xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 22246614)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_imap.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_sb.h"
30 #include "xfs_ag.h"
31 #include "xfs_dir2.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
55 
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 
59 /*
60  * Used in xfs_itruncate().  This is the maximum number of extents
61  * freed from a file in a single transaction.
62  */
63 #define	XFS_ITRUNC_MAX_EXTENTS	2
64 
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 
70 #ifdef DEBUG
71 /*
72  * Make sure that the extents in the given memory buffer
73  * are valid.
74  */
75 STATIC void
76 xfs_validate_extents(
77 	xfs_ifork_t		*ifp,
78 	int			nrecs,
79 	xfs_exntfmt_t		fmt)
80 {
81 	xfs_bmbt_irec_t		irec;
82 	xfs_bmbt_rec_host_t	rec;
83 	int			i;
84 
85 	for (i = 0; i < nrecs; i++) {
86 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 		rec.l0 = get_unaligned(&ep->l0);
88 		rec.l1 = get_unaligned(&ep->l1);
89 		xfs_bmbt_get_all(&rec, &irec);
90 		if (fmt == XFS_EXTFMT_NOSTATE)
91 			ASSERT(irec.br_state == XFS_EXT_NORM);
92 	}
93 }
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
97 
98 /*
99  * Check that none of the inode's in the buffer have a next
100  * unlinked field of 0.
101  */
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 	xfs_mount_t	*mp,
106 	xfs_buf_t	*bp)
107 {
108 	int		i;
109 	int		j;
110 	xfs_dinode_t	*dip;
111 
112 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 
114 	for (i = 0; i < j; i++) {
115 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 					i * mp->m_sb.sb_inodesize);
117 		if (!dip->di_next_unlinked)  {
118 			xfs_fs_cmn_err(CE_ALERT, mp,
119 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
120 				bp);
121 			ASSERT(dip->di_next_unlinked);
122 		}
123 	}
124 }
125 #endif
126 
127 /*
128  * Find the buffer associated with the given inode map
129  * We do basic validation checks on the buffer once it has been
130  * retrieved from disk.
131  */
132 STATIC int
133 xfs_imap_to_bp(
134 	xfs_mount_t	*mp,
135 	xfs_trans_t	*tp,
136 	xfs_imap_t	*imap,
137 	xfs_buf_t	**bpp,
138 	uint		buf_flags,
139 	uint		imap_flags)
140 {
141 	int		error;
142 	int		i;
143 	int		ni;
144 	xfs_buf_t	*bp;
145 
146 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 				   (int)imap->im_len, buf_flags, &bp);
148 	if (error) {
149 		if (error != EAGAIN) {
150 			cmn_err(CE_WARN,
151 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 				"an error %d on %s.  Returning error.",
153 				error, mp->m_fsname);
154 		} else {
155 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 		}
157 		return error;
158 	}
159 
160 	/*
161 	 * Validate the magic number and version of every inode in the buffer
162 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 	 */
164 #ifdef DEBUG
165 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else	/* usual case */
167 	ni = 1;
168 #endif
169 
170 	for (i = 0; i < ni; i++) {
171 		int		di_ok;
172 		xfs_dinode_t	*dip;
173 
174 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 					(i << mp->m_sb.sb_inodelog));
176 		di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 			    XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 						XFS_ERRTAG_ITOBP_INOTOBP,
180 						XFS_RANDOM_ITOBP_INOTOBP))) {
181 			if (imap_flags & XFS_IMAP_BULKSTAT) {
182 				xfs_trans_brelse(tp, bp);
183 				return XFS_ERROR(EINVAL);
184 			}
185 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 						XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 			cmn_err(CE_PANIC,
189 					"Device %s - bad inode magic/vsn "
190 					"daddr %lld #%d (magic=%x)",
191 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 				(unsigned long long)imap->im_blkno, i,
193 				be16_to_cpu(dip->di_core.di_magic));
194 #endif
195 			xfs_trans_brelse(tp, bp);
196 			return XFS_ERROR(EFSCORRUPTED);
197 		}
198 	}
199 
200 	xfs_inobp_check(mp, bp);
201 
202 	/*
203 	 * Mark the buffer as an inode buffer now that it looks good
204 	 */
205 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 
207 	*bpp = bp;
208 	return 0;
209 }
210 
211 /*
212  * This routine is called to map an inode number within a file
213  * system to the buffer containing the on-disk version of the
214  * inode.  It returns a pointer to the buffer containing the
215  * on-disk inode in the bpp parameter, and in the dip parameter
216  * it returns a pointer to the on-disk inode within that buffer.
217  *
218  * If a non-zero error is returned, then the contents of bpp and
219  * dipp are undefined.
220  *
221  * Use xfs_imap() to determine the size and location of the
222  * buffer to read from disk.
223  */
224 STATIC int
225 xfs_inotobp(
226 	xfs_mount_t	*mp,
227 	xfs_trans_t	*tp,
228 	xfs_ino_t	ino,
229 	xfs_dinode_t	**dipp,
230 	xfs_buf_t	**bpp,
231 	int		*offset)
232 {
233 	xfs_imap_t	imap;
234 	xfs_buf_t	*bp;
235 	int		error;
236 
237 	imap.im_blkno = 0;
238 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
239 	if (error)
240 		return error;
241 
242 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
243 	if (error)
244 		return error;
245 
246 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 	*bpp = bp;
248 	*offset = imap.im_boffset;
249 	return 0;
250 }
251 
252 
253 /*
254  * This routine is called to map an inode to the buffer containing
255  * the on-disk version of the inode.  It returns a pointer to the
256  * buffer containing the on-disk inode in the bpp parameter, and in
257  * the dip parameter it returns a pointer to the on-disk inode within
258  * that buffer.
259  *
260  * If a non-zero error is returned, then the contents of bpp and
261  * dipp are undefined.
262  *
263  * If the inode is new and has not yet been initialized, use xfs_imap()
264  * to determine the size and location of the buffer to read from disk.
265  * If the inode has already been mapped to its buffer and read in once,
266  * then use the mapping information stored in the inode rather than
267  * calling xfs_imap().  This allows us to avoid the overhead of looking
268  * at the inode btree for small block file systems (see xfs_dilocate()).
269  * We can tell whether the inode has been mapped in before by comparing
270  * its disk block address to 0.  Only uninitialized inodes will have
271  * 0 for the disk block address.
272  */
273 int
274 xfs_itobp(
275 	xfs_mount_t	*mp,
276 	xfs_trans_t	*tp,
277 	xfs_inode_t	*ip,
278 	xfs_dinode_t	**dipp,
279 	xfs_buf_t	**bpp,
280 	xfs_daddr_t	bno,
281 	uint		imap_flags,
282 	uint		buf_flags)
283 {
284 	xfs_imap_t	imap;
285 	xfs_buf_t	*bp;
286 	int		error;
287 
288 	if (ip->i_blkno == (xfs_daddr_t)0) {
289 		imap.im_blkno = bno;
290 		error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 					XFS_IMAP_LOOKUP | imap_flags);
292 		if (error)
293 			return error;
294 
295 		/*
296 		 * Fill in the fields in the inode that will be used to
297 		 * map the inode to its buffer from now on.
298 		 */
299 		ip->i_blkno = imap.im_blkno;
300 		ip->i_len = imap.im_len;
301 		ip->i_boffset = imap.im_boffset;
302 	} else {
303 		/*
304 		 * We've already mapped the inode once, so just use the
305 		 * mapping that we saved the first time.
306 		 */
307 		imap.im_blkno = ip->i_blkno;
308 		imap.im_len = ip->i_len;
309 		imap.im_boffset = ip->i_boffset;
310 	}
311 	ASSERT(bno == 0 || bno == imap.im_blkno);
312 
313 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
314 	if (error)
315 		return error;
316 
317 	if (!bp) {
318 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
319 		ASSERT(tp == NULL);
320 		*bpp = NULL;
321 		return EAGAIN;
322 	}
323 
324 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
325 	*bpp = bp;
326 	return 0;
327 }
328 
329 /*
330  * Move inode type and inode format specific information from the
331  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
332  * this means set if_rdev to the proper value.  For files, directories,
333  * and symlinks this means to bring in the in-line data or extent
334  * pointers.  For a file in B-tree format, only the root is immediately
335  * brought in-core.  The rest will be in-lined in if_extents when it
336  * is first referenced (see xfs_iread_extents()).
337  */
338 STATIC int
339 xfs_iformat(
340 	xfs_inode_t		*ip,
341 	xfs_dinode_t		*dip)
342 {
343 	xfs_attr_shortform_t	*atp;
344 	int			size;
345 	int			error;
346 	xfs_fsize_t             di_size;
347 	ip->i_df.if_ext_max =
348 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
349 	error = 0;
350 
351 	if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 		     be16_to_cpu(dip->di_core.di_anextents) >
353 		     be64_to_cpu(dip->di_core.di_nblocks))) {
354 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 			(unsigned long long)ip->i_ino,
357 			(int)(be32_to_cpu(dip->di_core.di_nextents) +
358 			      be16_to_cpu(dip->di_core.di_anextents)),
359 			(unsigned long long)
360 				be64_to_cpu(dip->di_core.di_nblocks));
361 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
362 				     ip->i_mount, dip);
363 		return XFS_ERROR(EFSCORRUPTED);
364 	}
365 
366 	if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
367 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 			"corrupt dinode %Lu, forkoff = 0x%x.",
369 			(unsigned long long)ip->i_ino,
370 			dip->di_core.di_forkoff);
371 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
372 				     ip->i_mount, dip);
373 		return XFS_ERROR(EFSCORRUPTED);
374 	}
375 
376 	switch (ip->i_d.di_mode & S_IFMT) {
377 	case S_IFIFO:
378 	case S_IFCHR:
379 	case S_IFBLK:
380 	case S_IFSOCK:
381 		if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
382 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
383 					      ip->i_mount, dip);
384 			return XFS_ERROR(EFSCORRUPTED);
385 		}
386 		ip->i_d.di_size = 0;
387 		ip->i_size = 0;
388 		ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
389 		break;
390 
391 	case S_IFREG:
392 	case S_IFLNK:
393 	case S_IFDIR:
394 		switch (dip->di_core.di_format) {
395 		case XFS_DINODE_FMT_LOCAL:
396 			/*
397 			 * no local regular files yet
398 			 */
399 			if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
400 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
401 					"corrupt inode %Lu "
402 					"(local format for regular file).",
403 					(unsigned long long) ip->i_ino);
404 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
405 						     XFS_ERRLEVEL_LOW,
406 						     ip->i_mount, dip);
407 				return XFS_ERROR(EFSCORRUPTED);
408 			}
409 
410 			di_size = be64_to_cpu(dip->di_core.di_size);
411 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
412 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 					"corrupt inode %Lu "
414 					"(bad size %Ld for local inode).",
415 					(unsigned long long) ip->i_ino,
416 					(long long) di_size);
417 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
418 						     XFS_ERRLEVEL_LOW,
419 						     ip->i_mount, dip);
420 				return XFS_ERROR(EFSCORRUPTED);
421 			}
422 
423 			size = (int)di_size;
424 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
425 			break;
426 		case XFS_DINODE_FMT_EXTENTS:
427 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
428 			break;
429 		case XFS_DINODE_FMT_BTREE:
430 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
431 			break;
432 		default:
433 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
434 					 ip->i_mount);
435 			return XFS_ERROR(EFSCORRUPTED);
436 		}
437 		break;
438 
439 	default:
440 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 		return XFS_ERROR(EFSCORRUPTED);
442 	}
443 	if (error) {
444 		return error;
445 	}
446 	if (!XFS_DFORK_Q(dip))
447 		return 0;
448 	ASSERT(ip->i_afp == NULL);
449 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 	ip->i_afp->if_ext_max =
451 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
452 	switch (dip->di_core.di_aformat) {
453 	case XFS_DINODE_FMT_LOCAL:
454 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
455 		size = be16_to_cpu(atp->hdr.totsize);
456 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
457 		break;
458 	case XFS_DINODE_FMT_EXTENTS:
459 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
460 		break;
461 	case XFS_DINODE_FMT_BTREE:
462 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
463 		break;
464 	default:
465 		error = XFS_ERROR(EFSCORRUPTED);
466 		break;
467 	}
468 	if (error) {
469 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
470 		ip->i_afp = NULL;
471 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
472 	}
473 	return error;
474 }
475 
476 /*
477  * The file is in-lined in the on-disk inode.
478  * If it fits into if_inline_data, then copy
479  * it there, otherwise allocate a buffer for it
480  * and copy the data there.  Either way, set
481  * if_data to point at the data.
482  * If we allocate a buffer for the data, make
483  * sure that its size is a multiple of 4 and
484  * record the real size in i_real_bytes.
485  */
486 STATIC int
487 xfs_iformat_local(
488 	xfs_inode_t	*ip,
489 	xfs_dinode_t	*dip,
490 	int		whichfork,
491 	int		size)
492 {
493 	xfs_ifork_t	*ifp;
494 	int		real_size;
495 
496 	/*
497 	 * If the size is unreasonable, then something
498 	 * is wrong and we just bail out rather than crash in
499 	 * kmem_alloc() or memcpy() below.
500 	 */
501 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
502 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
503 			"corrupt inode %Lu "
504 			"(bad size %d for local fork, size = %d).",
505 			(unsigned long long) ip->i_ino, size,
506 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
508 				     ip->i_mount, dip);
509 		return XFS_ERROR(EFSCORRUPTED);
510 	}
511 	ifp = XFS_IFORK_PTR(ip, whichfork);
512 	real_size = 0;
513 	if (size == 0)
514 		ifp->if_u1.if_data = NULL;
515 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
517 	else {
518 		real_size = roundup(size, 4);
519 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
520 	}
521 	ifp->if_bytes = size;
522 	ifp->if_real_bytes = real_size;
523 	if (size)
524 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 	ifp->if_flags &= ~XFS_IFEXTENTS;
526 	ifp->if_flags |= XFS_IFINLINE;
527 	return 0;
528 }
529 
530 /*
531  * The file consists of a set of extents all
532  * of which fit into the on-disk inode.
533  * If there are few enough extents to fit into
534  * the if_inline_ext, then copy them there.
535  * Otherwise allocate a buffer for them and copy
536  * them into it.  Either way, set if_extents
537  * to point at the extents.
538  */
539 STATIC int
540 xfs_iformat_extents(
541 	xfs_inode_t	*ip,
542 	xfs_dinode_t	*dip,
543 	int		whichfork)
544 {
545 	xfs_bmbt_rec_t	*dp;
546 	xfs_ifork_t	*ifp;
547 	int		nex;
548 	int		size;
549 	int		i;
550 
551 	ifp = XFS_IFORK_PTR(ip, whichfork);
552 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
554 
555 	/*
556 	 * If the number of extents is unreasonable, then something
557 	 * is wrong and we just bail out rather than crash in
558 	 * kmem_alloc() or memcpy() below.
559 	 */
560 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
561 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 			"corrupt inode %Lu ((a)extents = %d).",
563 			(unsigned long long) ip->i_ino, nex);
564 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
565 				     ip->i_mount, dip);
566 		return XFS_ERROR(EFSCORRUPTED);
567 	}
568 
569 	ifp->if_real_bytes = 0;
570 	if (nex == 0)
571 		ifp->if_u1.if_extents = NULL;
572 	else if (nex <= XFS_INLINE_EXTS)
573 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
574 	else
575 		xfs_iext_add(ifp, 0, nex);
576 
577 	ifp->if_bytes = size;
578 	if (size) {
579 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
580 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
581 		for (i = 0; i < nex; i++, dp++) {
582 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
583 			ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
584 			ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
585 		}
586 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
587 		if (whichfork != XFS_DATA_FORK ||
588 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 				if (unlikely(xfs_check_nostate_extents(
590 				    ifp, 0, nex))) {
591 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
592 							 XFS_ERRLEVEL_LOW,
593 							 ip->i_mount);
594 					return XFS_ERROR(EFSCORRUPTED);
595 				}
596 	}
597 	ifp->if_flags |= XFS_IFEXTENTS;
598 	return 0;
599 }
600 
601 /*
602  * The file has too many extents to fit into
603  * the inode, so they are in B-tree format.
604  * Allocate a buffer for the root of the B-tree
605  * and copy the root into it.  The i_extents
606  * field will remain NULL until all of the
607  * extents are read in (when they are needed).
608  */
609 STATIC int
610 xfs_iformat_btree(
611 	xfs_inode_t		*ip,
612 	xfs_dinode_t		*dip,
613 	int			whichfork)
614 {
615 	xfs_bmdr_block_t	*dfp;
616 	xfs_ifork_t		*ifp;
617 	/* REFERENCED */
618 	int			nrecs;
619 	int			size;
620 
621 	ifp = XFS_IFORK_PTR(ip, whichfork);
622 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 	size = XFS_BMAP_BROOT_SPACE(dfp);
624 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
625 
626 	/*
627 	 * blow out if -- fork has less extents than can fit in
628 	 * fork (fork shouldn't be a btree format), root btree
629 	 * block has more records than can fit into the fork,
630 	 * or the number of extents is greater than the number of
631 	 * blocks.
632 	 */
633 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 	    || XFS_BMDR_SPACE_CALC(nrecs) >
635 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
637 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 			"corrupt inode %Lu (btree).",
639 			(unsigned long long) ip->i_ino);
640 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
641 				 ip->i_mount);
642 		return XFS_ERROR(EFSCORRUPTED);
643 	}
644 
645 	ifp->if_broot_bytes = size;
646 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 	ASSERT(ifp->if_broot != NULL);
648 	/*
649 	 * Copy and convert from the on-disk structure
650 	 * to the in-memory structure.
651 	 */
652 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 		ifp->if_broot, size);
654 	ifp->if_flags &= ~XFS_IFEXTENTS;
655 	ifp->if_flags |= XFS_IFBROOT;
656 
657 	return 0;
658 }
659 
660 void
661 xfs_dinode_from_disk(
662 	xfs_icdinode_t		*to,
663 	xfs_dinode_core_t	*from)
664 {
665 	to->di_magic = be16_to_cpu(from->di_magic);
666 	to->di_mode = be16_to_cpu(from->di_mode);
667 	to->di_version = from ->di_version;
668 	to->di_format = from->di_format;
669 	to->di_onlink = be16_to_cpu(from->di_onlink);
670 	to->di_uid = be32_to_cpu(from->di_uid);
671 	to->di_gid = be32_to_cpu(from->di_gid);
672 	to->di_nlink = be32_to_cpu(from->di_nlink);
673 	to->di_projid = be16_to_cpu(from->di_projid);
674 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 	to->di_size = be64_to_cpu(from->di_size);
683 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 	to->di_extsize = be32_to_cpu(from->di_extsize);
685 	to->di_nextents = be32_to_cpu(from->di_nextents);
686 	to->di_anextents = be16_to_cpu(from->di_anextents);
687 	to->di_forkoff = from->di_forkoff;
688 	to->di_aformat	= from->di_aformat;
689 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
690 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
691 	to->di_flags	= be16_to_cpu(from->di_flags);
692 	to->di_gen	= be32_to_cpu(from->di_gen);
693 }
694 
695 void
696 xfs_dinode_to_disk(
697 	xfs_dinode_core_t	*to,
698 	xfs_icdinode_t		*from)
699 {
700 	to->di_magic = cpu_to_be16(from->di_magic);
701 	to->di_mode = cpu_to_be16(from->di_mode);
702 	to->di_version = from ->di_version;
703 	to->di_format = from->di_format;
704 	to->di_onlink = cpu_to_be16(from->di_onlink);
705 	to->di_uid = cpu_to_be32(from->di_uid);
706 	to->di_gid = cpu_to_be32(from->di_gid);
707 	to->di_nlink = cpu_to_be32(from->di_nlink);
708 	to->di_projid = cpu_to_be16(from->di_projid);
709 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 	to->di_size = cpu_to_be64(from->di_size);
718 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 	to->di_extsize = cpu_to_be32(from->di_extsize);
720 	to->di_nextents = cpu_to_be32(from->di_nextents);
721 	to->di_anextents = cpu_to_be16(from->di_anextents);
722 	to->di_forkoff = from->di_forkoff;
723 	to->di_aformat = from->di_aformat;
724 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 	to->di_flags = cpu_to_be16(from->di_flags);
727 	to->di_gen = cpu_to_be32(from->di_gen);
728 }
729 
730 STATIC uint
731 _xfs_dic2xflags(
732 	__uint16_t		di_flags)
733 {
734 	uint			flags = 0;
735 
736 	if (di_flags & XFS_DIFLAG_ANY) {
737 		if (di_flags & XFS_DIFLAG_REALTIME)
738 			flags |= XFS_XFLAG_REALTIME;
739 		if (di_flags & XFS_DIFLAG_PREALLOC)
740 			flags |= XFS_XFLAG_PREALLOC;
741 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 			flags |= XFS_XFLAG_IMMUTABLE;
743 		if (di_flags & XFS_DIFLAG_APPEND)
744 			flags |= XFS_XFLAG_APPEND;
745 		if (di_flags & XFS_DIFLAG_SYNC)
746 			flags |= XFS_XFLAG_SYNC;
747 		if (di_flags & XFS_DIFLAG_NOATIME)
748 			flags |= XFS_XFLAG_NOATIME;
749 		if (di_flags & XFS_DIFLAG_NODUMP)
750 			flags |= XFS_XFLAG_NODUMP;
751 		if (di_flags & XFS_DIFLAG_RTINHERIT)
752 			flags |= XFS_XFLAG_RTINHERIT;
753 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 			flags |= XFS_XFLAG_PROJINHERIT;
755 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 			flags |= XFS_XFLAG_NOSYMLINKS;
757 		if (di_flags & XFS_DIFLAG_EXTSIZE)
758 			flags |= XFS_XFLAG_EXTSIZE;
759 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 			flags |= XFS_XFLAG_EXTSZINHERIT;
761 		if (di_flags & XFS_DIFLAG_NODEFRAG)
762 			flags |= XFS_XFLAG_NODEFRAG;
763 		if (di_flags & XFS_DIFLAG_FILESTREAM)
764 			flags |= XFS_XFLAG_FILESTREAM;
765 	}
766 
767 	return flags;
768 }
769 
770 uint
771 xfs_ip2xflags(
772 	xfs_inode_t		*ip)
773 {
774 	xfs_icdinode_t		*dic = &ip->i_d;
775 
776 	return _xfs_dic2xflags(dic->di_flags) |
777 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
778 }
779 
780 uint
781 xfs_dic2xflags(
782 	xfs_dinode_t		*dip)
783 {
784 	xfs_dinode_core_t	*dic = &dip->di_core;
785 
786 	return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
787 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
788 }
789 
790 /*
791  * Given a mount structure and an inode number, return a pointer
792  * to a newly allocated in-core inode corresponding to the given
793  * inode number.
794  *
795  * Initialize the inode's attributes and extent pointers if it
796  * already has them (it will not if the inode has no links).
797  */
798 int
799 xfs_iread(
800 	xfs_mount_t	*mp,
801 	xfs_trans_t	*tp,
802 	xfs_ino_t	ino,
803 	xfs_inode_t	**ipp,
804 	xfs_daddr_t	bno,
805 	uint		imap_flags)
806 {
807 	xfs_buf_t	*bp;
808 	xfs_dinode_t	*dip;
809 	xfs_inode_t	*ip;
810 	int		error;
811 
812 	ASSERT(xfs_inode_zone != NULL);
813 
814 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
815 	ip->i_ino = ino;
816 	ip->i_mount = mp;
817 	atomic_set(&ip->i_iocount, 0);
818 	spin_lock_init(&ip->i_flags_lock);
819 
820 	/*
821 	 * Get pointer's to the on-disk inode and the buffer containing it.
822 	 * If the inode number refers to a block outside the file system
823 	 * then xfs_itobp() will return NULL.  In this case we should
824 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
825 	 * know that this is a new incore inode.
826 	 */
827 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
828 	if (error) {
829 		kmem_zone_free(xfs_inode_zone, ip);
830 		return error;
831 	}
832 
833 	/*
834 	 * Initialize inode's trace buffers.
835 	 * Do this before xfs_iformat in case it adds entries.
836 	 */
837 #ifdef	XFS_INODE_TRACE
838 	ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
839 #endif
840 #ifdef XFS_BMAP_TRACE
841 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
842 #endif
843 #ifdef XFS_BMBT_TRACE
844 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
845 #endif
846 #ifdef XFS_RW_TRACE
847 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
848 #endif
849 #ifdef XFS_ILOCK_TRACE
850 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
851 #endif
852 #ifdef XFS_DIR2_TRACE
853 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
854 #endif
855 
856 	/*
857 	 * If we got something that isn't an inode it means someone
858 	 * (nfs or dmi) has a stale handle.
859 	 */
860 	if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
861 		kmem_zone_free(xfs_inode_zone, ip);
862 		xfs_trans_brelse(tp, bp);
863 #ifdef DEBUG
864 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
865 				"dip->di_core.di_magic (0x%x) != "
866 				"XFS_DINODE_MAGIC (0x%x)",
867 				be16_to_cpu(dip->di_core.di_magic),
868 				XFS_DINODE_MAGIC);
869 #endif /* DEBUG */
870 		return XFS_ERROR(EINVAL);
871 	}
872 
873 	/*
874 	 * If the on-disk inode is already linked to a directory
875 	 * entry, copy all of the inode into the in-core inode.
876 	 * xfs_iformat() handles copying in the inode format
877 	 * specific information.
878 	 * Otherwise, just get the truly permanent information.
879 	 */
880 	if (dip->di_core.di_mode) {
881 		xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
882 		error = xfs_iformat(ip, dip);
883 		if (error)  {
884 			kmem_zone_free(xfs_inode_zone, ip);
885 			xfs_trans_brelse(tp, bp);
886 #ifdef DEBUG
887 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
888 					"xfs_iformat() returned error %d",
889 					error);
890 #endif /* DEBUG */
891 			return error;
892 		}
893 	} else {
894 		ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
895 		ip->i_d.di_version = dip->di_core.di_version;
896 		ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
897 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
898 		/*
899 		 * Make sure to pull in the mode here as well in
900 		 * case the inode is released without being used.
901 		 * This ensures that xfs_inactive() will see that
902 		 * the inode is already free and not try to mess
903 		 * with the uninitialized part of it.
904 		 */
905 		ip->i_d.di_mode = 0;
906 		/*
907 		 * Initialize the per-fork minima and maxima for a new
908 		 * inode here.  xfs_iformat will do it for old inodes.
909 		 */
910 		ip->i_df.if_ext_max =
911 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
912 	}
913 
914 	INIT_LIST_HEAD(&ip->i_reclaim);
915 
916 	/*
917 	 * The inode format changed when we moved the link count and
918 	 * made it 32 bits long.  If this is an old format inode,
919 	 * convert it in memory to look like a new one.  If it gets
920 	 * flushed to disk we will convert back before flushing or
921 	 * logging it.  We zero out the new projid field and the old link
922 	 * count field.  We'll handle clearing the pad field (the remains
923 	 * of the old uuid field) when we actually convert the inode to
924 	 * the new format. We don't change the version number so that we
925 	 * can distinguish this from a real new format inode.
926 	 */
927 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
928 		ip->i_d.di_nlink = ip->i_d.di_onlink;
929 		ip->i_d.di_onlink = 0;
930 		ip->i_d.di_projid = 0;
931 	}
932 
933 	ip->i_delayed_blks = 0;
934 	ip->i_size = ip->i_d.di_size;
935 
936 	/*
937 	 * Mark the buffer containing the inode as something to keep
938 	 * around for a while.  This helps to keep recently accessed
939 	 * meta-data in-core longer.
940 	 */
941 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
942 
943 	/*
944 	 * Use xfs_trans_brelse() to release the buffer containing the
945 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
947 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
948 	 * will only release the buffer if it is not dirty within the
949 	 * transaction.  It will be OK to release the buffer in this case,
950 	 * because inodes on disk are never destroyed and we will be
951 	 * locking the new in-core inode before putting it in the hash
952 	 * table where other processes can find it.  Thus we don't have
953 	 * to worry about the inode being changed just because we released
954 	 * the buffer.
955 	 */
956 	xfs_trans_brelse(tp, bp);
957 	*ipp = ip;
958 	return 0;
959 }
960 
961 /*
962  * Read in extents from a btree-format inode.
963  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
964  */
965 int
966 xfs_iread_extents(
967 	xfs_trans_t	*tp,
968 	xfs_inode_t	*ip,
969 	int		whichfork)
970 {
971 	int		error;
972 	xfs_ifork_t	*ifp;
973 	xfs_extnum_t	nextents;
974 	size_t		size;
975 
976 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
977 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
978 				 ip->i_mount);
979 		return XFS_ERROR(EFSCORRUPTED);
980 	}
981 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
982 	size = nextents * sizeof(xfs_bmbt_rec_t);
983 	ifp = XFS_IFORK_PTR(ip, whichfork);
984 
985 	/*
986 	 * We know that the size is valid (it's checked in iformat_btree)
987 	 */
988 	ifp->if_lastex = NULLEXTNUM;
989 	ifp->if_bytes = ifp->if_real_bytes = 0;
990 	ifp->if_flags |= XFS_IFEXTENTS;
991 	xfs_iext_add(ifp, 0, nextents);
992 	error = xfs_bmap_read_extents(tp, ip, whichfork);
993 	if (error) {
994 		xfs_iext_destroy(ifp);
995 		ifp->if_flags &= ~XFS_IFEXTENTS;
996 		return error;
997 	}
998 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
999 	return 0;
1000 }
1001 
1002 /*
1003  * Allocate an inode on disk and return a copy of its in-core version.
1004  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1005  * appropriately within the inode.  The uid and gid for the inode are
1006  * set according to the contents of the given cred structure.
1007  *
1008  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009  * has a free inode available, call xfs_iget()
1010  * to obtain the in-core version of the allocated inode.  Finally,
1011  * fill in the inode and log its initial contents.  In this case,
1012  * ialloc_context would be set to NULL and call_again set to false.
1013  *
1014  * If xfs_dialloc() does not have an available inode,
1015  * it will replenish its supply by doing an allocation. Since we can
1016  * only do one allocation within a transaction without deadlocks, we
1017  * must commit the current transaction before returning the inode itself.
1018  * In this case, therefore, we will set call_again to true and return.
1019  * The caller should then commit the current transaction, start a new
1020  * transaction, and call xfs_ialloc() again to actually get the inode.
1021  *
1022  * To ensure that some other process does not grab the inode that
1023  * was allocated during the first call to xfs_ialloc(), this routine
1024  * also returns the [locked] bp pointing to the head of the freelist
1025  * as ialloc_context.  The caller should hold this buffer across
1026  * the commit and pass it back into this routine on the second call.
1027  *
1028  * If we are allocating quota inodes, we do not have a parent inode
1029  * to attach to or associate with (i.e. pip == NULL) because they
1030  * are not linked into the directory structure - they are attached
1031  * directly to the superblock - and so have no parent.
1032  */
1033 int
1034 xfs_ialloc(
1035 	xfs_trans_t	*tp,
1036 	xfs_inode_t	*pip,
1037 	mode_t		mode,
1038 	xfs_nlink_t	nlink,
1039 	xfs_dev_t	rdev,
1040 	cred_t		*cr,
1041 	xfs_prid_t	prid,
1042 	int		okalloc,
1043 	xfs_buf_t	**ialloc_context,
1044 	boolean_t	*call_again,
1045 	xfs_inode_t	**ipp)
1046 {
1047 	xfs_ino_t	ino;
1048 	xfs_inode_t	*ip;
1049 	bhv_vnode_t	*vp;
1050 	uint		flags;
1051 	int		error;
1052 
1053 	/*
1054 	 * Call the space management code to pick
1055 	 * the on-disk inode to be allocated.
1056 	 */
1057 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1058 			    ialloc_context, call_again, &ino);
1059 	if (error != 0) {
1060 		return error;
1061 	}
1062 	if (*call_again || ino == NULLFSINO) {
1063 		*ipp = NULL;
1064 		return 0;
1065 	}
1066 	ASSERT(*ialloc_context == NULL);
1067 
1068 	/*
1069 	 * Get the in-core inode with the lock held exclusively.
1070 	 * This is because we're setting fields here we need
1071 	 * to prevent others from looking at until we're done.
1072 	 */
1073 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1074 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1075 	if (error != 0) {
1076 		return error;
1077 	}
1078 	ASSERT(ip != NULL);
1079 
1080 	vp = XFS_ITOV(ip);
1081 	ip->i_d.di_mode = (__uint16_t)mode;
1082 	ip->i_d.di_onlink = 0;
1083 	ip->i_d.di_nlink = nlink;
1084 	ASSERT(ip->i_d.di_nlink == nlink);
1085 	ip->i_d.di_uid = current_fsuid(cr);
1086 	ip->i_d.di_gid = current_fsgid(cr);
1087 	ip->i_d.di_projid = prid;
1088 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1089 
1090 	/*
1091 	 * If the superblock version is up to where we support new format
1092 	 * inodes and this is currently an old format inode, then change
1093 	 * the inode version number now.  This way we only do the conversion
1094 	 * here rather than here and in the flush/logging code.
1095 	 */
1096 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1097 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1098 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1099 		/*
1100 		 * We've already zeroed the old link count, the projid field,
1101 		 * and the pad field.
1102 		 */
1103 	}
1104 
1105 	/*
1106 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1107 	 */
1108 	if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1109 		xfs_bump_ino_vers2(tp, ip);
1110 
1111 	if (pip && XFS_INHERIT_GID(pip)) {
1112 		ip->i_d.di_gid = pip->i_d.di_gid;
1113 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1114 			ip->i_d.di_mode |= S_ISGID;
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * If the group ID of the new file does not match the effective group
1120 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1121 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1122 	 */
1123 	if ((irix_sgid_inherit) &&
1124 	    (ip->i_d.di_mode & S_ISGID) &&
1125 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1126 		ip->i_d.di_mode &= ~S_ISGID;
1127 	}
1128 
1129 	ip->i_d.di_size = 0;
1130 	ip->i_size = 0;
1131 	ip->i_d.di_nextents = 0;
1132 	ASSERT(ip->i_d.di_nblocks == 0);
1133 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1134 	/*
1135 	 * di_gen will have been taken care of in xfs_iread.
1136 	 */
1137 	ip->i_d.di_extsize = 0;
1138 	ip->i_d.di_dmevmask = 0;
1139 	ip->i_d.di_dmstate = 0;
1140 	ip->i_d.di_flags = 0;
1141 	flags = XFS_ILOG_CORE;
1142 	switch (mode & S_IFMT) {
1143 	case S_IFIFO:
1144 	case S_IFCHR:
1145 	case S_IFBLK:
1146 	case S_IFSOCK:
1147 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1148 		ip->i_df.if_u2.if_rdev = rdev;
1149 		ip->i_df.if_flags = 0;
1150 		flags |= XFS_ILOG_DEV;
1151 		break;
1152 	case S_IFREG:
1153 		if (pip && xfs_inode_is_filestream(pip)) {
1154 			error = xfs_filestream_associate(pip, ip);
1155 			if (error < 0)
1156 				return -error;
1157 			if (!error)
1158 				xfs_iflags_set(ip, XFS_IFILESTREAM);
1159 		}
1160 		/* fall through */
1161 	case S_IFDIR:
1162 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1163 			uint	di_flags = 0;
1164 
1165 			if ((mode & S_IFMT) == S_IFDIR) {
1166 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1167 					di_flags |= XFS_DIFLAG_RTINHERIT;
1168 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1169 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1170 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1171 				}
1172 			} else if ((mode & S_IFMT) == S_IFREG) {
1173 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1174 					di_flags |= XFS_DIFLAG_REALTIME;
1175 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1176 					di_flags |= XFS_DIFLAG_EXTSIZE;
1177 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1178 				}
1179 			}
1180 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1181 			    xfs_inherit_noatime)
1182 				di_flags |= XFS_DIFLAG_NOATIME;
1183 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1184 			    xfs_inherit_nodump)
1185 				di_flags |= XFS_DIFLAG_NODUMP;
1186 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1187 			    xfs_inherit_sync)
1188 				di_flags |= XFS_DIFLAG_SYNC;
1189 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1190 			    xfs_inherit_nosymlinks)
1191 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1192 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1193 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1194 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1195 			    xfs_inherit_nodefrag)
1196 				di_flags |= XFS_DIFLAG_NODEFRAG;
1197 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1198 				di_flags |= XFS_DIFLAG_FILESTREAM;
1199 			ip->i_d.di_flags |= di_flags;
1200 		}
1201 		/* FALLTHROUGH */
1202 	case S_IFLNK:
1203 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1204 		ip->i_df.if_flags = XFS_IFEXTENTS;
1205 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1206 		ip->i_df.if_u1.if_extents = NULL;
1207 		break;
1208 	default:
1209 		ASSERT(0);
1210 	}
1211 	/*
1212 	 * Attribute fork settings for new inode.
1213 	 */
1214 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1215 	ip->i_d.di_anextents = 0;
1216 
1217 	/*
1218 	 * Log the new values stuffed into the inode.
1219 	 */
1220 	xfs_trans_log_inode(tp, ip, flags);
1221 
1222 	/* now that we have an i_mode we can setup inode ops and unlock */
1223 	xfs_initialize_vnode(tp->t_mountp, vp, ip);
1224 
1225 	*ipp = ip;
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Check to make sure that there are no blocks allocated to the
1231  * file beyond the size of the file.  We don't check this for
1232  * files with fixed size extents or real time extents, but we
1233  * at least do it for regular files.
1234  */
1235 #ifdef DEBUG
1236 void
1237 xfs_isize_check(
1238 	xfs_mount_t	*mp,
1239 	xfs_inode_t	*ip,
1240 	xfs_fsize_t	isize)
1241 {
1242 	xfs_fileoff_t	map_first;
1243 	int		nimaps;
1244 	xfs_bmbt_irec_t	imaps[2];
1245 
1246 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1247 		return;
1248 
1249 	if (XFS_IS_REALTIME_INODE(ip))
1250 		return;
1251 
1252 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1253 		return;
1254 
1255 	nimaps = 2;
1256 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1257 	/*
1258 	 * The filesystem could be shutting down, so bmapi may return
1259 	 * an error.
1260 	 */
1261 	if (xfs_bmapi(NULL, ip, map_first,
1262 			 (XFS_B_TO_FSB(mp,
1263 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1264 			  map_first),
1265 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1266 			 NULL, NULL))
1267 	    return;
1268 	ASSERT(nimaps == 1);
1269 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1270 }
1271 #endif	/* DEBUG */
1272 
1273 /*
1274  * Calculate the last possible buffered byte in a file.  This must
1275  * include data that was buffered beyond the EOF by the write code.
1276  * This also needs to deal with overflowing the xfs_fsize_t type
1277  * which can happen for sizes near the limit.
1278  *
1279  * We also need to take into account any blocks beyond the EOF.  It
1280  * may be the case that they were buffered by a write which failed.
1281  * In that case the pages will still be in memory, but the inode size
1282  * will never have been updated.
1283  */
1284 xfs_fsize_t
1285 xfs_file_last_byte(
1286 	xfs_inode_t	*ip)
1287 {
1288 	xfs_mount_t	*mp;
1289 	xfs_fsize_t	last_byte;
1290 	xfs_fileoff_t	last_block;
1291 	xfs_fileoff_t	size_last_block;
1292 	int		error;
1293 
1294 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1295 
1296 	mp = ip->i_mount;
1297 	/*
1298 	 * Only check for blocks beyond the EOF if the extents have
1299 	 * been read in.  This eliminates the need for the inode lock,
1300 	 * and it also saves us from looking when it really isn't
1301 	 * necessary.
1302 	 */
1303 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1304 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1305 			XFS_DATA_FORK);
1306 		if (error) {
1307 			last_block = 0;
1308 		}
1309 	} else {
1310 		last_block = 0;
1311 	}
1312 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1313 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1314 
1315 	last_byte = XFS_FSB_TO_B(mp, last_block);
1316 	if (last_byte < 0) {
1317 		return XFS_MAXIOFFSET(mp);
1318 	}
1319 	last_byte += (1 << mp->m_writeio_log);
1320 	if (last_byte < 0) {
1321 		return XFS_MAXIOFFSET(mp);
1322 	}
1323 	return last_byte;
1324 }
1325 
1326 #if defined(XFS_RW_TRACE)
1327 STATIC void
1328 xfs_itrunc_trace(
1329 	int		tag,
1330 	xfs_inode_t	*ip,
1331 	int		flag,
1332 	xfs_fsize_t	new_size,
1333 	xfs_off_t	toss_start,
1334 	xfs_off_t	toss_finish)
1335 {
1336 	if (ip->i_rwtrace == NULL) {
1337 		return;
1338 	}
1339 
1340 	ktrace_enter(ip->i_rwtrace,
1341 		     (void*)((long)tag),
1342 		     (void*)ip,
1343 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1344 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1345 		     (void*)((long)flag),
1346 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1347 		     (void*)(unsigned long)(new_size & 0xffffffff),
1348 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1349 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1350 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1351 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1352 		     (void*)(unsigned long)current_cpu(),
1353 		     (void*)(unsigned long)current_pid(),
1354 		     (void*)NULL,
1355 		     (void*)NULL,
1356 		     (void*)NULL);
1357 }
1358 #else
1359 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1360 #endif
1361 
1362 /*
1363  * Start the truncation of the file to new_size.  The new size
1364  * must be smaller than the current size.  This routine will
1365  * clear the buffer and page caches of file data in the removed
1366  * range, and xfs_itruncate_finish() will remove the underlying
1367  * disk blocks.
1368  *
1369  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1370  * must NOT have the inode lock held at all.  This is because we're
1371  * calling into the buffer/page cache code and we can't hold the
1372  * inode lock when we do so.
1373  *
1374  * We need to wait for any direct I/Os in flight to complete before we
1375  * proceed with the truncate. This is needed to prevent the extents
1376  * being read or written by the direct I/Os from being removed while the
1377  * I/O is in flight as there is no other method of synchronising
1378  * direct I/O with the truncate operation.  Also, because we hold
1379  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1380  * started until the truncate completes and drops the lock. Essentially,
1381  * the vn_iowait() call forms an I/O barrier that provides strict ordering
1382  * between direct I/Os and the truncate operation.
1383  *
1384  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1385  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1386  * in the case that the caller is locking things out of order and
1387  * may not be able to call xfs_itruncate_finish() with the inode lock
1388  * held without dropping the I/O lock.  If the caller must drop the
1389  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1390  * must be called again with all the same restrictions as the initial
1391  * call.
1392  */
1393 int
1394 xfs_itruncate_start(
1395 	xfs_inode_t	*ip,
1396 	uint		flags,
1397 	xfs_fsize_t	new_size)
1398 {
1399 	xfs_fsize_t	last_byte;
1400 	xfs_off_t	toss_start;
1401 	xfs_mount_t	*mp;
1402 	bhv_vnode_t	*vp;
1403 	int		error = 0;
1404 
1405 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1406 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1407 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1408 	       (flags == XFS_ITRUNC_MAYBE));
1409 
1410 	mp = ip->i_mount;
1411 	vp = XFS_ITOV(ip);
1412 
1413 	/* wait for the completion of any pending DIOs */
1414 	if (new_size < ip->i_size)
1415 		vn_iowait(ip);
1416 
1417 	/*
1418 	 * Call toss_pages or flushinval_pages to get rid of pages
1419 	 * overlapping the region being removed.  We have to use
1420 	 * the less efficient flushinval_pages in the case that the
1421 	 * caller may not be able to finish the truncate without
1422 	 * dropping the inode's I/O lock.  Make sure
1423 	 * to catch any pages brought in by buffers overlapping
1424 	 * the EOF by searching out beyond the isize by our
1425 	 * block size. We round new_size up to a block boundary
1426 	 * so that we don't toss things on the same block as
1427 	 * new_size but before it.
1428 	 *
1429 	 * Before calling toss_page or flushinval_pages, make sure to
1430 	 * call remapf() over the same region if the file is mapped.
1431 	 * This frees up mapped file references to the pages in the
1432 	 * given range and for the flushinval_pages case it ensures
1433 	 * that we get the latest mapped changes flushed out.
1434 	 */
1435 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1436 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1437 	if (toss_start < 0) {
1438 		/*
1439 		 * The place to start tossing is beyond our maximum
1440 		 * file size, so there is no way that the data extended
1441 		 * out there.
1442 		 */
1443 		return 0;
1444 	}
1445 	last_byte = xfs_file_last_byte(ip);
1446 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1447 			 last_byte);
1448 	if (last_byte > toss_start) {
1449 		if (flags & XFS_ITRUNC_DEFINITE) {
1450 			xfs_tosspages(ip, toss_start,
1451 					-1, FI_REMAPF_LOCKED);
1452 		} else {
1453 			error = xfs_flushinval_pages(ip, toss_start,
1454 					-1, FI_REMAPF_LOCKED);
1455 		}
1456 	}
1457 
1458 #ifdef DEBUG
1459 	if (new_size == 0) {
1460 		ASSERT(VN_CACHED(vp) == 0);
1461 	}
1462 #endif
1463 	return error;
1464 }
1465 
1466 /*
1467  * Shrink the file to the given new_size.  The new size must be smaller than
1468  * the current size.  This will free up the underlying blocks in the removed
1469  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1470  *
1471  * The transaction passed to this routine must have made a permanent log
1472  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1473  * given transaction and start new ones, so make sure everything involved in
1474  * the transaction is tidy before calling here.  Some transaction will be
1475  * returned to the caller to be committed.  The incoming transaction must
1476  * already include the inode, and both inode locks must be held exclusively.
1477  * The inode must also be "held" within the transaction.  On return the inode
1478  * will be "held" within the returned transaction.  This routine does NOT
1479  * require any disk space to be reserved for it within the transaction.
1480  *
1481  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1482  * indicates the fork which is to be truncated.  For the attribute fork we only
1483  * support truncation to size 0.
1484  *
1485  * We use the sync parameter to indicate whether or not the first transaction
1486  * we perform might have to be synchronous.  For the attr fork, it needs to be
1487  * so if the unlink of the inode is not yet known to be permanent in the log.
1488  * This keeps us from freeing and reusing the blocks of the attribute fork
1489  * before the unlink of the inode becomes permanent.
1490  *
1491  * For the data fork, we normally have to run synchronously if we're being
1492  * called out of the inactive path or we're being called out of the create path
1493  * where we're truncating an existing file.  Either way, the truncate needs to
1494  * be sync so blocks don't reappear in the file with altered data in case of a
1495  * crash.  wsync filesystems can run the first case async because anything that
1496  * shrinks the inode has to run sync so by the time we're called here from
1497  * inactive, the inode size is permanently set to 0.
1498  *
1499  * Calls from the truncate path always need to be sync unless we're in a wsync
1500  * filesystem and the file has already been unlinked.
1501  *
1502  * The caller is responsible for correctly setting the sync parameter.  It gets
1503  * too hard for us to guess here which path we're being called out of just
1504  * based on inode state.
1505  *
1506  * If we get an error, we must return with the inode locked and linked into the
1507  * current transaction. This keeps things simple for the higher level code,
1508  * because it always knows that the inode is locked and held in the transaction
1509  * that returns to it whether errors occur or not.  We don't mark the inode
1510  * dirty on error so that transactions can be easily aborted if possible.
1511  */
1512 int
1513 xfs_itruncate_finish(
1514 	xfs_trans_t	**tp,
1515 	xfs_inode_t	*ip,
1516 	xfs_fsize_t	new_size,
1517 	int		fork,
1518 	int		sync)
1519 {
1520 	xfs_fsblock_t	first_block;
1521 	xfs_fileoff_t	first_unmap_block;
1522 	xfs_fileoff_t	last_block;
1523 	xfs_filblks_t	unmap_len=0;
1524 	xfs_mount_t	*mp;
1525 	xfs_trans_t	*ntp;
1526 	int		done;
1527 	int		committed;
1528 	xfs_bmap_free_t	free_list;
1529 	int		error;
1530 
1531 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1532 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1533 	ASSERT(*tp != NULL);
1534 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1535 	ASSERT(ip->i_transp == *tp);
1536 	ASSERT(ip->i_itemp != NULL);
1537 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1538 
1539 
1540 	ntp = *tp;
1541 	mp = (ntp)->t_mountp;
1542 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1543 
1544 	/*
1545 	 * We only support truncating the entire attribute fork.
1546 	 */
1547 	if (fork == XFS_ATTR_FORK) {
1548 		new_size = 0LL;
1549 	}
1550 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1551 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1552 	/*
1553 	 * The first thing we do is set the size to new_size permanently
1554 	 * on disk.  This way we don't have to worry about anyone ever
1555 	 * being able to look at the data being freed even in the face
1556 	 * of a crash.  What we're getting around here is the case where
1557 	 * we free a block, it is allocated to another file, it is written
1558 	 * to, and then we crash.  If the new data gets written to the
1559 	 * file but the log buffers containing the free and reallocation
1560 	 * don't, then we'd end up with garbage in the blocks being freed.
1561 	 * As long as we make the new_size permanent before actually
1562 	 * freeing any blocks it doesn't matter if they get writtten to.
1563 	 *
1564 	 * The callers must signal into us whether or not the size
1565 	 * setting here must be synchronous.  There are a few cases
1566 	 * where it doesn't have to be synchronous.  Those cases
1567 	 * occur if the file is unlinked and we know the unlink is
1568 	 * permanent or if the blocks being truncated are guaranteed
1569 	 * to be beyond the inode eof (regardless of the link count)
1570 	 * and the eof value is permanent.  Both of these cases occur
1571 	 * only on wsync-mounted filesystems.  In those cases, we're
1572 	 * guaranteed that no user will ever see the data in the blocks
1573 	 * that are being truncated so the truncate can run async.
1574 	 * In the free beyond eof case, the file may wind up with
1575 	 * more blocks allocated to it than it needs if we crash
1576 	 * and that won't get fixed until the next time the file
1577 	 * is re-opened and closed but that's ok as that shouldn't
1578 	 * be too many blocks.
1579 	 *
1580 	 * However, we can't just make all wsync xactions run async
1581 	 * because there's one call out of the create path that needs
1582 	 * to run sync where it's truncating an existing file to size
1583 	 * 0 whose size is > 0.
1584 	 *
1585 	 * It's probably possible to come up with a test in this
1586 	 * routine that would correctly distinguish all the above
1587 	 * cases from the values of the function parameters and the
1588 	 * inode state but for sanity's sake, I've decided to let the
1589 	 * layers above just tell us.  It's simpler to correctly figure
1590 	 * out in the layer above exactly under what conditions we
1591 	 * can run async and I think it's easier for others read and
1592 	 * follow the logic in case something has to be changed.
1593 	 * cscope is your friend -- rcc.
1594 	 *
1595 	 * The attribute fork is much simpler.
1596 	 *
1597 	 * For the attribute fork we allow the caller to tell us whether
1598 	 * the unlink of the inode that led to this call is yet permanent
1599 	 * in the on disk log.  If it is not and we will be freeing extents
1600 	 * in this inode then we make the first transaction synchronous
1601 	 * to make sure that the unlink is permanent by the time we free
1602 	 * the blocks.
1603 	 */
1604 	if (fork == XFS_DATA_FORK) {
1605 		if (ip->i_d.di_nextents > 0) {
1606 			/*
1607 			 * If we are not changing the file size then do
1608 			 * not update the on-disk file size - we may be
1609 			 * called from xfs_inactive_free_eofblocks().  If we
1610 			 * update the on-disk file size and then the system
1611 			 * crashes before the contents of the file are
1612 			 * flushed to disk then the files may be full of
1613 			 * holes (ie NULL files bug).
1614 			 */
1615 			if (ip->i_size != new_size) {
1616 				ip->i_d.di_size = new_size;
1617 				ip->i_size = new_size;
1618 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1619 			}
1620 		}
1621 	} else if (sync) {
1622 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1623 		if (ip->i_d.di_anextents > 0)
1624 			xfs_trans_set_sync(ntp);
1625 	}
1626 	ASSERT(fork == XFS_DATA_FORK ||
1627 		(fork == XFS_ATTR_FORK &&
1628 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1629 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1630 
1631 	/*
1632 	 * Since it is possible for space to become allocated beyond
1633 	 * the end of the file (in a crash where the space is allocated
1634 	 * but the inode size is not yet updated), simply remove any
1635 	 * blocks which show up between the new EOF and the maximum
1636 	 * possible file size.  If the first block to be removed is
1637 	 * beyond the maximum file size (ie it is the same as last_block),
1638 	 * then there is nothing to do.
1639 	 */
1640 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1641 	ASSERT(first_unmap_block <= last_block);
1642 	done = 0;
1643 	if (last_block == first_unmap_block) {
1644 		done = 1;
1645 	} else {
1646 		unmap_len = last_block - first_unmap_block + 1;
1647 	}
1648 	while (!done) {
1649 		/*
1650 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1651 		 * will tell us whether it freed the entire range or
1652 		 * not.  If this is a synchronous mount (wsync),
1653 		 * then we can tell bunmapi to keep all the
1654 		 * transactions asynchronous since the unlink
1655 		 * transaction that made this inode inactive has
1656 		 * already hit the disk.  There's no danger of
1657 		 * the freed blocks being reused, there being a
1658 		 * crash, and the reused blocks suddenly reappearing
1659 		 * in this file with garbage in them once recovery
1660 		 * runs.
1661 		 */
1662 		XFS_BMAP_INIT(&free_list, &first_block);
1663 		error = xfs_bunmapi(ntp, ip,
1664 				    first_unmap_block, unmap_len,
1665 				    XFS_BMAPI_AFLAG(fork) |
1666 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1667 				    XFS_ITRUNC_MAX_EXTENTS,
1668 				    &first_block, &free_list,
1669 				    NULL, &done);
1670 		if (error) {
1671 			/*
1672 			 * If the bunmapi call encounters an error,
1673 			 * return to the caller where the transaction
1674 			 * can be properly aborted.  We just need to
1675 			 * make sure we're not holding any resources
1676 			 * that we were not when we came in.
1677 			 */
1678 			xfs_bmap_cancel(&free_list);
1679 			return error;
1680 		}
1681 
1682 		/*
1683 		 * Duplicate the transaction that has the permanent
1684 		 * reservation and commit the old transaction.
1685 		 */
1686 		error = xfs_bmap_finish(tp, &free_list, &committed);
1687 		ntp = *tp;
1688 		if (committed) {
1689 			/* link the inode into the next xact in the chain */
1690 			xfs_trans_ijoin(ntp, ip,
1691 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1692 			xfs_trans_ihold(ntp, ip);
1693 		}
1694 
1695 		if (error) {
1696 			/*
1697 			 * If the bmap finish call encounters an error, return
1698 			 * to the caller where the transaction can be properly
1699 			 * aborted.  We just need to make sure we're not
1700 			 * holding any resources that we were not when we came
1701 			 * in.
1702 			 *
1703 			 * Aborting from this point might lose some blocks in
1704 			 * the file system, but oh well.
1705 			 */
1706 			xfs_bmap_cancel(&free_list);
1707 			return error;
1708 		}
1709 
1710 		if (committed) {
1711 			/*
1712 			 * Mark the inode dirty so it will be logged and
1713 			 * moved forward in the log as part of every commit.
1714 			 */
1715 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1716 		}
1717 
1718 		ntp = xfs_trans_dup(ntp);
1719 		error = xfs_trans_commit(*tp, 0);
1720 		*tp = ntp;
1721 
1722 		/* link the inode into the next transaction in the chain */
1723 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1724 		xfs_trans_ihold(ntp, ip);
1725 
1726 		if (!error)
1727 			error = xfs_trans_reserve(ntp, 0,
1728 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1729 					XFS_TRANS_PERM_LOG_RES,
1730 					XFS_ITRUNCATE_LOG_COUNT);
1731 		if (error)
1732 			return error;
1733 	}
1734 	/*
1735 	 * Only update the size in the case of the data fork, but
1736 	 * always re-log the inode so that our permanent transaction
1737 	 * can keep on rolling it forward in the log.
1738 	 */
1739 	if (fork == XFS_DATA_FORK) {
1740 		xfs_isize_check(mp, ip, new_size);
1741 		/*
1742 		 * If we are not changing the file size then do
1743 		 * not update the on-disk file size - we may be
1744 		 * called from xfs_inactive_free_eofblocks().  If we
1745 		 * update the on-disk file size and then the system
1746 		 * crashes before the contents of the file are
1747 		 * flushed to disk then the files may be full of
1748 		 * holes (ie NULL files bug).
1749 		 */
1750 		if (ip->i_size != new_size) {
1751 			ip->i_d.di_size = new_size;
1752 			ip->i_size = new_size;
1753 		}
1754 	}
1755 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1756 	ASSERT((new_size != 0) ||
1757 	       (fork == XFS_ATTR_FORK) ||
1758 	       (ip->i_delayed_blks == 0));
1759 	ASSERT((new_size != 0) ||
1760 	       (fork == XFS_ATTR_FORK) ||
1761 	       (ip->i_d.di_nextents == 0));
1762 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1763 	return 0;
1764 }
1765 
1766 
1767 /*
1768  * xfs_igrow_start
1769  *
1770  * Do the first part of growing a file: zero any data in the last
1771  * block that is beyond the old EOF.  We need to do this before
1772  * the inode is joined to the transaction to modify the i_size.
1773  * That way we can drop the inode lock and call into the buffer
1774  * cache to get the buffer mapping the EOF.
1775  */
1776 int
1777 xfs_igrow_start(
1778 	xfs_inode_t	*ip,
1779 	xfs_fsize_t	new_size,
1780 	cred_t		*credp)
1781 {
1782 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1783 	ASSERT(new_size > ip->i_size);
1784 
1785 	/*
1786 	 * Zero any pages that may have been created by
1787 	 * xfs_write_file() beyond the end of the file
1788 	 * and any blocks between the old and new file sizes.
1789 	 */
1790 	return xfs_zero_eof(ip, new_size, ip->i_size);
1791 }
1792 
1793 /*
1794  * xfs_igrow_finish
1795  *
1796  * This routine is called to extend the size of a file.
1797  * The inode must have both the iolock and the ilock locked
1798  * for update and it must be a part of the current transaction.
1799  * The xfs_igrow_start() function must have been called previously.
1800  * If the change_flag is not zero, the inode change timestamp will
1801  * be updated.
1802  */
1803 void
1804 xfs_igrow_finish(
1805 	xfs_trans_t	*tp,
1806 	xfs_inode_t	*ip,
1807 	xfs_fsize_t	new_size,
1808 	int		change_flag)
1809 {
1810 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1811 	ASSERT(ip->i_transp == tp);
1812 	ASSERT(new_size > ip->i_size);
1813 
1814 	/*
1815 	 * Update the file size.  Update the inode change timestamp
1816 	 * if change_flag set.
1817 	 */
1818 	ip->i_d.di_size = new_size;
1819 	ip->i_size = new_size;
1820 	if (change_flag)
1821 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1822 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1823 
1824 }
1825 
1826 
1827 /*
1828  * This is called when the inode's link count goes to 0.
1829  * We place the on-disk inode on a list in the AGI.  It
1830  * will be pulled from this list when the inode is freed.
1831  */
1832 int
1833 xfs_iunlink(
1834 	xfs_trans_t	*tp,
1835 	xfs_inode_t	*ip)
1836 {
1837 	xfs_mount_t	*mp;
1838 	xfs_agi_t	*agi;
1839 	xfs_dinode_t	*dip;
1840 	xfs_buf_t	*agibp;
1841 	xfs_buf_t	*ibp;
1842 	xfs_agnumber_t	agno;
1843 	xfs_daddr_t	agdaddr;
1844 	xfs_agino_t	agino;
1845 	short		bucket_index;
1846 	int		offset;
1847 	int		error;
1848 	int		agi_ok;
1849 
1850 	ASSERT(ip->i_d.di_nlink == 0);
1851 	ASSERT(ip->i_d.di_mode != 0);
1852 	ASSERT(ip->i_transp == tp);
1853 
1854 	mp = tp->t_mountp;
1855 
1856 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1857 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1858 
1859 	/*
1860 	 * Get the agi buffer first.  It ensures lock ordering
1861 	 * on the list.
1862 	 */
1863 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1864 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1865 	if (error)
1866 		return error;
1867 
1868 	/*
1869 	 * Validate the magic number of the agi block.
1870 	 */
1871 	agi = XFS_BUF_TO_AGI(agibp);
1872 	agi_ok =
1873 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1874 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1875 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1876 			XFS_RANDOM_IUNLINK))) {
1877 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1878 		xfs_trans_brelse(tp, agibp);
1879 		return XFS_ERROR(EFSCORRUPTED);
1880 	}
1881 	/*
1882 	 * Get the index into the agi hash table for the
1883 	 * list this inode will go on.
1884 	 */
1885 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1886 	ASSERT(agino != 0);
1887 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1888 	ASSERT(agi->agi_unlinked[bucket_index]);
1889 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1890 
1891 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1892 		/*
1893 		 * There is already another inode in the bucket we need
1894 		 * to add ourselves to.  Add us at the front of the list.
1895 		 * Here we put the head pointer into our next pointer,
1896 		 * and then we fall through to point the head at us.
1897 		 */
1898 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1899 		if (error)
1900 			return error;
1901 
1902 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1903 		/* both on-disk, don't endian flip twice */
1904 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1905 		offset = ip->i_boffset +
1906 			offsetof(xfs_dinode_t, di_next_unlinked);
1907 		xfs_trans_inode_buf(tp, ibp);
1908 		xfs_trans_log_buf(tp, ibp, offset,
1909 				  (offset + sizeof(xfs_agino_t) - 1));
1910 		xfs_inobp_check(mp, ibp);
1911 	}
1912 
1913 	/*
1914 	 * Point the bucket head pointer at the inode being inserted.
1915 	 */
1916 	ASSERT(agino != 0);
1917 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1918 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1919 		(sizeof(xfs_agino_t) * bucket_index);
1920 	xfs_trans_log_buf(tp, agibp, offset,
1921 			  (offset + sizeof(xfs_agino_t) - 1));
1922 	return 0;
1923 }
1924 
1925 /*
1926  * Pull the on-disk inode from the AGI unlinked list.
1927  */
1928 STATIC int
1929 xfs_iunlink_remove(
1930 	xfs_trans_t	*tp,
1931 	xfs_inode_t	*ip)
1932 {
1933 	xfs_ino_t	next_ino;
1934 	xfs_mount_t	*mp;
1935 	xfs_agi_t	*agi;
1936 	xfs_dinode_t	*dip;
1937 	xfs_buf_t	*agibp;
1938 	xfs_buf_t	*ibp;
1939 	xfs_agnumber_t	agno;
1940 	xfs_daddr_t	agdaddr;
1941 	xfs_agino_t	agino;
1942 	xfs_agino_t	next_agino;
1943 	xfs_buf_t	*last_ibp;
1944 	xfs_dinode_t	*last_dip = NULL;
1945 	short		bucket_index;
1946 	int		offset, last_offset = 0;
1947 	int		error;
1948 	int		agi_ok;
1949 
1950 	/*
1951 	 * First pull the on-disk inode from the AGI unlinked list.
1952 	 */
1953 	mp = tp->t_mountp;
1954 
1955 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1956 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1957 
1958 	/*
1959 	 * Get the agi buffer first.  It ensures lock ordering
1960 	 * on the list.
1961 	 */
1962 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1963 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1964 	if (error) {
1965 		cmn_err(CE_WARN,
1966 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1967 			error, mp->m_fsname);
1968 		return error;
1969 	}
1970 	/*
1971 	 * Validate the magic number of the agi block.
1972 	 */
1973 	agi = XFS_BUF_TO_AGI(agibp);
1974 	agi_ok =
1975 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1976 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1977 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1978 			XFS_RANDOM_IUNLINK_REMOVE))) {
1979 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1980 				     mp, agi);
1981 		xfs_trans_brelse(tp, agibp);
1982 		cmn_err(CE_WARN,
1983 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
1984 			 mp->m_fsname);
1985 		return XFS_ERROR(EFSCORRUPTED);
1986 	}
1987 	/*
1988 	 * Get the index into the agi hash table for the
1989 	 * list this inode will go on.
1990 	 */
1991 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1992 	ASSERT(agino != 0);
1993 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1994 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1995 	ASSERT(agi->agi_unlinked[bucket_index]);
1996 
1997 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1998 		/*
1999 		 * We're at the head of the list.  Get the inode's
2000 		 * on-disk buffer to see if there is anyone after us
2001 		 * on the list.  Only modify our next pointer if it
2002 		 * is not already NULLAGINO.  This saves us the overhead
2003 		 * of dealing with the buffer when there is no need to
2004 		 * change it.
2005 		 */
2006 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2007 		if (error) {
2008 			cmn_err(CE_WARN,
2009 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2010 				error, mp->m_fsname);
2011 			return error;
2012 		}
2013 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2014 		ASSERT(next_agino != 0);
2015 		if (next_agino != NULLAGINO) {
2016 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2017 			offset = ip->i_boffset +
2018 				offsetof(xfs_dinode_t, di_next_unlinked);
2019 			xfs_trans_inode_buf(tp, ibp);
2020 			xfs_trans_log_buf(tp, ibp, offset,
2021 					  (offset + sizeof(xfs_agino_t) - 1));
2022 			xfs_inobp_check(mp, ibp);
2023 		} else {
2024 			xfs_trans_brelse(tp, ibp);
2025 		}
2026 		/*
2027 		 * Point the bucket head pointer at the next inode.
2028 		 */
2029 		ASSERT(next_agino != 0);
2030 		ASSERT(next_agino != agino);
2031 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2032 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2033 			(sizeof(xfs_agino_t) * bucket_index);
2034 		xfs_trans_log_buf(tp, agibp, offset,
2035 				  (offset + sizeof(xfs_agino_t) - 1));
2036 	} else {
2037 		/*
2038 		 * We need to search the list for the inode being freed.
2039 		 */
2040 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2041 		last_ibp = NULL;
2042 		while (next_agino != agino) {
2043 			/*
2044 			 * If the last inode wasn't the one pointing to
2045 			 * us, then release its buffer since we're not
2046 			 * going to do anything with it.
2047 			 */
2048 			if (last_ibp != NULL) {
2049 				xfs_trans_brelse(tp, last_ibp);
2050 			}
2051 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2052 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2053 					    &last_ibp, &last_offset);
2054 			if (error) {
2055 				cmn_err(CE_WARN,
2056 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2057 					error, mp->m_fsname);
2058 				return error;
2059 			}
2060 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2061 			ASSERT(next_agino != NULLAGINO);
2062 			ASSERT(next_agino != 0);
2063 		}
2064 		/*
2065 		 * Now last_ibp points to the buffer previous to us on
2066 		 * the unlinked list.  Pull us from the list.
2067 		 */
2068 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2069 		if (error) {
2070 			cmn_err(CE_WARN,
2071 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2072 				error, mp->m_fsname);
2073 			return error;
2074 		}
2075 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2076 		ASSERT(next_agino != 0);
2077 		ASSERT(next_agino != agino);
2078 		if (next_agino != NULLAGINO) {
2079 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2080 			offset = ip->i_boffset +
2081 				offsetof(xfs_dinode_t, di_next_unlinked);
2082 			xfs_trans_inode_buf(tp, ibp);
2083 			xfs_trans_log_buf(tp, ibp, offset,
2084 					  (offset + sizeof(xfs_agino_t) - 1));
2085 			xfs_inobp_check(mp, ibp);
2086 		} else {
2087 			xfs_trans_brelse(tp, ibp);
2088 		}
2089 		/*
2090 		 * Point the previous inode on the list to the next inode.
2091 		 */
2092 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2093 		ASSERT(next_agino != 0);
2094 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2095 		xfs_trans_inode_buf(tp, last_ibp);
2096 		xfs_trans_log_buf(tp, last_ibp, offset,
2097 				  (offset + sizeof(xfs_agino_t) - 1));
2098 		xfs_inobp_check(mp, last_ibp);
2099 	}
2100 	return 0;
2101 }
2102 
2103 STATIC void
2104 xfs_ifree_cluster(
2105 	xfs_inode_t	*free_ip,
2106 	xfs_trans_t	*tp,
2107 	xfs_ino_t	inum)
2108 {
2109 	xfs_mount_t		*mp = free_ip->i_mount;
2110 	int			blks_per_cluster;
2111 	int			nbufs;
2112 	int			ninodes;
2113 	int			i, j, found, pre_flushed;
2114 	xfs_daddr_t		blkno;
2115 	xfs_buf_t		*bp;
2116 	xfs_inode_t		*ip, **ip_found;
2117 	xfs_inode_log_item_t	*iip;
2118 	xfs_log_item_t		*lip;
2119 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
2120 
2121 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2122 		blks_per_cluster = 1;
2123 		ninodes = mp->m_sb.sb_inopblock;
2124 		nbufs = XFS_IALLOC_BLOCKS(mp);
2125 	} else {
2126 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2127 					mp->m_sb.sb_blocksize;
2128 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2129 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2130 	}
2131 
2132 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2133 
2134 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2135 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2136 					 XFS_INO_TO_AGBNO(mp, inum));
2137 
2138 
2139 		/*
2140 		 * Look for each inode in memory and attempt to lock it,
2141 		 * we can be racing with flush and tail pushing here.
2142 		 * any inode we get the locks on, add to an array of
2143 		 * inode items to process later.
2144 		 *
2145 		 * The get the buffer lock, we could beat a flush
2146 		 * or tail pushing thread to the lock here, in which
2147 		 * case they will go looking for the inode buffer
2148 		 * and fail, we need some other form of interlock
2149 		 * here.
2150 		 */
2151 		found = 0;
2152 		for (i = 0; i < ninodes; i++) {
2153 			read_lock(&pag->pag_ici_lock);
2154 			ip = radix_tree_lookup(&pag->pag_ici_root,
2155 					XFS_INO_TO_AGINO(mp, (inum + i)));
2156 
2157 			/* Inode not in memory or we found it already,
2158 			 * nothing to do
2159 			 */
2160 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2161 				read_unlock(&pag->pag_ici_lock);
2162 				continue;
2163 			}
2164 
2165 			if (xfs_inode_clean(ip)) {
2166 				read_unlock(&pag->pag_ici_lock);
2167 				continue;
2168 			}
2169 
2170 			/* If we can get the locks then add it to the
2171 			 * list, otherwise by the time we get the bp lock
2172 			 * below it will already be attached to the
2173 			 * inode buffer.
2174 			 */
2175 
2176 			/* This inode will already be locked - by us, lets
2177 			 * keep it that way.
2178 			 */
2179 
2180 			if (ip == free_ip) {
2181 				if (xfs_iflock_nowait(ip)) {
2182 					xfs_iflags_set(ip, XFS_ISTALE);
2183 					if (xfs_inode_clean(ip)) {
2184 						xfs_ifunlock(ip);
2185 					} else {
2186 						ip_found[found++] = ip;
2187 					}
2188 				}
2189 				read_unlock(&pag->pag_ici_lock);
2190 				continue;
2191 			}
2192 
2193 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2194 				if (xfs_iflock_nowait(ip)) {
2195 					xfs_iflags_set(ip, XFS_ISTALE);
2196 
2197 					if (xfs_inode_clean(ip)) {
2198 						xfs_ifunlock(ip);
2199 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2200 					} else {
2201 						ip_found[found++] = ip;
2202 					}
2203 				} else {
2204 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2205 				}
2206 			}
2207 			read_unlock(&pag->pag_ici_lock);
2208 		}
2209 
2210 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2211 					mp->m_bsize * blks_per_cluster,
2212 					XFS_BUF_LOCK);
2213 
2214 		pre_flushed = 0;
2215 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2216 		while (lip) {
2217 			if (lip->li_type == XFS_LI_INODE) {
2218 				iip = (xfs_inode_log_item_t *)lip;
2219 				ASSERT(iip->ili_logged == 1);
2220 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2221 				spin_lock(&mp->m_ail_lock);
2222 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2223 				spin_unlock(&mp->m_ail_lock);
2224 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2225 				pre_flushed++;
2226 			}
2227 			lip = lip->li_bio_list;
2228 		}
2229 
2230 		for (i = 0; i < found; i++) {
2231 			ip = ip_found[i];
2232 			iip = ip->i_itemp;
2233 
2234 			if (!iip) {
2235 				ip->i_update_core = 0;
2236 				xfs_ifunlock(ip);
2237 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2238 				continue;
2239 			}
2240 
2241 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2242 			iip->ili_format.ilf_fields = 0;
2243 			iip->ili_logged = 1;
2244 			spin_lock(&mp->m_ail_lock);
2245 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2246 			spin_unlock(&mp->m_ail_lock);
2247 
2248 			xfs_buf_attach_iodone(bp,
2249 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2250 				xfs_istale_done, (xfs_log_item_t *)iip);
2251 			if (ip != free_ip) {
2252 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2253 			}
2254 		}
2255 
2256 		if (found || pre_flushed)
2257 			xfs_trans_stale_inode_buf(tp, bp);
2258 		xfs_trans_binval(tp, bp);
2259 	}
2260 
2261 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2262 	xfs_put_perag(mp, pag);
2263 }
2264 
2265 /*
2266  * This is called to return an inode to the inode free list.
2267  * The inode should already be truncated to 0 length and have
2268  * no pages associated with it.  This routine also assumes that
2269  * the inode is already a part of the transaction.
2270  *
2271  * The on-disk copy of the inode will have been added to the list
2272  * of unlinked inodes in the AGI. We need to remove the inode from
2273  * that list atomically with respect to freeing it here.
2274  */
2275 int
2276 xfs_ifree(
2277 	xfs_trans_t	*tp,
2278 	xfs_inode_t	*ip,
2279 	xfs_bmap_free_t	*flist)
2280 {
2281 	int			error;
2282 	int			delete;
2283 	xfs_ino_t		first_ino;
2284 	xfs_dinode_t    	*dip;
2285 	xfs_buf_t       	*ibp;
2286 
2287 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2288 	ASSERT(ip->i_transp == tp);
2289 	ASSERT(ip->i_d.di_nlink == 0);
2290 	ASSERT(ip->i_d.di_nextents == 0);
2291 	ASSERT(ip->i_d.di_anextents == 0);
2292 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2293 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2294 	ASSERT(ip->i_d.di_nblocks == 0);
2295 
2296 	/*
2297 	 * Pull the on-disk inode from the AGI unlinked list.
2298 	 */
2299 	error = xfs_iunlink_remove(tp, ip);
2300 	if (error != 0) {
2301 		return error;
2302 	}
2303 
2304 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2305 	if (error != 0) {
2306 		return error;
2307 	}
2308 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2309 	ip->i_d.di_flags = 0;
2310 	ip->i_d.di_dmevmask = 0;
2311 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2312 	ip->i_df.if_ext_max =
2313 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2314 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2315 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2316 	/*
2317 	 * Bump the generation count so no one will be confused
2318 	 * by reincarnations of this inode.
2319 	 */
2320 	ip->i_d.di_gen++;
2321 
2322 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2323 
2324 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
2325 	if (error)
2326 		return error;
2327 
2328         /*
2329 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2330 	* from picking up this inode when it is reclaimed (its incore state
2331 	* initialzed but not flushed to disk yet). The in-core di_mode is
2332 	* already cleared  and a corresponding transaction logged.
2333 	* The hack here just synchronizes the in-core to on-disk
2334 	* di_mode value in advance before the actual inode sync to disk.
2335 	* This is OK because the inode is already unlinked and would never
2336 	* change its di_mode again for this inode generation.
2337 	* This is a temporary hack that would require a proper fix
2338 	* in the future.
2339 	*/
2340 	dip->di_core.di_mode = 0;
2341 
2342 	if (delete) {
2343 		xfs_ifree_cluster(ip, tp, first_ino);
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Reallocate the space for if_broot based on the number of records
2351  * being added or deleted as indicated in rec_diff.  Move the records
2352  * and pointers in if_broot to fit the new size.  When shrinking this
2353  * will eliminate holes between the records and pointers created by
2354  * the caller.  When growing this will create holes to be filled in
2355  * by the caller.
2356  *
2357  * The caller must not request to add more records than would fit in
2358  * the on-disk inode root.  If the if_broot is currently NULL, then
2359  * if we adding records one will be allocated.  The caller must also
2360  * not request that the number of records go below zero, although
2361  * it can go to zero.
2362  *
2363  * ip -- the inode whose if_broot area is changing
2364  * ext_diff -- the change in the number of records, positive or negative,
2365  *	 requested for the if_broot array.
2366  */
2367 void
2368 xfs_iroot_realloc(
2369 	xfs_inode_t		*ip,
2370 	int			rec_diff,
2371 	int			whichfork)
2372 {
2373 	int			cur_max;
2374 	xfs_ifork_t		*ifp;
2375 	xfs_bmbt_block_t	*new_broot;
2376 	int			new_max;
2377 	size_t			new_size;
2378 	char			*np;
2379 	char			*op;
2380 
2381 	/*
2382 	 * Handle the degenerate case quietly.
2383 	 */
2384 	if (rec_diff == 0) {
2385 		return;
2386 	}
2387 
2388 	ifp = XFS_IFORK_PTR(ip, whichfork);
2389 	if (rec_diff > 0) {
2390 		/*
2391 		 * If there wasn't any memory allocated before, just
2392 		 * allocate it now and get out.
2393 		 */
2394 		if (ifp->if_broot_bytes == 0) {
2395 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2396 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2397 								     KM_SLEEP);
2398 			ifp->if_broot_bytes = (int)new_size;
2399 			return;
2400 		}
2401 
2402 		/*
2403 		 * If there is already an existing if_broot, then we need
2404 		 * to realloc() it and shift the pointers to their new
2405 		 * location.  The records don't change location because
2406 		 * they are kept butted up against the btree block header.
2407 		 */
2408 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2409 		new_max = cur_max + rec_diff;
2410 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2411 		ifp->if_broot = (xfs_bmbt_block_t *)
2412 		  kmem_realloc(ifp->if_broot,
2413 				new_size,
2414 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2415 				KM_SLEEP);
2416 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2417 						      ifp->if_broot_bytes);
2418 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2419 						      (int)new_size);
2420 		ifp->if_broot_bytes = (int)new_size;
2421 		ASSERT(ifp->if_broot_bytes <=
2422 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2423 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2424 		return;
2425 	}
2426 
2427 	/*
2428 	 * rec_diff is less than 0.  In this case, we are shrinking the
2429 	 * if_broot buffer.  It must already exist.  If we go to zero
2430 	 * records, just get rid of the root and clear the status bit.
2431 	 */
2432 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2433 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2434 	new_max = cur_max + rec_diff;
2435 	ASSERT(new_max >= 0);
2436 	if (new_max > 0)
2437 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2438 	else
2439 		new_size = 0;
2440 	if (new_size > 0) {
2441 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2442 		/*
2443 		 * First copy over the btree block header.
2444 		 */
2445 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2446 	} else {
2447 		new_broot = NULL;
2448 		ifp->if_flags &= ~XFS_IFBROOT;
2449 	}
2450 
2451 	/*
2452 	 * Only copy the records and pointers if there are any.
2453 	 */
2454 	if (new_max > 0) {
2455 		/*
2456 		 * First copy the records.
2457 		 */
2458 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2459 						     ifp->if_broot_bytes);
2460 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2461 						     (int)new_size);
2462 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2463 
2464 		/*
2465 		 * Then copy the pointers.
2466 		 */
2467 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2468 						     ifp->if_broot_bytes);
2469 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2470 						     (int)new_size);
2471 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2472 	}
2473 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2474 	ifp->if_broot = new_broot;
2475 	ifp->if_broot_bytes = (int)new_size;
2476 	ASSERT(ifp->if_broot_bytes <=
2477 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2478 	return;
2479 }
2480 
2481 
2482 /*
2483  * This is called when the amount of space needed for if_data
2484  * is increased or decreased.  The change in size is indicated by
2485  * the number of bytes that need to be added or deleted in the
2486  * byte_diff parameter.
2487  *
2488  * If the amount of space needed has decreased below the size of the
2489  * inline buffer, then switch to using the inline buffer.  Otherwise,
2490  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2491  * to what is needed.
2492  *
2493  * ip -- the inode whose if_data area is changing
2494  * byte_diff -- the change in the number of bytes, positive or negative,
2495  *	 requested for the if_data array.
2496  */
2497 void
2498 xfs_idata_realloc(
2499 	xfs_inode_t	*ip,
2500 	int		byte_diff,
2501 	int		whichfork)
2502 {
2503 	xfs_ifork_t	*ifp;
2504 	int		new_size;
2505 	int		real_size;
2506 
2507 	if (byte_diff == 0) {
2508 		return;
2509 	}
2510 
2511 	ifp = XFS_IFORK_PTR(ip, whichfork);
2512 	new_size = (int)ifp->if_bytes + byte_diff;
2513 	ASSERT(new_size >= 0);
2514 
2515 	if (new_size == 0) {
2516 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2517 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2518 		}
2519 		ifp->if_u1.if_data = NULL;
2520 		real_size = 0;
2521 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2522 		/*
2523 		 * If the valid extents/data can fit in if_inline_ext/data,
2524 		 * copy them from the malloc'd vector and free it.
2525 		 */
2526 		if (ifp->if_u1.if_data == NULL) {
2527 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2528 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2529 			ASSERT(ifp->if_real_bytes != 0);
2530 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2531 			      new_size);
2532 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2533 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2534 		}
2535 		real_size = 0;
2536 	} else {
2537 		/*
2538 		 * Stuck with malloc/realloc.
2539 		 * For inline data, the underlying buffer must be
2540 		 * a multiple of 4 bytes in size so that it can be
2541 		 * logged and stay on word boundaries.  We enforce
2542 		 * that here.
2543 		 */
2544 		real_size = roundup(new_size, 4);
2545 		if (ifp->if_u1.if_data == NULL) {
2546 			ASSERT(ifp->if_real_bytes == 0);
2547 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2548 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2549 			/*
2550 			 * Only do the realloc if the underlying size
2551 			 * is really changing.
2552 			 */
2553 			if (ifp->if_real_bytes != real_size) {
2554 				ifp->if_u1.if_data =
2555 					kmem_realloc(ifp->if_u1.if_data,
2556 							real_size,
2557 							ifp->if_real_bytes,
2558 							KM_SLEEP);
2559 			}
2560 		} else {
2561 			ASSERT(ifp->if_real_bytes == 0);
2562 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2563 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2564 				ifp->if_bytes);
2565 		}
2566 	}
2567 	ifp->if_real_bytes = real_size;
2568 	ifp->if_bytes = new_size;
2569 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2570 }
2571 
2572 
2573 
2574 
2575 /*
2576  * Map inode to disk block and offset.
2577  *
2578  * mp -- the mount point structure for the current file system
2579  * tp -- the current transaction
2580  * ino -- the inode number of the inode to be located
2581  * imap -- this structure is filled in with the information necessary
2582  *	 to retrieve the given inode from disk
2583  * flags -- flags to pass to xfs_dilocate indicating whether or not
2584  *	 lookups in the inode btree were OK or not
2585  */
2586 int
2587 xfs_imap(
2588 	xfs_mount_t	*mp,
2589 	xfs_trans_t	*tp,
2590 	xfs_ino_t	ino,
2591 	xfs_imap_t	*imap,
2592 	uint		flags)
2593 {
2594 	xfs_fsblock_t	fsbno;
2595 	int		len;
2596 	int		off;
2597 	int		error;
2598 
2599 	fsbno = imap->im_blkno ?
2600 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2601 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2602 	if (error)
2603 		return error;
2604 
2605 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2606 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2607 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2608 	imap->im_ioffset = (ushort)off;
2609 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2610 
2611 	/*
2612 	 * If the inode number maps to a block outside the bounds
2613 	 * of the file system then return NULL rather than calling
2614 	 * read_buf and panicing when we get an error from the
2615 	 * driver.
2616 	 */
2617 	if ((imap->im_blkno + imap->im_len) >
2618 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2619 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2620 			"(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2621 			" XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2622 			(unsigned long long) imap->im_blkno,
2623 			(unsigned long long) imap->im_len,
2624 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2625 		return EINVAL;
2626 	}
2627 	return 0;
2628 }
2629 
2630 void
2631 xfs_idestroy_fork(
2632 	xfs_inode_t	*ip,
2633 	int		whichfork)
2634 {
2635 	xfs_ifork_t	*ifp;
2636 
2637 	ifp = XFS_IFORK_PTR(ip, whichfork);
2638 	if (ifp->if_broot != NULL) {
2639 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2640 		ifp->if_broot = NULL;
2641 	}
2642 
2643 	/*
2644 	 * If the format is local, then we can't have an extents
2645 	 * array so just look for an inline data array.  If we're
2646 	 * not local then we may or may not have an extents list,
2647 	 * so check and free it up if we do.
2648 	 */
2649 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2650 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2651 		    (ifp->if_u1.if_data != NULL)) {
2652 			ASSERT(ifp->if_real_bytes != 0);
2653 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2654 			ifp->if_u1.if_data = NULL;
2655 			ifp->if_real_bytes = 0;
2656 		}
2657 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2658 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2659 		    ((ifp->if_u1.if_extents != NULL) &&
2660 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2661 		ASSERT(ifp->if_real_bytes != 0);
2662 		xfs_iext_destroy(ifp);
2663 	}
2664 	ASSERT(ifp->if_u1.if_extents == NULL ||
2665 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2666 	ASSERT(ifp->if_real_bytes == 0);
2667 	if (whichfork == XFS_ATTR_FORK) {
2668 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2669 		ip->i_afp = NULL;
2670 	}
2671 }
2672 
2673 /*
2674  * This is called free all the memory associated with an inode.
2675  * It must free the inode itself and any buffers allocated for
2676  * if_extents/if_data and if_broot.  It must also free the lock
2677  * associated with the inode.
2678  */
2679 void
2680 xfs_idestroy(
2681 	xfs_inode_t	*ip)
2682 {
2683 	switch (ip->i_d.di_mode & S_IFMT) {
2684 	case S_IFREG:
2685 	case S_IFDIR:
2686 	case S_IFLNK:
2687 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2688 		break;
2689 	}
2690 	if (ip->i_afp)
2691 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2692 	mrfree(&ip->i_lock);
2693 	mrfree(&ip->i_iolock);
2694 	freesema(&ip->i_flock);
2695 
2696 #ifdef XFS_INODE_TRACE
2697 	ktrace_free(ip->i_trace);
2698 #endif
2699 #ifdef XFS_BMAP_TRACE
2700 	ktrace_free(ip->i_xtrace);
2701 #endif
2702 #ifdef XFS_BMBT_TRACE
2703 	ktrace_free(ip->i_btrace);
2704 #endif
2705 #ifdef XFS_RW_TRACE
2706 	ktrace_free(ip->i_rwtrace);
2707 #endif
2708 #ifdef XFS_ILOCK_TRACE
2709 	ktrace_free(ip->i_lock_trace);
2710 #endif
2711 #ifdef XFS_DIR2_TRACE
2712 	ktrace_free(ip->i_dir_trace);
2713 #endif
2714 	if (ip->i_itemp) {
2715 		/*
2716 		 * Only if we are shutting down the fs will we see an
2717 		 * inode still in the AIL. If it is there, we should remove
2718 		 * it to prevent a use-after-free from occurring.
2719 		 */
2720 		xfs_mount_t	*mp = ip->i_mount;
2721 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
2722 
2723 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2724 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
2725 		if (lip->li_flags & XFS_LI_IN_AIL) {
2726 			spin_lock(&mp->m_ail_lock);
2727 			if (lip->li_flags & XFS_LI_IN_AIL)
2728 				xfs_trans_delete_ail(mp, lip);
2729 			else
2730 				spin_unlock(&mp->m_ail_lock);
2731 		}
2732 		xfs_inode_item_destroy(ip);
2733 	}
2734 	kmem_zone_free(xfs_inode_zone, ip);
2735 }
2736 
2737 
2738 /*
2739  * Increment the pin count of the given buffer.
2740  * This value is protected by ipinlock spinlock in the mount structure.
2741  */
2742 void
2743 xfs_ipin(
2744 	xfs_inode_t	*ip)
2745 {
2746 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2747 
2748 	atomic_inc(&ip->i_pincount);
2749 }
2750 
2751 /*
2752  * Decrement the pin count of the given inode, and wake up
2753  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2754  * inode must have been previously pinned with a call to xfs_ipin().
2755  */
2756 void
2757 xfs_iunpin(
2758 	xfs_inode_t	*ip)
2759 {
2760 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2761 
2762 	if (atomic_dec_and_test(&ip->i_pincount))
2763 		wake_up(&ip->i_ipin_wait);
2764 }
2765 
2766 /*
2767  * This is called to unpin an inode. It can be directed to wait or to return
2768  * immediately without waiting for the inode to be unpinned.  The caller must
2769  * have the inode locked in at least shared mode so that the buffer cannot be
2770  * subsequently pinned once someone is waiting for it to be unpinned.
2771  */
2772 STATIC void
2773 __xfs_iunpin_wait(
2774 	xfs_inode_t	*ip,
2775 	int		wait)
2776 {
2777 	xfs_inode_log_item_t	*iip = ip->i_itemp;
2778 
2779 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2780 	if (atomic_read(&ip->i_pincount) == 0)
2781 		return;
2782 
2783 	/* Give the log a push to start the unpinning I/O */
2784 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2785 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2786 	if (wait)
2787 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2788 }
2789 
2790 static inline void
2791 xfs_iunpin_wait(
2792 	xfs_inode_t	*ip)
2793 {
2794 	__xfs_iunpin_wait(ip, 1);
2795 }
2796 
2797 static inline void
2798 xfs_iunpin_nowait(
2799 	xfs_inode_t	*ip)
2800 {
2801 	__xfs_iunpin_wait(ip, 0);
2802 }
2803 
2804 
2805 /*
2806  * xfs_iextents_copy()
2807  *
2808  * This is called to copy the REAL extents (as opposed to the delayed
2809  * allocation extents) from the inode into the given buffer.  It
2810  * returns the number of bytes copied into the buffer.
2811  *
2812  * If there are no delayed allocation extents, then we can just
2813  * memcpy() the extents into the buffer.  Otherwise, we need to
2814  * examine each extent in turn and skip those which are delayed.
2815  */
2816 int
2817 xfs_iextents_copy(
2818 	xfs_inode_t		*ip,
2819 	xfs_bmbt_rec_t		*dp,
2820 	int			whichfork)
2821 {
2822 	int			copied;
2823 	int			i;
2824 	xfs_ifork_t		*ifp;
2825 	int			nrecs;
2826 	xfs_fsblock_t		start_block;
2827 
2828 	ifp = XFS_IFORK_PTR(ip, whichfork);
2829 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2830 	ASSERT(ifp->if_bytes > 0);
2831 
2832 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2833 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2834 	ASSERT(nrecs > 0);
2835 
2836 	/*
2837 	 * There are some delayed allocation extents in the
2838 	 * inode, so copy the extents one at a time and skip
2839 	 * the delayed ones.  There must be at least one
2840 	 * non-delayed extent.
2841 	 */
2842 	copied = 0;
2843 	for (i = 0; i < nrecs; i++) {
2844 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2845 		start_block = xfs_bmbt_get_startblock(ep);
2846 		if (ISNULLSTARTBLOCK(start_block)) {
2847 			/*
2848 			 * It's a delayed allocation extent, so skip it.
2849 			 */
2850 			continue;
2851 		}
2852 
2853 		/* Translate to on disk format */
2854 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2855 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2856 		dp++;
2857 		copied++;
2858 	}
2859 	ASSERT(copied != 0);
2860 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2861 
2862 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2863 }
2864 
2865 /*
2866  * Each of the following cases stores data into the same region
2867  * of the on-disk inode, so only one of them can be valid at
2868  * any given time. While it is possible to have conflicting formats
2869  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2870  * in EXTENTS format, this can only happen when the fork has
2871  * changed formats after being modified but before being flushed.
2872  * In these cases, the format always takes precedence, because the
2873  * format indicates the current state of the fork.
2874  */
2875 /*ARGSUSED*/
2876 STATIC void
2877 xfs_iflush_fork(
2878 	xfs_inode_t		*ip,
2879 	xfs_dinode_t		*dip,
2880 	xfs_inode_log_item_t	*iip,
2881 	int			whichfork,
2882 	xfs_buf_t		*bp)
2883 {
2884 	char			*cp;
2885 	xfs_ifork_t		*ifp;
2886 	xfs_mount_t		*mp;
2887 #ifdef XFS_TRANS_DEBUG
2888 	int			first;
2889 #endif
2890 	static const short	brootflag[2] =
2891 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2892 	static const short	dataflag[2] =
2893 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2894 	static const short	extflag[2] =
2895 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2896 
2897 	if (!iip)
2898 		return;
2899 	ifp = XFS_IFORK_PTR(ip, whichfork);
2900 	/*
2901 	 * This can happen if we gave up in iformat in an error path,
2902 	 * for the attribute fork.
2903 	 */
2904 	if (!ifp) {
2905 		ASSERT(whichfork == XFS_ATTR_FORK);
2906 		return;
2907 	}
2908 	cp = XFS_DFORK_PTR(dip, whichfork);
2909 	mp = ip->i_mount;
2910 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2911 	case XFS_DINODE_FMT_LOCAL:
2912 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2913 		    (ifp->if_bytes > 0)) {
2914 			ASSERT(ifp->if_u1.if_data != NULL);
2915 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2916 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2917 		}
2918 		break;
2919 
2920 	case XFS_DINODE_FMT_EXTENTS:
2921 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2922 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2923 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2924 			(ifp->if_bytes == 0));
2925 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2926 			(ifp->if_bytes > 0));
2927 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2928 		    (ifp->if_bytes > 0)) {
2929 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2930 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2931 				whichfork);
2932 		}
2933 		break;
2934 
2935 	case XFS_DINODE_FMT_BTREE:
2936 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2937 		    (ifp->if_broot_bytes > 0)) {
2938 			ASSERT(ifp->if_broot != NULL);
2939 			ASSERT(ifp->if_broot_bytes <=
2940 			       (XFS_IFORK_SIZE(ip, whichfork) +
2941 				XFS_BROOT_SIZE_ADJ));
2942 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2943 				(xfs_bmdr_block_t *)cp,
2944 				XFS_DFORK_SIZE(dip, mp, whichfork));
2945 		}
2946 		break;
2947 
2948 	case XFS_DINODE_FMT_DEV:
2949 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2950 			ASSERT(whichfork == XFS_DATA_FORK);
2951 			dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
2952 		}
2953 		break;
2954 
2955 	case XFS_DINODE_FMT_UUID:
2956 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2957 			ASSERT(whichfork == XFS_DATA_FORK);
2958 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2959 				sizeof(uuid_t));
2960 		}
2961 		break;
2962 
2963 	default:
2964 		ASSERT(0);
2965 		break;
2966 	}
2967 }
2968 
2969 STATIC int
2970 xfs_iflush_cluster(
2971 	xfs_inode_t	*ip,
2972 	xfs_buf_t	*bp)
2973 {
2974 	xfs_mount_t		*mp = ip->i_mount;
2975 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
2976 	unsigned long		first_index, mask;
2977 	int			ilist_size;
2978 	xfs_inode_t		**ilist;
2979 	xfs_inode_t		*iq;
2980 	int			nr_found;
2981 	int			clcount = 0;
2982 	int			bufwasdelwri;
2983 	int			i;
2984 
2985 	ASSERT(pag->pagi_inodeok);
2986 	ASSERT(pag->pag_ici_init);
2987 
2988 	ilist_size = XFS_INODE_CLUSTER_SIZE(mp) * sizeof(xfs_inode_t *);
2989 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL);
2990 	if (!ilist)
2991 		return 0;
2992 
2993 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2994 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2995 	read_lock(&pag->pag_ici_lock);
2996 	/* really need a gang lookup range call here */
2997 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2998 					first_index,
2999 					XFS_INODE_CLUSTER_SIZE(mp));
3000 	if (nr_found == 0)
3001 		goto out_free;
3002 
3003 	for (i = 0; i < nr_found; i++) {
3004 		iq = ilist[i];
3005 		if (iq == ip)
3006 			continue;
3007 		/* if the inode lies outside this cluster, we're done. */
3008 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
3009 			break;
3010 		/*
3011 		 * Do an un-protected check to see if the inode is dirty and
3012 		 * is a candidate for flushing.  These checks will be repeated
3013 		 * later after the appropriate locks are acquired.
3014 		 */
3015 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3016 			continue;
3017 
3018 		/*
3019 		 * Try to get locks.  If any are unavailable or it is pinned,
3020 		 * then this inode cannot be flushed and is skipped.
3021 		 */
3022 
3023 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3024 			continue;
3025 		if (!xfs_iflock_nowait(iq)) {
3026 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3027 			continue;
3028 		}
3029 		if (xfs_ipincount(iq)) {
3030 			xfs_ifunlock(iq);
3031 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3032 			continue;
3033 		}
3034 
3035 		/*
3036 		 * arriving here means that this inode can be flushed.  First
3037 		 * re-check that it's dirty before flushing.
3038 		 */
3039 		if (!xfs_inode_clean(iq)) {
3040 			int	error;
3041 			error = xfs_iflush_int(iq, bp);
3042 			if (error) {
3043 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3044 				goto cluster_corrupt_out;
3045 			}
3046 			clcount++;
3047 		} else {
3048 			xfs_ifunlock(iq);
3049 		}
3050 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3051 	}
3052 
3053 	if (clcount) {
3054 		XFS_STATS_INC(xs_icluster_flushcnt);
3055 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3056 	}
3057 
3058 out_free:
3059 	read_unlock(&pag->pag_ici_lock);
3060 	kmem_free(ilist, ilist_size);
3061 	return 0;
3062 
3063 
3064 cluster_corrupt_out:
3065 	/*
3066 	 * Corruption detected in the clustering loop.  Invalidate the
3067 	 * inode buffer and shut down the filesystem.
3068 	 */
3069 	read_unlock(&pag->pag_ici_lock);
3070 	/*
3071 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3072 	 * brelse can handle it with no problems.  If not, shut down the
3073 	 * filesystem before releasing the buffer.
3074 	 */
3075 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3076 	if (bufwasdelwri)
3077 		xfs_buf_relse(bp);
3078 
3079 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3080 
3081 	if (!bufwasdelwri) {
3082 		/*
3083 		 * Just like incore_relse: if we have b_iodone functions,
3084 		 * mark the buffer as an error and call them.  Otherwise
3085 		 * mark it as stale and brelse.
3086 		 */
3087 		if (XFS_BUF_IODONE_FUNC(bp)) {
3088 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3089 			XFS_BUF_UNDONE(bp);
3090 			XFS_BUF_STALE(bp);
3091 			XFS_BUF_SHUT(bp);
3092 			XFS_BUF_ERROR(bp,EIO);
3093 			xfs_biodone(bp);
3094 		} else {
3095 			XFS_BUF_STALE(bp);
3096 			xfs_buf_relse(bp);
3097 		}
3098 	}
3099 
3100 	/*
3101 	 * Unlocks the flush lock
3102 	 */
3103 	xfs_iflush_abort(iq);
3104 	kmem_free(ilist, ilist_size);
3105 	return XFS_ERROR(EFSCORRUPTED);
3106 }
3107 
3108 /*
3109  * xfs_iflush() will write a modified inode's changes out to the
3110  * inode's on disk home.  The caller must have the inode lock held
3111  * in at least shared mode and the inode flush semaphore must be
3112  * held as well.  The inode lock will still be held upon return from
3113  * the call and the caller is free to unlock it.
3114  * The inode flush lock will be unlocked when the inode reaches the disk.
3115  * The flags indicate how the inode's buffer should be written out.
3116  */
3117 int
3118 xfs_iflush(
3119 	xfs_inode_t		*ip,
3120 	uint			flags)
3121 {
3122 	xfs_inode_log_item_t	*iip;
3123 	xfs_buf_t		*bp;
3124 	xfs_dinode_t		*dip;
3125 	xfs_mount_t		*mp;
3126 	int			error;
3127 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
3128 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3129 
3130 	XFS_STATS_INC(xs_iflush_count);
3131 
3132 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3133 	ASSERT(issemalocked(&(ip->i_flock)));
3134 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3135 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3136 
3137 	iip = ip->i_itemp;
3138 	mp = ip->i_mount;
3139 
3140 	/*
3141 	 * If the inode isn't dirty, then just release the inode
3142 	 * flush lock and do nothing.
3143 	 */
3144 	if (xfs_inode_clean(ip)) {
3145 		ASSERT((iip != NULL) ?
3146 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3147 		xfs_ifunlock(ip);
3148 		return 0;
3149 	}
3150 
3151 	/*
3152 	 * We can't flush the inode until it is unpinned, so wait for it if we
3153 	 * are allowed to block.  We know noone new can pin it, because we are
3154 	 * holding the inode lock shared and you need to hold it exclusively to
3155 	 * pin the inode.
3156 	 *
3157 	 * If we are not allowed to block, force the log out asynchronously so
3158 	 * that when we come back the inode will be unpinned. If other inodes
3159 	 * in the same cluster are dirty, they will probably write the inode
3160 	 * out for us if they occur after the log force completes.
3161 	 */
3162 	if (noblock && xfs_ipincount(ip)) {
3163 		xfs_iunpin_nowait(ip);
3164 		xfs_ifunlock(ip);
3165 		return EAGAIN;
3166 	}
3167 	xfs_iunpin_wait(ip);
3168 
3169 	/*
3170 	 * This may have been unpinned because the filesystem is shutting
3171 	 * down forcibly. If that's the case we must not write this inode
3172 	 * to disk, because the log record didn't make it to disk!
3173 	 */
3174 	if (XFS_FORCED_SHUTDOWN(mp)) {
3175 		ip->i_update_core = 0;
3176 		if (iip)
3177 			iip->ili_format.ilf_fields = 0;
3178 		xfs_ifunlock(ip);
3179 		return XFS_ERROR(EIO);
3180 	}
3181 
3182 	/*
3183 	 * Decide how buffer will be flushed out.  This is done before
3184 	 * the call to xfs_iflush_int because this field is zeroed by it.
3185 	 */
3186 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3187 		/*
3188 		 * Flush out the inode buffer according to the directions
3189 		 * of the caller.  In the cases where the caller has given
3190 		 * us a choice choose the non-delwri case.  This is because
3191 		 * the inode is in the AIL and we need to get it out soon.
3192 		 */
3193 		switch (flags) {
3194 		case XFS_IFLUSH_SYNC:
3195 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3196 			flags = 0;
3197 			break;
3198 		case XFS_IFLUSH_ASYNC_NOBLOCK:
3199 		case XFS_IFLUSH_ASYNC:
3200 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3201 			flags = INT_ASYNC;
3202 			break;
3203 		case XFS_IFLUSH_DELWRI:
3204 			flags = INT_DELWRI;
3205 			break;
3206 		default:
3207 			ASSERT(0);
3208 			flags = 0;
3209 			break;
3210 		}
3211 	} else {
3212 		switch (flags) {
3213 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3214 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3215 		case XFS_IFLUSH_DELWRI:
3216 			flags = INT_DELWRI;
3217 			break;
3218 		case XFS_IFLUSH_ASYNC_NOBLOCK:
3219 		case XFS_IFLUSH_ASYNC:
3220 			flags = INT_ASYNC;
3221 			break;
3222 		case XFS_IFLUSH_SYNC:
3223 			flags = 0;
3224 			break;
3225 		default:
3226 			ASSERT(0);
3227 			flags = 0;
3228 			break;
3229 		}
3230 	}
3231 
3232 	/*
3233 	 * Get the buffer containing the on-disk inode.
3234 	 */
3235 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3236 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3237 	if (error || !bp) {
3238 		xfs_ifunlock(ip);
3239 		return error;
3240 	}
3241 
3242 	/*
3243 	 * First flush out the inode that xfs_iflush was called with.
3244 	 */
3245 	error = xfs_iflush_int(ip, bp);
3246 	if (error)
3247 		goto corrupt_out;
3248 
3249 	/*
3250 	 * If the buffer is pinned then push on the log now so we won't
3251 	 * get stuck waiting in the write for too long.
3252 	 */
3253 	if (XFS_BUF_ISPINNED(bp))
3254 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3255 
3256 	/*
3257 	 * inode clustering:
3258 	 * see if other inodes can be gathered into this write
3259 	 */
3260 	error = xfs_iflush_cluster(ip, bp);
3261 	if (error)
3262 		goto cluster_corrupt_out;
3263 
3264 	if (flags & INT_DELWRI) {
3265 		xfs_bdwrite(mp, bp);
3266 	} else if (flags & INT_ASYNC) {
3267 		error = xfs_bawrite(mp, bp);
3268 	} else {
3269 		error = xfs_bwrite(mp, bp);
3270 	}
3271 	return error;
3272 
3273 corrupt_out:
3274 	xfs_buf_relse(bp);
3275 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3276 cluster_corrupt_out:
3277 	/*
3278 	 * Unlocks the flush lock
3279 	 */
3280 	xfs_iflush_abort(ip);
3281 	return XFS_ERROR(EFSCORRUPTED);
3282 }
3283 
3284 
3285 STATIC int
3286 xfs_iflush_int(
3287 	xfs_inode_t		*ip,
3288 	xfs_buf_t		*bp)
3289 {
3290 	xfs_inode_log_item_t	*iip;
3291 	xfs_dinode_t		*dip;
3292 	xfs_mount_t		*mp;
3293 #ifdef XFS_TRANS_DEBUG
3294 	int			first;
3295 #endif
3296 
3297 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3298 	ASSERT(issemalocked(&(ip->i_flock)));
3299 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3300 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3301 
3302 	iip = ip->i_itemp;
3303 	mp = ip->i_mount;
3304 
3305 
3306 	/*
3307 	 * If the inode isn't dirty, then just release the inode
3308 	 * flush lock and do nothing.
3309 	 */
3310 	if (xfs_inode_clean(ip)) {
3311 		xfs_ifunlock(ip);
3312 		return 0;
3313 	}
3314 
3315 	/* set *dip = inode's place in the buffer */
3316 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3317 
3318 	/*
3319 	 * Clear i_update_core before copying out the data.
3320 	 * This is for coordination with our timestamp updates
3321 	 * that don't hold the inode lock. They will always
3322 	 * update the timestamps BEFORE setting i_update_core,
3323 	 * so if we clear i_update_core after they set it we
3324 	 * are guaranteed to see their updates to the timestamps.
3325 	 * I believe that this depends on strongly ordered memory
3326 	 * semantics, but we have that.  We use the SYNCHRONIZE
3327 	 * macro to make sure that the compiler does not reorder
3328 	 * the i_update_core access below the data copy below.
3329 	 */
3330 	ip->i_update_core = 0;
3331 	SYNCHRONIZE();
3332 
3333 	/*
3334 	 * Make sure to get the latest atime from the Linux inode.
3335 	 */
3336 	xfs_synchronize_atime(ip);
3337 
3338 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3339 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3340 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3341 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3342 			ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3343 		goto corrupt_out;
3344 	}
3345 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3346 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3347 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3348 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3349 			ip->i_ino, ip, ip->i_d.di_magic);
3350 		goto corrupt_out;
3351 	}
3352 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3353 		if (XFS_TEST_ERROR(
3354 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3355 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3356 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3357 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3358 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3359 				ip->i_ino, ip);
3360 			goto corrupt_out;
3361 		}
3362 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3363 		if (XFS_TEST_ERROR(
3364 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3365 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3366 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3367 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3368 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3369 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3370 				ip->i_ino, ip);
3371 			goto corrupt_out;
3372 		}
3373 	}
3374 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3375 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3376 				XFS_RANDOM_IFLUSH_5)) {
3377 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3378 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3379 			ip->i_ino,
3380 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3381 			ip->i_d.di_nblocks,
3382 			ip);
3383 		goto corrupt_out;
3384 	}
3385 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3386 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3387 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3388 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3389 			ip->i_ino, ip->i_d.di_forkoff, ip);
3390 		goto corrupt_out;
3391 	}
3392 	/*
3393 	 * bump the flush iteration count, used to detect flushes which
3394 	 * postdate a log record during recovery.
3395 	 */
3396 
3397 	ip->i_d.di_flushiter++;
3398 
3399 	/*
3400 	 * Copy the dirty parts of the inode into the on-disk
3401 	 * inode.  We always copy out the core of the inode,
3402 	 * because if the inode is dirty at all the core must
3403 	 * be.
3404 	 */
3405 	xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3406 
3407 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3408 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3409 		ip->i_d.di_flushiter = 0;
3410 
3411 	/*
3412 	 * If this is really an old format inode and the superblock version
3413 	 * has not been updated to support only new format inodes, then
3414 	 * convert back to the old inode format.  If the superblock version
3415 	 * has been updated, then make the conversion permanent.
3416 	 */
3417 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3418 	       xfs_sb_version_hasnlink(&mp->m_sb));
3419 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3420 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3421 			/*
3422 			 * Convert it back.
3423 			 */
3424 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3425 			dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3426 		} else {
3427 			/*
3428 			 * The superblock version has already been bumped,
3429 			 * so just make the conversion to the new inode
3430 			 * format permanent.
3431 			 */
3432 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3433 			dip->di_core.di_version =  XFS_DINODE_VERSION_2;
3434 			ip->i_d.di_onlink = 0;
3435 			dip->di_core.di_onlink = 0;
3436 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3437 			memset(&(dip->di_core.di_pad[0]), 0,
3438 			      sizeof(dip->di_core.di_pad));
3439 			ASSERT(ip->i_d.di_projid == 0);
3440 		}
3441 	}
3442 
3443 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3444 	if (XFS_IFORK_Q(ip))
3445 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3446 	xfs_inobp_check(mp, bp);
3447 
3448 	/*
3449 	 * We've recorded everything logged in the inode, so we'd
3450 	 * like to clear the ilf_fields bits so we don't log and
3451 	 * flush things unnecessarily.  However, we can't stop
3452 	 * logging all this information until the data we've copied
3453 	 * into the disk buffer is written to disk.  If we did we might
3454 	 * overwrite the copy of the inode in the log with all the
3455 	 * data after re-logging only part of it, and in the face of
3456 	 * a crash we wouldn't have all the data we need to recover.
3457 	 *
3458 	 * What we do is move the bits to the ili_last_fields field.
3459 	 * When logging the inode, these bits are moved back to the
3460 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3461 	 * clear ili_last_fields, since we know that the information
3462 	 * those bits represent is permanently on disk.  As long as
3463 	 * the flush completes before the inode is logged again, then
3464 	 * both ilf_fields and ili_last_fields will be cleared.
3465 	 *
3466 	 * We can play with the ilf_fields bits here, because the inode
3467 	 * lock must be held exclusively in order to set bits there
3468 	 * and the flush lock protects the ili_last_fields bits.
3469 	 * Set ili_logged so the flush done
3470 	 * routine can tell whether or not to look in the AIL.
3471 	 * Also, store the current LSN of the inode so that we can tell
3472 	 * whether the item has moved in the AIL from xfs_iflush_done().
3473 	 * In order to read the lsn we need the AIL lock, because
3474 	 * it is a 64 bit value that cannot be read atomically.
3475 	 */
3476 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3477 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3478 		iip->ili_format.ilf_fields = 0;
3479 		iip->ili_logged = 1;
3480 
3481 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3482 		spin_lock(&mp->m_ail_lock);
3483 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3484 		spin_unlock(&mp->m_ail_lock);
3485 
3486 		/*
3487 		 * Attach the function xfs_iflush_done to the inode's
3488 		 * buffer.  This will remove the inode from the AIL
3489 		 * and unlock the inode's flush lock when the inode is
3490 		 * completely written to disk.
3491 		 */
3492 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3493 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3494 
3495 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3496 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3497 	} else {
3498 		/*
3499 		 * We're flushing an inode which is not in the AIL and has
3500 		 * not been logged but has i_update_core set.  For this
3501 		 * case we can use a B_DELWRI flush and immediately drop
3502 		 * the inode flush lock because we can avoid the whole
3503 		 * AIL state thing.  It's OK to drop the flush lock now,
3504 		 * because we've already locked the buffer and to do anything
3505 		 * you really need both.
3506 		 */
3507 		if (iip != NULL) {
3508 			ASSERT(iip->ili_logged == 0);
3509 			ASSERT(iip->ili_last_fields == 0);
3510 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3511 		}
3512 		xfs_ifunlock(ip);
3513 	}
3514 
3515 	return 0;
3516 
3517 corrupt_out:
3518 	return XFS_ERROR(EFSCORRUPTED);
3519 }
3520 
3521 
3522 /*
3523  * Flush all inactive inodes in mp.
3524  */
3525 void
3526 xfs_iflush_all(
3527 	xfs_mount_t	*mp)
3528 {
3529 	xfs_inode_t	*ip;
3530 	bhv_vnode_t	*vp;
3531 
3532  again:
3533 	XFS_MOUNT_ILOCK(mp);
3534 	ip = mp->m_inodes;
3535 	if (ip == NULL)
3536 		goto out;
3537 
3538 	do {
3539 		/* Make sure we skip markers inserted by sync */
3540 		if (ip->i_mount == NULL) {
3541 			ip = ip->i_mnext;
3542 			continue;
3543 		}
3544 
3545 		vp = XFS_ITOV_NULL(ip);
3546 		if (!vp) {
3547 			XFS_MOUNT_IUNLOCK(mp);
3548 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3549 			goto again;
3550 		}
3551 
3552 		ASSERT(vn_count(vp) == 0);
3553 
3554 		ip = ip->i_mnext;
3555 	} while (ip != mp->m_inodes);
3556  out:
3557 	XFS_MOUNT_IUNLOCK(mp);
3558 }
3559 
3560 #ifdef XFS_ILOCK_TRACE
3561 ktrace_t	*xfs_ilock_trace_buf;
3562 
3563 void
3564 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3565 {
3566 	ktrace_enter(ip->i_lock_trace,
3567 		     (void *)ip,
3568 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3569 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3570 		     (void *)ra,		/* caller of ilock */
3571 		     (void *)(unsigned long)current_cpu(),
3572 		     (void *)(unsigned long)current_pid(),
3573 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3574 }
3575 #endif
3576 
3577 /*
3578  * Return a pointer to the extent record at file index idx.
3579  */
3580 xfs_bmbt_rec_host_t *
3581 xfs_iext_get_ext(
3582 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3583 	xfs_extnum_t	idx)		/* index of target extent */
3584 {
3585 	ASSERT(idx >= 0);
3586 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3587 		return ifp->if_u1.if_ext_irec->er_extbuf;
3588 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3589 		xfs_ext_irec_t	*erp;		/* irec pointer */
3590 		int		erp_idx = 0;	/* irec index */
3591 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3592 
3593 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3594 		return &erp->er_extbuf[page_idx];
3595 	} else if (ifp->if_bytes) {
3596 		return &ifp->if_u1.if_extents[idx];
3597 	} else {
3598 		return NULL;
3599 	}
3600 }
3601 
3602 /*
3603  * Insert new item(s) into the extent records for incore inode
3604  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3605  */
3606 void
3607 xfs_iext_insert(
3608 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3609 	xfs_extnum_t	idx,		/* starting index of new items */
3610 	xfs_extnum_t	count,		/* number of inserted items */
3611 	xfs_bmbt_irec_t	*new)		/* items to insert */
3612 {
3613 	xfs_extnum_t	i;		/* extent record index */
3614 
3615 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3616 	xfs_iext_add(ifp, idx, count);
3617 	for (i = idx; i < idx + count; i++, new++)
3618 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3619 }
3620 
3621 /*
3622  * This is called when the amount of space required for incore file
3623  * extents needs to be increased. The ext_diff parameter stores the
3624  * number of new extents being added and the idx parameter contains
3625  * the extent index where the new extents will be added. If the new
3626  * extents are being appended, then we just need to (re)allocate and
3627  * initialize the space. Otherwise, if the new extents are being
3628  * inserted into the middle of the existing entries, a bit more work
3629  * is required to make room for the new extents to be inserted. The
3630  * caller is responsible for filling in the new extent entries upon
3631  * return.
3632  */
3633 void
3634 xfs_iext_add(
3635 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3636 	xfs_extnum_t	idx,		/* index to begin adding exts */
3637 	int		ext_diff)	/* number of extents to add */
3638 {
3639 	int		byte_diff;	/* new bytes being added */
3640 	int		new_size;	/* size of extents after adding */
3641 	xfs_extnum_t	nextents;	/* number of extents in file */
3642 
3643 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3644 	ASSERT((idx >= 0) && (idx <= nextents));
3645 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3646 	new_size = ifp->if_bytes + byte_diff;
3647 	/*
3648 	 * If the new number of extents (nextents + ext_diff)
3649 	 * fits inside the inode, then continue to use the inline
3650 	 * extent buffer.
3651 	 */
3652 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3653 		if (idx < nextents) {
3654 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3655 				&ifp->if_u2.if_inline_ext[idx],
3656 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3657 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3658 		}
3659 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3660 		ifp->if_real_bytes = 0;
3661 		ifp->if_lastex = nextents + ext_diff;
3662 	}
3663 	/*
3664 	 * Otherwise use a linear (direct) extent list.
3665 	 * If the extents are currently inside the inode,
3666 	 * xfs_iext_realloc_direct will switch us from
3667 	 * inline to direct extent allocation mode.
3668 	 */
3669 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3670 		xfs_iext_realloc_direct(ifp, new_size);
3671 		if (idx < nextents) {
3672 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3673 				&ifp->if_u1.if_extents[idx],
3674 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3675 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3676 		}
3677 	}
3678 	/* Indirection array */
3679 	else {
3680 		xfs_ext_irec_t	*erp;
3681 		int		erp_idx = 0;
3682 		int		page_idx = idx;
3683 
3684 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3685 		if (ifp->if_flags & XFS_IFEXTIREC) {
3686 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3687 		} else {
3688 			xfs_iext_irec_init(ifp);
3689 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3690 			erp = ifp->if_u1.if_ext_irec;
3691 		}
3692 		/* Extents fit in target extent page */
3693 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3694 			if (page_idx < erp->er_extcount) {
3695 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3696 					&erp->er_extbuf[page_idx],
3697 					(erp->er_extcount - page_idx) *
3698 					sizeof(xfs_bmbt_rec_t));
3699 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3700 			}
3701 			erp->er_extcount += ext_diff;
3702 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3703 		}
3704 		/* Insert a new extent page */
3705 		else if (erp) {
3706 			xfs_iext_add_indirect_multi(ifp,
3707 				erp_idx, page_idx, ext_diff);
3708 		}
3709 		/*
3710 		 * If extent(s) are being appended to the last page in
3711 		 * the indirection array and the new extent(s) don't fit
3712 		 * in the page, then erp is NULL and erp_idx is set to
3713 		 * the next index needed in the indirection array.
3714 		 */
3715 		else {
3716 			int	count = ext_diff;
3717 
3718 			while (count) {
3719 				erp = xfs_iext_irec_new(ifp, erp_idx);
3720 				erp->er_extcount = count;
3721 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3722 				if (count) {
3723 					erp_idx++;
3724 				}
3725 			}
3726 		}
3727 	}
3728 	ifp->if_bytes = new_size;
3729 }
3730 
3731 /*
3732  * This is called when incore extents are being added to the indirection
3733  * array and the new extents do not fit in the target extent list. The
3734  * erp_idx parameter contains the irec index for the target extent list
3735  * in the indirection array, and the idx parameter contains the extent
3736  * index within the list. The number of extents being added is stored
3737  * in the count parameter.
3738  *
3739  *    |-------|   |-------|
3740  *    |       |   |       |    idx - number of extents before idx
3741  *    |  idx  |   | count |
3742  *    |       |   |       |    count - number of extents being inserted at idx
3743  *    |-------|   |-------|
3744  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3745  *    |-------|   |-------|
3746  */
3747 void
3748 xfs_iext_add_indirect_multi(
3749 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3750 	int		erp_idx,		/* target extent irec index */
3751 	xfs_extnum_t	idx,			/* index within target list */
3752 	int		count)			/* new extents being added */
3753 {
3754 	int		byte_diff;		/* new bytes being added */
3755 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3756 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3757 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3758 	xfs_extnum_t	nex2;			/* extents after idx + count */
3759 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3760 	int		nlists;			/* number of irec's (lists) */
3761 
3762 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3763 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3764 	nex2 = erp->er_extcount - idx;
3765 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3766 
3767 	/*
3768 	 * Save second part of target extent list
3769 	 * (all extents past */
3770 	if (nex2) {
3771 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3772 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3773 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3774 		erp->er_extcount -= nex2;
3775 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3776 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3777 	}
3778 
3779 	/*
3780 	 * Add the new extents to the end of the target
3781 	 * list, then allocate new irec record(s) and
3782 	 * extent buffer(s) as needed to store the rest
3783 	 * of the new extents.
3784 	 */
3785 	ext_cnt = count;
3786 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3787 	if (ext_diff) {
3788 		erp->er_extcount += ext_diff;
3789 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3790 		ext_cnt -= ext_diff;
3791 	}
3792 	while (ext_cnt) {
3793 		erp_idx++;
3794 		erp = xfs_iext_irec_new(ifp, erp_idx);
3795 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3796 		erp->er_extcount = ext_diff;
3797 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3798 		ext_cnt -= ext_diff;
3799 	}
3800 
3801 	/* Add nex2 extents back to indirection array */
3802 	if (nex2) {
3803 		xfs_extnum_t	ext_avail;
3804 		int		i;
3805 
3806 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3807 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3808 		i = 0;
3809 		/*
3810 		 * If nex2 extents fit in the current page, append
3811 		 * nex2_ep after the new extents.
3812 		 */
3813 		if (nex2 <= ext_avail) {
3814 			i = erp->er_extcount;
3815 		}
3816 		/*
3817 		 * Otherwise, check if space is available in the
3818 		 * next page.
3819 		 */
3820 		else if ((erp_idx < nlists - 1) &&
3821 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3822 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3823 			erp_idx++;
3824 			erp++;
3825 			/* Create a hole for nex2 extents */
3826 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3827 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3828 		}
3829 		/*
3830 		 * Final choice, create a new extent page for
3831 		 * nex2 extents.
3832 		 */
3833 		else {
3834 			erp_idx++;
3835 			erp = xfs_iext_irec_new(ifp, erp_idx);
3836 		}
3837 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3838 		kmem_free(nex2_ep, byte_diff);
3839 		erp->er_extcount += nex2;
3840 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3841 	}
3842 }
3843 
3844 /*
3845  * This is called when the amount of space required for incore file
3846  * extents needs to be decreased. The ext_diff parameter stores the
3847  * number of extents to be removed and the idx parameter contains
3848  * the extent index where the extents will be removed from.
3849  *
3850  * If the amount of space needed has decreased below the linear
3851  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3852  * extent array.  Otherwise, use kmem_realloc() to adjust the
3853  * size to what is needed.
3854  */
3855 void
3856 xfs_iext_remove(
3857 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3858 	xfs_extnum_t	idx,		/* index to begin removing exts */
3859 	int		ext_diff)	/* number of extents to remove */
3860 {
3861 	xfs_extnum_t	nextents;	/* number of extents in file */
3862 	int		new_size;	/* size of extents after removal */
3863 
3864 	ASSERT(ext_diff > 0);
3865 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3866 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3867 
3868 	if (new_size == 0) {
3869 		xfs_iext_destroy(ifp);
3870 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3871 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3872 	} else if (ifp->if_real_bytes) {
3873 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3874 	} else {
3875 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3876 	}
3877 	ifp->if_bytes = new_size;
3878 }
3879 
3880 /*
3881  * This removes ext_diff extents from the inline buffer, beginning
3882  * at extent index idx.
3883  */
3884 void
3885 xfs_iext_remove_inline(
3886 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3887 	xfs_extnum_t	idx,		/* index to begin removing exts */
3888 	int		ext_diff)	/* number of extents to remove */
3889 {
3890 	int		nextents;	/* number of extents in file */
3891 
3892 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3893 	ASSERT(idx < XFS_INLINE_EXTS);
3894 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3895 	ASSERT(((nextents - ext_diff) > 0) &&
3896 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3897 
3898 	if (idx + ext_diff < nextents) {
3899 		memmove(&ifp->if_u2.if_inline_ext[idx],
3900 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3901 			(nextents - (idx + ext_diff)) *
3902 			 sizeof(xfs_bmbt_rec_t));
3903 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3904 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3905 	} else {
3906 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3907 			ext_diff * sizeof(xfs_bmbt_rec_t));
3908 	}
3909 }
3910 
3911 /*
3912  * This removes ext_diff extents from a linear (direct) extent list,
3913  * beginning at extent index idx. If the extents are being removed
3914  * from the end of the list (ie. truncate) then we just need to re-
3915  * allocate the list to remove the extra space. Otherwise, if the
3916  * extents are being removed from the middle of the existing extent
3917  * entries, then we first need to move the extent records beginning
3918  * at idx + ext_diff up in the list to overwrite the records being
3919  * removed, then remove the extra space via kmem_realloc.
3920  */
3921 void
3922 xfs_iext_remove_direct(
3923 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3924 	xfs_extnum_t	idx,		/* index to begin removing exts */
3925 	int		ext_diff)	/* number of extents to remove */
3926 {
3927 	xfs_extnum_t	nextents;	/* number of extents in file */
3928 	int		new_size;	/* size of extents after removal */
3929 
3930 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3931 	new_size = ifp->if_bytes -
3932 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3933 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3934 
3935 	if (new_size == 0) {
3936 		xfs_iext_destroy(ifp);
3937 		return;
3938 	}
3939 	/* Move extents up in the list (if needed) */
3940 	if (idx + ext_diff < nextents) {
3941 		memmove(&ifp->if_u1.if_extents[idx],
3942 			&ifp->if_u1.if_extents[idx + ext_diff],
3943 			(nextents - (idx + ext_diff)) *
3944 			 sizeof(xfs_bmbt_rec_t));
3945 	}
3946 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3947 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3948 	/*
3949 	 * Reallocate the direct extent list. If the extents
3950 	 * will fit inside the inode then xfs_iext_realloc_direct
3951 	 * will switch from direct to inline extent allocation
3952 	 * mode for us.
3953 	 */
3954 	xfs_iext_realloc_direct(ifp, new_size);
3955 	ifp->if_bytes = new_size;
3956 }
3957 
3958 /*
3959  * This is called when incore extents are being removed from the
3960  * indirection array and the extents being removed span multiple extent
3961  * buffers. The idx parameter contains the file extent index where we
3962  * want to begin removing extents, and the count parameter contains
3963  * how many extents need to be removed.
3964  *
3965  *    |-------|   |-------|
3966  *    | nex1  |   |       |    nex1 - number of extents before idx
3967  *    |-------|   | count |
3968  *    |       |   |       |    count - number of extents being removed at idx
3969  *    | count |   |-------|
3970  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3971  *    |-------|   |-------|
3972  */
3973 void
3974 xfs_iext_remove_indirect(
3975 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3976 	xfs_extnum_t	idx,		/* index to begin removing extents */
3977 	int		count)		/* number of extents to remove */
3978 {
3979 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3980 	int		erp_idx = 0;	/* indirection array index */
3981 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3982 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3983 	xfs_extnum_t	nex1;		/* number of extents before idx */
3984 	xfs_extnum_t	nex2;		/* extents after idx + count */
3985 	int		nlists;		/* entries in indirection array */
3986 	int		page_idx = idx;	/* index in target extent list */
3987 
3988 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3989 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3990 	ASSERT(erp != NULL);
3991 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3992 	nex1 = page_idx;
3993 	ext_cnt = count;
3994 	while (ext_cnt) {
3995 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3996 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3997 		/*
3998 		 * Check for deletion of entire list;
3999 		 * xfs_iext_irec_remove() updates extent offsets.
4000 		 */
4001 		if (ext_diff == erp->er_extcount) {
4002 			xfs_iext_irec_remove(ifp, erp_idx);
4003 			ext_cnt -= ext_diff;
4004 			nex1 = 0;
4005 			if (ext_cnt) {
4006 				ASSERT(erp_idx < ifp->if_real_bytes /
4007 					XFS_IEXT_BUFSZ);
4008 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4009 				nex1 = 0;
4010 				continue;
4011 			} else {
4012 				break;
4013 			}
4014 		}
4015 		/* Move extents up (if needed) */
4016 		if (nex2) {
4017 			memmove(&erp->er_extbuf[nex1],
4018 				&erp->er_extbuf[nex1 + ext_diff],
4019 				nex2 * sizeof(xfs_bmbt_rec_t));
4020 		}
4021 		/* Zero out rest of page */
4022 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4023 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4024 		/* Update remaining counters */
4025 		erp->er_extcount -= ext_diff;
4026 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4027 		ext_cnt -= ext_diff;
4028 		nex1 = 0;
4029 		erp_idx++;
4030 		erp++;
4031 	}
4032 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4033 	xfs_iext_irec_compact(ifp);
4034 }
4035 
4036 /*
4037  * Create, destroy, or resize a linear (direct) block of extents.
4038  */
4039 void
4040 xfs_iext_realloc_direct(
4041 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4042 	int		new_size)	/* new size of extents */
4043 {
4044 	int		rnew_size;	/* real new size of extents */
4045 
4046 	rnew_size = new_size;
4047 
4048 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4049 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4050 		 (new_size != ifp->if_real_bytes)));
4051 
4052 	/* Free extent records */
4053 	if (new_size == 0) {
4054 		xfs_iext_destroy(ifp);
4055 	}
4056 	/* Resize direct extent list and zero any new bytes */
4057 	else if (ifp->if_real_bytes) {
4058 		/* Check if extents will fit inside the inode */
4059 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4060 			xfs_iext_direct_to_inline(ifp, new_size /
4061 				(uint)sizeof(xfs_bmbt_rec_t));
4062 			ifp->if_bytes = new_size;
4063 			return;
4064 		}
4065 		if (!is_power_of_2(new_size)){
4066 			rnew_size = roundup_pow_of_two(new_size);
4067 		}
4068 		if (rnew_size != ifp->if_real_bytes) {
4069 			ifp->if_u1.if_extents =
4070 				kmem_realloc(ifp->if_u1.if_extents,
4071 						rnew_size,
4072 						ifp->if_real_bytes,
4073 						KM_SLEEP);
4074 		}
4075 		if (rnew_size > ifp->if_real_bytes) {
4076 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4077 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
4078 				rnew_size - ifp->if_real_bytes);
4079 		}
4080 	}
4081 	/*
4082 	 * Switch from the inline extent buffer to a direct
4083 	 * extent list. Be sure to include the inline extent
4084 	 * bytes in new_size.
4085 	 */
4086 	else {
4087 		new_size += ifp->if_bytes;
4088 		if (!is_power_of_2(new_size)) {
4089 			rnew_size = roundup_pow_of_two(new_size);
4090 		}
4091 		xfs_iext_inline_to_direct(ifp, rnew_size);
4092 	}
4093 	ifp->if_real_bytes = rnew_size;
4094 	ifp->if_bytes = new_size;
4095 }
4096 
4097 /*
4098  * Switch from linear (direct) extent records to inline buffer.
4099  */
4100 void
4101 xfs_iext_direct_to_inline(
4102 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4103 	xfs_extnum_t	nextents)	/* number of extents in file */
4104 {
4105 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4106 	ASSERT(nextents <= XFS_INLINE_EXTS);
4107 	/*
4108 	 * The inline buffer was zeroed when we switched
4109 	 * from inline to direct extent allocation mode,
4110 	 * so we don't need to clear it here.
4111 	 */
4112 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4113 		nextents * sizeof(xfs_bmbt_rec_t));
4114 	kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4115 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4116 	ifp->if_real_bytes = 0;
4117 }
4118 
4119 /*
4120  * Switch from inline buffer to linear (direct) extent records.
4121  * new_size should already be rounded up to the next power of 2
4122  * by the caller (when appropriate), so use new_size as it is.
4123  * However, since new_size may be rounded up, we can't update
4124  * if_bytes here. It is the caller's responsibility to update
4125  * if_bytes upon return.
4126  */
4127 void
4128 xfs_iext_inline_to_direct(
4129 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4130 	int		new_size)	/* number of extents in file */
4131 {
4132 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4133 	memset(ifp->if_u1.if_extents, 0, new_size);
4134 	if (ifp->if_bytes) {
4135 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4136 			ifp->if_bytes);
4137 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4138 			sizeof(xfs_bmbt_rec_t));
4139 	}
4140 	ifp->if_real_bytes = new_size;
4141 }
4142 
4143 /*
4144  * Resize an extent indirection array to new_size bytes.
4145  */
4146 void
4147 xfs_iext_realloc_indirect(
4148 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4149 	int		new_size)	/* new indirection array size */
4150 {
4151 	int		nlists;		/* number of irec's (ex lists) */
4152 	int		size;		/* current indirection array size */
4153 
4154 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4155 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4156 	size = nlists * sizeof(xfs_ext_irec_t);
4157 	ASSERT(ifp->if_real_bytes);
4158 	ASSERT((new_size >= 0) && (new_size != size));
4159 	if (new_size == 0) {
4160 		xfs_iext_destroy(ifp);
4161 	} else {
4162 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4163 			kmem_realloc(ifp->if_u1.if_ext_irec,
4164 				new_size, size, KM_SLEEP);
4165 	}
4166 }
4167 
4168 /*
4169  * Switch from indirection array to linear (direct) extent allocations.
4170  */
4171 void
4172 xfs_iext_indirect_to_direct(
4173 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4174 {
4175 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
4176 	xfs_extnum_t	nextents;	/* number of extents in file */
4177 	int		size;		/* size of file extents */
4178 
4179 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4180 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4181 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4182 	size = nextents * sizeof(xfs_bmbt_rec_t);
4183 
4184 	xfs_iext_irec_compact_full(ifp);
4185 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4186 
4187 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4188 	kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4189 	ifp->if_flags &= ~XFS_IFEXTIREC;
4190 	ifp->if_u1.if_extents = ep;
4191 	ifp->if_bytes = size;
4192 	if (nextents < XFS_LINEAR_EXTS) {
4193 		xfs_iext_realloc_direct(ifp, size);
4194 	}
4195 }
4196 
4197 /*
4198  * Free incore file extents.
4199  */
4200 void
4201 xfs_iext_destroy(
4202 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4203 {
4204 	if (ifp->if_flags & XFS_IFEXTIREC) {
4205 		int	erp_idx;
4206 		int	nlists;
4207 
4208 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4209 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4210 			xfs_iext_irec_remove(ifp, erp_idx);
4211 		}
4212 		ifp->if_flags &= ~XFS_IFEXTIREC;
4213 	} else if (ifp->if_real_bytes) {
4214 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4215 	} else if (ifp->if_bytes) {
4216 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4217 			sizeof(xfs_bmbt_rec_t));
4218 	}
4219 	ifp->if_u1.if_extents = NULL;
4220 	ifp->if_real_bytes = 0;
4221 	ifp->if_bytes = 0;
4222 }
4223 
4224 /*
4225  * Return a pointer to the extent record for file system block bno.
4226  */
4227 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
4228 xfs_iext_bno_to_ext(
4229 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4230 	xfs_fileoff_t	bno,		/* block number to search for */
4231 	xfs_extnum_t	*idxp)		/* index of target extent */
4232 {
4233 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
4234 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4235 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
4236 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4237 	int		high;		/* upper boundary in search */
4238 	xfs_extnum_t	idx = 0;	/* index of target extent */
4239 	int		low;		/* lower boundary in search */
4240 	xfs_extnum_t	nextents;	/* number of file extents */
4241 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4242 
4243 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4244 	if (nextents == 0) {
4245 		*idxp = 0;
4246 		return NULL;
4247 	}
4248 	low = 0;
4249 	if (ifp->if_flags & XFS_IFEXTIREC) {
4250 		/* Find target extent list */
4251 		int	erp_idx = 0;
4252 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4253 		base = erp->er_extbuf;
4254 		high = erp->er_extcount - 1;
4255 	} else {
4256 		base = ifp->if_u1.if_extents;
4257 		high = nextents - 1;
4258 	}
4259 	/* Binary search extent records */
4260 	while (low <= high) {
4261 		idx = (low + high) >> 1;
4262 		ep = base + idx;
4263 		startoff = xfs_bmbt_get_startoff(ep);
4264 		blockcount = xfs_bmbt_get_blockcount(ep);
4265 		if (bno < startoff) {
4266 			high = idx - 1;
4267 		} else if (bno >= startoff + blockcount) {
4268 			low = idx + 1;
4269 		} else {
4270 			/* Convert back to file-based extent index */
4271 			if (ifp->if_flags & XFS_IFEXTIREC) {
4272 				idx += erp->er_extoff;
4273 			}
4274 			*idxp = idx;
4275 			return ep;
4276 		}
4277 	}
4278 	/* Convert back to file-based extent index */
4279 	if (ifp->if_flags & XFS_IFEXTIREC) {
4280 		idx += erp->er_extoff;
4281 	}
4282 	if (bno >= startoff + blockcount) {
4283 		if (++idx == nextents) {
4284 			ep = NULL;
4285 		} else {
4286 			ep = xfs_iext_get_ext(ifp, idx);
4287 		}
4288 	}
4289 	*idxp = idx;
4290 	return ep;
4291 }
4292 
4293 /*
4294  * Return a pointer to the indirection array entry containing the
4295  * extent record for filesystem block bno. Store the index of the
4296  * target irec in *erp_idxp.
4297  */
4298 xfs_ext_irec_t *			/* pointer to found extent record */
4299 xfs_iext_bno_to_irec(
4300 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4301 	xfs_fileoff_t	bno,		/* block number to search for */
4302 	int		*erp_idxp)	/* irec index of target ext list */
4303 {
4304 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4305 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4306 	int		erp_idx;	/* indirection array index */
4307 	int		nlists;		/* number of extent irec's (lists) */
4308 	int		high;		/* binary search upper limit */
4309 	int		low;		/* binary search lower limit */
4310 
4311 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4312 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4313 	erp_idx = 0;
4314 	low = 0;
4315 	high = nlists - 1;
4316 	while (low <= high) {
4317 		erp_idx = (low + high) >> 1;
4318 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4319 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4320 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4321 			high = erp_idx - 1;
4322 		} else if (erp_next && bno >=
4323 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4324 			low = erp_idx + 1;
4325 		} else {
4326 			break;
4327 		}
4328 	}
4329 	*erp_idxp = erp_idx;
4330 	return erp;
4331 }
4332 
4333 /*
4334  * Return a pointer to the indirection array entry containing the
4335  * extent record at file extent index *idxp. Store the index of the
4336  * target irec in *erp_idxp and store the page index of the target
4337  * extent record in *idxp.
4338  */
4339 xfs_ext_irec_t *
4340 xfs_iext_idx_to_irec(
4341 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4342 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4343 	int		*erp_idxp,	/* pointer to target irec */
4344 	int		realloc)	/* new bytes were just added */
4345 {
4346 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4347 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4348 	int		erp_idx;	/* indirection array index */
4349 	int		nlists;		/* number of irec's (ex lists) */
4350 	int		high;		/* binary search upper limit */
4351 	int		low;		/* binary search lower limit */
4352 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4353 
4354 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4355 	ASSERT(page_idx >= 0 && page_idx <=
4356 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4357 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4358 	erp_idx = 0;
4359 	low = 0;
4360 	high = nlists - 1;
4361 
4362 	/* Binary search extent irec's */
4363 	while (low <= high) {
4364 		erp_idx = (low + high) >> 1;
4365 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4366 		prev = erp_idx > 0 ? erp - 1 : NULL;
4367 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4368 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4369 			high = erp_idx - 1;
4370 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4371 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4372 			    !realloc)) {
4373 			low = erp_idx + 1;
4374 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4375 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4376 			ASSERT(realloc);
4377 			page_idx = 0;
4378 			erp_idx++;
4379 			erp = erp_idx < nlists ? erp + 1 : NULL;
4380 			break;
4381 		} else {
4382 			page_idx -= erp->er_extoff;
4383 			break;
4384 		}
4385 	}
4386 	*idxp = page_idx;
4387 	*erp_idxp = erp_idx;
4388 	return(erp);
4389 }
4390 
4391 /*
4392  * Allocate and initialize an indirection array once the space needed
4393  * for incore extents increases above XFS_IEXT_BUFSZ.
4394  */
4395 void
4396 xfs_iext_irec_init(
4397 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4398 {
4399 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4400 	xfs_extnum_t	nextents;	/* number of extents in file */
4401 
4402 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4403 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4404 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4405 
4406 	erp = (xfs_ext_irec_t *)
4407 		kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4408 
4409 	if (nextents == 0) {
4410 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4411 	} else if (!ifp->if_real_bytes) {
4412 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4413 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4414 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4415 	}
4416 	erp->er_extbuf = ifp->if_u1.if_extents;
4417 	erp->er_extcount = nextents;
4418 	erp->er_extoff = 0;
4419 
4420 	ifp->if_flags |= XFS_IFEXTIREC;
4421 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4422 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4423 	ifp->if_u1.if_ext_irec = erp;
4424 
4425 	return;
4426 }
4427 
4428 /*
4429  * Allocate and initialize a new entry in the indirection array.
4430  */
4431 xfs_ext_irec_t *
4432 xfs_iext_irec_new(
4433 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4434 	int		erp_idx)	/* index for new irec */
4435 {
4436 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4437 	int		i;		/* loop counter */
4438 	int		nlists;		/* number of irec's (ex lists) */
4439 
4440 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4441 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4442 
4443 	/* Resize indirection array */
4444 	xfs_iext_realloc_indirect(ifp, ++nlists *
4445 				  sizeof(xfs_ext_irec_t));
4446 	/*
4447 	 * Move records down in the array so the
4448 	 * new page can use erp_idx.
4449 	 */
4450 	erp = ifp->if_u1.if_ext_irec;
4451 	for (i = nlists - 1; i > erp_idx; i--) {
4452 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4453 	}
4454 	ASSERT(i == erp_idx);
4455 
4456 	/* Initialize new extent record */
4457 	erp = ifp->if_u1.if_ext_irec;
4458 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4459 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4460 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4461 	erp[erp_idx].er_extcount = 0;
4462 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4463 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4464 	return (&erp[erp_idx]);
4465 }
4466 
4467 /*
4468  * Remove a record from the indirection array.
4469  */
4470 void
4471 xfs_iext_irec_remove(
4472 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4473 	int		erp_idx)	/* irec index to remove */
4474 {
4475 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4476 	int		i;		/* loop counter */
4477 	int		nlists;		/* number of irec's (ex lists) */
4478 
4479 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4480 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4481 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4482 	if (erp->er_extbuf) {
4483 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4484 			-erp->er_extcount);
4485 		kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4486 	}
4487 	/* Compact extent records */
4488 	erp = ifp->if_u1.if_ext_irec;
4489 	for (i = erp_idx; i < nlists - 1; i++) {
4490 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4491 	}
4492 	/*
4493 	 * Manually free the last extent record from the indirection
4494 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4495 	 * of zero would result in a call to xfs_iext_destroy() which
4496 	 * would in turn call this function again, creating a nasty
4497 	 * infinite loop.
4498 	 */
4499 	if (--nlists) {
4500 		xfs_iext_realloc_indirect(ifp,
4501 			nlists * sizeof(xfs_ext_irec_t));
4502 	} else {
4503 		kmem_free(ifp->if_u1.if_ext_irec,
4504 			sizeof(xfs_ext_irec_t));
4505 	}
4506 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4507 }
4508 
4509 /*
4510  * This is called to clean up large amounts of unused memory allocated
4511  * by the indirection array.  Before compacting anything though, verify
4512  * that the indirection array is still needed and switch back to the
4513  * linear extent list (or even the inline buffer) if possible.  The
4514  * compaction policy is as follows:
4515  *
4516  *    Full Compaction: Extents fit into a single page (or inline buffer)
4517  *    Full Compaction: Extents occupy less than 10% of allocated space
4518  * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4519  *      No Compaction: Extents occupy at least 50% of allocated space
4520  */
4521 void
4522 xfs_iext_irec_compact(
4523 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4524 {
4525 	xfs_extnum_t	nextents;	/* number of extents in file */
4526 	int		nlists;		/* number of irec's (ex lists) */
4527 
4528 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4529 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4530 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4531 
4532 	if (nextents == 0) {
4533 		xfs_iext_destroy(ifp);
4534 	} else if (nextents <= XFS_INLINE_EXTS) {
4535 		xfs_iext_indirect_to_direct(ifp);
4536 		xfs_iext_direct_to_inline(ifp, nextents);
4537 	} else if (nextents <= XFS_LINEAR_EXTS) {
4538 		xfs_iext_indirect_to_direct(ifp);
4539 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4540 		xfs_iext_irec_compact_full(ifp);
4541 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4542 		xfs_iext_irec_compact_pages(ifp);
4543 	}
4544 }
4545 
4546 /*
4547  * Combine extents from neighboring extent pages.
4548  */
4549 void
4550 xfs_iext_irec_compact_pages(
4551 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4552 {
4553 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4554 	int		erp_idx = 0;	/* indirection array index */
4555 	int		nlists;		/* number of irec's (ex lists) */
4556 
4557 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4558 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4559 	while (erp_idx < nlists - 1) {
4560 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4561 		erp_next = erp + 1;
4562 		if (erp_next->er_extcount <=
4563 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4564 			memmove(&erp->er_extbuf[erp->er_extcount],
4565 				erp_next->er_extbuf, erp_next->er_extcount *
4566 				sizeof(xfs_bmbt_rec_t));
4567 			erp->er_extcount += erp_next->er_extcount;
4568 			/*
4569 			 * Free page before removing extent record
4570 			 * so er_extoffs don't get modified in
4571 			 * xfs_iext_irec_remove.
4572 			 */
4573 			kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4574 			erp_next->er_extbuf = NULL;
4575 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4576 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4577 		} else {
4578 			erp_idx++;
4579 		}
4580 	}
4581 }
4582 
4583 /*
4584  * Fully compact the extent records managed by the indirection array.
4585  */
4586 void
4587 xfs_iext_irec_compact_full(
4588 	xfs_ifork_t	*ifp)			/* inode fork pointer */
4589 {
4590 	xfs_bmbt_rec_host_t *ep, *ep_next;	/* extent record pointers */
4591 	xfs_ext_irec_t	*erp, *erp_next;	/* extent irec pointers */
4592 	int		erp_idx = 0;		/* extent irec index */
4593 	int		ext_avail;		/* empty entries in ex list */
4594 	int		ext_diff;		/* number of exts to add */
4595 	int		nlists;			/* number of irec's (ex lists) */
4596 
4597 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4598 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4599 	erp = ifp->if_u1.if_ext_irec;
4600 	ep = &erp->er_extbuf[erp->er_extcount];
4601 	erp_next = erp + 1;
4602 	ep_next = erp_next->er_extbuf;
4603 	while (erp_idx < nlists - 1) {
4604 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4605 		ext_diff = MIN(ext_avail, erp_next->er_extcount);
4606 		memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4607 		erp->er_extcount += ext_diff;
4608 		erp_next->er_extcount -= ext_diff;
4609 		/* Remove next page */
4610 		if (erp_next->er_extcount == 0) {
4611 			/*
4612 			 * Free page before removing extent record
4613 			 * so er_extoffs don't get modified in
4614 			 * xfs_iext_irec_remove.
4615 			 */
4616 			kmem_free(erp_next->er_extbuf,
4617 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4618 			erp_next->er_extbuf = NULL;
4619 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4620 			erp = &ifp->if_u1.if_ext_irec[erp_idx];
4621 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4622 		/* Update next page */
4623 		} else {
4624 			/* Move rest of page up to become next new page */
4625 			memmove(erp_next->er_extbuf, ep_next,
4626 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4627 			ep_next = erp_next->er_extbuf;
4628 			memset(&ep_next[erp_next->er_extcount], 0,
4629 				(XFS_LINEAR_EXTS - erp_next->er_extcount) *
4630 				sizeof(xfs_bmbt_rec_t));
4631 		}
4632 		if (erp->er_extcount == XFS_LINEAR_EXTS) {
4633 			erp_idx++;
4634 			if (erp_idx < nlists)
4635 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4636 			else
4637 				break;
4638 		}
4639 		ep = &erp->er_extbuf[erp->er_extcount];
4640 		erp_next = erp + 1;
4641 		ep_next = erp_next->er_extbuf;
4642 	}
4643 }
4644 
4645 /*
4646  * This is called to update the er_extoff field in the indirection
4647  * array when extents have been added or removed from one of the
4648  * extent lists. erp_idx contains the irec index to begin updating
4649  * at and ext_diff contains the number of extents that were added
4650  * or removed.
4651  */
4652 void
4653 xfs_iext_irec_update_extoffs(
4654 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4655 	int		erp_idx,	/* irec index to update */
4656 	int		ext_diff)	/* number of new extents */
4657 {
4658 	int		i;		/* loop counter */
4659 	int		nlists;		/* number of irec's (ex lists */
4660 
4661 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4662 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4663 	for (i = erp_idx; i < nlists; i++) {
4664 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4665 	}
4666 }
4667