1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/log2.h> 7 #include <linux/iversion.h> 8 9 #include "xfs.h" 10 #include "xfs_fs.h" 11 #include "xfs_shared.h" 12 #include "xfs_format.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans_resv.h" 15 #include "xfs_sb.h" 16 #include "xfs_mount.h" 17 #include "xfs_defer.h" 18 #include "xfs_inode.h" 19 #include "xfs_da_format.h" 20 #include "xfs_da_btree.h" 21 #include "xfs_dir2.h" 22 #include "xfs_attr_sf.h" 23 #include "xfs_attr.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_trans.h" 26 #include "xfs_buf_item.h" 27 #include "xfs_inode_item.h" 28 #include "xfs_ialloc.h" 29 #include "xfs_bmap.h" 30 #include "xfs_bmap_util.h" 31 #include "xfs_errortag.h" 32 #include "xfs_error.h" 33 #include "xfs_quota.h" 34 #include "xfs_filestream.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trace.h" 37 #include "xfs_icache.h" 38 #include "xfs_symlink.h" 39 #include "xfs_trans_priv.h" 40 #include "xfs_log.h" 41 #include "xfs_bmap_btree.h" 42 #include "xfs_reflink.h" 43 #include "xfs_dir2_priv.h" 44 45 kmem_zone_t *xfs_inode_zone; 46 47 /* 48 * Used in xfs_itruncate_extents(). This is the maximum number of extents 49 * freed from a file in a single transaction. 50 */ 51 #define XFS_ITRUNC_MAX_EXTENTS 2 52 53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 56 57 /* 58 * helper function to extract extent size hint from inode 59 */ 60 xfs_extlen_t 61 xfs_get_extsz_hint( 62 struct xfs_inode *ip) 63 { 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_sem locking order: 148 * 149 * i_rwsem -> page lock -> mmap_sem 150 * mmap_sem -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_sem locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_sem. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 xfs_inode_t **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 xfs_log_item_t *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = (xfs_log_item_t *)ips[j]->i_itemp; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 xfs_log_item_t *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = (xfs_log_item_t *)ip0->i_itemp; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 void 602 __xfs_iflock( 603 struct xfs_inode *ip) 604 { 605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 607 608 do { 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 610 if (xfs_isiflocked(ip)) 611 io_schedule(); 612 } while (!xfs_iflock_nowait(ip)); 613 614 finish_wait(wq, &wait.wq_entry); 615 } 616 617 STATIC uint 618 _xfs_dic2xflags( 619 uint16_t di_flags, 620 uint64_t di_flags2, 621 bool has_attr) 622 { 623 uint flags = 0; 624 625 if (di_flags & XFS_DIFLAG_ANY) { 626 if (di_flags & XFS_DIFLAG_REALTIME) 627 flags |= FS_XFLAG_REALTIME; 628 if (di_flags & XFS_DIFLAG_PREALLOC) 629 flags |= FS_XFLAG_PREALLOC; 630 if (di_flags & XFS_DIFLAG_IMMUTABLE) 631 flags |= FS_XFLAG_IMMUTABLE; 632 if (di_flags & XFS_DIFLAG_APPEND) 633 flags |= FS_XFLAG_APPEND; 634 if (di_flags & XFS_DIFLAG_SYNC) 635 flags |= FS_XFLAG_SYNC; 636 if (di_flags & XFS_DIFLAG_NOATIME) 637 flags |= FS_XFLAG_NOATIME; 638 if (di_flags & XFS_DIFLAG_NODUMP) 639 flags |= FS_XFLAG_NODUMP; 640 if (di_flags & XFS_DIFLAG_RTINHERIT) 641 flags |= FS_XFLAG_RTINHERIT; 642 if (di_flags & XFS_DIFLAG_PROJINHERIT) 643 flags |= FS_XFLAG_PROJINHERIT; 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 645 flags |= FS_XFLAG_NOSYMLINKS; 646 if (di_flags & XFS_DIFLAG_EXTSIZE) 647 flags |= FS_XFLAG_EXTSIZE; 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 649 flags |= FS_XFLAG_EXTSZINHERIT; 650 if (di_flags & XFS_DIFLAG_NODEFRAG) 651 flags |= FS_XFLAG_NODEFRAG; 652 if (di_flags & XFS_DIFLAG_FILESTREAM) 653 flags |= FS_XFLAG_FILESTREAM; 654 } 655 656 if (di_flags2 & XFS_DIFLAG2_ANY) { 657 if (di_flags2 & XFS_DIFLAG2_DAX) 658 flags |= FS_XFLAG_DAX; 659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 660 flags |= FS_XFLAG_COWEXTSIZE; 661 } 662 663 if (has_attr) 664 flags |= FS_XFLAG_HASATTR; 665 666 return flags; 667 } 668 669 uint 670 xfs_ip2xflags( 671 struct xfs_inode *ip) 672 { 673 struct xfs_icdinode *dic = &ip->i_d; 674 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 700 if (error) 701 goto out_unlock; 702 703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 704 if (error) 705 goto out_free_name; 706 707 return 0; 708 709 out_free_name: 710 if (ci_name) 711 kmem_free(ci_name->name); 712 out_unlock: 713 *ipp = NULL; 714 return error; 715 } 716 717 /* 718 * Allocate an inode on disk and return a copy of its in-core version. 719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 720 * appropriately within the inode. The uid and gid for the inode are 721 * set according to the contents of the given cred structure. 722 * 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 724 * has a free inode available, call xfs_iget() to obtain the in-core 725 * version of the allocated inode. Finally, fill in the inode and 726 * log its initial contents. In this case, ialloc_context would be 727 * set to NULL. 728 * 729 * If xfs_dialloc() does not have an available inode, it will replenish 730 * its supply by doing an allocation. Since we can only do one 731 * allocation within a transaction without deadlocks, we must commit 732 * the current transaction before returning the inode itself. 733 * In this case, therefore, we will set ialloc_context and return. 734 * The caller should then commit the current transaction, start a new 735 * transaction, and call xfs_ialloc() again to actually get the inode. 736 * 737 * To ensure that some other process does not grab the inode that 738 * was allocated during the first call to xfs_ialloc(), this routine 739 * also returns the [locked] bp pointing to the head of the freelist 740 * as ialloc_context. The caller should hold this buffer across 741 * the commit and pass it back into this routine on the second call. 742 * 743 * If we are allocating quota inodes, we do not have a parent inode 744 * to attach to or associate with (i.e. pip == NULL) because they 745 * are not linked into the directory structure - they are attached 746 * directly to the superblock - and so have no parent. 747 */ 748 static int 749 xfs_ialloc( 750 xfs_trans_t *tp, 751 xfs_inode_t *pip, 752 umode_t mode, 753 xfs_nlink_t nlink, 754 dev_t rdev, 755 prid_t prid, 756 xfs_buf_t **ialloc_context, 757 xfs_inode_t **ipp) 758 { 759 struct xfs_mount *mp = tp->t_mountp; 760 xfs_ino_t ino; 761 xfs_inode_t *ip; 762 uint flags; 763 int error; 764 struct timespec64 tv; 765 struct inode *inode; 766 767 /* 768 * Call the space management code to pick 769 * the on-disk inode to be allocated. 770 */ 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 772 ialloc_context, &ino); 773 if (error) 774 return error; 775 if (*ialloc_context || ino == NULLFSINO) { 776 *ipp = NULL; 777 return 0; 778 } 779 ASSERT(*ialloc_context == NULL); 780 781 /* 782 * Protect against obviously corrupt allocation btree records. Later 783 * xfs_iget checks will catch re-allocation of other active in-memory 784 * and on-disk inodes. If we don't catch reallocating the parent inode 785 * here we will deadlock in xfs_iget() so we have to do these checks 786 * first. 787 */ 788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 790 return -EFSCORRUPTED; 791 } 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 805 /* 806 * We always convert v1 inodes to v2 now - we only support filesystems 807 * with >= v2 inode capability, so there is no reason for ever leaving 808 * an inode in v1 format. 809 */ 810 if (ip->i_d.di_version == 1) 811 ip->i_d.di_version = 2; 812 813 inode->i_mode = mode; 814 set_nlink(inode, nlink); 815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 817 inode->i_rdev = rdev; 818 xfs_set_projid(ip, prid); 819 820 if (pip && XFS_INHERIT_GID(pip)) { 821 ip->i_d.di_gid = pip->i_d.di_gid; 822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 823 inode->i_mode |= S_ISGID; 824 } 825 826 /* 827 * If the group ID of the new file does not match the effective group 828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 829 * (and only if the irix_sgid_inherit compatibility variable is set). 830 */ 831 if ((irix_sgid_inherit) && 832 (inode->i_mode & S_ISGID) && 833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 834 inode->i_mode &= ~S_ISGID; 835 836 ip->i_d.di_size = 0; 837 ip->i_d.di_nextents = 0; 838 ASSERT(ip->i_d.di_nblocks == 0); 839 840 tv = current_time(inode); 841 inode->i_mtime = tv; 842 inode->i_atime = tv; 843 inode->i_ctime = tv; 844 845 ip->i_d.di_extsize = 0; 846 ip->i_d.di_dmevmask = 0; 847 ip->i_d.di_dmstate = 0; 848 ip->i_d.di_flags = 0; 849 850 if (ip->i_d.di_version == 3) { 851 inode_set_iversion(inode, 1); 852 ip->i_d.di_flags2 = 0; 853 ip->i_d.di_cowextsize = 0; 854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 856 } 857 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 866 ip->i_df.if_flags = 0; 867 flags |= XFS_ILOG_DEV; 868 break; 869 case S_IFREG: 870 case S_IFDIR: 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 872 uint di_flags = 0; 873 874 if (S_ISDIR(mode)) { 875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 876 di_flags |= XFS_DIFLAG_RTINHERIT; 877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 878 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 879 ip->i_d.di_extsize = pip->i_d.di_extsize; 880 } 881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 882 di_flags |= XFS_DIFLAG_PROJINHERIT; 883 } else if (S_ISREG(mode)) { 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 885 di_flags |= XFS_DIFLAG_REALTIME; 886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 887 di_flags |= XFS_DIFLAG_EXTSIZE; 888 ip->i_d.di_extsize = pip->i_d.di_extsize; 889 } 890 } 891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 892 xfs_inherit_noatime) 893 di_flags |= XFS_DIFLAG_NOATIME; 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 895 xfs_inherit_nodump) 896 di_flags |= XFS_DIFLAG_NODUMP; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 898 xfs_inherit_sync) 899 di_flags |= XFS_DIFLAG_SYNC; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 901 xfs_inherit_nosymlinks) 902 di_flags |= XFS_DIFLAG_NOSYMLINKS; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 904 xfs_inherit_nodefrag) 905 di_flags |= XFS_DIFLAG_NODEFRAG; 906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 907 di_flags |= XFS_DIFLAG_FILESTREAM; 908 909 ip->i_d.di_flags |= di_flags; 910 } 911 if (pip && 912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 913 pip->i_d.di_version == 3 && 914 ip->i_d.di_version == 3) { 915 uint64_t di_flags2 = 0; 916 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 920 } 921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 922 di_flags2 |= XFS_DIFLAG2_DAX; 923 924 ip->i_d.di_flags2 |= di_flags2; 925 } 926 /* FALLTHROUGH */ 927 case S_IFLNK: 928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 929 ip->i_df.if_flags = XFS_IFEXTENTS; 930 ip->i_df.if_bytes = 0; 931 ip->i_df.if_u1.if_root = NULL; 932 break; 933 default: 934 ASSERT(0); 935 } 936 /* 937 * Attribute fork settings for new inode. 938 */ 939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 940 ip->i_d.di_anextents = 0; 941 942 /* 943 * Log the new values stuffed into the inode. 944 */ 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 946 xfs_trans_log_inode(tp, ip, flags); 947 948 /* now that we have an i_mode we can setup the inode structure */ 949 xfs_setup_inode(ip); 950 951 *ipp = ip; 952 return 0; 953 } 954 955 /* 956 * Allocates a new inode from disk and return a pointer to the 957 * incore copy. This routine will internally commit the current 958 * transaction and allocate a new one if the Space Manager needed 959 * to do an allocation to replenish the inode free-list. 960 * 961 * This routine is designed to be called from xfs_create and 962 * xfs_create_dir. 963 * 964 */ 965 int 966 xfs_dir_ialloc( 967 xfs_trans_t **tpp, /* input: current transaction; 968 output: may be a new transaction. */ 969 xfs_inode_t *dp, /* directory within whose allocate 970 the inode. */ 971 umode_t mode, 972 xfs_nlink_t nlink, 973 dev_t rdev, 974 prid_t prid, /* project id */ 975 xfs_inode_t **ipp) /* pointer to inode; it will be 976 locked. */ 977 { 978 xfs_trans_t *tp; 979 xfs_inode_t *ip; 980 xfs_buf_t *ialloc_context = NULL; 981 int code; 982 void *dqinfo; 983 uint tflags; 984 985 tp = *tpp; 986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 987 988 /* 989 * xfs_ialloc will return a pointer to an incore inode if 990 * the Space Manager has an available inode on the free 991 * list. Otherwise, it will do an allocation and replenish 992 * the freelist. Since we can only do one allocation per 993 * transaction without deadlocks, we will need to commit the 994 * current transaction and start a new one. We will then 995 * need to call xfs_ialloc again to get the inode. 996 * 997 * If xfs_ialloc did an allocation to replenish the freelist, 998 * it returns the bp containing the head of the freelist as 999 * ialloc_context. We will hold a lock on it across the 1000 * transaction commit so that no other process can steal 1001 * the inode(s) that we've just allocated. 1002 */ 1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 1004 &ip); 1005 1006 /* 1007 * Return an error if we were unable to allocate a new inode. 1008 * This should only happen if we run out of space on disk or 1009 * encounter a disk error. 1010 */ 1011 if (code) { 1012 *ipp = NULL; 1013 return code; 1014 } 1015 if (!ialloc_context && !ip) { 1016 *ipp = NULL; 1017 return -ENOSPC; 1018 } 1019 1020 /* 1021 * If the AGI buffer is non-NULL, then we were unable to get an 1022 * inode in one operation. We need to commit the current 1023 * transaction and call xfs_ialloc() again. It is guaranteed 1024 * to succeed the second time. 1025 */ 1026 if (ialloc_context) { 1027 /* 1028 * Normally, xfs_trans_commit releases all the locks. 1029 * We call bhold to hang on to the ialloc_context across 1030 * the commit. Holding this buffer prevents any other 1031 * processes from doing any allocations in this 1032 * allocation group. 1033 */ 1034 xfs_trans_bhold(tp, ialloc_context); 1035 1036 /* 1037 * We want the quota changes to be associated with the next 1038 * transaction, NOT this one. So, detach the dqinfo from this 1039 * and attach it to the next transaction. 1040 */ 1041 dqinfo = NULL; 1042 tflags = 0; 1043 if (tp->t_dqinfo) { 1044 dqinfo = (void *)tp->t_dqinfo; 1045 tp->t_dqinfo = NULL; 1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1048 } 1049 1050 code = xfs_trans_roll(&tp); 1051 1052 /* 1053 * Re-attach the quota info that we detached from prev trx. 1054 */ 1055 if (dqinfo) { 1056 tp->t_dqinfo = dqinfo; 1057 tp->t_flags |= tflags; 1058 } 1059 1060 if (code) { 1061 xfs_buf_relse(ialloc_context); 1062 *tpp = tp; 1063 *ipp = NULL; 1064 return code; 1065 } 1066 xfs_trans_bjoin(tp, ialloc_context); 1067 1068 /* 1069 * Call ialloc again. Since we've locked out all 1070 * other allocations in this allocation group, 1071 * this call should always succeed. 1072 */ 1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1074 &ialloc_context, &ip); 1075 1076 /* 1077 * If we get an error at this point, return to the caller 1078 * so that the current transaction can be aborted. 1079 */ 1080 if (code) { 1081 *tpp = tp; 1082 *ipp = NULL; 1083 return code; 1084 } 1085 ASSERT(!ialloc_context && ip); 1086 1087 } 1088 1089 *ipp = ip; 1090 *tpp = tp; 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * Decrement the link count on an inode & log the change. If this causes the 1097 * link count to go to zero, move the inode to AGI unlinked list so that it can 1098 * be freed when the last active reference goes away via xfs_inactive(). 1099 */ 1100 static int /* error */ 1101 xfs_droplink( 1102 xfs_trans_t *tp, 1103 xfs_inode_t *ip) 1104 { 1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1106 1107 drop_nlink(VFS_I(ip)); 1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1109 1110 if (VFS_I(ip)->i_nlink) 1111 return 0; 1112 1113 return xfs_iunlink(tp, ip); 1114 } 1115 1116 /* 1117 * Increment the link count on an inode & log the change. 1118 */ 1119 static int 1120 xfs_bumplink( 1121 xfs_trans_t *tp, 1122 xfs_inode_t *ip) 1123 { 1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1125 1126 ASSERT(ip->i_d.di_version > 1); 1127 inc_nlink(VFS_I(ip)); 1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1129 return 0; 1130 } 1131 1132 int 1133 xfs_create( 1134 xfs_inode_t *dp, 1135 struct xfs_name *name, 1136 umode_t mode, 1137 dev_t rdev, 1138 xfs_inode_t **ipp) 1139 { 1140 int is_dir = S_ISDIR(mode); 1141 struct xfs_mount *mp = dp->i_mount; 1142 struct xfs_inode *ip = NULL; 1143 struct xfs_trans *tp = NULL; 1144 int error; 1145 bool unlock_dp_on_error = false; 1146 prid_t prid; 1147 struct xfs_dquot *udqp = NULL; 1148 struct xfs_dquot *gdqp = NULL; 1149 struct xfs_dquot *pdqp = NULL; 1150 struct xfs_trans_res *tres; 1151 uint resblks; 1152 1153 trace_xfs_create(dp, name); 1154 1155 if (XFS_FORCED_SHUTDOWN(mp)) 1156 return -EIO; 1157 1158 prid = xfs_get_initial_prid(dp); 1159 1160 /* 1161 * Make sure that we have allocated dquot(s) on disk. 1162 */ 1163 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1164 xfs_kgid_to_gid(current_fsgid()), prid, 1165 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1166 &udqp, &gdqp, &pdqp); 1167 if (error) 1168 return error; 1169 1170 if (is_dir) { 1171 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1172 tres = &M_RES(mp)->tr_mkdir; 1173 } else { 1174 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1175 tres = &M_RES(mp)->tr_create; 1176 } 1177 1178 /* 1179 * Initially assume that the file does not exist and 1180 * reserve the resources for that case. If that is not 1181 * the case we'll drop the one we have and get a more 1182 * appropriate transaction later. 1183 */ 1184 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1185 if (error == -ENOSPC) { 1186 /* flush outstanding delalloc blocks and retry */ 1187 xfs_flush_inodes(mp); 1188 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1189 } 1190 if (error) 1191 goto out_release_inode; 1192 1193 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1194 unlock_dp_on_error = true; 1195 1196 /* 1197 * Reserve disk quota and the inode. 1198 */ 1199 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1200 pdqp, resblks, 1, 0); 1201 if (error) 1202 goto out_trans_cancel; 1203 1204 /* 1205 * A newly created regular or special file just has one directory 1206 * entry pointing to them, but a directory also the "." entry 1207 * pointing to itself. 1208 */ 1209 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1210 if (error) 1211 goto out_trans_cancel; 1212 1213 /* 1214 * Now we join the directory inode to the transaction. We do not do it 1215 * earlier because xfs_dir_ialloc might commit the previous transaction 1216 * (and release all the locks). An error from here on will result in 1217 * the transaction cancel unlocking dp so don't do it explicitly in the 1218 * error path. 1219 */ 1220 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1221 unlock_dp_on_error = false; 1222 1223 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1224 resblks ? 1225 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1226 if (error) { 1227 ASSERT(error != -ENOSPC); 1228 goto out_trans_cancel; 1229 } 1230 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1231 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1232 1233 if (is_dir) { 1234 error = xfs_dir_init(tp, ip, dp); 1235 if (error) 1236 goto out_trans_cancel; 1237 1238 error = xfs_bumplink(tp, dp); 1239 if (error) 1240 goto out_trans_cancel; 1241 } 1242 1243 /* 1244 * If this is a synchronous mount, make sure that the 1245 * create transaction goes to disk before returning to 1246 * the user. 1247 */ 1248 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1249 xfs_trans_set_sync(tp); 1250 1251 /* 1252 * Attach the dquot(s) to the inodes and modify them incore. 1253 * These ids of the inode couldn't have changed since the new 1254 * inode has been locked ever since it was created. 1255 */ 1256 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1257 1258 error = xfs_trans_commit(tp); 1259 if (error) 1260 goto out_release_inode; 1261 1262 xfs_qm_dqrele(udqp); 1263 xfs_qm_dqrele(gdqp); 1264 xfs_qm_dqrele(pdqp); 1265 1266 *ipp = ip; 1267 return 0; 1268 1269 out_trans_cancel: 1270 xfs_trans_cancel(tp); 1271 out_release_inode: 1272 /* 1273 * Wait until after the current transaction is aborted to finish the 1274 * setup of the inode and release the inode. This prevents recursive 1275 * transactions and deadlocks from xfs_inactive. 1276 */ 1277 if (ip) { 1278 xfs_finish_inode_setup(ip); 1279 xfs_irele(ip); 1280 } 1281 1282 xfs_qm_dqrele(udqp); 1283 xfs_qm_dqrele(gdqp); 1284 xfs_qm_dqrele(pdqp); 1285 1286 if (unlock_dp_on_error) 1287 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1288 return error; 1289 } 1290 1291 int 1292 xfs_create_tmpfile( 1293 struct xfs_inode *dp, 1294 umode_t mode, 1295 struct xfs_inode **ipp) 1296 { 1297 struct xfs_mount *mp = dp->i_mount; 1298 struct xfs_inode *ip = NULL; 1299 struct xfs_trans *tp = NULL; 1300 int error; 1301 prid_t prid; 1302 struct xfs_dquot *udqp = NULL; 1303 struct xfs_dquot *gdqp = NULL; 1304 struct xfs_dquot *pdqp = NULL; 1305 struct xfs_trans_res *tres; 1306 uint resblks; 1307 1308 if (XFS_FORCED_SHUTDOWN(mp)) 1309 return -EIO; 1310 1311 prid = xfs_get_initial_prid(dp); 1312 1313 /* 1314 * Make sure that we have allocated dquot(s) on disk. 1315 */ 1316 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1317 xfs_kgid_to_gid(current_fsgid()), prid, 1318 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1319 &udqp, &gdqp, &pdqp); 1320 if (error) 1321 return error; 1322 1323 resblks = XFS_IALLOC_SPACE_RES(mp); 1324 tres = &M_RES(mp)->tr_create_tmpfile; 1325 1326 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1327 if (error) 1328 goto out_release_inode; 1329 1330 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1331 pdqp, resblks, 1, 0); 1332 if (error) 1333 goto out_trans_cancel; 1334 1335 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip); 1336 if (error) 1337 goto out_trans_cancel; 1338 1339 if (mp->m_flags & XFS_MOUNT_WSYNC) 1340 xfs_trans_set_sync(tp); 1341 1342 /* 1343 * Attach the dquot(s) to the inodes and modify them incore. 1344 * These ids of the inode couldn't have changed since the new 1345 * inode has been locked ever since it was created. 1346 */ 1347 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1348 1349 error = xfs_iunlink(tp, ip); 1350 if (error) 1351 goto out_trans_cancel; 1352 1353 error = xfs_trans_commit(tp); 1354 if (error) 1355 goto out_release_inode; 1356 1357 xfs_qm_dqrele(udqp); 1358 xfs_qm_dqrele(gdqp); 1359 xfs_qm_dqrele(pdqp); 1360 1361 *ipp = ip; 1362 return 0; 1363 1364 out_trans_cancel: 1365 xfs_trans_cancel(tp); 1366 out_release_inode: 1367 /* 1368 * Wait until after the current transaction is aborted to finish the 1369 * setup of the inode and release the inode. This prevents recursive 1370 * transactions and deadlocks from xfs_inactive. 1371 */ 1372 if (ip) { 1373 xfs_finish_inode_setup(ip); 1374 xfs_irele(ip); 1375 } 1376 1377 xfs_qm_dqrele(udqp); 1378 xfs_qm_dqrele(gdqp); 1379 xfs_qm_dqrele(pdqp); 1380 1381 return error; 1382 } 1383 1384 int 1385 xfs_link( 1386 xfs_inode_t *tdp, 1387 xfs_inode_t *sip, 1388 struct xfs_name *target_name) 1389 { 1390 xfs_mount_t *mp = tdp->i_mount; 1391 xfs_trans_t *tp; 1392 int error; 1393 int resblks; 1394 1395 trace_xfs_link(tdp, target_name); 1396 1397 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1398 1399 if (XFS_FORCED_SHUTDOWN(mp)) 1400 return -EIO; 1401 1402 error = xfs_qm_dqattach(sip); 1403 if (error) 1404 goto std_return; 1405 1406 error = xfs_qm_dqattach(tdp); 1407 if (error) 1408 goto std_return; 1409 1410 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1411 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1412 if (error == -ENOSPC) { 1413 resblks = 0; 1414 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1415 } 1416 if (error) 1417 goto std_return; 1418 1419 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1420 1421 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1422 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1423 1424 /* 1425 * If we are using project inheritance, we only allow hard link 1426 * creation in our tree when the project IDs are the same; else 1427 * the tree quota mechanism could be circumvented. 1428 */ 1429 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1430 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1431 error = -EXDEV; 1432 goto error_return; 1433 } 1434 1435 if (!resblks) { 1436 error = xfs_dir_canenter(tp, tdp, target_name); 1437 if (error) 1438 goto error_return; 1439 } 1440 1441 /* 1442 * Handle initial link state of O_TMPFILE inode 1443 */ 1444 if (VFS_I(sip)->i_nlink == 0) { 1445 error = xfs_iunlink_remove(tp, sip); 1446 if (error) 1447 goto error_return; 1448 } 1449 1450 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1451 resblks); 1452 if (error) 1453 goto error_return; 1454 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1455 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1456 1457 error = xfs_bumplink(tp, sip); 1458 if (error) 1459 goto error_return; 1460 1461 /* 1462 * If this is a synchronous mount, make sure that the 1463 * link transaction goes to disk before returning to 1464 * the user. 1465 */ 1466 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1467 xfs_trans_set_sync(tp); 1468 1469 return xfs_trans_commit(tp); 1470 1471 error_return: 1472 xfs_trans_cancel(tp); 1473 std_return: 1474 return error; 1475 } 1476 1477 /* Clear the reflink flag and the cowblocks tag if possible. */ 1478 static void 1479 xfs_itruncate_clear_reflink_flags( 1480 struct xfs_inode *ip) 1481 { 1482 struct xfs_ifork *dfork; 1483 struct xfs_ifork *cfork; 1484 1485 if (!xfs_is_reflink_inode(ip)) 1486 return; 1487 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1488 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1489 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1490 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1491 if (cfork->if_bytes == 0) 1492 xfs_inode_clear_cowblocks_tag(ip); 1493 } 1494 1495 /* 1496 * Free up the underlying blocks past new_size. The new size must be smaller 1497 * than the current size. This routine can be used both for the attribute and 1498 * data fork, and does not modify the inode size, which is left to the caller. 1499 * 1500 * The transaction passed to this routine must have made a permanent log 1501 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1502 * given transaction and start new ones, so make sure everything involved in 1503 * the transaction is tidy before calling here. Some transaction will be 1504 * returned to the caller to be committed. The incoming transaction must 1505 * already include the inode, and both inode locks must be held exclusively. 1506 * The inode must also be "held" within the transaction. On return the inode 1507 * will be "held" within the returned transaction. This routine does NOT 1508 * require any disk space to be reserved for it within the transaction. 1509 * 1510 * If we get an error, we must return with the inode locked and linked into the 1511 * current transaction. This keeps things simple for the higher level code, 1512 * because it always knows that the inode is locked and held in the transaction 1513 * that returns to it whether errors occur or not. We don't mark the inode 1514 * dirty on error so that transactions can be easily aborted if possible. 1515 */ 1516 int 1517 xfs_itruncate_extents_flags( 1518 struct xfs_trans **tpp, 1519 struct xfs_inode *ip, 1520 int whichfork, 1521 xfs_fsize_t new_size, 1522 int flags) 1523 { 1524 struct xfs_mount *mp = ip->i_mount; 1525 struct xfs_trans *tp = *tpp; 1526 xfs_fileoff_t first_unmap_block; 1527 xfs_fileoff_t last_block; 1528 xfs_filblks_t unmap_len; 1529 int error = 0; 1530 int done = 0; 1531 1532 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1533 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1534 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1535 ASSERT(new_size <= XFS_ISIZE(ip)); 1536 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1537 ASSERT(ip->i_itemp != NULL); 1538 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1539 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1540 1541 trace_xfs_itruncate_extents_start(ip, new_size); 1542 1543 flags |= xfs_bmapi_aflag(whichfork); 1544 1545 /* 1546 * Since it is possible for space to become allocated beyond 1547 * the end of the file (in a crash where the space is allocated 1548 * but the inode size is not yet updated), simply remove any 1549 * blocks which show up between the new EOF and the maximum 1550 * possible file size. If the first block to be removed is 1551 * beyond the maximum file size (ie it is the same as last_block), 1552 * then there is nothing to do. 1553 */ 1554 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1555 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1556 if (first_unmap_block == last_block) 1557 return 0; 1558 1559 ASSERT(first_unmap_block < last_block); 1560 unmap_len = last_block - first_unmap_block + 1; 1561 while (!done) { 1562 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1563 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, 1564 XFS_ITRUNC_MAX_EXTENTS, &done); 1565 if (error) 1566 goto out; 1567 1568 /* 1569 * Duplicate the transaction that has the permanent 1570 * reservation and commit the old transaction. 1571 */ 1572 error = xfs_defer_finish(&tp); 1573 if (error) 1574 goto out; 1575 1576 error = xfs_trans_roll_inode(&tp, ip); 1577 if (error) 1578 goto out; 1579 } 1580 1581 if (whichfork == XFS_DATA_FORK) { 1582 /* Remove all pending CoW reservations. */ 1583 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1584 first_unmap_block, last_block, true); 1585 if (error) 1586 goto out; 1587 1588 xfs_itruncate_clear_reflink_flags(ip); 1589 } 1590 1591 /* 1592 * Always re-log the inode so that our permanent transaction can keep 1593 * on rolling it forward in the log. 1594 */ 1595 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1596 1597 trace_xfs_itruncate_extents_end(ip, new_size); 1598 1599 out: 1600 *tpp = tp; 1601 return error; 1602 } 1603 1604 int 1605 xfs_release( 1606 xfs_inode_t *ip) 1607 { 1608 xfs_mount_t *mp = ip->i_mount; 1609 int error; 1610 1611 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1612 return 0; 1613 1614 /* If this is a read-only mount, don't do this (would generate I/O) */ 1615 if (mp->m_flags & XFS_MOUNT_RDONLY) 1616 return 0; 1617 1618 if (!XFS_FORCED_SHUTDOWN(mp)) { 1619 int truncated; 1620 1621 /* 1622 * If we previously truncated this file and removed old data 1623 * in the process, we want to initiate "early" writeout on 1624 * the last close. This is an attempt to combat the notorious 1625 * NULL files problem which is particularly noticeable from a 1626 * truncate down, buffered (re-)write (delalloc), followed by 1627 * a crash. What we are effectively doing here is 1628 * significantly reducing the time window where we'd otherwise 1629 * be exposed to that problem. 1630 */ 1631 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1632 if (truncated) { 1633 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1634 if (ip->i_delayed_blks > 0) { 1635 error = filemap_flush(VFS_I(ip)->i_mapping); 1636 if (error) 1637 return error; 1638 } 1639 } 1640 } 1641 1642 if (VFS_I(ip)->i_nlink == 0) 1643 return 0; 1644 1645 if (xfs_can_free_eofblocks(ip, false)) { 1646 1647 /* 1648 * Check if the inode is being opened, written and closed 1649 * frequently and we have delayed allocation blocks outstanding 1650 * (e.g. streaming writes from the NFS server), truncating the 1651 * blocks past EOF will cause fragmentation to occur. 1652 * 1653 * In this case don't do the truncation, but we have to be 1654 * careful how we detect this case. Blocks beyond EOF show up as 1655 * i_delayed_blks even when the inode is clean, so we need to 1656 * truncate them away first before checking for a dirty release. 1657 * Hence on the first dirty close we will still remove the 1658 * speculative allocation, but after that we will leave it in 1659 * place. 1660 */ 1661 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1662 return 0; 1663 /* 1664 * If we can't get the iolock just skip truncating the blocks 1665 * past EOF because we could deadlock with the mmap_sem 1666 * otherwise. We'll get another chance to drop them once the 1667 * last reference to the inode is dropped, so we'll never leak 1668 * blocks permanently. 1669 */ 1670 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1671 error = xfs_free_eofblocks(ip); 1672 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1673 if (error) 1674 return error; 1675 } 1676 1677 /* delalloc blocks after truncation means it really is dirty */ 1678 if (ip->i_delayed_blks) 1679 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1680 } 1681 return 0; 1682 } 1683 1684 /* 1685 * xfs_inactive_truncate 1686 * 1687 * Called to perform a truncate when an inode becomes unlinked. 1688 */ 1689 STATIC int 1690 xfs_inactive_truncate( 1691 struct xfs_inode *ip) 1692 { 1693 struct xfs_mount *mp = ip->i_mount; 1694 struct xfs_trans *tp; 1695 int error; 1696 1697 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1698 if (error) { 1699 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1700 return error; 1701 } 1702 xfs_ilock(ip, XFS_ILOCK_EXCL); 1703 xfs_trans_ijoin(tp, ip, 0); 1704 1705 /* 1706 * Log the inode size first to prevent stale data exposure in the event 1707 * of a system crash before the truncate completes. See the related 1708 * comment in xfs_vn_setattr_size() for details. 1709 */ 1710 ip->i_d.di_size = 0; 1711 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1712 1713 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1714 if (error) 1715 goto error_trans_cancel; 1716 1717 ASSERT(ip->i_d.di_nextents == 0); 1718 1719 error = xfs_trans_commit(tp); 1720 if (error) 1721 goto error_unlock; 1722 1723 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1724 return 0; 1725 1726 error_trans_cancel: 1727 xfs_trans_cancel(tp); 1728 error_unlock: 1729 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1730 return error; 1731 } 1732 1733 /* 1734 * xfs_inactive_ifree() 1735 * 1736 * Perform the inode free when an inode is unlinked. 1737 */ 1738 STATIC int 1739 xfs_inactive_ifree( 1740 struct xfs_inode *ip) 1741 { 1742 struct xfs_mount *mp = ip->i_mount; 1743 struct xfs_trans *tp; 1744 int error; 1745 1746 /* 1747 * We try to use a per-AG reservation for any block needed by the finobt 1748 * tree, but as the finobt feature predates the per-AG reservation 1749 * support a degraded file system might not have enough space for the 1750 * reservation at mount time. In that case try to dip into the reserved 1751 * pool and pray. 1752 * 1753 * Send a warning if the reservation does happen to fail, as the inode 1754 * now remains allocated and sits on the unlinked list until the fs is 1755 * repaired. 1756 */ 1757 if (unlikely(mp->m_inotbt_nores)) { 1758 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1759 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1760 &tp); 1761 } else { 1762 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1763 } 1764 if (error) { 1765 if (error == -ENOSPC) { 1766 xfs_warn_ratelimited(mp, 1767 "Failed to remove inode(s) from unlinked list. " 1768 "Please free space, unmount and run xfs_repair."); 1769 } else { 1770 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1771 } 1772 return error; 1773 } 1774 1775 xfs_ilock(ip, XFS_ILOCK_EXCL); 1776 xfs_trans_ijoin(tp, ip, 0); 1777 1778 error = xfs_ifree(tp, ip); 1779 if (error) { 1780 /* 1781 * If we fail to free the inode, shut down. The cancel 1782 * might do that, we need to make sure. Otherwise the 1783 * inode might be lost for a long time or forever. 1784 */ 1785 if (!XFS_FORCED_SHUTDOWN(mp)) { 1786 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1787 __func__, error); 1788 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1789 } 1790 xfs_trans_cancel(tp); 1791 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1792 return error; 1793 } 1794 1795 /* 1796 * Credit the quota account(s). The inode is gone. 1797 */ 1798 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1799 1800 /* 1801 * Just ignore errors at this point. There is nothing we can do except 1802 * to try to keep going. Make sure it's not a silent error. 1803 */ 1804 error = xfs_trans_commit(tp); 1805 if (error) 1806 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1807 __func__, error); 1808 1809 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1810 return 0; 1811 } 1812 1813 /* 1814 * xfs_inactive 1815 * 1816 * This is called when the vnode reference count for the vnode 1817 * goes to zero. If the file has been unlinked, then it must 1818 * now be truncated. Also, we clear all of the read-ahead state 1819 * kept for the inode here since the file is now closed. 1820 */ 1821 void 1822 xfs_inactive( 1823 xfs_inode_t *ip) 1824 { 1825 struct xfs_mount *mp; 1826 int error; 1827 int truncate = 0; 1828 1829 /* 1830 * If the inode is already free, then there can be nothing 1831 * to clean up here. 1832 */ 1833 if (VFS_I(ip)->i_mode == 0) { 1834 ASSERT(ip->i_df.if_broot_bytes == 0); 1835 return; 1836 } 1837 1838 mp = ip->i_mount; 1839 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1840 1841 /* If this is a read-only mount, don't do this (would generate I/O) */ 1842 if (mp->m_flags & XFS_MOUNT_RDONLY) 1843 return; 1844 1845 /* Try to clean out the cow blocks if there are any. */ 1846 if (xfs_inode_has_cow_data(ip)) 1847 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1848 1849 if (VFS_I(ip)->i_nlink != 0) { 1850 /* 1851 * force is true because we are evicting an inode from the 1852 * cache. Post-eof blocks must be freed, lest we end up with 1853 * broken free space accounting. 1854 * 1855 * Note: don't bother with iolock here since lockdep complains 1856 * about acquiring it in reclaim context. We have the only 1857 * reference to the inode at this point anyways. 1858 */ 1859 if (xfs_can_free_eofblocks(ip, true)) 1860 xfs_free_eofblocks(ip); 1861 1862 return; 1863 } 1864 1865 if (S_ISREG(VFS_I(ip)->i_mode) && 1866 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1867 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1868 truncate = 1; 1869 1870 error = xfs_qm_dqattach(ip); 1871 if (error) 1872 return; 1873 1874 if (S_ISLNK(VFS_I(ip)->i_mode)) 1875 error = xfs_inactive_symlink(ip); 1876 else if (truncate) 1877 error = xfs_inactive_truncate(ip); 1878 if (error) 1879 return; 1880 1881 /* 1882 * If there are attributes associated with the file then blow them away 1883 * now. The code calls a routine that recursively deconstructs the 1884 * attribute fork. If also blows away the in-core attribute fork. 1885 */ 1886 if (XFS_IFORK_Q(ip)) { 1887 error = xfs_attr_inactive(ip); 1888 if (error) 1889 return; 1890 } 1891 1892 ASSERT(!ip->i_afp); 1893 ASSERT(ip->i_d.di_anextents == 0); 1894 ASSERT(ip->i_d.di_forkoff == 0); 1895 1896 /* 1897 * Free the inode. 1898 */ 1899 error = xfs_inactive_ifree(ip); 1900 if (error) 1901 return; 1902 1903 /* 1904 * Release the dquots held by inode, if any. 1905 */ 1906 xfs_qm_dqdetach(ip); 1907 } 1908 1909 /* 1910 * This is called when the inode's link count goes to 0 or we are creating a 1911 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1912 * set to true as the link count is dropped to zero by the VFS after we've 1913 * created the file successfully, so we have to add it to the unlinked list 1914 * while the link count is non-zero. 1915 * 1916 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1917 * list when the inode is freed. 1918 */ 1919 STATIC int 1920 xfs_iunlink( 1921 struct xfs_trans *tp, 1922 struct xfs_inode *ip) 1923 { 1924 xfs_mount_t *mp = tp->t_mountp; 1925 xfs_agi_t *agi; 1926 xfs_dinode_t *dip; 1927 xfs_buf_t *agibp; 1928 xfs_buf_t *ibp; 1929 xfs_agino_t agino; 1930 short bucket_index; 1931 int offset; 1932 int error; 1933 1934 ASSERT(VFS_I(ip)->i_mode != 0); 1935 1936 /* 1937 * Get the agi buffer first. It ensures lock ordering 1938 * on the list. 1939 */ 1940 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1941 if (error) 1942 return error; 1943 agi = XFS_BUF_TO_AGI(agibp); 1944 1945 /* 1946 * Get the index into the agi hash table for the 1947 * list this inode will go on. 1948 */ 1949 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1950 ASSERT(agino != 0); 1951 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1952 ASSERT(agi->agi_unlinked[bucket_index]); 1953 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1954 1955 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1956 /* 1957 * There is already another inode in the bucket we need 1958 * to add ourselves to. Add us at the front of the list. 1959 * Here we put the head pointer into our next pointer, 1960 * and then we fall through to point the head at us. 1961 */ 1962 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1963 0, 0); 1964 if (error) 1965 return error; 1966 1967 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1968 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1969 offset = ip->i_imap.im_boffset + 1970 offsetof(xfs_dinode_t, di_next_unlinked); 1971 1972 /* need to recalc the inode CRC if appropriate */ 1973 xfs_dinode_calc_crc(mp, dip); 1974 1975 xfs_trans_inode_buf(tp, ibp); 1976 xfs_trans_log_buf(tp, ibp, offset, 1977 (offset + sizeof(xfs_agino_t) - 1)); 1978 xfs_inobp_check(mp, ibp); 1979 } 1980 1981 /* 1982 * Point the bucket head pointer at the inode being inserted. 1983 */ 1984 ASSERT(agino != 0); 1985 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1986 offset = offsetof(xfs_agi_t, agi_unlinked) + 1987 (sizeof(xfs_agino_t) * bucket_index); 1988 xfs_trans_log_buf(tp, agibp, offset, 1989 (offset + sizeof(xfs_agino_t) - 1)); 1990 return 0; 1991 } 1992 1993 /* 1994 * Pull the on-disk inode from the AGI unlinked list. 1995 */ 1996 STATIC int 1997 xfs_iunlink_remove( 1998 xfs_trans_t *tp, 1999 xfs_inode_t *ip) 2000 { 2001 xfs_ino_t next_ino; 2002 xfs_mount_t *mp; 2003 xfs_agi_t *agi; 2004 xfs_dinode_t *dip; 2005 xfs_buf_t *agibp; 2006 xfs_buf_t *ibp; 2007 xfs_agnumber_t agno; 2008 xfs_agino_t agino; 2009 xfs_agino_t next_agino; 2010 xfs_buf_t *last_ibp; 2011 xfs_dinode_t *last_dip = NULL; 2012 short bucket_index; 2013 int offset, last_offset = 0; 2014 int error; 2015 2016 mp = tp->t_mountp; 2017 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2018 2019 /* 2020 * Get the agi buffer first. It ensures lock ordering 2021 * on the list. 2022 */ 2023 error = xfs_read_agi(mp, tp, agno, &agibp); 2024 if (error) 2025 return error; 2026 2027 agi = XFS_BUF_TO_AGI(agibp); 2028 2029 /* 2030 * Get the index into the agi hash table for the 2031 * list this inode will go on. 2032 */ 2033 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2034 if (!xfs_verify_agino(mp, agno, agino)) 2035 return -EFSCORRUPTED; 2036 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2037 if (!xfs_verify_agino(mp, agno, 2038 be32_to_cpu(agi->agi_unlinked[bucket_index]))) { 2039 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2040 agi, sizeof(*agi)); 2041 return -EFSCORRUPTED; 2042 } 2043 2044 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2045 /* 2046 * We're at the head of the list. Get the inode's on-disk 2047 * buffer to see if there is anyone after us on the list. 2048 * Only modify our next pointer if it is not already NULLAGINO. 2049 * This saves us the overhead of dealing with the buffer when 2050 * there is no need to change it. 2051 */ 2052 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2053 0, 0); 2054 if (error) { 2055 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2056 __func__, error); 2057 return error; 2058 } 2059 next_agino = be32_to_cpu(dip->di_next_unlinked); 2060 ASSERT(next_agino != 0); 2061 if (next_agino != NULLAGINO) { 2062 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2063 offset = ip->i_imap.im_boffset + 2064 offsetof(xfs_dinode_t, di_next_unlinked); 2065 2066 /* need to recalc the inode CRC if appropriate */ 2067 xfs_dinode_calc_crc(mp, dip); 2068 2069 xfs_trans_inode_buf(tp, ibp); 2070 xfs_trans_log_buf(tp, ibp, offset, 2071 (offset + sizeof(xfs_agino_t) - 1)); 2072 xfs_inobp_check(mp, ibp); 2073 } else { 2074 xfs_trans_brelse(tp, ibp); 2075 } 2076 /* 2077 * Point the bucket head pointer at the next inode. 2078 */ 2079 ASSERT(next_agino != 0); 2080 ASSERT(next_agino != agino); 2081 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2082 offset = offsetof(xfs_agi_t, agi_unlinked) + 2083 (sizeof(xfs_agino_t) * bucket_index); 2084 xfs_trans_log_buf(tp, agibp, offset, 2085 (offset + sizeof(xfs_agino_t) - 1)); 2086 } else { 2087 /* 2088 * We need to search the list for the inode being freed. 2089 */ 2090 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2091 last_ibp = NULL; 2092 while (next_agino != agino) { 2093 struct xfs_imap imap; 2094 2095 if (last_ibp) 2096 xfs_trans_brelse(tp, last_ibp); 2097 2098 imap.im_blkno = 0; 2099 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2100 2101 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2102 if (error) { 2103 xfs_warn(mp, 2104 "%s: xfs_imap returned error %d.", 2105 __func__, error); 2106 return error; 2107 } 2108 2109 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2110 &last_ibp, 0, 0); 2111 if (error) { 2112 xfs_warn(mp, 2113 "%s: xfs_imap_to_bp returned error %d.", 2114 __func__, error); 2115 return error; 2116 } 2117 2118 last_offset = imap.im_boffset; 2119 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2120 if (!xfs_verify_agino(mp, agno, next_agino)) { 2121 XFS_CORRUPTION_ERROR(__func__, 2122 XFS_ERRLEVEL_LOW, mp, 2123 last_dip, sizeof(*last_dip)); 2124 return -EFSCORRUPTED; 2125 } 2126 } 2127 2128 /* 2129 * Now last_ibp points to the buffer previous to us on the 2130 * unlinked list. Pull us from the list. 2131 */ 2132 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2133 0, 0); 2134 if (error) { 2135 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2136 __func__, error); 2137 return error; 2138 } 2139 next_agino = be32_to_cpu(dip->di_next_unlinked); 2140 ASSERT(next_agino != 0); 2141 ASSERT(next_agino != agino); 2142 if (next_agino != NULLAGINO) { 2143 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2144 offset = ip->i_imap.im_boffset + 2145 offsetof(xfs_dinode_t, di_next_unlinked); 2146 2147 /* need to recalc the inode CRC if appropriate */ 2148 xfs_dinode_calc_crc(mp, dip); 2149 2150 xfs_trans_inode_buf(tp, ibp); 2151 xfs_trans_log_buf(tp, ibp, offset, 2152 (offset + sizeof(xfs_agino_t) - 1)); 2153 xfs_inobp_check(mp, ibp); 2154 } else { 2155 xfs_trans_brelse(tp, ibp); 2156 } 2157 /* 2158 * Point the previous inode on the list to the next inode. 2159 */ 2160 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2161 ASSERT(next_agino != 0); 2162 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2163 2164 /* need to recalc the inode CRC if appropriate */ 2165 xfs_dinode_calc_crc(mp, last_dip); 2166 2167 xfs_trans_inode_buf(tp, last_ibp); 2168 xfs_trans_log_buf(tp, last_ibp, offset, 2169 (offset + sizeof(xfs_agino_t) - 1)); 2170 xfs_inobp_check(mp, last_ibp); 2171 } 2172 return 0; 2173 } 2174 2175 /* 2176 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2177 * inodes that are in memory - they all must be marked stale and attached to 2178 * the cluster buffer. 2179 */ 2180 STATIC int 2181 xfs_ifree_cluster( 2182 xfs_inode_t *free_ip, 2183 xfs_trans_t *tp, 2184 struct xfs_icluster *xic) 2185 { 2186 xfs_mount_t *mp = free_ip->i_mount; 2187 int nbufs; 2188 int i, j; 2189 int ioffset; 2190 xfs_daddr_t blkno; 2191 xfs_buf_t *bp; 2192 xfs_inode_t *ip; 2193 xfs_inode_log_item_t *iip; 2194 struct xfs_log_item *lip; 2195 struct xfs_perag *pag; 2196 xfs_ino_t inum; 2197 2198 inum = xic->first_ino; 2199 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2200 nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster; 2201 2202 for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) { 2203 /* 2204 * The allocation bitmap tells us which inodes of the chunk were 2205 * physically allocated. Skip the cluster if an inode falls into 2206 * a sparse region. 2207 */ 2208 ioffset = inum - xic->first_ino; 2209 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2210 ASSERT(ioffset % mp->m_inodes_per_cluster == 0); 2211 continue; 2212 } 2213 2214 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2215 XFS_INO_TO_AGBNO(mp, inum)); 2216 2217 /* 2218 * We obtain and lock the backing buffer first in the process 2219 * here, as we have to ensure that any dirty inode that we 2220 * can't get the flush lock on is attached to the buffer. 2221 * If we scan the in-memory inodes first, then buffer IO can 2222 * complete before we get a lock on it, and hence we may fail 2223 * to mark all the active inodes on the buffer stale. 2224 */ 2225 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2226 mp->m_bsize * mp->m_blocks_per_cluster, 2227 XBF_UNMAPPED); 2228 2229 if (!bp) 2230 return -ENOMEM; 2231 2232 /* 2233 * This buffer may not have been correctly initialised as we 2234 * didn't read it from disk. That's not important because we are 2235 * only using to mark the buffer as stale in the log, and to 2236 * attach stale cached inodes on it. That means it will never be 2237 * dispatched for IO. If it is, we want to know about it, and we 2238 * want it to fail. We can acheive this by adding a write 2239 * verifier to the buffer. 2240 */ 2241 bp->b_ops = &xfs_inode_buf_ops; 2242 2243 /* 2244 * Walk the inodes already attached to the buffer and mark them 2245 * stale. These will all have the flush locks held, so an 2246 * in-memory inode walk can't lock them. By marking them all 2247 * stale first, we will not attempt to lock them in the loop 2248 * below as the XFS_ISTALE flag will be set. 2249 */ 2250 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2251 if (lip->li_type == XFS_LI_INODE) { 2252 iip = (xfs_inode_log_item_t *)lip; 2253 ASSERT(iip->ili_logged == 1); 2254 lip->li_cb = xfs_istale_done; 2255 xfs_trans_ail_copy_lsn(mp->m_ail, 2256 &iip->ili_flush_lsn, 2257 &iip->ili_item.li_lsn); 2258 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2259 } 2260 } 2261 2262 2263 /* 2264 * For each inode in memory attempt to add it to the inode 2265 * buffer and set it up for being staled on buffer IO 2266 * completion. This is safe as we've locked out tail pushing 2267 * and flushing by locking the buffer. 2268 * 2269 * We have already marked every inode that was part of a 2270 * transaction stale above, which means there is no point in 2271 * even trying to lock them. 2272 */ 2273 for (i = 0; i < mp->m_inodes_per_cluster; i++) { 2274 retry: 2275 rcu_read_lock(); 2276 ip = radix_tree_lookup(&pag->pag_ici_root, 2277 XFS_INO_TO_AGINO(mp, (inum + i))); 2278 2279 /* Inode not in memory, nothing to do */ 2280 if (!ip) { 2281 rcu_read_unlock(); 2282 continue; 2283 } 2284 2285 /* 2286 * because this is an RCU protected lookup, we could 2287 * find a recently freed or even reallocated inode 2288 * during the lookup. We need to check under the 2289 * i_flags_lock for a valid inode here. Skip it if it 2290 * is not valid, the wrong inode or stale. 2291 */ 2292 spin_lock(&ip->i_flags_lock); 2293 if (ip->i_ino != inum + i || 2294 __xfs_iflags_test(ip, XFS_ISTALE)) { 2295 spin_unlock(&ip->i_flags_lock); 2296 rcu_read_unlock(); 2297 continue; 2298 } 2299 spin_unlock(&ip->i_flags_lock); 2300 2301 /* 2302 * Don't try to lock/unlock the current inode, but we 2303 * _cannot_ skip the other inodes that we did not find 2304 * in the list attached to the buffer and are not 2305 * already marked stale. If we can't lock it, back off 2306 * and retry. 2307 */ 2308 if (ip != free_ip) { 2309 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2310 rcu_read_unlock(); 2311 delay(1); 2312 goto retry; 2313 } 2314 2315 /* 2316 * Check the inode number again in case we're 2317 * racing with freeing in xfs_reclaim_inode(). 2318 * See the comments in that function for more 2319 * information as to why the initial check is 2320 * not sufficient. 2321 */ 2322 if (ip->i_ino != inum + i) { 2323 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2324 rcu_read_unlock(); 2325 continue; 2326 } 2327 } 2328 rcu_read_unlock(); 2329 2330 xfs_iflock(ip); 2331 xfs_iflags_set(ip, XFS_ISTALE); 2332 2333 /* 2334 * we don't need to attach clean inodes or those only 2335 * with unlogged changes (which we throw away, anyway). 2336 */ 2337 iip = ip->i_itemp; 2338 if (!iip || xfs_inode_clean(ip)) { 2339 ASSERT(ip != free_ip); 2340 xfs_ifunlock(ip); 2341 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2342 continue; 2343 } 2344 2345 iip->ili_last_fields = iip->ili_fields; 2346 iip->ili_fields = 0; 2347 iip->ili_fsync_fields = 0; 2348 iip->ili_logged = 1; 2349 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2350 &iip->ili_item.li_lsn); 2351 2352 xfs_buf_attach_iodone(bp, xfs_istale_done, 2353 &iip->ili_item); 2354 2355 if (ip != free_ip) 2356 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2357 } 2358 2359 xfs_trans_stale_inode_buf(tp, bp); 2360 xfs_trans_binval(tp, bp); 2361 } 2362 2363 xfs_perag_put(pag); 2364 return 0; 2365 } 2366 2367 /* 2368 * Free any local-format buffers sitting around before we reset to 2369 * extents format. 2370 */ 2371 static inline void 2372 xfs_ifree_local_data( 2373 struct xfs_inode *ip, 2374 int whichfork) 2375 { 2376 struct xfs_ifork *ifp; 2377 2378 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2379 return; 2380 2381 ifp = XFS_IFORK_PTR(ip, whichfork); 2382 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2383 } 2384 2385 /* 2386 * This is called to return an inode to the inode free list. 2387 * The inode should already be truncated to 0 length and have 2388 * no pages associated with it. This routine also assumes that 2389 * the inode is already a part of the transaction. 2390 * 2391 * The on-disk copy of the inode will have been added to the list 2392 * of unlinked inodes in the AGI. We need to remove the inode from 2393 * that list atomically with respect to freeing it here. 2394 */ 2395 int 2396 xfs_ifree( 2397 struct xfs_trans *tp, 2398 struct xfs_inode *ip) 2399 { 2400 int error; 2401 struct xfs_icluster xic = { 0 }; 2402 2403 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2404 ASSERT(VFS_I(ip)->i_nlink == 0); 2405 ASSERT(ip->i_d.di_nextents == 0); 2406 ASSERT(ip->i_d.di_anextents == 0); 2407 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2408 ASSERT(ip->i_d.di_nblocks == 0); 2409 2410 /* 2411 * Pull the on-disk inode from the AGI unlinked list. 2412 */ 2413 error = xfs_iunlink_remove(tp, ip); 2414 if (error) 2415 return error; 2416 2417 error = xfs_difree(tp, ip->i_ino, &xic); 2418 if (error) 2419 return error; 2420 2421 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2422 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2423 2424 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2425 ip->i_d.di_flags = 0; 2426 ip->i_d.di_flags2 = 0; 2427 ip->i_d.di_dmevmask = 0; 2428 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2429 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2430 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2431 2432 /* Don't attempt to replay owner changes for a deleted inode */ 2433 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2434 2435 /* 2436 * Bump the generation count so no one will be confused 2437 * by reincarnations of this inode. 2438 */ 2439 VFS_I(ip)->i_generation++; 2440 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2441 2442 if (xic.deleted) 2443 error = xfs_ifree_cluster(ip, tp, &xic); 2444 2445 return error; 2446 } 2447 2448 /* 2449 * This is called to unpin an inode. The caller must have the inode locked 2450 * in at least shared mode so that the buffer cannot be subsequently pinned 2451 * once someone is waiting for it to be unpinned. 2452 */ 2453 static void 2454 xfs_iunpin( 2455 struct xfs_inode *ip) 2456 { 2457 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2458 2459 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2460 2461 /* Give the log a push to start the unpinning I/O */ 2462 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2463 2464 } 2465 2466 static void 2467 __xfs_iunpin_wait( 2468 struct xfs_inode *ip) 2469 { 2470 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2471 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2472 2473 xfs_iunpin(ip); 2474 2475 do { 2476 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2477 if (xfs_ipincount(ip)) 2478 io_schedule(); 2479 } while (xfs_ipincount(ip)); 2480 finish_wait(wq, &wait.wq_entry); 2481 } 2482 2483 void 2484 xfs_iunpin_wait( 2485 struct xfs_inode *ip) 2486 { 2487 if (xfs_ipincount(ip)) 2488 __xfs_iunpin_wait(ip); 2489 } 2490 2491 /* 2492 * Removing an inode from the namespace involves removing the directory entry 2493 * and dropping the link count on the inode. Removing the directory entry can 2494 * result in locking an AGF (directory blocks were freed) and removing a link 2495 * count can result in placing the inode on an unlinked list which results in 2496 * locking an AGI. 2497 * 2498 * The big problem here is that we have an ordering constraint on AGF and AGI 2499 * locking - inode allocation locks the AGI, then can allocate a new extent for 2500 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2501 * removes the inode from the unlinked list, requiring that we lock the AGI 2502 * first, and then freeing the inode can result in an inode chunk being freed 2503 * and hence freeing disk space requiring that we lock an AGF. 2504 * 2505 * Hence the ordering that is imposed by other parts of the code is AGI before 2506 * AGF. This means we cannot remove the directory entry before we drop the inode 2507 * reference count and put it on the unlinked list as this results in a lock 2508 * order of AGF then AGI, and this can deadlock against inode allocation and 2509 * freeing. Therefore we must drop the link counts before we remove the 2510 * directory entry. 2511 * 2512 * This is still safe from a transactional point of view - it is not until we 2513 * get to xfs_defer_finish() that we have the possibility of multiple 2514 * transactions in this operation. Hence as long as we remove the directory 2515 * entry and drop the link count in the first transaction of the remove 2516 * operation, there are no transactional constraints on the ordering here. 2517 */ 2518 int 2519 xfs_remove( 2520 xfs_inode_t *dp, 2521 struct xfs_name *name, 2522 xfs_inode_t *ip) 2523 { 2524 xfs_mount_t *mp = dp->i_mount; 2525 xfs_trans_t *tp = NULL; 2526 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2527 int error = 0; 2528 uint resblks; 2529 2530 trace_xfs_remove(dp, name); 2531 2532 if (XFS_FORCED_SHUTDOWN(mp)) 2533 return -EIO; 2534 2535 error = xfs_qm_dqattach(dp); 2536 if (error) 2537 goto std_return; 2538 2539 error = xfs_qm_dqattach(ip); 2540 if (error) 2541 goto std_return; 2542 2543 /* 2544 * We try to get the real space reservation first, 2545 * allowing for directory btree deletion(s) implying 2546 * possible bmap insert(s). If we can't get the space 2547 * reservation then we use 0 instead, and avoid the bmap 2548 * btree insert(s) in the directory code by, if the bmap 2549 * insert tries to happen, instead trimming the LAST 2550 * block from the directory. 2551 */ 2552 resblks = XFS_REMOVE_SPACE_RES(mp); 2553 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2554 if (error == -ENOSPC) { 2555 resblks = 0; 2556 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2557 &tp); 2558 } 2559 if (error) { 2560 ASSERT(error != -ENOSPC); 2561 goto std_return; 2562 } 2563 2564 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2565 2566 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2567 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2568 2569 /* 2570 * If we're removing a directory perform some additional validation. 2571 */ 2572 if (is_dir) { 2573 ASSERT(VFS_I(ip)->i_nlink >= 2); 2574 if (VFS_I(ip)->i_nlink != 2) { 2575 error = -ENOTEMPTY; 2576 goto out_trans_cancel; 2577 } 2578 if (!xfs_dir_isempty(ip)) { 2579 error = -ENOTEMPTY; 2580 goto out_trans_cancel; 2581 } 2582 2583 /* Drop the link from ip's "..". */ 2584 error = xfs_droplink(tp, dp); 2585 if (error) 2586 goto out_trans_cancel; 2587 2588 /* Drop the "." link from ip to self. */ 2589 error = xfs_droplink(tp, ip); 2590 if (error) 2591 goto out_trans_cancel; 2592 } else { 2593 /* 2594 * When removing a non-directory we need to log the parent 2595 * inode here. For a directory this is done implicitly 2596 * by the xfs_droplink call for the ".." entry. 2597 */ 2598 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2599 } 2600 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2601 2602 /* Drop the link from dp to ip. */ 2603 error = xfs_droplink(tp, ip); 2604 if (error) 2605 goto out_trans_cancel; 2606 2607 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2608 if (error) { 2609 ASSERT(error != -ENOENT); 2610 goto out_trans_cancel; 2611 } 2612 2613 /* 2614 * If this is a synchronous mount, make sure that the 2615 * remove transaction goes to disk before returning to 2616 * the user. 2617 */ 2618 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2619 xfs_trans_set_sync(tp); 2620 2621 error = xfs_trans_commit(tp); 2622 if (error) 2623 goto std_return; 2624 2625 if (is_dir && xfs_inode_is_filestream(ip)) 2626 xfs_filestream_deassociate(ip); 2627 2628 return 0; 2629 2630 out_trans_cancel: 2631 xfs_trans_cancel(tp); 2632 std_return: 2633 return error; 2634 } 2635 2636 /* 2637 * Enter all inodes for a rename transaction into a sorted array. 2638 */ 2639 #define __XFS_SORT_INODES 5 2640 STATIC void 2641 xfs_sort_for_rename( 2642 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2643 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2644 struct xfs_inode *ip1, /* in: inode of old entry */ 2645 struct xfs_inode *ip2, /* in: inode of new entry */ 2646 struct xfs_inode *wip, /* in: whiteout inode */ 2647 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2648 int *num_inodes) /* in/out: inodes in array */ 2649 { 2650 int i, j; 2651 2652 ASSERT(*num_inodes == __XFS_SORT_INODES); 2653 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2654 2655 /* 2656 * i_tab contains a list of pointers to inodes. We initialize 2657 * the table here & we'll sort it. We will then use it to 2658 * order the acquisition of the inode locks. 2659 * 2660 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2661 */ 2662 i = 0; 2663 i_tab[i++] = dp1; 2664 i_tab[i++] = dp2; 2665 i_tab[i++] = ip1; 2666 if (ip2) 2667 i_tab[i++] = ip2; 2668 if (wip) 2669 i_tab[i++] = wip; 2670 *num_inodes = i; 2671 2672 /* 2673 * Sort the elements via bubble sort. (Remember, there are at 2674 * most 5 elements to sort, so this is adequate.) 2675 */ 2676 for (i = 0; i < *num_inodes; i++) { 2677 for (j = 1; j < *num_inodes; j++) { 2678 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2679 struct xfs_inode *temp = i_tab[j]; 2680 i_tab[j] = i_tab[j-1]; 2681 i_tab[j-1] = temp; 2682 } 2683 } 2684 } 2685 } 2686 2687 static int 2688 xfs_finish_rename( 2689 struct xfs_trans *tp) 2690 { 2691 /* 2692 * If this is a synchronous mount, make sure that the rename transaction 2693 * goes to disk before returning to the user. 2694 */ 2695 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2696 xfs_trans_set_sync(tp); 2697 2698 return xfs_trans_commit(tp); 2699 } 2700 2701 /* 2702 * xfs_cross_rename() 2703 * 2704 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2705 */ 2706 STATIC int 2707 xfs_cross_rename( 2708 struct xfs_trans *tp, 2709 struct xfs_inode *dp1, 2710 struct xfs_name *name1, 2711 struct xfs_inode *ip1, 2712 struct xfs_inode *dp2, 2713 struct xfs_name *name2, 2714 struct xfs_inode *ip2, 2715 int spaceres) 2716 { 2717 int error = 0; 2718 int ip1_flags = 0; 2719 int ip2_flags = 0; 2720 int dp2_flags = 0; 2721 2722 /* Swap inode number for dirent in first parent */ 2723 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2724 if (error) 2725 goto out_trans_abort; 2726 2727 /* Swap inode number for dirent in second parent */ 2728 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2729 if (error) 2730 goto out_trans_abort; 2731 2732 /* 2733 * If we're renaming one or more directories across different parents, 2734 * update the respective ".." entries (and link counts) to match the new 2735 * parents. 2736 */ 2737 if (dp1 != dp2) { 2738 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2739 2740 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2741 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2742 dp1->i_ino, spaceres); 2743 if (error) 2744 goto out_trans_abort; 2745 2746 /* transfer ip2 ".." reference to dp1 */ 2747 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2748 error = xfs_droplink(tp, dp2); 2749 if (error) 2750 goto out_trans_abort; 2751 error = xfs_bumplink(tp, dp1); 2752 if (error) 2753 goto out_trans_abort; 2754 } 2755 2756 /* 2757 * Although ip1 isn't changed here, userspace needs 2758 * to be warned about the change, so that applications 2759 * relying on it (like backup ones), will properly 2760 * notify the change 2761 */ 2762 ip1_flags |= XFS_ICHGTIME_CHG; 2763 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2764 } 2765 2766 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2767 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2768 dp2->i_ino, spaceres); 2769 if (error) 2770 goto out_trans_abort; 2771 2772 /* transfer ip1 ".." reference to dp2 */ 2773 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2774 error = xfs_droplink(tp, dp1); 2775 if (error) 2776 goto out_trans_abort; 2777 error = xfs_bumplink(tp, dp2); 2778 if (error) 2779 goto out_trans_abort; 2780 } 2781 2782 /* 2783 * Although ip2 isn't changed here, userspace needs 2784 * to be warned about the change, so that applications 2785 * relying on it (like backup ones), will properly 2786 * notify the change 2787 */ 2788 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2789 ip2_flags |= XFS_ICHGTIME_CHG; 2790 } 2791 } 2792 2793 if (ip1_flags) { 2794 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2795 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2796 } 2797 if (ip2_flags) { 2798 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2799 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2800 } 2801 if (dp2_flags) { 2802 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2803 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2804 } 2805 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2806 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2807 return xfs_finish_rename(tp); 2808 2809 out_trans_abort: 2810 xfs_trans_cancel(tp); 2811 return error; 2812 } 2813 2814 /* 2815 * xfs_rename_alloc_whiteout() 2816 * 2817 * Return a referenced, unlinked, unlocked inode that that can be used as a 2818 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2819 * crash between allocating the inode and linking it into the rename transaction 2820 * recovery will free the inode and we won't leak it. 2821 */ 2822 static int 2823 xfs_rename_alloc_whiteout( 2824 struct xfs_inode *dp, 2825 struct xfs_inode **wip) 2826 { 2827 struct xfs_inode *tmpfile; 2828 int error; 2829 2830 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2831 if (error) 2832 return error; 2833 2834 /* 2835 * Prepare the tmpfile inode as if it were created through the VFS. 2836 * Otherwise, the link increment paths will complain about nlink 0->1. 2837 * Drop the link count as done by d_tmpfile(), complete the inode setup 2838 * and flag it as linkable. 2839 */ 2840 drop_nlink(VFS_I(tmpfile)); 2841 xfs_setup_iops(tmpfile); 2842 xfs_finish_inode_setup(tmpfile); 2843 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2844 2845 *wip = tmpfile; 2846 return 0; 2847 } 2848 2849 /* 2850 * xfs_rename 2851 */ 2852 int 2853 xfs_rename( 2854 struct xfs_inode *src_dp, 2855 struct xfs_name *src_name, 2856 struct xfs_inode *src_ip, 2857 struct xfs_inode *target_dp, 2858 struct xfs_name *target_name, 2859 struct xfs_inode *target_ip, 2860 unsigned int flags) 2861 { 2862 struct xfs_mount *mp = src_dp->i_mount; 2863 struct xfs_trans *tp; 2864 struct xfs_inode *wip = NULL; /* whiteout inode */ 2865 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2866 int num_inodes = __XFS_SORT_INODES; 2867 bool new_parent = (src_dp != target_dp); 2868 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2869 int spaceres; 2870 int error; 2871 2872 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2873 2874 if ((flags & RENAME_EXCHANGE) && !target_ip) 2875 return -EINVAL; 2876 2877 /* 2878 * If we are doing a whiteout operation, allocate the whiteout inode 2879 * we will be placing at the target and ensure the type is set 2880 * appropriately. 2881 */ 2882 if (flags & RENAME_WHITEOUT) { 2883 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2884 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2885 if (error) 2886 return error; 2887 2888 /* setup target dirent info as whiteout */ 2889 src_name->type = XFS_DIR3_FT_CHRDEV; 2890 } 2891 2892 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2893 inodes, &num_inodes); 2894 2895 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2896 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2897 if (error == -ENOSPC) { 2898 spaceres = 0; 2899 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2900 &tp); 2901 } 2902 if (error) 2903 goto out_release_wip; 2904 2905 /* 2906 * Attach the dquots to the inodes 2907 */ 2908 error = xfs_qm_vop_rename_dqattach(inodes); 2909 if (error) 2910 goto out_trans_cancel; 2911 2912 /* 2913 * Lock all the participating inodes. Depending upon whether 2914 * the target_name exists in the target directory, and 2915 * whether the target directory is the same as the source 2916 * directory, we can lock from 2 to 4 inodes. 2917 */ 2918 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2919 2920 /* 2921 * Join all the inodes to the transaction. From this point on, 2922 * we can rely on either trans_commit or trans_cancel to unlock 2923 * them. 2924 */ 2925 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2926 if (new_parent) 2927 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2928 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2929 if (target_ip) 2930 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2931 if (wip) 2932 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2933 2934 /* 2935 * If we are using project inheritance, we only allow renames 2936 * into our tree when the project IDs are the same; else the 2937 * tree quota mechanism would be circumvented. 2938 */ 2939 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2940 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2941 error = -EXDEV; 2942 goto out_trans_cancel; 2943 } 2944 2945 /* RENAME_EXCHANGE is unique from here on. */ 2946 if (flags & RENAME_EXCHANGE) 2947 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2948 target_dp, target_name, target_ip, 2949 spaceres); 2950 2951 /* 2952 * Set up the target. 2953 */ 2954 if (target_ip == NULL) { 2955 /* 2956 * If there's no space reservation, check the entry will 2957 * fit before actually inserting it. 2958 */ 2959 if (!spaceres) { 2960 error = xfs_dir_canenter(tp, target_dp, target_name); 2961 if (error) 2962 goto out_trans_cancel; 2963 } 2964 /* 2965 * If target does not exist and the rename crosses 2966 * directories, adjust the target directory link count 2967 * to account for the ".." reference from the new entry. 2968 */ 2969 error = xfs_dir_createname(tp, target_dp, target_name, 2970 src_ip->i_ino, spaceres); 2971 if (error) 2972 goto out_trans_cancel; 2973 2974 xfs_trans_ichgtime(tp, target_dp, 2975 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2976 2977 if (new_parent && src_is_directory) { 2978 error = xfs_bumplink(tp, target_dp); 2979 if (error) 2980 goto out_trans_cancel; 2981 } 2982 } else { /* target_ip != NULL */ 2983 /* 2984 * If target exists and it's a directory, check that both 2985 * target and source are directories and that target can be 2986 * destroyed, or that neither is a directory. 2987 */ 2988 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 2989 /* 2990 * Make sure target dir is empty. 2991 */ 2992 if (!(xfs_dir_isempty(target_ip)) || 2993 (VFS_I(target_ip)->i_nlink > 2)) { 2994 error = -EEXIST; 2995 goto out_trans_cancel; 2996 } 2997 } 2998 2999 /* 3000 * Link the source inode under the target name. 3001 * If the source inode is a directory and we are moving 3002 * it across directories, its ".." entry will be 3003 * inconsistent until we replace that down below. 3004 * 3005 * In case there is already an entry with the same 3006 * name at the destination directory, remove it first. 3007 */ 3008 error = xfs_dir_replace(tp, target_dp, target_name, 3009 src_ip->i_ino, spaceres); 3010 if (error) 3011 goto out_trans_cancel; 3012 3013 xfs_trans_ichgtime(tp, target_dp, 3014 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3015 3016 /* 3017 * Decrement the link count on the target since the target 3018 * dir no longer points to it. 3019 */ 3020 error = xfs_droplink(tp, target_ip); 3021 if (error) 3022 goto out_trans_cancel; 3023 3024 if (src_is_directory) { 3025 /* 3026 * Drop the link from the old "." entry. 3027 */ 3028 error = xfs_droplink(tp, target_ip); 3029 if (error) 3030 goto out_trans_cancel; 3031 } 3032 } /* target_ip != NULL */ 3033 3034 /* 3035 * Remove the source. 3036 */ 3037 if (new_parent && src_is_directory) { 3038 /* 3039 * Rewrite the ".." entry to point to the new 3040 * directory. 3041 */ 3042 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3043 target_dp->i_ino, spaceres); 3044 ASSERT(error != -EEXIST); 3045 if (error) 3046 goto out_trans_cancel; 3047 } 3048 3049 /* 3050 * We always want to hit the ctime on the source inode. 3051 * 3052 * This isn't strictly required by the standards since the source 3053 * inode isn't really being changed, but old unix file systems did 3054 * it and some incremental backup programs won't work without it. 3055 */ 3056 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3057 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3058 3059 /* 3060 * Adjust the link count on src_dp. This is necessary when 3061 * renaming a directory, either within one parent when 3062 * the target existed, or across two parent directories. 3063 */ 3064 if (src_is_directory && (new_parent || target_ip != NULL)) { 3065 3066 /* 3067 * Decrement link count on src_directory since the 3068 * entry that's moved no longer points to it. 3069 */ 3070 error = xfs_droplink(tp, src_dp); 3071 if (error) 3072 goto out_trans_cancel; 3073 } 3074 3075 /* 3076 * For whiteouts, we only need to update the source dirent with the 3077 * inode number of the whiteout inode rather than removing it 3078 * altogether. 3079 */ 3080 if (wip) { 3081 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3082 spaceres); 3083 } else 3084 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3085 spaceres); 3086 if (error) 3087 goto out_trans_cancel; 3088 3089 /* 3090 * For whiteouts, we need to bump the link count on the whiteout inode. 3091 * This means that failures all the way up to this point leave the inode 3092 * on the unlinked list and so cleanup is a simple matter of dropping 3093 * the remaining reference to it. If we fail here after bumping the link 3094 * count, we're shutting down the filesystem so we'll never see the 3095 * intermediate state on disk. 3096 */ 3097 if (wip) { 3098 ASSERT(VFS_I(wip)->i_nlink == 0); 3099 error = xfs_bumplink(tp, wip); 3100 if (error) 3101 goto out_trans_cancel; 3102 error = xfs_iunlink_remove(tp, wip); 3103 if (error) 3104 goto out_trans_cancel; 3105 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3106 3107 /* 3108 * Now we have a real link, clear the "I'm a tmpfile" state 3109 * flag from the inode so it doesn't accidentally get misused in 3110 * future. 3111 */ 3112 VFS_I(wip)->i_state &= ~I_LINKABLE; 3113 } 3114 3115 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3116 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3117 if (new_parent) 3118 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3119 3120 error = xfs_finish_rename(tp); 3121 if (wip) 3122 xfs_irele(wip); 3123 return error; 3124 3125 out_trans_cancel: 3126 xfs_trans_cancel(tp); 3127 out_release_wip: 3128 if (wip) 3129 xfs_irele(wip); 3130 return error; 3131 } 3132 3133 STATIC int 3134 xfs_iflush_cluster( 3135 struct xfs_inode *ip, 3136 struct xfs_buf *bp) 3137 { 3138 struct xfs_mount *mp = ip->i_mount; 3139 struct xfs_perag *pag; 3140 unsigned long first_index, mask; 3141 unsigned long inodes_per_cluster; 3142 int cilist_size; 3143 struct xfs_inode **cilist; 3144 struct xfs_inode *cip; 3145 int nr_found; 3146 int clcount = 0; 3147 int i; 3148 3149 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3150 3151 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3152 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3153 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3154 if (!cilist) 3155 goto out_put; 3156 3157 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3158 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3159 rcu_read_lock(); 3160 /* really need a gang lookup range call here */ 3161 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3162 first_index, inodes_per_cluster); 3163 if (nr_found == 0) 3164 goto out_free; 3165 3166 for (i = 0; i < nr_found; i++) { 3167 cip = cilist[i]; 3168 if (cip == ip) 3169 continue; 3170 3171 /* 3172 * because this is an RCU protected lookup, we could find a 3173 * recently freed or even reallocated inode during the lookup. 3174 * We need to check under the i_flags_lock for a valid inode 3175 * here. Skip it if it is not valid or the wrong inode. 3176 */ 3177 spin_lock(&cip->i_flags_lock); 3178 if (!cip->i_ino || 3179 __xfs_iflags_test(cip, XFS_ISTALE)) { 3180 spin_unlock(&cip->i_flags_lock); 3181 continue; 3182 } 3183 3184 /* 3185 * Once we fall off the end of the cluster, no point checking 3186 * any more inodes in the list because they will also all be 3187 * outside the cluster. 3188 */ 3189 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3190 spin_unlock(&cip->i_flags_lock); 3191 break; 3192 } 3193 spin_unlock(&cip->i_flags_lock); 3194 3195 /* 3196 * Do an un-protected check to see if the inode is dirty and 3197 * is a candidate for flushing. These checks will be repeated 3198 * later after the appropriate locks are acquired. 3199 */ 3200 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3201 continue; 3202 3203 /* 3204 * Try to get locks. If any are unavailable or it is pinned, 3205 * then this inode cannot be flushed and is skipped. 3206 */ 3207 3208 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3209 continue; 3210 if (!xfs_iflock_nowait(cip)) { 3211 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3212 continue; 3213 } 3214 if (xfs_ipincount(cip)) { 3215 xfs_ifunlock(cip); 3216 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3217 continue; 3218 } 3219 3220 3221 /* 3222 * Check the inode number again, just to be certain we are not 3223 * racing with freeing in xfs_reclaim_inode(). See the comments 3224 * in that function for more information as to why the initial 3225 * check is not sufficient. 3226 */ 3227 if (!cip->i_ino) { 3228 xfs_ifunlock(cip); 3229 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3230 continue; 3231 } 3232 3233 /* 3234 * arriving here means that this inode can be flushed. First 3235 * re-check that it's dirty before flushing. 3236 */ 3237 if (!xfs_inode_clean(cip)) { 3238 int error; 3239 error = xfs_iflush_int(cip, bp); 3240 if (error) { 3241 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3242 goto cluster_corrupt_out; 3243 } 3244 clcount++; 3245 } else { 3246 xfs_ifunlock(cip); 3247 } 3248 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3249 } 3250 3251 if (clcount) { 3252 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3253 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3254 } 3255 3256 out_free: 3257 rcu_read_unlock(); 3258 kmem_free(cilist); 3259 out_put: 3260 xfs_perag_put(pag); 3261 return 0; 3262 3263 3264 cluster_corrupt_out: 3265 /* 3266 * Corruption detected in the clustering loop. Invalidate the 3267 * inode buffer and shut down the filesystem. 3268 */ 3269 rcu_read_unlock(); 3270 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3271 3272 /* 3273 * We'll always have an inode attached to the buffer for completion 3274 * process by the time we are called from xfs_iflush(). Hence we have 3275 * always need to do IO completion processing to abort the inodes 3276 * attached to the buffer. handle them just like the shutdown case in 3277 * xfs_buf_submit(). 3278 */ 3279 ASSERT(bp->b_iodone); 3280 bp->b_flags &= ~XBF_DONE; 3281 xfs_buf_stale(bp); 3282 xfs_buf_ioerror(bp, -EIO); 3283 xfs_buf_ioend(bp); 3284 3285 /* abort the corrupt inode, as it was not attached to the buffer */ 3286 xfs_iflush_abort(cip, false); 3287 kmem_free(cilist); 3288 xfs_perag_put(pag); 3289 return -EFSCORRUPTED; 3290 } 3291 3292 /* 3293 * Flush dirty inode metadata into the backing buffer. 3294 * 3295 * The caller must have the inode lock and the inode flush lock held. The 3296 * inode lock will still be held upon return to the caller, and the inode 3297 * flush lock will be released after the inode has reached the disk. 3298 * 3299 * The caller must write out the buffer returned in *bpp and release it. 3300 */ 3301 int 3302 xfs_iflush( 3303 struct xfs_inode *ip, 3304 struct xfs_buf **bpp) 3305 { 3306 struct xfs_mount *mp = ip->i_mount; 3307 struct xfs_buf *bp = NULL; 3308 struct xfs_dinode *dip; 3309 int error; 3310 3311 XFS_STATS_INC(mp, xs_iflush_count); 3312 3313 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3314 ASSERT(xfs_isiflocked(ip)); 3315 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3316 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3317 3318 *bpp = NULL; 3319 3320 xfs_iunpin_wait(ip); 3321 3322 /* 3323 * For stale inodes we cannot rely on the backing buffer remaining 3324 * stale in cache for the remaining life of the stale inode and so 3325 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3326 * inodes below. We have to check this after ensuring the inode is 3327 * unpinned so that it is safe to reclaim the stale inode after the 3328 * flush call. 3329 */ 3330 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3331 xfs_ifunlock(ip); 3332 return 0; 3333 } 3334 3335 /* 3336 * This may have been unpinned because the filesystem is shutting 3337 * down forcibly. If that's the case we must not write this inode 3338 * to disk, because the log record didn't make it to disk. 3339 * 3340 * We also have to remove the log item from the AIL in this case, 3341 * as we wait for an empty AIL as part of the unmount process. 3342 */ 3343 if (XFS_FORCED_SHUTDOWN(mp)) { 3344 error = -EIO; 3345 goto abort_out; 3346 } 3347 3348 /* 3349 * Get the buffer containing the on-disk inode. We are doing a try-lock 3350 * operation here, so we may get an EAGAIN error. In that case, we 3351 * simply want to return with the inode still dirty. 3352 * 3353 * If we get any other error, we effectively have a corruption situation 3354 * and we cannot flush the inode, so we treat it the same as failing 3355 * xfs_iflush_int(). 3356 */ 3357 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3358 0); 3359 if (error == -EAGAIN) { 3360 xfs_ifunlock(ip); 3361 return error; 3362 } 3363 if (error) 3364 goto corrupt_out; 3365 3366 /* 3367 * First flush out the inode that xfs_iflush was called with. 3368 */ 3369 error = xfs_iflush_int(ip, bp); 3370 if (error) 3371 goto corrupt_out; 3372 3373 /* 3374 * If the buffer is pinned then push on the log now so we won't 3375 * get stuck waiting in the write for too long. 3376 */ 3377 if (xfs_buf_ispinned(bp)) 3378 xfs_log_force(mp, 0); 3379 3380 /* 3381 * inode clustering: try to gather other inodes into this write 3382 * 3383 * Note: Any error during clustering will result in the filesystem 3384 * being shut down and completion callbacks run on the cluster buffer. 3385 * As we have already flushed and attached this inode to the buffer, 3386 * it has already been aborted and released by xfs_iflush_cluster() and 3387 * so we have no further error handling to do here. 3388 */ 3389 error = xfs_iflush_cluster(ip, bp); 3390 if (error) 3391 return error; 3392 3393 *bpp = bp; 3394 return 0; 3395 3396 corrupt_out: 3397 if (bp) 3398 xfs_buf_relse(bp); 3399 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3400 abort_out: 3401 /* abort the corrupt inode, as it was not attached to the buffer */ 3402 xfs_iflush_abort(ip, false); 3403 return error; 3404 } 3405 3406 /* 3407 * If there are inline format data / attr forks attached to this inode, 3408 * make sure they're not corrupt. 3409 */ 3410 bool 3411 xfs_inode_verify_forks( 3412 struct xfs_inode *ip) 3413 { 3414 struct xfs_ifork *ifp; 3415 xfs_failaddr_t fa; 3416 3417 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3418 if (fa) { 3419 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3420 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3421 ifp->if_u1.if_data, ifp->if_bytes, fa); 3422 return false; 3423 } 3424 3425 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3426 if (fa) { 3427 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3428 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3429 ifp ? ifp->if_u1.if_data : NULL, 3430 ifp ? ifp->if_bytes : 0, fa); 3431 return false; 3432 } 3433 return true; 3434 } 3435 3436 STATIC int 3437 xfs_iflush_int( 3438 struct xfs_inode *ip, 3439 struct xfs_buf *bp) 3440 { 3441 struct xfs_inode_log_item *iip = ip->i_itemp; 3442 struct xfs_dinode *dip; 3443 struct xfs_mount *mp = ip->i_mount; 3444 3445 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3446 ASSERT(xfs_isiflocked(ip)); 3447 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3448 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3449 ASSERT(iip != NULL && iip->ili_fields != 0); 3450 ASSERT(ip->i_d.di_version > 1); 3451 3452 /* set *dip = inode's place in the buffer */ 3453 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3454 3455 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3456 mp, XFS_ERRTAG_IFLUSH_1)) { 3457 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3458 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3459 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3460 goto corrupt_out; 3461 } 3462 if (S_ISREG(VFS_I(ip)->i_mode)) { 3463 if (XFS_TEST_ERROR( 3464 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3465 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3466 mp, XFS_ERRTAG_IFLUSH_3)) { 3467 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3468 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3469 __func__, ip->i_ino, ip); 3470 goto corrupt_out; 3471 } 3472 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3473 if (XFS_TEST_ERROR( 3474 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3475 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3476 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3477 mp, XFS_ERRTAG_IFLUSH_4)) { 3478 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3479 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3480 __func__, ip->i_ino, ip); 3481 goto corrupt_out; 3482 } 3483 } 3484 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3485 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3486 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3487 "%s: detected corrupt incore inode %Lu, " 3488 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3489 __func__, ip->i_ino, 3490 ip->i_d.di_nextents + ip->i_d.di_anextents, 3491 ip->i_d.di_nblocks, ip); 3492 goto corrupt_out; 3493 } 3494 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3495 mp, XFS_ERRTAG_IFLUSH_6)) { 3496 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3497 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3498 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3499 goto corrupt_out; 3500 } 3501 3502 /* 3503 * Inode item log recovery for v2 inodes are dependent on the 3504 * di_flushiter count for correct sequencing. We bump the flush 3505 * iteration count so we can detect flushes which postdate a log record 3506 * during recovery. This is redundant as we now log every change and 3507 * hence this can't happen but we need to still do it to ensure 3508 * backwards compatibility with old kernels that predate logging all 3509 * inode changes. 3510 */ 3511 if (ip->i_d.di_version < 3) 3512 ip->i_d.di_flushiter++; 3513 3514 /* Check the inline fork data before we write out. */ 3515 if (!xfs_inode_verify_forks(ip)) 3516 goto corrupt_out; 3517 3518 /* 3519 * Copy the dirty parts of the inode into the on-disk inode. We always 3520 * copy out the core of the inode, because if the inode is dirty at all 3521 * the core must be. 3522 */ 3523 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3524 3525 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3526 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3527 ip->i_d.di_flushiter = 0; 3528 3529 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3530 if (XFS_IFORK_Q(ip)) 3531 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3532 xfs_inobp_check(mp, bp); 3533 3534 /* 3535 * We've recorded everything logged in the inode, so we'd like to clear 3536 * the ili_fields bits so we don't log and flush things unnecessarily. 3537 * However, we can't stop logging all this information until the data 3538 * we've copied into the disk buffer is written to disk. If we did we 3539 * might overwrite the copy of the inode in the log with all the data 3540 * after re-logging only part of it, and in the face of a crash we 3541 * wouldn't have all the data we need to recover. 3542 * 3543 * What we do is move the bits to the ili_last_fields field. When 3544 * logging the inode, these bits are moved back to the ili_fields field. 3545 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3546 * know that the information those bits represent is permanently on 3547 * disk. As long as the flush completes before the inode is logged 3548 * again, then both ili_fields and ili_last_fields will be cleared. 3549 * 3550 * We can play with the ili_fields bits here, because the inode lock 3551 * must be held exclusively in order to set bits there and the flush 3552 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3553 * done routine can tell whether or not to look in the AIL. Also, store 3554 * the current LSN of the inode so that we can tell whether the item has 3555 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3556 * need the AIL lock, because it is a 64 bit value that cannot be read 3557 * atomically. 3558 */ 3559 iip->ili_last_fields = iip->ili_fields; 3560 iip->ili_fields = 0; 3561 iip->ili_fsync_fields = 0; 3562 iip->ili_logged = 1; 3563 3564 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3565 &iip->ili_item.li_lsn); 3566 3567 /* 3568 * Attach the function xfs_iflush_done to the inode's 3569 * buffer. This will remove the inode from the AIL 3570 * and unlock the inode's flush lock when the inode is 3571 * completely written to disk. 3572 */ 3573 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3574 3575 /* generate the checksum. */ 3576 xfs_dinode_calc_crc(mp, dip); 3577 3578 ASSERT(!list_empty(&bp->b_li_list)); 3579 ASSERT(bp->b_iodone != NULL); 3580 return 0; 3581 3582 corrupt_out: 3583 return -EFSCORRUPTED; 3584 } 3585 3586 /* Release an inode. */ 3587 void 3588 xfs_irele( 3589 struct xfs_inode *ip) 3590 { 3591 trace_xfs_irele(ip, _RET_IP_); 3592 iput(VFS_I(ip)); 3593 } 3594