xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 2c6467d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
8 
9 #include "xfs.h"
10 #include "xfs_fs.h"
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
15 #include "xfs_sb.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
21 #include "xfs_dir2.h"
22 #include "xfs_attr_sf.h"
23 #include "xfs_attr.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_bmap.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_log.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
44 
45 kmem_zone_t *xfs_inode_zone;
46 
47 /*
48  * Used in xfs_itruncate_extents().  This is the maximum number of extents
49  * freed from a file in a single transaction.
50  */
51 #define	XFS_ITRUNC_MAX_EXTENTS	2
52 
53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
56 
57 /*
58  * helper function to extract extent size hint from inode
59  */
60 xfs_extlen_t
61 xfs_get_extsz_hint(
62 	struct xfs_inode	*ip)
63 {
64 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 		return ip->i_d.di_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_d.di_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 		lock_mode = XFS_ILOCK_EXCL;
118 	xfs_ilock(ip, lock_mode);
119 	return lock_mode;
120 }
121 
122 uint
123 xfs_ilock_attr_map_shared(
124 	struct xfs_inode	*ip)
125 {
126 	uint			lock_mode = XFS_ILOCK_SHARED;
127 
128 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_sem locking order:
148  *
149  * i_rwsem -> page lock -> mmap_sem
150  * mmap_sem -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_sem locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_sem.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
443 xfs_lock_inodes(
444 	xfs_inode_t	**ips,
445 	int		inodes,
446 	uint		lock_mode)
447 {
448 	int		attempts = 0, i, j, try_lock;
449 	xfs_log_item_t	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	xfs_log_item_t		*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = (xfs_log_item_t *)ip0->i_itemp;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 void
602 __xfs_iflock(
603 	struct xfs_inode	*ip)
604 {
605 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607 
608 	do {
609 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 		if (xfs_isiflocked(ip))
611 			io_schedule();
612 	} while (!xfs_iflock_nowait(ip));
613 
614 	finish_wait(wq, &wait.wq_entry);
615 }
616 
617 STATIC uint
618 _xfs_dic2xflags(
619 	uint16_t		di_flags,
620 	uint64_t		di_flags2,
621 	bool			has_attr)
622 {
623 	uint			flags = 0;
624 
625 	if (di_flags & XFS_DIFLAG_ANY) {
626 		if (di_flags & XFS_DIFLAG_REALTIME)
627 			flags |= FS_XFLAG_REALTIME;
628 		if (di_flags & XFS_DIFLAG_PREALLOC)
629 			flags |= FS_XFLAG_PREALLOC;
630 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 			flags |= FS_XFLAG_IMMUTABLE;
632 		if (di_flags & XFS_DIFLAG_APPEND)
633 			flags |= FS_XFLAG_APPEND;
634 		if (di_flags & XFS_DIFLAG_SYNC)
635 			flags |= FS_XFLAG_SYNC;
636 		if (di_flags & XFS_DIFLAG_NOATIME)
637 			flags |= FS_XFLAG_NOATIME;
638 		if (di_flags & XFS_DIFLAG_NODUMP)
639 			flags |= FS_XFLAG_NODUMP;
640 		if (di_flags & XFS_DIFLAG_RTINHERIT)
641 			flags |= FS_XFLAG_RTINHERIT;
642 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 			flags |= FS_XFLAG_PROJINHERIT;
644 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 			flags |= FS_XFLAG_NOSYMLINKS;
646 		if (di_flags & XFS_DIFLAG_EXTSIZE)
647 			flags |= FS_XFLAG_EXTSIZE;
648 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 			flags |= FS_XFLAG_EXTSZINHERIT;
650 		if (di_flags & XFS_DIFLAG_NODEFRAG)
651 			flags |= FS_XFLAG_NODEFRAG;
652 		if (di_flags & XFS_DIFLAG_FILESTREAM)
653 			flags |= FS_XFLAG_FILESTREAM;
654 	}
655 
656 	if (di_flags2 & XFS_DIFLAG2_ANY) {
657 		if (di_flags2 & XFS_DIFLAG2_DAX)
658 			flags |= FS_XFLAG_DAX;
659 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 			flags |= FS_XFLAG_COWEXTSIZE;
661 	}
662 
663 	if (has_attr)
664 		flags |= FS_XFLAG_HASATTR;
665 
666 	return flags;
667 }
668 
669 uint
670 xfs_ip2xflags(
671 	struct xfs_inode	*ip)
672 {
673 	struct xfs_icdinode	*dic = &ip->i_d;
674 
675 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
676 }
677 
678 /*
679  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680  * is allowed, otherwise it has to be an exact match. If a CI match is found,
681  * ci_name->name will point to a the actual name (caller must free) or
682  * will be set to NULL if an exact match is found.
683  */
684 int
685 xfs_lookup(
686 	xfs_inode_t		*dp,
687 	struct xfs_name		*name,
688 	xfs_inode_t		**ipp,
689 	struct xfs_name		*ci_name)
690 {
691 	xfs_ino_t		inum;
692 	int			error;
693 
694 	trace_xfs_lookup(dp, name);
695 
696 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 		return -EIO;
698 
699 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
700 	if (error)
701 		goto out_unlock;
702 
703 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 	if (error)
705 		goto out_free_name;
706 
707 	return 0;
708 
709 out_free_name:
710 	if (ci_name)
711 		kmem_free(ci_name->name);
712 out_unlock:
713 	*ipp = NULL;
714 	return error;
715 }
716 
717 /*
718  * Allocate an inode on disk and return a copy of its in-core version.
719  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
720  * appropriately within the inode.  The uid and gid for the inode are
721  * set according to the contents of the given cred structure.
722  *
723  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724  * has a free inode available, call xfs_iget() to obtain the in-core
725  * version of the allocated inode.  Finally, fill in the inode and
726  * log its initial contents.  In this case, ialloc_context would be
727  * set to NULL.
728  *
729  * If xfs_dialloc() does not have an available inode, it will replenish
730  * its supply by doing an allocation. Since we can only do one
731  * allocation within a transaction without deadlocks, we must commit
732  * the current transaction before returning the inode itself.
733  * In this case, therefore, we will set ialloc_context and return.
734  * The caller should then commit the current transaction, start a new
735  * transaction, and call xfs_ialloc() again to actually get the inode.
736  *
737  * To ensure that some other process does not grab the inode that
738  * was allocated during the first call to xfs_ialloc(), this routine
739  * also returns the [locked] bp pointing to the head of the freelist
740  * as ialloc_context.  The caller should hold this buffer across
741  * the commit and pass it back into this routine on the second call.
742  *
743  * If we are allocating quota inodes, we do not have a parent inode
744  * to attach to or associate with (i.e. pip == NULL) because they
745  * are not linked into the directory structure - they are attached
746  * directly to the superblock - and so have no parent.
747  */
748 static int
749 xfs_ialloc(
750 	xfs_trans_t	*tp,
751 	xfs_inode_t	*pip,
752 	umode_t		mode,
753 	xfs_nlink_t	nlink,
754 	dev_t		rdev,
755 	prid_t		prid,
756 	xfs_buf_t	**ialloc_context,
757 	xfs_inode_t	**ipp)
758 {
759 	struct xfs_mount *mp = tp->t_mountp;
760 	xfs_ino_t	ino;
761 	xfs_inode_t	*ip;
762 	uint		flags;
763 	int		error;
764 	struct timespec64 tv;
765 	struct inode	*inode;
766 
767 	/*
768 	 * Call the space management code to pick
769 	 * the on-disk inode to be allocated.
770 	 */
771 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 			    ialloc_context, &ino);
773 	if (error)
774 		return error;
775 	if (*ialloc_context || ino == NULLFSINO) {
776 		*ipp = NULL;
777 		return 0;
778 	}
779 	ASSERT(*ialloc_context == NULL);
780 
781 	/*
782 	 * Protect against obviously corrupt allocation btree records. Later
783 	 * xfs_iget checks will catch re-allocation of other active in-memory
784 	 * and on-disk inodes. If we don't catch reallocating the parent inode
785 	 * here we will deadlock in xfs_iget() so we have to do these checks
786 	 * first.
787 	 */
788 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 		return -EFSCORRUPTED;
791 	}
792 
793 	/*
794 	 * Get the in-core inode with the lock held exclusively.
795 	 * This is because we're setting fields here we need
796 	 * to prevent others from looking at until we're done.
797 	 */
798 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 			 XFS_ILOCK_EXCL, &ip);
800 	if (error)
801 		return error;
802 	ASSERT(ip != NULL);
803 	inode = VFS_I(ip);
804 
805 	/*
806 	 * We always convert v1 inodes to v2 now - we only support filesystems
807 	 * with >= v2 inode capability, so there is no reason for ever leaving
808 	 * an inode in v1 format.
809 	 */
810 	if (ip->i_d.di_version == 1)
811 		ip->i_d.di_version = 2;
812 
813 	inode->i_mode = mode;
814 	set_nlink(inode, nlink);
815 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 	inode->i_rdev = rdev;
818 	xfs_set_projid(ip, prid);
819 
820 	if (pip && XFS_INHERIT_GID(pip)) {
821 		ip->i_d.di_gid = pip->i_d.di_gid;
822 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 			inode->i_mode |= S_ISGID;
824 	}
825 
826 	/*
827 	 * If the group ID of the new file does not match the effective group
828 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 	 * (and only if the irix_sgid_inherit compatibility variable is set).
830 	 */
831 	if ((irix_sgid_inherit) &&
832 	    (inode->i_mode & S_ISGID) &&
833 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 		inode->i_mode &= ~S_ISGID;
835 
836 	ip->i_d.di_size = 0;
837 	ip->i_d.di_nextents = 0;
838 	ASSERT(ip->i_d.di_nblocks == 0);
839 
840 	tv = current_time(inode);
841 	inode->i_mtime = tv;
842 	inode->i_atime = tv;
843 	inode->i_ctime = tv;
844 
845 	ip->i_d.di_extsize = 0;
846 	ip->i_d.di_dmevmask = 0;
847 	ip->i_d.di_dmstate = 0;
848 	ip->i_d.di_flags = 0;
849 
850 	if (ip->i_d.di_version == 3) {
851 		inode_set_iversion(inode, 1);
852 		ip->i_d.di_flags2 = 0;
853 		ip->i_d.di_cowextsize = 0;
854 		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
856 	}
857 
858 
859 	flags = XFS_ILOG_CORE;
860 	switch (mode & S_IFMT) {
861 	case S_IFIFO:
862 	case S_IFCHR:
863 	case S_IFBLK:
864 	case S_IFSOCK:
865 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 		ip->i_df.if_flags = 0;
867 		flags |= XFS_ILOG_DEV;
868 		break;
869 	case S_IFREG:
870 	case S_IFDIR:
871 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
872 			uint		di_flags = 0;
873 
874 			if (S_ISDIR(mode)) {
875 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 					di_flags |= XFS_DIFLAG_RTINHERIT;
877 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 					ip->i_d.di_extsize = pip->i_d.di_extsize;
880 				}
881 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 					di_flags |= XFS_DIFLAG_PROJINHERIT;
883 			} else if (S_ISREG(mode)) {
884 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 					di_flags |= XFS_DIFLAG_REALTIME;
886 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 					di_flags |= XFS_DIFLAG_EXTSIZE;
888 					ip->i_d.di_extsize = pip->i_d.di_extsize;
889 				}
890 			}
891 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 			    xfs_inherit_noatime)
893 				di_flags |= XFS_DIFLAG_NOATIME;
894 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 			    xfs_inherit_nodump)
896 				di_flags |= XFS_DIFLAG_NODUMP;
897 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 			    xfs_inherit_sync)
899 				di_flags |= XFS_DIFLAG_SYNC;
900 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 			    xfs_inherit_nosymlinks)
902 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 			    xfs_inherit_nodefrag)
905 				di_flags |= XFS_DIFLAG_NODEFRAG;
906 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 				di_flags |= XFS_DIFLAG_FILESTREAM;
908 
909 			ip->i_d.di_flags |= di_flags;
910 		}
911 		if (pip &&
912 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 		    pip->i_d.di_version == 3 &&
914 		    ip->i_d.di_version == 3) {
915 			uint64_t	di_flags2 = 0;
916 
917 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 			}
921 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 				di_flags2 |= XFS_DIFLAG2_DAX;
923 
924 			ip->i_d.di_flags2 |= di_flags2;
925 		}
926 		/* FALLTHROUGH */
927 	case S_IFLNK:
928 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 		ip->i_df.if_flags = XFS_IFEXTENTS;
930 		ip->i_df.if_bytes = 0;
931 		ip->i_df.if_u1.if_root = NULL;
932 		break;
933 	default:
934 		ASSERT(0);
935 	}
936 	/*
937 	 * Attribute fork settings for new inode.
938 	 */
939 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 	ip->i_d.di_anextents = 0;
941 
942 	/*
943 	 * Log the new values stuffed into the inode.
944 	 */
945 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 	xfs_trans_log_inode(tp, ip, flags);
947 
948 	/* now that we have an i_mode we can setup the inode structure */
949 	xfs_setup_inode(ip);
950 
951 	*ipp = ip;
952 	return 0;
953 }
954 
955 /*
956  * Allocates a new inode from disk and return a pointer to the
957  * incore copy. This routine will internally commit the current
958  * transaction and allocate a new one if the Space Manager needed
959  * to do an allocation to replenish the inode free-list.
960  *
961  * This routine is designed to be called from xfs_create and
962  * xfs_create_dir.
963  *
964  */
965 int
966 xfs_dir_ialloc(
967 	xfs_trans_t	**tpp,		/* input: current transaction;
968 					   output: may be a new transaction. */
969 	xfs_inode_t	*dp,		/* directory within whose allocate
970 					   the inode. */
971 	umode_t		mode,
972 	xfs_nlink_t	nlink,
973 	dev_t		rdev,
974 	prid_t		prid,		/* project id */
975 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
976 					   locked. */
977 {
978 	xfs_trans_t	*tp;
979 	xfs_inode_t	*ip;
980 	xfs_buf_t	*ialloc_context = NULL;
981 	int		code;
982 	void		*dqinfo;
983 	uint		tflags;
984 
985 	tp = *tpp;
986 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987 
988 	/*
989 	 * xfs_ialloc will return a pointer to an incore inode if
990 	 * the Space Manager has an available inode on the free
991 	 * list. Otherwise, it will do an allocation and replenish
992 	 * the freelist.  Since we can only do one allocation per
993 	 * transaction without deadlocks, we will need to commit the
994 	 * current transaction and start a new one.  We will then
995 	 * need to call xfs_ialloc again to get the inode.
996 	 *
997 	 * If xfs_ialloc did an allocation to replenish the freelist,
998 	 * it returns the bp containing the head of the freelist as
999 	 * ialloc_context. We will hold a lock on it across the
1000 	 * transaction commit so that no other process can steal
1001 	 * the inode(s) that we've just allocated.
1002 	 */
1003 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 			&ip);
1005 
1006 	/*
1007 	 * Return an error if we were unable to allocate a new inode.
1008 	 * This should only happen if we run out of space on disk or
1009 	 * encounter a disk error.
1010 	 */
1011 	if (code) {
1012 		*ipp = NULL;
1013 		return code;
1014 	}
1015 	if (!ialloc_context && !ip) {
1016 		*ipp = NULL;
1017 		return -ENOSPC;
1018 	}
1019 
1020 	/*
1021 	 * If the AGI buffer is non-NULL, then we were unable to get an
1022 	 * inode in one operation.  We need to commit the current
1023 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1024 	 * to succeed the second time.
1025 	 */
1026 	if (ialloc_context) {
1027 		/*
1028 		 * Normally, xfs_trans_commit releases all the locks.
1029 		 * We call bhold to hang on to the ialloc_context across
1030 		 * the commit.  Holding this buffer prevents any other
1031 		 * processes from doing any allocations in this
1032 		 * allocation group.
1033 		 */
1034 		xfs_trans_bhold(tp, ialloc_context);
1035 
1036 		/*
1037 		 * We want the quota changes to be associated with the next
1038 		 * transaction, NOT this one. So, detach the dqinfo from this
1039 		 * and attach it to the next transaction.
1040 		 */
1041 		dqinfo = NULL;
1042 		tflags = 0;
1043 		if (tp->t_dqinfo) {
1044 			dqinfo = (void *)tp->t_dqinfo;
1045 			tp->t_dqinfo = NULL;
1046 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 		}
1049 
1050 		code = xfs_trans_roll(&tp);
1051 
1052 		/*
1053 		 * Re-attach the quota info that we detached from prev trx.
1054 		 */
1055 		if (dqinfo) {
1056 			tp->t_dqinfo = dqinfo;
1057 			tp->t_flags |= tflags;
1058 		}
1059 
1060 		if (code) {
1061 			xfs_buf_relse(ialloc_context);
1062 			*tpp = tp;
1063 			*ipp = NULL;
1064 			return code;
1065 		}
1066 		xfs_trans_bjoin(tp, ialloc_context);
1067 
1068 		/*
1069 		 * Call ialloc again. Since we've locked out all
1070 		 * other allocations in this allocation group,
1071 		 * this call should always succeed.
1072 		 */
1073 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 				  &ialloc_context, &ip);
1075 
1076 		/*
1077 		 * If we get an error at this point, return to the caller
1078 		 * so that the current transaction can be aborted.
1079 		 */
1080 		if (code) {
1081 			*tpp = tp;
1082 			*ipp = NULL;
1083 			return code;
1084 		}
1085 		ASSERT(!ialloc_context && ip);
1086 
1087 	}
1088 
1089 	*ipp = ip;
1090 	*tpp = tp;
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Decrement the link count on an inode & log the change.  If this causes the
1097  * link count to go to zero, move the inode to AGI unlinked list so that it can
1098  * be freed when the last active reference goes away via xfs_inactive().
1099  */
1100 static int			/* error */
1101 xfs_droplink(
1102 	xfs_trans_t *tp,
1103 	xfs_inode_t *ip)
1104 {
1105 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106 
1107 	drop_nlink(VFS_I(ip));
1108 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109 
1110 	if (VFS_I(ip)->i_nlink)
1111 		return 0;
1112 
1113 	return xfs_iunlink(tp, ip);
1114 }
1115 
1116 /*
1117  * Increment the link count on an inode & log the change.
1118  */
1119 static int
1120 xfs_bumplink(
1121 	xfs_trans_t *tp,
1122 	xfs_inode_t *ip)
1123 {
1124 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125 
1126 	ASSERT(ip->i_d.di_version > 1);
1127 	inc_nlink(VFS_I(ip));
1128 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 	return 0;
1130 }
1131 
1132 int
1133 xfs_create(
1134 	xfs_inode_t		*dp,
1135 	struct xfs_name		*name,
1136 	umode_t			mode,
1137 	dev_t			rdev,
1138 	xfs_inode_t		**ipp)
1139 {
1140 	int			is_dir = S_ISDIR(mode);
1141 	struct xfs_mount	*mp = dp->i_mount;
1142 	struct xfs_inode	*ip = NULL;
1143 	struct xfs_trans	*tp = NULL;
1144 	int			error;
1145 	bool                    unlock_dp_on_error = false;
1146 	prid_t			prid;
1147 	struct xfs_dquot	*udqp = NULL;
1148 	struct xfs_dquot	*gdqp = NULL;
1149 	struct xfs_dquot	*pdqp = NULL;
1150 	struct xfs_trans_res	*tres;
1151 	uint			resblks;
1152 
1153 	trace_xfs_create(dp, name);
1154 
1155 	if (XFS_FORCED_SHUTDOWN(mp))
1156 		return -EIO;
1157 
1158 	prid = xfs_get_initial_prid(dp);
1159 
1160 	/*
1161 	 * Make sure that we have allocated dquot(s) on disk.
1162 	 */
1163 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1164 					xfs_kgid_to_gid(current_fsgid()), prid,
1165 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1166 					&udqp, &gdqp, &pdqp);
1167 	if (error)
1168 		return error;
1169 
1170 	if (is_dir) {
1171 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1172 		tres = &M_RES(mp)->tr_mkdir;
1173 	} else {
1174 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1175 		tres = &M_RES(mp)->tr_create;
1176 	}
1177 
1178 	/*
1179 	 * Initially assume that the file does not exist and
1180 	 * reserve the resources for that case.  If that is not
1181 	 * the case we'll drop the one we have and get a more
1182 	 * appropriate transaction later.
1183 	 */
1184 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1185 	if (error == -ENOSPC) {
1186 		/* flush outstanding delalloc blocks and retry */
1187 		xfs_flush_inodes(mp);
1188 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1189 	}
1190 	if (error)
1191 		goto out_release_inode;
1192 
1193 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1194 	unlock_dp_on_error = true;
1195 
1196 	/*
1197 	 * Reserve disk quota and the inode.
1198 	 */
1199 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200 						pdqp, resblks, 1, 0);
1201 	if (error)
1202 		goto out_trans_cancel;
1203 
1204 	/*
1205 	 * A newly created regular or special file just has one directory
1206 	 * entry pointing to them, but a directory also the "." entry
1207 	 * pointing to itself.
1208 	 */
1209 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1210 	if (error)
1211 		goto out_trans_cancel;
1212 
1213 	/*
1214 	 * Now we join the directory inode to the transaction.  We do not do it
1215 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1216 	 * (and release all the locks).  An error from here on will result in
1217 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1218 	 * error path.
1219 	 */
1220 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1221 	unlock_dp_on_error = false;
1222 
1223 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1224 				   resblks ?
1225 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1226 	if (error) {
1227 		ASSERT(error != -ENOSPC);
1228 		goto out_trans_cancel;
1229 	}
1230 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1231 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1232 
1233 	if (is_dir) {
1234 		error = xfs_dir_init(tp, ip, dp);
1235 		if (error)
1236 			goto out_trans_cancel;
1237 
1238 		error = xfs_bumplink(tp, dp);
1239 		if (error)
1240 			goto out_trans_cancel;
1241 	}
1242 
1243 	/*
1244 	 * If this is a synchronous mount, make sure that the
1245 	 * create transaction goes to disk before returning to
1246 	 * the user.
1247 	 */
1248 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1249 		xfs_trans_set_sync(tp);
1250 
1251 	/*
1252 	 * Attach the dquot(s) to the inodes and modify them incore.
1253 	 * These ids of the inode couldn't have changed since the new
1254 	 * inode has been locked ever since it was created.
1255 	 */
1256 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1257 
1258 	error = xfs_trans_commit(tp);
1259 	if (error)
1260 		goto out_release_inode;
1261 
1262 	xfs_qm_dqrele(udqp);
1263 	xfs_qm_dqrele(gdqp);
1264 	xfs_qm_dqrele(pdqp);
1265 
1266 	*ipp = ip;
1267 	return 0;
1268 
1269  out_trans_cancel:
1270 	xfs_trans_cancel(tp);
1271  out_release_inode:
1272 	/*
1273 	 * Wait until after the current transaction is aborted to finish the
1274 	 * setup of the inode and release the inode.  This prevents recursive
1275 	 * transactions and deadlocks from xfs_inactive.
1276 	 */
1277 	if (ip) {
1278 		xfs_finish_inode_setup(ip);
1279 		xfs_irele(ip);
1280 	}
1281 
1282 	xfs_qm_dqrele(udqp);
1283 	xfs_qm_dqrele(gdqp);
1284 	xfs_qm_dqrele(pdqp);
1285 
1286 	if (unlock_dp_on_error)
1287 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1288 	return error;
1289 }
1290 
1291 int
1292 xfs_create_tmpfile(
1293 	struct xfs_inode	*dp,
1294 	umode_t			mode,
1295 	struct xfs_inode	**ipp)
1296 {
1297 	struct xfs_mount	*mp = dp->i_mount;
1298 	struct xfs_inode	*ip = NULL;
1299 	struct xfs_trans	*tp = NULL;
1300 	int			error;
1301 	prid_t                  prid;
1302 	struct xfs_dquot	*udqp = NULL;
1303 	struct xfs_dquot	*gdqp = NULL;
1304 	struct xfs_dquot	*pdqp = NULL;
1305 	struct xfs_trans_res	*tres;
1306 	uint			resblks;
1307 
1308 	if (XFS_FORCED_SHUTDOWN(mp))
1309 		return -EIO;
1310 
1311 	prid = xfs_get_initial_prid(dp);
1312 
1313 	/*
1314 	 * Make sure that we have allocated dquot(s) on disk.
1315 	 */
1316 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1317 				xfs_kgid_to_gid(current_fsgid()), prid,
1318 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1319 				&udqp, &gdqp, &pdqp);
1320 	if (error)
1321 		return error;
1322 
1323 	resblks = XFS_IALLOC_SPACE_RES(mp);
1324 	tres = &M_RES(mp)->tr_create_tmpfile;
1325 
1326 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1327 	if (error)
1328 		goto out_release_inode;
1329 
1330 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1331 						pdqp, resblks, 1, 0);
1332 	if (error)
1333 		goto out_trans_cancel;
1334 
1335 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1336 	if (error)
1337 		goto out_trans_cancel;
1338 
1339 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1340 		xfs_trans_set_sync(tp);
1341 
1342 	/*
1343 	 * Attach the dquot(s) to the inodes and modify them incore.
1344 	 * These ids of the inode couldn't have changed since the new
1345 	 * inode has been locked ever since it was created.
1346 	 */
1347 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1348 
1349 	error = xfs_iunlink(tp, ip);
1350 	if (error)
1351 		goto out_trans_cancel;
1352 
1353 	error = xfs_trans_commit(tp);
1354 	if (error)
1355 		goto out_release_inode;
1356 
1357 	xfs_qm_dqrele(udqp);
1358 	xfs_qm_dqrele(gdqp);
1359 	xfs_qm_dqrele(pdqp);
1360 
1361 	*ipp = ip;
1362 	return 0;
1363 
1364  out_trans_cancel:
1365 	xfs_trans_cancel(tp);
1366  out_release_inode:
1367 	/*
1368 	 * Wait until after the current transaction is aborted to finish the
1369 	 * setup of the inode and release the inode.  This prevents recursive
1370 	 * transactions and deadlocks from xfs_inactive.
1371 	 */
1372 	if (ip) {
1373 		xfs_finish_inode_setup(ip);
1374 		xfs_irele(ip);
1375 	}
1376 
1377 	xfs_qm_dqrele(udqp);
1378 	xfs_qm_dqrele(gdqp);
1379 	xfs_qm_dqrele(pdqp);
1380 
1381 	return error;
1382 }
1383 
1384 int
1385 xfs_link(
1386 	xfs_inode_t		*tdp,
1387 	xfs_inode_t		*sip,
1388 	struct xfs_name		*target_name)
1389 {
1390 	xfs_mount_t		*mp = tdp->i_mount;
1391 	xfs_trans_t		*tp;
1392 	int			error;
1393 	int			resblks;
1394 
1395 	trace_xfs_link(tdp, target_name);
1396 
1397 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1398 
1399 	if (XFS_FORCED_SHUTDOWN(mp))
1400 		return -EIO;
1401 
1402 	error = xfs_qm_dqattach(sip);
1403 	if (error)
1404 		goto std_return;
1405 
1406 	error = xfs_qm_dqattach(tdp);
1407 	if (error)
1408 		goto std_return;
1409 
1410 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1411 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1412 	if (error == -ENOSPC) {
1413 		resblks = 0;
1414 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1415 	}
1416 	if (error)
1417 		goto std_return;
1418 
1419 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1420 
1421 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1422 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1423 
1424 	/*
1425 	 * If we are using project inheritance, we only allow hard link
1426 	 * creation in our tree when the project IDs are the same; else
1427 	 * the tree quota mechanism could be circumvented.
1428 	 */
1429 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1430 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1431 		error = -EXDEV;
1432 		goto error_return;
1433 	}
1434 
1435 	if (!resblks) {
1436 		error = xfs_dir_canenter(tp, tdp, target_name);
1437 		if (error)
1438 			goto error_return;
1439 	}
1440 
1441 	/*
1442 	 * Handle initial link state of O_TMPFILE inode
1443 	 */
1444 	if (VFS_I(sip)->i_nlink == 0) {
1445 		error = xfs_iunlink_remove(tp, sip);
1446 		if (error)
1447 			goto error_return;
1448 	}
1449 
1450 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1451 				   resblks);
1452 	if (error)
1453 		goto error_return;
1454 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1455 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1456 
1457 	error = xfs_bumplink(tp, sip);
1458 	if (error)
1459 		goto error_return;
1460 
1461 	/*
1462 	 * If this is a synchronous mount, make sure that the
1463 	 * link transaction goes to disk before returning to
1464 	 * the user.
1465 	 */
1466 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1467 		xfs_trans_set_sync(tp);
1468 
1469 	return xfs_trans_commit(tp);
1470 
1471  error_return:
1472 	xfs_trans_cancel(tp);
1473  std_return:
1474 	return error;
1475 }
1476 
1477 /* Clear the reflink flag and the cowblocks tag if possible. */
1478 static void
1479 xfs_itruncate_clear_reflink_flags(
1480 	struct xfs_inode	*ip)
1481 {
1482 	struct xfs_ifork	*dfork;
1483 	struct xfs_ifork	*cfork;
1484 
1485 	if (!xfs_is_reflink_inode(ip))
1486 		return;
1487 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1488 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1489 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1490 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1491 	if (cfork->if_bytes == 0)
1492 		xfs_inode_clear_cowblocks_tag(ip);
1493 }
1494 
1495 /*
1496  * Free up the underlying blocks past new_size.  The new size must be smaller
1497  * than the current size.  This routine can be used both for the attribute and
1498  * data fork, and does not modify the inode size, which is left to the caller.
1499  *
1500  * The transaction passed to this routine must have made a permanent log
1501  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1502  * given transaction and start new ones, so make sure everything involved in
1503  * the transaction is tidy before calling here.  Some transaction will be
1504  * returned to the caller to be committed.  The incoming transaction must
1505  * already include the inode, and both inode locks must be held exclusively.
1506  * The inode must also be "held" within the transaction.  On return the inode
1507  * will be "held" within the returned transaction.  This routine does NOT
1508  * require any disk space to be reserved for it within the transaction.
1509  *
1510  * If we get an error, we must return with the inode locked and linked into the
1511  * current transaction. This keeps things simple for the higher level code,
1512  * because it always knows that the inode is locked and held in the transaction
1513  * that returns to it whether errors occur or not.  We don't mark the inode
1514  * dirty on error so that transactions can be easily aborted if possible.
1515  */
1516 int
1517 xfs_itruncate_extents_flags(
1518 	struct xfs_trans	**tpp,
1519 	struct xfs_inode	*ip,
1520 	int			whichfork,
1521 	xfs_fsize_t		new_size,
1522 	int			flags)
1523 {
1524 	struct xfs_mount	*mp = ip->i_mount;
1525 	struct xfs_trans	*tp = *tpp;
1526 	xfs_fileoff_t		first_unmap_block;
1527 	xfs_fileoff_t		last_block;
1528 	xfs_filblks_t		unmap_len;
1529 	int			error = 0;
1530 	int			done = 0;
1531 
1532 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1533 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1534 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1535 	ASSERT(new_size <= XFS_ISIZE(ip));
1536 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1537 	ASSERT(ip->i_itemp != NULL);
1538 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1539 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1540 
1541 	trace_xfs_itruncate_extents_start(ip, new_size);
1542 
1543 	flags |= xfs_bmapi_aflag(whichfork);
1544 
1545 	/*
1546 	 * Since it is possible for space to become allocated beyond
1547 	 * the end of the file (in a crash where the space is allocated
1548 	 * but the inode size is not yet updated), simply remove any
1549 	 * blocks which show up between the new EOF and the maximum
1550 	 * possible file size.  If the first block to be removed is
1551 	 * beyond the maximum file size (ie it is the same as last_block),
1552 	 * then there is nothing to do.
1553 	 */
1554 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1555 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1556 	if (first_unmap_block == last_block)
1557 		return 0;
1558 
1559 	ASSERT(first_unmap_block < last_block);
1560 	unmap_len = last_block - first_unmap_block + 1;
1561 	while (!done) {
1562 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1563 		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1564 				    XFS_ITRUNC_MAX_EXTENTS, &done);
1565 		if (error)
1566 			goto out;
1567 
1568 		/*
1569 		 * Duplicate the transaction that has the permanent
1570 		 * reservation and commit the old transaction.
1571 		 */
1572 		error = xfs_defer_finish(&tp);
1573 		if (error)
1574 			goto out;
1575 
1576 		error = xfs_trans_roll_inode(&tp, ip);
1577 		if (error)
1578 			goto out;
1579 	}
1580 
1581 	if (whichfork == XFS_DATA_FORK) {
1582 		/* Remove all pending CoW reservations. */
1583 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1584 				first_unmap_block, last_block, true);
1585 		if (error)
1586 			goto out;
1587 
1588 		xfs_itruncate_clear_reflink_flags(ip);
1589 	}
1590 
1591 	/*
1592 	 * Always re-log the inode so that our permanent transaction can keep
1593 	 * on rolling it forward in the log.
1594 	 */
1595 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1596 
1597 	trace_xfs_itruncate_extents_end(ip, new_size);
1598 
1599 out:
1600 	*tpp = tp;
1601 	return error;
1602 }
1603 
1604 int
1605 xfs_release(
1606 	xfs_inode_t	*ip)
1607 {
1608 	xfs_mount_t	*mp = ip->i_mount;
1609 	int		error;
1610 
1611 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1612 		return 0;
1613 
1614 	/* If this is a read-only mount, don't do this (would generate I/O) */
1615 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1616 		return 0;
1617 
1618 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1619 		int truncated;
1620 
1621 		/*
1622 		 * If we previously truncated this file and removed old data
1623 		 * in the process, we want to initiate "early" writeout on
1624 		 * the last close.  This is an attempt to combat the notorious
1625 		 * NULL files problem which is particularly noticeable from a
1626 		 * truncate down, buffered (re-)write (delalloc), followed by
1627 		 * a crash.  What we are effectively doing here is
1628 		 * significantly reducing the time window where we'd otherwise
1629 		 * be exposed to that problem.
1630 		 */
1631 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1632 		if (truncated) {
1633 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1634 			if (ip->i_delayed_blks > 0) {
1635 				error = filemap_flush(VFS_I(ip)->i_mapping);
1636 				if (error)
1637 					return error;
1638 			}
1639 		}
1640 	}
1641 
1642 	if (VFS_I(ip)->i_nlink == 0)
1643 		return 0;
1644 
1645 	if (xfs_can_free_eofblocks(ip, false)) {
1646 
1647 		/*
1648 		 * Check if the inode is being opened, written and closed
1649 		 * frequently and we have delayed allocation blocks outstanding
1650 		 * (e.g. streaming writes from the NFS server), truncating the
1651 		 * blocks past EOF will cause fragmentation to occur.
1652 		 *
1653 		 * In this case don't do the truncation, but we have to be
1654 		 * careful how we detect this case. Blocks beyond EOF show up as
1655 		 * i_delayed_blks even when the inode is clean, so we need to
1656 		 * truncate them away first before checking for a dirty release.
1657 		 * Hence on the first dirty close we will still remove the
1658 		 * speculative allocation, but after that we will leave it in
1659 		 * place.
1660 		 */
1661 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1662 			return 0;
1663 		/*
1664 		 * If we can't get the iolock just skip truncating the blocks
1665 		 * past EOF because we could deadlock with the mmap_sem
1666 		 * otherwise. We'll get another chance to drop them once the
1667 		 * last reference to the inode is dropped, so we'll never leak
1668 		 * blocks permanently.
1669 		 */
1670 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1671 			error = xfs_free_eofblocks(ip);
1672 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1673 			if (error)
1674 				return error;
1675 		}
1676 
1677 		/* delalloc blocks after truncation means it really is dirty */
1678 		if (ip->i_delayed_blks)
1679 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1680 	}
1681 	return 0;
1682 }
1683 
1684 /*
1685  * xfs_inactive_truncate
1686  *
1687  * Called to perform a truncate when an inode becomes unlinked.
1688  */
1689 STATIC int
1690 xfs_inactive_truncate(
1691 	struct xfs_inode *ip)
1692 {
1693 	struct xfs_mount	*mp = ip->i_mount;
1694 	struct xfs_trans	*tp;
1695 	int			error;
1696 
1697 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1698 	if (error) {
1699 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1700 		return error;
1701 	}
1702 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1703 	xfs_trans_ijoin(tp, ip, 0);
1704 
1705 	/*
1706 	 * Log the inode size first to prevent stale data exposure in the event
1707 	 * of a system crash before the truncate completes. See the related
1708 	 * comment in xfs_vn_setattr_size() for details.
1709 	 */
1710 	ip->i_d.di_size = 0;
1711 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1712 
1713 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1714 	if (error)
1715 		goto error_trans_cancel;
1716 
1717 	ASSERT(ip->i_d.di_nextents == 0);
1718 
1719 	error = xfs_trans_commit(tp);
1720 	if (error)
1721 		goto error_unlock;
1722 
1723 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1724 	return 0;
1725 
1726 error_trans_cancel:
1727 	xfs_trans_cancel(tp);
1728 error_unlock:
1729 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1730 	return error;
1731 }
1732 
1733 /*
1734  * xfs_inactive_ifree()
1735  *
1736  * Perform the inode free when an inode is unlinked.
1737  */
1738 STATIC int
1739 xfs_inactive_ifree(
1740 	struct xfs_inode *ip)
1741 {
1742 	struct xfs_mount	*mp = ip->i_mount;
1743 	struct xfs_trans	*tp;
1744 	int			error;
1745 
1746 	/*
1747 	 * We try to use a per-AG reservation for any block needed by the finobt
1748 	 * tree, but as the finobt feature predates the per-AG reservation
1749 	 * support a degraded file system might not have enough space for the
1750 	 * reservation at mount time.  In that case try to dip into the reserved
1751 	 * pool and pray.
1752 	 *
1753 	 * Send a warning if the reservation does happen to fail, as the inode
1754 	 * now remains allocated and sits on the unlinked list until the fs is
1755 	 * repaired.
1756 	 */
1757 	if (unlikely(mp->m_inotbt_nores)) {
1758 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1759 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1760 				&tp);
1761 	} else {
1762 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1763 	}
1764 	if (error) {
1765 		if (error == -ENOSPC) {
1766 			xfs_warn_ratelimited(mp,
1767 			"Failed to remove inode(s) from unlinked list. "
1768 			"Please free space, unmount and run xfs_repair.");
1769 		} else {
1770 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1771 		}
1772 		return error;
1773 	}
1774 
1775 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1776 	xfs_trans_ijoin(tp, ip, 0);
1777 
1778 	error = xfs_ifree(tp, ip);
1779 	if (error) {
1780 		/*
1781 		 * If we fail to free the inode, shut down.  The cancel
1782 		 * might do that, we need to make sure.  Otherwise the
1783 		 * inode might be lost for a long time or forever.
1784 		 */
1785 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1786 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1787 				__func__, error);
1788 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1789 		}
1790 		xfs_trans_cancel(tp);
1791 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1792 		return error;
1793 	}
1794 
1795 	/*
1796 	 * Credit the quota account(s). The inode is gone.
1797 	 */
1798 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1799 
1800 	/*
1801 	 * Just ignore errors at this point.  There is nothing we can do except
1802 	 * to try to keep going. Make sure it's not a silent error.
1803 	 */
1804 	error = xfs_trans_commit(tp);
1805 	if (error)
1806 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1807 			__func__, error);
1808 
1809 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1810 	return 0;
1811 }
1812 
1813 /*
1814  * xfs_inactive
1815  *
1816  * This is called when the vnode reference count for the vnode
1817  * goes to zero.  If the file has been unlinked, then it must
1818  * now be truncated.  Also, we clear all of the read-ahead state
1819  * kept for the inode here since the file is now closed.
1820  */
1821 void
1822 xfs_inactive(
1823 	xfs_inode_t	*ip)
1824 {
1825 	struct xfs_mount	*mp;
1826 	int			error;
1827 	int			truncate = 0;
1828 
1829 	/*
1830 	 * If the inode is already free, then there can be nothing
1831 	 * to clean up here.
1832 	 */
1833 	if (VFS_I(ip)->i_mode == 0) {
1834 		ASSERT(ip->i_df.if_broot_bytes == 0);
1835 		return;
1836 	}
1837 
1838 	mp = ip->i_mount;
1839 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1840 
1841 	/* If this is a read-only mount, don't do this (would generate I/O) */
1842 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1843 		return;
1844 
1845 	/* Try to clean out the cow blocks if there are any. */
1846 	if (xfs_inode_has_cow_data(ip))
1847 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1848 
1849 	if (VFS_I(ip)->i_nlink != 0) {
1850 		/*
1851 		 * force is true because we are evicting an inode from the
1852 		 * cache. Post-eof blocks must be freed, lest we end up with
1853 		 * broken free space accounting.
1854 		 *
1855 		 * Note: don't bother with iolock here since lockdep complains
1856 		 * about acquiring it in reclaim context. We have the only
1857 		 * reference to the inode at this point anyways.
1858 		 */
1859 		if (xfs_can_free_eofblocks(ip, true))
1860 			xfs_free_eofblocks(ip);
1861 
1862 		return;
1863 	}
1864 
1865 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1866 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1867 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1868 		truncate = 1;
1869 
1870 	error = xfs_qm_dqattach(ip);
1871 	if (error)
1872 		return;
1873 
1874 	if (S_ISLNK(VFS_I(ip)->i_mode))
1875 		error = xfs_inactive_symlink(ip);
1876 	else if (truncate)
1877 		error = xfs_inactive_truncate(ip);
1878 	if (error)
1879 		return;
1880 
1881 	/*
1882 	 * If there are attributes associated with the file then blow them away
1883 	 * now.  The code calls a routine that recursively deconstructs the
1884 	 * attribute fork. If also blows away the in-core attribute fork.
1885 	 */
1886 	if (XFS_IFORK_Q(ip)) {
1887 		error = xfs_attr_inactive(ip);
1888 		if (error)
1889 			return;
1890 	}
1891 
1892 	ASSERT(!ip->i_afp);
1893 	ASSERT(ip->i_d.di_anextents == 0);
1894 	ASSERT(ip->i_d.di_forkoff == 0);
1895 
1896 	/*
1897 	 * Free the inode.
1898 	 */
1899 	error = xfs_inactive_ifree(ip);
1900 	if (error)
1901 		return;
1902 
1903 	/*
1904 	 * Release the dquots held by inode, if any.
1905 	 */
1906 	xfs_qm_dqdetach(ip);
1907 }
1908 
1909 /*
1910  * This is called when the inode's link count goes to 0 or we are creating a
1911  * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1912  * set to true as the link count is dropped to zero by the VFS after we've
1913  * created the file successfully, so we have to add it to the unlinked list
1914  * while the link count is non-zero.
1915  *
1916  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1917  * list when the inode is freed.
1918  */
1919 STATIC int
1920 xfs_iunlink(
1921 	struct xfs_trans *tp,
1922 	struct xfs_inode *ip)
1923 {
1924 	xfs_mount_t	*mp = tp->t_mountp;
1925 	xfs_agi_t	*agi;
1926 	xfs_dinode_t	*dip;
1927 	xfs_buf_t	*agibp;
1928 	xfs_buf_t	*ibp;
1929 	xfs_agino_t	agino;
1930 	short		bucket_index;
1931 	int		offset;
1932 	int		error;
1933 
1934 	ASSERT(VFS_I(ip)->i_mode != 0);
1935 
1936 	/*
1937 	 * Get the agi buffer first.  It ensures lock ordering
1938 	 * on the list.
1939 	 */
1940 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1941 	if (error)
1942 		return error;
1943 	agi = XFS_BUF_TO_AGI(agibp);
1944 
1945 	/*
1946 	 * Get the index into the agi hash table for the
1947 	 * list this inode will go on.
1948 	 */
1949 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1950 	ASSERT(agino != 0);
1951 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1952 	ASSERT(agi->agi_unlinked[bucket_index]);
1953 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1954 
1955 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1956 		/*
1957 		 * There is already another inode in the bucket we need
1958 		 * to add ourselves to.  Add us at the front of the list.
1959 		 * Here we put the head pointer into our next pointer,
1960 		 * and then we fall through to point the head at us.
1961 		 */
1962 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1963 				       0, 0);
1964 		if (error)
1965 			return error;
1966 
1967 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1968 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1969 		offset = ip->i_imap.im_boffset +
1970 			offsetof(xfs_dinode_t, di_next_unlinked);
1971 
1972 		/* need to recalc the inode CRC if appropriate */
1973 		xfs_dinode_calc_crc(mp, dip);
1974 
1975 		xfs_trans_inode_buf(tp, ibp);
1976 		xfs_trans_log_buf(tp, ibp, offset,
1977 				  (offset + sizeof(xfs_agino_t) - 1));
1978 		xfs_inobp_check(mp, ibp);
1979 	}
1980 
1981 	/*
1982 	 * Point the bucket head pointer at the inode being inserted.
1983 	 */
1984 	ASSERT(agino != 0);
1985 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1986 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1987 		(sizeof(xfs_agino_t) * bucket_index);
1988 	xfs_trans_log_buf(tp, agibp, offset,
1989 			  (offset + sizeof(xfs_agino_t) - 1));
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Pull the on-disk inode from the AGI unlinked list.
1995  */
1996 STATIC int
1997 xfs_iunlink_remove(
1998 	xfs_trans_t	*tp,
1999 	xfs_inode_t	*ip)
2000 {
2001 	xfs_ino_t	next_ino;
2002 	xfs_mount_t	*mp;
2003 	xfs_agi_t	*agi;
2004 	xfs_dinode_t	*dip;
2005 	xfs_buf_t	*agibp;
2006 	xfs_buf_t	*ibp;
2007 	xfs_agnumber_t	agno;
2008 	xfs_agino_t	agino;
2009 	xfs_agino_t	next_agino;
2010 	xfs_buf_t	*last_ibp;
2011 	xfs_dinode_t	*last_dip = NULL;
2012 	short		bucket_index;
2013 	int		offset, last_offset = 0;
2014 	int		error;
2015 
2016 	mp = tp->t_mountp;
2017 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2018 
2019 	/*
2020 	 * Get the agi buffer first.  It ensures lock ordering
2021 	 * on the list.
2022 	 */
2023 	error = xfs_read_agi(mp, tp, agno, &agibp);
2024 	if (error)
2025 		return error;
2026 
2027 	agi = XFS_BUF_TO_AGI(agibp);
2028 
2029 	/*
2030 	 * Get the index into the agi hash table for the
2031 	 * list this inode will go on.
2032 	 */
2033 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2034 	if (!xfs_verify_agino(mp, agno, agino))
2035 		return -EFSCORRUPTED;
2036 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2037 	if (!xfs_verify_agino(mp, agno,
2038 			be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
2039 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2040 				agi, sizeof(*agi));
2041 		return -EFSCORRUPTED;
2042 	}
2043 
2044 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2045 		/*
2046 		 * We're at the head of the list.  Get the inode's on-disk
2047 		 * buffer to see if there is anyone after us on the list.
2048 		 * Only modify our next pointer if it is not already NULLAGINO.
2049 		 * This saves us the overhead of dealing with the buffer when
2050 		 * there is no need to change it.
2051 		 */
2052 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2053 				       0, 0);
2054 		if (error) {
2055 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2056 				__func__, error);
2057 			return error;
2058 		}
2059 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2060 		ASSERT(next_agino != 0);
2061 		if (next_agino != NULLAGINO) {
2062 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2063 			offset = ip->i_imap.im_boffset +
2064 				offsetof(xfs_dinode_t, di_next_unlinked);
2065 
2066 			/* need to recalc the inode CRC if appropriate */
2067 			xfs_dinode_calc_crc(mp, dip);
2068 
2069 			xfs_trans_inode_buf(tp, ibp);
2070 			xfs_trans_log_buf(tp, ibp, offset,
2071 					  (offset + sizeof(xfs_agino_t) - 1));
2072 			xfs_inobp_check(mp, ibp);
2073 		} else {
2074 			xfs_trans_brelse(tp, ibp);
2075 		}
2076 		/*
2077 		 * Point the bucket head pointer at the next inode.
2078 		 */
2079 		ASSERT(next_agino != 0);
2080 		ASSERT(next_agino != agino);
2081 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2082 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2083 			(sizeof(xfs_agino_t) * bucket_index);
2084 		xfs_trans_log_buf(tp, agibp, offset,
2085 				  (offset + sizeof(xfs_agino_t) - 1));
2086 	} else {
2087 		/*
2088 		 * We need to search the list for the inode being freed.
2089 		 */
2090 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2091 		last_ibp = NULL;
2092 		while (next_agino != agino) {
2093 			struct xfs_imap	imap;
2094 
2095 			if (last_ibp)
2096 				xfs_trans_brelse(tp, last_ibp);
2097 
2098 			imap.im_blkno = 0;
2099 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2100 
2101 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2102 			if (error) {
2103 				xfs_warn(mp,
2104 	"%s: xfs_imap returned error %d.",
2105 					 __func__, error);
2106 				return error;
2107 			}
2108 
2109 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2110 					       &last_ibp, 0, 0);
2111 			if (error) {
2112 				xfs_warn(mp,
2113 	"%s: xfs_imap_to_bp returned error %d.",
2114 					__func__, error);
2115 				return error;
2116 			}
2117 
2118 			last_offset = imap.im_boffset;
2119 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2120 			if (!xfs_verify_agino(mp, agno, next_agino)) {
2121 				XFS_CORRUPTION_ERROR(__func__,
2122 						XFS_ERRLEVEL_LOW, mp,
2123 						last_dip, sizeof(*last_dip));
2124 				return -EFSCORRUPTED;
2125 			}
2126 		}
2127 
2128 		/*
2129 		 * Now last_ibp points to the buffer previous to us on the
2130 		 * unlinked list.  Pull us from the list.
2131 		 */
2132 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2133 				       0, 0);
2134 		if (error) {
2135 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2136 				__func__, error);
2137 			return error;
2138 		}
2139 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2140 		ASSERT(next_agino != 0);
2141 		ASSERT(next_agino != agino);
2142 		if (next_agino != NULLAGINO) {
2143 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2144 			offset = ip->i_imap.im_boffset +
2145 				offsetof(xfs_dinode_t, di_next_unlinked);
2146 
2147 			/* need to recalc the inode CRC if appropriate */
2148 			xfs_dinode_calc_crc(mp, dip);
2149 
2150 			xfs_trans_inode_buf(tp, ibp);
2151 			xfs_trans_log_buf(tp, ibp, offset,
2152 					  (offset + sizeof(xfs_agino_t) - 1));
2153 			xfs_inobp_check(mp, ibp);
2154 		} else {
2155 			xfs_trans_brelse(tp, ibp);
2156 		}
2157 		/*
2158 		 * Point the previous inode on the list to the next inode.
2159 		 */
2160 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2161 		ASSERT(next_agino != 0);
2162 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2163 
2164 		/* need to recalc the inode CRC if appropriate */
2165 		xfs_dinode_calc_crc(mp, last_dip);
2166 
2167 		xfs_trans_inode_buf(tp, last_ibp);
2168 		xfs_trans_log_buf(tp, last_ibp, offset,
2169 				  (offset + sizeof(xfs_agino_t) - 1));
2170 		xfs_inobp_check(mp, last_ibp);
2171 	}
2172 	return 0;
2173 }
2174 
2175 /*
2176  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2177  * inodes that are in memory - they all must be marked stale and attached to
2178  * the cluster buffer.
2179  */
2180 STATIC int
2181 xfs_ifree_cluster(
2182 	xfs_inode_t		*free_ip,
2183 	xfs_trans_t		*tp,
2184 	struct xfs_icluster	*xic)
2185 {
2186 	xfs_mount_t		*mp = free_ip->i_mount;
2187 	int			nbufs;
2188 	int			i, j;
2189 	int			ioffset;
2190 	xfs_daddr_t		blkno;
2191 	xfs_buf_t		*bp;
2192 	xfs_inode_t		*ip;
2193 	xfs_inode_log_item_t	*iip;
2194 	struct xfs_log_item	*lip;
2195 	struct xfs_perag	*pag;
2196 	xfs_ino_t		inum;
2197 
2198 	inum = xic->first_ino;
2199 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2200 	nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster;
2201 
2202 	for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) {
2203 		/*
2204 		 * The allocation bitmap tells us which inodes of the chunk were
2205 		 * physically allocated. Skip the cluster if an inode falls into
2206 		 * a sparse region.
2207 		 */
2208 		ioffset = inum - xic->first_ino;
2209 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2210 			ASSERT(ioffset % mp->m_inodes_per_cluster == 0);
2211 			continue;
2212 		}
2213 
2214 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2215 					 XFS_INO_TO_AGBNO(mp, inum));
2216 
2217 		/*
2218 		 * We obtain and lock the backing buffer first in the process
2219 		 * here, as we have to ensure that any dirty inode that we
2220 		 * can't get the flush lock on is attached to the buffer.
2221 		 * If we scan the in-memory inodes first, then buffer IO can
2222 		 * complete before we get a lock on it, and hence we may fail
2223 		 * to mark all the active inodes on the buffer stale.
2224 		 */
2225 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2226 					mp->m_bsize * mp->m_blocks_per_cluster,
2227 					XBF_UNMAPPED);
2228 
2229 		if (!bp)
2230 			return -ENOMEM;
2231 
2232 		/*
2233 		 * This buffer may not have been correctly initialised as we
2234 		 * didn't read it from disk. That's not important because we are
2235 		 * only using to mark the buffer as stale in the log, and to
2236 		 * attach stale cached inodes on it. That means it will never be
2237 		 * dispatched for IO. If it is, we want to know about it, and we
2238 		 * want it to fail. We can acheive this by adding a write
2239 		 * verifier to the buffer.
2240 		 */
2241 		bp->b_ops = &xfs_inode_buf_ops;
2242 
2243 		/*
2244 		 * Walk the inodes already attached to the buffer and mark them
2245 		 * stale. These will all have the flush locks held, so an
2246 		 * in-memory inode walk can't lock them. By marking them all
2247 		 * stale first, we will not attempt to lock them in the loop
2248 		 * below as the XFS_ISTALE flag will be set.
2249 		 */
2250 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2251 			if (lip->li_type == XFS_LI_INODE) {
2252 				iip = (xfs_inode_log_item_t *)lip;
2253 				ASSERT(iip->ili_logged == 1);
2254 				lip->li_cb = xfs_istale_done;
2255 				xfs_trans_ail_copy_lsn(mp->m_ail,
2256 							&iip->ili_flush_lsn,
2257 							&iip->ili_item.li_lsn);
2258 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2259 			}
2260 		}
2261 
2262 
2263 		/*
2264 		 * For each inode in memory attempt to add it to the inode
2265 		 * buffer and set it up for being staled on buffer IO
2266 		 * completion.  This is safe as we've locked out tail pushing
2267 		 * and flushing by locking the buffer.
2268 		 *
2269 		 * We have already marked every inode that was part of a
2270 		 * transaction stale above, which means there is no point in
2271 		 * even trying to lock them.
2272 		 */
2273 		for (i = 0; i < mp->m_inodes_per_cluster; i++) {
2274 retry:
2275 			rcu_read_lock();
2276 			ip = radix_tree_lookup(&pag->pag_ici_root,
2277 					XFS_INO_TO_AGINO(mp, (inum + i)));
2278 
2279 			/* Inode not in memory, nothing to do */
2280 			if (!ip) {
2281 				rcu_read_unlock();
2282 				continue;
2283 			}
2284 
2285 			/*
2286 			 * because this is an RCU protected lookup, we could
2287 			 * find a recently freed or even reallocated inode
2288 			 * during the lookup. We need to check under the
2289 			 * i_flags_lock for a valid inode here. Skip it if it
2290 			 * is not valid, the wrong inode or stale.
2291 			 */
2292 			spin_lock(&ip->i_flags_lock);
2293 			if (ip->i_ino != inum + i ||
2294 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2295 				spin_unlock(&ip->i_flags_lock);
2296 				rcu_read_unlock();
2297 				continue;
2298 			}
2299 			spin_unlock(&ip->i_flags_lock);
2300 
2301 			/*
2302 			 * Don't try to lock/unlock the current inode, but we
2303 			 * _cannot_ skip the other inodes that we did not find
2304 			 * in the list attached to the buffer and are not
2305 			 * already marked stale. If we can't lock it, back off
2306 			 * and retry.
2307 			 */
2308 			if (ip != free_ip) {
2309 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2310 					rcu_read_unlock();
2311 					delay(1);
2312 					goto retry;
2313 				}
2314 
2315 				/*
2316 				 * Check the inode number again in case we're
2317 				 * racing with freeing in xfs_reclaim_inode().
2318 				 * See the comments in that function for more
2319 				 * information as to why the initial check is
2320 				 * not sufficient.
2321 				 */
2322 				if (ip->i_ino != inum + i) {
2323 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2324 					rcu_read_unlock();
2325 					continue;
2326 				}
2327 			}
2328 			rcu_read_unlock();
2329 
2330 			xfs_iflock(ip);
2331 			xfs_iflags_set(ip, XFS_ISTALE);
2332 
2333 			/*
2334 			 * we don't need to attach clean inodes or those only
2335 			 * with unlogged changes (which we throw away, anyway).
2336 			 */
2337 			iip = ip->i_itemp;
2338 			if (!iip || xfs_inode_clean(ip)) {
2339 				ASSERT(ip != free_ip);
2340 				xfs_ifunlock(ip);
2341 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2342 				continue;
2343 			}
2344 
2345 			iip->ili_last_fields = iip->ili_fields;
2346 			iip->ili_fields = 0;
2347 			iip->ili_fsync_fields = 0;
2348 			iip->ili_logged = 1;
2349 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2350 						&iip->ili_item.li_lsn);
2351 
2352 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2353 						  &iip->ili_item);
2354 
2355 			if (ip != free_ip)
2356 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2357 		}
2358 
2359 		xfs_trans_stale_inode_buf(tp, bp);
2360 		xfs_trans_binval(tp, bp);
2361 	}
2362 
2363 	xfs_perag_put(pag);
2364 	return 0;
2365 }
2366 
2367 /*
2368  * Free any local-format buffers sitting around before we reset to
2369  * extents format.
2370  */
2371 static inline void
2372 xfs_ifree_local_data(
2373 	struct xfs_inode	*ip,
2374 	int			whichfork)
2375 {
2376 	struct xfs_ifork	*ifp;
2377 
2378 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2379 		return;
2380 
2381 	ifp = XFS_IFORK_PTR(ip, whichfork);
2382 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2383 }
2384 
2385 /*
2386  * This is called to return an inode to the inode free list.
2387  * The inode should already be truncated to 0 length and have
2388  * no pages associated with it.  This routine also assumes that
2389  * the inode is already a part of the transaction.
2390  *
2391  * The on-disk copy of the inode will have been added to the list
2392  * of unlinked inodes in the AGI. We need to remove the inode from
2393  * that list atomically with respect to freeing it here.
2394  */
2395 int
2396 xfs_ifree(
2397 	struct xfs_trans	*tp,
2398 	struct xfs_inode	*ip)
2399 {
2400 	int			error;
2401 	struct xfs_icluster	xic = { 0 };
2402 
2403 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2404 	ASSERT(VFS_I(ip)->i_nlink == 0);
2405 	ASSERT(ip->i_d.di_nextents == 0);
2406 	ASSERT(ip->i_d.di_anextents == 0);
2407 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2408 	ASSERT(ip->i_d.di_nblocks == 0);
2409 
2410 	/*
2411 	 * Pull the on-disk inode from the AGI unlinked list.
2412 	 */
2413 	error = xfs_iunlink_remove(tp, ip);
2414 	if (error)
2415 		return error;
2416 
2417 	error = xfs_difree(tp, ip->i_ino, &xic);
2418 	if (error)
2419 		return error;
2420 
2421 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2422 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2423 
2424 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2425 	ip->i_d.di_flags = 0;
2426 	ip->i_d.di_flags2 = 0;
2427 	ip->i_d.di_dmevmask = 0;
2428 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2429 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2430 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2431 
2432 	/* Don't attempt to replay owner changes for a deleted inode */
2433 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2434 
2435 	/*
2436 	 * Bump the generation count so no one will be confused
2437 	 * by reincarnations of this inode.
2438 	 */
2439 	VFS_I(ip)->i_generation++;
2440 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2441 
2442 	if (xic.deleted)
2443 		error = xfs_ifree_cluster(ip, tp, &xic);
2444 
2445 	return error;
2446 }
2447 
2448 /*
2449  * This is called to unpin an inode.  The caller must have the inode locked
2450  * in at least shared mode so that the buffer cannot be subsequently pinned
2451  * once someone is waiting for it to be unpinned.
2452  */
2453 static void
2454 xfs_iunpin(
2455 	struct xfs_inode	*ip)
2456 {
2457 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2458 
2459 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2460 
2461 	/* Give the log a push to start the unpinning I/O */
2462 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2463 
2464 }
2465 
2466 static void
2467 __xfs_iunpin_wait(
2468 	struct xfs_inode	*ip)
2469 {
2470 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2471 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2472 
2473 	xfs_iunpin(ip);
2474 
2475 	do {
2476 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2477 		if (xfs_ipincount(ip))
2478 			io_schedule();
2479 	} while (xfs_ipincount(ip));
2480 	finish_wait(wq, &wait.wq_entry);
2481 }
2482 
2483 void
2484 xfs_iunpin_wait(
2485 	struct xfs_inode	*ip)
2486 {
2487 	if (xfs_ipincount(ip))
2488 		__xfs_iunpin_wait(ip);
2489 }
2490 
2491 /*
2492  * Removing an inode from the namespace involves removing the directory entry
2493  * and dropping the link count on the inode. Removing the directory entry can
2494  * result in locking an AGF (directory blocks were freed) and removing a link
2495  * count can result in placing the inode on an unlinked list which results in
2496  * locking an AGI.
2497  *
2498  * The big problem here is that we have an ordering constraint on AGF and AGI
2499  * locking - inode allocation locks the AGI, then can allocate a new extent for
2500  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2501  * removes the inode from the unlinked list, requiring that we lock the AGI
2502  * first, and then freeing the inode can result in an inode chunk being freed
2503  * and hence freeing disk space requiring that we lock an AGF.
2504  *
2505  * Hence the ordering that is imposed by other parts of the code is AGI before
2506  * AGF. This means we cannot remove the directory entry before we drop the inode
2507  * reference count and put it on the unlinked list as this results in a lock
2508  * order of AGF then AGI, and this can deadlock against inode allocation and
2509  * freeing. Therefore we must drop the link counts before we remove the
2510  * directory entry.
2511  *
2512  * This is still safe from a transactional point of view - it is not until we
2513  * get to xfs_defer_finish() that we have the possibility of multiple
2514  * transactions in this operation. Hence as long as we remove the directory
2515  * entry and drop the link count in the first transaction of the remove
2516  * operation, there are no transactional constraints on the ordering here.
2517  */
2518 int
2519 xfs_remove(
2520 	xfs_inode_t             *dp,
2521 	struct xfs_name		*name,
2522 	xfs_inode_t		*ip)
2523 {
2524 	xfs_mount_t		*mp = dp->i_mount;
2525 	xfs_trans_t             *tp = NULL;
2526 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2527 	int                     error = 0;
2528 	uint			resblks;
2529 
2530 	trace_xfs_remove(dp, name);
2531 
2532 	if (XFS_FORCED_SHUTDOWN(mp))
2533 		return -EIO;
2534 
2535 	error = xfs_qm_dqattach(dp);
2536 	if (error)
2537 		goto std_return;
2538 
2539 	error = xfs_qm_dqattach(ip);
2540 	if (error)
2541 		goto std_return;
2542 
2543 	/*
2544 	 * We try to get the real space reservation first,
2545 	 * allowing for directory btree deletion(s) implying
2546 	 * possible bmap insert(s).  If we can't get the space
2547 	 * reservation then we use 0 instead, and avoid the bmap
2548 	 * btree insert(s) in the directory code by, if the bmap
2549 	 * insert tries to happen, instead trimming the LAST
2550 	 * block from the directory.
2551 	 */
2552 	resblks = XFS_REMOVE_SPACE_RES(mp);
2553 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2554 	if (error == -ENOSPC) {
2555 		resblks = 0;
2556 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2557 				&tp);
2558 	}
2559 	if (error) {
2560 		ASSERT(error != -ENOSPC);
2561 		goto std_return;
2562 	}
2563 
2564 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2565 
2566 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2567 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2568 
2569 	/*
2570 	 * If we're removing a directory perform some additional validation.
2571 	 */
2572 	if (is_dir) {
2573 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2574 		if (VFS_I(ip)->i_nlink != 2) {
2575 			error = -ENOTEMPTY;
2576 			goto out_trans_cancel;
2577 		}
2578 		if (!xfs_dir_isempty(ip)) {
2579 			error = -ENOTEMPTY;
2580 			goto out_trans_cancel;
2581 		}
2582 
2583 		/* Drop the link from ip's "..".  */
2584 		error = xfs_droplink(tp, dp);
2585 		if (error)
2586 			goto out_trans_cancel;
2587 
2588 		/* Drop the "." link from ip to self.  */
2589 		error = xfs_droplink(tp, ip);
2590 		if (error)
2591 			goto out_trans_cancel;
2592 	} else {
2593 		/*
2594 		 * When removing a non-directory we need to log the parent
2595 		 * inode here.  For a directory this is done implicitly
2596 		 * by the xfs_droplink call for the ".." entry.
2597 		 */
2598 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2599 	}
2600 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2601 
2602 	/* Drop the link from dp to ip. */
2603 	error = xfs_droplink(tp, ip);
2604 	if (error)
2605 		goto out_trans_cancel;
2606 
2607 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2608 	if (error) {
2609 		ASSERT(error != -ENOENT);
2610 		goto out_trans_cancel;
2611 	}
2612 
2613 	/*
2614 	 * If this is a synchronous mount, make sure that the
2615 	 * remove transaction goes to disk before returning to
2616 	 * the user.
2617 	 */
2618 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2619 		xfs_trans_set_sync(tp);
2620 
2621 	error = xfs_trans_commit(tp);
2622 	if (error)
2623 		goto std_return;
2624 
2625 	if (is_dir && xfs_inode_is_filestream(ip))
2626 		xfs_filestream_deassociate(ip);
2627 
2628 	return 0;
2629 
2630  out_trans_cancel:
2631 	xfs_trans_cancel(tp);
2632  std_return:
2633 	return error;
2634 }
2635 
2636 /*
2637  * Enter all inodes for a rename transaction into a sorted array.
2638  */
2639 #define __XFS_SORT_INODES	5
2640 STATIC void
2641 xfs_sort_for_rename(
2642 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2643 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2644 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2645 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2646 	struct xfs_inode	*wip,	/* in: whiteout inode */
2647 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2648 	int			*num_inodes)  /* in/out: inodes in array */
2649 {
2650 	int			i, j;
2651 
2652 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2653 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2654 
2655 	/*
2656 	 * i_tab contains a list of pointers to inodes.  We initialize
2657 	 * the table here & we'll sort it.  We will then use it to
2658 	 * order the acquisition of the inode locks.
2659 	 *
2660 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2661 	 */
2662 	i = 0;
2663 	i_tab[i++] = dp1;
2664 	i_tab[i++] = dp2;
2665 	i_tab[i++] = ip1;
2666 	if (ip2)
2667 		i_tab[i++] = ip2;
2668 	if (wip)
2669 		i_tab[i++] = wip;
2670 	*num_inodes = i;
2671 
2672 	/*
2673 	 * Sort the elements via bubble sort.  (Remember, there are at
2674 	 * most 5 elements to sort, so this is adequate.)
2675 	 */
2676 	for (i = 0; i < *num_inodes; i++) {
2677 		for (j = 1; j < *num_inodes; j++) {
2678 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2679 				struct xfs_inode *temp = i_tab[j];
2680 				i_tab[j] = i_tab[j-1];
2681 				i_tab[j-1] = temp;
2682 			}
2683 		}
2684 	}
2685 }
2686 
2687 static int
2688 xfs_finish_rename(
2689 	struct xfs_trans	*tp)
2690 {
2691 	/*
2692 	 * If this is a synchronous mount, make sure that the rename transaction
2693 	 * goes to disk before returning to the user.
2694 	 */
2695 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2696 		xfs_trans_set_sync(tp);
2697 
2698 	return xfs_trans_commit(tp);
2699 }
2700 
2701 /*
2702  * xfs_cross_rename()
2703  *
2704  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2705  */
2706 STATIC int
2707 xfs_cross_rename(
2708 	struct xfs_trans	*tp,
2709 	struct xfs_inode	*dp1,
2710 	struct xfs_name		*name1,
2711 	struct xfs_inode	*ip1,
2712 	struct xfs_inode	*dp2,
2713 	struct xfs_name		*name2,
2714 	struct xfs_inode	*ip2,
2715 	int			spaceres)
2716 {
2717 	int		error = 0;
2718 	int		ip1_flags = 0;
2719 	int		ip2_flags = 0;
2720 	int		dp2_flags = 0;
2721 
2722 	/* Swap inode number for dirent in first parent */
2723 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2724 	if (error)
2725 		goto out_trans_abort;
2726 
2727 	/* Swap inode number for dirent in second parent */
2728 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2729 	if (error)
2730 		goto out_trans_abort;
2731 
2732 	/*
2733 	 * If we're renaming one or more directories across different parents,
2734 	 * update the respective ".." entries (and link counts) to match the new
2735 	 * parents.
2736 	 */
2737 	if (dp1 != dp2) {
2738 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2739 
2740 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2741 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2742 						dp1->i_ino, spaceres);
2743 			if (error)
2744 				goto out_trans_abort;
2745 
2746 			/* transfer ip2 ".." reference to dp1 */
2747 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2748 				error = xfs_droplink(tp, dp2);
2749 				if (error)
2750 					goto out_trans_abort;
2751 				error = xfs_bumplink(tp, dp1);
2752 				if (error)
2753 					goto out_trans_abort;
2754 			}
2755 
2756 			/*
2757 			 * Although ip1 isn't changed here, userspace needs
2758 			 * to be warned about the change, so that applications
2759 			 * relying on it (like backup ones), will properly
2760 			 * notify the change
2761 			 */
2762 			ip1_flags |= XFS_ICHGTIME_CHG;
2763 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2764 		}
2765 
2766 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2767 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2768 						dp2->i_ino, spaceres);
2769 			if (error)
2770 				goto out_trans_abort;
2771 
2772 			/* transfer ip1 ".." reference to dp2 */
2773 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2774 				error = xfs_droplink(tp, dp1);
2775 				if (error)
2776 					goto out_trans_abort;
2777 				error = xfs_bumplink(tp, dp2);
2778 				if (error)
2779 					goto out_trans_abort;
2780 			}
2781 
2782 			/*
2783 			 * Although ip2 isn't changed here, userspace needs
2784 			 * to be warned about the change, so that applications
2785 			 * relying on it (like backup ones), will properly
2786 			 * notify the change
2787 			 */
2788 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2789 			ip2_flags |= XFS_ICHGTIME_CHG;
2790 		}
2791 	}
2792 
2793 	if (ip1_flags) {
2794 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2795 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2796 	}
2797 	if (ip2_flags) {
2798 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2799 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2800 	}
2801 	if (dp2_flags) {
2802 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2803 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2804 	}
2805 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2806 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2807 	return xfs_finish_rename(tp);
2808 
2809 out_trans_abort:
2810 	xfs_trans_cancel(tp);
2811 	return error;
2812 }
2813 
2814 /*
2815  * xfs_rename_alloc_whiteout()
2816  *
2817  * Return a referenced, unlinked, unlocked inode that that can be used as a
2818  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2819  * crash between allocating the inode and linking it into the rename transaction
2820  * recovery will free the inode and we won't leak it.
2821  */
2822 static int
2823 xfs_rename_alloc_whiteout(
2824 	struct xfs_inode	*dp,
2825 	struct xfs_inode	**wip)
2826 {
2827 	struct xfs_inode	*tmpfile;
2828 	int			error;
2829 
2830 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2831 	if (error)
2832 		return error;
2833 
2834 	/*
2835 	 * Prepare the tmpfile inode as if it were created through the VFS.
2836 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2837 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2838 	 * and flag it as linkable.
2839 	 */
2840 	drop_nlink(VFS_I(tmpfile));
2841 	xfs_setup_iops(tmpfile);
2842 	xfs_finish_inode_setup(tmpfile);
2843 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2844 
2845 	*wip = tmpfile;
2846 	return 0;
2847 }
2848 
2849 /*
2850  * xfs_rename
2851  */
2852 int
2853 xfs_rename(
2854 	struct xfs_inode	*src_dp,
2855 	struct xfs_name		*src_name,
2856 	struct xfs_inode	*src_ip,
2857 	struct xfs_inode	*target_dp,
2858 	struct xfs_name		*target_name,
2859 	struct xfs_inode	*target_ip,
2860 	unsigned int		flags)
2861 {
2862 	struct xfs_mount	*mp = src_dp->i_mount;
2863 	struct xfs_trans	*tp;
2864 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2865 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2866 	int			num_inodes = __XFS_SORT_INODES;
2867 	bool			new_parent = (src_dp != target_dp);
2868 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2869 	int			spaceres;
2870 	int			error;
2871 
2872 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2873 
2874 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2875 		return -EINVAL;
2876 
2877 	/*
2878 	 * If we are doing a whiteout operation, allocate the whiteout inode
2879 	 * we will be placing at the target and ensure the type is set
2880 	 * appropriately.
2881 	 */
2882 	if (flags & RENAME_WHITEOUT) {
2883 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2884 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2885 		if (error)
2886 			return error;
2887 
2888 		/* setup target dirent info as whiteout */
2889 		src_name->type = XFS_DIR3_FT_CHRDEV;
2890 	}
2891 
2892 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2893 				inodes, &num_inodes);
2894 
2895 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2896 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2897 	if (error == -ENOSPC) {
2898 		spaceres = 0;
2899 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2900 				&tp);
2901 	}
2902 	if (error)
2903 		goto out_release_wip;
2904 
2905 	/*
2906 	 * Attach the dquots to the inodes
2907 	 */
2908 	error = xfs_qm_vop_rename_dqattach(inodes);
2909 	if (error)
2910 		goto out_trans_cancel;
2911 
2912 	/*
2913 	 * Lock all the participating inodes. Depending upon whether
2914 	 * the target_name exists in the target directory, and
2915 	 * whether the target directory is the same as the source
2916 	 * directory, we can lock from 2 to 4 inodes.
2917 	 */
2918 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2919 
2920 	/*
2921 	 * Join all the inodes to the transaction. From this point on,
2922 	 * we can rely on either trans_commit or trans_cancel to unlock
2923 	 * them.
2924 	 */
2925 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2926 	if (new_parent)
2927 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2928 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2929 	if (target_ip)
2930 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2931 	if (wip)
2932 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2933 
2934 	/*
2935 	 * If we are using project inheritance, we only allow renames
2936 	 * into our tree when the project IDs are the same; else the
2937 	 * tree quota mechanism would be circumvented.
2938 	 */
2939 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2940 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2941 		error = -EXDEV;
2942 		goto out_trans_cancel;
2943 	}
2944 
2945 	/* RENAME_EXCHANGE is unique from here on. */
2946 	if (flags & RENAME_EXCHANGE)
2947 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2948 					target_dp, target_name, target_ip,
2949 					spaceres);
2950 
2951 	/*
2952 	 * Set up the target.
2953 	 */
2954 	if (target_ip == NULL) {
2955 		/*
2956 		 * If there's no space reservation, check the entry will
2957 		 * fit before actually inserting it.
2958 		 */
2959 		if (!spaceres) {
2960 			error = xfs_dir_canenter(tp, target_dp, target_name);
2961 			if (error)
2962 				goto out_trans_cancel;
2963 		}
2964 		/*
2965 		 * If target does not exist and the rename crosses
2966 		 * directories, adjust the target directory link count
2967 		 * to account for the ".." reference from the new entry.
2968 		 */
2969 		error = xfs_dir_createname(tp, target_dp, target_name,
2970 					   src_ip->i_ino, spaceres);
2971 		if (error)
2972 			goto out_trans_cancel;
2973 
2974 		xfs_trans_ichgtime(tp, target_dp,
2975 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2976 
2977 		if (new_parent && src_is_directory) {
2978 			error = xfs_bumplink(tp, target_dp);
2979 			if (error)
2980 				goto out_trans_cancel;
2981 		}
2982 	} else { /* target_ip != NULL */
2983 		/*
2984 		 * If target exists and it's a directory, check that both
2985 		 * target and source are directories and that target can be
2986 		 * destroyed, or that neither is a directory.
2987 		 */
2988 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
2989 			/*
2990 			 * Make sure target dir is empty.
2991 			 */
2992 			if (!(xfs_dir_isempty(target_ip)) ||
2993 			    (VFS_I(target_ip)->i_nlink > 2)) {
2994 				error = -EEXIST;
2995 				goto out_trans_cancel;
2996 			}
2997 		}
2998 
2999 		/*
3000 		 * Link the source inode under the target name.
3001 		 * If the source inode is a directory and we are moving
3002 		 * it across directories, its ".." entry will be
3003 		 * inconsistent until we replace that down below.
3004 		 *
3005 		 * In case there is already an entry with the same
3006 		 * name at the destination directory, remove it first.
3007 		 */
3008 		error = xfs_dir_replace(tp, target_dp, target_name,
3009 					src_ip->i_ino, spaceres);
3010 		if (error)
3011 			goto out_trans_cancel;
3012 
3013 		xfs_trans_ichgtime(tp, target_dp,
3014 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3015 
3016 		/*
3017 		 * Decrement the link count on the target since the target
3018 		 * dir no longer points to it.
3019 		 */
3020 		error = xfs_droplink(tp, target_ip);
3021 		if (error)
3022 			goto out_trans_cancel;
3023 
3024 		if (src_is_directory) {
3025 			/*
3026 			 * Drop the link from the old "." entry.
3027 			 */
3028 			error = xfs_droplink(tp, target_ip);
3029 			if (error)
3030 				goto out_trans_cancel;
3031 		}
3032 	} /* target_ip != NULL */
3033 
3034 	/*
3035 	 * Remove the source.
3036 	 */
3037 	if (new_parent && src_is_directory) {
3038 		/*
3039 		 * Rewrite the ".." entry to point to the new
3040 		 * directory.
3041 		 */
3042 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3043 					target_dp->i_ino, spaceres);
3044 		ASSERT(error != -EEXIST);
3045 		if (error)
3046 			goto out_trans_cancel;
3047 	}
3048 
3049 	/*
3050 	 * We always want to hit the ctime on the source inode.
3051 	 *
3052 	 * This isn't strictly required by the standards since the source
3053 	 * inode isn't really being changed, but old unix file systems did
3054 	 * it and some incremental backup programs won't work without it.
3055 	 */
3056 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3057 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3058 
3059 	/*
3060 	 * Adjust the link count on src_dp.  This is necessary when
3061 	 * renaming a directory, either within one parent when
3062 	 * the target existed, or across two parent directories.
3063 	 */
3064 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3065 
3066 		/*
3067 		 * Decrement link count on src_directory since the
3068 		 * entry that's moved no longer points to it.
3069 		 */
3070 		error = xfs_droplink(tp, src_dp);
3071 		if (error)
3072 			goto out_trans_cancel;
3073 	}
3074 
3075 	/*
3076 	 * For whiteouts, we only need to update the source dirent with the
3077 	 * inode number of the whiteout inode rather than removing it
3078 	 * altogether.
3079 	 */
3080 	if (wip) {
3081 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3082 					spaceres);
3083 	} else
3084 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3085 					   spaceres);
3086 	if (error)
3087 		goto out_trans_cancel;
3088 
3089 	/*
3090 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3091 	 * This means that failures all the way up to this point leave the inode
3092 	 * on the unlinked list and so cleanup is a simple matter of dropping
3093 	 * the remaining reference to it. If we fail here after bumping the link
3094 	 * count, we're shutting down the filesystem so we'll never see the
3095 	 * intermediate state on disk.
3096 	 */
3097 	if (wip) {
3098 		ASSERT(VFS_I(wip)->i_nlink == 0);
3099 		error = xfs_bumplink(tp, wip);
3100 		if (error)
3101 			goto out_trans_cancel;
3102 		error = xfs_iunlink_remove(tp, wip);
3103 		if (error)
3104 			goto out_trans_cancel;
3105 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3106 
3107 		/*
3108 		 * Now we have a real link, clear the "I'm a tmpfile" state
3109 		 * flag from the inode so it doesn't accidentally get misused in
3110 		 * future.
3111 		 */
3112 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3113 	}
3114 
3115 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3116 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3117 	if (new_parent)
3118 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3119 
3120 	error = xfs_finish_rename(tp);
3121 	if (wip)
3122 		xfs_irele(wip);
3123 	return error;
3124 
3125 out_trans_cancel:
3126 	xfs_trans_cancel(tp);
3127 out_release_wip:
3128 	if (wip)
3129 		xfs_irele(wip);
3130 	return error;
3131 }
3132 
3133 STATIC int
3134 xfs_iflush_cluster(
3135 	struct xfs_inode	*ip,
3136 	struct xfs_buf		*bp)
3137 {
3138 	struct xfs_mount	*mp = ip->i_mount;
3139 	struct xfs_perag	*pag;
3140 	unsigned long		first_index, mask;
3141 	unsigned long		inodes_per_cluster;
3142 	int			cilist_size;
3143 	struct xfs_inode	**cilist;
3144 	struct xfs_inode	*cip;
3145 	int			nr_found;
3146 	int			clcount = 0;
3147 	int			i;
3148 
3149 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3150 
3151 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3152 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3153 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3154 	if (!cilist)
3155 		goto out_put;
3156 
3157 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3158 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3159 	rcu_read_lock();
3160 	/* really need a gang lookup range call here */
3161 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3162 					first_index, inodes_per_cluster);
3163 	if (nr_found == 0)
3164 		goto out_free;
3165 
3166 	for (i = 0; i < nr_found; i++) {
3167 		cip = cilist[i];
3168 		if (cip == ip)
3169 			continue;
3170 
3171 		/*
3172 		 * because this is an RCU protected lookup, we could find a
3173 		 * recently freed or even reallocated inode during the lookup.
3174 		 * We need to check under the i_flags_lock for a valid inode
3175 		 * here. Skip it if it is not valid or the wrong inode.
3176 		 */
3177 		spin_lock(&cip->i_flags_lock);
3178 		if (!cip->i_ino ||
3179 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3180 			spin_unlock(&cip->i_flags_lock);
3181 			continue;
3182 		}
3183 
3184 		/*
3185 		 * Once we fall off the end of the cluster, no point checking
3186 		 * any more inodes in the list because they will also all be
3187 		 * outside the cluster.
3188 		 */
3189 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3190 			spin_unlock(&cip->i_flags_lock);
3191 			break;
3192 		}
3193 		spin_unlock(&cip->i_flags_lock);
3194 
3195 		/*
3196 		 * Do an un-protected check to see if the inode is dirty and
3197 		 * is a candidate for flushing.  These checks will be repeated
3198 		 * later after the appropriate locks are acquired.
3199 		 */
3200 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3201 			continue;
3202 
3203 		/*
3204 		 * Try to get locks.  If any are unavailable or it is pinned,
3205 		 * then this inode cannot be flushed and is skipped.
3206 		 */
3207 
3208 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3209 			continue;
3210 		if (!xfs_iflock_nowait(cip)) {
3211 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3212 			continue;
3213 		}
3214 		if (xfs_ipincount(cip)) {
3215 			xfs_ifunlock(cip);
3216 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3217 			continue;
3218 		}
3219 
3220 
3221 		/*
3222 		 * Check the inode number again, just to be certain we are not
3223 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3224 		 * in that function for more information as to why the initial
3225 		 * check is not sufficient.
3226 		 */
3227 		if (!cip->i_ino) {
3228 			xfs_ifunlock(cip);
3229 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3230 			continue;
3231 		}
3232 
3233 		/*
3234 		 * arriving here means that this inode can be flushed.  First
3235 		 * re-check that it's dirty before flushing.
3236 		 */
3237 		if (!xfs_inode_clean(cip)) {
3238 			int	error;
3239 			error = xfs_iflush_int(cip, bp);
3240 			if (error) {
3241 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3242 				goto cluster_corrupt_out;
3243 			}
3244 			clcount++;
3245 		} else {
3246 			xfs_ifunlock(cip);
3247 		}
3248 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3249 	}
3250 
3251 	if (clcount) {
3252 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3253 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3254 	}
3255 
3256 out_free:
3257 	rcu_read_unlock();
3258 	kmem_free(cilist);
3259 out_put:
3260 	xfs_perag_put(pag);
3261 	return 0;
3262 
3263 
3264 cluster_corrupt_out:
3265 	/*
3266 	 * Corruption detected in the clustering loop.  Invalidate the
3267 	 * inode buffer and shut down the filesystem.
3268 	 */
3269 	rcu_read_unlock();
3270 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3271 
3272 	/*
3273 	 * We'll always have an inode attached to the buffer for completion
3274 	 * process by the time we are called from xfs_iflush(). Hence we have
3275 	 * always need to do IO completion processing to abort the inodes
3276 	 * attached to the buffer.  handle them just like the shutdown case in
3277 	 * xfs_buf_submit().
3278 	 */
3279 	ASSERT(bp->b_iodone);
3280 	bp->b_flags &= ~XBF_DONE;
3281 	xfs_buf_stale(bp);
3282 	xfs_buf_ioerror(bp, -EIO);
3283 	xfs_buf_ioend(bp);
3284 
3285 	/* abort the corrupt inode, as it was not attached to the buffer */
3286 	xfs_iflush_abort(cip, false);
3287 	kmem_free(cilist);
3288 	xfs_perag_put(pag);
3289 	return -EFSCORRUPTED;
3290 }
3291 
3292 /*
3293  * Flush dirty inode metadata into the backing buffer.
3294  *
3295  * The caller must have the inode lock and the inode flush lock held.  The
3296  * inode lock will still be held upon return to the caller, and the inode
3297  * flush lock will be released after the inode has reached the disk.
3298  *
3299  * The caller must write out the buffer returned in *bpp and release it.
3300  */
3301 int
3302 xfs_iflush(
3303 	struct xfs_inode	*ip,
3304 	struct xfs_buf		**bpp)
3305 {
3306 	struct xfs_mount	*mp = ip->i_mount;
3307 	struct xfs_buf		*bp = NULL;
3308 	struct xfs_dinode	*dip;
3309 	int			error;
3310 
3311 	XFS_STATS_INC(mp, xs_iflush_count);
3312 
3313 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3314 	ASSERT(xfs_isiflocked(ip));
3315 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3316 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3317 
3318 	*bpp = NULL;
3319 
3320 	xfs_iunpin_wait(ip);
3321 
3322 	/*
3323 	 * For stale inodes we cannot rely on the backing buffer remaining
3324 	 * stale in cache for the remaining life of the stale inode and so
3325 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3326 	 * inodes below. We have to check this after ensuring the inode is
3327 	 * unpinned so that it is safe to reclaim the stale inode after the
3328 	 * flush call.
3329 	 */
3330 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3331 		xfs_ifunlock(ip);
3332 		return 0;
3333 	}
3334 
3335 	/*
3336 	 * This may have been unpinned because the filesystem is shutting
3337 	 * down forcibly. If that's the case we must not write this inode
3338 	 * to disk, because the log record didn't make it to disk.
3339 	 *
3340 	 * We also have to remove the log item from the AIL in this case,
3341 	 * as we wait for an empty AIL as part of the unmount process.
3342 	 */
3343 	if (XFS_FORCED_SHUTDOWN(mp)) {
3344 		error = -EIO;
3345 		goto abort_out;
3346 	}
3347 
3348 	/*
3349 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3350 	 * operation here, so we may get  an EAGAIN error. In that case, we
3351 	 * simply want to return with the inode still dirty.
3352 	 *
3353 	 * If we get any other error, we effectively have a corruption situation
3354 	 * and we cannot flush the inode, so we treat it the same as failing
3355 	 * xfs_iflush_int().
3356 	 */
3357 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3358 			       0);
3359 	if (error == -EAGAIN) {
3360 		xfs_ifunlock(ip);
3361 		return error;
3362 	}
3363 	if (error)
3364 		goto corrupt_out;
3365 
3366 	/*
3367 	 * First flush out the inode that xfs_iflush was called with.
3368 	 */
3369 	error = xfs_iflush_int(ip, bp);
3370 	if (error)
3371 		goto corrupt_out;
3372 
3373 	/*
3374 	 * If the buffer is pinned then push on the log now so we won't
3375 	 * get stuck waiting in the write for too long.
3376 	 */
3377 	if (xfs_buf_ispinned(bp))
3378 		xfs_log_force(mp, 0);
3379 
3380 	/*
3381 	 * inode clustering: try to gather other inodes into this write
3382 	 *
3383 	 * Note: Any error during clustering will result in the filesystem
3384 	 * being shut down and completion callbacks run on the cluster buffer.
3385 	 * As we have already flushed and attached this inode to the buffer,
3386 	 * it has already been aborted and released by xfs_iflush_cluster() and
3387 	 * so we have no further error handling to do here.
3388 	 */
3389 	error = xfs_iflush_cluster(ip, bp);
3390 	if (error)
3391 		return error;
3392 
3393 	*bpp = bp;
3394 	return 0;
3395 
3396 corrupt_out:
3397 	if (bp)
3398 		xfs_buf_relse(bp);
3399 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3400 abort_out:
3401 	/* abort the corrupt inode, as it was not attached to the buffer */
3402 	xfs_iflush_abort(ip, false);
3403 	return error;
3404 }
3405 
3406 /*
3407  * If there are inline format data / attr forks attached to this inode,
3408  * make sure they're not corrupt.
3409  */
3410 bool
3411 xfs_inode_verify_forks(
3412 	struct xfs_inode	*ip)
3413 {
3414 	struct xfs_ifork	*ifp;
3415 	xfs_failaddr_t		fa;
3416 
3417 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3418 	if (fa) {
3419 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3420 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3421 				ifp->if_u1.if_data, ifp->if_bytes, fa);
3422 		return false;
3423 	}
3424 
3425 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3426 	if (fa) {
3427 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3428 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3429 				ifp ? ifp->if_u1.if_data : NULL,
3430 				ifp ? ifp->if_bytes : 0, fa);
3431 		return false;
3432 	}
3433 	return true;
3434 }
3435 
3436 STATIC int
3437 xfs_iflush_int(
3438 	struct xfs_inode	*ip,
3439 	struct xfs_buf		*bp)
3440 {
3441 	struct xfs_inode_log_item *iip = ip->i_itemp;
3442 	struct xfs_dinode	*dip;
3443 	struct xfs_mount	*mp = ip->i_mount;
3444 
3445 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3446 	ASSERT(xfs_isiflocked(ip));
3447 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3448 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3449 	ASSERT(iip != NULL && iip->ili_fields != 0);
3450 	ASSERT(ip->i_d.di_version > 1);
3451 
3452 	/* set *dip = inode's place in the buffer */
3453 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3454 
3455 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3456 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3457 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3458 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3459 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3460 		goto corrupt_out;
3461 	}
3462 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3463 		if (XFS_TEST_ERROR(
3464 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3465 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3466 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3467 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3468 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3469 				__func__, ip->i_ino, ip);
3470 			goto corrupt_out;
3471 		}
3472 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3473 		if (XFS_TEST_ERROR(
3474 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3475 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3476 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3477 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3478 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3479 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3480 				__func__, ip->i_ino, ip);
3481 			goto corrupt_out;
3482 		}
3483 	}
3484 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3485 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3486 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3487 			"%s: detected corrupt incore inode %Lu, "
3488 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3489 			__func__, ip->i_ino,
3490 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3491 			ip->i_d.di_nblocks, ip);
3492 		goto corrupt_out;
3493 	}
3494 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3495 				mp, XFS_ERRTAG_IFLUSH_6)) {
3496 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3497 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3498 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3499 		goto corrupt_out;
3500 	}
3501 
3502 	/*
3503 	 * Inode item log recovery for v2 inodes are dependent on the
3504 	 * di_flushiter count for correct sequencing. We bump the flush
3505 	 * iteration count so we can detect flushes which postdate a log record
3506 	 * during recovery. This is redundant as we now log every change and
3507 	 * hence this can't happen but we need to still do it to ensure
3508 	 * backwards compatibility with old kernels that predate logging all
3509 	 * inode changes.
3510 	 */
3511 	if (ip->i_d.di_version < 3)
3512 		ip->i_d.di_flushiter++;
3513 
3514 	/* Check the inline fork data before we write out. */
3515 	if (!xfs_inode_verify_forks(ip))
3516 		goto corrupt_out;
3517 
3518 	/*
3519 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3520 	 * copy out the core of the inode, because if the inode is dirty at all
3521 	 * the core must be.
3522 	 */
3523 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3524 
3525 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3526 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3527 		ip->i_d.di_flushiter = 0;
3528 
3529 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3530 	if (XFS_IFORK_Q(ip))
3531 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3532 	xfs_inobp_check(mp, bp);
3533 
3534 	/*
3535 	 * We've recorded everything logged in the inode, so we'd like to clear
3536 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3537 	 * However, we can't stop logging all this information until the data
3538 	 * we've copied into the disk buffer is written to disk.  If we did we
3539 	 * might overwrite the copy of the inode in the log with all the data
3540 	 * after re-logging only part of it, and in the face of a crash we
3541 	 * wouldn't have all the data we need to recover.
3542 	 *
3543 	 * What we do is move the bits to the ili_last_fields field.  When
3544 	 * logging the inode, these bits are moved back to the ili_fields field.
3545 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3546 	 * know that the information those bits represent is permanently on
3547 	 * disk.  As long as the flush completes before the inode is logged
3548 	 * again, then both ili_fields and ili_last_fields will be cleared.
3549 	 *
3550 	 * We can play with the ili_fields bits here, because the inode lock
3551 	 * must be held exclusively in order to set bits there and the flush
3552 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3553 	 * done routine can tell whether or not to look in the AIL.  Also, store
3554 	 * the current LSN of the inode so that we can tell whether the item has
3555 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3556 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3557 	 * atomically.
3558 	 */
3559 	iip->ili_last_fields = iip->ili_fields;
3560 	iip->ili_fields = 0;
3561 	iip->ili_fsync_fields = 0;
3562 	iip->ili_logged = 1;
3563 
3564 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3565 				&iip->ili_item.li_lsn);
3566 
3567 	/*
3568 	 * Attach the function xfs_iflush_done to the inode's
3569 	 * buffer.  This will remove the inode from the AIL
3570 	 * and unlock the inode's flush lock when the inode is
3571 	 * completely written to disk.
3572 	 */
3573 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3574 
3575 	/* generate the checksum. */
3576 	xfs_dinode_calc_crc(mp, dip);
3577 
3578 	ASSERT(!list_empty(&bp->b_li_list));
3579 	ASSERT(bp->b_iodone != NULL);
3580 	return 0;
3581 
3582 corrupt_out:
3583 	return -EFSCORRUPTED;
3584 }
3585 
3586 /* Release an inode. */
3587 void
3588 xfs_irele(
3589 	struct xfs_inode	*ip)
3590 {
3591 	trace_xfs_irele(ip, _RET_IP_);
3592 	iput(VFS_I(ip));
3593 }
3594