xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 367e5927)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
8 
9 #include "xfs.h"
10 #include "xfs_fs.h"
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
15 #include "xfs_sb.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
21 #include "xfs_dir2.h"
22 #include "xfs_attr_sf.h"
23 #include "xfs_attr.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_bmap.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_log.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
44 
45 kmem_zone_t *xfs_inode_zone;
46 
47 /*
48  * Used in xfs_itruncate_extents().  This is the maximum number of extents
49  * freed from a file in a single transaction.
50  */
51 #define	XFS_ITRUNC_MAX_EXTENTS	2
52 
53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
56 
57 /*
58  * helper function to extract extent size hint from inode
59  */
60 xfs_extlen_t
61 xfs_get_extsz_hint(
62 	struct xfs_inode	*ip)
63 {
64 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 		return ip->i_d.di_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_d.di_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 		lock_mode = XFS_ILOCK_EXCL;
118 	xfs_ilock(ip, lock_mode);
119 	return lock_mode;
120 }
121 
122 uint
123 xfs_ilock_attr_map_shared(
124 	struct xfs_inode	*ip)
125 {
126 	uint			lock_mode = XFS_ILOCK_SHARED;
127 
128 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_sem locking order:
148  *
149  * i_rwsem -> page lock -> mmap_sem
150  * mmap_sem -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_sem locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_sem.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
443 xfs_lock_inodes(
444 	xfs_inode_t	**ips,
445 	int		inodes,
446 	uint		lock_mode)
447 {
448 	int		attempts = 0, i, j, try_lock;
449 	xfs_log_item_t	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	xfs_log_item_t		*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = (xfs_log_item_t *)ip0->i_itemp;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 void
602 __xfs_iflock(
603 	struct xfs_inode	*ip)
604 {
605 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607 
608 	do {
609 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 		if (xfs_isiflocked(ip))
611 			io_schedule();
612 	} while (!xfs_iflock_nowait(ip));
613 
614 	finish_wait(wq, &wait.wq_entry);
615 }
616 
617 STATIC uint
618 _xfs_dic2xflags(
619 	uint16_t		di_flags,
620 	uint64_t		di_flags2,
621 	bool			has_attr)
622 {
623 	uint			flags = 0;
624 
625 	if (di_flags & XFS_DIFLAG_ANY) {
626 		if (di_flags & XFS_DIFLAG_REALTIME)
627 			flags |= FS_XFLAG_REALTIME;
628 		if (di_flags & XFS_DIFLAG_PREALLOC)
629 			flags |= FS_XFLAG_PREALLOC;
630 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 			flags |= FS_XFLAG_IMMUTABLE;
632 		if (di_flags & XFS_DIFLAG_APPEND)
633 			flags |= FS_XFLAG_APPEND;
634 		if (di_flags & XFS_DIFLAG_SYNC)
635 			flags |= FS_XFLAG_SYNC;
636 		if (di_flags & XFS_DIFLAG_NOATIME)
637 			flags |= FS_XFLAG_NOATIME;
638 		if (di_flags & XFS_DIFLAG_NODUMP)
639 			flags |= FS_XFLAG_NODUMP;
640 		if (di_flags & XFS_DIFLAG_RTINHERIT)
641 			flags |= FS_XFLAG_RTINHERIT;
642 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 			flags |= FS_XFLAG_PROJINHERIT;
644 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 			flags |= FS_XFLAG_NOSYMLINKS;
646 		if (di_flags & XFS_DIFLAG_EXTSIZE)
647 			flags |= FS_XFLAG_EXTSIZE;
648 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 			flags |= FS_XFLAG_EXTSZINHERIT;
650 		if (di_flags & XFS_DIFLAG_NODEFRAG)
651 			flags |= FS_XFLAG_NODEFRAG;
652 		if (di_flags & XFS_DIFLAG_FILESTREAM)
653 			flags |= FS_XFLAG_FILESTREAM;
654 	}
655 
656 	if (di_flags2 & XFS_DIFLAG2_ANY) {
657 		if (di_flags2 & XFS_DIFLAG2_DAX)
658 			flags |= FS_XFLAG_DAX;
659 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 			flags |= FS_XFLAG_COWEXTSIZE;
661 	}
662 
663 	if (has_attr)
664 		flags |= FS_XFLAG_HASATTR;
665 
666 	return flags;
667 }
668 
669 uint
670 xfs_ip2xflags(
671 	struct xfs_inode	*ip)
672 {
673 	struct xfs_icdinode	*dic = &ip->i_d;
674 
675 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
676 }
677 
678 /*
679  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680  * is allowed, otherwise it has to be an exact match. If a CI match is found,
681  * ci_name->name will point to a the actual name (caller must free) or
682  * will be set to NULL if an exact match is found.
683  */
684 int
685 xfs_lookup(
686 	xfs_inode_t		*dp,
687 	struct xfs_name		*name,
688 	xfs_inode_t		**ipp,
689 	struct xfs_name		*ci_name)
690 {
691 	xfs_ino_t		inum;
692 	int			error;
693 
694 	trace_xfs_lookup(dp, name);
695 
696 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 		return -EIO;
698 
699 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
700 	if (error)
701 		goto out_unlock;
702 
703 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 	if (error)
705 		goto out_free_name;
706 
707 	return 0;
708 
709 out_free_name:
710 	if (ci_name)
711 		kmem_free(ci_name->name);
712 out_unlock:
713 	*ipp = NULL;
714 	return error;
715 }
716 
717 /*
718  * Allocate an inode on disk and return a copy of its in-core version.
719  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
720  * appropriately within the inode.  The uid and gid for the inode are
721  * set according to the contents of the given cred structure.
722  *
723  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724  * has a free inode available, call xfs_iget() to obtain the in-core
725  * version of the allocated inode.  Finally, fill in the inode and
726  * log its initial contents.  In this case, ialloc_context would be
727  * set to NULL.
728  *
729  * If xfs_dialloc() does not have an available inode, it will replenish
730  * its supply by doing an allocation. Since we can only do one
731  * allocation within a transaction without deadlocks, we must commit
732  * the current transaction before returning the inode itself.
733  * In this case, therefore, we will set ialloc_context and return.
734  * The caller should then commit the current transaction, start a new
735  * transaction, and call xfs_ialloc() again to actually get the inode.
736  *
737  * To ensure that some other process does not grab the inode that
738  * was allocated during the first call to xfs_ialloc(), this routine
739  * also returns the [locked] bp pointing to the head of the freelist
740  * as ialloc_context.  The caller should hold this buffer across
741  * the commit and pass it back into this routine on the second call.
742  *
743  * If we are allocating quota inodes, we do not have a parent inode
744  * to attach to or associate with (i.e. pip == NULL) because they
745  * are not linked into the directory structure - they are attached
746  * directly to the superblock - and so have no parent.
747  */
748 static int
749 xfs_ialloc(
750 	xfs_trans_t	*tp,
751 	xfs_inode_t	*pip,
752 	umode_t		mode,
753 	xfs_nlink_t	nlink,
754 	dev_t		rdev,
755 	prid_t		prid,
756 	xfs_buf_t	**ialloc_context,
757 	xfs_inode_t	**ipp)
758 {
759 	struct xfs_mount *mp = tp->t_mountp;
760 	xfs_ino_t	ino;
761 	xfs_inode_t	*ip;
762 	uint		flags;
763 	int		error;
764 	struct timespec64 tv;
765 	struct inode	*inode;
766 
767 	/*
768 	 * Call the space management code to pick
769 	 * the on-disk inode to be allocated.
770 	 */
771 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 			    ialloc_context, &ino);
773 	if (error)
774 		return error;
775 	if (*ialloc_context || ino == NULLFSINO) {
776 		*ipp = NULL;
777 		return 0;
778 	}
779 	ASSERT(*ialloc_context == NULL);
780 
781 	/*
782 	 * Protect against obviously corrupt allocation btree records. Later
783 	 * xfs_iget checks will catch re-allocation of other active in-memory
784 	 * and on-disk inodes. If we don't catch reallocating the parent inode
785 	 * here we will deadlock in xfs_iget() so we have to do these checks
786 	 * first.
787 	 */
788 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 		return -EFSCORRUPTED;
791 	}
792 
793 	/*
794 	 * Get the in-core inode with the lock held exclusively.
795 	 * This is because we're setting fields here we need
796 	 * to prevent others from looking at until we're done.
797 	 */
798 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 			 XFS_ILOCK_EXCL, &ip);
800 	if (error)
801 		return error;
802 	ASSERT(ip != NULL);
803 	inode = VFS_I(ip);
804 
805 	/*
806 	 * We always convert v1 inodes to v2 now - we only support filesystems
807 	 * with >= v2 inode capability, so there is no reason for ever leaving
808 	 * an inode in v1 format.
809 	 */
810 	if (ip->i_d.di_version == 1)
811 		ip->i_d.di_version = 2;
812 
813 	inode->i_mode = mode;
814 	set_nlink(inode, nlink);
815 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 	inode->i_rdev = rdev;
818 	xfs_set_projid(ip, prid);
819 
820 	if (pip && XFS_INHERIT_GID(pip)) {
821 		ip->i_d.di_gid = pip->i_d.di_gid;
822 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 			inode->i_mode |= S_ISGID;
824 	}
825 
826 	/*
827 	 * If the group ID of the new file does not match the effective group
828 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 	 * (and only if the irix_sgid_inherit compatibility variable is set).
830 	 */
831 	if ((irix_sgid_inherit) &&
832 	    (inode->i_mode & S_ISGID) &&
833 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 		inode->i_mode &= ~S_ISGID;
835 
836 	ip->i_d.di_size = 0;
837 	ip->i_d.di_nextents = 0;
838 	ASSERT(ip->i_d.di_nblocks == 0);
839 
840 	tv = current_time(inode);
841 	inode->i_mtime = tv;
842 	inode->i_atime = tv;
843 	inode->i_ctime = tv;
844 
845 	ip->i_d.di_extsize = 0;
846 	ip->i_d.di_dmevmask = 0;
847 	ip->i_d.di_dmstate = 0;
848 	ip->i_d.di_flags = 0;
849 
850 	if (ip->i_d.di_version == 3) {
851 		inode_set_iversion(inode, 1);
852 		ip->i_d.di_flags2 = 0;
853 		ip->i_d.di_cowextsize = 0;
854 		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
856 	}
857 
858 
859 	flags = XFS_ILOG_CORE;
860 	switch (mode & S_IFMT) {
861 	case S_IFIFO:
862 	case S_IFCHR:
863 	case S_IFBLK:
864 	case S_IFSOCK:
865 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 		ip->i_df.if_flags = 0;
867 		flags |= XFS_ILOG_DEV;
868 		break;
869 	case S_IFREG:
870 	case S_IFDIR:
871 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
872 			uint		di_flags = 0;
873 
874 			if (S_ISDIR(mode)) {
875 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 					di_flags |= XFS_DIFLAG_RTINHERIT;
877 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 					ip->i_d.di_extsize = pip->i_d.di_extsize;
880 				}
881 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 					di_flags |= XFS_DIFLAG_PROJINHERIT;
883 			} else if (S_ISREG(mode)) {
884 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 					di_flags |= XFS_DIFLAG_REALTIME;
886 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 					di_flags |= XFS_DIFLAG_EXTSIZE;
888 					ip->i_d.di_extsize = pip->i_d.di_extsize;
889 				}
890 			}
891 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 			    xfs_inherit_noatime)
893 				di_flags |= XFS_DIFLAG_NOATIME;
894 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 			    xfs_inherit_nodump)
896 				di_flags |= XFS_DIFLAG_NODUMP;
897 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 			    xfs_inherit_sync)
899 				di_flags |= XFS_DIFLAG_SYNC;
900 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 			    xfs_inherit_nosymlinks)
902 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 			    xfs_inherit_nodefrag)
905 				di_flags |= XFS_DIFLAG_NODEFRAG;
906 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 				di_flags |= XFS_DIFLAG_FILESTREAM;
908 
909 			ip->i_d.di_flags |= di_flags;
910 		}
911 		if (pip &&
912 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 		    pip->i_d.di_version == 3 &&
914 		    ip->i_d.di_version == 3) {
915 			uint64_t	di_flags2 = 0;
916 
917 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 			}
921 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 				di_flags2 |= XFS_DIFLAG2_DAX;
923 
924 			ip->i_d.di_flags2 |= di_flags2;
925 		}
926 		/* FALLTHROUGH */
927 	case S_IFLNK:
928 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 		ip->i_df.if_flags = XFS_IFEXTENTS;
930 		ip->i_df.if_bytes = 0;
931 		ip->i_df.if_u1.if_root = NULL;
932 		break;
933 	default:
934 		ASSERT(0);
935 	}
936 	/*
937 	 * Attribute fork settings for new inode.
938 	 */
939 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 	ip->i_d.di_anextents = 0;
941 
942 	/*
943 	 * Log the new values stuffed into the inode.
944 	 */
945 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 	xfs_trans_log_inode(tp, ip, flags);
947 
948 	/* now that we have an i_mode we can setup the inode structure */
949 	xfs_setup_inode(ip);
950 
951 	*ipp = ip;
952 	return 0;
953 }
954 
955 /*
956  * Allocates a new inode from disk and return a pointer to the
957  * incore copy. This routine will internally commit the current
958  * transaction and allocate a new one if the Space Manager needed
959  * to do an allocation to replenish the inode free-list.
960  *
961  * This routine is designed to be called from xfs_create and
962  * xfs_create_dir.
963  *
964  */
965 int
966 xfs_dir_ialloc(
967 	xfs_trans_t	**tpp,		/* input: current transaction;
968 					   output: may be a new transaction. */
969 	xfs_inode_t	*dp,		/* directory within whose allocate
970 					   the inode. */
971 	umode_t		mode,
972 	xfs_nlink_t	nlink,
973 	dev_t		rdev,
974 	prid_t		prid,		/* project id */
975 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
976 					   locked. */
977 {
978 	xfs_trans_t	*tp;
979 	xfs_inode_t	*ip;
980 	xfs_buf_t	*ialloc_context = NULL;
981 	int		code;
982 	void		*dqinfo;
983 	uint		tflags;
984 
985 	tp = *tpp;
986 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987 
988 	/*
989 	 * xfs_ialloc will return a pointer to an incore inode if
990 	 * the Space Manager has an available inode on the free
991 	 * list. Otherwise, it will do an allocation and replenish
992 	 * the freelist.  Since we can only do one allocation per
993 	 * transaction without deadlocks, we will need to commit the
994 	 * current transaction and start a new one.  We will then
995 	 * need to call xfs_ialloc again to get the inode.
996 	 *
997 	 * If xfs_ialloc did an allocation to replenish the freelist,
998 	 * it returns the bp containing the head of the freelist as
999 	 * ialloc_context. We will hold a lock on it across the
1000 	 * transaction commit so that no other process can steal
1001 	 * the inode(s) that we've just allocated.
1002 	 */
1003 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 			&ip);
1005 
1006 	/*
1007 	 * Return an error if we were unable to allocate a new inode.
1008 	 * This should only happen if we run out of space on disk or
1009 	 * encounter a disk error.
1010 	 */
1011 	if (code) {
1012 		*ipp = NULL;
1013 		return code;
1014 	}
1015 	if (!ialloc_context && !ip) {
1016 		*ipp = NULL;
1017 		return -ENOSPC;
1018 	}
1019 
1020 	/*
1021 	 * If the AGI buffer is non-NULL, then we were unable to get an
1022 	 * inode in one operation.  We need to commit the current
1023 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1024 	 * to succeed the second time.
1025 	 */
1026 	if (ialloc_context) {
1027 		/*
1028 		 * Normally, xfs_trans_commit releases all the locks.
1029 		 * We call bhold to hang on to the ialloc_context across
1030 		 * the commit.  Holding this buffer prevents any other
1031 		 * processes from doing any allocations in this
1032 		 * allocation group.
1033 		 */
1034 		xfs_trans_bhold(tp, ialloc_context);
1035 
1036 		/*
1037 		 * We want the quota changes to be associated with the next
1038 		 * transaction, NOT this one. So, detach the dqinfo from this
1039 		 * and attach it to the next transaction.
1040 		 */
1041 		dqinfo = NULL;
1042 		tflags = 0;
1043 		if (tp->t_dqinfo) {
1044 			dqinfo = (void *)tp->t_dqinfo;
1045 			tp->t_dqinfo = NULL;
1046 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 		}
1049 
1050 		code = xfs_trans_roll(&tp);
1051 
1052 		/*
1053 		 * Re-attach the quota info that we detached from prev trx.
1054 		 */
1055 		if (dqinfo) {
1056 			tp->t_dqinfo = dqinfo;
1057 			tp->t_flags |= tflags;
1058 		}
1059 
1060 		if (code) {
1061 			xfs_buf_relse(ialloc_context);
1062 			*tpp = tp;
1063 			*ipp = NULL;
1064 			return code;
1065 		}
1066 		xfs_trans_bjoin(tp, ialloc_context);
1067 
1068 		/*
1069 		 * Call ialloc again. Since we've locked out all
1070 		 * other allocations in this allocation group,
1071 		 * this call should always succeed.
1072 		 */
1073 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 				  &ialloc_context, &ip);
1075 
1076 		/*
1077 		 * If we get an error at this point, return to the caller
1078 		 * so that the current transaction can be aborted.
1079 		 */
1080 		if (code) {
1081 			*tpp = tp;
1082 			*ipp = NULL;
1083 			return code;
1084 		}
1085 		ASSERT(!ialloc_context && ip);
1086 
1087 	}
1088 
1089 	*ipp = ip;
1090 	*tpp = tp;
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Decrement the link count on an inode & log the change.  If this causes the
1097  * link count to go to zero, move the inode to AGI unlinked list so that it can
1098  * be freed when the last active reference goes away via xfs_inactive().
1099  */
1100 static int			/* error */
1101 xfs_droplink(
1102 	xfs_trans_t *tp,
1103 	xfs_inode_t *ip)
1104 {
1105 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106 
1107 	drop_nlink(VFS_I(ip));
1108 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109 
1110 	if (VFS_I(ip)->i_nlink)
1111 		return 0;
1112 
1113 	return xfs_iunlink(tp, ip);
1114 }
1115 
1116 /*
1117  * Increment the link count on an inode & log the change.
1118  */
1119 static int
1120 xfs_bumplink(
1121 	xfs_trans_t *tp,
1122 	xfs_inode_t *ip)
1123 {
1124 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125 
1126 	ASSERT(ip->i_d.di_version > 1);
1127 	inc_nlink(VFS_I(ip));
1128 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 	return 0;
1130 }
1131 
1132 int
1133 xfs_create(
1134 	xfs_inode_t		*dp,
1135 	struct xfs_name		*name,
1136 	umode_t			mode,
1137 	dev_t			rdev,
1138 	xfs_inode_t		**ipp)
1139 {
1140 	int			is_dir = S_ISDIR(mode);
1141 	struct xfs_mount	*mp = dp->i_mount;
1142 	struct xfs_inode	*ip = NULL;
1143 	struct xfs_trans	*tp = NULL;
1144 	int			error;
1145 	bool                    unlock_dp_on_error = false;
1146 	prid_t			prid;
1147 	struct xfs_dquot	*udqp = NULL;
1148 	struct xfs_dquot	*gdqp = NULL;
1149 	struct xfs_dquot	*pdqp = NULL;
1150 	struct xfs_trans_res	*tres;
1151 	uint			resblks;
1152 
1153 	trace_xfs_create(dp, name);
1154 
1155 	if (XFS_FORCED_SHUTDOWN(mp))
1156 		return -EIO;
1157 
1158 	prid = xfs_get_initial_prid(dp);
1159 
1160 	/*
1161 	 * Make sure that we have allocated dquot(s) on disk.
1162 	 */
1163 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1164 					xfs_kgid_to_gid(current_fsgid()), prid,
1165 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1166 					&udqp, &gdqp, &pdqp);
1167 	if (error)
1168 		return error;
1169 
1170 	if (is_dir) {
1171 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1172 		tres = &M_RES(mp)->tr_mkdir;
1173 	} else {
1174 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1175 		tres = &M_RES(mp)->tr_create;
1176 	}
1177 
1178 	/*
1179 	 * Initially assume that the file does not exist and
1180 	 * reserve the resources for that case.  If that is not
1181 	 * the case we'll drop the one we have and get a more
1182 	 * appropriate transaction later.
1183 	 */
1184 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1185 	if (error == -ENOSPC) {
1186 		/* flush outstanding delalloc blocks and retry */
1187 		xfs_flush_inodes(mp);
1188 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1189 	}
1190 	if (error)
1191 		goto out_release_inode;
1192 
1193 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1194 	unlock_dp_on_error = true;
1195 
1196 	/*
1197 	 * Reserve disk quota and the inode.
1198 	 */
1199 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200 						pdqp, resblks, 1, 0);
1201 	if (error)
1202 		goto out_trans_cancel;
1203 
1204 	/*
1205 	 * A newly created regular or special file just has one directory
1206 	 * entry pointing to them, but a directory also the "." entry
1207 	 * pointing to itself.
1208 	 */
1209 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1210 	if (error)
1211 		goto out_trans_cancel;
1212 
1213 	/*
1214 	 * Now we join the directory inode to the transaction.  We do not do it
1215 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1216 	 * (and release all the locks).  An error from here on will result in
1217 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1218 	 * error path.
1219 	 */
1220 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1221 	unlock_dp_on_error = false;
1222 
1223 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1224 				   resblks ?
1225 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1226 	if (error) {
1227 		ASSERT(error != -ENOSPC);
1228 		goto out_trans_cancel;
1229 	}
1230 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1231 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1232 
1233 	if (is_dir) {
1234 		error = xfs_dir_init(tp, ip, dp);
1235 		if (error)
1236 			goto out_trans_cancel;
1237 
1238 		error = xfs_bumplink(tp, dp);
1239 		if (error)
1240 			goto out_trans_cancel;
1241 	}
1242 
1243 	/*
1244 	 * If this is a synchronous mount, make sure that the
1245 	 * create transaction goes to disk before returning to
1246 	 * the user.
1247 	 */
1248 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1249 		xfs_trans_set_sync(tp);
1250 
1251 	/*
1252 	 * Attach the dquot(s) to the inodes and modify them incore.
1253 	 * These ids of the inode couldn't have changed since the new
1254 	 * inode has been locked ever since it was created.
1255 	 */
1256 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1257 
1258 	error = xfs_trans_commit(tp);
1259 	if (error)
1260 		goto out_release_inode;
1261 
1262 	xfs_qm_dqrele(udqp);
1263 	xfs_qm_dqrele(gdqp);
1264 	xfs_qm_dqrele(pdqp);
1265 
1266 	*ipp = ip;
1267 	return 0;
1268 
1269  out_trans_cancel:
1270 	xfs_trans_cancel(tp);
1271  out_release_inode:
1272 	/*
1273 	 * Wait until after the current transaction is aborted to finish the
1274 	 * setup of the inode and release the inode.  This prevents recursive
1275 	 * transactions and deadlocks from xfs_inactive.
1276 	 */
1277 	if (ip) {
1278 		xfs_finish_inode_setup(ip);
1279 		xfs_irele(ip);
1280 	}
1281 
1282 	xfs_qm_dqrele(udqp);
1283 	xfs_qm_dqrele(gdqp);
1284 	xfs_qm_dqrele(pdqp);
1285 
1286 	if (unlock_dp_on_error)
1287 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1288 	return error;
1289 }
1290 
1291 int
1292 xfs_create_tmpfile(
1293 	struct xfs_inode	*dp,
1294 	umode_t			mode,
1295 	struct xfs_inode	**ipp)
1296 {
1297 	struct xfs_mount	*mp = dp->i_mount;
1298 	struct xfs_inode	*ip = NULL;
1299 	struct xfs_trans	*tp = NULL;
1300 	int			error;
1301 	prid_t                  prid;
1302 	struct xfs_dquot	*udqp = NULL;
1303 	struct xfs_dquot	*gdqp = NULL;
1304 	struct xfs_dquot	*pdqp = NULL;
1305 	struct xfs_trans_res	*tres;
1306 	uint			resblks;
1307 
1308 	if (XFS_FORCED_SHUTDOWN(mp))
1309 		return -EIO;
1310 
1311 	prid = xfs_get_initial_prid(dp);
1312 
1313 	/*
1314 	 * Make sure that we have allocated dquot(s) on disk.
1315 	 */
1316 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1317 				xfs_kgid_to_gid(current_fsgid()), prid,
1318 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1319 				&udqp, &gdqp, &pdqp);
1320 	if (error)
1321 		return error;
1322 
1323 	resblks = XFS_IALLOC_SPACE_RES(mp);
1324 	tres = &M_RES(mp)->tr_create_tmpfile;
1325 
1326 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1327 	if (error)
1328 		goto out_release_inode;
1329 
1330 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1331 						pdqp, resblks, 1, 0);
1332 	if (error)
1333 		goto out_trans_cancel;
1334 
1335 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1336 	if (error)
1337 		goto out_trans_cancel;
1338 
1339 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1340 		xfs_trans_set_sync(tp);
1341 
1342 	/*
1343 	 * Attach the dquot(s) to the inodes and modify them incore.
1344 	 * These ids of the inode couldn't have changed since the new
1345 	 * inode has been locked ever since it was created.
1346 	 */
1347 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1348 
1349 	error = xfs_iunlink(tp, ip);
1350 	if (error)
1351 		goto out_trans_cancel;
1352 
1353 	error = xfs_trans_commit(tp);
1354 	if (error)
1355 		goto out_release_inode;
1356 
1357 	xfs_qm_dqrele(udqp);
1358 	xfs_qm_dqrele(gdqp);
1359 	xfs_qm_dqrele(pdqp);
1360 
1361 	*ipp = ip;
1362 	return 0;
1363 
1364  out_trans_cancel:
1365 	xfs_trans_cancel(tp);
1366  out_release_inode:
1367 	/*
1368 	 * Wait until after the current transaction is aborted to finish the
1369 	 * setup of the inode and release the inode.  This prevents recursive
1370 	 * transactions and deadlocks from xfs_inactive.
1371 	 */
1372 	if (ip) {
1373 		xfs_finish_inode_setup(ip);
1374 		xfs_irele(ip);
1375 	}
1376 
1377 	xfs_qm_dqrele(udqp);
1378 	xfs_qm_dqrele(gdqp);
1379 	xfs_qm_dqrele(pdqp);
1380 
1381 	return error;
1382 }
1383 
1384 int
1385 xfs_link(
1386 	xfs_inode_t		*tdp,
1387 	xfs_inode_t		*sip,
1388 	struct xfs_name		*target_name)
1389 {
1390 	xfs_mount_t		*mp = tdp->i_mount;
1391 	xfs_trans_t		*tp;
1392 	int			error;
1393 	int			resblks;
1394 
1395 	trace_xfs_link(tdp, target_name);
1396 
1397 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1398 
1399 	if (XFS_FORCED_SHUTDOWN(mp))
1400 		return -EIO;
1401 
1402 	error = xfs_qm_dqattach(sip);
1403 	if (error)
1404 		goto std_return;
1405 
1406 	error = xfs_qm_dqattach(tdp);
1407 	if (error)
1408 		goto std_return;
1409 
1410 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1411 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1412 	if (error == -ENOSPC) {
1413 		resblks = 0;
1414 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1415 	}
1416 	if (error)
1417 		goto std_return;
1418 
1419 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1420 
1421 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1422 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1423 
1424 	/*
1425 	 * If we are using project inheritance, we only allow hard link
1426 	 * creation in our tree when the project IDs are the same; else
1427 	 * the tree quota mechanism could be circumvented.
1428 	 */
1429 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1430 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1431 		error = -EXDEV;
1432 		goto error_return;
1433 	}
1434 
1435 	if (!resblks) {
1436 		error = xfs_dir_canenter(tp, tdp, target_name);
1437 		if (error)
1438 			goto error_return;
1439 	}
1440 
1441 	/*
1442 	 * Handle initial link state of O_TMPFILE inode
1443 	 */
1444 	if (VFS_I(sip)->i_nlink == 0) {
1445 		error = xfs_iunlink_remove(tp, sip);
1446 		if (error)
1447 			goto error_return;
1448 	}
1449 
1450 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1451 				   resblks);
1452 	if (error)
1453 		goto error_return;
1454 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1455 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1456 
1457 	error = xfs_bumplink(tp, sip);
1458 	if (error)
1459 		goto error_return;
1460 
1461 	/*
1462 	 * If this is a synchronous mount, make sure that the
1463 	 * link transaction goes to disk before returning to
1464 	 * the user.
1465 	 */
1466 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1467 		xfs_trans_set_sync(tp);
1468 
1469 	return xfs_trans_commit(tp);
1470 
1471  error_return:
1472 	xfs_trans_cancel(tp);
1473  std_return:
1474 	return error;
1475 }
1476 
1477 /* Clear the reflink flag and the cowblocks tag if possible. */
1478 static void
1479 xfs_itruncate_clear_reflink_flags(
1480 	struct xfs_inode	*ip)
1481 {
1482 	struct xfs_ifork	*dfork;
1483 	struct xfs_ifork	*cfork;
1484 
1485 	if (!xfs_is_reflink_inode(ip))
1486 		return;
1487 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1488 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1489 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1490 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1491 	if (cfork->if_bytes == 0)
1492 		xfs_inode_clear_cowblocks_tag(ip);
1493 }
1494 
1495 /*
1496  * Free up the underlying blocks past new_size.  The new size must be smaller
1497  * than the current size.  This routine can be used both for the attribute and
1498  * data fork, and does not modify the inode size, which is left to the caller.
1499  *
1500  * The transaction passed to this routine must have made a permanent log
1501  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1502  * given transaction and start new ones, so make sure everything involved in
1503  * the transaction is tidy before calling here.  Some transaction will be
1504  * returned to the caller to be committed.  The incoming transaction must
1505  * already include the inode, and both inode locks must be held exclusively.
1506  * The inode must also be "held" within the transaction.  On return the inode
1507  * will be "held" within the returned transaction.  This routine does NOT
1508  * require any disk space to be reserved for it within the transaction.
1509  *
1510  * If we get an error, we must return with the inode locked and linked into the
1511  * current transaction. This keeps things simple for the higher level code,
1512  * because it always knows that the inode is locked and held in the transaction
1513  * that returns to it whether errors occur or not.  We don't mark the inode
1514  * dirty on error so that transactions can be easily aborted if possible.
1515  */
1516 int
1517 xfs_itruncate_extents_flags(
1518 	struct xfs_trans	**tpp,
1519 	struct xfs_inode	*ip,
1520 	int			whichfork,
1521 	xfs_fsize_t		new_size,
1522 	int			flags)
1523 {
1524 	struct xfs_mount	*mp = ip->i_mount;
1525 	struct xfs_trans	*tp = *tpp;
1526 	xfs_fileoff_t		first_unmap_block;
1527 	xfs_fileoff_t		last_block;
1528 	xfs_filblks_t		unmap_len;
1529 	int			error = 0;
1530 	int			done = 0;
1531 
1532 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1533 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1534 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1535 	ASSERT(new_size <= XFS_ISIZE(ip));
1536 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1537 	ASSERT(ip->i_itemp != NULL);
1538 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1539 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1540 
1541 	trace_xfs_itruncate_extents_start(ip, new_size);
1542 
1543 	flags |= xfs_bmapi_aflag(whichfork);
1544 
1545 	/*
1546 	 * Since it is possible for space to become allocated beyond
1547 	 * the end of the file (in a crash where the space is allocated
1548 	 * but the inode size is not yet updated), simply remove any
1549 	 * blocks which show up between the new EOF and the maximum
1550 	 * possible file size.  If the first block to be removed is
1551 	 * beyond the maximum file size (ie it is the same as last_block),
1552 	 * then there is nothing to do.
1553 	 */
1554 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1555 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1556 	if (first_unmap_block == last_block)
1557 		return 0;
1558 
1559 	ASSERT(first_unmap_block < last_block);
1560 	unmap_len = last_block - first_unmap_block + 1;
1561 	while (!done) {
1562 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1563 		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1564 				    XFS_ITRUNC_MAX_EXTENTS, &done);
1565 		if (error)
1566 			goto out;
1567 
1568 		/*
1569 		 * Duplicate the transaction that has the permanent
1570 		 * reservation and commit the old transaction.
1571 		 */
1572 		error = xfs_defer_finish(&tp);
1573 		if (error)
1574 			goto out;
1575 
1576 		error = xfs_trans_roll_inode(&tp, ip);
1577 		if (error)
1578 			goto out;
1579 	}
1580 
1581 	if (whichfork == XFS_DATA_FORK) {
1582 		/* Remove all pending CoW reservations. */
1583 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1584 				first_unmap_block, last_block, true);
1585 		if (error)
1586 			goto out;
1587 
1588 		xfs_itruncate_clear_reflink_flags(ip);
1589 	}
1590 
1591 	/*
1592 	 * Always re-log the inode so that our permanent transaction can keep
1593 	 * on rolling it forward in the log.
1594 	 */
1595 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1596 
1597 	trace_xfs_itruncate_extents_end(ip, new_size);
1598 
1599 out:
1600 	*tpp = tp;
1601 	return error;
1602 }
1603 
1604 int
1605 xfs_release(
1606 	xfs_inode_t	*ip)
1607 {
1608 	xfs_mount_t	*mp = ip->i_mount;
1609 	int		error;
1610 
1611 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1612 		return 0;
1613 
1614 	/* If this is a read-only mount, don't do this (would generate I/O) */
1615 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1616 		return 0;
1617 
1618 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1619 		int truncated;
1620 
1621 		/*
1622 		 * If we previously truncated this file and removed old data
1623 		 * in the process, we want to initiate "early" writeout on
1624 		 * the last close.  This is an attempt to combat the notorious
1625 		 * NULL files problem which is particularly noticeable from a
1626 		 * truncate down, buffered (re-)write (delalloc), followed by
1627 		 * a crash.  What we are effectively doing here is
1628 		 * significantly reducing the time window where we'd otherwise
1629 		 * be exposed to that problem.
1630 		 */
1631 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1632 		if (truncated) {
1633 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1634 			if (ip->i_delayed_blks > 0) {
1635 				error = filemap_flush(VFS_I(ip)->i_mapping);
1636 				if (error)
1637 					return error;
1638 			}
1639 		}
1640 	}
1641 
1642 	if (VFS_I(ip)->i_nlink == 0)
1643 		return 0;
1644 
1645 	if (xfs_can_free_eofblocks(ip, false)) {
1646 
1647 		/*
1648 		 * Check if the inode is being opened, written and closed
1649 		 * frequently and we have delayed allocation blocks outstanding
1650 		 * (e.g. streaming writes from the NFS server), truncating the
1651 		 * blocks past EOF will cause fragmentation to occur.
1652 		 *
1653 		 * In this case don't do the truncation, but we have to be
1654 		 * careful how we detect this case. Blocks beyond EOF show up as
1655 		 * i_delayed_blks even when the inode is clean, so we need to
1656 		 * truncate them away first before checking for a dirty release.
1657 		 * Hence on the first dirty close we will still remove the
1658 		 * speculative allocation, but after that we will leave it in
1659 		 * place.
1660 		 */
1661 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1662 			return 0;
1663 		/*
1664 		 * If we can't get the iolock just skip truncating the blocks
1665 		 * past EOF because we could deadlock with the mmap_sem
1666 		 * otherwise. We'll get another chance to drop them once the
1667 		 * last reference to the inode is dropped, so we'll never leak
1668 		 * blocks permanently.
1669 		 */
1670 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1671 			error = xfs_free_eofblocks(ip);
1672 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1673 			if (error)
1674 				return error;
1675 		}
1676 
1677 		/* delalloc blocks after truncation means it really is dirty */
1678 		if (ip->i_delayed_blks)
1679 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1680 	}
1681 	return 0;
1682 }
1683 
1684 /*
1685  * xfs_inactive_truncate
1686  *
1687  * Called to perform a truncate when an inode becomes unlinked.
1688  */
1689 STATIC int
1690 xfs_inactive_truncate(
1691 	struct xfs_inode *ip)
1692 {
1693 	struct xfs_mount	*mp = ip->i_mount;
1694 	struct xfs_trans	*tp;
1695 	int			error;
1696 
1697 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1698 	if (error) {
1699 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1700 		return error;
1701 	}
1702 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1703 	xfs_trans_ijoin(tp, ip, 0);
1704 
1705 	/*
1706 	 * Log the inode size first to prevent stale data exposure in the event
1707 	 * of a system crash before the truncate completes. See the related
1708 	 * comment in xfs_vn_setattr_size() for details.
1709 	 */
1710 	ip->i_d.di_size = 0;
1711 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1712 
1713 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1714 	if (error)
1715 		goto error_trans_cancel;
1716 
1717 	ASSERT(ip->i_d.di_nextents == 0);
1718 
1719 	error = xfs_trans_commit(tp);
1720 	if (error)
1721 		goto error_unlock;
1722 
1723 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1724 	return 0;
1725 
1726 error_trans_cancel:
1727 	xfs_trans_cancel(tp);
1728 error_unlock:
1729 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1730 	return error;
1731 }
1732 
1733 /*
1734  * xfs_inactive_ifree()
1735  *
1736  * Perform the inode free when an inode is unlinked.
1737  */
1738 STATIC int
1739 xfs_inactive_ifree(
1740 	struct xfs_inode *ip)
1741 {
1742 	struct xfs_mount	*mp = ip->i_mount;
1743 	struct xfs_trans	*tp;
1744 	int			error;
1745 
1746 	/*
1747 	 * We try to use a per-AG reservation for any block needed by the finobt
1748 	 * tree, but as the finobt feature predates the per-AG reservation
1749 	 * support a degraded file system might not have enough space for the
1750 	 * reservation at mount time.  In that case try to dip into the reserved
1751 	 * pool and pray.
1752 	 *
1753 	 * Send a warning if the reservation does happen to fail, as the inode
1754 	 * now remains allocated and sits on the unlinked list until the fs is
1755 	 * repaired.
1756 	 */
1757 	if (unlikely(mp->m_finobt_nores)) {
1758 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1759 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1760 				&tp);
1761 	} else {
1762 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1763 	}
1764 	if (error) {
1765 		if (error == -ENOSPC) {
1766 			xfs_warn_ratelimited(mp,
1767 			"Failed to remove inode(s) from unlinked list. "
1768 			"Please free space, unmount and run xfs_repair.");
1769 		} else {
1770 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1771 		}
1772 		return error;
1773 	}
1774 
1775 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1776 	xfs_trans_ijoin(tp, ip, 0);
1777 
1778 	error = xfs_ifree(tp, ip);
1779 	if (error) {
1780 		/*
1781 		 * If we fail to free the inode, shut down.  The cancel
1782 		 * might do that, we need to make sure.  Otherwise the
1783 		 * inode might be lost for a long time or forever.
1784 		 */
1785 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1786 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1787 				__func__, error);
1788 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1789 		}
1790 		xfs_trans_cancel(tp);
1791 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1792 		return error;
1793 	}
1794 
1795 	/*
1796 	 * Credit the quota account(s). The inode is gone.
1797 	 */
1798 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1799 
1800 	/*
1801 	 * Just ignore errors at this point.  There is nothing we can do except
1802 	 * to try to keep going. Make sure it's not a silent error.
1803 	 */
1804 	error = xfs_trans_commit(tp);
1805 	if (error)
1806 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1807 			__func__, error);
1808 
1809 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1810 	return 0;
1811 }
1812 
1813 /*
1814  * xfs_inactive
1815  *
1816  * This is called when the vnode reference count for the vnode
1817  * goes to zero.  If the file has been unlinked, then it must
1818  * now be truncated.  Also, we clear all of the read-ahead state
1819  * kept for the inode here since the file is now closed.
1820  */
1821 void
1822 xfs_inactive(
1823 	xfs_inode_t	*ip)
1824 {
1825 	struct xfs_mount	*mp;
1826 	int			error;
1827 	int			truncate = 0;
1828 
1829 	/*
1830 	 * If the inode is already free, then there can be nothing
1831 	 * to clean up here.
1832 	 */
1833 	if (VFS_I(ip)->i_mode == 0) {
1834 		ASSERT(ip->i_df.if_broot_bytes == 0);
1835 		return;
1836 	}
1837 
1838 	mp = ip->i_mount;
1839 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1840 
1841 	/* If this is a read-only mount, don't do this (would generate I/O) */
1842 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1843 		return;
1844 
1845 	/* Try to clean out the cow blocks if there are any. */
1846 	if (xfs_inode_has_cow_data(ip))
1847 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1848 
1849 	if (VFS_I(ip)->i_nlink != 0) {
1850 		/*
1851 		 * force is true because we are evicting an inode from the
1852 		 * cache. Post-eof blocks must be freed, lest we end up with
1853 		 * broken free space accounting.
1854 		 *
1855 		 * Note: don't bother with iolock here since lockdep complains
1856 		 * about acquiring it in reclaim context. We have the only
1857 		 * reference to the inode at this point anyways.
1858 		 */
1859 		if (xfs_can_free_eofblocks(ip, true))
1860 			xfs_free_eofblocks(ip);
1861 
1862 		return;
1863 	}
1864 
1865 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1866 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1867 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1868 		truncate = 1;
1869 
1870 	error = xfs_qm_dqattach(ip);
1871 	if (error)
1872 		return;
1873 
1874 	if (S_ISLNK(VFS_I(ip)->i_mode))
1875 		error = xfs_inactive_symlink(ip);
1876 	else if (truncate)
1877 		error = xfs_inactive_truncate(ip);
1878 	if (error)
1879 		return;
1880 
1881 	/*
1882 	 * If there are attributes associated with the file then blow them away
1883 	 * now.  The code calls a routine that recursively deconstructs the
1884 	 * attribute fork. If also blows away the in-core attribute fork.
1885 	 */
1886 	if (XFS_IFORK_Q(ip)) {
1887 		error = xfs_attr_inactive(ip);
1888 		if (error)
1889 			return;
1890 	}
1891 
1892 	ASSERT(!ip->i_afp);
1893 	ASSERT(ip->i_d.di_anextents == 0);
1894 	ASSERT(ip->i_d.di_forkoff == 0);
1895 
1896 	/*
1897 	 * Free the inode.
1898 	 */
1899 	error = xfs_inactive_ifree(ip);
1900 	if (error)
1901 		return;
1902 
1903 	/*
1904 	 * Release the dquots held by inode, if any.
1905 	 */
1906 	xfs_qm_dqdetach(ip);
1907 }
1908 
1909 /*
1910  * In-Core Unlinked List Lookups
1911  * =============================
1912  *
1913  * Every inode is supposed to be reachable from some other piece of metadata
1914  * with the exception of the root directory.  Inodes with a connection to a
1915  * file descriptor but not linked from anywhere in the on-disk directory tree
1916  * are collectively known as unlinked inodes, though the filesystem itself
1917  * maintains links to these inodes so that on-disk metadata are consistent.
1918  *
1919  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1920  * header contains a number of buckets that point to an inode, and each inode
1921  * record has a pointer to the next inode in the hash chain.  This
1922  * singly-linked list causes scaling problems in the iunlink remove function
1923  * because we must walk that list to find the inode that points to the inode
1924  * being removed from the unlinked hash bucket list.
1925  *
1926  * What if we modelled the unlinked list as a collection of records capturing
1927  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1928  * have a fast way to look up unlinked list predecessors, which avoids the
1929  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1930  * rhashtable.
1931  *
1932  * Because this is a backref cache, we ignore operational failures since the
1933  * iunlink code can fall back to the slow bucket walk.  The only errors that
1934  * should bubble out are for obviously incorrect situations.
1935  *
1936  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1937  * access or have otherwise provided for concurrency control.
1938  */
1939 
1940 /* Capture a "X.next_unlinked = Y" relationship. */
1941 struct xfs_iunlink {
1942 	struct rhash_head	iu_rhash_head;
1943 	xfs_agino_t		iu_agino;		/* X */
1944 	xfs_agino_t		iu_next_unlinked;	/* Y */
1945 };
1946 
1947 /* Unlinked list predecessor lookup hashtable construction */
1948 static int
1949 xfs_iunlink_obj_cmpfn(
1950 	struct rhashtable_compare_arg	*arg,
1951 	const void			*obj)
1952 {
1953 	const xfs_agino_t		*key = arg->key;
1954 	const struct xfs_iunlink	*iu = obj;
1955 
1956 	if (iu->iu_next_unlinked != *key)
1957 		return 1;
1958 	return 0;
1959 }
1960 
1961 static const struct rhashtable_params xfs_iunlink_hash_params = {
1962 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1963 	.key_len		= sizeof(xfs_agino_t),
1964 	.key_offset		= offsetof(struct xfs_iunlink,
1965 					   iu_next_unlinked),
1966 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1967 	.automatic_shrinking	= true,
1968 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1969 };
1970 
1971 /*
1972  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1973  * relation is found.
1974  */
1975 static xfs_agino_t
1976 xfs_iunlink_lookup_backref(
1977 	struct xfs_perag	*pag,
1978 	xfs_agino_t		agino)
1979 {
1980 	struct xfs_iunlink	*iu;
1981 
1982 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1983 			xfs_iunlink_hash_params);
1984 	return iu ? iu->iu_agino : NULLAGINO;
1985 }
1986 
1987 /*
1988  * Take ownership of an iunlink cache entry and insert it into the hash table.
1989  * If successful, the entry will be owned by the cache; if not, it is freed.
1990  * Either way, the caller does not own @iu after this call.
1991  */
1992 static int
1993 xfs_iunlink_insert_backref(
1994 	struct xfs_perag	*pag,
1995 	struct xfs_iunlink	*iu)
1996 {
1997 	int			error;
1998 
1999 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
2000 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2001 	/*
2002 	 * Fail loudly if there already was an entry because that's a sign of
2003 	 * corruption of in-memory data.  Also fail loudly if we see an error
2004 	 * code we didn't anticipate from the rhashtable code.  Currently we
2005 	 * only anticipate ENOMEM.
2006 	 */
2007 	if (error) {
2008 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
2009 		kmem_free(iu);
2010 	}
2011 	/*
2012 	 * Absorb any runtime errors that aren't a result of corruption because
2013 	 * this is a cache and we can always fall back to bucket list scanning.
2014 	 */
2015 	if (error != 0 && error != -EEXIST)
2016 		error = 0;
2017 	return error;
2018 }
2019 
2020 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2021 static int
2022 xfs_iunlink_add_backref(
2023 	struct xfs_perag	*pag,
2024 	xfs_agino_t		prev_agino,
2025 	xfs_agino_t		this_agino)
2026 {
2027 	struct xfs_iunlink	*iu;
2028 
2029 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2030 		return 0;
2031 
2032 	iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS);
2033 	iu->iu_agino = prev_agino;
2034 	iu->iu_next_unlinked = this_agino;
2035 
2036 	return xfs_iunlink_insert_backref(pag, iu);
2037 }
2038 
2039 /*
2040  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2041  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2042  * wasn't any such entry then we don't bother.
2043  */
2044 static int
2045 xfs_iunlink_change_backref(
2046 	struct xfs_perag	*pag,
2047 	xfs_agino_t		agino,
2048 	xfs_agino_t		next_unlinked)
2049 {
2050 	struct xfs_iunlink	*iu;
2051 	int			error;
2052 
2053 	/* Look up the old entry; if there wasn't one then exit. */
2054 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2055 			xfs_iunlink_hash_params);
2056 	if (!iu)
2057 		return 0;
2058 
2059 	/*
2060 	 * Remove the entry.  This shouldn't ever return an error, but if we
2061 	 * couldn't remove the old entry we don't want to add it again to the
2062 	 * hash table, and if the entry disappeared on us then someone's
2063 	 * violated the locking rules and we need to fail loudly.  Either way
2064 	 * we cannot remove the inode because internal state is or would have
2065 	 * been corrupt.
2066 	 */
2067 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2068 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2069 	if (error)
2070 		return error;
2071 
2072 	/* If there is no new next entry just free our item and return. */
2073 	if (next_unlinked == NULLAGINO) {
2074 		kmem_free(iu);
2075 		return 0;
2076 	}
2077 
2078 	/* Update the entry and re-add it to the hash table. */
2079 	iu->iu_next_unlinked = next_unlinked;
2080 	return xfs_iunlink_insert_backref(pag, iu);
2081 }
2082 
2083 /* Set up the in-core predecessor structures. */
2084 int
2085 xfs_iunlink_init(
2086 	struct xfs_perag	*pag)
2087 {
2088 	return rhashtable_init(&pag->pagi_unlinked_hash,
2089 			&xfs_iunlink_hash_params);
2090 }
2091 
2092 /* Free the in-core predecessor structures. */
2093 static void
2094 xfs_iunlink_free_item(
2095 	void			*ptr,
2096 	void			*arg)
2097 {
2098 	struct xfs_iunlink	*iu = ptr;
2099 	bool			*freed_anything = arg;
2100 
2101 	*freed_anything = true;
2102 	kmem_free(iu);
2103 }
2104 
2105 void
2106 xfs_iunlink_destroy(
2107 	struct xfs_perag	*pag)
2108 {
2109 	bool			freed_anything = false;
2110 
2111 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2112 			xfs_iunlink_free_item, &freed_anything);
2113 
2114 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2115 }
2116 
2117 /*
2118  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2119  * is responsible for validating the old value.
2120  */
2121 STATIC int
2122 xfs_iunlink_update_bucket(
2123 	struct xfs_trans	*tp,
2124 	xfs_agnumber_t		agno,
2125 	struct xfs_buf		*agibp,
2126 	unsigned int		bucket_index,
2127 	xfs_agino_t		new_agino)
2128 {
2129 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agibp);
2130 	xfs_agino_t		old_value;
2131 	int			offset;
2132 
2133 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2134 
2135 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2136 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2137 			old_value, new_agino);
2138 
2139 	/*
2140 	 * We should never find the head of the list already set to the value
2141 	 * passed in because either we're adding or removing ourselves from the
2142 	 * head of the list.
2143 	 */
2144 	if (old_value == new_agino)
2145 		return -EFSCORRUPTED;
2146 
2147 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2148 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2149 			(sizeof(xfs_agino_t) * bucket_index);
2150 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2151 	return 0;
2152 }
2153 
2154 /* Set an on-disk inode's next_unlinked pointer. */
2155 STATIC void
2156 xfs_iunlink_update_dinode(
2157 	struct xfs_trans	*tp,
2158 	xfs_agnumber_t		agno,
2159 	xfs_agino_t		agino,
2160 	struct xfs_buf		*ibp,
2161 	struct xfs_dinode	*dip,
2162 	struct xfs_imap		*imap,
2163 	xfs_agino_t		next_agino)
2164 {
2165 	struct xfs_mount	*mp = tp->t_mountp;
2166 	int			offset;
2167 
2168 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2169 
2170 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2171 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2172 
2173 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2174 	offset = imap->im_boffset +
2175 			offsetof(struct xfs_dinode, di_next_unlinked);
2176 
2177 	/* need to recalc the inode CRC if appropriate */
2178 	xfs_dinode_calc_crc(mp, dip);
2179 	xfs_trans_inode_buf(tp, ibp);
2180 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2181 	xfs_inobp_check(mp, ibp);
2182 }
2183 
2184 /* Set an in-core inode's unlinked pointer and return the old value. */
2185 STATIC int
2186 xfs_iunlink_update_inode(
2187 	struct xfs_trans	*tp,
2188 	struct xfs_inode	*ip,
2189 	xfs_agnumber_t		agno,
2190 	xfs_agino_t		next_agino,
2191 	xfs_agino_t		*old_next_agino)
2192 {
2193 	struct xfs_mount	*mp = tp->t_mountp;
2194 	struct xfs_dinode	*dip;
2195 	struct xfs_buf		*ibp;
2196 	xfs_agino_t		old_value;
2197 	int			error;
2198 
2199 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2200 
2201 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2202 	if (error)
2203 		return error;
2204 
2205 	/* Make sure the old pointer isn't garbage. */
2206 	old_value = be32_to_cpu(dip->di_next_unlinked);
2207 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2208 		error = -EFSCORRUPTED;
2209 		goto out;
2210 	}
2211 
2212 	/*
2213 	 * Since we're updating a linked list, we should never find that the
2214 	 * current pointer is the same as the new value, unless we're
2215 	 * terminating the list.
2216 	 */
2217 	*old_next_agino = old_value;
2218 	if (old_value == next_agino) {
2219 		if (next_agino != NULLAGINO)
2220 			error = -EFSCORRUPTED;
2221 		goto out;
2222 	}
2223 
2224 	/* Ok, update the new pointer. */
2225 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2226 			ibp, dip, &ip->i_imap, next_agino);
2227 	return 0;
2228 out:
2229 	xfs_trans_brelse(tp, ibp);
2230 	return error;
2231 }
2232 
2233 /*
2234  * This is called when the inode's link count has gone to 0 or we are creating
2235  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2236  *
2237  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2238  * list when the inode is freed.
2239  */
2240 STATIC int
2241 xfs_iunlink(
2242 	struct xfs_trans	*tp,
2243 	struct xfs_inode	*ip)
2244 {
2245 	struct xfs_mount	*mp = tp->t_mountp;
2246 	struct xfs_agi		*agi;
2247 	struct xfs_buf		*agibp;
2248 	xfs_agino_t		next_agino;
2249 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2250 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2251 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2252 	int			error;
2253 
2254 	ASSERT(VFS_I(ip)->i_nlink == 0);
2255 	ASSERT(VFS_I(ip)->i_mode != 0);
2256 	trace_xfs_iunlink(ip);
2257 
2258 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2259 	error = xfs_read_agi(mp, tp, agno, &agibp);
2260 	if (error)
2261 		return error;
2262 	agi = XFS_BUF_TO_AGI(agibp);
2263 
2264 	/*
2265 	 * Get the index into the agi hash table for the list this inode will
2266 	 * go on.  Make sure the pointer isn't garbage and that this inode
2267 	 * isn't already on the list.
2268 	 */
2269 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2270 	if (next_agino == agino ||
2271 	    !xfs_verify_agino_or_null(mp, agno, next_agino))
2272 		return -EFSCORRUPTED;
2273 
2274 	if (next_agino != NULLAGINO) {
2275 		struct xfs_perag	*pag;
2276 		xfs_agino_t		old_agino;
2277 
2278 		/*
2279 		 * There is already another inode in the bucket, so point this
2280 		 * inode to the current head of the list.
2281 		 */
2282 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2283 				&old_agino);
2284 		if (error)
2285 			return error;
2286 		ASSERT(old_agino == NULLAGINO);
2287 
2288 		/*
2289 		 * agino has been unlinked, add a backref from the next inode
2290 		 * back to agino.
2291 		 */
2292 		pag = xfs_perag_get(mp, agno);
2293 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2294 		xfs_perag_put(pag);
2295 		if (error)
2296 			return error;
2297 	}
2298 
2299 	/* Point the head of the list to point to this inode. */
2300 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2301 }
2302 
2303 /* Return the imap, dinode pointer, and buffer for an inode. */
2304 STATIC int
2305 xfs_iunlink_map_ino(
2306 	struct xfs_trans	*tp,
2307 	xfs_agnumber_t		agno,
2308 	xfs_agino_t		agino,
2309 	struct xfs_imap		*imap,
2310 	struct xfs_dinode	**dipp,
2311 	struct xfs_buf		**bpp)
2312 {
2313 	struct xfs_mount	*mp = tp->t_mountp;
2314 	int			error;
2315 
2316 	imap->im_blkno = 0;
2317 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2318 	if (error) {
2319 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2320 				__func__, error);
2321 		return error;
2322 	}
2323 
2324 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2325 	if (error) {
2326 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2327 				__func__, error);
2328 		return error;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Walk the unlinked chain from @head_agino until we find the inode that
2336  * points to @target_agino.  Return the inode number, map, dinode pointer,
2337  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2338  *
2339  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2340  * @agino, @imap, @dipp, and @bpp are all output parameters.
2341  *
2342  * Do not call this function if @target_agino is the head of the list.
2343  */
2344 STATIC int
2345 xfs_iunlink_map_prev(
2346 	struct xfs_trans	*tp,
2347 	xfs_agnumber_t		agno,
2348 	xfs_agino_t		head_agino,
2349 	xfs_agino_t		target_agino,
2350 	xfs_agino_t		*agino,
2351 	struct xfs_imap		*imap,
2352 	struct xfs_dinode	**dipp,
2353 	struct xfs_buf		**bpp,
2354 	struct xfs_perag	*pag)
2355 {
2356 	struct xfs_mount	*mp = tp->t_mountp;
2357 	xfs_agino_t		next_agino;
2358 	int			error;
2359 
2360 	ASSERT(head_agino != target_agino);
2361 	*bpp = NULL;
2362 
2363 	/* See if our backref cache can find it faster. */
2364 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2365 	if (*agino != NULLAGINO) {
2366 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2367 		if (error)
2368 			return error;
2369 
2370 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2371 			return 0;
2372 
2373 		/*
2374 		 * If we get here the cache contents were corrupt, so drop the
2375 		 * buffer and fall back to walking the bucket list.
2376 		 */
2377 		xfs_trans_brelse(tp, *bpp);
2378 		*bpp = NULL;
2379 		WARN_ON_ONCE(1);
2380 	}
2381 
2382 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2383 
2384 	/* Otherwise, walk the entire bucket until we find it. */
2385 	next_agino = head_agino;
2386 	while (next_agino != target_agino) {
2387 		xfs_agino_t	unlinked_agino;
2388 
2389 		if (*bpp)
2390 			xfs_trans_brelse(tp, *bpp);
2391 
2392 		*agino = next_agino;
2393 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2394 				bpp);
2395 		if (error)
2396 			return error;
2397 
2398 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2399 		/*
2400 		 * Make sure this pointer is valid and isn't an obvious
2401 		 * infinite loop.
2402 		 */
2403 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2404 		    next_agino == unlinked_agino) {
2405 			XFS_CORRUPTION_ERROR(__func__,
2406 					XFS_ERRLEVEL_LOW, mp,
2407 					*dipp, sizeof(**dipp));
2408 			error = -EFSCORRUPTED;
2409 			return error;
2410 		}
2411 		next_agino = unlinked_agino;
2412 	}
2413 
2414 	return 0;
2415 }
2416 
2417 /*
2418  * Pull the on-disk inode from the AGI unlinked list.
2419  */
2420 STATIC int
2421 xfs_iunlink_remove(
2422 	struct xfs_trans	*tp,
2423 	struct xfs_inode	*ip)
2424 {
2425 	struct xfs_mount	*mp = tp->t_mountp;
2426 	struct xfs_agi		*agi;
2427 	struct xfs_buf		*agibp;
2428 	struct xfs_buf		*last_ibp;
2429 	struct xfs_dinode	*last_dip = NULL;
2430 	struct xfs_perag	*pag = NULL;
2431 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2432 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2433 	xfs_agino_t		next_agino;
2434 	xfs_agino_t		head_agino;
2435 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2436 	int			error;
2437 
2438 	trace_xfs_iunlink_remove(ip);
2439 
2440 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2441 	error = xfs_read_agi(mp, tp, agno, &agibp);
2442 	if (error)
2443 		return error;
2444 	agi = XFS_BUF_TO_AGI(agibp);
2445 
2446 	/*
2447 	 * Get the index into the agi hash table for the list this inode will
2448 	 * go on.  Make sure the head pointer isn't garbage.
2449 	 */
2450 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2451 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2452 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2453 				agi, sizeof(*agi));
2454 		return -EFSCORRUPTED;
2455 	}
2456 
2457 	/*
2458 	 * Set our inode's next_unlinked pointer to NULL and then return
2459 	 * the old pointer value so that we can update whatever was previous
2460 	 * to us in the list to point to whatever was next in the list.
2461 	 */
2462 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2463 	if (error)
2464 		return error;
2465 
2466 	/*
2467 	 * If there was a backref pointing from the next inode back to this
2468 	 * one, remove it because we've removed this inode from the list.
2469 	 *
2470 	 * Later, if this inode was in the middle of the list we'll update
2471 	 * this inode's backref to point from the next inode.
2472 	 */
2473 	if (next_agino != NULLAGINO) {
2474 		pag = xfs_perag_get(mp, agno);
2475 		error = xfs_iunlink_change_backref(pag, next_agino,
2476 				NULLAGINO);
2477 		if (error)
2478 			goto out;
2479 	}
2480 
2481 	if (head_agino == agino) {
2482 		/* Point the head of the list to the next unlinked inode. */
2483 		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2484 				next_agino);
2485 		if (error)
2486 			goto out;
2487 	} else {
2488 		struct xfs_imap	imap;
2489 		xfs_agino_t	prev_agino;
2490 
2491 		if (!pag)
2492 			pag = xfs_perag_get(mp, agno);
2493 
2494 		/* We need to search the list for the inode being freed. */
2495 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2496 				&prev_agino, &imap, &last_dip, &last_ibp,
2497 				pag);
2498 		if (error)
2499 			goto out;
2500 
2501 		/* Point the previous inode on the list to the next inode. */
2502 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2503 				last_dip, &imap, next_agino);
2504 
2505 		/*
2506 		 * Now we deal with the backref for this inode.  If this inode
2507 		 * pointed at a real inode, change the backref that pointed to
2508 		 * us to point to our old next.  If this inode was the end of
2509 		 * the list, delete the backref that pointed to us.  Note that
2510 		 * change_backref takes care of deleting the backref if
2511 		 * next_agino is NULLAGINO.
2512 		 */
2513 		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2514 		if (error)
2515 			goto out;
2516 	}
2517 
2518 out:
2519 	if (pag)
2520 		xfs_perag_put(pag);
2521 	return error;
2522 }
2523 
2524 /*
2525  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2526  * inodes that are in memory - they all must be marked stale and attached to
2527  * the cluster buffer.
2528  */
2529 STATIC int
2530 xfs_ifree_cluster(
2531 	xfs_inode_t		*free_ip,
2532 	xfs_trans_t		*tp,
2533 	struct xfs_icluster	*xic)
2534 {
2535 	xfs_mount_t		*mp = free_ip->i_mount;
2536 	int			nbufs;
2537 	int			i, j;
2538 	int			ioffset;
2539 	xfs_daddr_t		blkno;
2540 	xfs_buf_t		*bp;
2541 	xfs_inode_t		*ip;
2542 	xfs_inode_log_item_t	*iip;
2543 	struct xfs_log_item	*lip;
2544 	struct xfs_perag	*pag;
2545 	xfs_ino_t		inum;
2546 
2547 	inum = xic->first_ino;
2548 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2549 	nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster;
2550 
2551 	for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) {
2552 		/*
2553 		 * The allocation bitmap tells us which inodes of the chunk were
2554 		 * physically allocated. Skip the cluster if an inode falls into
2555 		 * a sparse region.
2556 		 */
2557 		ioffset = inum - xic->first_ino;
2558 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2559 			ASSERT(ioffset % mp->m_inodes_per_cluster == 0);
2560 			continue;
2561 		}
2562 
2563 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2564 					 XFS_INO_TO_AGBNO(mp, inum));
2565 
2566 		/*
2567 		 * We obtain and lock the backing buffer first in the process
2568 		 * here, as we have to ensure that any dirty inode that we
2569 		 * can't get the flush lock on is attached to the buffer.
2570 		 * If we scan the in-memory inodes first, then buffer IO can
2571 		 * complete before we get a lock on it, and hence we may fail
2572 		 * to mark all the active inodes on the buffer stale.
2573 		 */
2574 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2575 					mp->m_bsize * mp->m_blocks_per_cluster,
2576 					XBF_UNMAPPED);
2577 
2578 		if (!bp)
2579 			return -ENOMEM;
2580 
2581 		/*
2582 		 * This buffer may not have been correctly initialised as we
2583 		 * didn't read it from disk. That's not important because we are
2584 		 * only using to mark the buffer as stale in the log, and to
2585 		 * attach stale cached inodes on it. That means it will never be
2586 		 * dispatched for IO. If it is, we want to know about it, and we
2587 		 * want it to fail. We can acheive this by adding a write
2588 		 * verifier to the buffer.
2589 		 */
2590 		bp->b_ops = &xfs_inode_buf_ops;
2591 
2592 		/*
2593 		 * Walk the inodes already attached to the buffer and mark them
2594 		 * stale. These will all have the flush locks held, so an
2595 		 * in-memory inode walk can't lock them. By marking them all
2596 		 * stale first, we will not attempt to lock them in the loop
2597 		 * below as the XFS_ISTALE flag will be set.
2598 		 */
2599 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2600 			if (lip->li_type == XFS_LI_INODE) {
2601 				iip = (xfs_inode_log_item_t *)lip;
2602 				ASSERT(iip->ili_logged == 1);
2603 				lip->li_cb = xfs_istale_done;
2604 				xfs_trans_ail_copy_lsn(mp->m_ail,
2605 							&iip->ili_flush_lsn,
2606 							&iip->ili_item.li_lsn);
2607 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2608 			}
2609 		}
2610 
2611 
2612 		/*
2613 		 * For each inode in memory attempt to add it to the inode
2614 		 * buffer and set it up for being staled on buffer IO
2615 		 * completion.  This is safe as we've locked out tail pushing
2616 		 * and flushing by locking the buffer.
2617 		 *
2618 		 * We have already marked every inode that was part of a
2619 		 * transaction stale above, which means there is no point in
2620 		 * even trying to lock them.
2621 		 */
2622 		for (i = 0; i < mp->m_inodes_per_cluster; i++) {
2623 retry:
2624 			rcu_read_lock();
2625 			ip = radix_tree_lookup(&pag->pag_ici_root,
2626 					XFS_INO_TO_AGINO(mp, (inum + i)));
2627 
2628 			/* Inode not in memory, nothing to do */
2629 			if (!ip) {
2630 				rcu_read_unlock();
2631 				continue;
2632 			}
2633 
2634 			/*
2635 			 * because this is an RCU protected lookup, we could
2636 			 * find a recently freed or even reallocated inode
2637 			 * during the lookup. We need to check under the
2638 			 * i_flags_lock for a valid inode here. Skip it if it
2639 			 * is not valid, the wrong inode or stale.
2640 			 */
2641 			spin_lock(&ip->i_flags_lock);
2642 			if (ip->i_ino != inum + i ||
2643 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2644 				spin_unlock(&ip->i_flags_lock);
2645 				rcu_read_unlock();
2646 				continue;
2647 			}
2648 			spin_unlock(&ip->i_flags_lock);
2649 
2650 			/*
2651 			 * Don't try to lock/unlock the current inode, but we
2652 			 * _cannot_ skip the other inodes that we did not find
2653 			 * in the list attached to the buffer and are not
2654 			 * already marked stale. If we can't lock it, back off
2655 			 * and retry.
2656 			 */
2657 			if (ip != free_ip) {
2658 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2659 					rcu_read_unlock();
2660 					delay(1);
2661 					goto retry;
2662 				}
2663 
2664 				/*
2665 				 * Check the inode number again in case we're
2666 				 * racing with freeing in xfs_reclaim_inode().
2667 				 * See the comments in that function for more
2668 				 * information as to why the initial check is
2669 				 * not sufficient.
2670 				 */
2671 				if (ip->i_ino != inum + i) {
2672 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2673 					rcu_read_unlock();
2674 					continue;
2675 				}
2676 			}
2677 			rcu_read_unlock();
2678 
2679 			xfs_iflock(ip);
2680 			xfs_iflags_set(ip, XFS_ISTALE);
2681 
2682 			/*
2683 			 * we don't need to attach clean inodes or those only
2684 			 * with unlogged changes (which we throw away, anyway).
2685 			 */
2686 			iip = ip->i_itemp;
2687 			if (!iip || xfs_inode_clean(ip)) {
2688 				ASSERT(ip != free_ip);
2689 				xfs_ifunlock(ip);
2690 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2691 				continue;
2692 			}
2693 
2694 			iip->ili_last_fields = iip->ili_fields;
2695 			iip->ili_fields = 0;
2696 			iip->ili_fsync_fields = 0;
2697 			iip->ili_logged = 1;
2698 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2699 						&iip->ili_item.li_lsn);
2700 
2701 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2702 						  &iip->ili_item);
2703 
2704 			if (ip != free_ip)
2705 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2706 		}
2707 
2708 		xfs_trans_stale_inode_buf(tp, bp);
2709 		xfs_trans_binval(tp, bp);
2710 	}
2711 
2712 	xfs_perag_put(pag);
2713 	return 0;
2714 }
2715 
2716 /*
2717  * Free any local-format buffers sitting around before we reset to
2718  * extents format.
2719  */
2720 static inline void
2721 xfs_ifree_local_data(
2722 	struct xfs_inode	*ip,
2723 	int			whichfork)
2724 {
2725 	struct xfs_ifork	*ifp;
2726 
2727 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2728 		return;
2729 
2730 	ifp = XFS_IFORK_PTR(ip, whichfork);
2731 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2732 }
2733 
2734 /*
2735  * This is called to return an inode to the inode free list.
2736  * The inode should already be truncated to 0 length and have
2737  * no pages associated with it.  This routine also assumes that
2738  * the inode is already a part of the transaction.
2739  *
2740  * The on-disk copy of the inode will have been added to the list
2741  * of unlinked inodes in the AGI. We need to remove the inode from
2742  * that list atomically with respect to freeing it here.
2743  */
2744 int
2745 xfs_ifree(
2746 	struct xfs_trans	*tp,
2747 	struct xfs_inode	*ip)
2748 {
2749 	int			error;
2750 	struct xfs_icluster	xic = { 0 };
2751 
2752 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2753 	ASSERT(VFS_I(ip)->i_nlink == 0);
2754 	ASSERT(ip->i_d.di_nextents == 0);
2755 	ASSERT(ip->i_d.di_anextents == 0);
2756 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2757 	ASSERT(ip->i_d.di_nblocks == 0);
2758 
2759 	/*
2760 	 * Pull the on-disk inode from the AGI unlinked list.
2761 	 */
2762 	error = xfs_iunlink_remove(tp, ip);
2763 	if (error)
2764 		return error;
2765 
2766 	error = xfs_difree(tp, ip->i_ino, &xic);
2767 	if (error)
2768 		return error;
2769 
2770 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2771 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2772 
2773 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2774 	ip->i_d.di_flags = 0;
2775 	ip->i_d.di_flags2 = 0;
2776 	ip->i_d.di_dmevmask = 0;
2777 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2778 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2779 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2780 
2781 	/* Don't attempt to replay owner changes for a deleted inode */
2782 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2783 
2784 	/*
2785 	 * Bump the generation count so no one will be confused
2786 	 * by reincarnations of this inode.
2787 	 */
2788 	VFS_I(ip)->i_generation++;
2789 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2790 
2791 	if (xic.deleted)
2792 		error = xfs_ifree_cluster(ip, tp, &xic);
2793 
2794 	return error;
2795 }
2796 
2797 /*
2798  * This is called to unpin an inode.  The caller must have the inode locked
2799  * in at least shared mode so that the buffer cannot be subsequently pinned
2800  * once someone is waiting for it to be unpinned.
2801  */
2802 static void
2803 xfs_iunpin(
2804 	struct xfs_inode	*ip)
2805 {
2806 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2807 
2808 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2809 
2810 	/* Give the log a push to start the unpinning I/O */
2811 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2812 
2813 }
2814 
2815 static void
2816 __xfs_iunpin_wait(
2817 	struct xfs_inode	*ip)
2818 {
2819 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2820 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2821 
2822 	xfs_iunpin(ip);
2823 
2824 	do {
2825 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2826 		if (xfs_ipincount(ip))
2827 			io_schedule();
2828 	} while (xfs_ipincount(ip));
2829 	finish_wait(wq, &wait.wq_entry);
2830 }
2831 
2832 void
2833 xfs_iunpin_wait(
2834 	struct xfs_inode	*ip)
2835 {
2836 	if (xfs_ipincount(ip))
2837 		__xfs_iunpin_wait(ip);
2838 }
2839 
2840 /*
2841  * Removing an inode from the namespace involves removing the directory entry
2842  * and dropping the link count on the inode. Removing the directory entry can
2843  * result in locking an AGF (directory blocks were freed) and removing a link
2844  * count can result in placing the inode on an unlinked list which results in
2845  * locking an AGI.
2846  *
2847  * The big problem here is that we have an ordering constraint on AGF and AGI
2848  * locking - inode allocation locks the AGI, then can allocate a new extent for
2849  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2850  * removes the inode from the unlinked list, requiring that we lock the AGI
2851  * first, and then freeing the inode can result in an inode chunk being freed
2852  * and hence freeing disk space requiring that we lock an AGF.
2853  *
2854  * Hence the ordering that is imposed by other parts of the code is AGI before
2855  * AGF. This means we cannot remove the directory entry before we drop the inode
2856  * reference count and put it on the unlinked list as this results in a lock
2857  * order of AGF then AGI, and this can deadlock against inode allocation and
2858  * freeing. Therefore we must drop the link counts before we remove the
2859  * directory entry.
2860  *
2861  * This is still safe from a transactional point of view - it is not until we
2862  * get to xfs_defer_finish() that we have the possibility of multiple
2863  * transactions in this operation. Hence as long as we remove the directory
2864  * entry and drop the link count in the first transaction of the remove
2865  * operation, there are no transactional constraints on the ordering here.
2866  */
2867 int
2868 xfs_remove(
2869 	xfs_inode_t             *dp,
2870 	struct xfs_name		*name,
2871 	xfs_inode_t		*ip)
2872 {
2873 	xfs_mount_t		*mp = dp->i_mount;
2874 	xfs_trans_t             *tp = NULL;
2875 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2876 	int                     error = 0;
2877 	uint			resblks;
2878 
2879 	trace_xfs_remove(dp, name);
2880 
2881 	if (XFS_FORCED_SHUTDOWN(mp))
2882 		return -EIO;
2883 
2884 	error = xfs_qm_dqattach(dp);
2885 	if (error)
2886 		goto std_return;
2887 
2888 	error = xfs_qm_dqattach(ip);
2889 	if (error)
2890 		goto std_return;
2891 
2892 	/*
2893 	 * We try to get the real space reservation first,
2894 	 * allowing for directory btree deletion(s) implying
2895 	 * possible bmap insert(s).  If we can't get the space
2896 	 * reservation then we use 0 instead, and avoid the bmap
2897 	 * btree insert(s) in the directory code by, if the bmap
2898 	 * insert tries to happen, instead trimming the LAST
2899 	 * block from the directory.
2900 	 */
2901 	resblks = XFS_REMOVE_SPACE_RES(mp);
2902 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2903 	if (error == -ENOSPC) {
2904 		resblks = 0;
2905 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2906 				&tp);
2907 	}
2908 	if (error) {
2909 		ASSERT(error != -ENOSPC);
2910 		goto std_return;
2911 	}
2912 
2913 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2914 
2915 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2916 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2917 
2918 	/*
2919 	 * If we're removing a directory perform some additional validation.
2920 	 */
2921 	if (is_dir) {
2922 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2923 		if (VFS_I(ip)->i_nlink != 2) {
2924 			error = -ENOTEMPTY;
2925 			goto out_trans_cancel;
2926 		}
2927 		if (!xfs_dir_isempty(ip)) {
2928 			error = -ENOTEMPTY;
2929 			goto out_trans_cancel;
2930 		}
2931 
2932 		/* Drop the link from ip's "..".  */
2933 		error = xfs_droplink(tp, dp);
2934 		if (error)
2935 			goto out_trans_cancel;
2936 
2937 		/* Drop the "." link from ip to self.  */
2938 		error = xfs_droplink(tp, ip);
2939 		if (error)
2940 			goto out_trans_cancel;
2941 	} else {
2942 		/*
2943 		 * When removing a non-directory we need to log the parent
2944 		 * inode here.  For a directory this is done implicitly
2945 		 * by the xfs_droplink call for the ".." entry.
2946 		 */
2947 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2948 	}
2949 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2950 
2951 	/* Drop the link from dp to ip. */
2952 	error = xfs_droplink(tp, ip);
2953 	if (error)
2954 		goto out_trans_cancel;
2955 
2956 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2957 	if (error) {
2958 		ASSERT(error != -ENOENT);
2959 		goto out_trans_cancel;
2960 	}
2961 
2962 	/*
2963 	 * If this is a synchronous mount, make sure that the
2964 	 * remove transaction goes to disk before returning to
2965 	 * the user.
2966 	 */
2967 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2968 		xfs_trans_set_sync(tp);
2969 
2970 	error = xfs_trans_commit(tp);
2971 	if (error)
2972 		goto std_return;
2973 
2974 	if (is_dir && xfs_inode_is_filestream(ip))
2975 		xfs_filestream_deassociate(ip);
2976 
2977 	return 0;
2978 
2979  out_trans_cancel:
2980 	xfs_trans_cancel(tp);
2981  std_return:
2982 	return error;
2983 }
2984 
2985 /*
2986  * Enter all inodes for a rename transaction into a sorted array.
2987  */
2988 #define __XFS_SORT_INODES	5
2989 STATIC void
2990 xfs_sort_for_rename(
2991 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2992 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2993 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2994 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2995 	struct xfs_inode	*wip,	/* in: whiteout inode */
2996 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2997 	int			*num_inodes)  /* in/out: inodes in array */
2998 {
2999 	int			i, j;
3000 
3001 	ASSERT(*num_inodes == __XFS_SORT_INODES);
3002 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
3003 
3004 	/*
3005 	 * i_tab contains a list of pointers to inodes.  We initialize
3006 	 * the table here & we'll sort it.  We will then use it to
3007 	 * order the acquisition of the inode locks.
3008 	 *
3009 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
3010 	 */
3011 	i = 0;
3012 	i_tab[i++] = dp1;
3013 	i_tab[i++] = dp2;
3014 	i_tab[i++] = ip1;
3015 	if (ip2)
3016 		i_tab[i++] = ip2;
3017 	if (wip)
3018 		i_tab[i++] = wip;
3019 	*num_inodes = i;
3020 
3021 	/*
3022 	 * Sort the elements via bubble sort.  (Remember, there are at
3023 	 * most 5 elements to sort, so this is adequate.)
3024 	 */
3025 	for (i = 0; i < *num_inodes; i++) {
3026 		for (j = 1; j < *num_inodes; j++) {
3027 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3028 				struct xfs_inode *temp = i_tab[j];
3029 				i_tab[j] = i_tab[j-1];
3030 				i_tab[j-1] = temp;
3031 			}
3032 		}
3033 	}
3034 }
3035 
3036 static int
3037 xfs_finish_rename(
3038 	struct xfs_trans	*tp)
3039 {
3040 	/*
3041 	 * If this is a synchronous mount, make sure that the rename transaction
3042 	 * goes to disk before returning to the user.
3043 	 */
3044 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3045 		xfs_trans_set_sync(tp);
3046 
3047 	return xfs_trans_commit(tp);
3048 }
3049 
3050 /*
3051  * xfs_cross_rename()
3052  *
3053  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3054  */
3055 STATIC int
3056 xfs_cross_rename(
3057 	struct xfs_trans	*tp,
3058 	struct xfs_inode	*dp1,
3059 	struct xfs_name		*name1,
3060 	struct xfs_inode	*ip1,
3061 	struct xfs_inode	*dp2,
3062 	struct xfs_name		*name2,
3063 	struct xfs_inode	*ip2,
3064 	int			spaceres)
3065 {
3066 	int		error = 0;
3067 	int		ip1_flags = 0;
3068 	int		ip2_flags = 0;
3069 	int		dp2_flags = 0;
3070 
3071 	/* Swap inode number for dirent in first parent */
3072 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3073 	if (error)
3074 		goto out_trans_abort;
3075 
3076 	/* Swap inode number for dirent in second parent */
3077 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3078 	if (error)
3079 		goto out_trans_abort;
3080 
3081 	/*
3082 	 * If we're renaming one or more directories across different parents,
3083 	 * update the respective ".." entries (and link counts) to match the new
3084 	 * parents.
3085 	 */
3086 	if (dp1 != dp2) {
3087 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3088 
3089 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3090 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3091 						dp1->i_ino, spaceres);
3092 			if (error)
3093 				goto out_trans_abort;
3094 
3095 			/* transfer ip2 ".." reference to dp1 */
3096 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3097 				error = xfs_droplink(tp, dp2);
3098 				if (error)
3099 					goto out_trans_abort;
3100 				error = xfs_bumplink(tp, dp1);
3101 				if (error)
3102 					goto out_trans_abort;
3103 			}
3104 
3105 			/*
3106 			 * Although ip1 isn't changed here, userspace needs
3107 			 * to be warned about the change, so that applications
3108 			 * relying on it (like backup ones), will properly
3109 			 * notify the change
3110 			 */
3111 			ip1_flags |= XFS_ICHGTIME_CHG;
3112 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3113 		}
3114 
3115 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3116 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3117 						dp2->i_ino, spaceres);
3118 			if (error)
3119 				goto out_trans_abort;
3120 
3121 			/* transfer ip1 ".." reference to dp2 */
3122 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3123 				error = xfs_droplink(tp, dp1);
3124 				if (error)
3125 					goto out_trans_abort;
3126 				error = xfs_bumplink(tp, dp2);
3127 				if (error)
3128 					goto out_trans_abort;
3129 			}
3130 
3131 			/*
3132 			 * Although ip2 isn't changed here, userspace needs
3133 			 * to be warned about the change, so that applications
3134 			 * relying on it (like backup ones), will properly
3135 			 * notify the change
3136 			 */
3137 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3138 			ip2_flags |= XFS_ICHGTIME_CHG;
3139 		}
3140 	}
3141 
3142 	if (ip1_flags) {
3143 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3144 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3145 	}
3146 	if (ip2_flags) {
3147 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3148 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3149 	}
3150 	if (dp2_flags) {
3151 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3152 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3153 	}
3154 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3155 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3156 	return xfs_finish_rename(tp);
3157 
3158 out_trans_abort:
3159 	xfs_trans_cancel(tp);
3160 	return error;
3161 }
3162 
3163 /*
3164  * xfs_rename_alloc_whiteout()
3165  *
3166  * Return a referenced, unlinked, unlocked inode that that can be used as a
3167  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3168  * crash between allocating the inode and linking it into the rename transaction
3169  * recovery will free the inode and we won't leak it.
3170  */
3171 static int
3172 xfs_rename_alloc_whiteout(
3173 	struct xfs_inode	*dp,
3174 	struct xfs_inode	**wip)
3175 {
3176 	struct xfs_inode	*tmpfile;
3177 	int			error;
3178 
3179 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3180 	if (error)
3181 		return error;
3182 
3183 	/*
3184 	 * Prepare the tmpfile inode as if it were created through the VFS.
3185 	 * Complete the inode setup and flag it as linkable.  nlink is already
3186 	 * zero, so we can skip the drop_nlink.
3187 	 */
3188 	xfs_setup_iops(tmpfile);
3189 	xfs_finish_inode_setup(tmpfile);
3190 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3191 
3192 	*wip = tmpfile;
3193 	return 0;
3194 }
3195 
3196 /*
3197  * xfs_rename
3198  */
3199 int
3200 xfs_rename(
3201 	struct xfs_inode	*src_dp,
3202 	struct xfs_name		*src_name,
3203 	struct xfs_inode	*src_ip,
3204 	struct xfs_inode	*target_dp,
3205 	struct xfs_name		*target_name,
3206 	struct xfs_inode	*target_ip,
3207 	unsigned int		flags)
3208 {
3209 	struct xfs_mount	*mp = src_dp->i_mount;
3210 	struct xfs_trans	*tp;
3211 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3212 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3213 	int			num_inodes = __XFS_SORT_INODES;
3214 	bool			new_parent = (src_dp != target_dp);
3215 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3216 	int			spaceres;
3217 	int			error;
3218 
3219 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3220 
3221 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3222 		return -EINVAL;
3223 
3224 	/*
3225 	 * If we are doing a whiteout operation, allocate the whiteout inode
3226 	 * we will be placing at the target and ensure the type is set
3227 	 * appropriately.
3228 	 */
3229 	if (flags & RENAME_WHITEOUT) {
3230 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3231 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3232 		if (error)
3233 			return error;
3234 
3235 		/* setup target dirent info as whiteout */
3236 		src_name->type = XFS_DIR3_FT_CHRDEV;
3237 	}
3238 
3239 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3240 				inodes, &num_inodes);
3241 
3242 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3243 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3244 	if (error == -ENOSPC) {
3245 		spaceres = 0;
3246 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3247 				&tp);
3248 	}
3249 	if (error)
3250 		goto out_release_wip;
3251 
3252 	/*
3253 	 * Attach the dquots to the inodes
3254 	 */
3255 	error = xfs_qm_vop_rename_dqattach(inodes);
3256 	if (error)
3257 		goto out_trans_cancel;
3258 
3259 	/*
3260 	 * Lock all the participating inodes. Depending upon whether
3261 	 * the target_name exists in the target directory, and
3262 	 * whether the target directory is the same as the source
3263 	 * directory, we can lock from 2 to 4 inodes.
3264 	 */
3265 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3266 
3267 	/*
3268 	 * Join all the inodes to the transaction. From this point on,
3269 	 * we can rely on either trans_commit or trans_cancel to unlock
3270 	 * them.
3271 	 */
3272 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3273 	if (new_parent)
3274 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3275 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3276 	if (target_ip)
3277 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3278 	if (wip)
3279 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3280 
3281 	/*
3282 	 * If we are using project inheritance, we only allow renames
3283 	 * into our tree when the project IDs are the same; else the
3284 	 * tree quota mechanism would be circumvented.
3285 	 */
3286 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3287 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3288 		error = -EXDEV;
3289 		goto out_trans_cancel;
3290 	}
3291 
3292 	/* RENAME_EXCHANGE is unique from here on. */
3293 	if (flags & RENAME_EXCHANGE)
3294 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3295 					target_dp, target_name, target_ip,
3296 					spaceres);
3297 
3298 	/*
3299 	 * Set up the target.
3300 	 */
3301 	if (target_ip == NULL) {
3302 		/*
3303 		 * If there's no space reservation, check the entry will
3304 		 * fit before actually inserting it.
3305 		 */
3306 		if (!spaceres) {
3307 			error = xfs_dir_canenter(tp, target_dp, target_name);
3308 			if (error)
3309 				goto out_trans_cancel;
3310 		}
3311 		/*
3312 		 * If target does not exist and the rename crosses
3313 		 * directories, adjust the target directory link count
3314 		 * to account for the ".." reference from the new entry.
3315 		 */
3316 		error = xfs_dir_createname(tp, target_dp, target_name,
3317 					   src_ip->i_ino, spaceres);
3318 		if (error)
3319 			goto out_trans_cancel;
3320 
3321 		xfs_trans_ichgtime(tp, target_dp,
3322 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3323 
3324 		if (new_parent && src_is_directory) {
3325 			error = xfs_bumplink(tp, target_dp);
3326 			if (error)
3327 				goto out_trans_cancel;
3328 		}
3329 	} else { /* target_ip != NULL */
3330 		/*
3331 		 * If target exists and it's a directory, check that both
3332 		 * target and source are directories and that target can be
3333 		 * destroyed, or that neither is a directory.
3334 		 */
3335 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3336 			/*
3337 			 * Make sure target dir is empty.
3338 			 */
3339 			if (!(xfs_dir_isempty(target_ip)) ||
3340 			    (VFS_I(target_ip)->i_nlink > 2)) {
3341 				error = -EEXIST;
3342 				goto out_trans_cancel;
3343 			}
3344 		}
3345 
3346 		/*
3347 		 * Link the source inode under the target name.
3348 		 * If the source inode is a directory and we are moving
3349 		 * it across directories, its ".." entry will be
3350 		 * inconsistent until we replace that down below.
3351 		 *
3352 		 * In case there is already an entry with the same
3353 		 * name at the destination directory, remove it first.
3354 		 */
3355 		error = xfs_dir_replace(tp, target_dp, target_name,
3356 					src_ip->i_ino, spaceres);
3357 		if (error)
3358 			goto out_trans_cancel;
3359 
3360 		xfs_trans_ichgtime(tp, target_dp,
3361 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3362 
3363 		/*
3364 		 * Decrement the link count on the target since the target
3365 		 * dir no longer points to it.
3366 		 */
3367 		error = xfs_droplink(tp, target_ip);
3368 		if (error)
3369 			goto out_trans_cancel;
3370 
3371 		if (src_is_directory) {
3372 			/*
3373 			 * Drop the link from the old "." entry.
3374 			 */
3375 			error = xfs_droplink(tp, target_ip);
3376 			if (error)
3377 				goto out_trans_cancel;
3378 		}
3379 	} /* target_ip != NULL */
3380 
3381 	/*
3382 	 * Remove the source.
3383 	 */
3384 	if (new_parent && src_is_directory) {
3385 		/*
3386 		 * Rewrite the ".." entry to point to the new
3387 		 * directory.
3388 		 */
3389 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3390 					target_dp->i_ino, spaceres);
3391 		ASSERT(error != -EEXIST);
3392 		if (error)
3393 			goto out_trans_cancel;
3394 	}
3395 
3396 	/*
3397 	 * We always want to hit the ctime on the source inode.
3398 	 *
3399 	 * This isn't strictly required by the standards since the source
3400 	 * inode isn't really being changed, but old unix file systems did
3401 	 * it and some incremental backup programs won't work without it.
3402 	 */
3403 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3404 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3405 
3406 	/*
3407 	 * Adjust the link count on src_dp.  This is necessary when
3408 	 * renaming a directory, either within one parent when
3409 	 * the target existed, or across two parent directories.
3410 	 */
3411 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3412 
3413 		/*
3414 		 * Decrement link count on src_directory since the
3415 		 * entry that's moved no longer points to it.
3416 		 */
3417 		error = xfs_droplink(tp, src_dp);
3418 		if (error)
3419 			goto out_trans_cancel;
3420 	}
3421 
3422 	/*
3423 	 * For whiteouts, we only need to update the source dirent with the
3424 	 * inode number of the whiteout inode rather than removing it
3425 	 * altogether.
3426 	 */
3427 	if (wip) {
3428 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3429 					spaceres);
3430 	} else
3431 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3432 					   spaceres);
3433 	if (error)
3434 		goto out_trans_cancel;
3435 
3436 	/*
3437 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3438 	 * This means that failures all the way up to this point leave the inode
3439 	 * on the unlinked list and so cleanup is a simple matter of dropping
3440 	 * the remaining reference to it. If we fail here after bumping the link
3441 	 * count, we're shutting down the filesystem so we'll never see the
3442 	 * intermediate state on disk.
3443 	 */
3444 	if (wip) {
3445 		ASSERT(VFS_I(wip)->i_nlink == 0);
3446 		error = xfs_bumplink(tp, wip);
3447 		if (error)
3448 			goto out_trans_cancel;
3449 		error = xfs_iunlink_remove(tp, wip);
3450 		if (error)
3451 			goto out_trans_cancel;
3452 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3453 
3454 		/*
3455 		 * Now we have a real link, clear the "I'm a tmpfile" state
3456 		 * flag from the inode so it doesn't accidentally get misused in
3457 		 * future.
3458 		 */
3459 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3460 	}
3461 
3462 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3463 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3464 	if (new_parent)
3465 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3466 
3467 	error = xfs_finish_rename(tp);
3468 	if (wip)
3469 		xfs_irele(wip);
3470 	return error;
3471 
3472 out_trans_cancel:
3473 	xfs_trans_cancel(tp);
3474 out_release_wip:
3475 	if (wip)
3476 		xfs_irele(wip);
3477 	return error;
3478 }
3479 
3480 STATIC int
3481 xfs_iflush_cluster(
3482 	struct xfs_inode	*ip,
3483 	struct xfs_buf		*bp)
3484 {
3485 	struct xfs_mount	*mp = ip->i_mount;
3486 	struct xfs_perag	*pag;
3487 	unsigned long		first_index, mask;
3488 	unsigned long		inodes_per_cluster;
3489 	int			cilist_size;
3490 	struct xfs_inode	**cilist;
3491 	struct xfs_inode	*cip;
3492 	int			nr_found;
3493 	int			clcount = 0;
3494 	int			i;
3495 
3496 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3497 
3498 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3499 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3500 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3501 	if (!cilist)
3502 		goto out_put;
3503 
3504 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3505 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3506 	rcu_read_lock();
3507 	/* really need a gang lookup range call here */
3508 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3509 					first_index, inodes_per_cluster);
3510 	if (nr_found == 0)
3511 		goto out_free;
3512 
3513 	for (i = 0; i < nr_found; i++) {
3514 		cip = cilist[i];
3515 		if (cip == ip)
3516 			continue;
3517 
3518 		/*
3519 		 * because this is an RCU protected lookup, we could find a
3520 		 * recently freed or even reallocated inode during the lookup.
3521 		 * We need to check under the i_flags_lock for a valid inode
3522 		 * here. Skip it if it is not valid or the wrong inode.
3523 		 */
3524 		spin_lock(&cip->i_flags_lock);
3525 		if (!cip->i_ino ||
3526 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3527 			spin_unlock(&cip->i_flags_lock);
3528 			continue;
3529 		}
3530 
3531 		/*
3532 		 * Once we fall off the end of the cluster, no point checking
3533 		 * any more inodes in the list because they will also all be
3534 		 * outside the cluster.
3535 		 */
3536 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3537 			spin_unlock(&cip->i_flags_lock);
3538 			break;
3539 		}
3540 		spin_unlock(&cip->i_flags_lock);
3541 
3542 		/*
3543 		 * Do an un-protected check to see if the inode is dirty and
3544 		 * is a candidate for flushing.  These checks will be repeated
3545 		 * later after the appropriate locks are acquired.
3546 		 */
3547 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3548 			continue;
3549 
3550 		/*
3551 		 * Try to get locks.  If any are unavailable or it is pinned,
3552 		 * then this inode cannot be flushed and is skipped.
3553 		 */
3554 
3555 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3556 			continue;
3557 		if (!xfs_iflock_nowait(cip)) {
3558 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3559 			continue;
3560 		}
3561 		if (xfs_ipincount(cip)) {
3562 			xfs_ifunlock(cip);
3563 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3564 			continue;
3565 		}
3566 
3567 
3568 		/*
3569 		 * Check the inode number again, just to be certain we are not
3570 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3571 		 * in that function for more information as to why the initial
3572 		 * check is not sufficient.
3573 		 */
3574 		if (!cip->i_ino) {
3575 			xfs_ifunlock(cip);
3576 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3577 			continue;
3578 		}
3579 
3580 		/*
3581 		 * arriving here means that this inode can be flushed.  First
3582 		 * re-check that it's dirty before flushing.
3583 		 */
3584 		if (!xfs_inode_clean(cip)) {
3585 			int	error;
3586 			error = xfs_iflush_int(cip, bp);
3587 			if (error) {
3588 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3589 				goto cluster_corrupt_out;
3590 			}
3591 			clcount++;
3592 		} else {
3593 			xfs_ifunlock(cip);
3594 		}
3595 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3596 	}
3597 
3598 	if (clcount) {
3599 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3600 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3601 	}
3602 
3603 out_free:
3604 	rcu_read_unlock();
3605 	kmem_free(cilist);
3606 out_put:
3607 	xfs_perag_put(pag);
3608 	return 0;
3609 
3610 
3611 cluster_corrupt_out:
3612 	/*
3613 	 * Corruption detected in the clustering loop.  Invalidate the
3614 	 * inode buffer and shut down the filesystem.
3615 	 */
3616 	rcu_read_unlock();
3617 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3618 
3619 	/*
3620 	 * We'll always have an inode attached to the buffer for completion
3621 	 * process by the time we are called from xfs_iflush(). Hence we have
3622 	 * always need to do IO completion processing to abort the inodes
3623 	 * attached to the buffer.  handle them just like the shutdown case in
3624 	 * xfs_buf_submit().
3625 	 */
3626 	ASSERT(bp->b_iodone);
3627 	bp->b_flags &= ~XBF_DONE;
3628 	xfs_buf_stale(bp);
3629 	xfs_buf_ioerror(bp, -EIO);
3630 	xfs_buf_ioend(bp);
3631 
3632 	/* abort the corrupt inode, as it was not attached to the buffer */
3633 	xfs_iflush_abort(cip, false);
3634 	kmem_free(cilist);
3635 	xfs_perag_put(pag);
3636 	return -EFSCORRUPTED;
3637 }
3638 
3639 /*
3640  * Flush dirty inode metadata into the backing buffer.
3641  *
3642  * The caller must have the inode lock and the inode flush lock held.  The
3643  * inode lock will still be held upon return to the caller, and the inode
3644  * flush lock will be released after the inode has reached the disk.
3645  *
3646  * The caller must write out the buffer returned in *bpp and release it.
3647  */
3648 int
3649 xfs_iflush(
3650 	struct xfs_inode	*ip,
3651 	struct xfs_buf		**bpp)
3652 {
3653 	struct xfs_mount	*mp = ip->i_mount;
3654 	struct xfs_buf		*bp = NULL;
3655 	struct xfs_dinode	*dip;
3656 	int			error;
3657 
3658 	XFS_STATS_INC(mp, xs_iflush_count);
3659 
3660 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3661 	ASSERT(xfs_isiflocked(ip));
3662 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3663 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3664 
3665 	*bpp = NULL;
3666 
3667 	xfs_iunpin_wait(ip);
3668 
3669 	/*
3670 	 * For stale inodes we cannot rely on the backing buffer remaining
3671 	 * stale in cache for the remaining life of the stale inode and so
3672 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3673 	 * inodes below. We have to check this after ensuring the inode is
3674 	 * unpinned so that it is safe to reclaim the stale inode after the
3675 	 * flush call.
3676 	 */
3677 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3678 		xfs_ifunlock(ip);
3679 		return 0;
3680 	}
3681 
3682 	/*
3683 	 * This may have been unpinned because the filesystem is shutting
3684 	 * down forcibly. If that's the case we must not write this inode
3685 	 * to disk, because the log record didn't make it to disk.
3686 	 *
3687 	 * We also have to remove the log item from the AIL in this case,
3688 	 * as we wait for an empty AIL as part of the unmount process.
3689 	 */
3690 	if (XFS_FORCED_SHUTDOWN(mp)) {
3691 		error = -EIO;
3692 		goto abort_out;
3693 	}
3694 
3695 	/*
3696 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3697 	 * operation here, so we may get  an EAGAIN error. In that case, we
3698 	 * simply want to return with the inode still dirty.
3699 	 *
3700 	 * If we get any other error, we effectively have a corruption situation
3701 	 * and we cannot flush the inode, so we treat it the same as failing
3702 	 * xfs_iflush_int().
3703 	 */
3704 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3705 			       0);
3706 	if (error == -EAGAIN) {
3707 		xfs_ifunlock(ip);
3708 		return error;
3709 	}
3710 	if (error)
3711 		goto corrupt_out;
3712 
3713 	/*
3714 	 * First flush out the inode that xfs_iflush was called with.
3715 	 */
3716 	error = xfs_iflush_int(ip, bp);
3717 	if (error)
3718 		goto corrupt_out;
3719 
3720 	/*
3721 	 * If the buffer is pinned then push on the log now so we won't
3722 	 * get stuck waiting in the write for too long.
3723 	 */
3724 	if (xfs_buf_ispinned(bp))
3725 		xfs_log_force(mp, 0);
3726 
3727 	/*
3728 	 * inode clustering: try to gather other inodes into this write
3729 	 *
3730 	 * Note: Any error during clustering will result in the filesystem
3731 	 * being shut down and completion callbacks run on the cluster buffer.
3732 	 * As we have already flushed and attached this inode to the buffer,
3733 	 * it has already been aborted and released by xfs_iflush_cluster() and
3734 	 * so we have no further error handling to do here.
3735 	 */
3736 	error = xfs_iflush_cluster(ip, bp);
3737 	if (error)
3738 		return error;
3739 
3740 	*bpp = bp;
3741 	return 0;
3742 
3743 corrupt_out:
3744 	if (bp)
3745 		xfs_buf_relse(bp);
3746 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3747 abort_out:
3748 	/* abort the corrupt inode, as it was not attached to the buffer */
3749 	xfs_iflush_abort(ip, false);
3750 	return error;
3751 }
3752 
3753 /*
3754  * If there are inline format data / attr forks attached to this inode,
3755  * make sure they're not corrupt.
3756  */
3757 bool
3758 xfs_inode_verify_forks(
3759 	struct xfs_inode	*ip)
3760 {
3761 	struct xfs_ifork	*ifp;
3762 	xfs_failaddr_t		fa;
3763 
3764 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3765 	if (fa) {
3766 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3767 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3768 				ifp->if_u1.if_data, ifp->if_bytes, fa);
3769 		return false;
3770 	}
3771 
3772 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3773 	if (fa) {
3774 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3775 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3776 				ifp ? ifp->if_u1.if_data : NULL,
3777 				ifp ? ifp->if_bytes : 0, fa);
3778 		return false;
3779 	}
3780 	return true;
3781 }
3782 
3783 STATIC int
3784 xfs_iflush_int(
3785 	struct xfs_inode	*ip,
3786 	struct xfs_buf		*bp)
3787 {
3788 	struct xfs_inode_log_item *iip = ip->i_itemp;
3789 	struct xfs_dinode	*dip;
3790 	struct xfs_mount	*mp = ip->i_mount;
3791 
3792 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3793 	ASSERT(xfs_isiflocked(ip));
3794 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3795 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3796 	ASSERT(iip != NULL && iip->ili_fields != 0);
3797 	ASSERT(ip->i_d.di_version > 1);
3798 
3799 	/* set *dip = inode's place in the buffer */
3800 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3801 
3802 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3803 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3804 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3805 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3806 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3807 		goto corrupt_out;
3808 	}
3809 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3810 		if (XFS_TEST_ERROR(
3811 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3812 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3813 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3814 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3815 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3816 				__func__, ip->i_ino, ip);
3817 			goto corrupt_out;
3818 		}
3819 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3820 		if (XFS_TEST_ERROR(
3821 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3822 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3823 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3824 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3825 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3826 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3827 				__func__, ip->i_ino, ip);
3828 			goto corrupt_out;
3829 		}
3830 	}
3831 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3832 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3833 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3834 			"%s: detected corrupt incore inode %Lu, "
3835 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3836 			__func__, ip->i_ino,
3837 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3838 			ip->i_d.di_nblocks, ip);
3839 		goto corrupt_out;
3840 	}
3841 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3842 				mp, XFS_ERRTAG_IFLUSH_6)) {
3843 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3844 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3845 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3846 		goto corrupt_out;
3847 	}
3848 
3849 	/*
3850 	 * Inode item log recovery for v2 inodes are dependent on the
3851 	 * di_flushiter count for correct sequencing. We bump the flush
3852 	 * iteration count so we can detect flushes which postdate a log record
3853 	 * during recovery. This is redundant as we now log every change and
3854 	 * hence this can't happen but we need to still do it to ensure
3855 	 * backwards compatibility with old kernels that predate logging all
3856 	 * inode changes.
3857 	 */
3858 	if (ip->i_d.di_version < 3)
3859 		ip->i_d.di_flushiter++;
3860 
3861 	/* Check the inline fork data before we write out. */
3862 	if (!xfs_inode_verify_forks(ip))
3863 		goto corrupt_out;
3864 
3865 	/*
3866 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3867 	 * copy out the core of the inode, because if the inode is dirty at all
3868 	 * the core must be.
3869 	 */
3870 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3871 
3872 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3873 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3874 		ip->i_d.di_flushiter = 0;
3875 
3876 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3877 	if (XFS_IFORK_Q(ip))
3878 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3879 	xfs_inobp_check(mp, bp);
3880 
3881 	/*
3882 	 * We've recorded everything logged in the inode, so we'd like to clear
3883 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3884 	 * However, we can't stop logging all this information until the data
3885 	 * we've copied into the disk buffer is written to disk.  If we did we
3886 	 * might overwrite the copy of the inode in the log with all the data
3887 	 * after re-logging only part of it, and in the face of a crash we
3888 	 * wouldn't have all the data we need to recover.
3889 	 *
3890 	 * What we do is move the bits to the ili_last_fields field.  When
3891 	 * logging the inode, these bits are moved back to the ili_fields field.
3892 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3893 	 * know that the information those bits represent is permanently on
3894 	 * disk.  As long as the flush completes before the inode is logged
3895 	 * again, then both ili_fields and ili_last_fields will be cleared.
3896 	 *
3897 	 * We can play with the ili_fields bits here, because the inode lock
3898 	 * must be held exclusively in order to set bits there and the flush
3899 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3900 	 * done routine can tell whether or not to look in the AIL.  Also, store
3901 	 * the current LSN of the inode so that we can tell whether the item has
3902 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3903 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3904 	 * atomically.
3905 	 */
3906 	iip->ili_last_fields = iip->ili_fields;
3907 	iip->ili_fields = 0;
3908 	iip->ili_fsync_fields = 0;
3909 	iip->ili_logged = 1;
3910 
3911 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3912 				&iip->ili_item.li_lsn);
3913 
3914 	/*
3915 	 * Attach the function xfs_iflush_done to the inode's
3916 	 * buffer.  This will remove the inode from the AIL
3917 	 * and unlock the inode's flush lock when the inode is
3918 	 * completely written to disk.
3919 	 */
3920 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3921 
3922 	/* generate the checksum. */
3923 	xfs_dinode_calc_crc(mp, dip);
3924 
3925 	ASSERT(!list_empty(&bp->b_li_list));
3926 	ASSERT(bp->b_iodone != NULL);
3927 	return 0;
3928 
3929 corrupt_out:
3930 	return -EFSCORRUPTED;
3931 }
3932 
3933 /* Release an inode. */
3934 void
3935 xfs_irele(
3936 	struct xfs_inode	*ip)
3937 {
3938 	trace_xfs_irele(ip, _RET_IP_);
3939 	iput(VFS_I(ip));
3940 }
3941