1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_imap.h" 27 #include "xfs_trans.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_sb.h" 30 #include "xfs_ag.h" 31 #include "xfs_dir2.h" 32 #include "xfs_dmapi.h" 33 #include "xfs_mount.h" 34 #include "xfs_bmap_btree.h" 35 #include "xfs_alloc_btree.h" 36 #include "xfs_ialloc_btree.h" 37 #include "xfs_dir2_sf.h" 38 #include "xfs_attr_sf.h" 39 #include "xfs_dinode.h" 40 #include "xfs_inode.h" 41 #include "xfs_buf_item.h" 42 #include "xfs_inode_item.h" 43 #include "xfs_btree.h" 44 #include "xfs_alloc.h" 45 #include "xfs_ialloc.h" 46 #include "xfs_bmap.h" 47 #include "xfs_rw.h" 48 #include "xfs_error.h" 49 #include "xfs_utils.h" 50 #include "xfs_dir2_trace.h" 51 #include "xfs_quota.h" 52 #include "xfs_acl.h" 53 #include "xfs_filestream.h" 54 #include "xfs_vnodeops.h" 55 56 kmem_zone_t *xfs_ifork_zone; 57 kmem_zone_t *xfs_inode_zone; 58 59 /* 60 * Used in xfs_itruncate(). This is the maximum number of extents 61 * freed from a file in a single transaction. 62 */ 63 #define XFS_ITRUNC_MAX_EXTENTS 2 64 65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 69 70 #ifdef DEBUG 71 /* 72 * Make sure that the extents in the given memory buffer 73 * are valid. 74 */ 75 STATIC void 76 xfs_validate_extents( 77 xfs_ifork_t *ifp, 78 int nrecs, 79 xfs_exntfmt_t fmt) 80 { 81 xfs_bmbt_irec_t irec; 82 xfs_bmbt_rec_host_t rec; 83 int i; 84 85 for (i = 0; i < nrecs; i++) { 86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 87 rec.l0 = get_unaligned(&ep->l0); 88 rec.l1 = get_unaligned(&ep->l1); 89 xfs_bmbt_get_all(&rec, &irec); 90 if (fmt == XFS_EXTFMT_NOSTATE) 91 ASSERT(irec.br_state == XFS_EXT_NORM); 92 } 93 } 94 #else /* DEBUG */ 95 #define xfs_validate_extents(ifp, nrecs, fmt) 96 #endif /* DEBUG */ 97 98 /* 99 * Check that none of the inode's in the buffer have a next 100 * unlinked field of 0. 101 */ 102 #if defined(DEBUG) 103 void 104 xfs_inobp_check( 105 xfs_mount_t *mp, 106 xfs_buf_t *bp) 107 { 108 int i; 109 int j; 110 xfs_dinode_t *dip; 111 112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 113 114 for (i = 0; i < j; i++) { 115 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 116 i * mp->m_sb.sb_inodesize); 117 if (!dip->di_next_unlinked) { 118 xfs_fs_cmn_err(CE_ALERT, mp, 119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 120 bp); 121 ASSERT(dip->di_next_unlinked); 122 } 123 } 124 } 125 #endif 126 127 /* 128 * Find the buffer associated with the given inode map 129 * We do basic validation checks on the buffer once it has been 130 * retrieved from disk. 131 */ 132 STATIC int 133 xfs_imap_to_bp( 134 xfs_mount_t *mp, 135 xfs_trans_t *tp, 136 xfs_imap_t *imap, 137 xfs_buf_t **bpp, 138 uint buf_flags, 139 uint imap_flags) 140 { 141 int error; 142 int i; 143 int ni; 144 xfs_buf_t *bp; 145 146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 147 (int)imap->im_len, buf_flags, &bp); 148 if (error) { 149 if (error != EAGAIN) { 150 cmn_err(CE_WARN, 151 "xfs_imap_to_bp: xfs_trans_read_buf()returned " 152 "an error %d on %s. Returning error.", 153 error, mp->m_fsname); 154 } else { 155 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 156 } 157 return error; 158 } 159 160 /* 161 * Validate the magic number and version of every inode in the buffer 162 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 163 */ 164 #ifdef DEBUG 165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 166 #else /* usual case */ 167 ni = 1; 168 #endif 169 170 for (i = 0; i < ni; i++) { 171 int di_ok; 172 xfs_dinode_t *dip; 173 174 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 175 (i << mp->m_sb.sb_inodelog)); 176 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC && 177 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version); 178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 179 XFS_ERRTAG_ITOBP_INOTOBP, 180 XFS_RANDOM_ITOBP_INOTOBP))) { 181 if (imap_flags & XFS_IMAP_BULKSTAT) { 182 xfs_trans_brelse(tp, bp); 183 return XFS_ERROR(EINVAL); 184 } 185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 186 XFS_ERRLEVEL_HIGH, mp, dip); 187 #ifdef DEBUG 188 cmn_err(CE_PANIC, 189 "Device %s - bad inode magic/vsn " 190 "daddr %lld #%d (magic=%x)", 191 XFS_BUFTARG_NAME(mp->m_ddev_targp), 192 (unsigned long long)imap->im_blkno, i, 193 be16_to_cpu(dip->di_core.di_magic)); 194 #endif 195 xfs_trans_brelse(tp, bp); 196 return XFS_ERROR(EFSCORRUPTED); 197 } 198 } 199 200 xfs_inobp_check(mp, bp); 201 202 /* 203 * Mark the buffer as an inode buffer now that it looks good 204 */ 205 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 206 207 *bpp = bp; 208 return 0; 209 } 210 211 /* 212 * This routine is called to map an inode number within a file 213 * system to the buffer containing the on-disk version of the 214 * inode. It returns a pointer to the buffer containing the 215 * on-disk inode in the bpp parameter, and in the dip parameter 216 * it returns a pointer to the on-disk inode within that buffer. 217 * 218 * If a non-zero error is returned, then the contents of bpp and 219 * dipp are undefined. 220 * 221 * Use xfs_imap() to determine the size and location of the 222 * buffer to read from disk. 223 */ 224 STATIC int 225 xfs_inotobp( 226 xfs_mount_t *mp, 227 xfs_trans_t *tp, 228 xfs_ino_t ino, 229 xfs_dinode_t **dipp, 230 xfs_buf_t **bpp, 231 int *offset) 232 { 233 xfs_imap_t imap; 234 xfs_buf_t *bp; 235 int error; 236 237 imap.im_blkno = 0; 238 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 239 if (error) 240 return error; 241 242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0); 243 if (error) 244 return error; 245 246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 247 *bpp = bp; 248 *offset = imap.im_boffset; 249 return 0; 250 } 251 252 253 /* 254 * This routine is called to map an inode to the buffer containing 255 * the on-disk version of the inode. It returns a pointer to the 256 * buffer containing the on-disk inode in the bpp parameter, and in 257 * the dip parameter it returns a pointer to the on-disk inode within 258 * that buffer. 259 * 260 * If a non-zero error is returned, then the contents of bpp and 261 * dipp are undefined. 262 * 263 * If the inode is new and has not yet been initialized, use xfs_imap() 264 * to determine the size and location of the buffer to read from disk. 265 * If the inode has already been mapped to its buffer and read in once, 266 * then use the mapping information stored in the inode rather than 267 * calling xfs_imap(). This allows us to avoid the overhead of looking 268 * at the inode btree for small block file systems (see xfs_dilocate()). 269 * We can tell whether the inode has been mapped in before by comparing 270 * its disk block address to 0. Only uninitialized inodes will have 271 * 0 for the disk block address. 272 */ 273 int 274 xfs_itobp( 275 xfs_mount_t *mp, 276 xfs_trans_t *tp, 277 xfs_inode_t *ip, 278 xfs_dinode_t **dipp, 279 xfs_buf_t **bpp, 280 xfs_daddr_t bno, 281 uint imap_flags, 282 uint buf_flags) 283 { 284 xfs_imap_t imap; 285 xfs_buf_t *bp; 286 int error; 287 288 if (ip->i_blkno == (xfs_daddr_t)0) { 289 imap.im_blkno = bno; 290 error = xfs_imap(mp, tp, ip->i_ino, &imap, 291 XFS_IMAP_LOOKUP | imap_flags); 292 if (error) 293 return error; 294 295 /* 296 * Fill in the fields in the inode that will be used to 297 * map the inode to its buffer from now on. 298 */ 299 ip->i_blkno = imap.im_blkno; 300 ip->i_len = imap.im_len; 301 ip->i_boffset = imap.im_boffset; 302 } else { 303 /* 304 * We've already mapped the inode once, so just use the 305 * mapping that we saved the first time. 306 */ 307 imap.im_blkno = ip->i_blkno; 308 imap.im_len = ip->i_len; 309 imap.im_boffset = ip->i_boffset; 310 } 311 ASSERT(bno == 0 || bno == imap.im_blkno); 312 313 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags); 314 if (error) 315 return error; 316 317 if (!bp) { 318 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 319 ASSERT(tp == NULL); 320 *bpp = NULL; 321 return EAGAIN; 322 } 323 324 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 325 *bpp = bp; 326 return 0; 327 } 328 329 /* 330 * Move inode type and inode format specific information from the 331 * on-disk inode to the in-core inode. For fifos, devs, and sockets 332 * this means set if_rdev to the proper value. For files, directories, 333 * and symlinks this means to bring in the in-line data or extent 334 * pointers. For a file in B-tree format, only the root is immediately 335 * brought in-core. The rest will be in-lined in if_extents when it 336 * is first referenced (see xfs_iread_extents()). 337 */ 338 STATIC int 339 xfs_iformat( 340 xfs_inode_t *ip, 341 xfs_dinode_t *dip) 342 { 343 xfs_attr_shortform_t *atp; 344 int size; 345 int error; 346 xfs_fsize_t di_size; 347 ip->i_df.if_ext_max = 348 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 349 error = 0; 350 351 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) + 352 be16_to_cpu(dip->di_core.di_anextents) > 353 be64_to_cpu(dip->di_core.di_nblocks))) { 354 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 356 (unsigned long long)ip->i_ino, 357 (int)(be32_to_cpu(dip->di_core.di_nextents) + 358 be16_to_cpu(dip->di_core.di_anextents)), 359 (unsigned long long) 360 be64_to_cpu(dip->di_core.di_nblocks)); 361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 362 ip->i_mount, dip); 363 return XFS_ERROR(EFSCORRUPTED); 364 } 365 366 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 367 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 368 "corrupt dinode %Lu, forkoff = 0x%x.", 369 (unsigned long long)ip->i_ino, 370 dip->di_core.di_forkoff); 371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 372 ip->i_mount, dip); 373 return XFS_ERROR(EFSCORRUPTED); 374 } 375 376 switch (ip->i_d.di_mode & S_IFMT) { 377 case S_IFIFO: 378 case S_IFCHR: 379 case S_IFBLK: 380 case S_IFSOCK: 381 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) { 382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 383 ip->i_mount, dip); 384 return XFS_ERROR(EFSCORRUPTED); 385 } 386 ip->i_d.di_size = 0; 387 ip->i_size = 0; 388 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev); 389 break; 390 391 case S_IFREG: 392 case S_IFLNK: 393 case S_IFDIR: 394 switch (dip->di_core.di_format) { 395 case XFS_DINODE_FMT_LOCAL: 396 /* 397 * no local regular files yet 398 */ 399 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) { 400 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 401 "corrupt inode %Lu " 402 "(local format for regular file).", 403 (unsigned long long) ip->i_ino); 404 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 405 XFS_ERRLEVEL_LOW, 406 ip->i_mount, dip); 407 return XFS_ERROR(EFSCORRUPTED); 408 } 409 410 di_size = be64_to_cpu(dip->di_core.di_size); 411 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 413 "corrupt inode %Lu " 414 "(bad size %Ld for local inode).", 415 (unsigned long long) ip->i_ino, 416 (long long) di_size); 417 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 418 XFS_ERRLEVEL_LOW, 419 ip->i_mount, dip); 420 return XFS_ERROR(EFSCORRUPTED); 421 } 422 423 size = (int)di_size; 424 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 425 break; 426 case XFS_DINODE_FMT_EXTENTS: 427 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 428 break; 429 case XFS_DINODE_FMT_BTREE: 430 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 431 break; 432 default: 433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 434 ip->i_mount); 435 return XFS_ERROR(EFSCORRUPTED); 436 } 437 break; 438 439 default: 440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 441 return XFS_ERROR(EFSCORRUPTED); 442 } 443 if (error) { 444 return error; 445 } 446 if (!XFS_DFORK_Q(dip)) 447 return 0; 448 ASSERT(ip->i_afp == NULL); 449 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 450 ip->i_afp->if_ext_max = 451 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 452 switch (dip->di_core.di_aformat) { 453 case XFS_DINODE_FMT_LOCAL: 454 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 455 size = be16_to_cpu(atp->hdr.totsize); 456 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 457 break; 458 case XFS_DINODE_FMT_EXTENTS: 459 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 460 break; 461 case XFS_DINODE_FMT_BTREE: 462 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 463 break; 464 default: 465 error = XFS_ERROR(EFSCORRUPTED); 466 break; 467 } 468 if (error) { 469 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 470 ip->i_afp = NULL; 471 xfs_idestroy_fork(ip, XFS_DATA_FORK); 472 } 473 return error; 474 } 475 476 /* 477 * The file is in-lined in the on-disk inode. 478 * If it fits into if_inline_data, then copy 479 * it there, otherwise allocate a buffer for it 480 * and copy the data there. Either way, set 481 * if_data to point at the data. 482 * If we allocate a buffer for the data, make 483 * sure that its size is a multiple of 4 and 484 * record the real size in i_real_bytes. 485 */ 486 STATIC int 487 xfs_iformat_local( 488 xfs_inode_t *ip, 489 xfs_dinode_t *dip, 490 int whichfork, 491 int size) 492 { 493 xfs_ifork_t *ifp; 494 int real_size; 495 496 /* 497 * If the size is unreasonable, then something 498 * is wrong and we just bail out rather than crash in 499 * kmem_alloc() or memcpy() below. 500 */ 501 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 502 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 503 "corrupt inode %Lu " 504 "(bad size %d for local fork, size = %d).", 505 (unsigned long long) ip->i_ino, size, 506 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 508 ip->i_mount, dip); 509 return XFS_ERROR(EFSCORRUPTED); 510 } 511 ifp = XFS_IFORK_PTR(ip, whichfork); 512 real_size = 0; 513 if (size == 0) 514 ifp->if_u1.if_data = NULL; 515 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 516 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 517 else { 518 real_size = roundup(size, 4); 519 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 520 } 521 ifp->if_bytes = size; 522 ifp->if_real_bytes = real_size; 523 if (size) 524 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 525 ifp->if_flags &= ~XFS_IFEXTENTS; 526 ifp->if_flags |= XFS_IFINLINE; 527 return 0; 528 } 529 530 /* 531 * The file consists of a set of extents all 532 * of which fit into the on-disk inode. 533 * If there are few enough extents to fit into 534 * the if_inline_ext, then copy them there. 535 * Otherwise allocate a buffer for them and copy 536 * them into it. Either way, set if_extents 537 * to point at the extents. 538 */ 539 STATIC int 540 xfs_iformat_extents( 541 xfs_inode_t *ip, 542 xfs_dinode_t *dip, 543 int whichfork) 544 { 545 xfs_bmbt_rec_t *dp; 546 xfs_ifork_t *ifp; 547 int nex; 548 int size; 549 int i; 550 551 ifp = XFS_IFORK_PTR(ip, whichfork); 552 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 553 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 554 555 /* 556 * If the number of extents is unreasonable, then something 557 * is wrong and we just bail out rather than crash in 558 * kmem_alloc() or memcpy() below. 559 */ 560 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 562 "corrupt inode %Lu ((a)extents = %d).", 563 (unsigned long long) ip->i_ino, nex); 564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 565 ip->i_mount, dip); 566 return XFS_ERROR(EFSCORRUPTED); 567 } 568 569 ifp->if_real_bytes = 0; 570 if (nex == 0) 571 ifp->if_u1.if_extents = NULL; 572 else if (nex <= XFS_INLINE_EXTS) 573 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 574 else 575 xfs_iext_add(ifp, 0, nex); 576 577 ifp->if_bytes = size; 578 if (size) { 579 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 580 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 581 for (i = 0; i < nex; i++, dp++) { 582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 583 ep->l0 = get_unaligned_be64(&dp->l0); 584 ep->l1 = get_unaligned_be64(&dp->l1); 585 } 586 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 587 if (whichfork != XFS_DATA_FORK || 588 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 589 if (unlikely(xfs_check_nostate_extents( 590 ifp, 0, nex))) { 591 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 592 XFS_ERRLEVEL_LOW, 593 ip->i_mount); 594 return XFS_ERROR(EFSCORRUPTED); 595 } 596 } 597 ifp->if_flags |= XFS_IFEXTENTS; 598 return 0; 599 } 600 601 /* 602 * The file has too many extents to fit into 603 * the inode, so they are in B-tree format. 604 * Allocate a buffer for the root of the B-tree 605 * and copy the root into it. The i_extents 606 * field will remain NULL until all of the 607 * extents are read in (when they are needed). 608 */ 609 STATIC int 610 xfs_iformat_btree( 611 xfs_inode_t *ip, 612 xfs_dinode_t *dip, 613 int whichfork) 614 { 615 xfs_bmdr_block_t *dfp; 616 xfs_ifork_t *ifp; 617 /* REFERENCED */ 618 int nrecs; 619 int size; 620 621 ifp = XFS_IFORK_PTR(ip, whichfork); 622 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 623 size = XFS_BMAP_BROOT_SPACE(dfp); 624 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 625 626 /* 627 * blow out if -- fork has less extents than can fit in 628 * fork (fork shouldn't be a btree format), root btree 629 * block has more records than can fit into the fork, 630 * or the number of extents is greater than the number of 631 * blocks. 632 */ 633 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 634 || XFS_BMDR_SPACE_CALC(nrecs) > 635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 636 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 637 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 638 "corrupt inode %Lu (btree).", 639 (unsigned long long) ip->i_ino); 640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 641 ip->i_mount); 642 return XFS_ERROR(EFSCORRUPTED); 643 } 644 645 ifp->if_broot_bytes = size; 646 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 647 ASSERT(ifp->if_broot != NULL); 648 /* 649 * Copy and convert from the on-disk structure 650 * to the in-memory structure. 651 */ 652 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 653 ifp->if_broot, size); 654 ifp->if_flags &= ~XFS_IFEXTENTS; 655 ifp->if_flags |= XFS_IFBROOT; 656 657 return 0; 658 } 659 660 void 661 xfs_dinode_from_disk( 662 xfs_icdinode_t *to, 663 xfs_dinode_core_t *from) 664 { 665 to->di_magic = be16_to_cpu(from->di_magic); 666 to->di_mode = be16_to_cpu(from->di_mode); 667 to->di_version = from ->di_version; 668 to->di_format = from->di_format; 669 to->di_onlink = be16_to_cpu(from->di_onlink); 670 to->di_uid = be32_to_cpu(from->di_uid); 671 to->di_gid = be32_to_cpu(from->di_gid); 672 to->di_nlink = be32_to_cpu(from->di_nlink); 673 to->di_projid = be16_to_cpu(from->di_projid); 674 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 675 to->di_flushiter = be16_to_cpu(from->di_flushiter); 676 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 677 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 678 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 679 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 680 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 681 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 682 to->di_size = be64_to_cpu(from->di_size); 683 to->di_nblocks = be64_to_cpu(from->di_nblocks); 684 to->di_extsize = be32_to_cpu(from->di_extsize); 685 to->di_nextents = be32_to_cpu(from->di_nextents); 686 to->di_anextents = be16_to_cpu(from->di_anextents); 687 to->di_forkoff = from->di_forkoff; 688 to->di_aformat = from->di_aformat; 689 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 690 to->di_dmstate = be16_to_cpu(from->di_dmstate); 691 to->di_flags = be16_to_cpu(from->di_flags); 692 to->di_gen = be32_to_cpu(from->di_gen); 693 } 694 695 void 696 xfs_dinode_to_disk( 697 xfs_dinode_core_t *to, 698 xfs_icdinode_t *from) 699 { 700 to->di_magic = cpu_to_be16(from->di_magic); 701 to->di_mode = cpu_to_be16(from->di_mode); 702 to->di_version = from ->di_version; 703 to->di_format = from->di_format; 704 to->di_onlink = cpu_to_be16(from->di_onlink); 705 to->di_uid = cpu_to_be32(from->di_uid); 706 to->di_gid = cpu_to_be32(from->di_gid); 707 to->di_nlink = cpu_to_be32(from->di_nlink); 708 to->di_projid = cpu_to_be16(from->di_projid); 709 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 710 to->di_flushiter = cpu_to_be16(from->di_flushiter); 711 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 712 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 713 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 714 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 715 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 716 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 717 to->di_size = cpu_to_be64(from->di_size); 718 to->di_nblocks = cpu_to_be64(from->di_nblocks); 719 to->di_extsize = cpu_to_be32(from->di_extsize); 720 to->di_nextents = cpu_to_be32(from->di_nextents); 721 to->di_anextents = cpu_to_be16(from->di_anextents); 722 to->di_forkoff = from->di_forkoff; 723 to->di_aformat = from->di_aformat; 724 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 725 to->di_dmstate = cpu_to_be16(from->di_dmstate); 726 to->di_flags = cpu_to_be16(from->di_flags); 727 to->di_gen = cpu_to_be32(from->di_gen); 728 } 729 730 STATIC uint 731 _xfs_dic2xflags( 732 __uint16_t di_flags) 733 { 734 uint flags = 0; 735 736 if (di_flags & XFS_DIFLAG_ANY) { 737 if (di_flags & XFS_DIFLAG_REALTIME) 738 flags |= XFS_XFLAG_REALTIME; 739 if (di_flags & XFS_DIFLAG_PREALLOC) 740 flags |= XFS_XFLAG_PREALLOC; 741 if (di_flags & XFS_DIFLAG_IMMUTABLE) 742 flags |= XFS_XFLAG_IMMUTABLE; 743 if (di_flags & XFS_DIFLAG_APPEND) 744 flags |= XFS_XFLAG_APPEND; 745 if (di_flags & XFS_DIFLAG_SYNC) 746 flags |= XFS_XFLAG_SYNC; 747 if (di_flags & XFS_DIFLAG_NOATIME) 748 flags |= XFS_XFLAG_NOATIME; 749 if (di_flags & XFS_DIFLAG_NODUMP) 750 flags |= XFS_XFLAG_NODUMP; 751 if (di_flags & XFS_DIFLAG_RTINHERIT) 752 flags |= XFS_XFLAG_RTINHERIT; 753 if (di_flags & XFS_DIFLAG_PROJINHERIT) 754 flags |= XFS_XFLAG_PROJINHERIT; 755 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 756 flags |= XFS_XFLAG_NOSYMLINKS; 757 if (di_flags & XFS_DIFLAG_EXTSIZE) 758 flags |= XFS_XFLAG_EXTSIZE; 759 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 760 flags |= XFS_XFLAG_EXTSZINHERIT; 761 if (di_flags & XFS_DIFLAG_NODEFRAG) 762 flags |= XFS_XFLAG_NODEFRAG; 763 if (di_flags & XFS_DIFLAG_FILESTREAM) 764 flags |= XFS_XFLAG_FILESTREAM; 765 } 766 767 return flags; 768 } 769 770 uint 771 xfs_ip2xflags( 772 xfs_inode_t *ip) 773 { 774 xfs_icdinode_t *dic = &ip->i_d; 775 776 return _xfs_dic2xflags(dic->di_flags) | 777 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 778 } 779 780 uint 781 xfs_dic2xflags( 782 xfs_dinode_t *dip) 783 { 784 xfs_dinode_core_t *dic = &dip->di_core; 785 786 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) | 787 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 788 } 789 790 /* 791 * Given a mount structure and an inode number, return a pointer 792 * to a newly allocated in-core inode corresponding to the given 793 * inode number. 794 * 795 * Initialize the inode's attributes and extent pointers if it 796 * already has them (it will not if the inode has no links). 797 */ 798 int 799 xfs_iread( 800 xfs_mount_t *mp, 801 xfs_trans_t *tp, 802 xfs_ino_t ino, 803 xfs_inode_t **ipp, 804 xfs_daddr_t bno, 805 uint imap_flags) 806 { 807 xfs_buf_t *bp; 808 xfs_dinode_t *dip; 809 xfs_inode_t *ip; 810 int error; 811 812 ASSERT(xfs_inode_zone != NULL); 813 814 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 815 ip->i_ino = ino; 816 ip->i_mount = mp; 817 atomic_set(&ip->i_iocount, 0); 818 spin_lock_init(&ip->i_flags_lock); 819 820 /* 821 * Get pointer's to the on-disk inode and the buffer containing it. 822 * If the inode number refers to a block outside the file system 823 * then xfs_itobp() will return NULL. In this case we should 824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 825 * know that this is a new incore inode. 826 */ 827 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK); 828 if (error) { 829 kmem_zone_free(xfs_inode_zone, ip); 830 return error; 831 } 832 833 /* 834 * Initialize inode's trace buffers. 835 * Do this before xfs_iformat in case it adds entries. 836 */ 837 #ifdef XFS_INODE_TRACE 838 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS); 839 #endif 840 #ifdef XFS_BMAP_TRACE 841 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS); 842 #endif 843 #ifdef XFS_BMBT_TRACE 844 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS); 845 #endif 846 #ifdef XFS_RW_TRACE 847 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS); 848 #endif 849 #ifdef XFS_ILOCK_TRACE 850 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS); 851 #endif 852 #ifdef XFS_DIR2_TRACE 853 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS); 854 #endif 855 856 /* 857 * If we got something that isn't an inode it means someone 858 * (nfs or dmi) has a stale handle. 859 */ 860 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) { 861 kmem_zone_free(xfs_inode_zone, ip); 862 xfs_trans_brelse(tp, bp); 863 #ifdef DEBUG 864 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 865 "dip->di_core.di_magic (0x%x) != " 866 "XFS_DINODE_MAGIC (0x%x)", 867 be16_to_cpu(dip->di_core.di_magic), 868 XFS_DINODE_MAGIC); 869 #endif /* DEBUG */ 870 return XFS_ERROR(EINVAL); 871 } 872 873 /* 874 * If the on-disk inode is already linked to a directory 875 * entry, copy all of the inode into the in-core inode. 876 * xfs_iformat() handles copying in the inode format 877 * specific information. 878 * Otherwise, just get the truly permanent information. 879 */ 880 if (dip->di_core.di_mode) { 881 xfs_dinode_from_disk(&ip->i_d, &dip->di_core); 882 error = xfs_iformat(ip, dip); 883 if (error) { 884 kmem_zone_free(xfs_inode_zone, ip); 885 xfs_trans_brelse(tp, bp); 886 #ifdef DEBUG 887 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 888 "xfs_iformat() returned error %d", 889 error); 890 #endif /* DEBUG */ 891 return error; 892 } 893 } else { 894 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic); 895 ip->i_d.di_version = dip->di_core.di_version; 896 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen); 897 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter); 898 /* 899 * Make sure to pull in the mode here as well in 900 * case the inode is released without being used. 901 * This ensures that xfs_inactive() will see that 902 * the inode is already free and not try to mess 903 * with the uninitialized part of it. 904 */ 905 ip->i_d.di_mode = 0; 906 /* 907 * Initialize the per-fork minima and maxima for a new 908 * inode here. xfs_iformat will do it for old inodes. 909 */ 910 ip->i_df.if_ext_max = 911 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 912 } 913 914 INIT_LIST_HEAD(&ip->i_reclaim); 915 916 /* 917 * The inode format changed when we moved the link count and 918 * made it 32 bits long. If this is an old format inode, 919 * convert it in memory to look like a new one. If it gets 920 * flushed to disk we will convert back before flushing or 921 * logging it. We zero out the new projid field and the old link 922 * count field. We'll handle clearing the pad field (the remains 923 * of the old uuid field) when we actually convert the inode to 924 * the new format. We don't change the version number so that we 925 * can distinguish this from a real new format inode. 926 */ 927 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 928 ip->i_d.di_nlink = ip->i_d.di_onlink; 929 ip->i_d.di_onlink = 0; 930 ip->i_d.di_projid = 0; 931 } 932 933 ip->i_delayed_blks = 0; 934 ip->i_size = ip->i_d.di_size; 935 936 /* 937 * Mark the buffer containing the inode as something to keep 938 * around for a while. This helps to keep recently accessed 939 * meta-data in-core longer. 940 */ 941 XFS_BUF_SET_REF(bp, XFS_INO_REF); 942 943 /* 944 * Use xfs_trans_brelse() to release the buffer containing the 945 * on-disk inode, because it was acquired with xfs_trans_read_buf() 946 * in xfs_itobp() above. If tp is NULL, this is just a normal 947 * brelse(). If we're within a transaction, then xfs_trans_brelse() 948 * will only release the buffer if it is not dirty within the 949 * transaction. It will be OK to release the buffer in this case, 950 * because inodes on disk are never destroyed and we will be 951 * locking the new in-core inode before putting it in the hash 952 * table where other processes can find it. Thus we don't have 953 * to worry about the inode being changed just because we released 954 * the buffer. 955 */ 956 xfs_trans_brelse(tp, bp); 957 *ipp = ip; 958 return 0; 959 } 960 961 /* 962 * Read in extents from a btree-format inode. 963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 964 */ 965 int 966 xfs_iread_extents( 967 xfs_trans_t *tp, 968 xfs_inode_t *ip, 969 int whichfork) 970 { 971 int error; 972 xfs_ifork_t *ifp; 973 xfs_extnum_t nextents; 974 size_t size; 975 976 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 978 ip->i_mount); 979 return XFS_ERROR(EFSCORRUPTED); 980 } 981 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 982 size = nextents * sizeof(xfs_bmbt_rec_t); 983 ifp = XFS_IFORK_PTR(ip, whichfork); 984 985 /* 986 * We know that the size is valid (it's checked in iformat_btree) 987 */ 988 ifp->if_lastex = NULLEXTNUM; 989 ifp->if_bytes = ifp->if_real_bytes = 0; 990 ifp->if_flags |= XFS_IFEXTENTS; 991 xfs_iext_add(ifp, 0, nextents); 992 error = xfs_bmap_read_extents(tp, ip, whichfork); 993 if (error) { 994 xfs_iext_destroy(ifp); 995 ifp->if_flags &= ~XFS_IFEXTENTS; 996 return error; 997 } 998 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 999 return 0; 1000 } 1001 1002 /* 1003 * Allocate an inode on disk and return a copy of its in-core version. 1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1005 * appropriately within the inode. The uid and gid for the inode are 1006 * set according to the contents of the given cred structure. 1007 * 1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1009 * has a free inode available, call xfs_iget() 1010 * to obtain the in-core version of the allocated inode. Finally, 1011 * fill in the inode and log its initial contents. In this case, 1012 * ialloc_context would be set to NULL and call_again set to false. 1013 * 1014 * If xfs_dialloc() does not have an available inode, 1015 * it will replenish its supply by doing an allocation. Since we can 1016 * only do one allocation within a transaction without deadlocks, we 1017 * must commit the current transaction before returning the inode itself. 1018 * In this case, therefore, we will set call_again to true and return. 1019 * The caller should then commit the current transaction, start a new 1020 * transaction, and call xfs_ialloc() again to actually get the inode. 1021 * 1022 * To ensure that some other process does not grab the inode that 1023 * was allocated during the first call to xfs_ialloc(), this routine 1024 * also returns the [locked] bp pointing to the head of the freelist 1025 * as ialloc_context. The caller should hold this buffer across 1026 * the commit and pass it back into this routine on the second call. 1027 * 1028 * If we are allocating quota inodes, we do not have a parent inode 1029 * to attach to or associate with (i.e. pip == NULL) because they 1030 * are not linked into the directory structure - they are attached 1031 * directly to the superblock - and so have no parent. 1032 */ 1033 int 1034 xfs_ialloc( 1035 xfs_trans_t *tp, 1036 xfs_inode_t *pip, 1037 mode_t mode, 1038 xfs_nlink_t nlink, 1039 xfs_dev_t rdev, 1040 cred_t *cr, 1041 xfs_prid_t prid, 1042 int okalloc, 1043 xfs_buf_t **ialloc_context, 1044 boolean_t *call_again, 1045 xfs_inode_t **ipp) 1046 { 1047 xfs_ino_t ino; 1048 xfs_inode_t *ip; 1049 uint flags; 1050 int error; 1051 timespec_t tv; 1052 1053 /* 1054 * Call the space management code to pick 1055 * the on-disk inode to be allocated. 1056 */ 1057 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1058 ialloc_context, call_again, &ino); 1059 if (error != 0) { 1060 return error; 1061 } 1062 if (*call_again || ino == NULLFSINO) { 1063 *ipp = NULL; 1064 return 0; 1065 } 1066 ASSERT(*ialloc_context == NULL); 1067 1068 /* 1069 * Get the in-core inode with the lock held exclusively. 1070 * This is because we're setting fields here we need 1071 * to prevent others from looking at until we're done. 1072 */ 1073 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1074 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1075 if (error != 0) { 1076 return error; 1077 } 1078 ASSERT(ip != NULL); 1079 1080 ip->i_d.di_mode = (__uint16_t)mode; 1081 ip->i_d.di_onlink = 0; 1082 ip->i_d.di_nlink = nlink; 1083 ASSERT(ip->i_d.di_nlink == nlink); 1084 ip->i_d.di_uid = current_fsuid(); 1085 ip->i_d.di_gid = current_fsgid(); 1086 ip->i_d.di_projid = prid; 1087 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1088 1089 /* 1090 * If the superblock version is up to where we support new format 1091 * inodes and this is currently an old format inode, then change 1092 * the inode version number now. This way we only do the conversion 1093 * here rather than here and in the flush/logging code. 1094 */ 1095 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1096 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1097 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1098 /* 1099 * We've already zeroed the old link count, the projid field, 1100 * and the pad field. 1101 */ 1102 } 1103 1104 /* 1105 * Project ids won't be stored on disk if we are using a version 1 inode. 1106 */ 1107 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1108 xfs_bump_ino_vers2(tp, ip); 1109 1110 if (pip && XFS_INHERIT_GID(pip)) { 1111 ip->i_d.di_gid = pip->i_d.di_gid; 1112 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1113 ip->i_d.di_mode |= S_ISGID; 1114 } 1115 } 1116 1117 /* 1118 * If the group ID of the new file does not match the effective group 1119 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1120 * (and only if the irix_sgid_inherit compatibility variable is set). 1121 */ 1122 if ((irix_sgid_inherit) && 1123 (ip->i_d.di_mode & S_ISGID) && 1124 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1125 ip->i_d.di_mode &= ~S_ISGID; 1126 } 1127 1128 ip->i_d.di_size = 0; 1129 ip->i_size = 0; 1130 ip->i_d.di_nextents = 0; 1131 ASSERT(ip->i_d.di_nblocks == 0); 1132 1133 nanotime(&tv); 1134 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1135 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1136 ip->i_d.di_atime = ip->i_d.di_mtime; 1137 ip->i_d.di_ctime = ip->i_d.di_mtime; 1138 1139 /* 1140 * di_gen will have been taken care of in xfs_iread. 1141 */ 1142 ip->i_d.di_extsize = 0; 1143 ip->i_d.di_dmevmask = 0; 1144 ip->i_d.di_dmstate = 0; 1145 ip->i_d.di_flags = 0; 1146 flags = XFS_ILOG_CORE; 1147 switch (mode & S_IFMT) { 1148 case S_IFIFO: 1149 case S_IFCHR: 1150 case S_IFBLK: 1151 case S_IFSOCK: 1152 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1153 ip->i_df.if_u2.if_rdev = rdev; 1154 ip->i_df.if_flags = 0; 1155 flags |= XFS_ILOG_DEV; 1156 break; 1157 case S_IFREG: 1158 if (pip && xfs_inode_is_filestream(pip)) { 1159 error = xfs_filestream_associate(pip, ip); 1160 if (error < 0) 1161 return -error; 1162 if (!error) 1163 xfs_iflags_set(ip, XFS_IFILESTREAM); 1164 } 1165 /* fall through */ 1166 case S_IFDIR: 1167 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1168 uint di_flags = 0; 1169 1170 if ((mode & S_IFMT) == S_IFDIR) { 1171 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1172 di_flags |= XFS_DIFLAG_RTINHERIT; 1173 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1174 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1175 ip->i_d.di_extsize = pip->i_d.di_extsize; 1176 } 1177 } else if ((mode & S_IFMT) == S_IFREG) { 1178 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1179 di_flags |= XFS_DIFLAG_REALTIME; 1180 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1181 di_flags |= XFS_DIFLAG_EXTSIZE; 1182 ip->i_d.di_extsize = pip->i_d.di_extsize; 1183 } 1184 } 1185 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1186 xfs_inherit_noatime) 1187 di_flags |= XFS_DIFLAG_NOATIME; 1188 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1189 xfs_inherit_nodump) 1190 di_flags |= XFS_DIFLAG_NODUMP; 1191 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1192 xfs_inherit_sync) 1193 di_flags |= XFS_DIFLAG_SYNC; 1194 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1195 xfs_inherit_nosymlinks) 1196 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1197 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1198 di_flags |= XFS_DIFLAG_PROJINHERIT; 1199 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1200 xfs_inherit_nodefrag) 1201 di_flags |= XFS_DIFLAG_NODEFRAG; 1202 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1203 di_flags |= XFS_DIFLAG_FILESTREAM; 1204 ip->i_d.di_flags |= di_flags; 1205 } 1206 /* FALLTHROUGH */ 1207 case S_IFLNK: 1208 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1209 ip->i_df.if_flags = XFS_IFEXTENTS; 1210 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1211 ip->i_df.if_u1.if_extents = NULL; 1212 break; 1213 default: 1214 ASSERT(0); 1215 } 1216 /* 1217 * Attribute fork settings for new inode. 1218 */ 1219 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1220 ip->i_d.di_anextents = 0; 1221 1222 /* 1223 * Log the new values stuffed into the inode. 1224 */ 1225 xfs_trans_log_inode(tp, ip, flags); 1226 1227 /* now that we have an i_mode we can setup inode ops and unlock */ 1228 xfs_setup_inode(ip); 1229 1230 *ipp = ip; 1231 return 0; 1232 } 1233 1234 /* 1235 * Check to make sure that there are no blocks allocated to the 1236 * file beyond the size of the file. We don't check this for 1237 * files with fixed size extents or real time extents, but we 1238 * at least do it for regular files. 1239 */ 1240 #ifdef DEBUG 1241 void 1242 xfs_isize_check( 1243 xfs_mount_t *mp, 1244 xfs_inode_t *ip, 1245 xfs_fsize_t isize) 1246 { 1247 xfs_fileoff_t map_first; 1248 int nimaps; 1249 xfs_bmbt_irec_t imaps[2]; 1250 1251 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1252 return; 1253 1254 if (XFS_IS_REALTIME_INODE(ip)) 1255 return; 1256 1257 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) 1258 return; 1259 1260 nimaps = 2; 1261 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1262 /* 1263 * The filesystem could be shutting down, so bmapi may return 1264 * an error. 1265 */ 1266 if (xfs_bmapi(NULL, ip, map_first, 1267 (XFS_B_TO_FSB(mp, 1268 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1269 map_first), 1270 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1271 NULL, NULL)) 1272 return; 1273 ASSERT(nimaps == 1); 1274 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1275 } 1276 #endif /* DEBUG */ 1277 1278 /* 1279 * Calculate the last possible buffered byte in a file. This must 1280 * include data that was buffered beyond the EOF by the write code. 1281 * This also needs to deal with overflowing the xfs_fsize_t type 1282 * which can happen for sizes near the limit. 1283 * 1284 * We also need to take into account any blocks beyond the EOF. It 1285 * may be the case that they were buffered by a write which failed. 1286 * In that case the pages will still be in memory, but the inode size 1287 * will never have been updated. 1288 */ 1289 xfs_fsize_t 1290 xfs_file_last_byte( 1291 xfs_inode_t *ip) 1292 { 1293 xfs_mount_t *mp; 1294 xfs_fsize_t last_byte; 1295 xfs_fileoff_t last_block; 1296 xfs_fileoff_t size_last_block; 1297 int error; 1298 1299 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); 1300 1301 mp = ip->i_mount; 1302 /* 1303 * Only check for blocks beyond the EOF if the extents have 1304 * been read in. This eliminates the need for the inode lock, 1305 * and it also saves us from looking when it really isn't 1306 * necessary. 1307 */ 1308 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1309 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1310 XFS_DATA_FORK); 1311 if (error) { 1312 last_block = 0; 1313 } 1314 } else { 1315 last_block = 0; 1316 } 1317 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1318 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1319 1320 last_byte = XFS_FSB_TO_B(mp, last_block); 1321 if (last_byte < 0) { 1322 return XFS_MAXIOFFSET(mp); 1323 } 1324 last_byte += (1 << mp->m_writeio_log); 1325 if (last_byte < 0) { 1326 return XFS_MAXIOFFSET(mp); 1327 } 1328 return last_byte; 1329 } 1330 1331 #if defined(XFS_RW_TRACE) 1332 STATIC void 1333 xfs_itrunc_trace( 1334 int tag, 1335 xfs_inode_t *ip, 1336 int flag, 1337 xfs_fsize_t new_size, 1338 xfs_off_t toss_start, 1339 xfs_off_t toss_finish) 1340 { 1341 if (ip->i_rwtrace == NULL) { 1342 return; 1343 } 1344 1345 ktrace_enter(ip->i_rwtrace, 1346 (void*)((long)tag), 1347 (void*)ip, 1348 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1349 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1350 (void*)((long)flag), 1351 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1352 (void*)(unsigned long)(new_size & 0xffffffff), 1353 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1354 (void*)(unsigned long)(toss_start & 0xffffffff), 1355 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1356 (void*)(unsigned long)(toss_finish & 0xffffffff), 1357 (void*)(unsigned long)current_cpu(), 1358 (void*)(unsigned long)current_pid(), 1359 (void*)NULL, 1360 (void*)NULL, 1361 (void*)NULL); 1362 } 1363 #else 1364 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1365 #endif 1366 1367 /* 1368 * Start the truncation of the file to new_size. The new size 1369 * must be smaller than the current size. This routine will 1370 * clear the buffer and page caches of file data in the removed 1371 * range, and xfs_itruncate_finish() will remove the underlying 1372 * disk blocks. 1373 * 1374 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1375 * must NOT have the inode lock held at all. This is because we're 1376 * calling into the buffer/page cache code and we can't hold the 1377 * inode lock when we do so. 1378 * 1379 * We need to wait for any direct I/Os in flight to complete before we 1380 * proceed with the truncate. This is needed to prevent the extents 1381 * being read or written by the direct I/Os from being removed while the 1382 * I/O is in flight as there is no other method of synchronising 1383 * direct I/O with the truncate operation. Also, because we hold 1384 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1385 * started until the truncate completes and drops the lock. Essentially, 1386 * the vn_iowait() call forms an I/O barrier that provides strict ordering 1387 * between direct I/Os and the truncate operation. 1388 * 1389 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1390 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1391 * in the case that the caller is locking things out of order and 1392 * may not be able to call xfs_itruncate_finish() with the inode lock 1393 * held without dropping the I/O lock. If the caller must drop the 1394 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1395 * must be called again with all the same restrictions as the initial 1396 * call. 1397 */ 1398 int 1399 xfs_itruncate_start( 1400 xfs_inode_t *ip, 1401 uint flags, 1402 xfs_fsize_t new_size) 1403 { 1404 xfs_fsize_t last_byte; 1405 xfs_off_t toss_start; 1406 xfs_mount_t *mp; 1407 int error = 0; 1408 1409 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1410 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1411 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1412 (flags == XFS_ITRUNC_MAYBE)); 1413 1414 mp = ip->i_mount; 1415 1416 /* wait for the completion of any pending DIOs */ 1417 if (new_size < ip->i_size) 1418 vn_iowait(ip); 1419 1420 /* 1421 * Call toss_pages or flushinval_pages to get rid of pages 1422 * overlapping the region being removed. We have to use 1423 * the less efficient flushinval_pages in the case that the 1424 * caller may not be able to finish the truncate without 1425 * dropping the inode's I/O lock. Make sure 1426 * to catch any pages brought in by buffers overlapping 1427 * the EOF by searching out beyond the isize by our 1428 * block size. We round new_size up to a block boundary 1429 * so that we don't toss things on the same block as 1430 * new_size but before it. 1431 * 1432 * Before calling toss_page or flushinval_pages, make sure to 1433 * call remapf() over the same region if the file is mapped. 1434 * This frees up mapped file references to the pages in the 1435 * given range and for the flushinval_pages case it ensures 1436 * that we get the latest mapped changes flushed out. 1437 */ 1438 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1439 toss_start = XFS_FSB_TO_B(mp, toss_start); 1440 if (toss_start < 0) { 1441 /* 1442 * The place to start tossing is beyond our maximum 1443 * file size, so there is no way that the data extended 1444 * out there. 1445 */ 1446 return 0; 1447 } 1448 last_byte = xfs_file_last_byte(ip); 1449 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1450 last_byte); 1451 if (last_byte > toss_start) { 1452 if (flags & XFS_ITRUNC_DEFINITE) { 1453 xfs_tosspages(ip, toss_start, 1454 -1, FI_REMAPF_LOCKED); 1455 } else { 1456 error = xfs_flushinval_pages(ip, toss_start, 1457 -1, FI_REMAPF_LOCKED); 1458 } 1459 } 1460 1461 #ifdef DEBUG 1462 if (new_size == 0) { 1463 ASSERT(VN_CACHED(VFS_I(ip)) == 0); 1464 } 1465 #endif 1466 return error; 1467 } 1468 1469 /* 1470 * Shrink the file to the given new_size. The new size must be smaller than 1471 * the current size. This will free up the underlying blocks in the removed 1472 * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). 1473 * 1474 * The transaction passed to this routine must have made a permanent log 1475 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1476 * given transaction and start new ones, so make sure everything involved in 1477 * the transaction is tidy before calling here. Some transaction will be 1478 * returned to the caller to be committed. The incoming transaction must 1479 * already include the inode, and both inode locks must be held exclusively. 1480 * The inode must also be "held" within the transaction. On return the inode 1481 * will be "held" within the returned transaction. This routine does NOT 1482 * require any disk space to be reserved for it within the transaction. 1483 * 1484 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it 1485 * indicates the fork which is to be truncated. For the attribute fork we only 1486 * support truncation to size 0. 1487 * 1488 * We use the sync parameter to indicate whether or not the first transaction 1489 * we perform might have to be synchronous. For the attr fork, it needs to be 1490 * so if the unlink of the inode is not yet known to be permanent in the log. 1491 * This keeps us from freeing and reusing the blocks of the attribute fork 1492 * before the unlink of the inode becomes permanent. 1493 * 1494 * For the data fork, we normally have to run synchronously if we're being 1495 * called out of the inactive path or we're being called out of the create path 1496 * where we're truncating an existing file. Either way, the truncate needs to 1497 * be sync so blocks don't reappear in the file with altered data in case of a 1498 * crash. wsync filesystems can run the first case async because anything that 1499 * shrinks the inode has to run sync so by the time we're called here from 1500 * inactive, the inode size is permanently set to 0. 1501 * 1502 * Calls from the truncate path always need to be sync unless we're in a wsync 1503 * filesystem and the file has already been unlinked. 1504 * 1505 * The caller is responsible for correctly setting the sync parameter. It gets 1506 * too hard for us to guess here which path we're being called out of just 1507 * based on inode state. 1508 * 1509 * If we get an error, we must return with the inode locked and linked into the 1510 * current transaction. This keeps things simple for the higher level code, 1511 * because it always knows that the inode is locked and held in the transaction 1512 * that returns to it whether errors occur or not. We don't mark the inode 1513 * dirty on error so that transactions can be easily aborted if possible. 1514 */ 1515 int 1516 xfs_itruncate_finish( 1517 xfs_trans_t **tp, 1518 xfs_inode_t *ip, 1519 xfs_fsize_t new_size, 1520 int fork, 1521 int sync) 1522 { 1523 xfs_fsblock_t first_block; 1524 xfs_fileoff_t first_unmap_block; 1525 xfs_fileoff_t last_block; 1526 xfs_filblks_t unmap_len=0; 1527 xfs_mount_t *mp; 1528 xfs_trans_t *ntp; 1529 int done; 1530 int committed; 1531 xfs_bmap_free_t free_list; 1532 int error; 1533 1534 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1535 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1536 ASSERT(*tp != NULL); 1537 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1538 ASSERT(ip->i_transp == *tp); 1539 ASSERT(ip->i_itemp != NULL); 1540 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1541 1542 1543 ntp = *tp; 1544 mp = (ntp)->t_mountp; 1545 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1546 1547 /* 1548 * We only support truncating the entire attribute fork. 1549 */ 1550 if (fork == XFS_ATTR_FORK) { 1551 new_size = 0LL; 1552 } 1553 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1554 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1555 /* 1556 * The first thing we do is set the size to new_size permanently 1557 * on disk. This way we don't have to worry about anyone ever 1558 * being able to look at the data being freed even in the face 1559 * of a crash. What we're getting around here is the case where 1560 * we free a block, it is allocated to another file, it is written 1561 * to, and then we crash. If the new data gets written to the 1562 * file but the log buffers containing the free and reallocation 1563 * don't, then we'd end up with garbage in the blocks being freed. 1564 * As long as we make the new_size permanent before actually 1565 * freeing any blocks it doesn't matter if they get writtten to. 1566 * 1567 * The callers must signal into us whether or not the size 1568 * setting here must be synchronous. There are a few cases 1569 * where it doesn't have to be synchronous. Those cases 1570 * occur if the file is unlinked and we know the unlink is 1571 * permanent or if the blocks being truncated are guaranteed 1572 * to be beyond the inode eof (regardless of the link count) 1573 * and the eof value is permanent. Both of these cases occur 1574 * only on wsync-mounted filesystems. In those cases, we're 1575 * guaranteed that no user will ever see the data in the blocks 1576 * that are being truncated so the truncate can run async. 1577 * In the free beyond eof case, the file may wind up with 1578 * more blocks allocated to it than it needs if we crash 1579 * and that won't get fixed until the next time the file 1580 * is re-opened and closed but that's ok as that shouldn't 1581 * be too many blocks. 1582 * 1583 * However, we can't just make all wsync xactions run async 1584 * because there's one call out of the create path that needs 1585 * to run sync where it's truncating an existing file to size 1586 * 0 whose size is > 0. 1587 * 1588 * It's probably possible to come up with a test in this 1589 * routine that would correctly distinguish all the above 1590 * cases from the values of the function parameters and the 1591 * inode state but for sanity's sake, I've decided to let the 1592 * layers above just tell us. It's simpler to correctly figure 1593 * out in the layer above exactly under what conditions we 1594 * can run async and I think it's easier for others read and 1595 * follow the logic in case something has to be changed. 1596 * cscope is your friend -- rcc. 1597 * 1598 * The attribute fork is much simpler. 1599 * 1600 * For the attribute fork we allow the caller to tell us whether 1601 * the unlink of the inode that led to this call is yet permanent 1602 * in the on disk log. If it is not and we will be freeing extents 1603 * in this inode then we make the first transaction synchronous 1604 * to make sure that the unlink is permanent by the time we free 1605 * the blocks. 1606 */ 1607 if (fork == XFS_DATA_FORK) { 1608 if (ip->i_d.di_nextents > 0) { 1609 /* 1610 * If we are not changing the file size then do 1611 * not update the on-disk file size - we may be 1612 * called from xfs_inactive_free_eofblocks(). If we 1613 * update the on-disk file size and then the system 1614 * crashes before the contents of the file are 1615 * flushed to disk then the files may be full of 1616 * holes (ie NULL files bug). 1617 */ 1618 if (ip->i_size != new_size) { 1619 ip->i_d.di_size = new_size; 1620 ip->i_size = new_size; 1621 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1622 } 1623 } 1624 } else if (sync) { 1625 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1626 if (ip->i_d.di_anextents > 0) 1627 xfs_trans_set_sync(ntp); 1628 } 1629 ASSERT(fork == XFS_DATA_FORK || 1630 (fork == XFS_ATTR_FORK && 1631 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1632 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1633 1634 /* 1635 * Since it is possible for space to become allocated beyond 1636 * the end of the file (in a crash where the space is allocated 1637 * but the inode size is not yet updated), simply remove any 1638 * blocks which show up between the new EOF and the maximum 1639 * possible file size. If the first block to be removed is 1640 * beyond the maximum file size (ie it is the same as last_block), 1641 * then there is nothing to do. 1642 */ 1643 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1644 ASSERT(first_unmap_block <= last_block); 1645 done = 0; 1646 if (last_block == first_unmap_block) { 1647 done = 1; 1648 } else { 1649 unmap_len = last_block - first_unmap_block + 1; 1650 } 1651 while (!done) { 1652 /* 1653 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1654 * will tell us whether it freed the entire range or 1655 * not. If this is a synchronous mount (wsync), 1656 * then we can tell bunmapi to keep all the 1657 * transactions asynchronous since the unlink 1658 * transaction that made this inode inactive has 1659 * already hit the disk. There's no danger of 1660 * the freed blocks being reused, there being a 1661 * crash, and the reused blocks suddenly reappearing 1662 * in this file with garbage in them once recovery 1663 * runs. 1664 */ 1665 XFS_BMAP_INIT(&free_list, &first_block); 1666 error = xfs_bunmapi(ntp, ip, 1667 first_unmap_block, unmap_len, 1668 XFS_BMAPI_AFLAG(fork) | 1669 (sync ? 0 : XFS_BMAPI_ASYNC), 1670 XFS_ITRUNC_MAX_EXTENTS, 1671 &first_block, &free_list, 1672 NULL, &done); 1673 if (error) { 1674 /* 1675 * If the bunmapi call encounters an error, 1676 * return to the caller where the transaction 1677 * can be properly aborted. We just need to 1678 * make sure we're not holding any resources 1679 * that we were not when we came in. 1680 */ 1681 xfs_bmap_cancel(&free_list); 1682 return error; 1683 } 1684 1685 /* 1686 * Duplicate the transaction that has the permanent 1687 * reservation and commit the old transaction. 1688 */ 1689 error = xfs_bmap_finish(tp, &free_list, &committed); 1690 ntp = *tp; 1691 if (committed) { 1692 /* link the inode into the next xact in the chain */ 1693 xfs_trans_ijoin(ntp, ip, 1694 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1695 xfs_trans_ihold(ntp, ip); 1696 } 1697 1698 if (error) { 1699 /* 1700 * If the bmap finish call encounters an error, return 1701 * to the caller where the transaction can be properly 1702 * aborted. We just need to make sure we're not 1703 * holding any resources that we were not when we came 1704 * in. 1705 * 1706 * Aborting from this point might lose some blocks in 1707 * the file system, but oh well. 1708 */ 1709 xfs_bmap_cancel(&free_list); 1710 return error; 1711 } 1712 1713 if (committed) { 1714 /* 1715 * Mark the inode dirty so it will be logged and 1716 * moved forward in the log as part of every commit. 1717 */ 1718 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1719 } 1720 1721 ntp = xfs_trans_dup(ntp); 1722 error = xfs_trans_commit(*tp, 0); 1723 *tp = ntp; 1724 1725 /* link the inode into the next transaction in the chain */ 1726 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1727 xfs_trans_ihold(ntp, ip); 1728 1729 if (!error) 1730 error = xfs_trans_reserve(ntp, 0, 1731 XFS_ITRUNCATE_LOG_RES(mp), 0, 1732 XFS_TRANS_PERM_LOG_RES, 1733 XFS_ITRUNCATE_LOG_COUNT); 1734 if (error) 1735 return error; 1736 } 1737 /* 1738 * Only update the size in the case of the data fork, but 1739 * always re-log the inode so that our permanent transaction 1740 * can keep on rolling it forward in the log. 1741 */ 1742 if (fork == XFS_DATA_FORK) { 1743 xfs_isize_check(mp, ip, new_size); 1744 /* 1745 * If we are not changing the file size then do 1746 * not update the on-disk file size - we may be 1747 * called from xfs_inactive_free_eofblocks(). If we 1748 * update the on-disk file size and then the system 1749 * crashes before the contents of the file are 1750 * flushed to disk then the files may be full of 1751 * holes (ie NULL files bug). 1752 */ 1753 if (ip->i_size != new_size) { 1754 ip->i_d.di_size = new_size; 1755 ip->i_size = new_size; 1756 } 1757 } 1758 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1759 ASSERT((new_size != 0) || 1760 (fork == XFS_ATTR_FORK) || 1761 (ip->i_delayed_blks == 0)); 1762 ASSERT((new_size != 0) || 1763 (fork == XFS_ATTR_FORK) || 1764 (ip->i_d.di_nextents == 0)); 1765 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1766 return 0; 1767 } 1768 1769 /* 1770 * This is called when the inode's link count goes to 0. 1771 * We place the on-disk inode on a list in the AGI. It 1772 * will be pulled from this list when the inode is freed. 1773 */ 1774 int 1775 xfs_iunlink( 1776 xfs_trans_t *tp, 1777 xfs_inode_t *ip) 1778 { 1779 xfs_mount_t *mp; 1780 xfs_agi_t *agi; 1781 xfs_dinode_t *dip; 1782 xfs_buf_t *agibp; 1783 xfs_buf_t *ibp; 1784 xfs_agnumber_t agno; 1785 xfs_daddr_t agdaddr; 1786 xfs_agino_t agino; 1787 short bucket_index; 1788 int offset; 1789 int error; 1790 int agi_ok; 1791 1792 ASSERT(ip->i_d.di_nlink == 0); 1793 ASSERT(ip->i_d.di_mode != 0); 1794 ASSERT(ip->i_transp == tp); 1795 1796 mp = tp->t_mountp; 1797 1798 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1799 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1800 1801 /* 1802 * Get the agi buffer first. It ensures lock ordering 1803 * on the list. 1804 */ 1805 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1806 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1807 if (error) 1808 return error; 1809 1810 /* 1811 * Validate the magic number of the agi block. 1812 */ 1813 agi = XFS_BUF_TO_AGI(agibp); 1814 agi_ok = 1815 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1816 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1817 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1818 XFS_RANDOM_IUNLINK))) { 1819 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1820 xfs_trans_brelse(tp, agibp); 1821 return XFS_ERROR(EFSCORRUPTED); 1822 } 1823 /* 1824 * Get the index into the agi hash table for the 1825 * list this inode will go on. 1826 */ 1827 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1828 ASSERT(agino != 0); 1829 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1830 ASSERT(agi->agi_unlinked[bucket_index]); 1831 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1832 1833 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1834 /* 1835 * There is already another inode in the bucket we need 1836 * to add ourselves to. Add us at the front of the list. 1837 * Here we put the head pointer into our next pointer, 1838 * and then we fall through to point the head at us. 1839 */ 1840 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); 1841 if (error) 1842 return error; 1843 1844 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1845 /* both on-disk, don't endian flip twice */ 1846 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1847 offset = ip->i_boffset + 1848 offsetof(xfs_dinode_t, di_next_unlinked); 1849 xfs_trans_inode_buf(tp, ibp); 1850 xfs_trans_log_buf(tp, ibp, offset, 1851 (offset + sizeof(xfs_agino_t) - 1)); 1852 xfs_inobp_check(mp, ibp); 1853 } 1854 1855 /* 1856 * Point the bucket head pointer at the inode being inserted. 1857 */ 1858 ASSERT(agino != 0); 1859 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1860 offset = offsetof(xfs_agi_t, agi_unlinked) + 1861 (sizeof(xfs_agino_t) * bucket_index); 1862 xfs_trans_log_buf(tp, agibp, offset, 1863 (offset + sizeof(xfs_agino_t) - 1)); 1864 return 0; 1865 } 1866 1867 /* 1868 * Pull the on-disk inode from the AGI unlinked list. 1869 */ 1870 STATIC int 1871 xfs_iunlink_remove( 1872 xfs_trans_t *tp, 1873 xfs_inode_t *ip) 1874 { 1875 xfs_ino_t next_ino; 1876 xfs_mount_t *mp; 1877 xfs_agi_t *agi; 1878 xfs_dinode_t *dip; 1879 xfs_buf_t *agibp; 1880 xfs_buf_t *ibp; 1881 xfs_agnumber_t agno; 1882 xfs_daddr_t agdaddr; 1883 xfs_agino_t agino; 1884 xfs_agino_t next_agino; 1885 xfs_buf_t *last_ibp; 1886 xfs_dinode_t *last_dip = NULL; 1887 short bucket_index; 1888 int offset, last_offset = 0; 1889 int error; 1890 int agi_ok; 1891 1892 /* 1893 * First pull the on-disk inode from the AGI unlinked list. 1894 */ 1895 mp = tp->t_mountp; 1896 1897 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1898 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1899 1900 /* 1901 * Get the agi buffer first. It ensures lock ordering 1902 * on the list. 1903 */ 1904 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1905 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1906 if (error) { 1907 cmn_err(CE_WARN, 1908 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 1909 error, mp->m_fsname); 1910 return error; 1911 } 1912 /* 1913 * Validate the magic number of the agi block. 1914 */ 1915 agi = XFS_BUF_TO_AGI(agibp); 1916 agi_ok = 1917 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1918 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1919 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 1920 XFS_RANDOM_IUNLINK_REMOVE))) { 1921 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 1922 mp, agi); 1923 xfs_trans_brelse(tp, agibp); 1924 cmn_err(CE_WARN, 1925 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 1926 mp->m_fsname); 1927 return XFS_ERROR(EFSCORRUPTED); 1928 } 1929 /* 1930 * Get the index into the agi hash table for the 1931 * list this inode will go on. 1932 */ 1933 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1934 ASSERT(agino != 0); 1935 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1936 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 1937 ASSERT(agi->agi_unlinked[bucket_index]); 1938 1939 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1940 /* 1941 * We're at the head of the list. Get the inode's 1942 * on-disk buffer to see if there is anyone after us 1943 * on the list. Only modify our next pointer if it 1944 * is not already NULLAGINO. This saves us the overhead 1945 * of dealing with the buffer when there is no need to 1946 * change it. 1947 */ 1948 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); 1949 if (error) { 1950 cmn_err(CE_WARN, 1951 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1952 error, mp->m_fsname); 1953 return error; 1954 } 1955 next_agino = be32_to_cpu(dip->di_next_unlinked); 1956 ASSERT(next_agino != 0); 1957 if (next_agino != NULLAGINO) { 1958 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1959 offset = ip->i_boffset + 1960 offsetof(xfs_dinode_t, di_next_unlinked); 1961 xfs_trans_inode_buf(tp, ibp); 1962 xfs_trans_log_buf(tp, ibp, offset, 1963 (offset + sizeof(xfs_agino_t) - 1)); 1964 xfs_inobp_check(mp, ibp); 1965 } else { 1966 xfs_trans_brelse(tp, ibp); 1967 } 1968 /* 1969 * Point the bucket head pointer at the next inode. 1970 */ 1971 ASSERT(next_agino != 0); 1972 ASSERT(next_agino != agino); 1973 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1974 offset = offsetof(xfs_agi_t, agi_unlinked) + 1975 (sizeof(xfs_agino_t) * bucket_index); 1976 xfs_trans_log_buf(tp, agibp, offset, 1977 (offset + sizeof(xfs_agino_t) - 1)); 1978 } else { 1979 /* 1980 * We need to search the list for the inode being freed. 1981 */ 1982 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1983 last_ibp = NULL; 1984 while (next_agino != agino) { 1985 /* 1986 * If the last inode wasn't the one pointing to 1987 * us, then release its buffer since we're not 1988 * going to do anything with it. 1989 */ 1990 if (last_ibp != NULL) { 1991 xfs_trans_brelse(tp, last_ibp); 1992 } 1993 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1994 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1995 &last_ibp, &last_offset); 1996 if (error) { 1997 cmn_err(CE_WARN, 1998 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 1999 error, mp->m_fsname); 2000 return error; 2001 } 2002 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2003 ASSERT(next_agino != NULLAGINO); 2004 ASSERT(next_agino != 0); 2005 } 2006 /* 2007 * Now last_ibp points to the buffer previous to us on 2008 * the unlinked list. Pull us from the list. 2009 */ 2010 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); 2011 if (error) { 2012 cmn_err(CE_WARN, 2013 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2014 error, mp->m_fsname); 2015 return error; 2016 } 2017 next_agino = be32_to_cpu(dip->di_next_unlinked); 2018 ASSERT(next_agino != 0); 2019 ASSERT(next_agino != agino); 2020 if (next_agino != NULLAGINO) { 2021 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2022 offset = ip->i_boffset + 2023 offsetof(xfs_dinode_t, di_next_unlinked); 2024 xfs_trans_inode_buf(tp, ibp); 2025 xfs_trans_log_buf(tp, ibp, offset, 2026 (offset + sizeof(xfs_agino_t) - 1)); 2027 xfs_inobp_check(mp, ibp); 2028 } else { 2029 xfs_trans_brelse(tp, ibp); 2030 } 2031 /* 2032 * Point the previous inode on the list to the next inode. 2033 */ 2034 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2035 ASSERT(next_agino != 0); 2036 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2037 xfs_trans_inode_buf(tp, last_ibp); 2038 xfs_trans_log_buf(tp, last_ibp, offset, 2039 (offset + sizeof(xfs_agino_t) - 1)); 2040 xfs_inobp_check(mp, last_ibp); 2041 } 2042 return 0; 2043 } 2044 2045 STATIC void 2046 xfs_ifree_cluster( 2047 xfs_inode_t *free_ip, 2048 xfs_trans_t *tp, 2049 xfs_ino_t inum) 2050 { 2051 xfs_mount_t *mp = free_ip->i_mount; 2052 int blks_per_cluster; 2053 int nbufs; 2054 int ninodes; 2055 int i, j, found, pre_flushed; 2056 xfs_daddr_t blkno; 2057 xfs_buf_t *bp; 2058 xfs_inode_t *ip, **ip_found; 2059 xfs_inode_log_item_t *iip; 2060 xfs_log_item_t *lip; 2061 xfs_perag_t *pag = xfs_get_perag(mp, inum); 2062 2063 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2064 blks_per_cluster = 1; 2065 ninodes = mp->m_sb.sb_inopblock; 2066 nbufs = XFS_IALLOC_BLOCKS(mp); 2067 } else { 2068 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2069 mp->m_sb.sb_blocksize; 2070 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2071 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2072 } 2073 2074 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2075 2076 for (j = 0; j < nbufs; j++, inum += ninodes) { 2077 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2078 XFS_INO_TO_AGBNO(mp, inum)); 2079 2080 2081 /* 2082 * Look for each inode in memory and attempt to lock it, 2083 * we can be racing with flush and tail pushing here. 2084 * any inode we get the locks on, add to an array of 2085 * inode items to process later. 2086 * 2087 * The get the buffer lock, we could beat a flush 2088 * or tail pushing thread to the lock here, in which 2089 * case they will go looking for the inode buffer 2090 * and fail, we need some other form of interlock 2091 * here. 2092 */ 2093 found = 0; 2094 for (i = 0; i < ninodes; i++) { 2095 read_lock(&pag->pag_ici_lock); 2096 ip = radix_tree_lookup(&pag->pag_ici_root, 2097 XFS_INO_TO_AGINO(mp, (inum + i))); 2098 2099 /* Inode not in memory or we found it already, 2100 * nothing to do 2101 */ 2102 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2103 read_unlock(&pag->pag_ici_lock); 2104 continue; 2105 } 2106 2107 if (xfs_inode_clean(ip)) { 2108 read_unlock(&pag->pag_ici_lock); 2109 continue; 2110 } 2111 2112 /* If we can get the locks then add it to the 2113 * list, otherwise by the time we get the bp lock 2114 * below it will already be attached to the 2115 * inode buffer. 2116 */ 2117 2118 /* This inode will already be locked - by us, lets 2119 * keep it that way. 2120 */ 2121 2122 if (ip == free_ip) { 2123 if (xfs_iflock_nowait(ip)) { 2124 xfs_iflags_set(ip, XFS_ISTALE); 2125 if (xfs_inode_clean(ip)) { 2126 xfs_ifunlock(ip); 2127 } else { 2128 ip_found[found++] = ip; 2129 } 2130 } 2131 read_unlock(&pag->pag_ici_lock); 2132 continue; 2133 } 2134 2135 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2136 if (xfs_iflock_nowait(ip)) { 2137 xfs_iflags_set(ip, XFS_ISTALE); 2138 2139 if (xfs_inode_clean(ip)) { 2140 xfs_ifunlock(ip); 2141 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2142 } else { 2143 ip_found[found++] = ip; 2144 } 2145 } else { 2146 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2147 } 2148 } 2149 read_unlock(&pag->pag_ici_lock); 2150 } 2151 2152 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2153 mp->m_bsize * blks_per_cluster, 2154 XFS_BUF_LOCK); 2155 2156 pre_flushed = 0; 2157 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2158 while (lip) { 2159 if (lip->li_type == XFS_LI_INODE) { 2160 iip = (xfs_inode_log_item_t *)lip; 2161 ASSERT(iip->ili_logged == 1); 2162 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2163 spin_lock(&mp->m_ail_lock); 2164 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2165 spin_unlock(&mp->m_ail_lock); 2166 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2167 pre_flushed++; 2168 } 2169 lip = lip->li_bio_list; 2170 } 2171 2172 for (i = 0; i < found; i++) { 2173 ip = ip_found[i]; 2174 iip = ip->i_itemp; 2175 2176 if (!iip) { 2177 ip->i_update_core = 0; 2178 xfs_ifunlock(ip); 2179 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2180 continue; 2181 } 2182 2183 iip->ili_last_fields = iip->ili_format.ilf_fields; 2184 iip->ili_format.ilf_fields = 0; 2185 iip->ili_logged = 1; 2186 spin_lock(&mp->m_ail_lock); 2187 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2188 spin_unlock(&mp->m_ail_lock); 2189 2190 xfs_buf_attach_iodone(bp, 2191 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2192 xfs_istale_done, (xfs_log_item_t *)iip); 2193 if (ip != free_ip) { 2194 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2195 } 2196 } 2197 2198 if (found || pre_flushed) 2199 xfs_trans_stale_inode_buf(tp, bp); 2200 xfs_trans_binval(tp, bp); 2201 } 2202 2203 kmem_free(ip_found); 2204 xfs_put_perag(mp, pag); 2205 } 2206 2207 /* 2208 * This is called to return an inode to the inode free list. 2209 * The inode should already be truncated to 0 length and have 2210 * no pages associated with it. This routine also assumes that 2211 * the inode is already a part of the transaction. 2212 * 2213 * The on-disk copy of the inode will have been added to the list 2214 * of unlinked inodes in the AGI. We need to remove the inode from 2215 * that list atomically with respect to freeing it here. 2216 */ 2217 int 2218 xfs_ifree( 2219 xfs_trans_t *tp, 2220 xfs_inode_t *ip, 2221 xfs_bmap_free_t *flist) 2222 { 2223 int error; 2224 int delete; 2225 xfs_ino_t first_ino; 2226 xfs_dinode_t *dip; 2227 xfs_buf_t *ibp; 2228 2229 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2230 ASSERT(ip->i_transp == tp); 2231 ASSERT(ip->i_d.di_nlink == 0); 2232 ASSERT(ip->i_d.di_nextents == 0); 2233 ASSERT(ip->i_d.di_anextents == 0); 2234 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2235 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2236 ASSERT(ip->i_d.di_nblocks == 0); 2237 2238 /* 2239 * Pull the on-disk inode from the AGI unlinked list. 2240 */ 2241 error = xfs_iunlink_remove(tp, ip); 2242 if (error != 0) { 2243 return error; 2244 } 2245 2246 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2247 if (error != 0) { 2248 return error; 2249 } 2250 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2251 ip->i_d.di_flags = 0; 2252 ip->i_d.di_dmevmask = 0; 2253 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2254 ip->i_df.if_ext_max = 2255 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2256 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2257 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2258 /* 2259 * Bump the generation count so no one will be confused 2260 * by reincarnations of this inode. 2261 */ 2262 ip->i_d.di_gen++; 2263 2264 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2265 2266 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); 2267 if (error) 2268 return error; 2269 2270 /* 2271 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2272 * from picking up this inode when it is reclaimed (its incore state 2273 * initialzed but not flushed to disk yet). The in-core di_mode is 2274 * already cleared and a corresponding transaction logged. 2275 * The hack here just synchronizes the in-core to on-disk 2276 * di_mode value in advance before the actual inode sync to disk. 2277 * This is OK because the inode is already unlinked and would never 2278 * change its di_mode again for this inode generation. 2279 * This is a temporary hack that would require a proper fix 2280 * in the future. 2281 */ 2282 dip->di_core.di_mode = 0; 2283 2284 if (delete) { 2285 xfs_ifree_cluster(ip, tp, first_ino); 2286 } 2287 2288 return 0; 2289 } 2290 2291 /* 2292 * Reallocate the space for if_broot based on the number of records 2293 * being added or deleted as indicated in rec_diff. Move the records 2294 * and pointers in if_broot to fit the new size. When shrinking this 2295 * will eliminate holes between the records and pointers created by 2296 * the caller. When growing this will create holes to be filled in 2297 * by the caller. 2298 * 2299 * The caller must not request to add more records than would fit in 2300 * the on-disk inode root. If the if_broot is currently NULL, then 2301 * if we adding records one will be allocated. The caller must also 2302 * not request that the number of records go below zero, although 2303 * it can go to zero. 2304 * 2305 * ip -- the inode whose if_broot area is changing 2306 * ext_diff -- the change in the number of records, positive or negative, 2307 * requested for the if_broot array. 2308 */ 2309 void 2310 xfs_iroot_realloc( 2311 xfs_inode_t *ip, 2312 int rec_diff, 2313 int whichfork) 2314 { 2315 int cur_max; 2316 xfs_ifork_t *ifp; 2317 xfs_bmbt_block_t *new_broot; 2318 int new_max; 2319 size_t new_size; 2320 char *np; 2321 char *op; 2322 2323 /* 2324 * Handle the degenerate case quietly. 2325 */ 2326 if (rec_diff == 0) { 2327 return; 2328 } 2329 2330 ifp = XFS_IFORK_PTR(ip, whichfork); 2331 if (rec_diff > 0) { 2332 /* 2333 * If there wasn't any memory allocated before, just 2334 * allocate it now and get out. 2335 */ 2336 if (ifp->if_broot_bytes == 0) { 2337 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2338 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2339 KM_SLEEP); 2340 ifp->if_broot_bytes = (int)new_size; 2341 return; 2342 } 2343 2344 /* 2345 * If there is already an existing if_broot, then we need 2346 * to realloc() it and shift the pointers to their new 2347 * location. The records don't change location because 2348 * they are kept butted up against the btree block header. 2349 */ 2350 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2351 new_max = cur_max + rec_diff; 2352 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2353 ifp->if_broot = (xfs_bmbt_block_t *) 2354 kmem_realloc(ifp->if_broot, 2355 new_size, 2356 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2357 KM_SLEEP); 2358 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2359 ifp->if_broot_bytes); 2360 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2361 (int)new_size); 2362 ifp->if_broot_bytes = (int)new_size; 2363 ASSERT(ifp->if_broot_bytes <= 2364 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2365 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2366 return; 2367 } 2368 2369 /* 2370 * rec_diff is less than 0. In this case, we are shrinking the 2371 * if_broot buffer. It must already exist. If we go to zero 2372 * records, just get rid of the root and clear the status bit. 2373 */ 2374 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2375 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2376 new_max = cur_max + rec_diff; 2377 ASSERT(new_max >= 0); 2378 if (new_max > 0) 2379 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2380 else 2381 new_size = 0; 2382 if (new_size > 0) { 2383 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2384 /* 2385 * First copy over the btree block header. 2386 */ 2387 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2388 } else { 2389 new_broot = NULL; 2390 ifp->if_flags &= ~XFS_IFBROOT; 2391 } 2392 2393 /* 2394 * Only copy the records and pointers if there are any. 2395 */ 2396 if (new_max > 0) { 2397 /* 2398 * First copy the records. 2399 */ 2400 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2401 ifp->if_broot_bytes); 2402 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2403 (int)new_size); 2404 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2405 2406 /* 2407 * Then copy the pointers. 2408 */ 2409 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2410 ifp->if_broot_bytes); 2411 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2412 (int)new_size); 2413 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2414 } 2415 kmem_free(ifp->if_broot); 2416 ifp->if_broot = new_broot; 2417 ifp->if_broot_bytes = (int)new_size; 2418 ASSERT(ifp->if_broot_bytes <= 2419 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2420 return; 2421 } 2422 2423 2424 /* 2425 * This is called when the amount of space needed for if_data 2426 * is increased or decreased. The change in size is indicated by 2427 * the number of bytes that need to be added or deleted in the 2428 * byte_diff parameter. 2429 * 2430 * If the amount of space needed has decreased below the size of the 2431 * inline buffer, then switch to using the inline buffer. Otherwise, 2432 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2433 * to what is needed. 2434 * 2435 * ip -- the inode whose if_data area is changing 2436 * byte_diff -- the change in the number of bytes, positive or negative, 2437 * requested for the if_data array. 2438 */ 2439 void 2440 xfs_idata_realloc( 2441 xfs_inode_t *ip, 2442 int byte_diff, 2443 int whichfork) 2444 { 2445 xfs_ifork_t *ifp; 2446 int new_size; 2447 int real_size; 2448 2449 if (byte_diff == 0) { 2450 return; 2451 } 2452 2453 ifp = XFS_IFORK_PTR(ip, whichfork); 2454 new_size = (int)ifp->if_bytes + byte_diff; 2455 ASSERT(new_size >= 0); 2456 2457 if (new_size == 0) { 2458 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2459 kmem_free(ifp->if_u1.if_data); 2460 } 2461 ifp->if_u1.if_data = NULL; 2462 real_size = 0; 2463 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2464 /* 2465 * If the valid extents/data can fit in if_inline_ext/data, 2466 * copy them from the malloc'd vector and free it. 2467 */ 2468 if (ifp->if_u1.if_data == NULL) { 2469 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2470 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2471 ASSERT(ifp->if_real_bytes != 0); 2472 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2473 new_size); 2474 kmem_free(ifp->if_u1.if_data); 2475 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2476 } 2477 real_size = 0; 2478 } else { 2479 /* 2480 * Stuck with malloc/realloc. 2481 * For inline data, the underlying buffer must be 2482 * a multiple of 4 bytes in size so that it can be 2483 * logged and stay on word boundaries. We enforce 2484 * that here. 2485 */ 2486 real_size = roundup(new_size, 4); 2487 if (ifp->if_u1.if_data == NULL) { 2488 ASSERT(ifp->if_real_bytes == 0); 2489 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2490 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2491 /* 2492 * Only do the realloc if the underlying size 2493 * is really changing. 2494 */ 2495 if (ifp->if_real_bytes != real_size) { 2496 ifp->if_u1.if_data = 2497 kmem_realloc(ifp->if_u1.if_data, 2498 real_size, 2499 ifp->if_real_bytes, 2500 KM_SLEEP); 2501 } 2502 } else { 2503 ASSERT(ifp->if_real_bytes == 0); 2504 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2505 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2506 ifp->if_bytes); 2507 } 2508 } 2509 ifp->if_real_bytes = real_size; 2510 ifp->if_bytes = new_size; 2511 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2512 } 2513 2514 2515 2516 2517 /* 2518 * Map inode to disk block and offset. 2519 * 2520 * mp -- the mount point structure for the current file system 2521 * tp -- the current transaction 2522 * ino -- the inode number of the inode to be located 2523 * imap -- this structure is filled in with the information necessary 2524 * to retrieve the given inode from disk 2525 * flags -- flags to pass to xfs_dilocate indicating whether or not 2526 * lookups in the inode btree were OK or not 2527 */ 2528 int 2529 xfs_imap( 2530 xfs_mount_t *mp, 2531 xfs_trans_t *tp, 2532 xfs_ino_t ino, 2533 xfs_imap_t *imap, 2534 uint flags) 2535 { 2536 xfs_fsblock_t fsbno; 2537 int len; 2538 int off; 2539 int error; 2540 2541 fsbno = imap->im_blkno ? 2542 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2543 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2544 if (error) 2545 return error; 2546 2547 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2548 imap->im_len = XFS_FSB_TO_BB(mp, len); 2549 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2550 imap->im_ioffset = (ushort)off; 2551 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2552 2553 /* 2554 * If the inode number maps to a block outside the bounds 2555 * of the file system then return NULL rather than calling 2556 * read_buf and panicing when we get an error from the 2557 * driver. 2558 */ 2559 if ((imap->im_blkno + imap->im_len) > 2560 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2561 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: " 2562 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > " 2563 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)", 2564 (unsigned long long) imap->im_blkno, 2565 (unsigned long long) imap->im_len, 2566 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2567 return EINVAL; 2568 } 2569 return 0; 2570 } 2571 2572 void 2573 xfs_idestroy_fork( 2574 xfs_inode_t *ip, 2575 int whichfork) 2576 { 2577 xfs_ifork_t *ifp; 2578 2579 ifp = XFS_IFORK_PTR(ip, whichfork); 2580 if (ifp->if_broot != NULL) { 2581 kmem_free(ifp->if_broot); 2582 ifp->if_broot = NULL; 2583 } 2584 2585 /* 2586 * If the format is local, then we can't have an extents 2587 * array so just look for an inline data array. If we're 2588 * not local then we may or may not have an extents list, 2589 * so check and free it up if we do. 2590 */ 2591 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2592 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2593 (ifp->if_u1.if_data != NULL)) { 2594 ASSERT(ifp->if_real_bytes != 0); 2595 kmem_free(ifp->if_u1.if_data); 2596 ifp->if_u1.if_data = NULL; 2597 ifp->if_real_bytes = 0; 2598 } 2599 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2600 ((ifp->if_flags & XFS_IFEXTIREC) || 2601 ((ifp->if_u1.if_extents != NULL) && 2602 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2603 ASSERT(ifp->if_real_bytes != 0); 2604 xfs_iext_destroy(ifp); 2605 } 2606 ASSERT(ifp->if_u1.if_extents == NULL || 2607 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2608 ASSERT(ifp->if_real_bytes == 0); 2609 if (whichfork == XFS_ATTR_FORK) { 2610 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2611 ip->i_afp = NULL; 2612 } 2613 } 2614 2615 /* 2616 * This is called free all the memory associated with an inode. 2617 * It must free the inode itself and any buffers allocated for 2618 * if_extents/if_data and if_broot. It must also free the lock 2619 * associated with the inode. 2620 */ 2621 void 2622 xfs_idestroy( 2623 xfs_inode_t *ip) 2624 { 2625 switch (ip->i_d.di_mode & S_IFMT) { 2626 case S_IFREG: 2627 case S_IFDIR: 2628 case S_IFLNK: 2629 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2630 break; 2631 } 2632 if (ip->i_afp) 2633 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2634 mrfree(&ip->i_lock); 2635 mrfree(&ip->i_iolock); 2636 2637 #ifdef XFS_INODE_TRACE 2638 ktrace_free(ip->i_trace); 2639 #endif 2640 #ifdef XFS_BMAP_TRACE 2641 ktrace_free(ip->i_xtrace); 2642 #endif 2643 #ifdef XFS_BMBT_TRACE 2644 ktrace_free(ip->i_btrace); 2645 #endif 2646 #ifdef XFS_RW_TRACE 2647 ktrace_free(ip->i_rwtrace); 2648 #endif 2649 #ifdef XFS_ILOCK_TRACE 2650 ktrace_free(ip->i_lock_trace); 2651 #endif 2652 #ifdef XFS_DIR2_TRACE 2653 ktrace_free(ip->i_dir_trace); 2654 #endif 2655 if (ip->i_itemp) { 2656 /* 2657 * Only if we are shutting down the fs will we see an 2658 * inode still in the AIL. If it is there, we should remove 2659 * it to prevent a use-after-free from occurring. 2660 */ 2661 xfs_mount_t *mp = ip->i_mount; 2662 xfs_log_item_t *lip = &ip->i_itemp->ili_item; 2663 2664 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || 2665 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2666 if (lip->li_flags & XFS_LI_IN_AIL) { 2667 spin_lock(&mp->m_ail_lock); 2668 if (lip->li_flags & XFS_LI_IN_AIL) 2669 xfs_trans_delete_ail(mp, lip); 2670 else 2671 spin_unlock(&mp->m_ail_lock); 2672 } 2673 xfs_inode_item_destroy(ip); 2674 } 2675 kmem_zone_free(xfs_inode_zone, ip); 2676 } 2677 2678 2679 /* 2680 * Increment the pin count of the given buffer. 2681 * This value is protected by ipinlock spinlock in the mount structure. 2682 */ 2683 void 2684 xfs_ipin( 2685 xfs_inode_t *ip) 2686 { 2687 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2688 2689 atomic_inc(&ip->i_pincount); 2690 } 2691 2692 /* 2693 * Decrement the pin count of the given inode, and wake up 2694 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2695 * inode must have been previously pinned with a call to xfs_ipin(). 2696 */ 2697 void 2698 xfs_iunpin( 2699 xfs_inode_t *ip) 2700 { 2701 ASSERT(atomic_read(&ip->i_pincount) > 0); 2702 2703 if (atomic_dec_and_test(&ip->i_pincount)) 2704 wake_up(&ip->i_ipin_wait); 2705 } 2706 2707 /* 2708 * This is called to unpin an inode. It can be directed to wait or to return 2709 * immediately without waiting for the inode to be unpinned. The caller must 2710 * have the inode locked in at least shared mode so that the buffer cannot be 2711 * subsequently pinned once someone is waiting for it to be unpinned. 2712 */ 2713 STATIC void 2714 __xfs_iunpin_wait( 2715 xfs_inode_t *ip, 2716 int wait) 2717 { 2718 xfs_inode_log_item_t *iip = ip->i_itemp; 2719 2720 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2721 if (atomic_read(&ip->i_pincount) == 0) 2722 return; 2723 2724 /* Give the log a push to start the unpinning I/O */ 2725 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ? 2726 iip->ili_last_lsn : 0, XFS_LOG_FORCE); 2727 if (wait) 2728 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2729 } 2730 2731 static inline void 2732 xfs_iunpin_wait( 2733 xfs_inode_t *ip) 2734 { 2735 __xfs_iunpin_wait(ip, 1); 2736 } 2737 2738 static inline void 2739 xfs_iunpin_nowait( 2740 xfs_inode_t *ip) 2741 { 2742 __xfs_iunpin_wait(ip, 0); 2743 } 2744 2745 2746 /* 2747 * xfs_iextents_copy() 2748 * 2749 * This is called to copy the REAL extents (as opposed to the delayed 2750 * allocation extents) from the inode into the given buffer. It 2751 * returns the number of bytes copied into the buffer. 2752 * 2753 * If there are no delayed allocation extents, then we can just 2754 * memcpy() the extents into the buffer. Otherwise, we need to 2755 * examine each extent in turn and skip those which are delayed. 2756 */ 2757 int 2758 xfs_iextents_copy( 2759 xfs_inode_t *ip, 2760 xfs_bmbt_rec_t *dp, 2761 int whichfork) 2762 { 2763 int copied; 2764 int i; 2765 xfs_ifork_t *ifp; 2766 int nrecs; 2767 xfs_fsblock_t start_block; 2768 2769 ifp = XFS_IFORK_PTR(ip, whichfork); 2770 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2771 ASSERT(ifp->if_bytes > 0); 2772 2773 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2774 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2775 ASSERT(nrecs > 0); 2776 2777 /* 2778 * There are some delayed allocation extents in the 2779 * inode, so copy the extents one at a time and skip 2780 * the delayed ones. There must be at least one 2781 * non-delayed extent. 2782 */ 2783 copied = 0; 2784 for (i = 0; i < nrecs; i++) { 2785 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2786 start_block = xfs_bmbt_get_startblock(ep); 2787 if (ISNULLSTARTBLOCK(start_block)) { 2788 /* 2789 * It's a delayed allocation extent, so skip it. 2790 */ 2791 continue; 2792 } 2793 2794 /* Translate to on disk format */ 2795 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2796 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2797 dp++; 2798 copied++; 2799 } 2800 ASSERT(copied != 0); 2801 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2802 2803 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2804 } 2805 2806 /* 2807 * Each of the following cases stores data into the same region 2808 * of the on-disk inode, so only one of them can be valid at 2809 * any given time. While it is possible to have conflicting formats 2810 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2811 * in EXTENTS format, this can only happen when the fork has 2812 * changed formats after being modified but before being flushed. 2813 * In these cases, the format always takes precedence, because the 2814 * format indicates the current state of the fork. 2815 */ 2816 /*ARGSUSED*/ 2817 STATIC void 2818 xfs_iflush_fork( 2819 xfs_inode_t *ip, 2820 xfs_dinode_t *dip, 2821 xfs_inode_log_item_t *iip, 2822 int whichfork, 2823 xfs_buf_t *bp) 2824 { 2825 char *cp; 2826 xfs_ifork_t *ifp; 2827 xfs_mount_t *mp; 2828 #ifdef XFS_TRANS_DEBUG 2829 int first; 2830 #endif 2831 static const short brootflag[2] = 2832 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2833 static const short dataflag[2] = 2834 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2835 static const short extflag[2] = 2836 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2837 2838 if (!iip) 2839 return; 2840 ifp = XFS_IFORK_PTR(ip, whichfork); 2841 /* 2842 * This can happen if we gave up in iformat in an error path, 2843 * for the attribute fork. 2844 */ 2845 if (!ifp) { 2846 ASSERT(whichfork == XFS_ATTR_FORK); 2847 return; 2848 } 2849 cp = XFS_DFORK_PTR(dip, whichfork); 2850 mp = ip->i_mount; 2851 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2852 case XFS_DINODE_FMT_LOCAL: 2853 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2854 (ifp->if_bytes > 0)) { 2855 ASSERT(ifp->if_u1.if_data != NULL); 2856 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2857 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2858 } 2859 break; 2860 2861 case XFS_DINODE_FMT_EXTENTS: 2862 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2863 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2864 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2865 (ifp->if_bytes == 0)); 2866 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2867 (ifp->if_bytes > 0)); 2868 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2869 (ifp->if_bytes > 0)) { 2870 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2871 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2872 whichfork); 2873 } 2874 break; 2875 2876 case XFS_DINODE_FMT_BTREE: 2877 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2878 (ifp->if_broot_bytes > 0)) { 2879 ASSERT(ifp->if_broot != NULL); 2880 ASSERT(ifp->if_broot_bytes <= 2881 (XFS_IFORK_SIZE(ip, whichfork) + 2882 XFS_BROOT_SIZE_ADJ)); 2883 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 2884 (xfs_bmdr_block_t *)cp, 2885 XFS_DFORK_SIZE(dip, mp, whichfork)); 2886 } 2887 break; 2888 2889 case XFS_DINODE_FMT_DEV: 2890 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2891 ASSERT(whichfork == XFS_DATA_FORK); 2892 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev); 2893 } 2894 break; 2895 2896 case XFS_DINODE_FMT_UUID: 2897 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2898 ASSERT(whichfork == XFS_DATA_FORK); 2899 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 2900 sizeof(uuid_t)); 2901 } 2902 break; 2903 2904 default: 2905 ASSERT(0); 2906 break; 2907 } 2908 } 2909 2910 STATIC int 2911 xfs_iflush_cluster( 2912 xfs_inode_t *ip, 2913 xfs_buf_t *bp) 2914 { 2915 xfs_mount_t *mp = ip->i_mount; 2916 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); 2917 unsigned long first_index, mask; 2918 unsigned long inodes_per_cluster; 2919 int ilist_size; 2920 xfs_inode_t **ilist; 2921 xfs_inode_t *iq; 2922 int nr_found; 2923 int clcount = 0; 2924 int bufwasdelwri; 2925 int i; 2926 2927 ASSERT(pag->pagi_inodeok); 2928 ASSERT(pag->pag_ici_init); 2929 2930 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2931 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2932 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2933 if (!ilist) 2934 return 0; 2935 2936 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2937 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2938 read_lock(&pag->pag_ici_lock); 2939 /* really need a gang lookup range call here */ 2940 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2941 first_index, inodes_per_cluster); 2942 if (nr_found == 0) 2943 goto out_free; 2944 2945 for (i = 0; i < nr_found; i++) { 2946 iq = ilist[i]; 2947 if (iq == ip) 2948 continue; 2949 /* if the inode lies outside this cluster, we're done. */ 2950 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) 2951 break; 2952 /* 2953 * Do an un-protected check to see if the inode is dirty and 2954 * is a candidate for flushing. These checks will be repeated 2955 * later after the appropriate locks are acquired. 2956 */ 2957 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2958 continue; 2959 2960 /* 2961 * Try to get locks. If any are unavailable or it is pinned, 2962 * then this inode cannot be flushed and is skipped. 2963 */ 2964 2965 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2966 continue; 2967 if (!xfs_iflock_nowait(iq)) { 2968 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2969 continue; 2970 } 2971 if (xfs_ipincount(iq)) { 2972 xfs_ifunlock(iq); 2973 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2974 continue; 2975 } 2976 2977 /* 2978 * arriving here means that this inode can be flushed. First 2979 * re-check that it's dirty before flushing. 2980 */ 2981 if (!xfs_inode_clean(iq)) { 2982 int error; 2983 error = xfs_iflush_int(iq, bp); 2984 if (error) { 2985 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2986 goto cluster_corrupt_out; 2987 } 2988 clcount++; 2989 } else { 2990 xfs_ifunlock(iq); 2991 } 2992 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2993 } 2994 2995 if (clcount) { 2996 XFS_STATS_INC(xs_icluster_flushcnt); 2997 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2998 } 2999 3000 out_free: 3001 read_unlock(&pag->pag_ici_lock); 3002 kmem_free(ilist); 3003 return 0; 3004 3005 3006 cluster_corrupt_out: 3007 /* 3008 * Corruption detected in the clustering loop. Invalidate the 3009 * inode buffer and shut down the filesystem. 3010 */ 3011 read_unlock(&pag->pag_ici_lock); 3012 /* 3013 * Clean up the buffer. If it was B_DELWRI, just release it -- 3014 * brelse can handle it with no problems. If not, shut down the 3015 * filesystem before releasing the buffer. 3016 */ 3017 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 3018 if (bufwasdelwri) 3019 xfs_buf_relse(bp); 3020 3021 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3022 3023 if (!bufwasdelwri) { 3024 /* 3025 * Just like incore_relse: if we have b_iodone functions, 3026 * mark the buffer as an error and call them. Otherwise 3027 * mark it as stale and brelse. 3028 */ 3029 if (XFS_BUF_IODONE_FUNC(bp)) { 3030 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3031 XFS_BUF_UNDONE(bp); 3032 XFS_BUF_STALE(bp); 3033 XFS_BUF_SHUT(bp); 3034 XFS_BUF_ERROR(bp,EIO); 3035 xfs_biodone(bp); 3036 } else { 3037 XFS_BUF_STALE(bp); 3038 xfs_buf_relse(bp); 3039 } 3040 } 3041 3042 /* 3043 * Unlocks the flush lock 3044 */ 3045 xfs_iflush_abort(iq); 3046 kmem_free(ilist); 3047 return XFS_ERROR(EFSCORRUPTED); 3048 } 3049 3050 /* 3051 * xfs_iflush() will write a modified inode's changes out to the 3052 * inode's on disk home. The caller must have the inode lock held 3053 * in at least shared mode and the inode flush completion must be 3054 * active as well. The inode lock will still be held upon return from 3055 * the call and the caller is free to unlock it. 3056 * The inode flush will be completed when the inode reaches the disk. 3057 * The flags indicate how the inode's buffer should be written out. 3058 */ 3059 int 3060 xfs_iflush( 3061 xfs_inode_t *ip, 3062 uint flags) 3063 { 3064 xfs_inode_log_item_t *iip; 3065 xfs_buf_t *bp; 3066 xfs_dinode_t *dip; 3067 xfs_mount_t *mp; 3068 int error; 3069 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK); 3070 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3071 3072 XFS_STATS_INC(xs_iflush_count); 3073 3074 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3075 ASSERT(!completion_done(&ip->i_flush)); 3076 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3077 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3078 3079 iip = ip->i_itemp; 3080 mp = ip->i_mount; 3081 3082 /* 3083 * If the inode isn't dirty, then just release the inode 3084 * flush lock and do nothing. 3085 */ 3086 if (xfs_inode_clean(ip)) { 3087 xfs_ifunlock(ip); 3088 return 0; 3089 } 3090 3091 /* 3092 * We can't flush the inode until it is unpinned, so wait for it if we 3093 * are allowed to block. We know noone new can pin it, because we are 3094 * holding the inode lock shared and you need to hold it exclusively to 3095 * pin the inode. 3096 * 3097 * If we are not allowed to block, force the log out asynchronously so 3098 * that when we come back the inode will be unpinned. If other inodes 3099 * in the same cluster are dirty, they will probably write the inode 3100 * out for us if they occur after the log force completes. 3101 */ 3102 if (noblock && xfs_ipincount(ip)) { 3103 xfs_iunpin_nowait(ip); 3104 xfs_ifunlock(ip); 3105 return EAGAIN; 3106 } 3107 xfs_iunpin_wait(ip); 3108 3109 /* 3110 * This may have been unpinned because the filesystem is shutting 3111 * down forcibly. If that's the case we must not write this inode 3112 * to disk, because the log record didn't make it to disk! 3113 */ 3114 if (XFS_FORCED_SHUTDOWN(mp)) { 3115 ip->i_update_core = 0; 3116 if (iip) 3117 iip->ili_format.ilf_fields = 0; 3118 xfs_ifunlock(ip); 3119 return XFS_ERROR(EIO); 3120 } 3121 3122 /* 3123 * Decide how buffer will be flushed out. This is done before 3124 * the call to xfs_iflush_int because this field is zeroed by it. 3125 */ 3126 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3127 /* 3128 * Flush out the inode buffer according to the directions 3129 * of the caller. In the cases where the caller has given 3130 * us a choice choose the non-delwri case. This is because 3131 * the inode is in the AIL and we need to get it out soon. 3132 */ 3133 switch (flags) { 3134 case XFS_IFLUSH_SYNC: 3135 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3136 flags = 0; 3137 break; 3138 case XFS_IFLUSH_ASYNC_NOBLOCK: 3139 case XFS_IFLUSH_ASYNC: 3140 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3141 flags = INT_ASYNC; 3142 break; 3143 case XFS_IFLUSH_DELWRI: 3144 flags = INT_DELWRI; 3145 break; 3146 default: 3147 ASSERT(0); 3148 flags = 0; 3149 break; 3150 } 3151 } else { 3152 switch (flags) { 3153 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3154 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3155 case XFS_IFLUSH_DELWRI: 3156 flags = INT_DELWRI; 3157 break; 3158 case XFS_IFLUSH_ASYNC_NOBLOCK: 3159 case XFS_IFLUSH_ASYNC: 3160 flags = INT_ASYNC; 3161 break; 3162 case XFS_IFLUSH_SYNC: 3163 flags = 0; 3164 break; 3165 default: 3166 ASSERT(0); 3167 flags = 0; 3168 break; 3169 } 3170 } 3171 3172 /* 3173 * Get the buffer containing the on-disk inode. 3174 */ 3175 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0, 3176 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK); 3177 if (error || !bp) { 3178 xfs_ifunlock(ip); 3179 return error; 3180 } 3181 3182 /* 3183 * First flush out the inode that xfs_iflush was called with. 3184 */ 3185 error = xfs_iflush_int(ip, bp); 3186 if (error) 3187 goto corrupt_out; 3188 3189 /* 3190 * If the buffer is pinned then push on the log now so we won't 3191 * get stuck waiting in the write for too long. 3192 */ 3193 if (XFS_BUF_ISPINNED(bp)) 3194 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3195 3196 /* 3197 * inode clustering: 3198 * see if other inodes can be gathered into this write 3199 */ 3200 error = xfs_iflush_cluster(ip, bp); 3201 if (error) 3202 goto cluster_corrupt_out; 3203 3204 if (flags & INT_DELWRI) { 3205 xfs_bdwrite(mp, bp); 3206 } else if (flags & INT_ASYNC) { 3207 error = xfs_bawrite(mp, bp); 3208 } else { 3209 error = xfs_bwrite(mp, bp); 3210 } 3211 return error; 3212 3213 corrupt_out: 3214 xfs_buf_relse(bp); 3215 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3216 cluster_corrupt_out: 3217 /* 3218 * Unlocks the flush lock 3219 */ 3220 xfs_iflush_abort(ip); 3221 return XFS_ERROR(EFSCORRUPTED); 3222 } 3223 3224 3225 STATIC int 3226 xfs_iflush_int( 3227 xfs_inode_t *ip, 3228 xfs_buf_t *bp) 3229 { 3230 xfs_inode_log_item_t *iip; 3231 xfs_dinode_t *dip; 3232 xfs_mount_t *mp; 3233 #ifdef XFS_TRANS_DEBUG 3234 int first; 3235 #endif 3236 3237 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3238 ASSERT(!completion_done(&ip->i_flush)); 3239 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3240 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3241 3242 iip = ip->i_itemp; 3243 mp = ip->i_mount; 3244 3245 3246 /* 3247 * If the inode isn't dirty, then just release the inode 3248 * flush lock and do nothing. 3249 */ 3250 if (xfs_inode_clean(ip)) { 3251 xfs_ifunlock(ip); 3252 return 0; 3253 } 3254 3255 /* set *dip = inode's place in the buffer */ 3256 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3257 3258 /* 3259 * Clear i_update_core before copying out the data. 3260 * This is for coordination with our timestamp updates 3261 * that don't hold the inode lock. They will always 3262 * update the timestamps BEFORE setting i_update_core, 3263 * so if we clear i_update_core after they set it we 3264 * are guaranteed to see their updates to the timestamps. 3265 * I believe that this depends on strongly ordered memory 3266 * semantics, but we have that. We use the SYNCHRONIZE 3267 * macro to make sure that the compiler does not reorder 3268 * the i_update_core access below the data copy below. 3269 */ 3270 ip->i_update_core = 0; 3271 SYNCHRONIZE(); 3272 3273 /* 3274 * Make sure to get the latest atime from the Linux inode. 3275 */ 3276 xfs_synchronize_atime(ip); 3277 3278 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC, 3279 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3280 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3281 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3282 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip); 3283 goto corrupt_out; 3284 } 3285 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3286 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3287 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3288 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3289 ip->i_ino, ip, ip->i_d.di_magic); 3290 goto corrupt_out; 3291 } 3292 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3293 if (XFS_TEST_ERROR( 3294 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3295 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3296 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3297 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3298 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3299 ip->i_ino, ip); 3300 goto corrupt_out; 3301 } 3302 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3303 if (XFS_TEST_ERROR( 3304 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3305 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3306 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3307 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3308 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3309 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3310 ip->i_ino, ip); 3311 goto corrupt_out; 3312 } 3313 } 3314 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3315 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3316 XFS_RANDOM_IFLUSH_5)) { 3317 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3318 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3319 ip->i_ino, 3320 ip->i_d.di_nextents + ip->i_d.di_anextents, 3321 ip->i_d.di_nblocks, 3322 ip); 3323 goto corrupt_out; 3324 } 3325 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3326 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3327 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3328 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3329 ip->i_ino, ip->i_d.di_forkoff, ip); 3330 goto corrupt_out; 3331 } 3332 /* 3333 * bump the flush iteration count, used to detect flushes which 3334 * postdate a log record during recovery. 3335 */ 3336 3337 ip->i_d.di_flushiter++; 3338 3339 /* 3340 * Copy the dirty parts of the inode into the on-disk 3341 * inode. We always copy out the core of the inode, 3342 * because if the inode is dirty at all the core must 3343 * be. 3344 */ 3345 xfs_dinode_to_disk(&dip->di_core, &ip->i_d); 3346 3347 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3348 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3349 ip->i_d.di_flushiter = 0; 3350 3351 /* 3352 * If this is really an old format inode and the superblock version 3353 * has not been updated to support only new format inodes, then 3354 * convert back to the old inode format. If the superblock version 3355 * has been updated, then make the conversion permanent. 3356 */ 3357 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3358 xfs_sb_version_hasnlink(&mp->m_sb)); 3359 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3360 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3361 /* 3362 * Convert it back. 3363 */ 3364 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3365 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3366 } else { 3367 /* 3368 * The superblock version has already been bumped, 3369 * so just make the conversion to the new inode 3370 * format permanent. 3371 */ 3372 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3373 dip->di_core.di_version = XFS_DINODE_VERSION_2; 3374 ip->i_d.di_onlink = 0; 3375 dip->di_core.di_onlink = 0; 3376 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3377 memset(&(dip->di_core.di_pad[0]), 0, 3378 sizeof(dip->di_core.di_pad)); 3379 ASSERT(ip->i_d.di_projid == 0); 3380 } 3381 } 3382 3383 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3384 if (XFS_IFORK_Q(ip)) 3385 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3386 xfs_inobp_check(mp, bp); 3387 3388 /* 3389 * We've recorded everything logged in the inode, so we'd 3390 * like to clear the ilf_fields bits so we don't log and 3391 * flush things unnecessarily. However, we can't stop 3392 * logging all this information until the data we've copied 3393 * into the disk buffer is written to disk. If we did we might 3394 * overwrite the copy of the inode in the log with all the 3395 * data after re-logging only part of it, and in the face of 3396 * a crash we wouldn't have all the data we need to recover. 3397 * 3398 * What we do is move the bits to the ili_last_fields field. 3399 * When logging the inode, these bits are moved back to the 3400 * ilf_fields field. In the xfs_iflush_done() routine we 3401 * clear ili_last_fields, since we know that the information 3402 * those bits represent is permanently on disk. As long as 3403 * the flush completes before the inode is logged again, then 3404 * both ilf_fields and ili_last_fields will be cleared. 3405 * 3406 * We can play with the ilf_fields bits here, because the inode 3407 * lock must be held exclusively in order to set bits there 3408 * and the flush lock protects the ili_last_fields bits. 3409 * Set ili_logged so the flush done 3410 * routine can tell whether or not to look in the AIL. 3411 * Also, store the current LSN of the inode so that we can tell 3412 * whether the item has moved in the AIL from xfs_iflush_done(). 3413 * In order to read the lsn we need the AIL lock, because 3414 * it is a 64 bit value that cannot be read atomically. 3415 */ 3416 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3417 iip->ili_last_fields = iip->ili_format.ilf_fields; 3418 iip->ili_format.ilf_fields = 0; 3419 iip->ili_logged = 1; 3420 3421 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3422 spin_lock(&mp->m_ail_lock); 3423 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3424 spin_unlock(&mp->m_ail_lock); 3425 3426 /* 3427 * Attach the function xfs_iflush_done to the inode's 3428 * buffer. This will remove the inode from the AIL 3429 * and unlock the inode's flush lock when the inode is 3430 * completely written to disk. 3431 */ 3432 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3433 xfs_iflush_done, (xfs_log_item_t *)iip); 3434 3435 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3436 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3437 } else { 3438 /* 3439 * We're flushing an inode which is not in the AIL and has 3440 * not been logged but has i_update_core set. For this 3441 * case we can use a B_DELWRI flush and immediately drop 3442 * the inode flush lock because we can avoid the whole 3443 * AIL state thing. It's OK to drop the flush lock now, 3444 * because we've already locked the buffer and to do anything 3445 * you really need both. 3446 */ 3447 if (iip != NULL) { 3448 ASSERT(iip->ili_logged == 0); 3449 ASSERT(iip->ili_last_fields == 0); 3450 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3451 } 3452 xfs_ifunlock(ip); 3453 } 3454 3455 return 0; 3456 3457 corrupt_out: 3458 return XFS_ERROR(EFSCORRUPTED); 3459 } 3460 3461 3462 /* 3463 * Flush all inactive inodes in mp. 3464 */ 3465 void 3466 xfs_iflush_all( 3467 xfs_mount_t *mp) 3468 { 3469 xfs_inode_t *ip; 3470 3471 again: 3472 XFS_MOUNT_ILOCK(mp); 3473 ip = mp->m_inodes; 3474 if (ip == NULL) 3475 goto out; 3476 3477 do { 3478 /* Make sure we skip markers inserted by sync */ 3479 if (ip->i_mount == NULL) { 3480 ip = ip->i_mnext; 3481 continue; 3482 } 3483 3484 if (!VFS_I(ip)) { 3485 XFS_MOUNT_IUNLOCK(mp); 3486 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3487 goto again; 3488 } 3489 3490 ASSERT(vn_count(VFS_I(ip)) == 0); 3491 3492 ip = ip->i_mnext; 3493 } while (ip != mp->m_inodes); 3494 out: 3495 XFS_MOUNT_IUNLOCK(mp); 3496 } 3497 3498 #ifdef XFS_ILOCK_TRACE 3499 ktrace_t *xfs_ilock_trace_buf; 3500 3501 void 3502 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3503 { 3504 ktrace_enter(ip->i_lock_trace, 3505 (void *)ip, 3506 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3507 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3508 (void *)ra, /* caller of ilock */ 3509 (void *)(unsigned long)current_cpu(), 3510 (void *)(unsigned long)current_pid(), 3511 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3512 } 3513 #endif 3514 3515 /* 3516 * Return a pointer to the extent record at file index idx. 3517 */ 3518 xfs_bmbt_rec_host_t * 3519 xfs_iext_get_ext( 3520 xfs_ifork_t *ifp, /* inode fork pointer */ 3521 xfs_extnum_t idx) /* index of target extent */ 3522 { 3523 ASSERT(idx >= 0); 3524 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3525 return ifp->if_u1.if_ext_irec->er_extbuf; 3526 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3527 xfs_ext_irec_t *erp; /* irec pointer */ 3528 int erp_idx = 0; /* irec index */ 3529 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3530 3531 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3532 return &erp->er_extbuf[page_idx]; 3533 } else if (ifp->if_bytes) { 3534 return &ifp->if_u1.if_extents[idx]; 3535 } else { 3536 return NULL; 3537 } 3538 } 3539 3540 /* 3541 * Insert new item(s) into the extent records for incore inode 3542 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3543 */ 3544 void 3545 xfs_iext_insert( 3546 xfs_ifork_t *ifp, /* inode fork pointer */ 3547 xfs_extnum_t idx, /* starting index of new items */ 3548 xfs_extnum_t count, /* number of inserted items */ 3549 xfs_bmbt_irec_t *new) /* items to insert */ 3550 { 3551 xfs_extnum_t i; /* extent record index */ 3552 3553 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3554 xfs_iext_add(ifp, idx, count); 3555 for (i = idx; i < idx + count; i++, new++) 3556 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3557 } 3558 3559 /* 3560 * This is called when the amount of space required for incore file 3561 * extents needs to be increased. The ext_diff parameter stores the 3562 * number of new extents being added and the idx parameter contains 3563 * the extent index where the new extents will be added. If the new 3564 * extents are being appended, then we just need to (re)allocate and 3565 * initialize the space. Otherwise, if the new extents are being 3566 * inserted into the middle of the existing entries, a bit more work 3567 * is required to make room for the new extents to be inserted. The 3568 * caller is responsible for filling in the new extent entries upon 3569 * return. 3570 */ 3571 void 3572 xfs_iext_add( 3573 xfs_ifork_t *ifp, /* inode fork pointer */ 3574 xfs_extnum_t idx, /* index to begin adding exts */ 3575 int ext_diff) /* number of extents to add */ 3576 { 3577 int byte_diff; /* new bytes being added */ 3578 int new_size; /* size of extents after adding */ 3579 xfs_extnum_t nextents; /* number of extents in file */ 3580 3581 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3582 ASSERT((idx >= 0) && (idx <= nextents)); 3583 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3584 new_size = ifp->if_bytes + byte_diff; 3585 /* 3586 * If the new number of extents (nextents + ext_diff) 3587 * fits inside the inode, then continue to use the inline 3588 * extent buffer. 3589 */ 3590 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3591 if (idx < nextents) { 3592 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3593 &ifp->if_u2.if_inline_ext[idx], 3594 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3595 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3596 } 3597 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3598 ifp->if_real_bytes = 0; 3599 ifp->if_lastex = nextents + ext_diff; 3600 } 3601 /* 3602 * Otherwise use a linear (direct) extent list. 3603 * If the extents are currently inside the inode, 3604 * xfs_iext_realloc_direct will switch us from 3605 * inline to direct extent allocation mode. 3606 */ 3607 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3608 xfs_iext_realloc_direct(ifp, new_size); 3609 if (idx < nextents) { 3610 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3611 &ifp->if_u1.if_extents[idx], 3612 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3613 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3614 } 3615 } 3616 /* Indirection array */ 3617 else { 3618 xfs_ext_irec_t *erp; 3619 int erp_idx = 0; 3620 int page_idx = idx; 3621 3622 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3623 if (ifp->if_flags & XFS_IFEXTIREC) { 3624 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3625 } else { 3626 xfs_iext_irec_init(ifp); 3627 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3628 erp = ifp->if_u1.if_ext_irec; 3629 } 3630 /* Extents fit in target extent page */ 3631 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3632 if (page_idx < erp->er_extcount) { 3633 memmove(&erp->er_extbuf[page_idx + ext_diff], 3634 &erp->er_extbuf[page_idx], 3635 (erp->er_extcount - page_idx) * 3636 sizeof(xfs_bmbt_rec_t)); 3637 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3638 } 3639 erp->er_extcount += ext_diff; 3640 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3641 } 3642 /* Insert a new extent page */ 3643 else if (erp) { 3644 xfs_iext_add_indirect_multi(ifp, 3645 erp_idx, page_idx, ext_diff); 3646 } 3647 /* 3648 * If extent(s) are being appended to the last page in 3649 * the indirection array and the new extent(s) don't fit 3650 * in the page, then erp is NULL and erp_idx is set to 3651 * the next index needed in the indirection array. 3652 */ 3653 else { 3654 int count = ext_diff; 3655 3656 while (count) { 3657 erp = xfs_iext_irec_new(ifp, erp_idx); 3658 erp->er_extcount = count; 3659 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3660 if (count) { 3661 erp_idx++; 3662 } 3663 } 3664 } 3665 } 3666 ifp->if_bytes = new_size; 3667 } 3668 3669 /* 3670 * This is called when incore extents are being added to the indirection 3671 * array and the new extents do not fit in the target extent list. The 3672 * erp_idx parameter contains the irec index for the target extent list 3673 * in the indirection array, and the idx parameter contains the extent 3674 * index within the list. The number of extents being added is stored 3675 * in the count parameter. 3676 * 3677 * |-------| |-------| 3678 * | | | | idx - number of extents before idx 3679 * | idx | | count | 3680 * | | | | count - number of extents being inserted at idx 3681 * |-------| |-------| 3682 * | count | | nex2 | nex2 - number of extents after idx + count 3683 * |-------| |-------| 3684 */ 3685 void 3686 xfs_iext_add_indirect_multi( 3687 xfs_ifork_t *ifp, /* inode fork pointer */ 3688 int erp_idx, /* target extent irec index */ 3689 xfs_extnum_t idx, /* index within target list */ 3690 int count) /* new extents being added */ 3691 { 3692 int byte_diff; /* new bytes being added */ 3693 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3694 xfs_extnum_t ext_diff; /* number of extents to add */ 3695 xfs_extnum_t ext_cnt; /* new extents still needed */ 3696 xfs_extnum_t nex2; /* extents after idx + count */ 3697 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3698 int nlists; /* number of irec's (lists) */ 3699 3700 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3701 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3702 nex2 = erp->er_extcount - idx; 3703 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3704 3705 /* 3706 * Save second part of target extent list 3707 * (all extents past */ 3708 if (nex2) { 3709 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3710 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3711 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3712 erp->er_extcount -= nex2; 3713 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3714 memset(&erp->er_extbuf[idx], 0, byte_diff); 3715 } 3716 3717 /* 3718 * Add the new extents to the end of the target 3719 * list, then allocate new irec record(s) and 3720 * extent buffer(s) as needed to store the rest 3721 * of the new extents. 3722 */ 3723 ext_cnt = count; 3724 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3725 if (ext_diff) { 3726 erp->er_extcount += ext_diff; 3727 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3728 ext_cnt -= ext_diff; 3729 } 3730 while (ext_cnt) { 3731 erp_idx++; 3732 erp = xfs_iext_irec_new(ifp, erp_idx); 3733 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3734 erp->er_extcount = ext_diff; 3735 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3736 ext_cnt -= ext_diff; 3737 } 3738 3739 /* Add nex2 extents back to indirection array */ 3740 if (nex2) { 3741 xfs_extnum_t ext_avail; 3742 int i; 3743 3744 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3745 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3746 i = 0; 3747 /* 3748 * If nex2 extents fit in the current page, append 3749 * nex2_ep after the new extents. 3750 */ 3751 if (nex2 <= ext_avail) { 3752 i = erp->er_extcount; 3753 } 3754 /* 3755 * Otherwise, check if space is available in the 3756 * next page. 3757 */ 3758 else if ((erp_idx < nlists - 1) && 3759 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3760 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3761 erp_idx++; 3762 erp++; 3763 /* Create a hole for nex2 extents */ 3764 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3765 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3766 } 3767 /* 3768 * Final choice, create a new extent page for 3769 * nex2 extents. 3770 */ 3771 else { 3772 erp_idx++; 3773 erp = xfs_iext_irec_new(ifp, erp_idx); 3774 } 3775 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3776 kmem_free(nex2_ep); 3777 erp->er_extcount += nex2; 3778 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3779 } 3780 } 3781 3782 /* 3783 * This is called when the amount of space required for incore file 3784 * extents needs to be decreased. The ext_diff parameter stores the 3785 * number of extents to be removed and the idx parameter contains 3786 * the extent index where the extents will be removed from. 3787 * 3788 * If the amount of space needed has decreased below the linear 3789 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3790 * extent array. Otherwise, use kmem_realloc() to adjust the 3791 * size to what is needed. 3792 */ 3793 void 3794 xfs_iext_remove( 3795 xfs_ifork_t *ifp, /* inode fork pointer */ 3796 xfs_extnum_t idx, /* index to begin removing exts */ 3797 int ext_diff) /* number of extents to remove */ 3798 { 3799 xfs_extnum_t nextents; /* number of extents in file */ 3800 int new_size; /* size of extents after removal */ 3801 3802 ASSERT(ext_diff > 0); 3803 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3804 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3805 3806 if (new_size == 0) { 3807 xfs_iext_destroy(ifp); 3808 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3809 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3810 } else if (ifp->if_real_bytes) { 3811 xfs_iext_remove_direct(ifp, idx, ext_diff); 3812 } else { 3813 xfs_iext_remove_inline(ifp, idx, ext_diff); 3814 } 3815 ifp->if_bytes = new_size; 3816 } 3817 3818 /* 3819 * This removes ext_diff extents from the inline buffer, beginning 3820 * at extent index idx. 3821 */ 3822 void 3823 xfs_iext_remove_inline( 3824 xfs_ifork_t *ifp, /* inode fork pointer */ 3825 xfs_extnum_t idx, /* index to begin removing exts */ 3826 int ext_diff) /* number of extents to remove */ 3827 { 3828 int nextents; /* number of extents in file */ 3829 3830 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3831 ASSERT(idx < XFS_INLINE_EXTS); 3832 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3833 ASSERT(((nextents - ext_diff) > 0) && 3834 (nextents - ext_diff) < XFS_INLINE_EXTS); 3835 3836 if (idx + ext_diff < nextents) { 3837 memmove(&ifp->if_u2.if_inline_ext[idx], 3838 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3839 (nextents - (idx + ext_diff)) * 3840 sizeof(xfs_bmbt_rec_t)); 3841 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3842 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3843 } else { 3844 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3845 ext_diff * sizeof(xfs_bmbt_rec_t)); 3846 } 3847 } 3848 3849 /* 3850 * This removes ext_diff extents from a linear (direct) extent list, 3851 * beginning at extent index idx. If the extents are being removed 3852 * from the end of the list (ie. truncate) then we just need to re- 3853 * allocate the list to remove the extra space. Otherwise, if the 3854 * extents are being removed from the middle of the existing extent 3855 * entries, then we first need to move the extent records beginning 3856 * at idx + ext_diff up in the list to overwrite the records being 3857 * removed, then remove the extra space via kmem_realloc. 3858 */ 3859 void 3860 xfs_iext_remove_direct( 3861 xfs_ifork_t *ifp, /* inode fork pointer */ 3862 xfs_extnum_t idx, /* index to begin removing exts */ 3863 int ext_diff) /* number of extents to remove */ 3864 { 3865 xfs_extnum_t nextents; /* number of extents in file */ 3866 int new_size; /* size of extents after removal */ 3867 3868 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3869 new_size = ifp->if_bytes - 3870 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3871 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3872 3873 if (new_size == 0) { 3874 xfs_iext_destroy(ifp); 3875 return; 3876 } 3877 /* Move extents up in the list (if needed) */ 3878 if (idx + ext_diff < nextents) { 3879 memmove(&ifp->if_u1.if_extents[idx], 3880 &ifp->if_u1.if_extents[idx + ext_diff], 3881 (nextents - (idx + ext_diff)) * 3882 sizeof(xfs_bmbt_rec_t)); 3883 } 3884 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3885 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3886 /* 3887 * Reallocate the direct extent list. If the extents 3888 * will fit inside the inode then xfs_iext_realloc_direct 3889 * will switch from direct to inline extent allocation 3890 * mode for us. 3891 */ 3892 xfs_iext_realloc_direct(ifp, new_size); 3893 ifp->if_bytes = new_size; 3894 } 3895 3896 /* 3897 * This is called when incore extents are being removed from the 3898 * indirection array and the extents being removed span multiple extent 3899 * buffers. The idx parameter contains the file extent index where we 3900 * want to begin removing extents, and the count parameter contains 3901 * how many extents need to be removed. 3902 * 3903 * |-------| |-------| 3904 * | nex1 | | | nex1 - number of extents before idx 3905 * |-------| | count | 3906 * | | | | count - number of extents being removed at idx 3907 * | count | |-------| 3908 * | | | nex2 | nex2 - number of extents after idx + count 3909 * |-------| |-------| 3910 */ 3911 void 3912 xfs_iext_remove_indirect( 3913 xfs_ifork_t *ifp, /* inode fork pointer */ 3914 xfs_extnum_t idx, /* index to begin removing extents */ 3915 int count) /* number of extents to remove */ 3916 { 3917 xfs_ext_irec_t *erp; /* indirection array pointer */ 3918 int erp_idx = 0; /* indirection array index */ 3919 xfs_extnum_t ext_cnt; /* extents left to remove */ 3920 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3921 xfs_extnum_t nex1; /* number of extents before idx */ 3922 xfs_extnum_t nex2; /* extents after idx + count */ 3923 int nlists; /* entries in indirection array */ 3924 int page_idx = idx; /* index in target extent list */ 3925 3926 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3927 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3928 ASSERT(erp != NULL); 3929 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3930 nex1 = page_idx; 3931 ext_cnt = count; 3932 while (ext_cnt) { 3933 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3934 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3935 /* 3936 * Check for deletion of entire list; 3937 * xfs_iext_irec_remove() updates extent offsets. 3938 */ 3939 if (ext_diff == erp->er_extcount) { 3940 xfs_iext_irec_remove(ifp, erp_idx); 3941 ext_cnt -= ext_diff; 3942 nex1 = 0; 3943 if (ext_cnt) { 3944 ASSERT(erp_idx < ifp->if_real_bytes / 3945 XFS_IEXT_BUFSZ); 3946 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3947 nex1 = 0; 3948 continue; 3949 } else { 3950 break; 3951 } 3952 } 3953 /* Move extents up (if needed) */ 3954 if (nex2) { 3955 memmove(&erp->er_extbuf[nex1], 3956 &erp->er_extbuf[nex1 + ext_diff], 3957 nex2 * sizeof(xfs_bmbt_rec_t)); 3958 } 3959 /* Zero out rest of page */ 3960 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3961 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3962 /* Update remaining counters */ 3963 erp->er_extcount -= ext_diff; 3964 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3965 ext_cnt -= ext_diff; 3966 nex1 = 0; 3967 erp_idx++; 3968 erp++; 3969 } 3970 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3971 xfs_iext_irec_compact(ifp); 3972 } 3973 3974 /* 3975 * Create, destroy, or resize a linear (direct) block of extents. 3976 */ 3977 void 3978 xfs_iext_realloc_direct( 3979 xfs_ifork_t *ifp, /* inode fork pointer */ 3980 int new_size) /* new size of extents */ 3981 { 3982 int rnew_size; /* real new size of extents */ 3983 3984 rnew_size = new_size; 3985 3986 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3987 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3988 (new_size != ifp->if_real_bytes))); 3989 3990 /* Free extent records */ 3991 if (new_size == 0) { 3992 xfs_iext_destroy(ifp); 3993 } 3994 /* Resize direct extent list and zero any new bytes */ 3995 else if (ifp->if_real_bytes) { 3996 /* Check if extents will fit inside the inode */ 3997 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3998 xfs_iext_direct_to_inline(ifp, new_size / 3999 (uint)sizeof(xfs_bmbt_rec_t)); 4000 ifp->if_bytes = new_size; 4001 return; 4002 } 4003 if (!is_power_of_2(new_size)){ 4004 rnew_size = roundup_pow_of_two(new_size); 4005 } 4006 if (rnew_size != ifp->if_real_bytes) { 4007 ifp->if_u1.if_extents = 4008 kmem_realloc(ifp->if_u1.if_extents, 4009 rnew_size, 4010 ifp->if_real_bytes, KM_NOFS); 4011 } 4012 if (rnew_size > ifp->if_real_bytes) { 4013 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 4014 (uint)sizeof(xfs_bmbt_rec_t)], 0, 4015 rnew_size - ifp->if_real_bytes); 4016 } 4017 } 4018 /* 4019 * Switch from the inline extent buffer to a direct 4020 * extent list. Be sure to include the inline extent 4021 * bytes in new_size. 4022 */ 4023 else { 4024 new_size += ifp->if_bytes; 4025 if (!is_power_of_2(new_size)) { 4026 rnew_size = roundup_pow_of_two(new_size); 4027 } 4028 xfs_iext_inline_to_direct(ifp, rnew_size); 4029 } 4030 ifp->if_real_bytes = rnew_size; 4031 ifp->if_bytes = new_size; 4032 } 4033 4034 /* 4035 * Switch from linear (direct) extent records to inline buffer. 4036 */ 4037 void 4038 xfs_iext_direct_to_inline( 4039 xfs_ifork_t *ifp, /* inode fork pointer */ 4040 xfs_extnum_t nextents) /* number of extents in file */ 4041 { 4042 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 4043 ASSERT(nextents <= XFS_INLINE_EXTS); 4044 /* 4045 * The inline buffer was zeroed when we switched 4046 * from inline to direct extent allocation mode, 4047 * so we don't need to clear it here. 4048 */ 4049 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 4050 nextents * sizeof(xfs_bmbt_rec_t)); 4051 kmem_free(ifp->if_u1.if_extents); 4052 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 4053 ifp->if_real_bytes = 0; 4054 } 4055 4056 /* 4057 * Switch from inline buffer to linear (direct) extent records. 4058 * new_size should already be rounded up to the next power of 2 4059 * by the caller (when appropriate), so use new_size as it is. 4060 * However, since new_size may be rounded up, we can't update 4061 * if_bytes here. It is the caller's responsibility to update 4062 * if_bytes upon return. 4063 */ 4064 void 4065 xfs_iext_inline_to_direct( 4066 xfs_ifork_t *ifp, /* inode fork pointer */ 4067 int new_size) /* number of extents in file */ 4068 { 4069 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 4070 memset(ifp->if_u1.if_extents, 0, new_size); 4071 if (ifp->if_bytes) { 4072 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 4073 ifp->if_bytes); 4074 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4075 sizeof(xfs_bmbt_rec_t)); 4076 } 4077 ifp->if_real_bytes = new_size; 4078 } 4079 4080 /* 4081 * Resize an extent indirection array to new_size bytes. 4082 */ 4083 void 4084 xfs_iext_realloc_indirect( 4085 xfs_ifork_t *ifp, /* inode fork pointer */ 4086 int new_size) /* new indirection array size */ 4087 { 4088 int nlists; /* number of irec's (ex lists) */ 4089 int size; /* current indirection array size */ 4090 4091 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4092 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4093 size = nlists * sizeof(xfs_ext_irec_t); 4094 ASSERT(ifp->if_real_bytes); 4095 ASSERT((new_size >= 0) && (new_size != size)); 4096 if (new_size == 0) { 4097 xfs_iext_destroy(ifp); 4098 } else { 4099 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 4100 kmem_realloc(ifp->if_u1.if_ext_irec, 4101 new_size, size, KM_NOFS); 4102 } 4103 } 4104 4105 /* 4106 * Switch from indirection array to linear (direct) extent allocations. 4107 */ 4108 void 4109 xfs_iext_indirect_to_direct( 4110 xfs_ifork_t *ifp) /* inode fork pointer */ 4111 { 4112 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 4113 xfs_extnum_t nextents; /* number of extents in file */ 4114 int size; /* size of file extents */ 4115 4116 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4117 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4118 ASSERT(nextents <= XFS_LINEAR_EXTS); 4119 size = nextents * sizeof(xfs_bmbt_rec_t); 4120 4121 xfs_iext_irec_compact_pages(ifp); 4122 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 4123 4124 ep = ifp->if_u1.if_ext_irec->er_extbuf; 4125 kmem_free(ifp->if_u1.if_ext_irec); 4126 ifp->if_flags &= ~XFS_IFEXTIREC; 4127 ifp->if_u1.if_extents = ep; 4128 ifp->if_bytes = size; 4129 if (nextents < XFS_LINEAR_EXTS) { 4130 xfs_iext_realloc_direct(ifp, size); 4131 } 4132 } 4133 4134 /* 4135 * Free incore file extents. 4136 */ 4137 void 4138 xfs_iext_destroy( 4139 xfs_ifork_t *ifp) /* inode fork pointer */ 4140 { 4141 if (ifp->if_flags & XFS_IFEXTIREC) { 4142 int erp_idx; 4143 int nlists; 4144 4145 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4146 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 4147 xfs_iext_irec_remove(ifp, erp_idx); 4148 } 4149 ifp->if_flags &= ~XFS_IFEXTIREC; 4150 } else if (ifp->if_real_bytes) { 4151 kmem_free(ifp->if_u1.if_extents); 4152 } else if (ifp->if_bytes) { 4153 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4154 sizeof(xfs_bmbt_rec_t)); 4155 } 4156 ifp->if_u1.if_extents = NULL; 4157 ifp->if_real_bytes = 0; 4158 ifp->if_bytes = 0; 4159 } 4160 4161 /* 4162 * Return a pointer to the extent record for file system block bno. 4163 */ 4164 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 4165 xfs_iext_bno_to_ext( 4166 xfs_ifork_t *ifp, /* inode fork pointer */ 4167 xfs_fileoff_t bno, /* block number to search for */ 4168 xfs_extnum_t *idxp) /* index of target extent */ 4169 { 4170 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 4171 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 4172 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 4173 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4174 int high; /* upper boundary in search */ 4175 xfs_extnum_t idx = 0; /* index of target extent */ 4176 int low; /* lower boundary in search */ 4177 xfs_extnum_t nextents; /* number of file extents */ 4178 xfs_fileoff_t startoff = 0; /* start offset of extent */ 4179 4180 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4181 if (nextents == 0) { 4182 *idxp = 0; 4183 return NULL; 4184 } 4185 low = 0; 4186 if (ifp->if_flags & XFS_IFEXTIREC) { 4187 /* Find target extent list */ 4188 int erp_idx = 0; 4189 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 4190 base = erp->er_extbuf; 4191 high = erp->er_extcount - 1; 4192 } else { 4193 base = ifp->if_u1.if_extents; 4194 high = nextents - 1; 4195 } 4196 /* Binary search extent records */ 4197 while (low <= high) { 4198 idx = (low + high) >> 1; 4199 ep = base + idx; 4200 startoff = xfs_bmbt_get_startoff(ep); 4201 blockcount = xfs_bmbt_get_blockcount(ep); 4202 if (bno < startoff) { 4203 high = idx - 1; 4204 } else if (bno >= startoff + blockcount) { 4205 low = idx + 1; 4206 } else { 4207 /* Convert back to file-based extent index */ 4208 if (ifp->if_flags & XFS_IFEXTIREC) { 4209 idx += erp->er_extoff; 4210 } 4211 *idxp = idx; 4212 return ep; 4213 } 4214 } 4215 /* Convert back to file-based extent index */ 4216 if (ifp->if_flags & XFS_IFEXTIREC) { 4217 idx += erp->er_extoff; 4218 } 4219 if (bno >= startoff + blockcount) { 4220 if (++idx == nextents) { 4221 ep = NULL; 4222 } else { 4223 ep = xfs_iext_get_ext(ifp, idx); 4224 } 4225 } 4226 *idxp = idx; 4227 return ep; 4228 } 4229 4230 /* 4231 * Return a pointer to the indirection array entry containing the 4232 * extent record for filesystem block bno. Store the index of the 4233 * target irec in *erp_idxp. 4234 */ 4235 xfs_ext_irec_t * /* pointer to found extent record */ 4236 xfs_iext_bno_to_irec( 4237 xfs_ifork_t *ifp, /* inode fork pointer */ 4238 xfs_fileoff_t bno, /* block number to search for */ 4239 int *erp_idxp) /* irec index of target ext list */ 4240 { 4241 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4242 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4243 int erp_idx; /* indirection array index */ 4244 int nlists; /* number of extent irec's (lists) */ 4245 int high; /* binary search upper limit */ 4246 int low; /* binary search lower limit */ 4247 4248 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4249 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4250 erp_idx = 0; 4251 low = 0; 4252 high = nlists - 1; 4253 while (low <= high) { 4254 erp_idx = (low + high) >> 1; 4255 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4256 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4257 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4258 high = erp_idx - 1; 4259 } else if (erp_next && bno >= 4260 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4261 low = erp_idx + 1; 4262 } else { 4263 break; 4264 } 4265 } 4266 *erp_idxp = erp_idx; 4267 return erp; 4268 } 4269 4270 /* 4271 * Return a pointer to the indirection array entry containing the 4272 * extent record at file extent index *idxp. Store the index of the 4273 * target irec in *erp_idxp and store the page index of the target 4274 * extent record in *idxp. 4275 */ 4276 xfs_ext_irec_t * 4277 xfs_iext_idx_to_irec( 4278 xfs_ifork_t *ifp, /* inode fork pointer */ 4279 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4280 int *erp_idxp, /* pointer to target irec */ 4281 int realloc) /* new bytes were just added */ 4282 { 4283 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4284 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4285 int erp_idx; /* indirection array index */ 4286 int nlists; /* number of irec's (ex lists) */ 4287 int high; /* binary search upper limit */ 4288 int low; /* binary search lower limit */ 4289 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4290 4291 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4292 ASSERT(page_idx >= 0 && page_idx <= 4293 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4294 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4295 erp_idx = 0; 4296 low = 0; 4297 high = nlists - 1; 4298 4299 /* Binary search extent irec's */ 4300 while (low <= high) { 4301 erp_idx = (low + high) >> 1; 4302 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4303 prev = erp_idx > 0 ? erp - 1 : NULL; 4304 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4305 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4306 high = erp_idx - 1; 4307 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4308 (page_idx == erp->er_extoff + erp->er_extcount && 4309 !realloc)) { 4310 low = erp_idx + 1; 4311 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4312 erp->er_extcount == XFS_LINEAR_EXTS) { 4313 ASSERT(realloc); 4314 page_idx = 0; 4315 erp_idx++; 4316 erp = erp_idx < nlists ? erp + 1 : NULL; 4317 break; 4318 } else { 4319 page_idx -= erp->er_extoff; 4320 break; 4321 } 4322 } 4323 *idxp = page_idx; 4324 *erp_idxp = erp_idx; 4325 return(erp); 4326 } 4327 4328 /* 4329 * Allocate and initialize an indirection array once the space needed 4330 * for incore extents increases above XFS_IEXT_BUFSZ. 4331 */ 4332 void 4333 xfs_iext_irec_init( 4334 xfs_ifork_t *ifp) /* inode fork pointer */ 4335 { 4336 xfs_ext_irec_t *erp; /* indirection array pointer */ 4337 xfs_extnum_t nextents; /* number of extents in file */ 4338 4339 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4340 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4341 ASSERT(nextents <= XFS_LINEAR_EXTS); 4342 4343 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 4344 4345 if (nextents == 0) { 4346 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4347 } else if (!ifp->if_real_bytes) { 4348 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4349 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4350 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4351 } 4352 erp->er_extbuf = ifp->if_u1.if_extents; 4353 erp->er_extcount = nextents; 4354 erp->er_extoff = 0; 4355 4356 ifp->if_flags |= XFS_IFEXTIREC; 4357 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4358 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4359 ifp->if_u1.if_ext_irec = erp; 4360 4361 return; 4362 } 4363 4364 /* 4365 * Allocate and initialize a new entry in the indirection array. 4366 */ 4367 xfs_ext_irec_t * 4368 xfs_iext_irec_new( 4369 xfs_ifork_t *ifp, /* inode fork pointer */ 4370 int erp_idx) /* index for new irec */ 4371 { 4372 xfs_ext_irec_t *erp; /* indirection array pointer */ 4373 int i; /* loop counter */ 4374 int nlists; /* number of irec's (ex lists) */ 4375 4376 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4377 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4378 4379 /* Resize indirection array */ 4380 xfs_iext_realloc_indirect(ifp, ++nlists * 4381 sizeof(xfs_ext_irec_t)); 4382 /* 4383 * Move records down in the array so the 4384 * new page can use erp_idx. 4385 */ 4386 erp = ifp->if_u1.if_ext_irec; 4387 for (i = nlists - 1; i > erp_idx; i--) { 4388 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4389 } 4390 ASSERT(i == erp_idx); 4391 4392 /* Initialize new extent record */ 4393 erp = ifp->if_u1.if_ext_irec; 4394 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4395 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4396 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4397 erp[erp_idx].er_extcount = 0; 4398 erp[erp_idx].er_extoff = erp_idx > 0 ? 4399 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4400 return (&erp[erp_idx]); 4401 } 4402 4403 /* 4404 * Remove a record from the indirection array. 4405 */ 4406 void 4407 xfs_iext_irec_remove( 4408 xfs_ifork_t *ifp, /* inode fork pointer */ 4409 int erp_idx) /* irec index to remove */ 4410 { 4411 xfs_ext_irec_t *erp; /* indirection array pointer */ 4412 int i; /* loop counter */ 4413 int nlists; /* number of irec's (ex lists) */ 4414 4415 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4416 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4417 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4418 if (erp->er_extbuf) { 4419 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4420 -erp->er_extcount); 4421 kmem_free(erp->er_extbuf); 4422 } 4423 /* Compact extent records */ 4424 erp = ifp->if_u1.if_ext_irec; 4425 for (i = erp_idx; i < nlists - 1; i++) { 4426 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4427 } 4428 /* 4429 * Manually free the last extent record from the indirection 4430 * array. A call to xfs_iext_realloc_indirect() with a size 4431 * of zero would result in a call to xfs_iext_destroy() which 4432 * would in turn call this function again, creating a nasty 4433 * infinite loop. 4434 */ 4435 if (--nlists) { 4436 xfs_iext_realloc_indirect(ifp, 4437 nlists * sizeof(xfs_ext_irec_t)); 4438 } else { 4439 kmem_free(ifp->if_u1.if_ext_irec); 4440 } 4441 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4442 } 4443 4444 /* 4445 * This is called to clean up large amounts of unused memory allocated 4446 * by the indirection array. Before compacting anything though, verify 4447 * that the indirection array is still needed and switch back to the 4448 * linear extent list (or even the inline buffer) if possible. The 4449 * compaction policy is as follows: 4450 * 4451 * Full Compaction: Extents fit into a single page (or inline buffer) 4452 * Partial Compaction: Extents occupy less than 50% of allocated space 4453 * No Compaction: Extents occupy at least 50% of allocated space 4454 */ 4455 void 4456 xfs_iext_irec_compact( 4457 xfs_ifork_t *ifp) /* inode fork pointer */ 4458 { 4459 xfs_extnum_t nextents; /* number of extents in file */ 4460 int nlists; /* number of irec's (ex lists) */ 4461 4462 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4463 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4464 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4465 4466 if (nextents == 0) { 4467 xfs_iext_destroy(ifp); 4468 } else if (nextents <= XFS_INLINE_EXTS) { 4469 xfs_iext_indirect_to_direct(ifp); 4470 xfs_iext_direct_to_inline(ifp, nextents); 4471 } else if (nextents <= XFS_LINEAR_EXTS) { 4472 xfs_iext_indirect_to_direct(ifp); 4473 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4474 xfs_iext_irec_compact_pages(ifp); 4475 } 4476 } 4477 4478 /* 4479 * Combine extents from neighboring extent pages. 4480 */ 4481 void 4482 xfs_iext_irec_compact_pages( 4483 xfs_ifork_t *ifp) /* inode fork pointer */ 4484 { 4485 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4486 int erp_idx = 0; /* indirection array index */ 4487 int nlists; /* number of irec's (ex lists) */ 4488 4489 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4490 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4491 while (erp_idx < nlists - 1) { 4492 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4493 erp_next = erp + 1; 4494 if (erp_next->er_extcount <= 4495 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4496 memcpy(&erp->er_extbuf[erp->er_extcount], 4497 erp_next->er_extbuf, erp_next->er_extcount * 4498 sizeof(xfs_bmbt_rec_t)); 4499 erp->er_extcount += erp_next->er_extcount; 4500 /* 4501 * Free page before removing extent record 4502 * so er_extoffs don't get modified in 4503 * xfs_iext_irec_remove. 4504 */ 4505 kmem_free(erp_next->er_extbuf); 4506 erp_next->er_extbuf = NULL; 4507 xfs_iext_irec_remove(ifp, erp_idx + 1); 4508 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4509 } else { 4510 erp_idx++; 4511 } 4512 } 4513 } 4514 4515 /* 4516 * This is called to update the er_extoff field in the indirection 4517 * array when extents have been added or removed from one of the 4518 * extent lists. erp_idx contains the irec index to begin updating 4519 * at and ext_diff contains the number of extents that were added 4520 * or removed. 4521 */ 4522 void 4523 xfs_iext_irec_update_extoffs( 4524 xfs_ifork_t *ifp, /* inode fork pointer */ 4525 int erp_idx, /* irec index to update */ 4526 int ext_diff) /* number of new extents */ 4527 { 4528 int i; /* loop counter */ 4529 int nlists; /* number of irec's (ex lists */ 4530 4531 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4532 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4533 for (i = erp_idx; i < nlists; i++) { 4534 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4535 } 4536 } 4537