1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_iunlink_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 #include "xfs_ag.h" 39 #include "xfs_log_priv.h" 40 41 struct kmem_cache *xfs_inode_cache; 42 43 /* 44 * Used in xfs_itruncate_extents(). This is the maximum number of extents 45 * freed from a file in a single transaction. 46 */ 47 #define XFS_ITRUNC_MAX_EXTENTS 2 48 49 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 50 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 51 struct xfs_inode *); 52 53 /* 54 * helper function to extract extent size hint from inode 55 */ 56 xfs_extlen_t 57 xfs_get_extsz_hint( 58 struct xfs_inode *ip) 59 { 60 /* 61 * No point in aligning allocations if we need to COW to actually 62 * write to them. 63 */ 64 if (xfs_is_always_cow_inode(ip)) 65 return 0; 66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 67 return ip->i_extsize; 68 if (XFS_IS_REALTIME_INODE(ip)) 69 return ip->i_mount->m_sb.sb_rextsize; 70 return 0; 71 } 72 73 /* 74 * Helper function to extract CoW extent size hint from inode. 75 * Between the extent size hint and the CoW extent size hint, we 76 * return the greater of the two. If the value is zero (automatic), 77 * use the default size. 78 */ 79 xfs_extlen_t 80 xfs_get_cowextsz_hint( 81 struct xfs_inode *ip) 82 { 83 xfs_extlen_t a, b; 84 85 a = 0; 86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 87 a = ip->i_cowextsize; 88 b = xfs_get_extsz_hint(ip); 89 90 a = max(a, b); 91 if (a == 0) 92 return XFS_DEFAULT_COWEXTSZ_HINT; 93 return a; 94 } 95 96 /* 97 * These two are wrapper routines around the xfs_ilock() routine used to 98 * centralize some grungy code. They are used in places that wish to lock the 99 * inode solely for reading the extents. The reason these places can't just 100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 101 * bringing in of the extents from disk for a file in b-tree format. If the 102 * inode is in b-tree format, then we need to lock the inode exclusively until 103 * the extents are read in. Locking it exclusively all the time would limit 104 * our parallelism unnecessarily, though. What we do instead is check to see 105 * if the extents have been read in yet, and only lock the inode exclusively 106 * if they have not. 107 * 108 * The functions return a value which should be given to the corresponding 109 * xfs_iunlock() call. 110 */ 111 uint 112 xfs_ilock_data_map_shared( 113 struct xfs_inode *ip) 114 { 115 uint lock_mode = XFS_ILOCK_SHARED; 116 117 if (xfs_need_iread_extents(&ip->i_df)) 118 lock_mode = XFS_ILOCK_EXCL; 119 xfs_ilock(ip, lock_mode); 120 return lock_mode; 121 } 122 123 uint 124 xfs_ilock_attr_map_shared( 125 struct xfs_inode *ip) 126 { 127 uint lock_mode = XFS_ILOCK_SHARED; 128 129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * You can't set both SHARED and EXCL for the same lock, 137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 139 * to set in lock_flags. 140 */ 141 static inline void 142 xfs_lock_flags_assert( 143 uint lock_flags) 144 { 145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 152 ASSERT(lock_flags != 0); 153 } 154 155 /* 156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 158 * various combinations of the locks to be obtained. 159 * 160 * The 3 locks should always be ordered so that the IO lock is obtained first, 161 * the mmap lock second and the ilock last in order to prevent deadlock. 162 * 163 * Basic locking order: 164 * 165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 166 * 167 * mmap_lock locking order: 168 * 169 * i_rwsem -> page lock -> mmap_lock 170 * mmap_lock -> invalidate_lock -> page_lock 171 * 172 * The difference in mmap_lock locking order mean that we cannot hold the 173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 174 * can fault in pages during copy in/out (for buffered IO) or require the 175 * mmap_lock in get_user_pages() to map the user pages into the kernel address 176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 177 * fault because page faults already hold the mmap_lock. 178 * 179 * Hence to serialise fully against both syscall and mmap based IO, we need to 180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 181 * both taken in places where we need to invalidate the page cache in a race 182 * free manner (e.g. truncate, hole punch and other extent manipulation 183 * functions). 184 */ 185 void 186 xfs_ilock( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 191 192 xfs_lock_flags_assert(lock_flags); 193 194 if (lock_flags & XFS_IOLOCK_EXCL) { 195 down_write_nested(&VFS_I(ip)->i_rwsem, 196 XFS_IOLOCK_DEP(lock_flags)); 197 } else if (lock_flags & XFS_IOLOCK_SHARED) { 198 down_read_nested(&VFS_I(ip)->i_rwsem, 199 XFS_IOLOCK_DEP(lock_flags)); 200 } 201 202 if (lock_flags & XFS_MMAPLOCK_EXCL) { 203 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 204 XFS_MMAPLOCK_DEP(lock_flags)); 205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 206 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 207 XFS_MMAPLOCK_DEP(lock_flags)); 208 } 209 210 if (lock_flags & XFS_ILOCK_EXCL) 211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 else if (lock_flags & XFS_ILOCK_SHARED) 213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 214 } 215 216 /* 217 * This is just like xfs_ilock(), except that the caller 218 * is guaranteed not to sleep. It returns 1 if it gets 219 * the requested locks and 0 otherwise. If the IO lock is 220 * obtained but the inode lock cannot be, then the IO lock 221 * is dropped before returning. 222 * 223 * ip -- the inode being locked 224 * lock_flags -- this parameter indicates the inode's locks to be 225 * to be locked. See the comment for xfs_ilock() for a list 226 * of valid values. 227 */ 228 int 229 xfs_ilock_nowait( 230 xfs_inode_t *ip, 231 uint lock_flags) 232 { 233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 234 235 xfs_lock_flags_assert(lock_flags); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 xfs_lock_flags_assert(lock_flags); 294 295 if (lock_flags & XFS_IOLOCK_EXCL) 296 up_write(&VFS_I(ip)->i_rwsem); 297 else if (lock_flags & XFS_IOLOCK_SHARED) 298 up_read(&VFS_I(ip)->i_rwsem); 299 300 if (lock_flags & XFS_MMAPLOCK_EXCL) 301 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 302 else if (lock_flags & XFS_MMAPLOCK_SHARED) 303 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 304 305 if (lock_flags & XFS_ILOCK_EXCL) 306 mrunlock_excl(&ip->i_lock); 307 else if (lock_flags & XFS_ILOCK_SHARED) 308 mrunlock_shared(&ip->i_lock); 309 310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 311 } 312 313 /* 314 * give up write locks. the i/o lock cannot be held nested 315 * if it is being demoted. 316 */ 317 void 318 xfs_ilock_demote( 319 xfs_inode_t *ip, 320 uint lock_flags) 321 { 322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 323 ASSERT((lock_flags & 324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 325 326 if (lock_flags & XFS_ILOCK_EXCL) 327 mrdemote(&ip->i_lock); 328 if (lock_flags & XFS_MMAPLOCK_EXCL) 329 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 330 if (lock_flags & XFS_IOLOCK_EXCL) 331 downgrade_write(&VFS_I(ip)->i_rwsem); 332 333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 334 } 335 336 #if defined(DEBUG) || defined(XFS_WARN) 337 static inline bool 338 __xfs_rwsem_islocked( 339 struct rw_semaphore *rwsem, 340 bool shared) 341 { 342 if (!debug_locks) 343 return rwsem_is_locked(rwsem); 344 345 if (!shared) 346 return lockdep_is_held_type(rwsem, 0); 347 348 /* 349 * We are checking that the lock is held at least in shared 350 * mode but don't care that it might be held exclusively 351 * (i.e. shared | excl). Hence we check if the lock is held 352 * in any mode rather than an explicit shared mode. 353 */ 354 return lockdep_is_held_type(rwsem, -1); 355 } 356 357 bool 358 xfs_isilocked( 359 struct xfs_inode *ip, 360 uint lock_flags) 361 { 362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 363 if (!(lock_flags & XFS_ILOCK_SHARED)) 364 return !!ip->i_lock.mr_writer; 365 return rwsem_is_locked(&ip->i_lock.mr_lock); 366 } 367 368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, 370 (lock_flags & XFS_MMAPLOCK_SHARED)); 371 } 372 373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 374 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 375 (lock_flags & XFS_IOLOCK_SHARED)); 376 } 377 378 ASSERT(0); 379 return false; 380 } 381 #endif 382 383 /* 384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 387 * errors and warnings. 388 */ 389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 390 static bool 391 xfs_lockdep_subclass_ok( 392 int subclass) 393 { 394 return subclass < MAX_LOCKDEP_SUBCLASSES; 395 } 396 #else 397 #define xfs_lockdep_subclass_ok(subclass) (true) 398 #endif 399 400 /* 401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 402 * value. This can be called for any type of inode lock combination, including 403 * parent locking. Care must be taken to ensure we don't overrun the subclass 404 * storage fields in the class mask we build. 405 */ 406 static inline uint 407 xfs_lock_inumorder( 408 uint lock_mode, 409 uint subclass) 410 { 411 uint class = 0; 412 413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 414 XFS_ILOCK_RTSUM))); 415 ASSERT(xfs_lockdep_subclass_ok(subclass)); 416 417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 419 class += subclass << XFS_IOLOCK_SHIFT; 420 } 421 422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 424 class += subclass << XFS_MMAPLOCK_SHIFT; 425 } 426 427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 429 class += subclass << XFS_ILOCK_SHIFT; 430 } 431 432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 433 } 434 435 /* 436 * The following routine will lock n inodes in exclusive mode. We assume the 437 * caller calls us with the inodes in i_ino order. 438 * 439 * We need to detect deadlock where an inode that we lock is in the AIL and we 440 * start waiting for another inode that is locked by a thread in a long running 441 * transaction (such as truncate). This can result in deadlock since the long 442 * running trans might need to wait for the inode we just locked in order to 443 * push the tail and free space in the log. 444 * 445 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 447 * lock more than one at a time, lockdep will report false positives saying we 448 * have violated locking orders. 449 */ 450 static void 451 xfs_lock_inodes( 452 struct xfs_inode **ips, 453 int inodes, 454 uint lock_mode) 455 { 456 int attempts = 0; 457 uint i; 458 int j; 459 bool try_lock; 460 struct xfs_log_item *lp; 461 462 /* 463 * Currently supports between 2 and 5 inodes with exclusive locking. We 464 * support an arbitrary depth of locking here, but absolute limits on 465 * inodes depend on the type of locking and the limits placed by 466 * lockdep annotations in xfs_lock_inumorder. These are all checked by 467 * the asserts. 468 */ 469 ASSERT(ips && inodes >= 2 && inodes <= 5); 470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 471 XFS_ILOCK_EXCL)); 472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 473 XFS_ILOCK_SHARED))); 474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 478 479 if (lock_mode & XFS_IOLOCK_EXCL) { 480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 481 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 483 484 again: 485 try_lock = false; 486 i = 0; 487 for (; i < inodes; i++) { 488 ASSERT(ips[i]); 489 490 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 491 continue; 492 493 /* 494 * If try_lock is not set yet, make sure all locked inodes are 495 * not in the AIL. If any are, set try_lock to be used later. 496 */ 497 if (!try_lock) { 498 for (j = (i - 1); j >= 0 && !try_lock; j--) { 499 lp = &ips[j]->i_itemp->ili_item; 500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 501 try_lock = true; 502 } 503 } 504 505 /* 506 * If any of the previous locks we have locked is in the AIL, 507 * we must TRY to get the second and subsequent locks. If 508 * we can't get any, we must release all we have 509 * and try again. 510 */ 511 if (!try_lock) { 512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 513 continue; 514 } 515 516 /* try_lock means we have an inode locked that is in the AIL. */ 517 ASSERT(i != 0); 518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 519 continue; 520 521 /* 522 * Unlock all previous guys and try again. xfs_iunlock will try 523 * to push the tail if the inode is in the AIL. 524 */ 525 attempts++; 526 for (j = i - 1; j >= 0; j--) { 527 /* 528 * Check to see if we've already unlocked this one. Not 529 * the first one going back, and the inode ptr is the 530 * same. 531 */ 532 if (j != (i - 1) && ips[j] == ips[j + 1]) 533 continue; 534 535 xfs_iunlock(ips[j], lock_mode); 536 } 537 538 if ((attempts % 5) == 0) { 539 delay(1); /* Don't just spin the CPU */ 540 } 541 goto again; 542 } 543 } 544 545 /* 546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 547 * mmaplock must be double-locked separately since we use i_rwsem and 548 * invalidate_lock for that. We now support taking one lock EXCL and the 549 * other SHARED. 550 */ 551 void 552 xfs_lock_two_inodes( 553 struct xfs_inode *ip0, 554 uint ip0_mode, 555 struct xfs_inode *ip1, 556 uint ip1_mode) 557 { 558 int attempts = 0; 559 struct xfs_log_item *lp; 560 561 ASSERT(hweight32(ip0_mode) == 1); 562 ASSERT(hweight32(ip1_mode) == 1); 563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 567 ASSERT(ip0->i_ino != ip1->i_ino); 568 569 if (ip0->i_ino > ip1->i_ino) { 570 swap(ip0, ip1); 571 swap(ip0_mode, ip1_mode); 572 } 573 574 again: 575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 576 577 /* 578 * If the first lock we have locked is in the AIL, we must TRY to get 579 * the second lock. If we can't get it, we must release the first one 580 * and try again. 581 */ 582 lp = &ip0->i_itemp->ili_item; 583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 585 xfs_iunlock(ip0, ip0_mode); 586 if ((++attempts % 5) == 0) 587 delay(1); /* Don't just spin the CPU */ 588 goto again; 589 } 590 } else { 591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 592 } 593 } 594 595 uint 596 xfs_ip2xflags( 597 struct xfs_inode *ip) 598 { 599 uint flags = 0; 600 601 if (ip->i_diflags & XFS_DIFLAG_ANY) { 602 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 603 flags |= FS_XFLAG_REALTIME; 604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 605 flags |= FS_XFLAG_PREALLOC; 606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 607 flags |= FS_XFLAG_IMMUTABLE; 608 if (ip->i_diflags & XFS_DIFLAG_APPEND) 609 flags |= FS_XFLAG_APPEND; 610 if (ip->i_diflags & XFS_DIFLAG_SYNC) 611 flags |= FS_XFLAG_SYNC; 612 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 613 flags |= FS_XFLAG_NOATIME; 614 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 615 flags |= FS_XFLAG_NODUMP; 616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 617 flags |= FS_XFLAG_RTINHERIT; 618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 619 flags |= FS_XFLAG_PROJINHERIT; 620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 621 flags |= FS_XFLAG_NOSYMLINKS; 622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 623 flags |= FS_XFLAG_EXTSIZE; 624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 625 flags |= FS_XFLAG_EXTSZINHERIT; 626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 627 flags |= FS_XFLAG_NODEFRAG; 628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 629 flags |= FS_XFLAG_FILESTREAM; 630 } 631 632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 634 flags |= FS_XFLAG_DAX; 635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 636 flags |= FS_XFLAG_COWEXTSIZE; 637 } 638 639 if (xfs_inode_has_attr_fork(ip)) 640 flags |= FS_XFLAG_HASATTR; 641 return flags; 642 } 643 644 /* 645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 646 * is allowed, otherwise it has to be an exact match. If a CI match is found, 647 * ci_name->name will point to a the actual name (caller must free) or 648 * will be set to NULL if an exact match is found. 649 */ 650 int 651 xfs_lookup( 652 struct xfs_inode *dp, 653 const struct xfs_name *name, 654 struct xfs_inode **ipp, 655 struct xfs_name *ci_name) 656 { 657 xfs_ino_t inum; 658 int error; 659 660 trace_xfs_lookup(dp, name); 661 662 if (xfs_is_shutdown(dp->i_mount)) 663 return -EIO; 664 665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 666 if (error) 667 goto out_unlock; 668 669 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 670 if (error) 671 goto out_free_name; 672 673 return 0; 674 675 out_free_name: 676 if (ci_name) 677 kmem_free(ci_name->name); 678 out_unlock: 679 *ipp = NULL; 680 return error; 681 } 682 683 /* Propagate di_flags from a parent inode to a child inode. */ 684 static void 685 xfs_inode_inherit_flags( 686 struct xfs_inode *ip, 687 const struct xfs_inode *pip) 688 { 689 unsigned int di_flags = 0; 690 xfs_failaddr_t failaddr; 691 umode_t mode = VFS_I(ip)->i_mode; 692 693 if (S_ISDIR(mode)) { 694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 695 di_flags |= XFS_DIFLAG_RTINHERIT; 696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 697 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 698 ip->i_extsize = pip->i_extsize; 699 } 700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 701 di_flags |= XFS_DIFLAG_PROJINHERIT; 702 } else if (S_ISREG(mode)) { 703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 704 xfs_has_realtime(ip->i_mount)) 705 di_flags |= XFS_DIFLAG_REALTIME; 706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 707 di_flags |= XFS_DIFLAG_EXTSIZE; 708 ip->i_extsize = pip->i_extsize; 709 } 710 } 711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 712 xfs_inherit_noatime) 713 di_flags |= XFS_DIFLAG_NOATIME; 714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 715 xfs_inherit_nodump) 716 di_flags |= XFS_DIFLAG_NODUMP; 717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 718 xfs_inherit_sync) 719 di_flags |= XFS_DIFLAG_SYNC; 720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 721 xfs_inherit_nosymlinks) 722 di_flags |= XFS_DIFLAG_NOSYMLINKS; 723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 724 xfs_inherit_nodefrag) 725 di_flags |= XFS_DIFLAG_NODEFRAG; 726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 727 di_flags |= XFS_DIFLAG_FILESTREAM; 728 729 ip->i_diflags |= di_flags; 730 731 /* 732 * Inode verifiers on older kernels only check that the extent size 733 * hint is an integer multiple of the rt extent size on realtime files. 734 * They did not check the hint alignment on a directory with both 735 * rtinherit and extszinherit flags set. If the misaligned hint is 736 * propagated from a directory into a new realtime file, new file 737 * allocations will fail due to math errors in the rt allocator and/or 738 * trip the verifiers. Validate the hint settings in the new file so 739 * that we don't let broken hints propagate. 740 */ 741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 742 VFS_I(ip)->i_mode, ip->i_diflags); 743 if (failaddr) { 744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 745 XFS_DIFLAG_EXTSZINHERIT); 746 ip->i_extsize = 0; 747 } 748 } 749 750 /* Propagate di_flags2 from a parent inode to a child inode. */ 751 static void 752 xfs_inode_inherit_flags2( 753 struct xfs_inode *ip, 754 const struct xfs_inode *pip) 755 { 756 xfs_failaddr_t failaddr; 757 758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 760 ip->i_cowextsize = pip->i_cowextsize; 761 } 762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 763 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 764 765 /* Don't let invalid cowextsize hints propagate. */ 766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 768 if (failaddr) { 769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 770 ip->i_cowextsize = 0; 771 } 772 } 773 774 /* 775 * Initialise a newly allocated inode and return the in-core inode to the 776 * caller locked exclusively. 777 */ 778 int 779 xfs_init_new_inode( 780 struct mnt_idmap *idmap, 781 struct xfs_trans *tp, 782 struct xfs_inode *pip, 783 xfs_ino_t ino, 784 umode_t mode, 785 xfs_nlink_t nlink, 786 dev_t rdev, 787 prid_t prid, 788 bool init_xattrs, 789 struct xfs_inode **ipp) 790 { 791 struct inode *dir = pip ? VFS_I(pip) : NULL; 792 struct xfs_mount *mp = tp->t_mountp; 793 struct xfs_inode *ip; 794 unsigned int flags; 795 int error; 796 struct timespec64 tv; 797 struct inode *inode; 798 799 /* 800 * Protect against obviously corrupt allocation btree records. Later 801 * xfs_iget checks will catch re-allocation of other active in-memory 802 * and on-disk inodes. If we don't catch reallocating the parent inode 803 * here we will deadlock in xfs_iget() so we have to do these checks 804 * first. 805 */ 806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 808 return -EFSCORRUPTED; 809 } 810 811 /* 812 * Get the in-core inode with the lock held exclusively to prevent 813 * others from looking at until we're done. 814 */ 815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 816 if (error) 817 return error; 818 819 ASSERT(ip != NULL); 820 inode = VFS_I(ip); 821 set_nlink(inode, nlink); 822 inode->i_rdev = rdev; 823 ip->i_projid = prid; 824 825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 826 inode_fsuid_set(inode, idmap); 827 inode->i_gid = dir->i_gid; 828 inode->i_mode = mode; 829 } else { 830 inode_init_owner(idmap, inode, dir, mode); 831 } 832 833 /* 834 * If the group ID of the new file does not match the effective group 835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 836 * (and only if the irix_sgid_inherit compatibility variable is set). 837 */ 838 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && 839 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode))) 840 inode->i_mode &= ~S_ISGID; 841 842 ip->i_disk_size = 0; 843 ip->i_df.if_nextents = 0; 844 ASSERT(ip->i_nblocks == 0); 845 846 tv = inode_set_ctime_current(inode); 847 inode->i_mtime = tv; 848 inode->i_atime = tv; 849 850 ip->i_extsize = 0; 851 ip->i_diflags = 0; 852 853 if (xfs_has_v3inodes(mp)) { 854 inode_set_iversion(inode, 1); 855 ip->i_cowextsize = 0; 856 ip->i_crtime = tv; 857 } 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 866 flags |= XFS_ILOG_DEV; 867 break; 868 case S_IFREG: 869 case S_IFDIR: 870 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 871 xfs_inode_inherit_flags(ip, pip); 872 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 873 xfs_inode_inherit_flags2(ip, pip); 874 fallthrough; 875 case S_IFLNK: 876 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 877 ip->i_df.if_bytes = 0; 878 ip->i_df.if_u1.if_root = NULL; 879 break; 880 default: 881 ASSERT(0); 882 } 883 884 /* 885 * If we need to create attributes immediately after allocating the 886 * inode, initialise an empty attribute fork right now. We use the 887 * default fork offset for attributes here as we don't know exactly what 888 * size or how many attributes we might be adding. We can do this 889 * safely here because we know the data fork is completely empty and 890 * this saves us from needing to run a separate transaction to set the 891 * fork offset in the immediate future. 892 */ 893 if (init_xattrs && xfs_has_attr(mp)) { 894 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 895 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 896 } 897 898 /* 899 * Log the new values stuffed into the inode. 900 */ 901 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 902 xfs_trans_log_inode(tp, ip, flags); 903 904 /* now that we have an i_mode we can setup the inode structure */ 905 xfs_setup_inode(ip); 906 907 *ipp = ip; 908 return 0; 909 } 910 911 /* 912 * Decrement the link count on an inode & log the change. If this causes the 913 * link count to go to zero, move the inode to AGI unlinked list so that it can 914 * be freed when the last active reference goes away via xfs_inactive(). 915 */ 916 static int /* error */ 917 xfs_droplink( 918 xfs_trans_t *tp, 919 xfs_inode_t *ip) 920 { 921 if (VFS_I(ip)->i_nlink == 0) { 922 xfs_alert(ip->i_mount, 923 "%s: Attempt to drop inode (%llu) with nlink zero.", 924 __func__, ip->i_ino); 925 return -EFSCORRUPTED; 926 } 927 928 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 929 930 drop_nlink(VFS_I(ip)); 931 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 932 933 if (VFS_I(ip)->i_nlink) 934 return 0; 935 936 return xfs_iunlink(tp, ip); 937 } 938 939 /* 940 * Increment the link count on an inode & log the change. 941 */ 942 static void 943 xfs_bumplink( 944 xfs_trans_t *tp, 945 xfs_inode_t *ip) 946 { 947 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 948 949 inc_nlink(VFS_I(ip)); 950 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 951 } 952 953 int 954 xfs_create( 955 struct mnt_idmap *idmap, 956 xfs_inode_t *dp, 957 struct xfs_name *name, 958 umode_t mode, 959 dev_t rdev, 960 bool init_xattrs, 961 xfs_inode_t **ipp) 962 { 963 int is_dir = S_ISDIR(mode); 964 struct xfs_mount *mp = dp->i_mount; 965 struct xfs_inode *ip = NULL; 966 struct xfs_trans *tp = NULL; 967 int error; 968 bool unlock_dp_on_error = false; 969 prid_t prid; 970 struct xfs_dquot *udqp = NULL; 971 struct xfs_dquot *gdqp = NULL; 972 struct xfs_dquot *pdqp = NULL; 973 struct xfs_trans_res *tres; 974 uint resblks; 975 xfs_ino_t ino; 976 977 trace_xfs_create(dp, name); 978 979 if (xfs_is_shutdown(mp)) 980 return -EIO; 981 982 prid = xfs_get_initial_prid(dp); 983 984 /* 985 * Make sure that we have allocated dquot(s) on disk. 986 */ 987 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 988 mapped_fsgid(idmap, &init_user_ns), prid, 989 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 990 &udqp, &gdqp, &pdqp); 991 if (error) 992 return error; 993 994 if (is_dir) { 995 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 996 tres = &M_RES(mp)->tr_mkdir; 997 } else { 998 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 999 tres = &M_RES(mp)->tr_create; 1000 } 1001 1002 /* 1003 * Initially assume that the file does not exist and 1004 * reserve the resources for that case. If that is not 1005 * the case we'll drop the one we have and get a more 1006 * appropriate transaction later. 1007 */ 1008 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1009 &tp); 1010 if (error == -ENOSPC) { 1011 /* flush outstanding delalloc blocks and retry */ 1012 xfs_flush_inodes(mp); 1013 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1014 resblks, &tp); 1015 } 1016 if (error) 1017 goto out_release_dquots; 1018 1019 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1020 unlock_dp_on_error = true; 1021 1022 /* 1023 * A newly created regular or special file just has one directory 1024 * entry pointing to them, but a directory also the "." entry 1025 * pointing to itself. 1026 */ 1027 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1028 if (!error) 1029 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1030 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1031 if (error) 1032 goto out_trans_cancel; 1033 1034 /* 1035 * Now we join the directory inode to the transaction. We do not do it 1036 * earlier because xfs_dialloc might commit the previous transaction 1037 * (and release all the locks). An error from here on will result in 1038 * the transaction cancel unlocking dp so don't do it explicitly in the 1039 * error path. 1040 */ 1041 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1042 unlock_dp_on_error = false; 1043 1044 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1045 resblks - XFS_IALLOC_SPACE_RES(mp)); 1046 if (error) { 1047 ASSERT(error != -ENOSPC); 1048 goto out_trans_cancel; 1049 } 1050 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1051 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1052 1053 if (is_dir) { 1054 error = xfs_dir_init(tp, ip, dp); 1055 if (error) 1056 goto out_trans_cancel; 1057 1058 xfs_bumplink(tp, dp); 1059 } 1060 1061 /* 1062 * If this is a synchronous mount, make sure that the 1063 * create transaction goes to disk before returning to 1064 * the user. 1065 */ 1066 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1067 xfs_trans_set_sync(tp); 1068 1069 /* 1070 * Attach the dquot(s) to the inodes and modify them incore. 1071 * These ids of the inode couldn't have changed since the new 1072 * inode has been locked ever since it was created. 1073 */ 1074 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1075 1076 error = xfs_trans_commit(tp); 1077 if (error) 1078 goto out_release_inode; 1079 1080 xfs_qm_dqrele(udqp); 1081 xfs_qm_dqrele(gdqp); 1082 xfs_qm_dqrele(pdqp); 1083 1084 *ipp = ip; 1085 return 0; 1086 1087 out_trans_cancel: 1088 xfs_trans_cancel(tp); 1089 out_release_inode: 1090 /* 1091 * Wait until after the current transaction is aborted to finish the 1092 * setup of the inode and release the inode. This prevents recursive 1093 * transactions and deadlocks from xfs_inactive. 1094 */ 1095 if (ip) { 1096 xfs_finish_inode_setup(ip); 1097 xfs_irele(ip); 1098 } 1099 out_release_dquots: 1100 xfs_qm_dqrele(udqp); 1101 xfs_qm_dqrele(gdqp); 1102 xfs_qm_dqrele(pdqp); 1103 1104 if (unlock_dp_on_error) 1105 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1106 return error; 1107 } 1108 1109 int 1110 xfs_create_tmpfile( 1111 struct mnt_idmap *idmap, 1112 struct xfs_inode *dp, 1113 umode_t mode, 1114 struct xfs_inode **ipp) 1115 { 1116 struct xfs_mount *mp = dp->i_mount; 1117 struct xfs_inode *ip = NULL; 1118 struct xfs_trans *tp = NULL; 1119 int error; 1120 prid_t prid; 1121 struct xfs_dquot *udqp = NULL; 1122 struct xfs_dquot *gdqp = NULL; 1123 struct xfs_dquot *pdqp = NULL; 1124 struct xfs_trans_res *tres; 1125 uint resblks; 1126 xfs_ino_t ino; 1127 1128 if (xfs_is_shutdown(mp)) 1129 return -EIO; 1130 1131 prid = xfs_get_initial_prid(dp); 1132 1133 /* 1134 * Make sure that we have allocated dquot(s) on disk. 1135 */ 1136 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1137 mapped_fsgid(idmap, &init_user_ns), prid, 1138 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1139 &udqp, &gdqp, &pdqp); 1140 if (error) 1141 return error; 1142 1143 resblks = XFS_IALLOC_SPACE_RES(mp); 1144 tres = &M_RES(mp)->tr_create_tmpfile; 1145 1146 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1147 &tp); 1148 if (error) 1149 goto out_release_dquots; 1150 1151 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1152 if (!error) 1153 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1154 0, 0, prid, false, &ip); 1155 if (error) 1156 goto out_trans_cancel; 1157 1158 if (xfs_has_wsync(mp)) 1159 xfs_trans_set_sync(tp); 1160 1161 /* 1162 * Attach the dquot(s) to the inodes and modify them incore. 1163 * These ids of the inode couldn't have changed since the new 1164 * inode has been locked ever since it was created. 1165 */ 1166 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1167 1168 error = xfs_iunlink(tp, ip); 1169 if (error) 1170 goto out_trans_cancel; 1171 1172 error = xfs_trans_commit(tp); 1173 if (error) 1174 goto out_release_inode; 1175 1176 xfs_qm_dqrele(udqp); 1177 xfs_qm_dqrele(gdqp); 1178 xfs_qm_dqrele(pdqp); 1179 1180 *ipp = ip; 1181 return 0; 1182 1183 out_trans_cancel: 1184 xfs_trans_cancel(tp); 1185 out_release_inode: 1186 /* 1187 * Wait until after the current transaction is aborted to finish the 1188 * setup of the inode and release the inode. This prevents recursive 1189 * transactions and deadlocks from xfs_inactive. 1190 */ 1191 if (ip) { 1192 xfs_finish_inode_setup(ip); 1193 xfs_irele(ip); 1194 } 1195 out_release_dquots: 1196 xfs_qm_dqrele(udqp); 1197 xfs_qm_dqrele(gdqp); 1198 xfs_qm_dqrele(pdqp); 1199 1200 return error; 1201 } 1202 1203 int 1204 xfs_link( 1205 xfs_inode_t *tdp, 1206 xfs_inode_t *sip, 1207 struct xfs_name *target_name) 1208 { 1209 xfs_mount_t *mp = tdp->i_mount; 1210 xfs_trans_t *tp; 1211 int error, nospace_error = 0; 1212 int resblks; 1213 1214 trace_xfs_link(tdp, target_name); 1215 1216 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1217 1218 if (xfs_is_shutdown(mp)) 1219 return -EIO; 1220 1221 error = xfs_qm_dqattach(sip); 1222 if (error) 1223 goto std_return; 1224 1225 error = xfs_qm_dqattach(tdp); 1226 if (error) 1227 goto std_return; 1228 1229 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1230 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1231 &tp, &nospace_error); 1232 if (error) 1233 goto std_return; 1234 1235 /* 1236 * If we are using project inheritance, we only allow hard link 1237 * creation in our tree when the project IDs are the same; else 1238 * the tree quota mechanism could be circumvented. 1239 */ 1240 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1241 tdp->i_projid != sip->i_projid)) { 1242 error = -EXDEV; 1243 goto error_return; 1244 } 1245 1246 if (!resblks) { 1247 error = xfs_dir_canenter(tp, tdp, target_name); 1248 if (error) 1249 goto error_return; 1250 } 1251 1252 /* 1253 * Handle initial link state of O_TMPFILE inode 1254 */ 1255 if (VFS_I(sip)->i_nlink == 0) { 1256 struct xfs_perag *pag; 1257 1258 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1259 error = xfs_iunlink_remove(tp, pag, sip); 1260 xfs_perag_put(pag); 1261 if (error) 1262 goto error_return; 1263 } 1264 1265 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1266 resblks); 1267 if (error) 1268 goto error_return; 1269 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1270 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1271 1272 xfs_bumplink(tp, sip); 1273 1274 /* 1275 * If this is a synchronous mount, make sure that the 1276 * link transaction goes to disk before returning to 1277 * the user. 1278 */ 1279 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1280 xfs_trans_set_sync(tp); 1281 1282 return xfs_trans_commit(tp); 1283 1284 error_return: 1285 xfs_trans_cancel(tp); 1286 std_return: 1287 if (error == -ENOSPC && nospace_error) 1288 error = nospace_error; 1289 return error; 1290 } 1291 1292 /* Clear the reflink flag and the cowblocks tag if possible. */ 1293 static void 1294 xfs_itruncate_clear_reflink_flags( 1295 struct xfs_inode *ip) 1296 { 1297 struct xfs_ifork *dfork; 1298 struct xfs_ifork *cfork; 1299 1300 if (!xfs_is_reflink_inode(ip)) 1301 return; 1302 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1303 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1304 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1305 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1306 if (cfork->if_bytes == 0) 1307 xfs_inode_clear_cowblocks_tag(ip); 1308 } 1309 1310 /* 1311 * Free up the underlying blocks past new_size. The new size must be smaller 1312 * than the current size. This routine can be used both for the attribute and 1313 * data fork, and does not modify the inode size, which is left to the caller. 1314 * 1315 * The transaction passed to this routine must have made a permanent log 1316 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1317 * given transaction and start new ones, so make sure everything involved in 1318 * the transaction is tidy before calling here. Some transaction will be 1319 * returned to the caller to be committed. The incoming transaction must 1320 * already include the inode, and both inode locks must be held exclusively. 1321 * The inode must also be "held" within the transaction. On return the inode 1322 * will be "held" within the returned transaction. This routine does NOT 1323 * require any disk space to be reserved for it within the transaction. 1324 * 1325 * If we get an error, we must return with the inode locked and linked into the 1326 * current transaction. This keeps things simple for the higher level code, 1327 * because it always knows that the inode is locked and held in the transaction 1328 * that returns to it whether errors occur or not. We don't mark the inode 1329 * dirty on error so that transactions can be easily aborted if possible. 1330 */ 1331 int 1332 xfs_itruncate_extents_flags( 1333 struct xfs_trans **tpp, 1334 struct xfs_inode *ip, 1335 int whichfork, 1336 xfs_fsize_t new_size, 1337 int flags) 1338 { 1339 struct xfs_mount *mp = ip->i_mount; 1340 struct xfs_trans *tp = *tpp; 1341 xfs_fileoff_t first_unmap_block; 1342 xfs_filblks_t unmap_len; 1343 int error = 0; 1344 1345 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1346 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1347 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1348 ASSERT(new_size <= XFS_ISIZE(ip)); 1349 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1350 ASSERT(ip->i_itemp != NULL); 1351 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1352 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1353 1354 trace_xfs_itruncate_extents_start(ip, new_size); 1355 1356 flags |= xfs_bmapi_aflag(whichfork); 1357 1358 /* 1359 * Since it is possible for space to become allocated beyond 1360 * the end of the file (in a crash where the space is allocated 1361 * but the inode size is not yet updated), simply remove any 1362 * blocks which show up between the new EOF and the maximum 1363 * possible file size. 1364 * 1365 * We have to free all the blocks to the bmbt maximum offset, even if 1366 * the page cache can't scale that far. 1367 */ 1368 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1369 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1370 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1371 return 0; 1372 } 1373 1374 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1375 while (unmap_len > 0) { 1376 ASSERT(tp->t_highest_agno == NULLAGNUMBER); 1377 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1378 flags, XFS_ITRUNC_MAX_EXTENTS); 1379 if (error) 1380 goto out; 1381 1382 /* free the just unmapped extents */ 1383 error = xfs_defer_finish(&tp); 1384 if (error) 1385 goto out; 1386 } 1387 1388 if (whichfork == XFS_DATA_FORK) { 1389 /* Remove all pending CoW reservations. */ 1390 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1391 first_unmap_block, XFS_MAX_FILEOFF, true); 1392 if (error) 1393 goto out; 1394 1395 xfs_itruncate_clear_reflink_flags(ip); 1396 } 1397 1398 /* 1399 * Always re-log the inode so that our permanent transaction can keep 1400 * on rolling it forward in the log. 1401 */ 1402 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1403 1404 trace_xfs_itruncate_extents_end(ip, new_size); 1405 1406 out: 1407 *tpp = tp; 1408 return error; 1409 } 1410 1411 int 1412 xfs_release( 1413 xfs_inode_t *ip) 1414 { 1415 xfs_mount_t *mp = ip->i_mount; 1416 int error = 0; 1417 1418 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1419 return 0; 1420 1421 /* If this is a read-only mount, don't do this (would generate I/O) */ 1422 if (xfs_is_readonly(mp)) 1423 return 0; 1424 1425 if (!xfs_is_shutdown(mp)) { 1426 int truncated; 1427 1428 /* 1429 * If we previously truncated this file and removed old data 1430 * in the process, we want to initiate "early" writeout on 1431 * the last close. This is an attempt to combat the notorious 1432 * NULL files problem which is particularly noticeable from a 1433 * truncate down, buffered (re-)write (delalloc), followed by 1434 * a crash. What we are effectively doing here is 1435 * significantly reducing the time window where we'd otherwise 1436 * be exposed to that problem. 1437 */ 1438 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1439 if (truncated) { 1440 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1441 if (ip->i_delayed_blks > 0) { 1442 error = filemap_flush(VFS_I(ip)->i_mapping); 1443 if (error) 1444 return error; 1445 } 1446 } 1447 } 1448 1449 if (VFS_I(ip)->i_nlink == 0) 1450 return 0; 1451 1452 /* 1453 * If we can't get the iolock just skip truncating the blocks past EOF 1454 * because we could deadlock with the mmap_lock otherwise. We'll get 1455 * another chance to drop them once the last reference to the inode is 1456 * dropped, so we'll never leak blocks permanently. 1457 */ 1458 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1459 return 0; 1460 1461 if (xfs_can_free_eofblocks(ip, false)) { 1462 /* 1463 * Check if the inode is being opened, written and closed 1464 * frequently and we have delayed allocation blocks outstanding 1465 * (e.g. streaming writes from the NFS server), truncating the 1466 * blocks past EOF will cause fragmentation to occur. 1467 * 1468 * In this case don't do the truncation, but we have to be 1469 * careful how we detect this case. Blocks beyond EOF show up as 1470 * i_delayed_blks even when the inode is clean, so we need to 1471 * truncate them away first before checking for a dirty release. 1472 * Hence on the first dirty close we will still remove the 1473 * speculative allocation, but after that we will leave it in 1474 * place. 1475 */ 1476 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1477 goto out_unlock; 1478 1479 error = xfs_free_eofblocks(ip); 1480 if (error) 1481 goto out_unlock; 1482 1483 /* delalloc blocks after truncation means it really is dirty */ 1484 if (ip->i_delayed_blks) 1485 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1486 } 1487 1488 out_unlock: 1489 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1490 return error; 1491 } 1492 1493 /* 1494 * xfs_inactive_truncate 1495 * 1496 * Called to perform a truncate when an inode becomes unlinked. 1497 */ 1498 STATIC int 1499 xfs_inactive_truncate( 1500 struct xfs_inode *ip) 1501 { 1502 struct xfs_mount *mp = ip->i_mount; 1503 struct xfs_trans *tp; 1504 int error; 1505 1506 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1507 if (error) { 1508 ASSERT(xfs_is_shutdown(mp)); 1509 return error; 1510 } 1511 xfs_ilock(ip, XFS_ILOCK_EXCL); 1512 xfs_trans_ijoin(tp, ip, 0); 1513 1514 /* 1515 * Log the inode size first to prevent stale data exposure in the event 1516 * of a system crash before the truncate completes. See the related 1517 * comment in xfs_vn_setattr_size() for details. 1518 */ 1519 ip->i_disk_size = 0; 1520 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1521 1522 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1523 if (error) 1524 goto error_trans_cancel; 1525 1526 ASSERT(ip->i_df.if_nextents == 0); 1527 1528 error = xfs_trans_commit(tp); 1529 if (error) 1530 goto error_unlock; 1531 1532 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1533 return 0; 1534 1535 error_trans_cancel: 1536 xfs_trans_cancel(tp); 1537 error_unlock: 1538 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1539 return error; 1540 } 1541 1542 /* 1543 * xfs_inactive_ifree() 1544 * 1545 * Perform the inode free when an inode is unlinked. 1546 */ 1547 STATIC int 1548 xfs_inactive_ifree( 1549 struct xfs_inode *ip) 1550 { 1551 struct xfs_mount *mp = ip->i_mount; 1552 struct xfs_trans *tp; 1553 int error; 1554 1555 /* 1556 * We try to use a per-AG reservation for any block needed by the finobt 1557 * tree, but as the finobt feature predates the per-AG reservation 1558 * support a degraded file system might not have enough space for the 1559 * reservation at mount time. In that case try to dip into the reserved 1560 * pool and pray. 1561 * 1562 * Send a warning if the reservation does happen to fail, as the inode 1563 * now remains allocated and sits on the unlinked list until the fs is 1564 * repaired. 1565 */ 1566 if (unlikely(mp->m_finobt_nores)) { 1567 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1568 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1569 &tp); 1570 } else { 1571 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1572 } 1573 if (error) { 1574 if (error == -ENOSPC) { 1575 xfs_warn_ratelimited(mp, 1576 "Failed to remove inode(s) from unlinked list. " 1577 "Please free space, unmount and run xfs_repair."); 1578 } else { 1579 ASSERT(xfs_is_shutdown(mp)); 1580 } 1581 return error; 1582 } 1583 1584 /* 1585 * We do not hold the inode locked across the entire rolling transaction 1586 * here. We only need to hold it for the first transaction that 1587 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1588 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1589 * here breaks the relationship between cluster buffer invalidation and 1590 * stale inode invalidation on cluster buffer item journal commit 1591 * completion, and can result in leaving dirty stale inodes hanging 1592 * around in memory. 1593 * 1594 * We have no need for serialising this inode operation against other 1595 * operations - we freed the inode and hence reallocation is required 1596 * and that will serialise on reallocating the space the deferops need 1597 * to free. Hence we can unlock the inode on the first commit of 1598 * the transaction rather than roll it right through the deferops. This 1599 * avoids relogging the XFS_ISTALE inode. 1600 * 1601 * We check that xfs_ifree() hasn't grown an internal transaction roll 1602 * by asserting that the inode is still locked when it returns. 1603 */ 1604 xfs_ilock(ip, XFS_ILOCK_EXCL); 1605 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1606 1607 error = xfs_ifree(tp, ip); 1608 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1609 if (error) { 1610 /* 1611 * If we fail to free the inode, shut down. The cancel 1612 * might do that, we need to make sure. Otherwise the 1613 * inode might be lost for a long time or forever. 1614 */ 1615 if (!xfs_is_shutdown(mp)) { 1616 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1617 __func__, error); 1618 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1619 } 1620 xfs_trans_cancel(tp); 1621 return error; 1622 } 1623 1624 /* 1625 * Credit the quota account(s). The inode is gone. 1626 */ 1627 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1628 1629 return xfs_trans_commit(tp); 1630 } 1631 1632 /* 1633 * Returns true if we need to update the on-disk metadata before we can free 1634 * the memory used by this inode. Updates include freeing post-eof 1635 * preallocations; freeing COW staging extents; and marking the inode free in 1636 * the inobt if it is on the unlinked list. 1637 */ 1638 bool 1639 xfs_inode_needs_inactive( 1640 struct xfs_inode *ip) 1641 { 1642 struct xfs_mount *mp = ip->i_mount; 1643 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1644 1645 /* 1646 * If the inode is already free, then there can be nothing 1647 * to clean up here. 1648 */ 1649 if (VFS_I(ip)->i_mode == 0) 1650 return false; 1651 1652 /* 1653 * If this is a read-only mount, don't do this (would generate I/O) 1654 * unless we're in log recovery and cleaning the iunlinked list. 1655 */ 1656 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1657 return false; 1658 1659 /* If the log isn't running, push inodes straight to reclaim. */ 1660 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1661 return false; 1662 1663 /* Metadata inodes require explicit resource cleanup. */ 1664 if (xfs_is_metadata_inode(ip)) 1665 return false; 1666 1667 /* Want to clean out the cow blocks if there are any. */ 1668 if (cow_ifp && cow_ifp->if_bytes > 0) 1669 return true; 1670 1671 /* Unlinked files must be freed. */ 1672 if (VFS_I(ip)->i_nlink == 0) 1673 return true; 1674 1675 /* 1676 * This file isn't being freed, so check if there are post-eof blocks 1677 * to free. @force is true because we are evicting an inode from the 1678 * cache. Post-eof blocks must be freed, lest we end up with broken 1679 * free space accounting. 1680 * 1681 * Note: don't bother with iolock here since lockdep complains about 1682 * acquiring it in reclaim context. We have the only reference to the 1683 * inode at this point anyways. 1684 */ 1685 return xfs_can_free_eofblocks(ip, true); 1686 } 1687 1688 /* 1689 * xfs_inactive 1690 * 1691 * This is called when the vnode reference count for the vnode 1692 * goes to zero. If the file has been unlinked, then it must 1693 * now be truncated. Also, we clear all of the read-ahead state 1694 * kept for the inode here since the file is now closed. 1695 */ 1696 int 1697 xfs_inactive( 1698 xfs_inode_t *ip) 1699 { 1700 struct xfs_mount *mp; 1701 int error = 0; 1702 int truncate = 0; 1703 1704 /* 1705 * If the inode is already free, then there can be nothing 1706 * to clean up here. 1707 */ 1708 if (VFS_I(ip)->i_mode == 0) { 1709 ASSERT(ip->i_df.if_broot_bytes == 0); 1710 goto out; 1711 } 1712 1713 mp = ip->i_mount; 1714 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1715 1716 /* 1717 * If this is a read-only mount, don't do this (would generate I/O) 1718 * unless we're in log recovery and cleaning the iunlinked list. 1719 */ 1720 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1721 goto out; 1722 1723 /* Metadata inodes require explicit resource cleanup. */ 1724 if (xfs_is_metadata_inode(ip)) 1725 goto out; 1726 1727 /* Try to clean out the cow blocks if there are any. */ 1728 if (xfs_inode_has_cow_data(ip)) 1729 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1730 1731 if (VFS_I(ip)->i_nlink != 0) { 1732 /* 1733 * force is true because we are evicting an inode from the 1734 * cache. Post-eof blocks must be freed, lest we end up with 1735 * broken free space accounting. 1736 * 1737 * Note: don't bother with iolock here since lockdep complains 1738 * about acquiring it in reclaim context. We have the only 1739 * reference to the inode at this point anyways. 1740 */ 1741 if (xfs_can_free_eofblocks(ip, true)) 1742 error = xfs_free_eofblocks(ip); 1743 1744 goto out; 1745 } 1746 1747 if (S_ISREG(VFS_I(ip)->i_mode) && 1748 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1749 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1750 truncate = 1; 1751 1752 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1753 /* 1754 * If this inode is being inactivated during a quotacheck and 1755 * has not yet been scanned by quotacheck, we /must/ remove 1756 * the dquots from the inode before inactivation changes the 1757 * block and inode counts. Most probably this is a result of 1758 * reloading the incore iunlinked list to purge unrecovered 1759 * unlinked inodes. 1760 */ 1761 xfs_qm_dqdetach(ip); 1762 } else { 1763 error = xfs_qm_dqattach(ip); 1764 if (error) 1765 goto out; 1766 } 1767 1768 if (S_ISLNK(VFS_I(ip)->i_mode)) 1769 error = xfs_inactive_symlink(ip); 1770 else if (truncate) 1771 error = xfs_inactive_truncate(ip); 1772 if (error) 1773 goto out; 1774 1775 /* 1776 * If there are attributes associated with the file then blow them away 1777 * now. The code calls a routine that recursively deconstructs the 1778 * attribute fork. If also blows away the in-core attribute fork. 1779 */ 1780 if (xfs_inode_has_attr_fork(ip)) { 1781 error = xfs_attr_inactive(ip); 1782 if (error) 1783 goto out; 1784 } 1785 1786 ASSERT(ip->i_forkoff == 0); 1787 1788 /* 1789 * Free the inode. 1790 */ 1791 error = xfs_inactive_ifree(ip); 1792 1793 out: 1794 /* 1795 * We're done making metadata updates for this inode, so we can release 1796 * the attached dquots. 1797 */ 1798 xfs_qm_dqdetach(ip); 1799 return error; 1800 } 1801 1802 /* 1803 * In-Core Unlinked List Lookups 1804 * ============================= 1805 * 1806 * Every inode is supposed to be reachable from some other piece of metadata 1807 * with the exception of the root directory. Inodes with a connection to a 1808 * file descriptor but not linked from anywhere in the on-disk directory tree 1809 * are collectively known as unlinked inodes, though the filesystem itself 1810 * maintains links to these inodes so that on-disk metadata are consistent. 1811 * 1812 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1813 * header contains a number of buckets that point to an inode, and each inode 1814 * record has a pointer to the next inode in the hash chain. This 1815 * singly-linked list causes scaling problems in the iunlink remove function 1816 * because we must walk that list to find the inode that points to the inode 1817 * being removed from the unlinked hash bucket list. 1818 * 1819 * Hence we keep an in-memory double linked list to link each inode on an 1820 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 1821 * based lists would require having 64 list heads in the perag, one for each 1822 * list. This is expensive in terms of memory (think millions of AGs) and cache 1823 * misses on lookups. Instead, use the fact that inodes on the unlinked list 1824 * must be referenced at the VFS level to keep them on the list and hence we 1825 * have an existence guarantee for inodes on the unlinked list. 1826 * 1827 * Given we have an existence guarantee, we can use lockless inode cache lookups 1828 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 1829 * for the double linked unlinked list, and we don't need any extra locking to 1830 * keep the list safe as all manipulations are done under the AGI buffer lock. 1831 * Keeping the list up to date does not require memory allocation, just finding 1832 * the XFS inode and updating the next/prev unlinked list aginos. 1833 */ 1834 1835 /* 1836 * Find an inode on the unlinked list. This does not take references to the 1837 * inode as we have existence guarantees by holding the AGI buffer lock and that 1838 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1839 * don't find the inode in cache, then let the caller handle the situation. 1840 */ 1841 static struct xfs_inode * 1842 xfs_iunlink_lookup( 1843 struct xfs_perag *pag, 1844 xfs_agino_t agino) 1845 { 1846 struct xfs_inode *ip; 1847 1848 rcu_read_lock(); 1849 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1850 if (!ip) { 1851 /* Caller can handle inode not being in memory. */ 1852 rcu_read_unlock(); 1853 return NULL; 1854 } 1855 1856 /* 1857 * Inode in RCU freeing limbo should not happen. Warn about this and 1858 * let the caller handle the failure. 1859 */ 1860 if (WARN_ON_ONCE(!ip->i_ino)) { 1861 rcu_read_unlock(); 1862 return NULL; 1863 } 1864 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1865 rcu_read_unlock(); 1866 return ip; 1867 } 1868 1869 /* 1870 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode 1871 * is not in cache. 1872 */ 1873 static int 1874 xfs_iunlink_update_backref( 1875 struct xfs_perag *pag, 1876 xfs_agino_t prev_agino, 1877 xfs_agino_t next_agino) 1878 { 1879 struct xfs_inode *ip; 1880 1881 /* No update necessary if we are at the end of the list. */ 1882 if (next_agino == NULLAGINO) 1883 return 0; 1884 1885 ip = xfs_iunlink_lookup(pag, next_agino); 1886 if (!ip) 1887 return -ENOLINK; 1888 1889 ip->i_prev_unlinked = prev_agino; 1890 return 0; 1891 } 1892 1893 /* 1894 * Point the AGI unlinked bucket at an inode and log the results. The caller 1895 * is responsible for validating the old value. 1896 */ 1897 STATIC int 1898 xfs_iunlink_update_bucket( 1899 struct xfs_trans *tp, 1900 struct xfs_perag *pag, 1901 struct xfs_buf *agibp, 1902 unsigned int bucket_index, 1903 xfs_agino_t new_agino) 1904 { 1905 struct xfs_agi *agi = agibp->b_addr; 1906 xfs_agino_t old_value; 1907 int offset; 1908 1909 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 1910 1911 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1912 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 1913 old_value, new_agino); 1914 1915 /* 1916 * We should never find the head of the list already set to the value 1917 * passed in because either we're adding or removing ourselves from the 1918 * head of the list. 1919 */ 1920 if (old_value == new_agino) { 1921 xfs_buf_mark_corrupt(agibp); 1922 return -EFSCORRUPTED; 1923 } 1924 1925 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 1926 offset = offsetof(struct xfs_agi, agi_unlinked) + 1927 (sizeof(xfs_agino_t) * bucket_index); 1928 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 1929 return 0; 1930 } 1931 1932 /* 1933 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1934 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1935 * to the unlinked list. 1936 */ 1937 STATIC int 1938 xfs_iunlink_reload_next( 1939 struct xfs_trans *tp, 1940 struct xfs_buf *agibp, 1941 xfs_agino_t prev_agino, 1942 xfs_agino_t next_agino) 1943 { 1944 struct xfs_perag *pag = agibp->b_pag; 1945 struct xfs_mount *mp = pag->pag_mount; 1946 struct xfs_inode *next_ip = NULL; 1947 xfs_ino_t ino; 1948 int error; 1949 1950 ASSERT(next_agino != NULLAGINO); 1951 1952 #ifdef DEBUG 1953 rcu_read_lock(); 1954 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1955 ASSERT(next_ip == NULL); 1956 rcu_read_unlock(); 1957 #endif 1958 1959 xfs_info_ratelimited(mp, 1960 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1961 next_agino, pag->pag_agno); 1962 1963 /* 1964 * Use an untrusted lookup just to be cautious in case the AGI has been 1965 * corrupted and now points at a free inode. That shouldn't happen, 1966 * but we'd rather shut down now since we're already running in a weird 1967 * situation. 1968 */ 1969 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 1970 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 1971 if (error) 1972 return error; 1973 1974 /* If this is not an unlinked inode, something is very wrong. */ 1975 if (VFS_I(next_ip)->i_nlink != 0) { 1976 error = -EFSCORRUPTED; 1977 goto rele; 1978 } 1979 1980 next_ip->i_prev_unlinked = prev_agino; 1981 trace_xfs_iunlink_reload_next(next_ip); 1982 rele: 1983 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1984 if (xfs_is_quotacheck_running(mp) && next_ip) 1985 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1986 xfs_irele(next_ip); 1987 return error; 1988 } 1989 1990 static int 1991 xfs_iunlink_insert_inode( 1992 struct xfs_trans *tp, 1993 struct xfs_perag *pag, 1994 struct xfs_buf *agibp, 1995 struct xfs_inode *ip) 1996 { 1997 struct xfs_mount *mp = tp->t_mountp; 1998 struct xfs_agi *agi = agibp->b_addr; 1999 xfs_agino_t next_agino; 2000 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2001 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2002 int error; 2003 2004 /* 2005 * Get the index into the agi hash table for the list this inode will 2006 * go on. Make sure the pointer isn't garbage and that this inode 2007 * isn't already on the list. 2008 */ 2009 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2010 if (next_agino == agino || 2011 !xfs_verify_agino_or_null(pag, next_agino)) { 2012 xfs_buf_mark_corrupt(agibp); 2013 return -EFSCORRUPTED; 2014 } 2015 2016 /* 2017 * Update the prev pointer in the next inode to point back to this 2018 * inode. 2019 */ 2020 error = xfs_iunlink_update_backref(pag, agino, next_agino); 2021 if (error == -ENOLINK) 2022 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); 2023 if (error) 2024 return error; 2025 2026 if (next_agino != NULLAGINO) { 2027 /* 2028 * There is already another inode in the bucket, so point this 2029 * inode to the current head of the list. 2030 */ 2031 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 2032 if (error) 2033 return error; 2034 ip->i_next_unlinked = next_agino; 2035 } 2036 2037 /* Point the head of the list to point to this inode. */ 2038 ip->i_prev_unlinked = NULLAGINO; 2039 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2040 } 2041 2042 /* 2043 * This is called when the inode's link count has gone to 0 or we are creating 2044 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2045 * 2046 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2047 * list when the inode is freed. 2048 */ 2049 STATIC int 2050 xfs_iunlink( 2051 struct xfs_trans *tp, 2052 struct xfs_inode *ip) 2053 { 2054 struct xfs_mount *mp = tp->t_mountp; 2055 struct xfs_perag *pag; 2056 struct xfs_buf *agibp; 2057 int error; 2058 2059 ASSERT(VFS_I(ip)->i_nlink == 0); 2060 ASSERT(VFS_I(ip)->i_mode != 0); 2061 trace_xfs_iunlink(ip); 2062 2063 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2064 2065 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2066 error = xfs_read_agi(pag, tp, &agibp); 2067 if (error) 2068 goto out; 2069 2070 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 2071 out: 2072 xfs_perag_put(pag); 2073 return error; 2074 } 2075 2076 static int 2077 xfs_iunlink_remove_inode( 2078 struct xfs_trans *tp, 2079 struct xfs_perag *pag, 2080 struct xfs_buf *agibp, 2081 struct xfs_inode *ip) 2082 { 2083 struct xfs_mount *mp = tp->t_mountp; 2084 struct xfs_agi *agi = agibp->b_addr; 2085 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2086 xfs_agino_t head_agino; 2087 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2088 int error; 2089 2090 trace_xfs_iunlink_remove(ip); 2091 2092 /* 2093 * Get the index into the agi hash table for the list this inode will 2094 * go on. Make sure the head pointer isn't garbage. 2095 */ 2096 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2097 if (!xfs_verify_agino(pag, head_agino)) { 2098 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2099 agi, sizeof(*agi)); 2100 return -EFSCORRUPTED; 2101 } 2102 2103 /* 2104 * Set our inode's next_unlinked pointer to NULL and then return 2105 * the old pointer value so that we can update whatever was previous 2106 * to us in the list to point to whatever was next in the list. 2107 */ 2108 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2109 if (error) 2110 return error; 2111 2112 /* 2113 * Update the prev pointer in the next inode to point back to previous 2114 * inode in the chain. 2115 */ 2116 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2117 ip->i_next_unlinked); 2118 if (error == -ENOLINK) 2119 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, 2120 ip->i_next_unlinked); 2121 if (error) 2122 return error; 2123 2124 if (head_agino != agino) { 2125 struct xfs_inode *prev_ip; 2126 2127 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2128 if (!prev_ip) 2129 return -EFSCORRUPTED; 2130 2131 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2132 ip->i_next_unlinked); 2133 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2134 } else { 2135 /* Point the head of the list to the next unlinked inode. */ 2136 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2137 ip->i_next_unlinked); 2138 } 2139 2140 ip->i_next_unlinked = NULLAGINO; 2141 ip->i_prev_unlinked = 0; 2142 return error; 2143 } 2144 2145 /* 2146 * Pull the on-disk inode from the AGI unlinked list. 2147 */ 2148 STATIC int 2149 xfs_iunlink_remove( 2150 struct xfs_trans *tp, 2151 struct xfs_perag *pag, 2152 struct xfs_inode *ip) 2153 { 2154 struct xfs_buf *agibp; 2155 int error; 2156 2157 trace_xfs_iunlink_remove(ip); 2158 2159 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2160 error = xfs_read_agi(pag, tp, &agibp); 2161 if (error) 2162 return error; 2163 2164 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2165 } 2166 2167 /* 2168 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2169 * mark it stale. We should only find clean inodes in this lookup that aren't 2170 * already stale. 2171 */ 2172 static void 2173 xfs_ifree_mark_inode_stale( 2174 struct xfs_perag *pag, 2175 struct xfs_inode *free_ip, 2176 xfs_ino_t inum) 2177 { 2178 struct xfs_mount *mp = pag->pag_mount; 2179 struct xfs_inode_log_item *iip; 2180 struct xfs_inode *ip; 2181 2182 retry: 2183 rcu_read_lock(); 2184 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2185 2186 /* Inode not in memory, nothing to do */ 2187 if (!ip) { 2188 rcu_read_unlock(); 2189 return; 2190 } 2191 2192 /* 2193 * because this is an RCU protected lookup, we could find a recently 2194 * freed or even reallocated inode during the lookup. We need to check 2195 * under the i_flags_lock for a valid inode here. Skip it if it is not 2196 * valid, the wrong inode or stale. 2197 */ 2198 spin_lock(&ip->i_flags_lock); 2199 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2200 goto out_iflags_unlock; 2201 2202 /* 2203 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2204 * other inodes that we did not find in the list attached to the buffer 2205 * and are not already marked stale. If we can't lock it, back off and 2206 * retry. 2207 */ 2208 if (ip != free_ip) { 2209 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2210 spin_unlock(&ip->i_flags_lock); 2211 rcu_read_unlock(); 2212 delay(1); 2213 goto retry; 2214 } 2215 } 2216 ip->i_flags |= XFS_ISTALE; 2217 2218 /* 2219 * If the inode is flushing, it is already attached to the buffer. All 2220 * we needed to do here is mark the inode stale so buffer IO completion 2221 * will remove it from the AIL. 2222 */ 2223 iip = ip->i_itemp; 2224 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2225 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2226 ASSERT(iip->ili_last_fields); 2227 goto out_iunlock; 2228 } 2229 2230 /* 2231 * Inodes not attached to the buffer can be released immediately. 2232 * Everything else has to go through xfs_iflush_abort() on journal 2233 * commit as the flock synchronises removal of the inode from the 2234 * cluster buffer against inode reclaim. 2235 */ 2236 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2237 goto out_iunlock; 2238 2239 __xfs_iflags_set(ip, XFS_IFLUSHING); 2240 spin_unlock(&ip->i_flags_lock); 2241 rcu_read_unlock(); 2242 2243 /* we have a dirty inode in memory that has not yet been flushed. */ 2244 spin_lock(&iip->ili_lock); 2245 iip->ili_last_fields = iip->ili_fields; 2246 iip->ili_fields = 0; 2247 iip->ili_fsync_fields = 0; 2248 spin_unlock(&iip->ili_lock); 2249 ASSERT(iip->ili_last_fields); 2250 2251 if (ip != free_ip) 2252 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2253 return; 2254 2255 out_iunlock: 2256 if (ip != free_ip) 2257 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2258 out_iflags_unlock: 2259 spin_unlock(&ip->i_flags_lock); 2260 rcu_read_unlock(); 2261 } 2262 2263 /* 2264 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2265 * inodes that are in memory - they all must be marked stale and attached to 2266 * the cluster buffer. 2267 */ 2268 static int 2269 xfs_ifree_cluster( 2270 struct xfs_trans *tp, 2271 struct xfs_perag *pag, 2272 struct xfs_inode *free_ip, 2273 struct xfs_icluster *xic) 2274 { 2275 struct xfs_mount *mp = free_ip->i_mount; 2276 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2277 struct xfs_buf *bp; 2278 xfs_daddr_t blkno; 2279 xfs_ino_t inum = xic->first_ino; 2280 int nbufs; 2281 int i, j; 2282 int ioffset; 2283 int error; 2284 2285 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2286 2287 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2288 /* 2289 * The allocation bitmap tells us which inodes of the chunk were 2290 * physically allocated. Skip the cluster if an inode falls into 2291 * a sparse region. 2292 */ 2293 ioffset = inum - xic->first_ino; 2294 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2295 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2296 continue; 2297 } 2298 2299 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2300 XFS_INO_TO_AGBNO(mp, inum)); 2301 2302 /* 2303 * We obtain and lock the backing buffer first in the process 2304 * here to ensure dirty inodes attached to the buffer remain in 2305 * the flushing state while we mark them stale. 2306 * 2307 * If we scan the in-memory inodes first, then buffer IO can 2308 * complete before we get a lock on it, and hence we may fail 2309 * to mark all the active inodes on the buffer stale. 2310 */ 2311 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2312 mp->m_bsize * igeo->blocks_per_cluster, 2313 XBF_UNMAPPED, &bp); 2314 if (error) 2315 return error; 2316 2317 /* 2318 * This buffer may not have been correctly initialised as we 2319 * didn't read it from disk. That's not important because we are 2320 * only using to mark the buffer as stale in the log, and to 2321 * attach stale cached inodes on it. That means it will never be 2322 * dispatched for IO. If it is, we want to know about it, and we 2323 * want it to fail. We can acheive this by adding a write 2324 * verifier to the buffer. 2325 */ 2326 bp->b_ops = &xfs_inode_buf_ops; 2327 2328 /* 2329 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2330 * too. This requires lookups, and will skip inodes that we've 2331 * already marked XFS_ISTALE. 2332 */ 2333 for (i = 0; i < igeo->inodes_per_cluster; i++) 2334 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2335 2336 xfs_trans_stale_inode_buf(tp, bp); 2337 xfs_trans_binval(tp, bp); 2338 } 2339 return 0; 2340 } 2341 2342 /* 2343 * This is called to return an inode to the inode free list. The inode should 2344 * already be truncated to 0 length and have no pages associated with it. This 2345 * routine also assumes that the inode is already a part of the transaction. 2346 * 2347 * The on-disk copy of the inode will have been added to the list of unlinked 2348 * inodes in the AGI. We need to remove the inode from that list atomically with 2349 * respect to freeing it here. 2350 */ 2351 int 2352 xfs_ifree( 2353 struct xfs_trans *tp, 2354 struct xfs_inode *ip) 2355 { 2356 struct xfs_mount *mp = ip->i_mount; 2357 struct xfs_perag *pag; 2358 struct xfs_icluster xic = { 0 }; 2359 struct xfs_inode_log_item *iip = ip->i_itemp; 2360 int error; 2361 2362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2363 ASSERT(VFS_I(ip)->i_nlink == 0); 2364 ASSERT(ip->i_df.if_nextents == 0); 2365 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2366 ASSERT(ip->i_nblocks == 0); 2367 2368 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2369 2370 /* 2371 * Free the inode first so that we guarantee that the AGI lock is going 2372 * to be taken before we remove the inode from the unlinked list. This 2373 * makes the AGI lock -> unlinked list modification order the same as 2374 * used in O_TMPFILE creation. 2375 */ 2376 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2377 if (error) 2378 goto out; 2379 2380 error = xfs_iunlink_remove(tp, pag, ip); 2381 if (error) 2382 goto out; 2383 2384 /* 2385 * Free any local-format data sitting around before we reset the 2386 * data fork to extents format. Note that the attr fork data has 2387 * already been freed by xfs_attr_inactive. 2388 */ 2389 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2390 kmem_free(ip->i_df.if_u1.if_data); 2391 ip->i_df.if_u1.if_data = NULL; 2392 ip->i_df.if_bytes = 0; 2393 } 2394 2395 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2396 ip->i_diflags = 0; 2397 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2398 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2399 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2400 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2401 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2402 2403 /* Don't attempt to replay owner changes for a deleted inode */ 2404 spin_lock(&iip->ili_lock); 2405 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2406 spin_unlock(&iip->ili_lock); 2407 2408 /* 2409 * Bump the generation count so no one will be confused 2410 * by reincarnations of this inode. 2411 */ 2412 VFS_I(ip)->i_generation++; 2413 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2414 2415 if (xic.deleted) 2416 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2417 out: 2418 xfs_perag_put(pag); 2419 return error; 2420 } 2421 2422 /* 2423 * This is called to unpin an inode. The caller must have the inode locked 2424 * in at least shared mode so that the buffer cannot be subsequently pinned 2425 * once someone is waiting for it to be unpinned. 2426 */ 2427 static void 2428 xfs_iunpin( 2429 struct xfs_inode *ip) 2430 { 2431 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2432 2433 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2434 2435 /* Give the log a push to start the unpinning I/O */ 2436 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2437 2438 } 2439 2440 static void 2441 __xfs_iunpin_wait( 2442 struct xfs_inode *ip) 2443 { 2444 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2445 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2446 2447 xfs_iunpin(ip); 2448 2449 do { 2450 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2451 if (xfs_ipincount(ip)) 2452 io_schedule(); 2453 } while (xfs_ipincount(ip)); 2454 finish_wait(wq, &wait.wq_entry); 2455 } 2456 2457 void 2458 xfs_iunpin_wait( 2459 struct xfs_inode *ip) 2460 { 2461 if (xfs_ipincount(ip)) 2462 __xfs_iunpin_wait(ip); 2463 } 2464 2465 /* 2466 * Removing an inode from the namespace involves removing the directory entry 2467 * and dropping the link count on the inode. Removing the directory entry can 2468 * result in locking an AGF (directory blocks were freed) and removing a link 2469 * count can result in placing the inode on an unlinked list which results in 2470 * locking an AGI. 2471 * 2472 * The big problem here is that we have an ordering constraint on AGF and AGI 2473 * locking - inode allocation locks the AGI, then can allocate a new extent for 2474 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2475 * removes the inode from the unlinked list, requiring that we lock the AGI 2476 * first, and then freeing the inode can result in an inode chunk being freed 2477 * and hence freeing disk space requiring that we lock an AGF. 2478 * 2479 * Hence the ordering that is imposed by other parts of the code is AGI before 2480 * AGF. This means we cannot remove the directory entry before we drop the inode 2481 * reference count and put it on the unlinked list as this results in a lock 2482 * order of AGF then AGI, and this can deadlock against inode allocation and 2483 * freeing. Therefore we must drop the link counts before we remove the 2484 * directory entry. 2485 * 2486 * This is still safe from a transactional point of view - it is not until we 2487 * get to xfs_defer_finish() that we have the possibility of multiple 2488 * transactions in this operation. Hence as long as we remove the directory 2489 * entry and drop the link count in the first transaction of the remove 2490 * operation, there are no transactional constraints on the ordering here. 2491 */ 2492 int 2493 xfs_remove( 2494 xfs_inode_t *dp, 2495 struct xfs_name *name, 2496 xfs_inode_t *ip) 2497 { 2498 xfs_mount_t *mp = dp->i_mount; 2499 xfs_trans_t *tp = NULL; 2500 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2501 int dontcare; 2502 int error = 0; 2503 uint resblks; 2504 2505 trace_xfs_remove(dp, name); 2506 2507 if (xfs_is_shutdown(mp)) 2508 return -EIO; 2509 2510 error = xfs_qm_dqattach(dp); 2511 if (error) 2512 goto std_return; 2513 2514 error = xfs_qm_dqattach(ip); 2515 if (error) 2516 goto std_return; 2517 2518 /* 2519 * We try to get the real space reservation first, allowing for 2520 * directory btree deletion(s) implying possible bmap insert(s). If we 2521 * can't get the space reservation then we use 0 instead, and avoid the 2522 * bmap btree insert(s) in the directory code by, if the bmap insert 2523 * tries to happen, instead trimming the LAST block from the directory. 2524 * 2525 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2526 * the directory code can handle a reservationless update and we don't 2527 * want to prevent a user from trying to free space by deleting things. 2528 */ 2529 resblks = XFS_REMOVE_SPACE_RES(mp); 2530 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2531 &tp, &dontcare); 2532 if (error) { 2533 ASSERT(error != -ENOSPC); 2534 goto std_return; 2535 } 2536 2537 /* 2538 * If we're removing a directory perform some additional validation. 2539 */ 2540 if (is_dir) { 2541 ASSERT(VFS_I(ip)->i_nlink >= 2); 2542 if (VFS_I(ip)->i_nlink != 2) { 2543 error = -ENOTEMPTY; 2544 goto out_trans_cancel; 2545 } 2546 if (!xfs_dir_isempty(ip)) { 2547 error = -ENOTEMPTY; 2548 goto out_trans_cancel; 2549 } 2550 2551 /* Drop the link from ip's "..". */ 2552 error = xfs_droplink(tp, dp); 2553 if (error) 2554 goto out_trans_cancel; 2555 2556 /* Drop the "." link from ip to self. */ 2557 error = xfs_droplink(tp, ip); 2558 if (error) 2559 goto out_trans_cancel; 2560 2561 /* 2562 * Point the unlinked child directory's ".." entry to the root 2563 * directory to eliminate back-references to inodes that may 2564 * get freed before the child directory is closed. If the fs 2565 * gets shrunk, this can lead to dirent inode validation errors. 2566 */ 2567 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2568 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2569 tp->t_mountp->m_sb.sb_rootino, 0); 2570 if (error) 2571 goto out_trans_cancel; 2572 } 2573 } else { 2574 /* 2575 * When removing a non-directory we need to log the parent 2576 * inode here. For a directory this is done implicitly 2577 * by the xfs_droplink call for the ".." entry. 2578 */ 2579 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2580 } 2581 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2582 2583 /* Drop the link from dp to ip. */ 2584 error = xfs_droplink(tp, ip); 2585 if (error) 2586 goto out_trans_cancel; 2587 2588 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2589 if (error) { 2590 ASSERT(error != -ENOENT); 2591 goto out_trans_cancel; 2592 } 2593 2594 /* 2595 * If this is a synchronous mount, make sure that the 2596 * remove transaction goes to disk before returning to 2597 * the user. 2598 */ 2599 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2600 xfs_trans_set_sync(tp); 2601 2602 error = xfs_trans_commit(tp); 2603 if (error) 2604 goto std_return; 2605 2606 if (is_dir && xfs_inode_is_filestream(ip)) 2607 xfs_filestream_deassociate(ip); 2608 2609 return 0; 2610 2611 out_trans_cancel: 2612 xfs_trans_cancel(tp); 2613 std_return: 2614 return error; 2615 } 2616 2617 /* 2618 * Enter all inodes for a rename transaction into a sorted array. 2619 */ 2620 #define __XFS_SORT_INODES 5 2621 STATIC void 2622 xfs_sort_for_rename( 2623 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2624 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2625 struct xfs_inode *ip1, /* in: inode of old entry */ 2626 struct xfs_inode *ip2, /* in: inode of new entry */ 2627 struct xfs_inode *wip, /* in: whiteout inode */ 2628 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2629 int *num_inodes) /* in/out: inodes in array */ 2630 { 2631 int i, j; 2632 2633 ASSERT(*num_inodes == __XFS_SORT_INODES); 2634 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2635 2636 /* 2637 * i_tab contains a list of pointers to inodes. We initialize 2638 * the table here & we'll sort it. We will then use it to 2639 * order the acquisition of the inode locks. 2640 * 2641 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2642 */ 2643 i = 0; 2644 i_tab[i++] = dp1; 2645 i_tab[i++] = dp2; 2646 i_tab[i++] = ip1; 2647 if (ip2) 2648 i_tab[i++] = ip2; 2649 if (wip) 2650 i_tab[i++] = wip; 2651 *num_inodes = i; 2652 2653 /* 2654 * Sort the elements via bubble sort. (Remember, there are at 2655 * most 5 elements to sort, so this is adequate.) 2656 */ 2657 for (i = 0; i < *num_inodes; i++) { 2658 for (j = 1; j < *num_inodes; j++) { 2659 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2660 struct xfs_inode *temp = i_tab[j]; 2661 i_tab[j] = i_tab[j-1]; 2662 i_tab[j-1] = temp; 2663 } 2664 } 2665 } 2666 } 2667 2668 static int 2669 xfs_finish_rename( 2670 struct xfs_trans *tp) 2671 { 2672 /* 2673 * If this is a synchronous mount, make sure that the rename transaction 2674 * goes to disk before returning to the user. 2675 */ 2676 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2677 xfs_trans_set_sync(tp); 2678 2679 return xfs_trans_commit(tp); 2680 } 2681 2682 /* 2683 * xfs_cross_rename() 2684 * 2685 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2686 */ 2687 STATIC int 2688 xfs_cross_rename( 2689 struct xfs_trans *tp, 2690 struct xfs_inode *dp1, 2691 struct xfs_name *name1, 2692 struct xfs_inode *ip1, 2693 struct xfs_inode *dp2, 2694 struct xfs_name *name2, 2695 struct xfs_inode *ip2, 2696 int spaceres) 2697 { 2698 int error = 0; 2699 int ip1_flags = 0; 2700 int ip2_flags = 0; 2701 int dp2_flags = 0; 2702 2703 /* Swap inode number for dirent in first parent */ 2704 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2705 if (error) 2706 goto out_trans_abort; 2707 2708 /* Swap inode number for dirent in second parent */ 2709 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2710 if (error) 2711 goto out_trans_abort; 2712 2713 /* 2714 * If we're renaming one or more directories across different parents, 2715 * update the respective ".." entries (and link counts) to match the new 2716 * parents. 2717 */ 2718 if (dp1 != dp2) { 2719 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2720 2721 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2722 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2723 dp1->i_ino, spaceres); 2724 if (error) 2725 goto out_trans_abort; 2726 2727 /* transfer ip2 ".." reference to dp1 */ 2728 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2729 error = xfs_droplink(tp, dp2); 2730 if (error) 2731 goto out_trans_abort; 2732 xfs_bumplink(tp, dp1); 2733 } 2734 2735 /* 2736 * Although ip1 isn't changed here, userspace needs 2737 * to be warned about the change, so that applications 2738 * relying on it (like backup ones), will properly 2739 * notify the change 2740 */ 2741 ip1_flags |= XFS_ICHGTIME_CHG; 2742 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2743 } 2744 2745 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2746 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2747 dp2->i_ino, spaceres); 2748 if (error) 2749 goto out_trans_abort; 2750 2751 /* transfer ip1 ".." reference to dp2 */ 2752 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2753 error = xfs_droplink(tp, dp1); 2754 if (error) 2755 goto out_trans_abort; 2756 xfs_bumplink(tp, dp2); 2757 } 2758 2759 /* 2760 * Although ip2 isn't changed here, userspace needs 2761 * to be warned about the change, so that applications 2762 * relying on it (like backup ones), will properly 2763 * notify the change 2764 */ 2765 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2766 ip2_flags |= XFS_ICHGTIME_CHG; 2767 } 2768 } 2769 2770 if (ip1_flags) { 2771 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2772 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2773 } 2774 if (ip2_flags) { 2775 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2776 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2777 } 2778 if (dp2_flags) { 2779 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2780 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2781 } 2782 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2783 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2784 return xfs_finish_rename(tp); 2785 2786 out_trans_abort: 2787 xfs_trans_cancel(tp); 2788 return error; 2789 } 2790 2791 /* 2792 * xfs_rename_alloc_whiteout() 2793 * 2794 * Return a referenced, unlinked, unlocked inode that can be used as a 2795 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2796 * crash between allocating the inode and linking it into the rename transaction 2797 * recovery will free the inode and we won't leak it. 2798 */ 2799 static int 2800 xfs_rename_alloc_whiteout( 2801 struct mnt_idmap *idmap, 2802 struct xfs_name *src_name, 2803 struct xfs_inode *dp, 2804 struct xfs_inode **wip) 2805 { 2806 struct xfs_inode *tmpfile; 2807 struct qstr name; 2808 int error; 2809 2810 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE, 2811 &tmpfile); 2812 if (error) 2813 return error; 2814 2815 name.name = src_name->name; 2816 name.len = src_name->len; 2817 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2818 if (error) { 2819 xfs_finish_inode_setup(tmpfile); 2820 xfs_irele(tmpfile); 2821 return error; 2822 } 2823 2824 /* 2825 * Prepare the tmpfile inode as if it were created through the VFS. 2826 * Complete the inode setup and flag it as linkable. nlink is already 2827 * zero, so we can skip the drop_nlink. 2828 */ 2829 xfs_setup_iops(tmpfile); 2830 xfs_finish_inode_setup(tmpfile); 2831 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2832 2833 *wip = tmpfile; 2834 return 0; 2835 } 2836 2837 /* 2838 * xfs_rename 2839 */ 2840 int 2841 xfs_rename( 2842 struct mnt_idmap *idmap, 2843 struct xfs_inode *src_dp, 2844 struct xfs_name *src_name, 2845 struct xfs_inode *src_ip, 2846 struct xfs_inode *target_dp, 2847 struct xfs_name *target_name, 2848 struct xfs_inode *target_ip, 2849 unsigned int flags) 2850 { 2851 struct xfs_mount *mp = src_dp->i_mount; 2852 struct xfs_trans *tp; 2853 struct xfs_inode *wip = NULL; /* whiteout inode */ 2854 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2855 int i; 2856 int num_inodes = __XFS_SORT_INODES; 2857 bool new_parent = (src_dp != target_dp); 2858 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2859 int spaceres; 2860 bool retried = false; 2861 int error, nospace_error = 0; 2862 2863 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2864 2865 if ((flags & RENAME_EXCHANGE) && !target_ip) 2866 return -EINVAL; 2867 2868 /* 2869 * If we are doing a whiteout operation, allocate the whiteout inode 2870 * we will be placing at the target and ensure the type is set 2871 * appropriately. 2872 */ 2873 if (flags & RENAME_WHITEOUT) { 2874 error = xfs_rename_alloc_whiteout(idmap, src_name, 2875 target_dp, &wip); 2876 if (error) 2877 return error; 2878 2879 /* setup target dirent info as whiteout */ 2880 src_name->type = XFS_DIR3_FT_CHRDEV; 2881 } 2882 2883 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2884 inodes, &num_inodes); 2885 2886 retry: 2887 nospace_error = 0; 2888 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2889 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2890 if (error == -ENOSPC) { 2891 nospace_error = error; 2892 spaceres = 0; 2893 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2894 &tp); 2895 } 2896 if (error) 2897 goto out_release_wip; 2898 2899 /* 2900 * Attach the dquots to the inodes 2901 */ 2902 error = xfs_qm_vop_rename_dqattach(inodes); 2903 if (error) 2904 goto out_trans_cancel; 2905 2906 /* 2907 * Lock all the participating inodes. Depending upon whether 2908 * the target_name exists in the target directory, and 2909 * whether the target directory is the same as the source 2910 * directory, we can lock from 2 to 5 inodes. 2911 */ 2912 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2913 2914 /* 2915 * Join all the inodes to the transaction. From this point on, 2916 * we can rely on either trans_commit or trans_cancel to unlock 2917 * them. 2918 */ 2919 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2920 if (new_parent) 2921 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2922 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2923 if (target_ip) 2924 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2925 if (wip) 2926 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2927 2928 /* 2929 * If we are using project inheritance, we only allow renames 2930 * into our tree when the project IDs are the same; else the 2931 * tree quota mechanism would be circumvented. 2932 */ 2933 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2934 target_dp->i_projid != src_ip->i_projid)) { 2935 error = -EXDEV; 2936 goto out_trans_cancel; 2937 } 2938 2939 /* RENAME_EXCHANGE is unique from here on. */ 2940 if (flags & RENAME_EXCHANGE) 2941 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2942 target_dp, target_name, target_ip, 2943 spaceres); 2944 2945 /* 2946 * Try to reserve quota to handle an expansion of the target directory. 2947 * We'll allow the rename to continue in reservationless mode if we hit 2948 * a space usage constraint. If we trigger reservationless mode, save 2949 * the errno if there isn't any free space in the target directory. 2950 */ 2951 if (spaceres != 0) { 2952 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2953 0, false); 2954 if (error == -EDQUOT || error == -ENOSPC) { 2955 if (!retried) { 2956 xfs_trans_cancel(tp); 2957 xfs_blockgc_free_quota(target_dp, 0); 2958 retried = true; 2959 goto retry; 2960 } 2961 2962 nospace_error = error; 2963 spaceres = 0; 2964 error = 0; 2965 } 2966 if (error) 2967 goto out_trans_cancel; 2968 } 2969 2970 /* 2971 * Check for expected errors before we dirty the transaction 2972 * so we can return an error without a transaction abort. 2973 */ 2974 if (target_ip == NULL) { 2975 /* 2976 * If there's no space reservation, check the entry will 2977 * fit before actually inserting it. 2978 */ 2979 if (!spaceres) { 2980 error = xfs_dir_canenter(tp, target_dp, target_name); 2981 if (error) 2982 goto out_trans_cancel; 2983 } 2984 } else { 2985 /* 2986 * If target exists and it's a directory, check that whether 2987 * it can be destroyed. 2988 */ 2989 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 2990 (!xfs_dir_isempty(target_ip) || 2991 (VFS_I(target_ip)->i_nlink > 2))) { 2992 error = -EEXIST; 2993 goto out_trans_cancel; 2994 } 2995 } 2996 2997 /* 2998 * Lock the AGI buffers we need to handle bumping the nlink of the 2999 * whiteout inode off the unlinked list and to handle dropping the 3000 * nlink of the target inode. Per locking order rules, do this in 3001 * increasing AG order and before directory block allocation tries to 3002 * grab AGFs because we grab AGIs before AGFs. 3003 * 3004 * The (vfs) caller must ensure that if src is a directory then 3005 * target_ip is either null or an empty directory. 3006 */ 3007 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3008 if (inodes[i] == wip || 3009 (inodes[i] == target_ip && 3010 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3011 struct xfs_perag *pag; 3012 struct xfs_buf *bp; 3013 3014 pag = xfs_perag_get(mp, 3015 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 3016 error = xfs_read_agi(pag, tp, &bp); 3017 xfs_perag_put(pag); 3018 if (error) 3019 goto out_trans_cancel; 3020 } 3021 } 3022 3023 /* 3024 * Directory entry creation below may acquire the AGF. Remove 3025 * the whiteout from the unlinked list first to preserve correct 3026 * AGI/AGF locking order. This dirties the transaction so failures 3027 * after this point will abort and log recovery will clean up the 3028 * mess. 3029 * 3030 * For whiteouts, we need to bump the link count on the whiteout 3031 * inode. After this point, we have a real link, clear the tmpfile 3032 * state flag from the inode so it doesn't accidentally get misused 3033 * in future. 3034 */ 3035 if (wip) { 3036 struct xfs_perag *pag; 3037 3038 ASSERT(VFS_I(wip)->i_nlink == 0); 3039 3040 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3041 error = xfs_iunlink_remove(tp, pag, wip); 3042 xfs_perag_put(pag); 3043 if (error) 3044 goto out_trans_cancel; 3045 3046 xfs_bumplink(tp, wip); 3047 VFS_I(wip)->i_state &= ~I_LINKABLE; 3048 } 3049 3050 /* 3051 * Set up the target. 3052 */ 3053 if (target_ip == NULL) { 3054 /* 3055 * If target does not exist and the rename crosses 3056 * directories, adjust the target directory link count 3057 * to account for the ".." reference from the new entry. 3058 */ 3059 error = xfs_dir_createname(tp, target_dp, target_name, 3060 src_ip->i_ino, spaceres); 3061 if (error) 3062 goto out_trans_cancel; 3063 3064 xfs_trans_ichgtime(tp, target_dp, 3065 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3066 3067 if (new_parent && src_is_directory) { 3068 xfs_bumplink(tp, target_dp); 3069 } 3070 } else { /* target_ip != NULL */ 3071 /* 3072 * Link the source inode under the target name. 3073 * If the source inode is a directory and we are moving 3074 * it across directories, its ".." entry will be 3075 * inconsistent until we replace that down below. 3076 * 3077 * In case there is already an entry with the same 3078 * name at the destination directory, remove it first. 3079 */ 3080 error = xfs_dir_replace(tp, target_dp, target_name, 3081 src_ip->i_ino, spaceres); 3082 if (error) 3083 goto out_trans_cancel; 3084 3085 xfs_trans_ichgtime(tp, target_dp, 3086 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3087 3088 /* 3089 * Decrement the link count on the target since the target 3090 * dir no longer points to it. 3091 */ 3092 error = xfs_droplink(tp, target_ip); 3093 if (error) 3094 goto out_trans_cancel; 3095 3096 if (src_is_directory) { 3097 /* 3098 * Drop the link from the old "." entry. 3099 */ 3100 error = xfs_droplink(tp, target_ip); 3101 if (error) 3102 goto out_trans_cancel; 3103 } 3104 } /* target_ip != NULL */ 3105 3106 /* 3107 * Remove the source. 3108 */ 3109 if (new_parent && src_is_directory) { 3110 /* 3111 * Rewrite the ".." entry to point to the new 3112 * directory. 3113 */ 3114 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3115 target_dp->i_ino, spaceres); 3116 ASSERT(error != -EEXIST); 3117 if (error) 3118 goto out_trans_cancel; 3119 } 3120 3121 /* 3122 * We always want to hit the ctime on the source inode. 3123 * 3124 * This isn't strictly required by the standards since the source 3125 * inode isn't really being changed, but old unix file systems did 3126 * it and some incremental backup programs won't work without it. 3127 */ 3128 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3129 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3130 3131 /* 3132 * Adjust the link count on src_dp. This is necessary when 3133 * renaming a directory, either within one parent when 3134 * the target existed, or across two parent directories. 3135 */ 3136 if (src_is_directory && (new_parent || target_ip != NULL)) { 3137 3138 /* 3139 * Decrement link count on src_directory since the 3140 * entry that's moved no longer points to it. 3141 */ 3142 error = xfs_droplink(tp, src_dp); 3143 if (error) 3144 goto out_trans_cancel; 3145 } 3146 3147 /* 3148 * For whiteouts, we only need to update the source dirent with the 3149 * inode number of the whiteout inode rather than removing it 3150 * altogether. 3151 */ 3152 if (wip) 3153 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3154 spaceres); 3155 else 3156 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3157 spaceres); 3158 3159 if (error) 3160 goto out_trans_cancel; 3161 3162 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3163 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3164 if (new_parent) 3165 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3166 3167 error = xfs_finish_rename(tp); 3168 if (wip) 3169 xfs_irele(wip); 3170 return error; 3171 3172 out_trans_cancel: 3173 xfs_trans_cancel(tp); 3174 out_release_wip: 3175 if (wip) 3176 xfs_irele(wip); 3177 if (error == -ENOSPC && nospace_error) 3178 error = nospace_error; 3179 return error; 3180 } 3181 3182 static int 3183 xfs_iflush( 3184 struct xfs_inode *ip, 3185 struct xfs_buf *bp) 3186 { 3187 struct xfs_inode_log_item *iip = ip->i_itemp; 3188 struct xfs_dinode *dip; 3189 struct xfs_mount *mp = ip->i_mount; 3190 int error; 3191 3192 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3193 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3194 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3195 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3196 ASSERT(iip->ili_item.li_buf == bp); 3197 3198 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3199 3200 /* 3201 * We don't flush the inode if any of the following checks fail, but we 3202 * do still update the log item and attach to the backing buffer as if 3203 * the flush happened. This is a formality to facilitate predictable 3204 * error handling as the caller will shutdown and fail the buffer. 3205 */ 3206 error = -EFSCORRUPTED; 3207 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3208 mp, XFS_ERRTAG_IFLUSH_1)) { 3209 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3210 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 3211 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3212 goto flush_out; 3213 } 3214 if (S_ISREG(VFS_I(ip)->i_mode)) { 3215 if (XFS_TEST_ERROR( 3216 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3217 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3218 mp, XFS_ERRTAG_IFLUSH_3)) { 3219 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3220 "%s: Bad regular inode %llu, ptr "PTR_FMT, 3221 __func__, ip->i_ino, ip); 3222 goto flush_out; 3223 } 3224 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3225 if (XFS_TEST_ERROR( 3226 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3227 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3228 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3229 mp, XFS_ERRTAG_IFLUSH_4)) { 3230 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3231 "%s: Bad directory inode %llu, ptr "PTR_FMT, 3232 __func__, ip->i_ino, ip); 3233 goto flush_out; 3234 } 3235 } 3236 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3237 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3238 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3239 "%s: detected corrupt incore inode %llu, " 3240 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3241 __func__, ip->i_ino, 3242 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3243 ip->i_nblocks, ip); 3244 goto flush_out; 3245 } 3246 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3247 mp, XFS_ERRTAG_IFLUSH_6)) { 3248 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3249 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 3250 __func__, ip->i_ino, ip->i_forkoff, ip); 3251 goto flush_out; 3252 } 3253 3254 /* 3255 * Inode item log recovery for v2 inodes are dependent on the flushiter 3256 * count for correct sequencing. We bump the flush iteration count so 3257 * we can detect flushes which postdate a log record during recovery. 3258 * This is redundant as we now log every change and hence this can't 3259 * happen but we need to still do it to ensure backwards compatibility 3260 * with old kernels that predate logging all inode changes. 3261 */ 3262 if (!xfs_has_v3inodes(mp)) 3263 ip->i_flushiter++; 3264 3265 /* 3266 * If there are inline format data / attr forks attached to this inode, 3267 * make sure they are not corrupt. 3268 */ 3269 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3270 xfs_ifork_verify_local_data(ip)) 3271 goto flush_out; 3272 if (xfs_inode_has_attr_fork(ip) && 3273 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3274 xfs_ifork_verify_local_attr(ip)) 3275 goto flush_out; 3276 3277 /* 3278 * Copy the dirty parts of the inode into the on-disk inode. We always 3279 * copy out the core of the inode, because if the inode is dirty at all 3280 * the core must be. 3281 */ 3282 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3283 3284 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3285 if (!xfs_has_v3inodes(mp)) { 3286 if (ip->i_flushiter == DI_MAX_FLUSH) 3287 ip->i_flushiter = 0; 3288 } 3289 3290 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3291 if (xfs_inode_has_attr_fork(ip)) 3292 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3293 3294 /* 3295 * We've recorded everything logged in the inode, so we'd like to clear 3296 * the ili_fields bits so we don't log and flush things unnecessarily. 3297 * However, we can't stop logging all this information until the data 3298 * we've copied into the disk buffer is written to disk. If we did we 3299 * might overwrite the copy of the inode in the log with all the data 3300 * after re-logging only part of it, and in the face of a crash we 3301 * wouldn't have all the data we need to recover. 3302 * 3303 * What we do is move the bits to the ili_last_fields field. When 3304 * logging the inode, these bits are moved back to the ili_fields field. 3305 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3306 * we know that the information those bits represent is permanently on 3307 * disk. As long as the flush completes before the inode is logged 3308 * again, then both ili_fields and ili_last_fields will be cleared. 3309 */ 3310 error = 0; 3311 flush_out: 3312 spin_lock(&iip->ili_lock); 3313 iip->ili_last_fields = iip->ili_fields; 3314 iip->ili_fields = 0; 3315 iip->ili_fsync_fields = 0; 3316 spin_unlock(&iip->ili_lock); 3317 3318 /* 3319 * Store the current LSN of the inode so that we can tell whether the 3320 * item has moved in the AIL from xfs_buf_inode_iodone(). 3321 */ 3322 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3323 &iip->ili_item.li_lsn); 3324 3325 /* generate the checksum. */ 3326 xfs_dinode_calc_crc(mp, dip); 3327 return error; 3328 } 3329 3330 /* 3331 * Non-blocking flush of dirty inode metadata into the backing buffer. 3332 * 3333 * The caller must have a reference to the inode and hold the cluster buffer 3334 * locked. The function will walk across all the inodes on the cluster buffer it 3335 * can find and lock without blocking, and flush them to the cluster buffer. 3336 * 3337 * On successful flushing of at least one inode, the caller must write out the 3338 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3339 * the caller needs to release the buffer. On failure, the filesystem will be 3340 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3341 * will be returned. 3342 */ 3343 int 3344 xfs_iflush_cluster( 3345 struct xfs_buf *bp) 3346 { 3347 struct xfs_mount *mp = bp->b_mount; 3348 struct xfs_log_item *lip, *n; 3349 struct xfs_inode *ip; 3350 struct xfs_inode_log_item *iip; 3351 int clcount = 0; 3352 int error = 0; 3353 3354 /* 3355 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3356 * will remove itself from the list. 3357 */ 3358 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3359 iip = (struct xfs_inode_log_item *)lip; 3360 ip = iip->ili_inode; 3361 3362 /* 3363 * Quick and dirty check to avoid locks if possible. 3364 */ 3365 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3366 continue; 3367 if (xfs_ipincount(ip)) 3368 continue; 3369 3370 /* 3371 * The inode is still attached to the buffer, which means it is 3372 * dirty but reclaim might try to grab it. Check carefully for 3373 * that, and grab the ilock while still holding the i_flags_lock 3374 * to guarantee reclaim will not be able to reclaim this inode 3375 * once we drop the i_flags_lock. 3376 */ 3377 spin_lock(&ip->i_flags_lock); 3378 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3379 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3380 spin_unlock(&ip->i_flags_lock); 3381 continue; 3382 } 3383 3384 /* 3385 * ILOCK will pin the inode against reclaim and prevent 3386 * concurrent transactions modifying the inode while we are 3387 * flushing the inode. If we get the lock, set the flushing 3388 * state before we drop the i_flags_lock. 3389 */ 3390 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3391 spin_unlock(&ip->i_flags_lock); 3392 continue; 3393 } 3394 __xfs_iflags_set(ip, XFS_IFLUSHING); 3395 spin_unlock(&ip->i_flags_lock); 3396 3397 /* 3398 * Abort flushing this inode if we are shut down because the 3399 * inode may not currently be in the AIL. This can occur when 3400 * log I/O failure unpins the inode without inserting into the 3401 * AIL, leaving a dirty/unpinned inode attached to the buffer 3402 * that otherwise looks like it should be flushed. 3403 */ 3404 if (xlog_is_shutdown(mp->m_log)) { 3405 xfs_iunpin_wait(ip); 3406 xfs_iflush_abort(ip); 3407 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3408 error = -EIO; 3409 continue; 3410 } 3411 3412 /* don't block waiting on a log force to unpin dirty inodes */ 3413 if (xfs_ipincount(ip)) { 3414 xfs_iflags_clear(ip, XFS_IFLUSHING); 3415 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3416 continue; 3417 } 3418 3419 if (!xfs_inode_clean(ip)) 3420 error = xfs_iflush(ip, bp); 3421 else 3422 xfs_iflags_clear(ip, XFS_IFLUSHING); 3423 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3424 if (error) 3425 break; 3426 clcount++; 3427 } 3428 3429 if (error) { 3430 /* 3431 * Shutdown first so we kill the log before we release this 3432 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3433 * of the log, failing it before the _log_ is shut down can 3434 * result in the log tail being moved forward in the journal 3435 * on disk because log writes can still be taking place. Hence 3436 * unpinning the tail will allow the ICREATE intent to be 3437 * removed from the log an recovery will fail with uninitialised 3438 * inode cluster buffers. 3439 */ 3440 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3441 bp->b_flags |= XBF_ASYNC; 3442 xfs_buf_ioend_fail(bp); 3443 return error; 3444 } 3445 3446 if (!clcount) 3447 return -EAGAIN; 3448 3449 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3450 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3451 return 0; 3452 3453 } 3454 3455 /* Release an inode. */ 3456 void 3457 xfs_irele( 3458 struct xfs_inode *ip) 3459 { 3460 trace_xfs_irele(ip, _RET_IP_); 3461 iput(VFS_I(ip)); 3462 } 3463 3464 /* 3465 * Ensure all commited transactions touching the inode are written to the log. 3466 */ 3467 int 3468 xfs_log_force_inode( 3469 struct xfs_inode *ip) 3470 { 3471 xfs_csn_t seq = 0; 3472 3473 xfs_ilock(ip, XFS_ILOCK_SHARED); 3474 if (xfs_ipincount(ip)) 3475 seq = ip->i_itemp->ili_commit_seq; 3476 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3477 3478 if (!seq) 3479 return 0; 3480 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3481 } 3482 3483 /* 3484 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3485 * abide vfs locking order (lowest pointer value goes first) and breaking the 3486 * layout leases before proceeding. The loop is needed because we cannot call 3487 * the blocking break_layout() with the iolocks held, and therefore have to 3488 * back out both locks. 3489 */ 3490 static int 3491 xfs_iolock_two_inodes_and_break_layout( 3492 struct inode *src, 3493 struct inode *dest) 3494 { 3495 int error; 3496 3497 if (src > dest) 3498 swap(src, dest); 3499 3500 retry: 3501 /* Wait to break both inodes' layouts before we start locking. */ 3502 error = break_layout(src, true); 3503 if (error) 3504 return error; 3505 if (src != dest) { 3506 error = break_layout(dest, true); 3507 if (error) 3508 return error; 3509 } 3510 3511 /* Lock one inode and make sure nobody got in and leased it. */ 3512 inode_lock(src); 3513 error = break_layout(src, false); 3514 if (error) { 3515 inode_unlock(src); 3516 if (error == -EWOULDBLOCK) 3517 goto retry; 3518 return error; 3519 } 3520 3521 if (src == dest) 3522 return 0; 3523 3524 /* Lock the other inode and make sure nobody got in and leased it. */ 3525 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3526 error = break_layout(dest, false); 3527 if (error) { 3528 inode_unlock(src); 3529 inode_unlock(dest); 3530 if (error == -EWOULDBLOCK) 3531 goto retry; 3532 return error; 3533 } 3534 3535 return 0; 3536 } 3537 3538 static int 3539 xfs_mmaplock_two_inodes_and_break_dax_layout( 3540 struct xfs_inode *ip1, 3541 struct xfs_inode *ip2) 3542 { 3543 int error; 3544 bool retry; 3545 struct page *page; 3546 3547 if (ip1->i_ino > ip2->i_ino) 3548 swap(ip1, ip2); 3549 3550 again: 3551 retry = false; 3552 /* Lock the first inode */ 3553 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3554 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3555 if (error || retry) { 3556 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3557 if (error == 0 && retry) 3558 goto again; 3559 return error; 3560 } 3561 3562 if (ip1 == ip2) 3563 return 0; 3564 3565 /* Nested lock the second inode */ 3566 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3567 /* 3568 * We cannot use xfs_break_dax_layouts() directly here because it may 3569 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3570 * for this nested lock case. 3571 */ 3572 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3573 if (page && page_ref_count(page) != 1) { 3574 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3575 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3576 goto again; 3577 } 3578 3579 return 0; 3580 } 3581 3582 /* 3583 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3584 * mmap activity. 3585 */ 3586 int 3587 xfs_ilock2_io_mmap( 3588 struct xfs_inode *ip1, 3589 struct xfs_inode *ip2) 3590 { 3591 int ret; 3592 3593 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3594 if (ret) 3595 return ret; 3596 3597 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3598 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 3599 if (ret) { 3600 inode_unlock(VFS_I(ip2)); 3601 if (ip1 != ip2) 3602 inode_unlock(VFS_I(ip1)); 3603 return ret; 3604 } 3605 } else 3606 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3607 VFS_I(ip2)->i_mapping); 3608 3609 return 0; 3610 } 3611 3612 /* Unlock both inodes to allow IO and mmap activity. */ 3613 void 3614 xfs_iunlock2_io_mmap( 3615 struct xfs_inode *ip1, 3616 struct xfs_inode *ip2) 3617 { 3618 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3619 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3620 if (ip1 != ip2) 3621 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3622 } else 3623 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3624 VFS_I(ip2)->i_mapping); 3625 3626 inode_unlock(VFS_I(ip2)); 3627 if (ip1 != ip2) 3628 inode_unlock(VFS_I(ip1)); 3629 } 3630 3631 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 3632 void 3633 xfs_iunlock2_remapping( 3634 struct xfs_inode *ip1, 3635 struct xfs_inode *ip2) 3636 { 3637 xfs_iflags_clear(ip1, XFS_IREMAPPING); 3638 3639 if (ip1 != ip2) 3640 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 3641 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3642 3643 if (ip1 != ip2) 3644 inode_unlock_shared(VFS_I(ip1)); 3645 inode_unlock(VFS_I(ip2)); 3646 } 3647 3648 /* 3649 * Reload the incore inode list for this inode. Caller should ensure that 3650 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 3651 * preventing other threads from executing. 3652 */ 3653 int 3654 xfs_inode_reload_unlinked_bucket( 3655 struct xfs_trans *tp, 3656 struct xfs_inode *ip) 3657 { 3658 struct xfs_mount *mp = tp->t_mountp; 3659 struct xfs_buf *agibp; 3660 struct xfs_agi *agi; 3661 struct xfs_perag *pag; 3662 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 3663 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 3664 xfs_agino_t prev_agino, next_agino; 3665 unsigned int bucket; 3666 bool foundit = false; 3667 int error; 3668 3669 /* Grab the first inode in the list */ 3670 pag = xfs_perag_get(mp, agno); 3671 error = xfs_ialloc_read_agi(pag, tp, &agibp); 3672 xfs_perag_put(pag); 3673 if (error) 3674 return error; 3675 3676 /* 3677 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 3678 * incore unlinked list pointers for this inode. Check once more to 3679 * see if we raced with anyone else to reload the unlinked list. 3680 */ 3681 if (!xfs_inode_unlinked_incomplete(ip)) { 3682 foundit = true; 3683 goto out_agibp; 3684 } 3685 3686 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 3687 agi = agibp->b_addr; 3688 3689 trace_xfs_inode_reload_unlinked_bucket(ip); 3690 3691 xfs_info_ratelimited(mp, 3692 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 3693 agino, agno); 3694 3695 prev_agino = NULLAGINO; 3696 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3697 while (next_agino != NULLAGINO) { 3698 struct xfs_inode *next_ip = NULL; 3699 3700 /* Found this caller's inode, set its backlink. */ 3701 if (next_agino == agino) { 3702 next_ip = ip; 3703 next_ip->i_prev_unlinked = prev_agino; 3704 foundit = true; 3705 goto next_inode; 3706 } 3707 3708 /* Try in-memory lookup first. */ 3709 next_ip = xfs_iunlink_lookup(pag, next_agino); 3710 if (next_ip) 3711 goto next_inode; 3712 3713 /* Inode not in memory, try reloading it. */ 3714 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 3715 next_agino); 3716 if (error) 3717 break; 3718 3719 /* Grab the reloaded inode. */ 3720 next_ip = xfs_iunlink_lookup(pag, next_agino); 3721 if (!next_ip) { 3722 /* No incore inode at all? We reloaded it... */ 3723 ASSERT(next_ip != NULL); 3724 error = -EFSCORRUPTED; 3725 break; 3726 } 3727 3728 next_inode: 3729 prev_agino = next_agino; 3730 next_agino = next_ip->i_next_unlinked; 3731 } 3732 3733 out_agibp: 3734 xfs_trans_brelse(tp, agibp); 3735 /* Should have found this inode somewhere in the iunlinked bucket. */ 3736 if (!error && !foundit) 3737 error = -EFSCORRUPTED; 3738 return error; 3739 } 3740 3741 /* Decide if this inode is missing its unlinked list and reload it. */ 3742 int 3743 xfs_inode_reload_unlinked( 3744 struct xfs_inode *ip) 3745 { 3746 struct xfs_trans *tp; 3747 int error; 3748 3749 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 3750 if (error) 3751 return error; 3752 3753 xfs_ilock(ip, XFS_ILOCK_SHARED); 3754 if (xfs_inode_unlinked_incomplete(ip)) 3755 error = xfs_inode_reload_unlinked_bucket(tp, ip); 3756 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3757 xfs_trans_cancel(tp); 3758 3759 return error; 3760 } 3761