	uint		imap_flags)
806 {
807 	xfs_buf_t	*bp;
808 	xfs_dinode_t	*dip;
809 	xfs_inode_t	*ip;
810 	int		error;
811 
812 	ASSERT(xfs_inode_zone != NULL);
813 
814 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
815 	ip->i_ino = ino;
816 	ip->i_mount = mp;
817 	atomic_set(&ip->i_iocount, 0);
818 	spin_lock_init(&ip->i_flags_lock);
819 
820 	/*
821 	 * Get pointer's to the on-disk inode and the buffer containing it.
822 	 * If the inode number refers to a block outside the file system
823 	 * then xfs_itobp() will return NULL.  In this case we should
824 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
825 	 * know that this is a new incore inode.
826 	 */
827 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
828 	if (error) {
829 		kmem_zone_free(xfs_inode_zone, ip);
830 		return error;
831 	}
832 
833 	/*
834 	 * Initialize inode's trace buffers.
835 	 * Do this before xfs_iformat in case it adds entries.
836 	 */
837 #ifdef	XFS_INODE_TRACE
838 	ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
839 #endif
840 #ifdef XFS_BMAP_TRACE
841 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
842 #endif
843 #ifdef XFS_BMBT_TRACE
844 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
845 #endif
846 #ifdef XFS_RW_TRACE
847 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
848 #endif
849 #ifdef XFS_ILOCK_TRACE
850 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
851 #endif
852 #ifdef XFS_DIR2_TRACE
853 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
854 #endif
855 
856 	/*
857 	 * If we got something that isn't an inode it means someone
858 	 * (nfs or dmi) has a stale handle.
859 	 */
860 	if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
861 		kmem_zone_free(xfs_inode_zone, ip);
862 		xfs_trans_brelse(tp, bp);
863 #ifdef DEBUG
864 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
865 				"dip->di_core.di_magic (0x%x) != "
866 				"XFS_DINODE_MAGIC (0x%x)",
867 				be16_to_cpu(dip->di_core.di_magic),
868 				XFS_DINODE_MAGIC);
869 #endif /* DEBUG */
870 		return XFS_ERROR(EINVAL);
871 	}
872 
873 	/*
874 	 * If the on-disk inode is already linked to a directory
875 	 * entry, copy all of the inode into the in-core inode.
876 	 * xfs_iformat() handles copying in the inode format
877 	 * specific information.
878 	 * Otherwise, just get the truly permanent information.
879 	 */
880 	if (dip->di_core.di_mode) {
881 		xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
882 		error = xfs_iformat(ip, dip);
883 		if (error)  {
884 			kmem_zone_free(xfs_inode_zone, ip);
885 			xfs_trans_brelse(tp, bp);
886 #ifdef DEBUG
887 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
888 					"xfs_iformat() returned error %d",
889 					error);
890 #endif /* DEBUG */
891 			return error;
892 		}
893 	} else {
894 		ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
895 		ip->i_d.di_version = dip->di_core.di_version;
896 		ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
897 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
898 		/*
899 		 * Make sure to pull in the mode here as well in
900 		 * case the inode is released without being used.
901 		 * This ensures that xfs_inactive() will see that
902 		 * the inode is already free and not try to mess
903 		 * with the uninitialized part of it.
904 		 */
905 		ip->i_d.di_mode = 0;
906 		/*
907 		 * Initialize the per-fork minima and maxima for a new
908 		 * inode here.  xfs_iformat will do it for old inodes.
909 		 */
910 		ip->i_df.if_ext_max =
911 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
912 	}
913 
914 	INIT_LIST_HEAD(&ip->i_reclaim);
915 
916 	/*
917 	 * The inode format changed when we moved the link count and
918 	 * made it 32 bits long.  If this is an old format inode,
919 	 * convert it in memory to look like a new one.  If it gets
920 	 * flushed to disk we will convert back before flushing or
921 	 * logging it.  We zero out the new projid field and the old link
922 	 * count field.  We'll handle clearing the pad field (the remains
923 	 * of the old uuid field) when we actually convert the inode to
924 	 * the new format. We don't change the version number so that we
925 	 * can distinguish this from a real new format inode.
926 	 */
927 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
928 		ip->i_d.di_nlink = ip->i_d.di_onlink;
929 		ip->i_d.di_onlink = 0;
930 		ip->i_d.di_projid = 0;
931 	}
932 
933 	ip->i_delayed_blks = 0;
934 	ip->i_size = ip->i_d.di_size;
935 
936 	/*
937 	 * Mark the buffer containing the inode as something to keep
938 	 * around for a while.  This helps to keep recently accessed
939 	 * meta-data in-core longer.
940 	 */
941 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
942 
943 	/*
944 	 * Use xfs_trans_brelse() to release the buffer containing the
945 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
947 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
948 	 * will only release the buffer if it is not dirty within the
949 	 * transaction.  It will be OK to release the buffer in this case,
950 	 * because inodes on disk are never destroyed and we will be
951 	 * locking the new in-core inode before putting it in the hash
952 	 * table where other processes can find it.  Thus we don't have
953 	 * to worry about the inode being changed just because we released
954 	 * the buffer.
955 	 */
956 	xfs_trans_brelse(tp, bp);
957 	*ipp = ip;
958 	return 0;
959 }
960 
961 /*
962  * Read in extents from a btree-format inode.
963  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
964  */
965 int
966 xfs_iread_extents(
967 	xfs_trans_t	*tp,
968 	xfs_inode_t	*ip,
969 	int		whichfork)
970 {
971 	int		error;
972 	xfs_ifork_t	*ifp;
973 	xfs_extnum_t	nextents;
974 	size_t		size;
975 
976 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
977 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
978 				 ip->i_mount);
979 		return XFS_ERROR(EFSCORRUPTED);
980 	}
981 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
982 	size = nextents * sizeof(xfs_bmbt_rec_t);
983 	ifp = XFS_IFORK_PTR(ip, whichfork);
984 
985 	/*
986 	 * We know that the size is valid (it's checked in iformat_btree)
987 	 */
988 	ifp->if_lastex = NULLEXTNUM;
989 	ifp->if_bytes = ifp->if_real_bytes = 0;
990 	ifp->if_flags |= XFS_IFEXTENTS;
991 	xfs_iext_add(ifp, 0, nextents);
992 	error = xfs_bmap_read_extents(tp, ip, whichfork);
993 	if (error) {
994 		xfs_iext_destroy(ifp);
995 		ifp->if_flags &= ~XFS_IFEXTENTS;
996 		return error;
997 	}
998 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
999 	return 0;
1000 }
1001 
1002 /*
1003  * Allocate an inode on disk and return a copy of its in-core version.
1004  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1005  * appropriately within the inode.  The uid and gid for the inode are
1006  * set according to the contents of the given cred structure.
1007  *
1008  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009  * has a free inode available, call xfs_iget()
1010  * to obtain the in-core version of the allocated inode.  Finally,
1011  * fill in the inode and log its initial contents.  In this case,
1012  * ialloc_context would be set to NULL and call_again set to false.
1013  *
1014  * If xfs_dialloc() does not have an available inode,
1015  * it will replenish its supply by doing an allocation. Since we can
1016  * only do one allocation within a transaction without deadlocks, we
1017  * must commit the current transaction before returning the inode itself.
1018  * In this case, therefore, we will set call_again to true and return.
1019  * The caller should then commit the current transaction, start a new
1020  * transaction, and call xfs_ialloc() again to actually get the inode.
1021  *
1022  * To ensure that some other process does not grab the inode that
1023  * was allocated during the first call to xfs_ialloc(), this routine
1024  * also returns the [locked] bp pointing to the head of the freelist
1025  * as ialloc_context.  The caller should hold this buffer across
1026  * the commit and pass it back into this routine on the second call.
1027  *
1028  * If we are allocating quota inodes, we do not have a parent inode
1029  * to attach to or associate with (i.e. pip == NULL) because they
1030  * are not linked into the directory structure - they are attached
1031  * directly to the superblock - and so have no parent.
1032  */
1033 int
1034 xfs_ialloc(
1035 	xfs_trans_t	*tp,
1036 	xfs_inode_t	*pip,
1037 	mode_t		mode,
1038 	xfs_nlink_t	nlink,
1039 	xfs_dev_t	rdev,
1040 	cred_t		*cr,
1041 	xfs_prid_t	prid,
1042 	int		okalloc,
1043 	xfs_buf_t	**ialloc_context,
1044 	boolean_t	*call_again,
1045 	xfs_inode_t	**ipp)
1046 {
1047 	xfs_ino_t	ino;
1048 	xfs_inode_t	*ip;
1049 	uint		flags;
1050 	int		error;
1051 	timespec_t	tv;
1052 
1053 	/*
1054 	 * Call the space management code to pick
1055 	 * the on-disk inode to be allocated.
1056 	 */
1057 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1058 			    ialloc_context, call_again, &ino);
1059 	if (error != 0) {
1060 		return error;
1061 	}
1062 	if (*call_again || ino == NULLFSINO) {
1063 		*ipp = NULL;
1064 		return 0;
1065 	}
1066 	ASSERT(*ialloc_context == NULL);
1067 
1068 	/*
1069 	 * Get the in-core inode with the lock held exclusively.
1070 	 * This is because we're setting fields here we need
1071 	 * to prevent others from looking at until we're done.
1072 	 */
1073 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1074 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1075 	if (error != 0) {
1076 		return error;
1077 	}
1078 	ASSERT(ip != NULL);
1079 
1080 	ip->i_d.di_mode = (__uint16_t)mode;
1081 	ip->i_d.di_onlink = 0;
1082 	ip->i_d.di_nlink = nlink;
1083 	ASSERT(ip->i_d.di_nlink == nlink);
1084 	ip->i_d.di_uid = current_fsuid();
1085 	ip->i_d.di_gid = current_fsgid();
1086 	ip->i_d.di_projid = prid;
1087 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1088 
1089 	/*
1090 	 * If the superblock version is up to where we support new format
1091 	 * inodes and this is currently an old format inode, then change
1092 	 * the inode version number now.  This way we only do the conversion
1093 	 * here rather than here and in the flush/logging code.
1094 	 */
1095 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1096 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1097 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1098 		/*
1099 		 * We've already zeroed the old link count, the projid field,
1100 		 * and the pad field.
1101 		 */
1102 	}
1103 
1104 	/*
1105 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1106 	 */
1107 	if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1108 		xfs_bump_ino_vers2(tp, ip);
1109 
1110 	if (pip && XFS_INHERIT_GID(pip)) {
1111 		ip->i_d.di_gid = pip->i_d.di_gid;
1112 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1113 			ip->i_d.di_mode |= S_ISGID;
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * If the group ID of the new file does not match the effective group
1119 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1120 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1121 	 */
1122 	if ((irix_sgid_inherit) &&
1123 	    (ip->i_d.di_mode & S_ISGID) &&
1124 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1125 		ip->i_d.di_mode &= ~S_ISGID;
1126 	}
1127 
1128 	ip->i_d.di_size = 0;
1129 	ip->i_size = 0;
1130 	ip->i_d.di_nextents = 0;
1131 	ASSERT(ip->i_d.di_nblocks == 0);
1132 
1133 	nanotime(&tv);
1134 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1135 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1136 	ip->i_d.di_atime = ip->i_d.di_mtime;
1137 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1138 
1139 	/*
1140 	 * di_gen will have been taken care of in xfs_iread.
1141 	 */
1142 	ip->i_d.di_extsize = 0;
1143 	ip->i_d.di_dmevmask = 0;
1144 	ip->i_d.di_dmstate = 0;
1145 	ip->i_d.di_flags = 0;
1146 	flags = XFS_ILOG_CORE;
1147 	switch (mode & S_IFMT) {
1148 	case S_IFIFO:
1149 	case S_IFCHR:
1150 	case S_IFBLK:
1151 	case S_IFSOCK:
1152 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1153 		ip->i_df.if_u2.if_rdev = rdev;
1154 		ip->i_df.if_flags = 0;
1155 		flags |= XFS_ILOG_DEV;
1156 		break;
1157 	case S_IFREG:
1158 		if (pip && xfs_inode_is_filestream(pip)) {
1159 			error = xfs_filestream_associate(pip, ip);
1160 			if (error < 0)
1161 				return -error;
1162 			if (!error)
1163 				xfs_iflags_set(ip, XFS_IFILESTREAM);
1164 		}
1165 		/* fall through */
1166 	case S_IFDIR:
1167 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1168 			uint	di_flags = 0;
1169 
1170 			if ((mode & S_IFMT) == S_IFDIR) {
1171 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1172 					di_flags |= XFS_DIFLAG_RTINHERIT;
1173 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1174 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1175 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1176 				}
1177 			} else if ((mode & S_IFMT) == S_IFREG) {
1178 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1179 					di_flags |= XFS_DIFLAG_REALTIME;
1180 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1181 					di_flags |= XFS_DIFLAG_EXTSIZE;
1182 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1183 				}
1184 			}
1185 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1186 			    xfs_inherit_noatime)
1187 				di_flags |= XFS_DIFLAG_NOATIME;
1188 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1189 			    xfs_inherit_nodump)
1190 				di_flags |= XFS_DIFLAG_NODUMP;
1191 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1192 			    xfs_inherit_sync)
1193 				di_flags |= XFS_DIFLAG_SYNC;
1194 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1195 			    xfs_inherit_nosymlinks)
1196 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1197 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1198 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1199 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1200 			    xfs_inherit_nodefrag)
1201 				di_flags |= XFS_DIFLAG_NODEFRAG;
1202 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1203 				di_flags |= XFS_DIFLAG_FILESTREAM;
1204 			ip->i_d.di_flags |= di_flags;
1205 		}
1206 		/* FALLTHROUGH */
1207 	case S_IFLNK:
1208 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1209 		ip->i_df.if_flags = XFS_IFEXTENTS;
1210 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1211 		ip->i_df.if_u1.if_extents = NULL;
1212 		break;
1213 	default:
1214 		ASSERT(0);
1215 	}
1216 	/*
1217 	 * Attribute fork settings for new inode.
1218 	 */
1219 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1220 	ip->i_d.di_anextents = 0;
1221 
1222 	/*
1223 	 * Log the new values stuffed into the inode.
1224 	 */
1225 	xfs_trans_log_inode(tp, ip, flags);
1226 
1227 	/* now that we have an i_mode we can setup inode ops and unlock */
1228 	xfs_setup_inode(ip);
1229 
1230 	*ipp = ip;
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Check to make sure that there are no blocks allocated to the
1236  * file beyond the size of the file.  We don't check this for
1237  * files with fixed size extents or real time extents, but we
1238  * at least do it for regular files.
1239  */
1240 #ifdef DEBUG
1241 void
1242 xfs_isize_check(
1243 	xfs_mount_t	*mp,
1244 	xfs_inode_t	*ip,
1245 	xfs_fsize_t	isize)
1246 {
1247 	xfs_fileoff_t	map_first;
1248 	int		nimaps;
1249 	xfs_bmbt_irec_t	imaps[2];
1250 
1251 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1252 		return;
1253 
1254 	if (XFS_IS_REALTIME_INODE(ip))
1255 		return;
1256 
1257 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1258 		return;
1259 
1260 	nimaps = 2;
1261 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1262 	/*
1263 	 * The filesystem could be shutting down, so bmapi may return
1264 	 * an error.
1265 	 */
1266 	if (xfs_bmapi(NULL, ip, map_first,
1267 			 (XFS_B_TO_FSB(mp,
1268 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1269 			  map_first),
1270 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1271 			 NULL, NULL))
1272 	    return;
1273 	ASSERT(nimaps == 1);
1274 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1275 }
1276 #endif	/* DEBUG */
1277 
1278 /*
1279  * Calculate the last possible buffered byte in a file.  This must
1280  * include data that was buffered beyond the EOF by the write code.
1281  * This also needs to deal with overflowing the xfs_fsize_t type
1282  * which can happen for sizes near the limit.
1283  *
1284  * We also need to take into account any blocks beyond the EOF.  It
1285  * may be the case that they were buffered by a write which failed.
1286  * In that case the pages will still be in memory, but the inode size
1287  * will never have been updated.
1288  */
1289 xfs_fsize_t
1290 xfs_file_last_byte(
1291 	xfs_inode_t	*ip)
1292 {
1293 	xfs_mount_t	*mp;
1294 	xfs_fsize_t	last_byte;
1295 	xfs_fileoff_t	last_block;
1296 	xfs_fileoff_t	size_last_block;
1297 	int		error;
1298 
1299 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1300 
1301 	mp = ip->i_mount;
1302 	/*
1303 	 * Only check for blocks beyond the EOF if the extents have
1304 	 * been read in.  This eliminates the need for the inode lock,
1305 	 * and it also saves us from looking when it really isn't
1306 	 * necessary.
1307 	 */
1308 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1309 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1310 			XFS_DATA_FORK);
1311 		if (error) {
1312 			last_block = 0;
1313 		}
1314 	} else {
1315 		last_block = 0;
1316 	}
1317 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1318 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1319 
1320 	last_byte = XFS_FSB_TO_B(mp, last_block);
1321 	if (last_byte < 0) {
1322 		return XFS_MAXIOFFSET(mp);
1323 	}
1324 	last_byte += (1 << mp->m_writeio_log);
1325 	if (last_byte < 0) {
1326 		return XFS_MAXIOFFSET(mp);
1327 	}
1328 	return last_byte;
1329 }
1330 
1331 #if defined(XFS_RW_TRACE)
1332 STATIC void
1333 xfs_itrunc_trace(
1334 	int		tag,
1335 	xfs_inode_t	*ip,
1336 	int		flag,
1337 	xfs_fsize_t	new_size,
1338 	xfs_off_t	toss_start,
1339 	xfs_off_t	toss_finish)
1340 {
1341 	if (ip->i_rwtrace == NULL) {
1342 		return;
1343 	}
1344 
1345 	ktrace_enter(ip->i_rwtrace,
1346 		     (void*)((long)tag),
1347 		     (void*)ip,
1348 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1349 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1350 		     (void*)((long)flag),
1351 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1352 		     (void*)(unsigned long)(new_size & 0xffffffff),
1353 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1354 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1355 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1356 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1357 		     (void*)(unsigned long)current_cpu(),
1358 		     (void*)(unsigned long)current_pid(),
1359 		     (void*)NULL,
1360 		     (void*)NULL,
1361 		     (void*)NULL);
1362 }
1363 #else
1364 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1365 #endif
1366 
1367 /*
1368  * Start the truncation of the file to new_size.  The new size
1369  * must be smaller than the current size.  This routine will
1370  * clear the buffer and page caches of file data in the removed
1371  * range, and xfs_itruncate_finish() will remove the underlying
1372  * disk blocks.
1373  *
1374  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1375  * must NOT have the inode lock held at all.  This is because we're
1376  * calling into the buffer/page cache code and we can't hold the
1377  * inode lock when we do so.
1378  *
1379  * We need to wait for any direct I/Os in flight to complete before we
1380  * proceed with the truncate. This is needed to prevent the extents
1381  * being read or written by the direct I/Os from being removed while the
1382  * I/O is in flight as there is no other method of synchronising
1383  * direct I/O with the truncate operation.  Also, because we hold
1384  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1385  * started until the truncate completes and drops the lock. Essentially,
1386  * the vn_iowait() call forms an I/O barrier that provides strict ordering
1387  * between direct I/Os and the truncate operation.
1388  *
1389  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1390  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1391  * in the case that the caller is locking things out of order and
1392  * may not be able to call xfs_itruncate_finish() with the inode lock
1393  * held without dropping the I/O lock.  If the caller must drop the
1394  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1395  * must be called again with all the same restrictions as the initial
1396  * call.
1397  */
1398 int
1399 xfs_itruncate_start(
1400 	xfs_inode_t	*ip,
1401 	uint		flags,
1402 	xfs_fsize_t	new_size)
1403 {
1404 	xfs_fsize_t	last_byte;
1405 	xfs_off_t	toss_start;
1406 	xfs_mount_t	*mp;
1407 	int		error = 0;
1408 
1409 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1410 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1411 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1412 	       (flags == XFS_ITRUNC_MAYBE));
1413 
1414 	mp = ip->i_mount;
1415 
1416 	/* wait for the completion of any pending DIOs */
1417 	if (new_size < ip->i_size)
1418 		vn_iowait(ip);
1419 
1420 	/*
1421 	 * Call toss_pages or flushinval_pages to get rid of pages
1422 	 * overlapping the region being removed.  We have to use
1423 	 * the less efficient flushinval_pages in the case that the
1424 	 * caller may not be able to finish the truncate without
1425 	 * dropping the inode's I/O lock.  Make sure
1426 	 * to catch any pages brought in by buffers overlapping
1427 	 * the EOF by searching out beyond the isize by our
1428 	 * block size. We round new_size up to a block boundary
1429 	 * so that we don't toss things on the same block as
1430 	 * new_size but before it.
1431 	 *
1432 	 * Before calling toss_page or flushinval_pages, make sure to
1433 	 * call remapf() over the same region if the file is mapped.
1434 	 * This frees up mapped file references to the pages in the
1435 	 * given range and for the flushinval_pages case it ensures
1436 	 * that we get the latest mapped changes flushed out.
1437 	 */
1438 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1439 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1440 	if (toss_start < 0) {
1441 		/*
1442 		 * The place to start tossing is beyond our maximum
1443 		 * file size, so there is no way that the data extended
1444 		 * out there.
1445 		 */
1446 		return 0;
1447 	}
1448 	last_byte = xfs_file_last_byte(ip);
1449 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1450 			 last_byte);
1451 	if (last_byte > toss_start) {
1452 		if (flags & XFS_ITRUNC_DEFINITE) {
1453 			xfs_tosspages(ip, toss_start,
1454 					-1, FI_REMAPF_LOCKED);
1455 		} else {
1456 			error = xfs_flushinval_pages(ip, toss_start,
1457 					-1, FI_REMAPF_LOCKED);
1458 		}
1459 	}
1460 
1461 #ifdef DEBUG
1462 	if (new_size == 0) {
1463 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1464 	}
1465 #endif
1466 	return error;
1467 }
1468 
1469 /*
1470  * Shrink the file to the given new_size.  The new size must be smaller than
1471  * the current size.  This will free up the underlying blocks in the removed
1472  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1473  *
1474  * The transaction passed to this routine must have made a permanent log
1475  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1476  * given transaction and start new ones, so make sure everything involved in
1477  * the transaction is tidy before calling here.  Some transaction will be
1478  * returned to the caller to be committed.  The incoming transaction must
1479  * already include the inode, and both inode locks must be held exclusively.
1480  * The inode must also be "held" within the transaction.  On return the inode
1481  * will be "held" within the returned transaction.  This routine does NOT
1482  * require any disk space to be reserved for it within the transaction.
1483  *
1484  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1485  * indicates the fork which is to be truncated.  For the attribute fork we only
1486  * support truncation to size 0.
1487  *
1488  * We use the sync parameter to indicate whether or not the first transaction
1489  * we perform might have to be synchronous.  For the attr fork, it needs to be
1490  * so if the unlink of the inode is not yet known to be permanent in the log.
1491  * This keeps us from freeing and reusing the blocks of the attribute fork
1492  * before the unlink of the inode becomes permanent.
1493  *
1494  * For the data fork, we normally have to run synchronously if we're being
1495  * called out of the inactive path or we're being called out of the create path
1496  * where we're truncating an existing file.  Either way, the truncate needs to
1497  * be sync so blocks don't reappear in the file with altered data in case of a
1498  * crash.  wsync filesystems can run the first case async because anything that
1499  * shrinks the inode has to run sync so by the time we're called here from
1500  * inactive, the inode size is permanently set to 0.
1501  *
1502  * Calls from the truncate path always need to be sync unless we're in a wsync
1503  * filesystem and the file has already been unlinked.
1504  *
1505  * The caller is responsible for correctly setting the sync parameter.  It gets
1506  * too hard for us to guess here which path we're being called out of just
1507  * based on inode state.
1508  *
1509  * If we get an error, we must return with the inode locked and linked into the
1510  * current transaction. This keeps things simple for the higher level code,
1511  * because it always knows that the inode is locked and held in the transaction
1512  * that returns to it whether errors occur or not.  We don't mark the inode
1513  * dirty on error so that transactions can be easily aborted if possible.
1514  */
1515 int
1516 xfs_itruncate_finish(
1517 	xfs_trans_t	**tp,
1518 	xfs_inode_t	*ip,
1519 	xfs_fsize_t	new_size,
1520 	int		fork,
1521 	int		sync)
1522 {
1523 	xfs_fsblock_t	first_block;
1524 	xfs_fileoff_t	first_unmap_block;
1525 	xfs_fileoff_t	last_block;
1526 	xfs_filblks_t	unmap_len=0;
1527 	xfs_mount_t	*mp;
1528 	xfs_trans_t	*ntp;
1529 	int		done;
1530 	int		committed;
1531 	xfs_bmap_free_t	free_list;
1532 	int		error;
1533 
1534 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1535 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1536 	ASSERT(*tp != NULL);
1537 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1538 	ASSERT(ip->i_transp == *tp);
1539 	ASSERT(ip->i_itemp != NULL);
1540 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1541 
1542 
1543 	ntp = *tp;
1544 	mp = (ntp)->t_mountp;
1545 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1546 
1547 	/*
1548 	 * We only support truncating the entire attribute fork.
1549 	 */
1550 	if (fork == XFS_ATTR_FORK) {
1551 		new_size = 0LL;
1552 	}
1553 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1554 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1555 	/*
1556 	 * The first thing we do is set the size to new_size permanently
1557 	 * on disk.  This way we don't have to worry about anyone ever
1558 	 * being able to look at the data being freed even in the face
1559 	 * of a crash.  What we're getting around here is the case where
1560 	 * we free a block, it is allocated to another file, it is written
1561 	 * to, and then we crash.  If the new data gets written to the
1562 	 * file but the log buffers containing the free and reallocation
1563 	 * don't, then we'd end up with garbage in the blocks being freed.
1564 	 * As long as we make the new_size permanent before actually
1565 	 * freeing any blocks it doesn't matter if they get writtten to.
1566 	 *
1567 	 * The callers must signal into us whether or not the size
1568 	 * setting here must be synchronous.  There are a few cases
1569 	 * where it doesn't have to be synchronous.  Those cases
1570 	 * occur if the file is unlinked and we know the unlink is
1571 	 * permanent or if the blocks being truncated are guaranteed
1572 	 * to be beyond the inode eof (regardless of the link count)
1573 	 * and the eof value is permanent.  Both of these cases occur
1574 	 * only on wsync-mounted filesystems.  In those cases, we're
1575 	 * guaranteed that no user will ever see the data in the blocks
1576 	 * that are being truncated so the truncate can run async.
1577 	 * In the free beyond eof case, the file may wind up with
1578 	 * more blocks allocated to it than it needs if we crash
1579 	 * and that won't get fixed until the next time the file
1580 	 * is re-opened and closed but that's ok as that shouldn't
1581 	 * be too many blocks.
1582 	 *
1583 	 * However, we can't just make all wsync xactions run async
1584 	 * because there's one call out of the create path that needs
1585 	 * to run sync where it's truncating an existing file to size
1586 	 * 0 whose size is > 0.
1587 	 *
1588 	 * It's probably possible to come up with a test in this
1589 	 * routine that would correctly distinguish all the above
1590 	 * cases from the values of the function parameters and the
1591 	 * inode state but for sanity's sake, I've decided to let the
1592 	 * layers above just tell us.  It's simpler to correctly figure
1593 	 * out in the layer above exactly under what conditions we
1594 	 * can run async and I think it's easier for others read and
1595 	 * follow the logic in case something has to be changed.
1596 	 * cscope is your friend -- rcc.
1597 	 *
1598 	 * The attribute fork is much simpler.
1599 	 *
1600 	 * For the attribute fork we allow the caller to tell us whether
1601 	 * the unlink of the inode that led to this call is yet permanent
1602 	 * in the on disk log.  If it is not and we will be freeing extents
1603 	 * in this inode then we make the first transaction synchronous
1604 	 * to make sure that the unlink is permanent by the time we free
1605 	 * the blocks.
1606 	 */
1607 	if (fork == XFS_DATA_FORK) {
1608 		if (ip->i_d.di_nextents > 0) {
1609 			/*
1610 			 * If we are not changing the file size then do
1611 			 * not update the on-disk file size - we may be
1612 			 * called from xfs_inactive_free_eofblocks().  If we
1613 			 * update the on-disk file size and then the system
1614 			 * crashes before the contents of the file are
1615 			 * flushed to disk then the files may be full of
1616 			 * holes (ie NULL files bug).
1617 			 */
1618 			if (ip->i_size != new_size) {
1619 				ip->i_d.di_size = new_size;
1620 				ip->i_size = new_size;
1621 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1622 			}
1623 		}
1624 	} else if (sync) {
1625 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1626 		if (ip->i_d.di_anextents > 0)
1627 			xfs_trans_set_sync(ntp);
1628 	}
1629 	ASSERT(fork == XFS_DATA_FORK ||
1630 		(fork == XFS_ATTR_FORK &&
1631 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1632 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1633 
1634 	/*
1635 	 * Since it is possible for space to become allocated beyond
1636 	 * the end of the file (in a crash where the space is allocated
1637 	 * but the inode size is not yet updated), simply remove any
1638 	 * blocks which show up between the new EOF and the maximum
1639 	 * possible file size.  If the first block to be removed is
1640 	 * beyond the maximum file size (ie it is the same as last_block),
1641 	 * then there is nothing to do.
1642 	 */
1643 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1644 	ASSERT(first_unmap_block <= last_block);
1645 	done = 0;
1646 	if (last_block == first_unmap_block) {
1647 		done = 1;
1648 	} else {
1649 		unmap_len = last_block - first_unmap_block + 1;
1650 	}
1651 	while (!done) {
1652 		/*
1653 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1654 		 * will tell us whether it freed the entire range or
1655 		 * not.  If this is a synchronous mount (wsync),
1656 		 * then we can tell bunmapi to keep all the
1657 		 * transactions asynchronous since the unlink
1658 		 * transaction that made this inode inactive has
1659 		 * already hit the disk.  There's no danger of
1660 		 * the freed blocks being reused, there being a
1661 		 * crash, and the reused blocks suddenly reappearing
1662 		 * in this file with garbage in them once recovery
1663 		 * runs.
1664 		 */
1665 		XFS_BMAP_INIT(&free_list, &first_block);
1666 		error = xfs_bunmapi(ntp, ip,
1667 				    first_unmap_block, unmap_len,
1668 				    XFS_BMAPI_AFLAG(fork) |
1669 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1670 				    XFS_ITRUNC_MAX_EXTENTS,
1671 				    &first_block, &free_list,
1672 				    NULL, &done);
1673 		if (error) {
1674 			/*
1675 			 * If the bunmapi call encounters an error,
1676 			 * return to the caller where the transaction
1677 			 * can be properly aborted.  We just need to
1678 			 * make sure we're not holding any resources
1679 			 * that we were not when we came in.
1680 			 */
1681 			xfs_bmap_cancel(&free_list);
1682 			return error;
1683 		}
1684 
1685 		/*
1686 		 * Duplicate the transaction that has the permanent
1687 		 * reservation and commit the old transaction.
1688 		 */
1689 		error = xfs_bmap_finish(tp, &free_list, &committed);
1690 		ntp = *tp;
1691 		if (committed) {
1692 			/* link the inode into the next xact in the chain */
1693 			xfs_trans_ijoin(ntp, ip,
1694 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1695 			xfs_trans_ihold(ntp, ip);
1696 		}
1697 
1698 		if (error) {
1699 			/*
1700 			 * If the bmap finish call encounters an error, return
1701 			 * to the caller where the transaction can be properly
1702 			 * aborted.  We just need to make sure we're not
1703 			 * holding any resources that we were not when we came
1704 			 * in.
1705 			 *
1706 			 * Aborting from this point might lose some blocks in
1707 			 * the file system, but oh well.
1708 			 */
1709 			xfs_bmap_cancel(&free_list);
1710 			return error;
1711 		}
1712 
1713 		if (committed) {
1714 			/*
1715 			 * Mark the inode dirty so it will be logged and
1716 			 * moved forward in the log as part of every commit.
1717 			 */
1718 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1719 		}
1720 
1721 		ntp = xfs_trans_dup(ntp);
1722 		error = xfs_trans_commit(*tp, 0);
1723 		*tp = ntp;
1724 
1725 		/* link the inode into the next transaction in the chain */
1726 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1727 		xfs_trans_ihold(ntp, ip);
1728 
1729 		if (!error)
1730 			error = xfs_trans_reserve(ntp, 0,
1731 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1732 					XFS_TRANS_PERM_LOG_RES,
1733 					XFS_ITRUNCATE_LOG_COUNT);
1734 		if (error)
1735 			return error;
1736 	}
1737 	/*
1738 	 * Only update the size in the case of the data fork, but
1739 	 * always re-log the inode so that our permanent transaction
1740 	 * can keep on rolling it forward in the log.
1741 	 */
1742 	if (fork == XFS_DATA_FORK) {
1743 		xfs_isize_check(mp, ip, new_size);
1744 		/*
1745 		 * If we are not changing the file size then do
1746 		 * not update the on-disk file size - we may be
1747 		 * called from xfs_inactive_free_eofblocks().  If we
1748 		 * update the on-disk file size and then the system
1749 		 * crashes before the contents of the file are
1750 		 * flushed to disk then the files may be full of
1751 		 * holes (ie NULL files bug).
1752 		 */
1753 		if (ip->i_size != new_size) {
1754 			ip->i_d.di_size = new_size;
1755 			ip->i_size = new_size;
1756 		}
1757 	}
1758 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1759 	ASSERT((new_size != 0) ||
1760 	       (fork == XFS_ATTR_FORK) ||
1761 	       (ip->i_delayed_blks == 0));
1762 	ASSERT((new_size != 0) ||
1763 	       (fork == XFS_ATTR_FORK) ||
1764 	       (ip->i_d.di_nextents == 0));
1765 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1766 	return 0;
1767 }
1768 
1769 /*
1770  * This is called when the inode's link count goes to 0.
1771  * We place the on-disk inode on a list in the AGI.  It
1772  * will be pulled from this list when the inode is freed.
1773  */
1774 int
1775 xfs_iunlink(
1776 	xfs_trans_t	*tp,
1777 	xfs_inode_t	*ip)
1778 {
1779 	xfs_mount_t	*mp;
1780 	xfs_agi_t	*agi;
1781 	xfs_dinode_t	*dip;
1782 	xfs_buf_t	*agibp;
1783 	xfs_buf_t	*ibp;
1784 	xfs_agnumber_t	agno;
1785 	xfs_daddr_t	agdaddr;
1786 	xfs_agino_t	agino;
1787 	short		bucket_index;
1788 	int		offset;
1789 	int		error;
1790 	int		agi_ok;
1791 
1792 	ASSERT(ip->i_d.di_nlink == 0);
1793 	ASSERT(ip->i_d.di_mode != 0);
1794 	ASSERT(ip->i_transp == tp);
1795 
1796 	mp = tp->t_mountp;
1797 
1798 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1799 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1800 
1801 	/*
1802 	 * Get the agi buffer first.  It ensures lock ordering
1803 	 * on the list.
1804 	 */
1805 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1806 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1807 	if (error)
1808 		return error;
1809 
1810 	/*
1811 	 * Validate the magic number of the agi block.
1812 	 */
1813 	agi = XFS_BUF_TO_AGI(agibp);
1814 	agi_ok =
1815 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1816 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1817 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1818 			XFS_RANDOM_IUNLINK))) {
1819 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1820 		xfs_trans_brelse(tp, agibp);
1821 		return XFS_ERROR(EFSCORRUPTED);
1822 	}
1823 	/*
1824 	 * Get the index into the agi hash table for the
1825 	 * list this inode will go on.
1826 	 */
1827 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1828 	ASSERT(agino != 0);
1829 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1830 	ASSERT(agi->agi_unlinked[bucket_index]);
1831 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1832 
1833 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1834 		/*
1835 		 * There is already another inode in the bucket we need
1836 		 * to add ourselves to.  Add us at the front of the list.
1837 		 * Here we put the head pointer into our next pointer,
1838 		 * and then we fall through to point the head at us.
1839 		 */
1840 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1841 		if (error)
1842 			return error;
1843 
1844 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1845 		/* both on-disk, don't endian flip twice */
1846 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1847 		offset = ip->i_boffset +
1848 			offsetof(xfs_dinode_t, di_next_unlinked);
1849 		xfs_trans_inode_buf(tp, ibp);
1850 		xfs_trans_log_buf(tp, ibp, offset,
1851 				  (offset + sizeof(xfs_agino_t) - 1));
1852 		xfs_inobp_check(mp, ibp);
1853 	}
1854 
1855 	/*
1856 	 * Point the bucket head pointer at the inode being inserted.
1857 	 */
1858 	ASSERT(agino != 0);
1859 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1860 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1861 		(sizeof(xfs_agino_t) * bucket_index);
1862 	xfs_trans_log_buf(tp, agibp, offset,
1863 			  (offset + sizeof(xfs_agino_t) - 1));
1864 	return 0;
1865 }
1866 
1867 /*
1868  * Pull the on-disk inode from the AGI unlinked list.
1869  */
1870 STATIC int
1871 xfs_iunlink_remove(
1872 	xfs_trans_t	*tp,
1873 	xfs_inode_t	*ip)
1874 {
1875 	xfs_ino_t	next_ino;
1876 	xfs_mount_t	*mp;
1877 	xfs_agi_t	*agi;
1878 	xfs_dinode_t	*dip;
1879 	xfs_buf_t	*agibp;
1880 	xfs_buf_t	*ibp;
1881 	xfs_agnumber_t	agno;
1882 	xfs_daddr_t	agdaddr;
1883 	xfs_agino_t	agino;
1884 	xfs_agino_t	next_agino;
1885 	xfs_buf_t	*last_ibp;
1886 	xfs_dinode_t	*last_dip = NULL;
1887 	short		bucket_index;
1888 	int		offset, last_offset = 0;
1889 	int		error;
1890 	int		agi_ok;
1891 
1892 	/*
1893 	 * First pull the on-disk inode from the AGI unlinked list.
1894 	 */
1895 	mp = tp->t_mountp;
1896 
1897 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1898 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1899 
1900 	/*
1901 	 * Get the agi buffer first.  It ensures lock ordering
1902 	 * on the list.
1903 	 */
1904 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1905 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1906 	if (error) {
1907 		cmn_err(CE_WARN,
1908 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1909 			error, mp->m_fsname);
1910 		return error;
1911 	}
1912 	/*
1913 	 * Validate the magic number of the agi block.
1914 	 */
1915 	agi = XFS_BUF_TO_AGI(agibp);
1916 	agi_ok =
1917 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1918 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1919 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1920 			XFS_RANDOM_IUNLINK_REMOVE))) {
1921 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1922 				     mp, agi);
1923 		xfs_trans_brelse(tp, agibp);
1924 		cmn_err(CE_WARN,
1925 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
1926 			 mp->m_fsname);
1927 		return XFS_ERROR(EFSCORRUPTED);
1928 	}
1929 	/*
1930 	 * Get the index into the agi hash table for the
1931 	 * list this inode will go on.
1932 	 */
1933 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1934 	ASSERT(agino != 0);
1935 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1936 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1937 	ASSERT(agi->agi_unlinked[bucket_index]);
1938 
1939 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1940 		/*
1941 		 * We're at the head of the list.  Get the inode's
1942 		 * on-disk buffer to see if there is anyone after us
1943 		 * on the list.  Only modify our next pointer if it
1944 		 * is not already NULLAGINO.  This saves us the overhead
1945 		 * of dealing with the buffer when there is no need to
1946 		 * change it.
1947 		 */
1948 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1949 		if (error) {
1950 			cmn_err(CE_WARN,
1951 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1952 				error, mp->m_fsname);
1953 			return error;
1954 		}
1955 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1956 		ASSERT(next_agino != 0);
1957 		if (next_agino != NULLAGINO) {
1958 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1959 			offset = ip->i_boffset +
1960 				offsetof(xfs_dinode_t, di_next_unlinked);
1961 			xfs_trans_inode_buf(tp, ibp);
1962 			xfs_trans_log_buf(tp, ibp, offset,
1963 					  (offset + sizeof(xfs_agino_t) - 1));
1964 			xfs_inobp_check(mp, ibp);
1965 		} else {
1966 			xfs_trans_brelse(tp, ibp);
1967 		}
1968 		/*
1969 		 * Point the bucket head pointer at the next inode.
1970 		 */
1971 		ASSERT(next_agino != 0);
1972 		ASSERT(next_agino != agino);
1973 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1974 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1975 			(sizeof(xfs_agino_t) * bucket_index);
1976 		xfs_trans_log_buf(tp, agibp, offset,
1977 				  (offset + sizeof(xfs_agino_t) - 1));
1978 	} else {
1979 		/*
1980 		 * We need to search the list for the inode being freed.
1981 		 */
1982 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1983 		last_ibp = NULL;
1984 		while (next_agino != agino) {
1985 			/*
1986 			 * If the last inode wasn't the one pointing to
1987 			 * us, then release its buffer since we're not
1988 			 * going to do anything with it.
1989 			 */
1990 			if (last_ibp != NULL) {
1991 				xfs_trans_brelse(tp, last_ibp);
1992 			}
1993 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1994 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1995 					    &last_ibp, &last_offset);
1996 			if (error) {
1997 				cmn_err(CE_WARN,
1998 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1999 					error, mp->m_fsname);
2000 				return error;
2001 			}
2002 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2003 			ASSERT(next_agino != NULLAGINO);
2004 			ASSERT(next_agino != 0);
2005 		}
2006 		/*
2007 		 * Now last_ibp points to the buffer previous to us on
2008 		 * the unlinked list.  Pull us from the list.
2009 		 */
2010 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2011 		if (error) {
2012 			cmn_err(CE_WARN,
2013 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2014 				error, mp->m_fsname);
2015 			return error;
2016 		}
2017 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2018 		ASSERT(next_agino != 0);
2019 		ASSERT(next_agino != agino);
2020 		if (next_agino != NULLAGINO) {
2021 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2022 			offset = ip->i_boffset +
2023 				offsetof(xfs_dinode_t, di_next_unlinked);
2024 			xfs_trans_inode_buf(tp, ibp);
2025 			xfs_trans_log_buf(tp, ibp, offset,
2026 					  (offset + sizeof(xfs_agino_t) - 1));
2027 			xfs_inobp_check(mp, ibp);
2028 		} else {
2029 			xfs_trans_brelse(tp, ibp);
2030 		}
2031 		/*
2032 		 * Point the previous inode on the list to the next inode.
2033 		 */
2034 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2035 		ASSERT(next_agino != 0);
2036 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2037 		xfs_trans_inode_buf(tp, last_ibp);
2038 		xfs_trans_log_buf(tp, last_ibp, offset,
2039 				  (offset + sizeof(xfs_agino_t) - 1));
2040 		xfs_inobp_check(mp, last_ibp);
2041 	}
2042 	return 0;
2043 }
2044 
2045 STATIC void
2046 xfs_ifree_cluster(
2047 	xfs_inode_t	*free_ip,
2048 	xfs_trans_t	*tp,
2049 	xfs_ino_t	inum)
2050 {
2051 	xfs_mount_t		*mp = free_ip->i_mount;
2052 	int			blks_per_cluster;
2053 	int			nbufs;
2054 	int			ninodes;
2055 	int			i, j, found, pre_flushed;
2056 	xfs_daddr_t		blkno;
2057 	xfs_buf_t		*bp;
2058 	xfs_inode_t		*ip, **ip_found;
2059 	xfs_inode_log_item_t	*iip;
2060 	xfs_log_item_t		*lip;
2061 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
2062 
2063 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2064 		blks_per_cluster = 1;
2065 		ninodes = mp->m_sb.sb_inopblock;
2066 		nbufs = XFS_IALLOC_BLOCKS(mp);
2067 	} else {
2068 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2069 					mp->m_sb.sb_blocksize;
2070 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2071 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2072 	}
2073 
2074 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2075 
2076 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2077 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2078 					 XFS_INO_TO_AGBNO(mp, inum));
2079 
2080 
2081 		/*
2082 		 * Look for each inode in memory and attempt to lock it,
2083 		 * we can be racing with flush and tail pushing here.
2084 		 * any inode we get the locks on, add to an array of
2085 		 * inode items to process later.
2086 		 *
2087 		 * The get the buffer lock, we could beat a flush
2088 		 * or tail pushing thread to the lock here, in which
2089 		 * case they will go looking for the inode buffer
2090 		 * and fail, we need some other form of interlock
2091 		 * here.
2092 		 */
2093 		found = 0;
2094 		for (i = 0; i < ninodes; i++) {
2095 			read_lock(&pag->pag_ici_lock);
2096 			ip = radix_tree_lookup(&pag->pag_ici_root,
2097 					XFS_INO_TO_AGINO(mp, (inum + i)));
2098 
2099 			/* Inode not in memory or we found it already,
2100 			 * nothing to do
2101 			 */
2102 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2103 				read_unlock(&pag->pag_ici_lock);
2104 				continue;
2105 			}
2106 
2107 			if (xfs_inode_clean(ip)) {
2108 				read_unlock(&pag->pag_ici_lock);
2109 				continue;
2110 			}
2111 
2112 			/* If we can get the locks then add it to the
2113 			 * list, otherwise by the time we get the bp lock
2114 			 * below it will already be attached to the
2115 			 * inode buffer.
2116 			 */
2117 
2118 			/* This inode will already be locked - by us, lets
2119 			 * keep it that way.
2120 			 */
2121 
2122 			if (ip == free_ip) {
2123 				if (xfs_iflock_nowait(ip)) {
2124 					xfs_iflags_set(ip, XFS_ISTALE);
2125 					if (xfs_inode_clean(ip)) {
2126 						xfs_ifunlock(ip);
2127 					} else {
2128 						ip_found[found++] = ip;
2129 					}
2130 				}
2131 				read_unlock(&pag->pag_ici_lock);
2132 				continue;
2133 			}
2134 
2135 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2136 				if (xfs_iflock_nowait(ip)) {
2137 					xfs_iflags_set(ip, XFS_ISTALE);
2138 
2139 					if (xfs_inode_clean(ip)) {
2140 						xfs_ifunlock(ip);
2141 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2142 					} else {
2143 						ip_found[found++] = ip;
2144 					}
2145 				} else {
2146 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2147 				}
2148 			}
2149 			read_unlock(&pag->pag_ici_lock);
2150 		}
2151 
2152 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2153 					mp->m_bsize * blks_per_cluster,
2154 					XFS_BUF_LOCK);
2155 
2156 		pre_flushed = 0;
2157 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2158 		while (lip) {
2159 			if (lip->li_type == XFS_LI_INODE) {
2160 				iip = (xfs_inode_log_item_t *)lip;
2161 				ASSERT(iip->ili_logged == 1);
2162 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2163 				spin_lock(&mp->m_ail_lock);
2164 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2165 				spin_unlock(&mp->m_ail_lock);
2166 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2167 				pre_flushed++;
2168 			}
2169 			lip = lip->li_bio_list;
2170 		}
2171 
2172 		for (i = 0; i < found; i++) {
2173 			ip = ip_found[i];
2174 			iip = ip->i_itemp;
2175 
2176 			if (!iip) {
2177 				ip->i_update_core = 0;
2178 				xfs_ifunlock(ip);
2179 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2180 				continue;
2181 			}
2182 
2183 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2184 			iip->ili_format.ilf_fields = 0;
2185 			iip->ili_logged = 1;
2186 			spin_lock(&mp->m_ail_lock);
2187 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2188 			spin_unlock(&mp->m_ail_lock);
2189 
2190 			xfs_buf_attach_iodone(bp,
2191 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2192 				xfs_istale_done, (xfs_log_item_t *)iip);
2193 			if (ip != free_ip) {
2194 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2195 			}
2196 		}
2197 
2198 		if (found || pre_flushed)
2199 			xfs_trans_stale_inode_buf(tp, bp);
2200 		xfs_trans_binval(tp, bp);
2201 	}
2202 
2203 	kmem_free(ip_found);
2204 	xfs_put_perag(mp, pag);
2205 }
2206 
2207 /*
2208  * This is called to return an inode to the inode free list.
2209  * The inode should already be truncated to 0 length and have
2210  * no pages associated with it.  This routine also assumes that
2211  * the inode is already a part of the transaction.
2212  *
2213  * The on-disk copy of the inode will have been added to the list
2214  * of unlinked inodes in the AGI. We need to remove the inode from
2215  * that list atomically with respect to freeing it here.
2216  */
2217 int
2218 xfs_ifree(
2219 	xfs_trans_t	*tp,
2220 	xfs_inode_t	*ip,
2221 	xfs_bmap_free_t	*flist)
2222 {
2223 	int			error;
2224 	int			delete;
2225 	xfs_ino_t		first_ino;
2226 	xfs_dinode_t    	*dip;
2227 	xfs_buf_t       	*ibp;
2228 
2229 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2230 	ASSERT(ip->i_transp == tp);
2231 	ASSERT(ip->i_d.di_nlink == 0);
2232 	ASSERT(ip->i_d.di_nextents == 0);
2233 	ASSERT(ip->i_d.di_anextents == 0);
2234 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2235 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2236 	ASSERT(ip->i_d.di_nblocks == 0);
2237 
2238 	/*
2239 	 * Pull the on-disk inode from the AGI unlinked list.
2240 	 */
2241 	error = xfs_iunlink_remove(tp, ip);
2242 	if (error != 0) {
2243 		return error;
2244 	}
2245 
2246 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2247 	if (error != 0) {
2248 		return error;
2249 	}
2250 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2251 	ip->i_d.di_flags = 0;
2252 	ip->i_d.di_dmevmask = 0;
2253 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2254 	ip->i_df.if_ext_max =
2255 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2256 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2257 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2258 	/*
2259 	 * Bump the generation count so no one will be confused
2260 	 * by reincarnations of this inode.
2261 	 */
2262 	ip->i_d.di_gen++;
2263 
2264 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2265 
2266 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2267 	if (error)
2268 		return error;
2269 
2270         /*
2271 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2272 	* from picking up this inode when it is reclaimed (its incore state
2273 	* initialzed but not flushed to disk yet). The in-core di_mode is
2274 	* already cleared  and a corresponding transaction logged.
2275 	* The hack here just synchronizes the in-core to on-disk
2276 	* di_mode value in advance before the actual inode sync to disk.
2277 	* This is OK because the inode is already unlinked and would never
2278 	* change its di_mode again for this inode generation.
2279 	* This is a temporary hack that would require a proper fix
2280 	* in the future.
2281 	*/
2282 	dip->di_core.di_mode = 0;
2283 
2284 	if (delete) {
2285 		xfs_ifree_cluster(ip, tp, first_ino);
2286 	}
2287 
2288 	return 0;
2289 }
2290 
2291 /*
2292  * Reallocate the space for if_broot based on the number of records
2293  * being added or deleted as indicated in rec_diff.  Move the records
2294  * and pointers in if_broot to fit the new size.  When shrinking this
2295  * will eliminate holes between the records and pointers created by
2296  * the caller.  When growing this will create holes to be filled in
2297  * by the caller.
2298  *
2299  * The caller must not request to add more records than would fit in
2300  * the on-disk inode root.  If the if_broot is currently NULL, then
2301  * if we adding records one will be allocated.  The caller must also
2302  * not request that the number of records go below zero, although
2303  * it can go to zero.
2304  *
2305  * ip -- the inode whose if_broot area is changing
2306  * ext_diff -- the change in the number of records, positive or negative,
2307  *	 requested for the if_broot array.
2308  */
2309 void
2310 xfs_iroot_realloc(
2311 	xfs_inode_t		*ip,
2312 	int			rec_diff,
2313 	int			whichfork)
2314 {
2315 	int			cur_max;
2316 	xfs_ifork_t		*ifp;
2317 	xfs_bmbt_block_t	*new_broot;
2318 	int			new_max;
2319 	size_t			new_size;
2320 	char			*np;
2321 	char			*op;
2322 
2323 	/*
2324 	 * Handle the degenerate case quietly.
2325 	 */
2326 	if (rec_diff == 0) {
2327 		return;
2328 	}
2329 
2330 	ifp = XFS_IFORK_PTR(ip, whichfork);
2331 	if (rec_diff > 0) {
2332 		/*
2333 		 * If there wasn't any memory allocated before, just
2334 		 * allocate it now and get out.
2335 		 */
2336 		if (ifp->if_broot_bytes == 0) {
2337 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2338 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2339 								     KM_SLEEP);
2340 			ifp->if_broot_bytes = (int)new_size;
2341 			return;
2342 		}
2343 
2344 		/*
2345 		 * If there is already an existing if_broot, then we need
2346 		 * to realloc() it and shift the pointers to their new
2347 		 * location.  The records don't change location because
2348 		 * they are kept butted up against the btree block header.
2349 		 */
2350 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2351 		new_max = cur_max + rec_diff;
2352 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2353 		ifp->if_broot = (xfs_bmbt_block_t *)
2354 		  kmem_realloc(ifp->if_broot,
2355 				new_size,
2356 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2357 				KM_SLEEP);
2358 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2359 						      ifp->if_broot_bytes);
2360 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2361 						      (int)new_size);
2362 		ifp->if_broot_bytes = (int)new_size;
2363 		ASSERT(ifp->if_broot_bytes <=
2364 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2365 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2366 		return;
2367 	}
2368 
2369 	/*
2370 	 * rec_diff is less than 0.  In this case, we are shrinking the
2371 	 * if_broot buffer.  It must already exist.  If we go to zero
2372 	 * records, just get rid of the root and clear the status bit.
2373 	 */
2374 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2375 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2376 	new_max = cur_max + rec_diff;
2377 	ASSERT(new_max >= 0);
2378 	if (new_max > 0)
2379 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2380 	else
2381 		new_size = 0;
2382 	if (new_size > 0) {
2383 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2384 		/*
2385 		 * First copy over the btree block header.
2386 		 */
2387 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2388 	} else {
2389 		new_broot = NULL;
2390 		ifp->if_flags &= ~XFS_IFBROOT;
2391 	}
2392 
2393 	/*
2394 	 * Only copy the records and pointers if there are any.
2395 	 */
2396 	if (new_max > 0) {
2397 		/*
2398 		 * First copy the records.
2399 		 */
2400 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2401 						     ifp->if_broot_bytes);
2402 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2403 						     (int)new_size);
2404 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2405 
2406 		/*
2407 		 * Then copy the pointers.
2408 		 */
2409 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2410 						     ifp->if_broot_bytes);
2411 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2412 						     (int)new_size);
2413 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2414 	}
2415 	kmem_free(ifp->if_broot);
2416 	ifp->if_broot = new_broot;
2417 	ifp->if_broot_bytes = (int)new_size;
2418 	ASSERT(ifp->if_broot_bytes <=
2419 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2420 	return;
2421 }
2422 
2423 
2424 /*
2425  * This is called when the amount of space needed for if_data
2426  * is increased or decreased.  The change in size is indicated by
2427  * the number of bytes that need to be added or deleted in the
2428  * byte_diff parameter.
2429  *
2430  * If the amount of space needed has decreased below the size of the
2431  * inline buffer, then switch to using the inline buffer.  Otherwise,
2432  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2433  * to what is needed.
2434  *
2435  * ip -- the inode whose if_data area is changing
2436  * byte_diff -- the change in the number of bytes, positive or negative,
2437  *	 requested for the if_data array.
2438  */
2439 void
2440 xfs_idata_realloc(
2441 	xfs_inode_t	*ip,
2442 	int		byte_diff,
2443 	int		whichfork)
2444 {
2445 	xfs_ifork_t	*ifp;
2446 	int		new_size;
2447 	int		real_size;
2448 
2449 	if (byte_diff == 0) {
2450 		return;
2451 	}
2452 
2453 	ifp = XFS_IFORK_PTR(ip, whichfork);
2454 	new_size = (int)ifp->if_bytes + byte_diff;
2455 	ASSERT(new_size >= 0);
2456 
2457 	if (new_size == 0) {
2458 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2459 			kmem_free(ifp->if_u1.if_data);
2460 		}
2461 		ifp->if_u1.if_data = NULL;
2462 		real_size = 0;
2463 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2464 		/*
2465 		 * If the valid extents/data can fit in if_inline_ext/data,
2466 		 * copy them from the malloc'd vector and free it.
2467 		 */
2468 		if (ifp->if_u1.if_data == NULL) {
2469 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2470 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2471 			ASSERT(ifp->if_real_bytes != 0);
2472 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2473 			      new_size);
2474 			kmem_free(ifp->if_u1.if_data);
2475 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2476 		}
2477 		real_size = 0;
2478 	} else {
2479 		/*
2480 		 * Stuck with malloc/realloc.
2481 		 * For inline data, the underlying buffer must be
2482 		 * a multiple of 4 bytes in size so that it can be
2483 		 * logged and stay on word boundaries.  We enforce
2484 		 * that here.
2485 		 */
2486 		real_size = roundup(new_size, 4);
2487 		if (ifp->if_u1.if_data == NULL) {
2488 			ASSERT(ifp->if_real_bytes == 0);
2489 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2490 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2491 			/*
2492 			 * Only do the realloc if the underlying size
2493 			 * is really changing.
2494 			 */
2495 			if (ifp->if_real_bytes != real_size) {
2496 				ifp->if_u1.if_data =
2497 					kmem_realloc(ifp->if_u1.if_data,
2498 							real_size,
2499 							ifp->if_real_bytes,
2500 							KM_SLEEP);
2501 			}
2502 		} else {
2503 			ASSERT(ifp->if_real_bytes == 0);
2504 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2505 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2506 				ifp->if_bytes);
2507 		}
2508 	}
2509 	ifp->if_real_bytes = real_size;
2510 	ifp->if_bytes = new_size;
2511 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2512 }
2513 
2514 
2515 
2516 
2517 /*
2518  * Map inode to disk block and offset.
2519  *
2520  * mp -- the mount point structure for the current file system
2521  * tp -- the current transaction
2522  * ino -- the inode number of the inode to be located
2523  * imap -- this structure is filled in with the information necessary
2524  *	 to retrieve the given inode from disk
2525  * flags -- flags to pass to xfs_dilocate indicating whether or not
2526  *	 lookups in the inode btree were OK or not
2527  */
2528 int
2529 xfs_imap(
2530 	xfs_mount_t	*mp,
2531 	xfs_trans_t	*tp,
2532 	xfs_ino_t	ino,
2533 	xfs_imap_t	*imap,
2534 	uint		flags)
2535 {
2536 	xfs_fsblock_t	fsbno;
2537 	int		len;
2538 	int		off;
2539 	int		error;
2540 
2541 	fsbno = imap->im_blkno ?
2542 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2543 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2544 	if (error)
2545 		return error;
2546 
2547 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2548 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2549 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2550 	imap->im_ioffset = (ushort)off;
2551 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2552 
2553 	/*
2554 	 * If the inode number maps to a block outside the bounds
2555 	 * of the file system then return NULL rather than calling
2556 	 * read_buf and panicing when we get an error from the
2557 	 * driver.
2558 	 */
2559 	if ((imap->im_blkno + imap->im_len) >
2560 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2561 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2562 			"(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2563 			" XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2564 			(unsigned long long) imap->im_blkno,
2565 			(unsigned long long) imap->im_len,
2566 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2567 		return EINVAL;
2568 	}
2569 	return 0;
2570 }
2571 
2572 void
2573 xfs_idestroy_fork(
2574 	xfs_inode_t	*ip,
2575 	int		whichfork)
2576 {
2577 	xfs_ifork_t	*ifp;
2578 
2579 	ifp = XFS_IFORK_PTR(ip, whichfork);
2580 	if (ifp->if_broot != NULL) {
2581 		kmem_free(ifp->if_broot);
2582 		ifp->if_broot = NULL;
2583 	}
2584 
2585 	/*
2586 	 * If the format is local, then we can't have an extents
2587 	 * array so just look for an inline data array.  If we're
2588 	 * not local then we may or may not have an extents list,
2589 	 * so check and free it up if we do.
2590 	 */
2591 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2592 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2593 		    (ifp->if_u1.if_data != NULL)) {
2594 			ASSERT(ifp->if_real_bytes != 0);
2595 			kmem_free(ifp->if_u1.if_data);
2596 			ifp->if_u1.if_data = NULL;
2597 			ifp->if_real_bytes = 0;
2598 		}
2599 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2600 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2601 		    ((ifp->if_u1.if_extents != NULL) &&
2602 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2603 		ASSERT(ifp->if_real_bytes != 0);
2604 		xfs_iext_destroy(ifp);
2605 	}
2606 	ASSERT(ifp->if_u1.if_extents == NULL ||
2607 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2608 	ASSERT(ifp->if_real_bytes == 0);
2609 	if (whichfork == XFS_ATTR_FORK) {
2610 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2611 		ip->i_afp = NULL;
2612 	}
2613 }
2614 
2615 /*
2616  * This is called free all the memory associated with an inode.
2617  * It must free the inode itself and any buffers allocated for
2618  * if_extents/if_data and if_broot.  It must also free the lock
2619  * associated with the inode.
2620  */
2621 void
2622 xfs_idestroy(
2623 	xfs_inode_t	*ip)
2624 {
2625 	switch (ip->i_d.di_mode & S_IFMT) {
2626 	case S_IFREG:
2627 	case S_IFDIR:
2628 	case S_IFLNK:
2629 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2630 		break;
2631 	}
2632 	if (ip->i_afp)
2633 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2634 	mrfree(&ip->i_lock);
2635 	mrfree(&ip->i_iolock);
2636 
2637 #ifdef XFS_INODE_TRACE
2638 	ktrace_free(ip->i_trace);
2639 #endif
2640 #ifdef XFS_BMAP_TRACE
2641 	ktrace_free(ip->i_xtrace);
2642 #endif
2643 #ifdef XFS_BMBT_TRACE
2644 	ktrace_free(ip->i_btrace);
2645 #endif
2646 #ifdef XFS_RW_TRACE
2647 	ktrace_free(ip->i_rwtrace);
2648 #endif
2649 #ifdef XFS_ILOCK_TRACE
2650 	ktrace_free(ip->i_lock_trace);
2651 #endif
2652 #ifdef XFS_DIR2_TRACE
2653 	ktrace_free(ip->i_dir_trace);
2654 #endif
2655 	if (ip->i_itemp) {
2656 		/*
2657 		 * Only if we are shutting down the fs will we see an
2658 		 * inode still in the AIL. If it is there, we should remove
2659 		 * it to prevent a use-after-free from occurring.
2660 		 */
2661 		xfs_mount_t	*mp = ip->i_mount;
2662 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
2663 
2664 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2665 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
2666 		if (lip->li_flags & XFS_LI_IN_AIL) {
2667 			spin_lock(&mp->m_ail_lock);
2668 			if (lip->li_flags & XFS_LI_IN_AIL)
2669 				xfs_trans_delete_ail(mp, lip);
2670 			else
2671 				spin_unlock(&mp->m_ail_lock);
2672 		}
2673 		xfs_inode_item_destroy(ip);
2674 	}
2675 	kmem_zone_free(xfs_inode_zone, ip);
2676 }
2677 
2678 
2679 /*
2680  * Increment the pin count of the given buffer.
2681  * This value is protected by ipinlock spinlock in the mount structure.
2682  */
2683 void
2684 xfs_ipin(
2685 	xfs_inode_t	*ip)
2686 {
2687 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2688 
2689 	atomic_inc(&ip->i_pincount);
2690 }
2691 
2692 /*
2693  * Decrement the pin count of the given inode, and wake up
2694  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2695  * inode must have been previously pinned with a call to xfs_ipin().
2696  */
2697 void
2698 xfs_iunpin(
2699 	xfs_inode_t	*ip)
2700 {
2701 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2702 
2703 	if (atomic_dec_and_test(&ip->i_pincount))
2704 		wake_up(&ip->i_ipin_wait);
2705 }
2706 
2707 /*
2708  * This is called to unpin an inode. It can be directed to wait or to return
2709  * immediately without waiting for the inode to be unpinned.  The caller must
2710  * have the inode locked in at least shared mode so that the buffer cannot be
2711  * subsequently pinned once someone is waiting for it to be unpinned.
2712  */
2713 STATIC void
2714 __xfs_iunpin_wait(
2715 	xfs_inode_t	*ip,
2716 	int		wait)
2717 {
2718 	xfs_inode_log_item_t	*iip = ip->i_itemp;
2719 
2720 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2721 	if (atomic_read(&ip->i_pincount) == 0)
2722 		return;
2723 
2724 	/* Give the log a push to start the unpinning I/O */
2725 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2726 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2727 	if (wait)
2728 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2729 }
2730 
2731 static inline void
2732 xfs_iunpin_wait(
2733 	xfs_inode_t	*ip)
2734 {
2735 	__xfs_iunpin_wait(ip, 1);
2736 }
2737 
2738 static inline void
2739 xfs_iunpin_nowait(
2740 	xfs_inode_t	*ip)
2741 {
2742 	__xfs_iunpin_wait(ip, 0);
2743 }
2744 
2745 
2746 /*
2747  * xfs_iextents_copy()
2748  *
2749  * This is called to copy the REAL extents (as opposed to the delayed
2750  * allocation extents) from the inode into the given buffer.  It
2751  * returns the number of bytes copied into the buffer.
2752  *
2753  * If there are no delayed allocation extents, then we can just
2754  * memcpy() the extents into the buffer.  Otherwise, we need to
2755  * examine each extent in turn and skip those which are delayed.
2756  */
2757 int
2758 xfs_iextents_copy(
2759 	xfs_inode_t		*ip,
2760 	xfs_bmbt_rec_t		*dp,
2761 	int			whichfork)
2762 {
2763 	int			copied;
2764 	int			i;
2765 	xfs_ifork_t		*ifp;
2766 	int			nrecs;
2767 	xfs_fsblock_t		start_block;
2768 
2769 	ifp = XFS_IFORK_PTR(ip, whichfork);
2770 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2771 	ASSERT(ifp->if_bytes > 0);
2772 
2773 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2774 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2775 	ASSERT(nrecs > 0);
2776 
2777 	/*
2778 	 * There are some delayed allocation extents in the
2779 	 * inode, so copy the extents one at a time and skip
2780 	 * the delayed ones.  There must be at least one
2781 	 * non-delayed extent.
2782 	 */
2783 	copied = 0;
2784 	for (i = 0; i < nrecs; i++) {
2785 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2786 		start_block = xfs_bmbt_get_startblock(ep);
2787 		if (ISNULLSTARTBLOCK(start_block)) {
2788 			/*
2789 			 * It's a delayed allocation extent, so skip it.
2790 			 */
2791 			continue;
2792 		}
2793 
2794 		/* Translate to on disk format */
2795 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2796 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2797 		dp++;
2798 		copied++;
2799 	}
2800 	ASSERT(copied != 0);
2801 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2802 
2803 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2804 }
2805 
2806 /*
2807  * Each of the following cases stores data into the same region
2808  * of the on-disk inode, so only one of them can be valid at
2809  * any given time. While it is possible to have conflicting formats
2810  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2811  * in EXTENTS format, this can only happen when the fork has
2812  * changed formats after being modified but before being flushed.
2813  * In these cases, the format always takes precedence, because the
2814  * format indicates the current state of the fork.
2815  */
2816 /*ARGSUSED*/
2817 STATIC void
2818 xfs_iflush_fork(
2819 	xfs_inode_t		*ip,
2820 	xfs_dinode_t		*dip,
2821 	xfs_inode_log_item_t	*iip,
2822 	int			whichfork,
2823 	xfs_buf_t		*bp)
2824 {
2825 	char			*cp;
2826 	xfs_ifork_t		*ifp;
2827 	xfs_mount_t		*mp;
2828 #ifdef XFS_TRANS_DEBUG
2829 	int			first;
2830 #endif
2831 	static const short	brootflag[2] =
2832 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2833 	static const short	dataflag[2] =
2834 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2835 	static const short	extflag[2] =
2836 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2837 
2838 	if (!iip)
2839 		return;
2840 	ifp = XFS_IFORK_PTR(ip, whichfork);
2841 	/*
2842 	 * This can happen if we gave up in iformat in an error path,
2843 	 * for the attribute fork.
2844 	 */
2845 	if (!ifp) {
2846 		ASSERT(whichfork == XFS_ATTR_FORK);
2847 		return;
2848 	}
2849 	cp = XFS_DFORK_PTR(dip, whichfork);
2850 	mp = ip->i_mount;
2851 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2852 	case XFS_DINODE_FMT_LOCAL:
2853 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2854 		    (ifp->if_bytes > 0)) {
2855 			ASSERT(ifp->if_u1.if_data != NULL);
2856 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2857 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2858 		}
2859 		break;
2860 
2861 	case XFS_DINODE_FMT_EXTENTS:
2862 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2863 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2864 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2865 			(ifp->if_bytes == 0));
2866 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2867 			(ifp->if_bytes > 0));
2868 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2869 		    (ifp->if_bytes > 0)) {
2870 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2871 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2872 				whichfork);
2873 		}
2874 		break;
2875 
2876 	case XFS_DINODE_FMT_BTREE:
2877 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2878 		    (ifp->if_broot_bytes > 0)) {
2879 			ASSERT(ifp->if_broot != NULL);
2880 			ASSERT(ifp->if_broot_bytes <=
2881 			       (XFS_IFORK_SIZE(ip, whichfork) +
2882 				XFS_BROOT_SIZE_ADJ));
2883 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2884 				(xfs_bmdr_block_t *)cp,
2885 				XFS_DFORK_SIZE(dip, mp, whichfork));
2886 		}
2887 		break;
2888 
2889 	case XFS_DINODE_FMT_DEV:
2890 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2891 			ASSERT(whichfork == XFS_DATA_FORK);
2892 			dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
2893 		}
2894 		break;
2895 
2896 	case XFS_DINODE_FMT_UUID:
2897 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2898 			ASSERT(whichfork == XFS_DATA_FORK);
2899 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2900 				sizeof(uuid_t));
2901 		}
2902 		break;
2903 
2904 	default:
2905 		ASSERT(0);
2906 		break;
2907 	}
2908 }
2909 
2910 STATIC int
2911 xfs_iflush_cluster(
2912 	xfs_inode_t	*ip,
2913 	xfs_buf_t	*bp)
2914 {
2915 	xfs_mount_t		*mp = ip->i_mount;
2916 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
2917 	unsigned long		first_index, mask;
2918 	unsigned long		inodes_per_cluster;
2919 	int			ilist_size;
2920 	xfs_inode_t		**ilist;
2921 	xfs_inode_t		*iq;
2922 	int			nr_found;
2923 	int			clcount = 0;
2924 	int			bufwasdelwri;
2925 	int			i;
2926 
2927 	ASSERT(pag->pagi_inodeok);
2928 	ASSERT(pag->pag_ici_init);
2929 
2930 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2931 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2932 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2933 	if (!ilist)
2934 		return 0;
2935 
2936 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2937 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2938 	read_lock(&pag->pag_ici_lock);
2939 	/* really need a gang lookup range call here */
2940 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2941 					first_index, inodes_per_cluster);
2942 	if (nr_found == 0)
2943 		goto out_free;
2944 
2945 	for (i = 0; i < nr_found; i++) {
2946 		iq = ilist[i];
2947 		if (iq == ip)
2948 			continue;
2949 		/* if the inode lies outside this cluster, we're done. */
2950 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2951 			break;
2952 		/*
2953 		 * Do an un-protected check to see if the inode is dirty and
2954 		 * is a candidate for flushing.  These checks will be repeated
2955 		 * later after the appropriate locks are acquired.
2956 		 */
2957 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2958 			continue;
2959 
2960 		/*
2961 		 * Try to get locks.  If any are unavailable or it is pinned,
2962 		 * then this inode cannot be flushed and is skipped.
2963 		 */
2964 
2965 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2966 			continue;
2967 		if (!xfs_iflock_nowait(iq)) {
2968 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2969 			continue;
2970 		}
2971 		if (xfs_ipincount(iq)) {
2972 			xfs_ifunlock(iq);
2973 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2974 			continue;
2975 		}
2976 
2977 		/*
2978 		 * arriving here means that this inode can be flushed.  First
2979 		 * re-check that it's dirty before flushing.
2980 		 */
2981 		if (!xfs_inode_clean(iq)) {
2982 			int	error;
2983 			error = xfs_iflush_int(iq, bp);
2984 			if (error) {
2985 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2986 				goto cluster_corrupt_out;
2987 			}
2988 			clcount++;
2989 		} else {
2990 			xfs_ifunlock(iq);
2991 		}
2992 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2993 	}
2994 
2995 	if (clcount) {
2996 		XFS_STATS_INC(xs_icluster_flushcnt);
2997 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2998 	}
2999 
3000 out_free:
3001 	read_unlock(&pag->pag_ici_lock);
3002 	kmem_free(ilist);
3003 	return 0;
3004 
3005 
3006 cluster_corrupt_out:
3007 	/*
3008 	 * Corruption detected in the clustering loop.  Invalidate the
3009 	 * inode buffer and shut down the filesystem.
3010 	 */
3011 	read_unlock(&pag->pag_ici_lock);
3012 	/*
3013 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3014 	 * brelse can handle it with no problems.  If not, shut down the
3015 	 * filesystem before releasing the buffer.
3016 	 */
3017 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3018 	if (bufwasdelwri)
3019 		xfs_buf_relse(bp);
3020 
3021 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3022 
3023 	if (!bufwasdelwri) {
3024 		/*
3025 		 * Just like incore_relse: if we have b_iodone functions,
3026 		 * mark the buffer as an error and call them.  Otherwise
3027 		 * mark it as stale and brelse.
3028 		 */
3029 		if (XFS_BUF_IODONE_FUNC(bp)) {
3030 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3031 			XFS_BUF_UNDONE(bp);
3032 			XFS_BUF_STALE(bp);
3033 			XFS_BUF_SHUT(bp);
3034 			XFS_BUF_ERROR(bp,EIO);
3035 			xfs_biodone(bp);
3036 		} else {
3037 			XFS_BUF_STALE(bp);
3038 			xfs_buf_relse(bp);
3039 		}
3040 	}
3041 
3042 	/*
3043 	 * Unlocks the flush lock
3044 	 */
3045 	xfs_iflush_abort(iq);
3046 	kmem_free(ilist);
3047 	return XFS_ERROR(EFSCORRUPTED);
3048 }
3049 
3050 /*
3051  * xfs_iflush() will write a modified inode's changes out to the
3052  * inode's on disk home.  The caller must have the inode lock held
3053  * in at least shared mode and the inode flush completion must be
3054  * active as well.  The inode lock will still be held upon return from
3055  * the call and the caller is free to unlock it.
3056  * The inode flush will be completed when the inode reaches the disk.
3057  * The flags indicate how the inode's buffer should be written out.
3058  */
3059 int
3060 xfs_iflush(
3061 	xfs_inode_t		*ip,
3062 	uint			flags)
3063 {
3064 	xfs_inode_log_item_t	*iip;
3065 	xfs_buf_t		*bp;
3066 	xfs_dinode_t		*dip;
3067 	xfs_mount_t		*mp;
3068 	int			error;
3069 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
3070 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3071 
3072 	XFS_STATS_INC(xs_iflush_count);
3073 
3074 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3075 	ASSERT(!completion_done(&ip->i_flush));
3076 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3077 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3078 
3079 	iip = ip->i_itemp;
3080 	mp = ip->i_mount;
3081 
3082 	/*
3083 	 * If the inode isn't dirty, then just release the inode
3084 	 * flush lock and do nothing.
3085 	 */
3086 	if (xfs_inode_clean(ip)) {
3087 		xfs_ifunlock(ip);
3088 		return 0;
3089 	}
3090 
3091 	/*
3092 	 * We can't flush the inode until it is unpinned, so wait for it if we
3093 	 * are allowed to block.  We know noone new can pin it, because we are
3094 	 * holding the inode lock shared and you need to hold it exclusively to
3095 	 * pin the inode.
3096 	 *
3097 	 * If we are not allowed to block, force the log out asynchronously so
3098 	 * that when we come back the inode will be unpinned. If other inodes
3099 	 * in the same cluster are dirty, they will probably write the inode
3100 	 * out for us if they occur after the log force completes.
3101 	 */
3102 	if (noblock && xfs_ipincount(ip)) {
3103 		xfs_iunpin_nowait(ip);
3104 		xfs_ifunlock(ip);
3105 		return EAGAIN;
3106 	}
3107 	xfs_iunpin_wait(ip);
3108 
3109 	/*
3110 	 * This may have been unpinned because the filesystem is shutting
3111 	 * down forcibly. If that's the case we must not write this inode
3112 	 * to disk, because the log record didn't make it to disk!
3113 	 */
3114 	if (XFS_FORCED_SHUTDOWN(mp)) {
3115 		ip->i_update_core = 0;
3116 		if (iip)
3117 			iip->ili_format.ilf_fields = 0;
3118 		xfs_ifunlock(ip);
3119 		return XFS_ERROR(EIO);
3120 	}
3121 
3122 	/*
3123 	 * Decide how buffer will be flushed out.  This is done before
3124 	 * the call to xfs_iflush_int because this field is zeroed by it.
3125 	 */
3126 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3127 		/*
3128 		 * Flush out the inode buffer according to the directions
3129 		 * of the caller.  In the cases where the caller has given
3130 		 * us a choice choose the non-delwri case.  This is because
3131 		 * the inode is in the AIL and we need to get it out soon.
3132 		 */
3133 		switch (flags) {
3134 		case XFS_IFLUSH_SYNC:
3135 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3136 			flags = 0;
3137 			break;
3138 		case XFS_IFLUSH_ASYNC_NOBLOCK:
3139 		case XFS_IFLUSH_ASYNC:
3140 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3141 			flags = INT_ASYNC;
3142 			break;
3143 		case XFS_IFLUSH_DELWRI:
3144 			flags = INT_DELWRI;
3145 			break;
3146 		default:
3147 			ASSERT(0);
3148 			flags = 0;
3149 			break;
3150 		}
3151 	} else {
3152 		switch (flags) {
3153 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3154 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3155 		case XFS_IFLUSH_DELWRI:
3156 			flags = INT_DELWRI;
3157 			break;
3158 		case XFS_IFLUSH_ASYNC_NOBLOCK:
3159 		case XFS_IFLUSH_ASYNC:
3160 			flags = INT_ASYNC;
3161 			break;
3162 		case XFS_IFLUSH_SYNC:
3163 			flags = 0;
3164 			break;
3165 		default:
3166 			ASSERT(0);
3167 			flags = 0;
3168 			break;
3169 		}
3170 	}
3171 
3172 	/*
3173 	 * Get the buffer containing the on-disk inode.
3174 	 */
3175 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3176 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3177 	if (error || !bp) {
3178 		xfs_ifunlock(ip);
3179 		return error;
3180 	}
3181 
3182 	/*
3183 	 * First flush out the inode that xfs_iflush was called with.
3184 	 */
3185 	error = xfs_iflush_int(ip, bp);
3186 	if (error)
3187 		goto corrupt_out;
3188 
3189 	/*
3190 	 * If the buffer is pinned then push on the log now so we won't
3191 	 * get stuck waiting in the write for too long.
3192 	 */
3193 	if (XFS_BUF_ISPINNED(bp))
3194 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3195 
3196 	/*
3197 	 * inode clustering:
3198 	 * see if other inodes can be gathered into this write
3199 	 */
3200 	error = xfs_iflush_cluster(ip, bp);
3201 	if (error)
3202 		goto cluster_corrupt_out;
3203 
3204 	if (flags & INT_DELWRI) {
3205 		xfs_bdwrite(mp, bp);
3206 	} else if (flags & INT_ASYNC) {
3207 		error = xfs_bawrite(mp, bp);
3208 	} else {
3209 		error = xfs_bwrite(mp, bp);
3210 	}
3211 	return error;
3212 
3213 corrupt_out:
3214 	xfs_buf_relse(bp);
3215 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3216 cluster_corrupt_out:
3217 	/*
3218 	 * Unlocks the flush lock
3219 	 */
3220 	xfs_iflush_abort(ip);
3221 	return XFS_ERROR(EFSCORRUPTED);
3222 }
3223 
3224 
3225 STATIC int
3226 xfs_iflush_int(
3227 	xfs_inode_t		*ip,
3228 	xfs_buf_t		*bp)
3229 {
3230 	xfs_inode_log_item_t	*iip;
3231 	xfs_dinode_t		*dip;
3232 	xfs_mount_t		*mp;
3233 #ifdef XFS_TRANS_DEBUG
3234 	int			first;
3235 #endif
3236 
3237 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3238 	ASSERT(!completion_done(&ip->i_flush));
3239 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3240 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3241 
3242 	iip = ip->i_itemp;
3243 	mp = ip->i_mount;
3244 
3245 
3246 	/*
3247 	 * If the inode isn't dirty, then just release the inode
3248 	 * flush lock and do nothing.
3249 	 */
3250 	if (xfs_inode_clean(ip)) {
3251 		xfs_ifunlock(ip);
3252 		return 0;
3253 	}
3254 
3255 	/* set *dip = inode's place in the buffer */
3256 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3257 
3258 	/*
3259 	 * Clear i_update_core before copying out the data.
3260 	 * This is for coordination with our timestamp updates
3261 	 * that don't hold the inode lock. They will always
3262 	 * update the timestamps BEFORE setting i_update_core,
3263 	 * so if we clear i_update_core after they set it we
3264 	 * are guaranteed to see their updates to the timestamps.
3265 	 * I believe that this depends on strongly ordered memory
3266 	 * semantics, but we have that.  We use the SYNCHRONIZE
3267 	 * macro to make sure that the compiler does not reorder
3268 	 * the i_update_core access below the data copy below.
3269 	 */
3270 	ip->i_update_core = 0;
3271 	SYNCHRONIZE();
3272 
3273 	/*
3274 	 * Make sure to get the latest atime from the Linux inode.
3275 	 */
3276 	xfs_synchronize_atime(ip);
3277 
3278 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3279 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3280 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3281 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3282 			ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3283 		goto corrupt_out;
3284 	}
3285 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3286 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3287 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3288 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3289 			ip->i_ino, ip, ip->i_d.di_magic);
3290 		goto corrupt_out;
3291 	}
3292 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3293 		if (XFS_TEST_ERROR(
3294 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3295 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3296 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3297 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3298 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3299 				ip->i_ino, ip);
3300 			goto corrupt_out;
3301 		}
3302 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3303 		if (XFS_TEST_ERROR(
3304 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3305 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3306 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3307 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3308 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3309 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3310 				ip->i_ino, ip);
3311 			goto corrupt_out;
3312 		}
3313 	}
3314 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3315 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3316 				XFS_RANDOM_IFLUSH_5)) {
3317 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3318 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3319 			ip->i_ino,
3320 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3321 			ip->i_d.di_nblocks,
3322 			ip);
3323 		goto corrupt_out;
3324 	}
3325 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3326 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3327 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3328 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3329 			ip->i_ino, ip->i_d.di_forkoff, ip);
3330 		goto corrupt_out;
3331 	}
3332 	/*
3333 	 * bump the flush iteration count, used to detect flushes which
3334 	 * postdate a log record during recovery.
3335 	 */
3336 
3337 	ip->i_d.di_flushiter++;
3338 
3339 	/*
3340 	 * Copy the dirty parts of the inode into the on-disk
3341 	 * inode.  We always copy out the core of the inode,
3342 	 * because if the inode is dirty at all the core must
3343 	 * be.
3344 	 */
3345 	xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3346 
3347 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3348 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3349 		ip->i_d.di_flushiter = 0;
3350 
3351 	/*
3352 	 * If this is really an old format inode and the superblock version
3353 	 * has not been updated to support only new format inodes, then
3354 	 * convert back to the old inode format.  If the superblock version
3355 	 * has been updated, then make the conversion permanent.
3356 	 */
3357 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3358 	       xfs_sb_version_hasnlink(&mp->m_sb));
3359 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3360 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3361 			/*
3362 			 * Convert it back.
3363 			 */
3364 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3365 			dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3366 		} else {
3367 			/*
3368 			 * The superblock version has already been bumped,
3369 			 * so just make the conversion to the new inode
3370 			 * format permanent.
3371 			 */
3372 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3373 			dip->di_core.di_version =  XFS_DINODE_VERSION_2;
3374 			ip->i_d.di_onlink = 0;
3375 			dip->di_core.di_onlink = 0;
3376 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3377 			memset(&(dip->di_core.di_pad[0]), 0,
3378 			      sizeof(dip->di_core.di_pad));
3379 			ASSERT(ip->i_d.di_projid == 0);
3380 		}
3381 	}
3382 
3383 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3384 	if (XFS_IFORK_Q(ip))
3385 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3386 	xfs_inobp_check(mp, bp);
3387 
3388 	/*
3389 	 * We've recorded everything logged in the inode, so we'd
3390 	 * like to clear the ilf_fields bits so we don't log and
3391 	 * flush things unnecessarily.  However, we can't stop
3392 	 * logging all this information until the data we've copied
3393 	 * into the disk buffer is written to disk.  If we did we might
3394 	 * overwrite the copy of the inode in the log with all the
3395 	 * data after re-logging only part of it, and in the face of
3396 	 * a crash we wouldn't have all the data we need to recover.
3397 	 *
3398 	 * What we do is move the bits to the ili_last_fields field.
3399 	 * When logging the inode, these bits are moved back to the
3400 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3401 	 * clear ili_last_fields, since we know that the information
3402 	 * those bits represent is permanently on disk.  As long as
3403 	 * the flush completes before the inode is logged again, then
3404 	 * both ilf_fields and ili_last_fields will be cleared.
3405 	 *
3406 	 * We can play with the ilf_fields bits here, because the inode
3407 	 * lock must be held exclusively in order to set bits there
3408 	 * and the flush lock protects the ili_last_fields bits.
3409 	 * Set ili_logged so the flush done
3410 	 * routine can tell whether or not to look in the AIL.
3411 	 * Also, store the current LSN of the inode so that we can tell
3412 	 * whether the item has moved in the AIL from xfs_iflush_done().
3413 	 * In order to read the lsn we need the AIL lock, because
3414 	 * it is a 64 bit value that cannot be read atomically.
3415 	 */
3416 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3417 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3418 		iip->ili_format.ilf_fields = 0;
3419 		iip->ili_logged = 1;
3420 
3421 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3422 		spin_lock(&mp->m_ail_lock);
3423 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3424 		spin_unlock(&mp->m_ail_lock);
3425 
3426 		/*
3427 		 * Attach the function xfs_iflush_done to the inode's
3428 		 * buffer.  This will remove the inode from the AIL
3429 		 * and unlock the inode's flush lock when the inode is
3430 		 * completely written to disk.
3431 		 */
3432 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3433 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3434 
3435 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3436 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3437 	} else {
3438 		/*
3439 		 * We're flushing an inode which is not in the AIL and has
3440 		 * not been logged but has i_update_core set.  For this
3441 		 * case we can use a B_DELWRI flush and immediately drop
3442 		 * the inode flush lock because we can avoid the whole
3443 		 * AIL state thing.  It's OK to drop the flush lock now,
3444 		 * because we've already locked the buffer and to do anything
3445 		 * you really need both.
3446 		 */
3447 		if (iip != NULL) {
3448 			ASSERT(iip->ili_logged == 0);
3449 			ASSERT(iip->ili_last_fields == 0);
3450 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3451 		}
3452 		xfs_ifunlock(ip);
3453 	}
3454 
3455 	return 0;
3456 
3457 corrupt_out:
3458 	return XFS_ERROR(EFSCORRUPTED);
3459 }
3460 
3461 
3462 /*
3463  * Flush all inactive inodes in mp.
3464  */
3465 void
3466 xfs_iflush_all(
3467 	xfs_mount_t	*mp)
3468 {
3469 	xfs_inode_t	*ip;
3470 
3471  again:
3472 	XFS_MOUNT_ILOCK(mp);
3473 	ip = mp->m_inodes;
3474 	if (ip == NULL)
3475 		goto out;
3476 
3477 	do {
3478 		/* Make sure we skip markers inserted by sync */
3479 		if (ip->i_mount == NULL) {
3480 			ip = ip->i_mnext;
3481 			continue;
3482 		}
3483 
3484 		if (!VFS_I(ip)) {
3485 			XFS_MOUNT_IUNLOCK(mp);
3486 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3487 			goto again;
3488 		}
3489 
3490 		ASSERT(vn_count(VFS_I(ip)) == 0);
3491 
3492 		ip = ip->i_mnext;
3493 	} while (ip != mp->m_inodes);
3494  out:
3495 	XFS_MOUNT_IUNLOCK(mp);
3496 }
3497 
3498 #ifdef XFS_ILOCK_TRACE
3499 ktrace_t	*xfs_ilock_trace_buf;
3500 
3501 void
3502 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3503 {
3504 	ktrace_enter(ip->i_lock_trace,
3505 		     (void *)ip,
3506 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3507 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3508 		     (void *)ra,		/* caller of ilock */
3509 		     (void *)(unsigned long)current_cpu(),
3510 		     (void *)(unsigned long)current_pid(),
3511 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3512 }
3513 #endif
3514 
3515 /*
3516  * Return a pointer to the extent record at file index idx.
3517  */
3518 xfs_bmbt_rec_host_t *
3519 xfs_iext_get_ext(
3520 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3521 	xfs_extnum_t	idx)		/* index of target extent */
3522 {
3523 	ASSERT(idx >= 0);
3524 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3525 		return ifp->if_u1.if_ext_irec->er_extbuf;
3526 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3527 		xfs_ext_irec_t	*erp;		/* irec pointer */
3528 		int		erp_idx = 0;	/* irec index */
3529 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3530 
3531 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3532 		return &erp->er_extbuf[page_idx];
3533 	} else if (ifp->if_bytes) {
3534 		return &ifp->if_u1.if_extents[idx];
3535 	} else {
3536 		return NULL;
3537 	}
3538 }
3539 
3540 /*
3541  * Insert new item(s) into the extent records for incore inode
3542  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3543  */
3544 void
3545 xfs_iext_insert(
3546 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3547 	xfs_extnum_t	idx,		/* starting index of new items */
3548 	xfs_extnum_t	count,		/* number of inserted items */
3549 	xfs_bmbt_irec_t	*new)		/* items to insert */
3550 {
3551 	xfs_extnum_t	i;		/* extent record index */
3552 
3553 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3554 	xfs_iext_add(ifp, idx, count);
3555 	for (i = idx; i < idx + count; i++, new++)
3556 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3557 }
3558 
3559 /*
3560  * This is called when the amount of space required for incore file
3561  * extents needs to be increased. The ext_diff parameter stores the
3562  * number of new extents being added and the idx parameter contains
3563  * the extent index where the new extents will be added. If the new
3564  * extents are being appended, then we just need to (re)allocate and
3565  * initialize the space. Otherwise, if the new extents are being
3566  * inserted into the middle of the existing entries, a bit more work
3567  * is required to make room for the new extents to be inserted. The
3568  * caller is responsible for filling in the new extent entries upon
3569  * return.
3570  */
3571 void
3572 xfs_iext_add(
3573 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3574 	xfs_extnum_t	idx,		/* index to begin adding exts */
3575 	int		ext_diff)	/* number of extents to add */
3576 {
3577 	int		byte_diff;	/* new bytes being added */
3578 	int		new_size;	/* size of extents after adding */
3579 	xfs_extnum_t	nextents;	/* number of extents in file */
3580 
3581 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3582 	ASSERT((idx >= 0) && (idx <= nextents));
3583 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3584 	new_size = ifp->if_bytes + byte_diff;
3585 	/*
3586 	 * If the new number of extents (nextents + ext_diff)
3587 	 * fits inside the inode, then continue to use the inline
3588 	 * extent buffer.
3589 	 */
3590 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3591 		if (idx < nextents) {
3592 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3593 				&ifp->if_u2.if_inline_ext[idx],
3594 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3595 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3596 		}
3597 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3598 		ifp->if_real_bytes = 0;
3599 		ifp->if_lastex = nextents + ext_diff;
3600 	}
3601 	/*
3602 	 * Otherwise use a linear (direct) extent list.
3603 	 * If the extents are currently inside the inode,
3604 	 * xfs_iext_realloc_direct will switch us from
3605 	 * inline to direct extent allocation mode.
3606 	 */
3607 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3608 		xfs_iext_realloc_direct(ifp, new_size);
3609 		if (idx < nextents) {
3610 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3611 				&ifp->if_u1.if_extents[idx],
3612 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3613 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3614 		}
3615 	}
3616 	/* Indirection array */
3617 	else {
3618 		xfs_ext_irec_t	*erp;
3619 		int		erp_idx = 0;
3620 		int		page_idx = idx;
3621 
3622 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3623 		if (ifp->if_flags & XFS_IFEXTIREC) {
3624 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3625 		} else {
3626 			xfs_iext_irec_init(ifp);
3627 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3628 			erp = ifp->if_u1.if_ext_irec;
3629 		}
3630 		/* Extents fit in target extent page */
3631 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3632 			if (page_idx < erp->er_extcount) {
3633 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3634 					&erp->er_extbuf[page_idx],
3635 					(erp->er_extcount - page_idx) *
3636 					sizeof(xfs_bmbt_rec_t));
3637 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3638 			}
3639 			erp->er_extcount += ext_diff;
3640 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3641 		}
3642 		/* Insert a new extent page */
3643 		else if (erp) {
3644 			xfs_iext_add_indirect_multi(ifp,
3645 				erp_idx, page_idx, ext_diff);
3646 		}
3647 		/*
3648 		 * If extent(s) are being appended to the last page in
3649 		 * the indirection array and the new extent(s) don't fit
3650 		 * in the page, then erp is NULL and erp_idx is set to
3651 		 * the next index needed in the indirection array.
3652 		 */
3653 		else {
3654 			int	count = ext_diff;
3655 
3656 			while (count) {
3657 				erp = xfs_iext_irec_new(ifp, erp_idx);
3658 				erp->er_extcount = count;
3659 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3660 				if (count) {
3661 					erp_idx++;
3662 				}
3663 			}
3664 		}
3665 	}
3666 	ifp->if_bytes = new_size;
3667 }
3668 
3669 /*
3670  * This is called when incore extents are being added to the indirection
3671  * array and the new extents do not fit in the target extent list. The
3672  * erp_idx parameter contains the irec index for the target extent list
3673  * in the indirection array, and the idx parameter contains the extent
3674  * index within the list. The number of extents being added is stored
3675  * in the count parameter.
3676  *
3677  *    |-------|   |-------|
3678  *    |       |   |       |    idx - number of extents before idx
3679  *    |  idx  |   | count |
3680  *    |       |   |       |    count - number of extents being inserted at idx
3681  *    |-------|   |-------|
3682  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3683  *    |-------|   |-------|
3684  */
3685 void
3686 xfs_iext_add_indirect_multi(
3687 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3688 	int		erp_idx,		/* target extent irec index */
3689 	xfs_extnum_t	idx,			/* index within target list */
3690 	int		count)			/* new extents being added */
3691 {
3692 	int		byte_diff;		/* new bytes being added */
3693 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3694 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3695 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3696 	xfs_extnum_t	nex2;			/* extents after idx + count */
3697 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3698 	int		nlists;			/* number of irec's (lists) */
3699 
3700 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3701 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3702 	nex2 = erp->er_extcount - idx;
3703 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3704 
3705 	/*
3706 	 * Save second part of target extent list
3707 	 * (all extents past */
3708 	if (nex2) {
3709 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3710 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3711 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3712 		erp->er_extcount -= nex2;
3713 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3714 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3715 	}
3716 
3717 	/*
3718 	 * Add the new extents to the end of the target
3719 	 * list, then allocate new irec record(s) and
3720 	 * extent buffer(s) as needed to store the rest
3721 	 * of the new extents.
3722 	 */
3723 	ext_cnt = count;
3724 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3725 	if (ext_diff) {
3726 		erp->er_extcount += ext_diff;
3727 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3728 		ext_cnt -= ext_diff;
3729 	}
3730 	while (ext_cnt) {
3731 		erp_idx++;
3732 		erp = xfs_iext_irec_new(ifp, erp_idx);
3733 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3734 		erp->er_extcount = ext_diff;
3735 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3736 		ext_cnt -= ext_diff;
3737 	}
3738 
3739 	/* Add nex2 extents back to indirection array */
3740 	if (nex2) {
3741 		xfs_extnum_t	ext_avail;
3742 		int		i;
3743 
3744 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3745 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3746 		i = 0;
3747 		/*
3748 		 * If nex2 extents fit in the current page, append
3749 		 * nex2_ep after the new extents.
3750 		 */
3751 		if (nex2 <= ext_avail) {
3752 			i = erp->er_extcount;
3753 		}
3754 		/*
3755 		 * Otherwise, check if space is available in the
3756 		 * next page.
3757 		 */
3758 		else if ((erp_idx < nlists - 1) &&
3759 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3760 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3761 			erp_idx++;
3762 			erp++;
3763 			/* Create a hole for nex2 extents */
3764 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3765 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3766 		}
3767 		/*
3768 		 * Final choice, create a new extent page for
3769 		 * nex2 extents.
3770 		 */
3771 		else {
3772 			erp_idx++;
3773 			erp = xfs_iext_irec_new(ifp, erp_idx);
3774 		}
3775 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3776 		kmem_free(nex2_ep);
3777 		erp->er_extcount += nex2;
3778 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3779 	}
3780 }
3781 
3782 /*
3783  * This is called when the amount of space required for incore file
3784  * extents needs to be decreased. The ext_diff parameter stores the
3785  * number of extents to be removed and the idx parameter contains
3786  * the extent index where the extents will be removed from.
3787  *
3788  * If the amount of space needed has decreased below the linear
3789  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3790  * extent array.  Otherwise, use kmem_realloc() to adjust the
3791  * size to what is needed.
3792  */
3793 void
3794 xfs_iext_remove(
3795 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3796 	xfs_extnum_t	idx,		/* index to begin removing exts */
3797 	int		ext_diff)	/* number of extents to remove */
3798 {
3799 	xfs_extnum_t	nextents;	/* number of extents in file */
3800 	int		new_size;	/* size of extents after removal */
3801 
3802 	ASSERT(ext_diff > 0);
3803 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3804 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3805 
3806 	if (new_size == 0) {
3807 		xfs_iext_destroy(ifp);
3808 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3809 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3810 	} else if (ifp->if_real_bytes) {
3811 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3812 	} else {
3813 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3814 	}
3815 	ifp->if_bytes = new_size;
3816 }
3817 
3818 /*
3819  * This removes ext_diff extents from the inline buffer, beginning
3820  * at extent index idx.
3821  */
3822 void
3823 xfs_iext_remove_inline(
3824 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3825 	xfs_extnum_t	idx,		/* index to begin removing exts */
3826 	int		ext_diff)	/* number of extents to remove */
3827 {
3828 	int		nextents;	/* number of extents in file */
3829 
3830 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3831 	ASSERT(idx < XFS_INLINE_EXTS);
3832 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3833 	ASSERT(((nextents - ext_diff) > 0) &&
3834 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3835 
3836 	if (idx + ext_diff < nextents) {
3837 		memmove(&ifp->if_u2.if_inline_ext[idx],
3838 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3839 			(nextents - (idx + ext_diff)) *
3840 			 sizeof(xfs_bmbt_rec_t));
3841 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3842 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3843 	} else {
3844 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3845 			ext_diff * sizeof(xfs_bmbt_rec_t));
3846 	}
3847 }
3848 
3849 /*
3850  * This removes ext_diff extents from a linear (direct) extent list,
3851  * beginning at extent index idx. If the extents are being removed
3852  * from the end of the list (ie. truncate) then we just need to re-
3853  * allocate the list to remove the extra space. Otherwise, if the
3854  * extents are being removed from the middle of the existing extent
3855  * entries, then we first need to move the extent records beginning
3856  * at idx + ext_diff up in the list to overwrite the records being
3857  * removed, then remove the extra space via kmem_realloc.
3858  */
3859 void
3860 xfs_iext_remove_direct(
3861 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3862 	xfs_extnum_t	idx,		/* index to begin removing exts */
3863 	int		ext_diff)	/* number of extents to remove */
3864 {
3865 	xfs_extnum_t	nextents;	/* number of extents in file */
3866 	int		new_size;	/* size of extents after removal */
3867 
3868 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3869 	new_size = ifp->if_bytes -
3870 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3871 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3872 
3873 	if (new_size == 0) {
3874 		xfs_iext_destroy(ifp);
3875 		return;
3876 	}
3877 	/* Move extents up in the list (if needed) */
3878 	if (idx + ext_diff < nextents) {
3879 		memmove(&ifp->if_u1.if_extents[idx],
3880 			&ifp->if_u1.if_extents[idx + ext_diff],
3881 			(nextents - (idx + ext_diff)) *
3882 			 sizeof(xfs_bmbt_rec_t));
3883 	}
3884 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3885 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3886 	/*
3887 	 * Reallocate the direct extent list. If the extents
3888 	 * will fit inside the inode then xfs_iext_realloc_direct
3889 	 * will switch from direct to inline extent allocation
3890 	 * mode for us.
3891 	 */
3892 	xfs_iext_realloc_direct(ifp, new_size);
3893 	ifp->if_bytes = new_size;
3894 }
3895 
3896 /*
3897  * This is called when incore extents are being removed from the
3898  * indirection array and the extents being removed span multiple extent
3899  * buffers. The idx parameter contains the file extent index where we
3900  * want to begin removing extents, and the count parameter contains
3901  * how many extents need to be removed.
3902  *
3903  *    |-------|   |-------|
3904  *    | nex1  |   |       |    nex1 - number of extents before idx
3905  *    |-------|   | count |
3906  *    |       |   |       |    count - number of extents being removed at idx
3907  *    | count |   |-------|
3908  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3909  *    |-------|   |-------|
3910  */
3911 void
3912 xfs_iext_remove_indirect(
3913 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3914 	xfs_extnum_t	idx,		/* index to begin removing extents */
3915 	int		count)		/* number of extents to remove */
3916 {
3917 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3918 	int		erp_idx = 0;	/* indirection array index */
3919 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3920 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3921 	xfs_extnum_t	nex1;		/* number of extents before idx */
3922 	xfs_extnum_t	nex2;		/* extents after idx + count */
3923 	int		nlists;		/* entries in indirection array */
3924 	int		page_idx = idx;	/* index in target extent list */
3925 
3926 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3927 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3928 	ASSERT(erp != NULL);
3929 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3930 	nex1 = page_idx;
3931 	ext_cnt = count;
3932 	while (ext_cnt) {
3933 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3934 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3935 		/*
3936 		 * Check for deletion of entire list;
3937 		 * xfs_iext_irec_remove() updates extent offsets.
3938 		 */
3939 		if (ext_diff == erp->er_extcount) {
3940 			xfs_iext_irec_remove(ifp, erp_idx);
3941 			ext_cnt -= ext_diff;
3942 			nex1 = 0;
3943 			if (ext_cnt) {
3944 				ASSERT(erp_idx < ifp->if_real_bytes /
3945 					XFS_IEXT_BUFSZ);
3946 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3947 				nex1 = 0;
3948 				continue;
3949 			} else {
3950 				break;
3951 			}
3952 		}
3953 		/* Move extents up (if needed) */
3954 		if (nex2) {
3955 			memmove(&erp->er_extbuf[nex1],
3956 				&erp->er_extbuf[nex1 + ext_diff],
3957 				nex2 * sizeof(xfs_bmbt_rec_t));
3958 		}
3959 		/* Zero out rest of page */
3960 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3961 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3962 		/* Update remaining counters */
3963 		erp->er_extcount -= ext_diff;
3964 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3965 		ext_cnt -= ext_diff;
3966 		nex1 = 0;
3967 		erp_idx++;
3968 		erp++;
3969 	}
3970 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3971 	xfs_iext_irec_compact(ifp);
3972 }
3973 
3974 /*
3975  * Create, destroy, or resize a linear (direct) block of extents.
3976  */
3977 void
3978 xfs_iext_realloc_direct(
3979 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3980 	int		new_size)	/* new size of extents */
3981 {
3982 	int		rnew_size;	/* real new size of extents */
3983 
3984 	rnew_size = new_size;
3985 
3986 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3987 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3988 		 (new_size != ifp->if_real_bytes)));
3989 
3990 	/* Free extent records */
3991 	if (new_size == 0) {
3992 		xfs_iext_destroy(ifp);
3993 	}
3994 	/* Resize direct extent list and zero any new bytes */
3995 	else if (ifp->if_real_bytes) {
3996 		/* Check if extents will fit inside the inode */
3997 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3998 			xfs_iext_direct_to_inline(ifp, new_size /
3999 				(uint)sizeof(xfs_bmbt_rec_t));
4000 			ifp->if_bytes = new_size;
4001 			return;
4002 		}
4003 		if (!is_power_of_2(new_size)){
4004 			rnew_size = roundup_pow_of_two(new_size);
4005 		}
4006 		if (rnew_size != ifp->if_real_bytes) {
4007 			ifp->if_u1.if_extents =
4008 				kmem_realloc(ifp->if_u1.if_extents,
4009 						rnew_size,
4010 						ifp->if_real_bytes, KM_NOFS);
4011 		}
4012 		if (rnew_size > ifp->if_real_bytes) {
4013 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4014 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
4015 				rnew_size - ifp->if_real_bytes);
4016 		}
4017 	}
4018 	/*
4019 	 * Switch from the inline extent buffer to a direct
4020 	 * extent list. Be sure to include the inline extent
4021 	 * bytes in new_size.
4022 	 */
4023 	else {
4024 		new_size += ifp->if_bytes;
4025 		if (!is_power_of_2(new_size)) {
4026 			rnew_size = roundup_pow_of_two(new_size);
4027 		}
4028 		xfs_iext_inline_to_direct(ifp, rnew_size);
4029 	}
4030 	ifp->if_real_bytes = rnew_size;
4031 	ifp->if_bytes = new_size;
4032 }
4033 
4034 /*
4035  * Switch from linear (direct) extent records to inline buffer.
4036  */
4037 void
4038 xfs_iext_direct_to_inline(
4039 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4040 	xfs_extnum_t	nextents)	/* number of extents in file */
4041 {
4042 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4043 	ASSERT(nextents <= XFS_INLINE_EXTS);
4044 	/*
4045 	 * The inline buffer was zeroed when we switched
4046 	 * from inline to direct extent allocation mode,
4047 	 * so we don't need to clear it here.
4048 	 */
4049 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4050 		nextents * sizeof(xfs_bmbt_rec_t));
4051 	kmem_free(ifp->if_u1.if_extents);
4052 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4053 	ifp->if_real_bytes = 0;
4054 }
4055 
4056 /*
4057  * Switch from inline buffer to linear (direct) extent records.
4058  * new_size should already be rounded up to the next power of 2
4059  * by the caller (when appropriate), so use new_size as it is.
4060  * However, since new_size may be rounded up, we can't update
4061  * if_bytes here. It is the caller's responsibility to update
4062  * if_bytes upon return.
4063  */
4064 void
4065 xfs_iext_inline_to_direct(
4066 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4067 	int		new_size)	/* number of extents in file */
4068 {
4069 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4070 	memset(ifp->if_u1.if_extents, 0, new_size);
4071 	if (ifp->if_bytes) {
4072 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4073 			ifp->if_bytes);
4074 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4075 			sizeof(xfs_bmbt_rec_t));
4076 	}
4077 	ifp->if_real_bytes = new_size;
4078 }
4079 
4080 /*
4081  * Resize an extent indirection array to new_size bytes.
4082  */
4083 void
4084 xfs_iext_realloc_indirect(
4085 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4086 	int		new_size)	/* new indirection array size */
4087 {
4088 	int		nlists;		/* number of irec's (ex lists) */
4089 	int		size;		/* current indirection array size */
4090 
4091 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4092 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4093 	size = nlists * sizeof(xfs_ext_irec_t);
4094 	ASSERT(ifp->if_real_bytes);
4095 	ASSERT((new_size >= 0) && (new_size != size));
4096 	if (new_size == 0) {
4097 		xfs_iext_destroy(ifp);
4098 	} else {
4099 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4100 			kmem_realloc(ifp->if_u1.if_ext_irec,
4101 				new_size, size, KM_NOFS);
4102 	}
4103 }
4104 
4105 /*
4106  * Switch from indirection array to linear (direct) extent allocations.
4107  */
4108 void
4109 xfs_iext_indirect_to_direct(
4110 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4111 {
4112 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
4113 	xfs_extnum_t	nextents;	/* number of extents in file */
4114 	int		size;		/* size of file extents */
4115 
4116 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4117 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4118 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4119 	size = nextents * sizeof(xfs_bmbt_rec_t);
4120 
4121 	xfs_iext_irec_compact_pages(ifp);
4122 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4123 
4124 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4125 	kmem_free(ifp->if_u1.if_ext_irec);
4126 	ifp->if_flags &= ~XFS_IFEXTIREC;
4127 	ifp->if_u1.if_extents = ep;
4128 	ifp->if_bytes = size;
4129 	if (nextents < XFS_LINEAR_EXTS) {
4130 		xfs_iext_realloc_direct(ifp, size);
4131 	}
4132 }
4133 
4134 /*
4135  * Free incore file extents.
4136  */
4137 void
4138 xfs_iext_destroy(
4139 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4140 {
4141 	if (ifp->if_flags & XFS_IFEXTIREC) {
4142 		int	erp_idx;
4143 		int	nlists;
4144 
4145 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4146 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4147 			xfs_iext_irec_remove(ifp, erp_idx);
4148 		}
4149 		ifp->if_flags &= ~XFS_IFEXTIREC;
4150 	} else if (ifp->if_real_bytes) {
4151 		kmem_free(ifp->if_u1.if_extents);
4152 	} else if (ifp->if_bytes) {
4153 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4154 			sizeof(xfs_bmbt_rec_t));
4155 	}
4156 	ifp->if_u1.if_extents = NULL;
4157 	ifp->if_real_bytes = 0;
4158 	ifp->if_bytes = 0;
4159 }
4160 
4161 /*
4162  * Return a pointer to the extent record for file system block bno.
4163  */
4164 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
4165 xfs_iext_bno_to_ext(
4166 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4167 	xfs_fileoff_t	bno,		/* block number to search for */
4168 	xfs_extnum_t	*idxp)		/* index of target extent */
4169 {
4170 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
4171 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4172 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
4173 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4174 	int		high;		/* upper boundary in search */
4175 	xfs_extnum_t	idx = 0;	/* index of target extent */
4176 	int		low;		/* lower boundary in search */
4177 	xfs_extnum_t	nextents;	/* number of file extents */
4178 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4179 
4180 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4181 	if (nextents == 0) {
4182 		*idxp = 0;
4183 		return NULL;
4184 	}
4185 	low = 0;
4186 	if (ifp->if_flags & XFS_IFEXTIREC) {
4187 		/* Find target extent list */
4188 		int	erp_idx = 0;
4189 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4190 		base = erp->er_extbuf;
4191 		high = erp->er_extcount - 1;
4192 	} else {
4193 		base = ifp->if_u1.if_extents;
4194 		high = nextents - 1;
4195 	}
4196 	/* Binary search extent records */
4197 	while (low <= high) {
4198 		idx = (low + high) >> 1;
4199 		ep = base + idx;
4200 		startoff = xfs_bmbt_get_startoff(ep);
4201 		blockcount = xfs_bmbt_get_blockcount(ep);
4202 		if (bno < startoff) {
4203 			high = idx - 1;
4204 		} else if (bno >= startoff + blockcount) {
4205 			low = idx + 1;
4206 		} else {
4207 			/* Convert back to file-based extent index */
4208 			if (ifp->if_flags & XFS_IFEXTIREC) {
4209 				idx += erp->er_extoff;
4210 			}
4211 			*idxp = idx;
4212 			return ep;
4213 		}
4214 	}
4215 	/* Convert back to file-based extent index */
4216 	if (ifp->if_flags & XFS_IFEXTIREC) {
4217 		idx += erp->er_extoff;
4218 	}
4219 	if (bno >= startoff + blockcount) {
4220 		if (++idx == nextents) {
4221 			ep = NULL;
4222 		} else {
4223 			ep = xfs_iext_get_ext(ifp, idx);
4224 		}
4225 	}
4226 	*idxp = idx;
4227 	return ep;
4228 }
4229 
4230 /*
4231  * Return a pointer to the indirection array entry containing the
4232  * extent record for filesystem block bno. Store the index of the
4233  * target irec in *erp_idxp.
4234  */
4235 xfs_ext_irec_t *			/* pointer to found extent record */
4236 xfs_iext_bno_to_irec(
4237 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4238 	xfs_fileoff_t	bno,		/* block number to search for */
4239 	int		*erp_idxp)	/* irec index of target ext list */
4240 {
4241 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4242 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4243 	int		erp_idx;	/* indirection array index */
4244 	int		nlists;		/* number of extent irec's (lists) */
4245 	int		high;		/* binary search upper limit */
4246 	int		low;		/* binary search lower limit */
4247 
4248 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4249 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4250 	erp_idx = 0;
4251 	low = 0;
4252 	high = nlists - 1;
4253 	while (low <= high) {
4254 		erp_idx = (low + high) >> 1;
4255 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4256 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4257 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4258 			high = erp_idx - 1;
4259 		} else if (erp_next && bno >=
4260 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4261 			low = erp_idx + 1;
4262 		} else {
4263 			break;
4264 		}
4265 	}
4266 	*erp_idxp = erp_idx;
4267 	return erp;
4268 }
4269 
4270 /*
4271  * Return a pointer to the indirection array entry containing the
4272  * extent record at file extent index *idxp. Store the index of the
4273  * target irec in *erp_idxp and store the page index of the target
4274  * extent record in *idxp.
4275  */
4276 xfs_ext_irec_t *
4277 xfs_iext_idx_to_irec(
4278 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4279 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4280 	int		*erp_idxp,	/* pointer to target irec */
4281 	int		realloc)	/* new bytes were just added */
4282 {
4283 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4284 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4285 	int		erp_idx;	/* indirection array index */
4286 	int		nlists;		/* number of irec's (ex lists) */
4287 	int		high;		/* binary search upper limit */
4288 	int		low;		/* binary search lower limit */
4289 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4290 
4291 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4292 	ASSERT(page_idx >= 0 && page_idx <=
4293 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4294 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4295 	erp_idx = 0;
4296 	low = 0;
4297 	high = nlists - 1;
4298 
4299 	/* Binary search extent irec's */
4300 	while (low <= high) {
4301 		erp_idx = (low + high) >> 1;
4302 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4303 		prev = erp_idx > 0 ? erp - 1 : NULL;
4304 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4305 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4306 			high = erp_idx - 1;
4307 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4308 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4309 			    !realloc)) {
4310 			low = erp_idx + 1;
4311 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4312 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4313 			ASSERT(realloc);
4314 			page_idx = 0;
4315 			erp_idx++;
4316 			erp = erp_idx < nlists ? erp + 1 : NULL;
4317 			break;
4318 		} else {
4319 			page_idx -= erp->er_extoff;
4320 			break;
4321 		}
4322 	}
4323 	*idxp = page_idx;
4324 	*erp_idxp = erp_idx;
4325 	return(erp);
4326 }
4327 
4328 /*
4329  * Allocate and initialize an indirection array once the space needed
4330  * for incore extents increases above XFS_IEXT_BUFSZ.
4331  */
4332 void
4333 xfs_iext_irec_init(
4334 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4335 {
4336 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4337 	xfs_extnum_t	nextents;	/* number of extents in file */
4338 
4339 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4340 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4341 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4342 
4343 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4344 
4345 	if (nextents == 0) {
4346 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4347 	} else if (!ifp->if_real_bytes) {
4348 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4349 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4350 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4351 	}
4352 	erp->er_extbuf = ifp->if_u1.if_extents;
4353 	erp->er_extcount = nextents;
4354 	erp->er_extoff = 0;
4355 
4356 	ifp->if_flags |= XFS_IFEXTIREC;
4357 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4358 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4359 	ifp->if_u1.if_ext_irec = erp;
4360 
4361 	return;
4362 }
4363 
4364 /*
4365  * Allocate and initialize a new entry in the indirection array.
4366  */
4367 xfs_ext_irec_t *
4368 xfs_iext_irec_new(
4369 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4370 	int		erp_idx)	/* index for new irec */
4371 {
4372 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4373 	int		i;		/* loop counter */
4374 	int		nlists;		/* number of irec's (ex lists) */
4375 
4376 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4377 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4378 
4379 	/* Resize indirection array */
4380 	xfs_iext_realloc_indirect(ifp, ++nlists *
4381 				  sizeof(xfs_ext_irec_t));
4382 	/*
4383 	 * Move records down in the array so the
4384 	 * new page can use erp_idx.
4385 	 */
4386 	erp = ifp->if_u1.if_ext_irec;
4387 	for (i = nlists - 1; i > erp_idx; i--) {
4388 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4389 	}
4390 	ASSERT(i == erp_idx);
4391 
4392 	/* Initialize new extent record */
4393 	erp = ifp->if_u1.if_ext_irec;
4394 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4395 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4396 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4397 	erp[erp_idx].er_extcount = 0;
4398 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4399 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4400 	return (&erp[erp_idx]);
4401 }
4402 
4403 /*
4404  * Remove a record from the indirection array.
4405  */
4406 void
4407 xfs_iext_irec_remove(
4408 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4409 	int		erp_idx)	/* irec index to remove */
4410 {
4411 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4412 	int		i;		/* loop counter */
4413 	int		nlists;		/* number of irec's (ex lists) */
4414 
4415 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4416 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4417 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4418 	if (erp->er_extbuf) {
4419 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4420 			-erp->er_extcount);
4421 		kmem_free(erp->er_extbuf);
4422 	}
4423 	/* Compact extent records */
4424 	erp = ifp->if_u1.if_ext_irec;
4425 	for (i = erp_idx; i < nlists - 1; i++) {
4426 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4427 	}
4428 	/*
4429 	 * Manually free the last extent record from the indirection
4430 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4431 	 * of zero would result in a call to xfs_iext_destroy() which
4432 	 * would in turn call this function again, creating a nasty
4433 	 * infinite loop.
4434 	 */
4435 	if (--nlists) {
4436 		xfs_iext_realloc_indirect(ifp,
4437 			nlists * sizeof(xfs_ext_irec_t));
4438 	} else {
4439 		kmem_free(ifp->if_u1.if_ext_irec);
4440 	}
4441 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4442 }
4443 
4444 /*
4445  * This is called to clean up large amounts of unused memory allocated
4446  * by the indirection array.  Before compacting anything though, verify
4447  * that the indirection array is still needed and switch back to the
4448  * linear extent list (or even the inline buffer) if possible.  The
4449  * compaction policy is as follows:
4450  *
4451  *    Full Compaction: Extents fit into a single page (or inline buffer)
4452  * Partial Compaction: Extents occupy less than 50% of allocated space
4453  *      No Compaction: Extents occupy at least 50% of allocated space
4454  */
4455 void
4456 xfs_iext_irec_compact(
4457 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4458 {
4459 	xfs_extnum_t	nextents;	/* number of extents in file */
4460 	int		nlists;		/* number of irec's (ex lists) */
4461 
4462 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4463 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4464 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4465 
4466 	if (nextents == 0) {
4467 		xfs_iext_destroy(ifp);
4468 	} else if (nextents <= XFS_INLINE_EXTS) {
4469 		xfs_iext_indirect_to_direct(ifp);
4470 		xfs_iext_direct_to_inline(ifp, nextents);
4471 	} else if (nextents <= XFS_LINEAR_EXTS) {
4472 		xfs_iext_indirect_to_direct(ifp);
4473 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4474 		xfs_iext_irec_compact_pages(ifp);
4475 	}
4476 }
4477 
4478 /*
4479  * Combine extents from neighboring extent pages.
4480  */
4481 void
4482 xfs_iext_irec_compact_pages(
4483 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4484 {
4485 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4486 	int		erp_idx = 0;	/* indirection array index */
4487 	int		nlists;		/* number of irec's (ex lists) */
4488 
4489 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4490 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4491 	while (erp_idx < nlists - 1) {
4492 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4493 		erp_next = erp + 1;
4494 		if (erp_next->er_extcount <=
4495 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4496 			memcpy(&erp->er_extbuf[erp->er_extcount],
4497 				erp_next->er_extbuf, erp_next->er_extcount *
4498 				sizeof(xfs_bmbt_rec_t));
4499 			erp->er_extcount += erp_next->er_extcount;
4500 			/*
4501 			 * Free page before removing extent record
4502 			 * so er_extoffs don't get modified in
4503 			 * xfs_iext_irec_remove.
4504 			 */
4505 			kmem_free(erp_next->er_extbuf);
4506 			erp_next->er_extbuf = NULL;
4507 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4508 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4509 		} else {
4510 			erp_idx++;
4511 		}
4512 	}
4513 }
4514 
4515 /*
4516  * This is called to update the er_extoff field in the indirection
4517  * array when extents have been added or removed from one of the
4518  * extent lists. erp_idx contains the irec index to begin updating
4519  * at and ext_diff contains the number of extents that were added
4520  * or removed.
4521  */
4522 void
4523 xfs_iext_irec_update_extoffs(
4524 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4525 	int		erp_idx,	/* irec index to update */
4526 	int		ext_diff)	/* number of new extents */
4527 {
4528 	int		i;		/* loop counter */
4529 	int		nlists;		/* number of irec's (ex lists */
4530 
4531 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4532 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4533 	for (i = erp_idx; i < nlists; i++) {
4534 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4535 	}
4536 }
4537