1 /* 2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 11 * 12 * Further, this software is distributed without any warranty that it is 13 * free of the rightful claim of any third person regarding infringement 14 * or the like. Any license provided herein, whether implied or 15 * otherwise, applies only to this software file. Patent licenses, if 16 * any, provided herein do not apply to combinations of this program with 17 * other software, or any other product whatsoever. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston MA 02111-1307, USA. 22 * 23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, 24 * Mountain View, CA 94043, or: 25 * 26 * http://www.sgi.com 27 * 28 * For further information regarding this notice, see: 29 * 30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ 31 */ 32 33 #include "xfs.h" 34 #include "xfs_macros.h" 35 #include "xfs_types.h" 36 #include "xfs_inum.h" 37 #include "xfs_log.h" 38 #include "xfs_trans.h" 39 #include "xfs_trans_priv.h" 40 #include "xfs_sb.h" 41 #include "xfs_ag.h" 42 #include "xfs_dir.h" 43 #include "xfs_dir2.h" 44 #include "xfs_dmapi.h" 45 #include "xfs_mount.h" 46 #include "xfs_alloc_btree.h" 47 #include "xfs_bmap_btree.h" 48 #include "xfs_ialloc_btree.h" 49 #include "xfs_btree.h" 50 #include "xfs_imap.h" 51 #include "xfs_alloc.h" 52 #include "xfs_ialloc.h" 53 #include "xfs_attr_sf.h" 54 #include "xfs_dir_sf.h" 55 #include "xfs_dir2_sf.h" 56 #include "xfs_dinode.h" 57 #include "xfs_inode_item.h" 58 #include "xfs_inode.h" 59 #include "xfs_bmap.h" 60 #include "xfs_buf_item.h" 61 #include "xfs_rw.h" 62 #include "xfs_error.h" 63 #include "xfs_bit.h" 64 #include "xfs_utils.h" 65 #include "xfs_dir2_trace.h" 66 #include "xfs_quota.h" 67 #include "xfs_mac.h" 68 #include "xfs_acl.h" 69 70 71 kmem_zone_t *xfs_ifork_zone; 72 kmem_zone_t *xfs_inode_zone; 73 kmem_zone_t *xfs_chashlist_zone; 74 75 /* 76 * Used in xfs_itruncate(). This is the maximum number of extents 77 * freed from a file in a single transaction. 78 */ 79 #define XFS_ITRUNC_MAX_EXTENTS 2 80 81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 85 86 87 #ifdef DEBUG 88 /* 89 * Make sure that the extents in the given memory buffer 90 * are valid. 91 */ 92 STATIC void 93 xfs_validate_extents( 94 xfs_bmbt_rec_t *ep, 95 int nrecs, 96 int disk, 97 xfs_exntfmt_t fmt) 98 { 99 xfs_bmbt_irec_t irec; 100 xfs_bmbt_rec_t rec; 101 int i; 102 103 for (i = 0; i < nrecs; i++) { 104 rec.l0 = get_unaligned((__uint64_t*)&ep->l0); 105 rec.l1 = get_unaligned((__uint64_t*)&ep->l1); 106 if (disk) 107 xfs_bmbt_disk_get_all(&rec, &irec); 108 else 109 xfs_bmbt_get_all(&rec, &irec); 110 if (fmt == XFS_EXTFMT_NOSTATE) 111 ASSERT(irec.br_state == XFS_EXT_NORM); 112 ep++; 113 } 114 } 115 #else /* DEBUG */ 116 #define xfs_validate_extents(ep, nrecs, disk, fmt) 117 #endif /* DEBUG */ 118 119 /* 120 * Check that none of the inode's in the buffer have a next 121 * unlinked field of 0. 122 */ 123 #if defined(DEBUG) 124 void 125 xfs_inobp_check( 126 xfs_mount_t *mp, 127 xfs_buf_t *bp) 128 { 129 int i; 130 int j; 131 xfs_dinode_t *dip; 132 133 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 134 135 for (i = 0; i < j; i++) { 136 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 137 i * mp->m_sb.sb_inodesize); 138 if (!dip->di_next_unlinked) { 139 xfs_fs_cmn_err(CE_ALERT, mp, 140 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 141 bp); 142 ASSERT(dip->di_next_unlinked); 143 } 144 } 145 } 146 #endif 147 148 /* 149 * called from bwrite on xfs inode buffers 150 */ 151 void 152 xfs_inobp_bwcheck(xfs_buf_t *bp) 153 { 154 xfs_mount_t *mp; 155 int i; 156 int j; 157 xfs_dinode_t *dip; 158 159 ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL); 160 161 mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *); 162 163 164 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 165 166 for (i = 0; i < j; i++) { 167 dip = (xfs_dinode_t *) xfs_buf_offset(bp, 168 i * mp->m_sb.sb_inodesize); 169 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { 170 cmn_err(CE_WARN, 171 "Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x", 172 INT_GET(dip->di_core.di_magic, ARCH_CONVERT), 173 (__uint64_t)(__psunsigned_t) bp, 174 (__int64_t) XFS_BUF_ADDR(bp), 175 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 176 xfs_fs_cmn_err(CE_WARN, mp, 177 "corrupt, unmount and run xfs_repair"); 178 } 179 if (!dip->di_next_unlinked) { 180 cmn_err(CE_WARN, 181 "Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x", 182 (__uint64_t)(__psunsigned_t) bp, 183 (__int64_t) XFS_BUF_ADDR(bp), 184 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 185 xfs_fs_cmn_err(CE_WARN, mp, 186 "corrupt, unmount and run xfs_repair"); 187 } 188 } 189 190 return; 191 } 192 193 /* 194 * This routine is called to map an inode number within a file 195 * system to the buffer containing the on-disk version of the 196 * inode. It returns a pointer to the buffer containing the 197 * on-disk inode in the bpp parameter, and in the dip parameter 198 * it returns a pointer to the on-disk inode within that buffer. 199 * 200 * If a non-zero error is returned, then the contents of bpp and 201 * dipp are undefined. 202 * 203 * Use xfs_imap() to determine the size and location of the 204 * buffer to read from disk. 205 */ 206 int 207 xfs_inotobp( 208 xfs_mount_t *mp, 209 xfs_trans_t *tp, 210 xfs_ino_t ino, 211 xfs_dinode_t **dipp, 212 xfs_buf_t **bpp, 213 int *offset) 214 { 215 int di_ok; 216 xfs_imap_t imap; 217 xfs_buf_t *bp; 218 int error; 219 xfs_dinode_t *dip; 220 221 /* 222 * Call the space managment code to find the location of the 223 * inode on disk. 224 */ 225 imap.im_blkno = 0; 226 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 227 if (error != 0) { 228 cmn_err(CE_WARN, 229 "xfs_inotobp: xfs_imap() returned an " 230 "error %d on %s. Returning error.", error, mp->m_fsname); 231 return error; 232 } 233 234 /* 235 * If the inode number maps to a block outside the bounds of the 236 * file system then return NULL rather than calling read_buf 237 * and panicing when we get an error from the driver. 238 */ 239 if ((imap.im_blkno + imap.im_len) > 240 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 241 cmn_err(CE_WARN, 242 "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds " 243 "of the file system %s. Returning EINVAL.", 244 imap.im_blkno, imap.im_len,mp->m_fsname); 245 return XFS_ERROR(EINVAL); 246 } 247 248 /* 249 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 250 * default to just a read_buf() call. 251 */ 252 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 253 (int)imap.im_len, XFS_BUF_LOCK, &bp); 254 255 if (error) { 256 cmn_err(CE_WARN, 257 "xfs_inotobp: xfs_trans_read_buf() returned an " 258 "error %d on %s. Returning error.", error, mp->m_fsname); 259 return error; 260 } 261 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); 262 di_ok = 263 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 264 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 265 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 266 XFS_RANDOM_ITOBP_INOTOBP))) { 267 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); 268 xfs_trans_brelse(tp, bp); 269 cmn_err(CE_WARN, 270 "xfs_inotobp: XFS_TEST_ERROR() returned an " 271 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); 272 return XFS_ERROR(EFSCORRUPTED); 273 } 274 275 xfs_inobp_check(mp, bp); 276 277 /* 278 * Set *dipp to point to the on-disk inode in the buffer. 279 */ 280 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 281 *bpp = bp; 282 *offset = imap.im_boffset; 283 return 0; 284 } 285 286 287 /* 288 * This routine is called to map an inode to the buffer containing 289 * the on-disk version of the inode. It returns a pointer to the 290 * buffer containing the on-disk inode in the bpp parameter, and in 291 * the dip parameter it returns a pointer to the on-disk inode within 292 * that buffer. 293 * 294 * If a non-zero error is returned, then the contents of bpp and 295 * dipp are undefined. 296 * 297 * If the inode is new and has not yet been initialized, use xfs_imap() 298 * to determine the size and location of the buffer to read from disk. 299 * If the inode has already been mapped to its buffer and read in once, 300 * then use the mapping information stored in the inode rather than 301 * calling xfs_imap(). This allows us to avoid the overhead of looking 302 * at the inode btree for small block file systems (see xfs_dilocate()). 303 * We can tell whether the inode has been mapped in before by comparing 304 * its disk block address to 0. Only uninitialized inodes will have 305 * 0 for the disk block address. 306 */ 307 int 308 xfs_itobp( 309 xfs_mount_t *mp, 310 xfs_trans_t *tp, 311 xfs_inode_t *ip, 312 xfs_dinode_t **dipp, 313 xfs_buf_t **bpp, 314 xfs_daddr_t bno) 315 { 316 xfs_buf_t *bp; 317 int error; 318 xfs_imap_t imap; 319 #ifdef __KERNEL__ 320 int i; 321 int ni; 322 #endif 323 324 if (ip->i_blkno == (xfs_daddr_t)0) { 325 /* 326 * Call the space management code to find the location of the 327 * inode on disk. 328 */ 329 imap.im_blkno = bno; 330 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); 331 if (error != 0) { 332 return error; 333 } 334 335 /* 336 * If the inode number maps to a block outside the bounds 337 * of the file system then return NULL rather than calling 338 * read_buf and panicing when we get an error from the 339 * driver. 340 */ 341 if ((imap.im_blkno + imap.im_len) > 342 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 343 #ifdef DEBUG 344 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 345 "(imap.im_blkno (0x%llx) " 346 "+ imap.im_len (0x%llx)) > " 347 " XFS_FSB_TO_BB(mp, " 348 "mp->m_sb.sb_dblocks) (0x%llx)", 349 (unsigned long long) imap.im_blkno, 350 (unsigned long long) imap.im_len, 351 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 352 #endif /* DEBUG */ 353 return XFS_ERROR(EINVAL); 354 } 355 356 /* 357 * Fill in the fields in the inode that will be used to 358 * map the inode to its buffer from now on. 359 */ 360 ip->i_blkno = imap.im_blkno; 361 ip->i_len = imap.im_len; 362 ip->i_boffset = imap.im_boffset; 363 } else { 364 /* 365 * We've already mapped the inode once, so just use the 366 * mapping that we saved the first time. 367 */ 368 imap.im_blkno = ip->i_blkno; 369 imap.im_len = ip->i_len; 370 imap.im_boffset = ip->i_boffset; 371 } 372 ASSERT(bno == 0 || bno == imap.im_blkno); 373 374 /* 375 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 376 * default to just a read_buf() call. 377 */ 378 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 379 (int)imap.im_len, XFS_BUF_LOCK, &bp); 380 381 if (error) { 382 #ifdef DEBUG 383 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 384 "xfs_trans_read_buf() returned error %d, " 385 "imap.im_blkno 0x%llx, imap.im_len 0x%llx", 386 error, (unsigned long long) imap.im_blkno, 387 (unsigned long long) imap.im_len); 388 #endif /* DEBUG */ 389 return error; 390 } 391 #ifdef __KERNEL__ 392 /* 393 * Validate the magic number and version of every inode in the buffer 394 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 395 */ 396 #ifdef DEBUG 397 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; 398 #else 399 ni = 1; 400 #endif 401 for (i = 0; i < ni; i++) { 402 int di_ok; 403 xfs_dinode_t *dip; 404 405 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 406 (i << mp->m_sb.sb_inodelog)); 407 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 408 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 409 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 410 XFS_RANDOM_ITOBP_INOTOBP))) { 411 #ifdef DEBUG 412 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", 413 mp->m_ddev_targp, 414 (unsigned long long)imap.im_blkno, i, 415 INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); 416 #endif 417 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, 418 mp, dip); 419 xfs_trans_brelse(tp, bp); 420 return XFS_ERROR(EFSCORRUPTED); 421 } 422 } 423 #endif /* __KERNEL__ */ 424 425 xfs_inobp_check(mp, bp); 426 427 /* 428 * Mark the buffer as an inode buffer now that it looks good 429 */ 430 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 431 432 /* 433 * Set *dipp to point to the on-disk inode in the buffer. 434 */ 435 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 436 *bpp = bp; 437 return 0; 438 } 439 440 /* 441 * Move inode type and inode format specific information from the 442 * on-disk inode to the in-core inode. For fifos, devs, and sockets 443 * this means set if_rdev to the proper value. For files, directories, 444 * and symlinks this means to bring in the in-line data or extent 445 * pointers. For a file in B-tree format, only the root is immediately 446 * brought in-core. The rest will be in-lined in if_extents when it 447 * is first referenced (see xfs_iread_extents()). 448 */ 449 STATIC int 450 xfs_iformat( 451 xfs_inode_t *ip, 452 xfs_dinode_t *dip) 453 { 454 xfs_attr_shortform_t *atp; 455 int size; 456 int error; 457 xfs_fsize_t di_size; 458 ip->i_df.if_ext_max = 459 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 460 error = 0; 461 462 if (unlikely( 463 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + 464 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > 465 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { 466 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 467 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu." 468 " Unmount and run xfs_repair.", 469 (unsigned long long)ip->i_ino, 470 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) 471 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), 472 (unsigned long long) 473 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); 474 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 475 ip->i_mount, dip); 476 return XFS_ERROR(EFSCORRUPTED); 477 } 478 479 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { 480 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 481 "corrupt dinode %Lu, forkoff = 0x%x." 482 " Unmount and run xfs_repair.", 483 (unsigned long long)ip->i_ino, 484 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); 485 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 486 ip->i_mount, dip); 487 return XFS_ERROR(EFSCORRUPTED); 488 } 489 490 switch (ip->i_d.di_mode & S_IFMT) { 491 case S_IFIFO: 492 case S_IFCHR: 493 case S_IFBLK: 494 case S_IFSOCK: 495 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { 496 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 497 ip->i_mount, dip); 498 return XFS_ERROR(EFSCORRUPTED); 499 } 500 ip->i_d.di_size = 0; 501 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); 502 break; 503 504 case S_IFREG: 505 case S_IFLNK: 506 case S_IFDIR: 507 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { 508 case XFS_DINODE_FMT_LOCAL: 509 /* 510 * no local regular files yet 511 */ 512 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { 513 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 514 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.", 515 (unsigned long long) ip->i_ino); 516 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 517 XFS_ERRLEVEL_LOW, 518 ip->i_mount, dip); 519 return XFS_ERROR(EFSCORRUPTED); 520 } 521 522 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); 523 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 524 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 525 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.", 526 (unsigned long long) ip->i_ino, 527 (long long) di_size); 528 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 529 XFS_ERRLEVEL_LOW, 530 ip->i_mount, dip); 531 return XFS_ERROR(EFSCORRUPTED); 532 } 533 534 size = (int)di_size; 535 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 536 break; 537 case XFS_DINODE_FMT_EXTENTS: 538 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 539 break; 540 case XFS_DINODE_FMT_BTREE: 541 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 542 break; 543 default: 544 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 545 ip->i_mount); 546 return XFS_ERROR(EFSCORRUPTED); 547 } 548 break; 549 550 default: 551 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 552 return XFS_ERROR(EFSCORRUPTED); 553 } 554 if (error) { 555 return error; 556 } 557 if (!XFS_DFORK_Q(dip)) 558 return 0; 559 ASSERT(ip->i_afp == NULL); 560 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 561 ip->i_afp->if_ext_max = 562 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 563 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { 564 case XFS_DINODE_FMT_LOCAL: 565 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 566 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); 567 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 568 break; 569 case XFS_DINODE_FMT_EXTENTS: 570 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 571 break; 572 case XFS_DINODE_FMT_BTREE: 573 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 574 break; 575 default: 576 error = XFS_ERROR(EFSCORRUPTED); 577 break; 578 } 579 if (error) { 580 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 581 ip->i_afp = NULL; 582 xfs_idestroy_fork(ip, XFS_DATA_FORK); 583 } 584 return error; 585 } 586 587 /* 588 * The file is in-lined in the on-disk inode. 589 * If it fits into if_inline_data, then copy 590 * it there, otherwise allocate a buffer for it 591 * and copy the data there. Either way, set 592 * if_data to point at the data. 593 * If we allocate a buffer for the data, make 594 * sure that its size is a multiple of 4 and 595 * record the real size in i_real_bytes. 596 */ 597 STATIC int 598 xfs_iformat_local( 599 xfs_inode_t *ip, 600 xfs_dinode_t *dip, 601 int whichfork, 602 int size) 603 { 604 xfs_ifork_t *ifp; 605 int real_size; 606 607 /* 608 * If the size is unreasonable, then something 609 * is wrong and we just bail out rather than crash in 610 * kmem_alloc() or memcpy() below. 611 */ 612 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 613 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 614 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.", 615 (unsigned long long) ip->i_ino, size, 616 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 617 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 618 ip->i_mount, dip); 619 return XFS_ERROR(EFSCORRUPTED); 620 } 621 ifp = XFS_IFORK_PTR(ip, whichfork); 622 real_size = 0; 623 if (size == 0) 624 ifp->if_u1.if_data = NULL; 625 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 626 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 627 else { 628 real_size = roundup(size, 4); 629 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 630 } 631 ifp->if_bytes = size; 632 ifp->if_real_bytes = real_size; 633 if (size) 634 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 635 ifp->if_flags &= ~XFS_IFEXTENTS; 636 ifp->if_flags |= XFS_IFINLINE; 637 return 0; 638 } 639 640 /* 641 * The file consists of a set of extents all 642 * of which fit into the on-disk inode. 643 * If there are few enough extents to fit into 644 * the if_inline_ext, then copy them there. 645 * Otherwise allocate a buffer for them and copy 646 * them into it. Either way, set if_extents 647 * to point at the extents. 648 */ 649 STATIC int 650 xfs_iformat_extents( 651 xfs_inode_t *ip, 652 xfs_dinode_t *dip, 653 int whichfork) 654 { 655 xfs_bmbt_rec_t *ep, *dp; 656 xfs_ifork_t *ifp; 657 int nex; 658 int real_size; 659 int size; 660 int i; 661 662 ifp = XFS_IFORK_PTR(ip, whichfork); 663 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 664 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 665 666 /* 667 * If the number of extents is unreasonable, then something 668 * is wrong and we just bail out rather than crash in 669 * kmem_alloc() or memcpy() below. 670 */ 671 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 672 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 673 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.", 674 (unsigned long long) ip->i_ino, nex); 675 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 676 ip->i_mount, dip); 677 return XFS_ERROR(EFSCORRUPTED); 678 } 679 680 real_size = 0; 681 if (nex == 0) 682 ifp->if_u1.if_extents = NULL; 683 else if (nex <= XFS_INLINE_EXTS) 684 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 685 else { 686 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); 687 ASSERT(ifp->if_u1.if_extents != NULL); 688 real_size = size; 689 } 690 ifp->if_bytes = size; 691 ifp->if_real_bytes = real_size; 692 if (size) { 693 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 694 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); 695 ep = ifp->if_u1.if_extents; 696 for (i = 0; i < nex; i++, ep++, dp++) { 697 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), 698 ARCH_CONVERT); 699 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), 700 ARCH_CONVERT); 701 } 702 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, 703 whichfork); 704 if (whichfork != XFS_DATA_FORK || 705 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 706 if (unlikely(xfs_check_nostate_extents( 707 ifp->if_u1.if_extents, nex))) { 708 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 709 XFS_ERRLEVEL_LOW, 710 ip->i_mount); 711 return XFS_ERROR(EFSCORRUPTED); 712 } 713 } 714 ifp->if_flags |= XFS_IFEXTENTS; 715 return 0; 716 } 717 718 /* 719 * The file has too many extents to fit into 720 * the inode, so they are in B-tree format. 721 * Allocate a buffer for the root of the B-tree 722 * and copy the root into it. The i_extents 723 * field will remain NULL until all of the 724 * extents are read in (when they are needed). 725 */ 726 STATIC int 727 xfs_iformat_btree( 728 xfs_inode_t *ip, 729 xfs_dinode_t *dip, 730 int whichfork) 731 { 732 xfs_bmdr_block_t *dfp; 733 xfs_ifork_t *ifp; 734 /* REFERENCED */ 735 int nrecs; 736 int size; 737 738 ifp = XFS_IFORK_PTR(ip, whichfork); 739 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 740 size = XFS_BMAP_BROOT_SPACE(dfp); 741 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 742 743 /* 744 * blow out if -- fork has less extents than can fit in 745 * fork (fork shouldn't be a btree format), root btree 746 * block has more records than can fit into the fork, 747 * or the number of extents is greater than the number of 748 * blocks. 749 */ 750 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 751 || XFS_BMDR_SPACE_CALC(nrecs) > 752 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 753 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 754 xfs_fs_cmn_err(CE_WARN, ip->i_mount, 755 "corrupt inode %Lu (btree). Unmount and run xfs_repair.", 756 (unsigned long long) ip->i_ino); 757 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 758 ip->i_mount); 759 return XFS_ERROR(EFSCORRUPTED); 760 } 761 762 ifp->if_broot_bytes = size; 763 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 764 ASSERT(ifp->if_broot != NULL); 765 /* 766 * Copy and convert from the on-disk structure 767 * to the in-memory structure. 768 */ 769 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 770 ifp->if_broot, size); 771 ifp->if_flags &= ~XFS_IFEXTENTS; 772 ifp->if_flags |= XFS_IFBROOT; 773 774 return 0; 775 } 776 777 /* 778 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk 779 * and native format 780 * 781 * buf = on-disk representation 782 * dip = native representation 783 * dir = direction - +ve -> disk to native 784 * -ve -> native to disk 785 */ 786 void 787 xfs_xlate_dinode_core( 788 xfs_caddr_t buf, 789 xfs_dinode_core_t *dip, 790 int dir) 791 { 792 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; 793 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; 794 xfs_arch_t arch = ARCH_CONVERT; 795 796 ASSERT(dir); 797 798 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); 799 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); 800 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); 801 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); 802 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); 803 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); 804 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); 805 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); 806 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); 807 808 if (dir > 0) { 809 memcpy(mem_core->di_pad, buf_core->di_pad, 810 sizeof(buf_core->di_pad)); 811 } else { 812 memcpy(buf_core->di_pad, mem_core->di_pad, 813 sizeof(buf_core->di_pad)); 814 } 815 816 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); 817 818 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, 819 dir, arch); 820 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, 821 dir, arch); 822 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, 823 dir, arch); 824 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, 825 dir, arch); 826 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, 827 dir, arch); 828 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, 829 dir, arch); 830 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); 831 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); 832 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); 833 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); 834 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); 835 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); 836 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); 837 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); 838 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); 839 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); 840 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); 841 } 842 843 STATIC uint 844 _xfs_dic2xflags( 845 xfs_dinode_core_t *dic, 846 __uint16_t di_flags) 847 { 848 uint flags = 0; 849 850 if (di_flags & XFS_DIFLAG_ANY) { 851 if (di_flags & XFS_DIFLAG_REALTIME) 852 flags |= XFS_XFLAG_REALTIME; 853 if (di_flags & XFS_DIFLAG_PREALLOC) 854 flags |= XFS_XFLAG_PREALLOC; 855 if (di_flags & XFS_DIFLAG_IMMUTABLE) 856 flags |= XFS_XFLAG_IMMUTABLE; 857 if (di_flags & XFS_DIFLAG_APPEND) 858 flags |= XFS_XFLAG_APPEND; 859 if (di_flags & XFS_DIFLAG_SYNC) 860 flags |= XFS_XFLAG_SYNC; 861 if (di_flags & XFS_DIFLAG_NOATIME) 862 flags |= XFS_XFLAG_NOATIME; 863 if (di_flags & XFS_DIFLAG_NODUMP) 864 flags |= XFS_XFLAG_NODUMP; 865 if (di_flags & XFS_DIFLAG_RTINHERIT) 866 flags |= XFS_XFLAG_RTINHERIT; 867 if (di_flags & XFS_DIFLAG_PROJINHERIT) 868 flags |= XFS_XFLAG_PROJINHERIT; 869 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 870 flags |= XFS_XFLAG_NOSYMLINKS; 871 } 872 873 return flags; 874 } 875 876 uint 877 xfs_ip2xflags( 878 xfs_inode_t *ip) 879 { 880 xfs_dinode_core_t *dic = &ip->i_d; 881 882 return _xfs_dic2xflags(dic, dic->di_flags) | 883 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); 884 } 885 886 uint 887 xfs_dic2xflags( 888 xfs_dinode_core_t *dic) 889 { 890 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | 891 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); 892 } 893 894 /* 895 * Given a mount structure and an inode number, return a pointer 896 * to a newly allocated in-core inode coresponding to the given 897 * inode number. 898 * 899 * Initialize the inode's attributes and extent pointers if it 900 * already has them (it will not if the inode has no links). 901 */ 902 int 903 xfs_iread( 904 xfs_mount_t *mp, 905 xfs_trans_t *tp, 906 xfs_ino_t ino, 907 xfs_inode_t **ipp, 908 xfs_daddr_t bno) 909 { 910 xfs_buf_t *bp; 911 xfs_dinode_t *dip; 912 xfs_inode_t *ip; 913 int error; 914 915 ASSERT(xfs_inode_zone != NULL); 916 917 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 918 ip->i_ino = ino; 919 ip->i_mount = mp; 920 921 /* 922 * Get pointer's to the on-disk inode and the buffer containing it. 923 * If the inode number refers to a block outside the file system 924 * then xfs_itobp() will return NULL. In this case we should 925 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 926 * know that this is a new incore inode. 927 */ 928 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); 929 930 if (error != 0) { 931 kmem_zone_free(xfs_inode_zone, ip); 932 return error; 933 } 934 935 /* 936 * Initialize inode's trace buffers. 937 * Do this before xfs_iformat in case it adds entries. 938 */ 939 #ifdef XFS_BMAP_TRACE 940 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); 941 #endif 942 #ifdef XFS_BMBT_TRACE 943 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); 944 #endif 945 #ifdef XFS_RW_TRACE 946 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); 947 #endif 948 #ifdef XFS_ILOCK_TRACE 949 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); 950 #endif 951 #ifdef XFS_DIR2_TRACE 952 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); 953 #endif 954 955 /* 956 * If we got something that isn't an inode it means someone 957 * (nfs or dmi) has a stale handle. 958 */ 959 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { 960 kmem_zone_free(xfs_inode_zone, ip); 961 xfs_trans_brelse(tp, bp); 962 #ifdef DEBUG 963 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 964 "dip->di_core.di_magic (0x%x) != " 965 "XFS_DINODE_MAGIC (0x%x)", 966 INT_GET(dip->di_core.di_magic, ARCH_CONVERT), 967 XFS_DINODE_MAGIC); 968 #endif /* DEBUG */ 969 return XFS_ERROR(EINVAL); 970 } 971 972 /* 973 * If the on-disk inode is already linked to a directory 974 * entry, copy all of the inode into the in-core inode. 975 * xfs_iformat() handles copying in the inode format 976 * specific information. 977 * Otherwise, just get the truly permanent information. 978 */ 979 if (dip->di_core.di_mode) { 980 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 981 &(ip->i_d), 1); 982 error = xfs_iformat(ip, dip); 983 if (error) { 984 kmem_zone_free(xfs_inode_zone, ip); 985 xfs_trans_brelse(tp, bp); 986 #ifdef DEBUG 987 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 988 "xfs_iformat() returned error %d", 989 error); 990 #endif /* DEBUG */ 991 return error; 992 } 993 } else { 994 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); 995 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); 996 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); 997 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); 998 /* 999 * Make sure to pull in the mode here as well in 1000 * case the inode is released without being used. 1001 * This ensures that xfs_inactive() will see that 1002 * the inode is already free and not try to mess 1003 * with the uninitialized part of it. 1004 */ 1005 ip->i_d.di_mode = 0; 1006 /* 1007 * Initialize the per-fork minima and maxima for a new 1008 * inode here. xfs_iformat will do it for old inodes. 1009 */ 1010 ip->i_df.if_ext_max = 1011 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 1012 } 1013 1014 INIT_LIST_HEAD(&ip->i_reclaim); 1015 1016 /* 1017 * The inode format changed when we moved the link count and 1018 * made it 32 bits long. If this is an old format inode, 1019 * convert it in memory to look like a new one. If it gets 1020 * flushed to disk we will convert back before flushing or 1021 * logging it. We zero out the new projid field and the old link 1022 * count field. We'll handle clearing the pad field (the remains 1023 * of the old uuid field) when we actually convert the inode to 1024 * the new format. We don't change the version number so that we 1025 * can distinguish this from a real new format inode. 1026 */ 1027 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1028 ip->i_d.di_nlink = ip->i_d.di_onlink; 1029 ip->i_d.di_onlink = 0; 1030 ip->i_d.di_projid = 0; 1031 } 1032 1033 ip->i_delayed_blks = 0; 1034 1035 /* 1036 * Mark the buffer containing the inode as something to keep 1037 * around for a while. This helps to keep recently accessed 1038 * meta-data in-core longer. 1039 */ 1040 XFS_BUF_SET_REF(bp, XFS_INO_REF); 1041 1042 /* 1043 * Use xfs_trans_brelse() to release the buffer containing the 1044 * on-disk inode, because it was acquired with xfs_trans_read_buf() 1045 * in xfs_itobp() above. If tp is NULL, this is just a normal 1046 * brelse(). If we're within a transaction, then xfs_trans_brelse() 1047 * will only release the buffer if it is not dirty within the 1048 * transaction. It will be OK to release the buffer in this case, 1049 * because inodes on disk are never destroyed and we will be 1050 * locking the new in-core inode before putting it in the hash 1051 * table where other processes can find it. Thus we don't have 1052 * to worry about the inode being changed just because we released 1053 * the buffer. 1054 */ 1055 xfs_trans_brelse(tp, bp); 1056 *ipp = ip; 1057 return 0; 1058 } 1059 1060 /* 1061 * Read in extents from a btree-format inode. 1062 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1063 */ 1064 int 1065 xfs_iread_extents( 1066 xfs_trans_t *tp, 1067 xfs_inode_t *ip, 1068 int whichfork) 1069 { 1070 int error; 1071 xfs_ifork_t *ifp; 1072 size_t size; 1073 1074 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1075 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1076 ip->i_mount); 1077 return XFS_ERROR(EFSCORRUPTED); 1078 } 1079 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); 1080 ifp = XFS_IFORK_PTR(ip, whichfork); 1081 /* 1082 * We know that the size is valid (it's checked in iformat_btree) 1083 */ 1084 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); 1085 ASSERT(ifp->if_u1.if_extents != NULL); 1086 ifp->if_lastex = NULLEXTNUM; 1087 ifp->if_bytes = ifp->if_real_bytes = (int)size; 1088 ifp->if_flags |= XFS_IFEXTENTS; 1089 error = xfs_bmap_read_extents(tp, ip, whichfork); 1090 if (error) { 1091 kmem_free(ifp->if_u1.if_extents, size); 1092 ifp->if_u1.if_extents = NULL; 1093 ifp->if_bytes = ifp->if_real_bytes = 0; 1094 ifp->if_flags &= ~XFS_IFEXTENTS; 1095 return error; 1096 } 1097 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, 1098 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); 1099 return 0; 1100 } 1101 1102 /* 1103 * Allocate an inode on disk and return a copy of its in-core version. 1104 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1105 * appropriately within the inode. The uid and gid for the inode are 1106 * set according to the contents of the given cred structure. 1107 * 1108 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1109 * has a free inode available, call xfs_iget() 1110 * to obtain the in-core version of the allocated inode. Finally, 1111 * fill in the inode and log its initial contents. In this case, 1112 * ialloc_context would be set to NULL and call_again set to false. 1113 * 1114 * If xfs_dialloc() does not have an available inode, 1115 * it will replenish its supply by doing an allocation. Since we can 1116 * only do one allocation within a transaction without deadlocks, we 1117 * must commit the current transaction before returning the inode itself. 1118 * In this case, therefore, we will set call_again to true and return. 1119 * The caller should then commit the current transaction, start a new 1120 * transaction, and call xfs_ialloc() again to actually get the inode. 1121 * 1122 * To ensure that some other process does not grab the inode that 1123 * was allocated during the first call to xfs_ialloc(), this routine 1124 * also returns the [locked] bp pointing to the head of the freelist 1125 * as ialloc_context. The caller should hold this buffer across 1126 * the commit and pass it back into this routine on the second call. 1127 */ 1128 int 1129 xfs_ialloc( 1130 xfs_trans_t *tp, 1131 xfs_inode_t *pip, 1132 mode_t mode, 1133 nlink_t nlink, 1134 xfs_dev_t rdev, 1135 cred_t *cr, 1136 xfs_prid_t prid, 1137 int okalloc, 1138 xfs_buf_t **ialloc_context, 1139 boolean_t *call_again, 1140 xfs_inode_t **ipp) 1141 { 1142 xfs_ino_t ino; 1143 xfs_inode_t *ip; 1144 vnode_t *vp; 1145 uint flags; 1146 int error; 1147 1148 /* 1149 * Call the space management code to pick 1150 * the on-disk inode to be allocated. 1151 */ 1152 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, 1153 ialloc_context, call_again, &ino); 1154 if (error != 0) { 1155 return error; 1156 } 1157 if (*call_again || ino == NULLFSINO) { 1158 *ipp = NULL; 1159 return 0; 1160 } 1161 ASSERT(*ialloc_context == NULL); 1162 1163 /* 1164 * Get the in-core inode with the lock held exclusively. 1165 * This is because we're setting fields here we need 1166 * to prevent others from looking at until we're done. 1167 */ 1168 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1169 IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1170 if (error != 0) { 1171 return error; 1172 } 1173 ASSERT(ip != NULL); 1174 1175 vp = XFS_ITOV(ip); 1176 vp->v_type = IFTOVT(mode); 1177 ip->i_d.di_mode = (__uint16_t)mode; 1178 ip->i_d.di_onlink = 0; 1179 ip->i_d.di_nlink = nlink; 1180 ASSERT(ip->i_d.di_nlink == nlink); 1181 ip->i_d.di_uid = current_fsuid(cr); 1182 ip->i_d.di_gid = current_fsgid(cr); 1183 ip->i_d.di_projid = prid; 1184 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1185 1186 /* 1187 * If the superblock version is up to where we support new format 1188 * inodes and this is currently an old format inode, then change 1189 * the inode version number now. This way we only do the conversion 1190 * here rather than here and in the flush/logging code. 1191 */ 1192 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && 1193 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1194 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1195 /* 1196 * We've already zeroed the old link count, the projid field, 1197 * and the pad field. 1198 */ 1199 } 1200 1201 /* 1202 * Project ids won't be stored on disk if we are using a version 1 inode. 1203 */ 1204 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1205 xfs_bump_ino_vers2(tp, ip); 1206 1207 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { 1208 ip->i_d.di_gid = pip->i_d.di_gid; 1209 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1210 ip->i_d.di_mode |= S_ISGID; 1211 } 1212 } 1213 1214 /* 1215 * If the group ID of the new file does not match the effective group 1216 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1217 * (and only if the irix_sgid_inherit compatibility variable is set). 1218 */ 1219 if ((irix_sgid_inherit) && 1220 (ip->i_d.di_mode & S_ISGID) && 1221 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1222 ip->i_d.di_mode &= ~S_ISGID; 1223 } 1224 1225 ip->i_d.di_size = 0; 1226 ip->i_d.di_nextents = 0; 1227 ASSERT(ip->i_d.di_nblocks == 0); 1228 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); 1229 /* 1230 * di_gen will have been taken care of in xfs_iread. 1231 */ 1232 ip->i_d.di_extsize = 0; 1233 ip->i_d.di_dmevmask = 0; 1234 ip->i_d.di_dmstate = 0; 1235 ip->i_d.di_flags = 0; 1236 flags = XFS_ILOG_CORE; 1237 switch (mode & S_IFMT) { 1238 case S_IFIFO: 1239 case S_IFCHR: 1240 case S_IFBLK: 1241 case S_IFSOCK: 1242 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1243 ip->i_df.if_u2.if_rdev = rdev; 1244 ip->i_df.if_flags = 0; 1245 flags |= XFS_ILOG_DEV; 1246 break; 1247 case S_IFREG: 1248 case S_IFDIR: 1249 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1250 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { 1251 if ((mode & S_IFMT) == S_IFDIR) { 1252 ip->i_d.di_flags |= XFS_DIFLAG_RTINHERIT; 1253 } else { 1254 ip->i_d.di_flags |= XFS_DIFLAG_REALTIME; 1255 ip->i_iocore.io_flags |= XFS_IOCORE_RT; 1256 } 1257 } 1258 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1259 xfs_inherit_noatime) 1260 ip->i_d.di_flags |= XFS_DIFLAG_NOATIME; 1261 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1262 xfs_inherit_nodump) 1263 ip->i_d.di_flags |= XFS_DIFLAG_NODUMP; 1264 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1265 xfs_inherit_sync) 1266 ip->i_d.di_flags |= XFS_DIFLAG_SYNC; 1267 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1268 xfs_inherit_nosymlinks) 1269 ip->i_d.di_flags |= XFS_DIFLAG_NOSYMLINKS; 1270 } 1271 /* FALLTHROUGH */ 1272 case S_IFLNK: 1273 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1274 ip->i_df.if_flags = XFS_IFEXTENTS; 1275 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1276 ip->i_df.if_u1.if_extents = NULL; 1277 break; 1278 default: 1279 ASSERT(0); 1280 } 1281 /* 1282 * Attribute fork settings for new inode. 1283 */ 1284 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1285 ip->i_d.di_anextents = 0; 1286 1287 /* 1288 * Log the new values stuffed into the inode. 1289 */ 1290 xfs_trans_log_inode(tp, ip, flags); 1291 1292 /* now that we have a v_type we can set Linux inode ops (& unlock) */ 1293 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); 1294 1295 *ipp = ip; 1296 return 0; 1297 } 1298 1299 /* 1300 * Check to make sure that there are no blocks allocated to the 1301 * file beyond the size of the file. We don't check this for 1302 * files with fixed size extents or real time extents, but we 1303 * at least do it for regular files. 1304 */ 1305 #ifdef DEBUG 1306 void 1307 xfs_isize_check( 1308 xfs_mount_t *mp, 1309 xfs_inode_t *ip, 1310 xfs_fsize_t isize) 1311 { 1312 xfs_fileoff_t map_first; 1313 int nimaps; 1314 xfs_bmbt_irec_t imaps[2]; 1315 1316 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1317 return; 1318 1319 if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) 1320 return; 1321 1322 nimaps = 2; 1323 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1324 /* 1325 * The filesystem could be shutting down, so bmapi may return 1326 * an error. 1327 */ 1328 if (xfs_bmapi(NULL, ip, map_first, 1329 (XFS_B_TO_FSB(mp, 1330 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1331 map_first), 1332 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1333 NULL)) 1334 return; 1335 ASSERT(nimaps == 1); 1336 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1337 } 1338 #endif /* DEBUG */ 1339 1340 /* 1341 * Calculate the last possible buffered byte in a file. This must 1342 * include data that was buffered beyond the EOF by the write code. 1343 * This also needs to deal with overflowing the xfs_fsize_t type 1344 * which can happen for sizes near the limit. 1345 * 1346 * We also need to take into account any blocks beyond the EOF. It 1347 * may be the case that they were buffered by a write which failed. 1348 * In that case the pages will still be in memory, but the inode size 1349 * will never have been updated. 1350 */ 1351 xfs_fsize_t 1352 xfs_file_last_byte( 1353 xfs_inode_t *ip) 1354 { 1355 xfs_mount_t *mp; 1356 xfs_fsize_t last_byte; 1357 xfs_fileoff_t last_block; 1358 xfs_fileoff_t size_last_block; 1359 int error; 1360 1361 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); 1362 1363 mp = ip->i_mount; 1364 /* 1365 * Only check for blocks beyond the EOF if the extents have 1366 * been read in. This eliminates the need for the inode lock, 1367 * and it also saves us from looking when it really isn't 1368 * necessary. 1369 */ 1370 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1371 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1372 XFS_DATA_FORK); 1373 if (error) { 1374 last_block = 0; 1375 } 1376 } else { 1377 last_block = 0; 1378 } 1379 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); 1380 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1381 1382 last_byte = XFS_FSB_TO_B(mp, last_block); 1383 if (last_byte < 0) { 1384 return XFS_MAXIOFFSET(mp); 1385 } 1386 last_byte += (1 << mp->m_writeio_log); 1387 if (last_byte < 0) { 1388 return XFS_MAXIOFFSET(mp); 1389 } 1390 return last_byte; 1391 } 1392 1393 #if defined(XFS_RW_TRACE) 1394 STATIC void 1395 xfs_itrunc_trace( 1396 int tag, 1397 xfs_inode_t *ip, 1398 int flag, 1399 xfs_fsize_t new_size, 1400 xfs_off_t toss_start, 1401 xfs_off_t toss_finish) 1402 { 1403 if (ip->i_rwtrace == NULL) { 1404 return; 1405 } 1406 1407 ktrace_enter(ip->i_rwtrace, 1408 (void*)((long)tag), 1409 (void*)ip, 1410 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1411 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1412 (void*)((long)flag), 1413 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1414 (void*)(unsigned long)(new_size & 0xffffffff), 1415 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1416 (void*)(unsigned long)(toss_start & 0xffffffff), 1417 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1418 (void*)(unsigned long)(toss_finish & 0xffffffff), 1419 (void*)(unsigned long)current_cpu(), 1420 (void*)0, 1421 (void*)0, 1422 (void*)0, 1423 (void*)0); 1424 } 1425 #else 1426 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1427 #endif 1428 1429 /* 1430 * Start the truncation of the file to new_size. The new size 1431 * must be smaller than the current size. This routine will 1432 * clear the buffer and page caches of file data in the removed 1433 * range, and xfs_itruncate_finish() will remove the underlying 1434 * disk blocks. 1435 * 1436 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1437 * must NOT have the inode lock held at all. This is because we're 1438 * calling into the buffer/page cache code and we can't hold the 1439 * inode lock when we do so. 1440 * 1441 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1442 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1443 * in the case that the caller is locking things out of order and 1444 * may not be able to call xfs_itruncate_finish() with the inode lock 1445 * held without dropping the I/O lock. If the caller must drop the 1446 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1447 * must be called again with all the same restrictions as the initial 1448 * call. 1449 */ 1450 void 1451 xfs_itruncate_start( 1452 xfs_inode_t *ip, 1453 uint flags, 1454 xfs_fsize_t new_size) 1455 { 1456 xfs_fsize_t last_byte; 1457 xfs_off_t toss_start; 1458 xfs_mount_t *mp; 1459 vnode_t *vp; 1460 1461 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1462 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1463 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1464 (flags == XFS_ITRUNC_MAYBE)); 1465 1466 mp = ip->i_mount; 1467 vp = XFS_ITOV(ip); 1468 /* 1469 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers 1470 * overlapping the region being removed. We have to use 1471 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the 1472 * caller may not be able to finish the truncate without 1473 * dropping the inode's I/O lock. Make sure 1474 * to catch any pages brought in by buffers overlapping 1475 * the EOF by searching out beyond the isize by our 1476 * block size. We round new_size up to a block boundary 1477 * so that we don't toss things on the same block as 1478 * new_size but before it. 1479 * 1480 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to 1481 * call remapf() over the same region if the file is mapped. 1482 * This frees up mapped file references to the pages in the 1483 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures 1484 * that we get the latest mapped changes flushed out. 1485 */ 1486 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1487 toss_start = XFS_FSB_TO_B(mp, toss_start); 1488 if (toss_start < 0) { 1489 /* 1490 * The place to start tossing is beyond our maximum 1491 * file size, so there is no way that the data extended 1492 * out there. 1493 */ 1494 return; 1495 } 1496 last_byte = xfs_file_last_byte(ip); 1497 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1498 last_byte); 1499 if (last_byte > toss_start) { 1500 if (flags & XFS_ITRUNC_DEFINITE) { 1501 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); 1502 } else { 1503 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); 1504 } 1505 } 1506 1507 #ifdef DEBUG 1508 if (new_size == 0) { 1509 ASSERT(VN_CACHED(vp) == 0); 1510 } 1511 #endif 1512 } 1513 1514 /* 1515 * Shrink the file to the given new_size. The new 1516 * size must be smaller than the current size. 1517 * This will free up the underlying blocks 1518 * in the removed range after a call to xfs_itruncate_start() 1519 * or xfs_atruncate_start(). 1520 * 1521 * The transaction passed to this routine must have made 1522 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. 1523 * This routine may commit the given transaction and 1524 * start new ones, so make sure everything involved in 1525 * the transaction is tidy before calling here. 1526 * Some transaction will be returned to the caller to be 1527 * committed. The incoming transaction must already include 1528 * the inode, and both inode locks must be held exclusively. 1529 * The inode must also be "held" within the transaction. On 1530 * return the inode will be "held" within the returned transaction. 1531 * This routine does NOT require any disk space to be reserved 1532 * for it within the transaction. 1533 * 1534 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, 1535 * and it indicates the fork which is to be truncated. For the 1536 * attribute fork we only support truncation to size 0. 1537 * 1538 * We use the sync parameter to indicate whether or not the first 1539 * transaction we perform might have to be synchronous. For the attr fork, 1540 * it needs to be so if the unlink of the inode is not yet known to be 1541 * permanent in the log. This keeps us from freeing and reusing the 1542 * blocks of the attribute fork before the unlink of the inode becomes 1543 * permanent. 1544 * 1545 * For the data fork, we normally have to run synchronously if we're 1546 * being called out of the inactive path or we're being called 1547 * out of the create path where we're truncating an existing file. 1548 * Either way, the truncate needs to be sync so blocks don't reappear 1549 * in the file with altered data in case of a crash. wsync filesystems 1550 * can run the first case async because anything that shrinks the inode 1551 * has to run sync so by the time we're called here from inactive, the 1552 * inode size is permanently set to 0. 1553 * 1554 * Calls from the truncate path always need to be sync unless we're 1555 * in a wsync filesystem and the file has already been unlinked. 1556 * 1557 * The caller is responsible for correctly setting the sync parameter. 1558 * It gets too hard for us to guess here which path we're being called 1559 * out of just based on inode state. 1560 */ 1561 int 1562 xfs_itruncate_finish( 1563 xfs_trans_t **tp, 1564 xfs_inode_t *ip, 1565 xfs_fsize_t new_size, 1566 int fork, 1567 int sync) 1568 { 1569 xfs_fsblock_t first_block; 1570 xfs_fileoff_t first_unmap_block; 1571 xfs_fileoff_t last_block; 1572 xfs_filblks_t unmap_len=0; 1573 xfs_mount_t *mp; 1574 xfs_trans_t *ntp; 1575 int done; 1576 int committed; 1577 xfs_bmap_free_t free_list; 1578 int error; 1579 1580 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1581 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); 1582 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); 1583 ASSERT(*tp != NULL); 1584 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1585 ASSERT(ip->i_transp == *tp); 1586 ASSERT(ip->i_itemp != NULL); 1587 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1588 1589 1590 ntp = *tp; 1591 mp = (ntp)->t_mountp; 1592 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1593 1594 /* 1595 * We only support truncating the entire attribute fork. 1596 */ 1597 if (fork == XFS_ATTR_FORK) { 1598 new_size = 0LL; 1599 } 1600 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1601 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1602 /* 1603 * The first thing we do is set the size to new_size permanently 1604 * on disk. This way we don't have to worry about anyone ever 1605 * being able to look at the data being freed even in the face 1606 * of a crash. What we're getting around here is the case where 1607 * we free a block, it is allocated to another file, it is written 1608 * to, and then we crash. If the new data gets written to the 1609 * file but the log buffers containing the free and reallocation 1610 * don't, then we'd end up with garbage in the blocks being freed. 1611 * As long as we make the new_size permanent before actually 1612 * freeing any blocks it doesn't matter if they get writtten to. 1613 * 1614 * The callers must signal into us whether or not the size 1615 * setting here must be synchronous. There are a few cases 1616 * where it doesn't have to be synchronous. Those cases 1617 * occur if the file is unlinked and we know the unlink is 1618 * permanent or if the blocks being truncated are guaranteed 1619 * to be beyond the inode eof (regardless of the link count) 1620 * and the eof value is permanent. Both of these cases occur 1621 * only on wsync-mounted filesystems. In those cases, we're 1622 * guaranteed that no user will ever see the data in the blocks 1623 * that are being truncated so the truncate can run async. 1624 * In the free beyond eof case, the file may wind up with 1625 * more blocks allocated to it than it needs if we crash 1626 * and that won't get fixed until the next time the file 1627 * is re-opened and closed but that's ok as that shouldn't 1628 * be too many blocks. 1629 * 1630 * However, we can't just make all wsync xactions run async 1631 * because there's one call out of the create path that needs 1632 * to run sync where it's truncating an existing file to size 1633 * 0 whose size is > 0. 1634 * 1635 * It's probably possible to come up with a test in this 1636 * routine that would correctly distinguish all the above 1637 * cases from the values of the function parameters and the 1638 * inode state but for sanity's sake, I've decided to let the 1639 * layers above just tell us. It's simpler to correctly figure 1640 * out in the layer above exactly under what conditions we 1641 * can run async and I think it's easier for others read and 1642 * follow the logic in case something has to be changed. 1643 * cscope is your friend -- rcc. 1644 * 1645 * The attribute fork is much simpler. 1646 * 1647 * For the attribute fork we allow the caller to tell us whether 1648 * the unlink of the inode that led to this call is yet permanent 1649 * in the on disk log. If it is not and we will be freeing extents 1650 * in this inode then we make the first transaction synchronous 1651 * to make sure that the unlink is permanent by the time we free 1652 * the blocks. 1653 */ 1654 if (fork == XFS_DATA_FORK) { 1655 if (ip->i_d.di_nextents > 0) { 1656 ip->i_d.di_size = new_size; 1657 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1658 } 1659 } else if (sync) { 1660 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1661 if (ip->i_d.di_anextents > 0) 1662 xfs_trans_set_sync(ntp); 1663 } 1664 ASSERT(fork == XFS_DATA_FORK || 1665 (fork == XFS_ATTR_FORK && 1666 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1667 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1668 1669 /* 1670 * Since it is possible for space to become allocated beyond 1671 * the end of the file (in a crash where the space is allocated 1672 * but the inode size is not yet updated), simply remove any 1673 * blocks which show up between the new EOF and the maximum 1674 * possible file size. If the first block to be removed is 1675 * beyond the maximum file size (ie it is the same as last_block), 1676 * then there is nothing to do. 1677 */ 1678 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1679 ASSERT(first_unmap_block <= last_block); 1680 done = 0; 1681 if (last_block == first_unmap_block) { 1682 done = 1; 1683 } else { 1684 unmap_len = last_block - first_unmap_block + 1; 1685 } 1686 while (!done) { 1687 /* 1688 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1689 * will tell us whether it freed the entire range or 1690 * not. If this is a synchronous mount (wsync), 1691 * then we can tell bunmapi to keep all the 1692 * transactions asynchronous since the unlink 1693 * transaction that made this inode inactive has 1694 * already hit the disk. There's no danger of 1695 * the freed blocks being reused, there being a 1696 * crash, and the reused blocks suddenly reappearing 1697 * in this file with garbage in them once recovery 1698 * runs. 1699 */ 1700 XFS_BMAP_INIT(&free_list, &first_block); 1701 error = xfs_bunmapi(ntp, ip, first_unmap_block, 1702 unmap_len, 1703 XFS_BMAPI_AFLAG(fork) | 1704 (sync ? 0 : XFS_BMAPI_ASYNC), 1705 XFS_ITRUNC_MAX_EXTENTS, 1706 &first_block, &free_list, &done); 1707 if (error) { 1708 /* 1709 * If the bunmapi call encounters an error, 1710 * return to the caller where the transaction 1711 * can be properly aborted. We just need to 1712 * make sure we're not holding any resources 1713 * that we were not when we came in. 1714 */ 1715 xfs_bmap_cancel(&free_list); 1716 return error; 1717 } 1718 1719 /* 1720 * Duplicate the transaction that has the permanent 1721 * reservation and commit the old transaction. 1722 */ 1723 error = xfs_bmap_finish(tp, &free_list, first_block, 1724 &committed); 1725 ntp = *tp; 1726 if (error) { 1727 /* 1728 * If the bmap finish call encounters an error, 1729 * return to the caller where the transaction 1730 * can be properly aborted. We just need to 1731 * make sure we're not holding any resources 1732 * that we were not when we came in. 1733 * 1734 * Aborting from this point might lose some 1735 * blocks in the file system, but oh well. 1736 */ 1737 xfs_bmap_cancel(&free_list); 1738 if (committed) { 1739 /* 1740 * If the passed in transaction committed 1741 * in xfs_bmap_finish(), then we want to 1742 * add the inode to this one before returning. 1743 * This keeps things simple for the higher 1744 * level code, because it always knows that 1745 * the inode is locked and held in the 1746 * transaction that returns to it whether 1747 * errors occur or not. We don't mark the 1748 * inode dirty so that this transaction can 1749 * be easily aborted if possible. 1750 */ 1751 xfs_trans_ijoin(ntp, ip, 1752 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1753 xfs_trans_ihold(ntp, ip); 1754 } 1755 return error; 1756 } 1757 1758 if (committed) { 1759 /* 1760 * The first xact was committed, 1761 * so add the inode to the new one. 1762 * Mark it dirty so it will be logged 1763 * and moved forward in the log as 1764 * part of every commit. 1765 */ 1766 xfs_trans_ijoin(ntp, ip, 1767 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1768 xfs_trans_ihold(ntp, ip); 1769 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1770 } 1771 ntp = xfs_trans_dup(ntp); 1772 (void) xfs_trans_commit(*tp, 0, NULL); 1773 *tp = ntp; 1774 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 1775 XFS_TRANS_PERM_LOG_RES, 1776 XFS_ITRUNCATE_LOG_COUNT); 1777 /* 1778 * Add the inode being truncated to the next chained 1779 * transaction. 1780 */ 1781 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1782 xfs_trans_ihold(ntp, ip); 1783 if (error) 1784 return (error); 1785 } 1786 /* 1787 * Only update the size in the case of the data fork, but 1788 * always re-log the inode so that our permanent transaction 1789 * can keep on rolling it forward in the log. 1790 */ 1791 if (fork == XFS_DATA_FORK) { 1792 xfs_isize_check(mp, ip, new_size); 1793 ip->i_d.di_size = new_size; 1794 } 1795 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1796 ASSERT((new_size != 0) || 1797 (fork == XFS_ATTR_FORK) || 1798 (ip->i_delayed_blks == 0)); 1799 ASSERT((new_size != 0) || 1800 (fork == XFS_ATTR_FORK) || 1801 (ip->i_d.di_nextents == 0)); 1802 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1803 return 0; 1804 } 1805 1806 1807 /* 1808 * xfs_igrow_start 1809 * 1810 * Do the first part of growing a file: zero any data in the last 1811 * block that is beyond the old EOF. We need to do this before 1812 * the inode is joined to the transaction to modify the i_size. 1813 * That way we can drop the inode lock and call into the buffer 1814 * cache to get the buffer mapping the EOF. 1815 */ 1816 int 1817 xfs_igrow_start( 1818 xfs_inode_t *ip, 1819 xfs_fsize_t new_size, 1820 cred_t *credp) 1821 { 1822 xfs_fsize_t isize; 1823 int error; 1824 1825 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1826 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1827 ASSERT(new_size > ip->i_d.di_size); 1828 1829 error = 0; 1830 isize = ip->i_d.di_size; 1831 /* 1832 * Zero any pages that may have been created by 1833 * xfs_write_file() beyond the end of the file 1834 * and any blocks between the old and new file sizes. 1835 */ 1836 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, 1837 new_size); 1838 return error; 1839 } 1840 1841 /* 1842 * xfs_igrow_finish 1843 * 1844 * This routine is called to extend the size of a file. 1845 * The inode must have both the iolock and the ilock locked 1846 * for update and it must be a part of the current transaction. 1847 * The xfs_igrow_start() function must have been called previously. 1848 * If the change_flag is not zero, the inode change timestamp will 1849 * be updated. 1850 */ 1851 void 1852 xfs_igrow_finish( 1853 xfs_trans_t *tp, 1854 xfs_inode_t *ip, 1855 xfs_fsize_t new_size, 1856 int change_flag) 1857 { 1858 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1859 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1860 ASSERT(ip->i_transp == tp); 1861 ASSERT(new_size > ip->i_d.di_size); 1862 1863 /* 1864 * Update the file size. Update the inode change timestamp 1865 * if change_flag set. 1866 */ 1867 ip->i_d.di_size = new_size; 1868 if (change_flag) 1869 xfs_ichgtime(ip, XFS_ICHGTIME_CHG); 1870 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1871 1872 } 1873 1874 1875 /* 1876 * This is called when the inode's link count goes to 0. 1877 * We place the on-disk inode on a list in the AGI. It 1878 * will be pulled from this list when the inode is freed. 1879 */ 1880 int 1881 xfs_iunlink( 1882 xfs_trans_t *tp, 1883 xfs_inode_t *ip) 1884 { 1885 xfs_mount_t *mp; 1886 xfs_agi_t *agi; 1887 xfs_dinode_t *dip; 1888 xfs_buf_t *agibp; 1889 xfs_buf_t *ibp; 1890 xfs_agnumber_t agno; 1891 xfs_daddr_t agdaddr; 1892 xfs_agino_t agino; 1893 short bucket_index; 1894 int offset; 1895 int error; 1896 int agi_ok; 1897 1898 ASSERT(ip->i_d.di_nlink == 0); 1899 ASSERT(ip->i_d.di_mode != 0); 1900 ASSERT(ip->i_transp == tp); 1901 1902 mp = tp->t_mountp; 1903 1904 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1905 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1906 1907 /* 1908 * Get the agi buffer first. It ensures lock ordering 1909 * on the list. 1910 */ 1911 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1912 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1913 if (error) { 1914 return error; 1915 } 1916 /* 1917 * Validate the magic number of the agi block. 1918 */ 1919 agi = XFS_BUF_TO_AGI(agibp); 1920 agi_ok = 1921 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && 1922 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); 1923 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1924 XFS_RANDOM_IUNLINK))) { 1925 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1926 xfs_trans_brelse(tp, agibp); 1927 return XFS_ERROR(EFSCORRUPTED); 1928 } 1929 /* 1930 * Get the index into the agi hash table for the 1931 * list this inode will go on. 1932 */ 1933 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1934 ASSERT(agino != 0); 1935 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1936 ASSERT(agi->agi_unlinked[bucket_index]); 1937 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino); 1938 1939 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) { 1940 /* 1941 * There is already another inode in the bucket we need 1942 * to add ourselves to. Add us at the front of the list. 1943 * Here we put the head pointer into our next pointer, 1944 * and then we fall through to point the head at us. 1945 */ 1946 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 1947 if (error) { 1948 return error; 1949 } 1950 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); 1951 ASSERT(dip->di_next_unlinked); 1952 /* both on-disk, don't endian flip twice */ 1953 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1954 offset = ip->i_boffset + 1955 offsetof(xfs_dinode_t, di_next_unlinked); 1956 xfs_trans_inode_buf(tp, ibp); 1957 xfs_trans_log_buf(tp, ibp, offset, 1958 (offset + sizeof(xfs_agino_t) - 1)); 1959 xfs_inobp_check(mp, ibp); 1960 } 1961 1962 /* 1963 * Point the bucket head pointer at the inode being inserted. 1964 */ 1965 ASSERT(agino != 0); 1966 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino); 1967 offset = offsetof(xfs_agi_t, agi_unlinked) + 1968 (sizeof(xfs_agino_t) * bucket_index); 1969 xfs_trans_log_buf(tp, agibp, offset, 1970 (offset + sizeof(xfs_agino_t) - 1)); 1971 return 0; 1972 } 1973 1974 /* 1975 * Pull the on-disk inode from the AGI unlinked list. 1976 */ 1977 STATIC int 1978 xfs_iunlink_remove( 1979 xfs_trans_t *tp, 1980 xfs_inode_t *ip) 1981 { 1982 xfs_ino_t next_ino; 1983 xfs_mount_t *mp; 1984 xfs_agi_t *agi; 1985 xfs_dinode_t *dip; 1986 xfs_buf_t *agibp; 1987 xfs_buf_t *ibp; 1988 xfs_agnumber_t agno; 1989 xfs_daddr_t agdaddr; 1990 xfs_agino_t agino; 1991 xfs_agino_t next_agino; 1992 xfs_buf_t *last_ibp; 1993 xfs_dinode_t *last_dip; 1994 short bucket_index; 1995 int offset, last_offset; 1996 int error; 1997 int agi_ok; 1998 1999 /* 2000 * First pull the on-disk inode from the AGI unlinked list. 2001 */ 2002 mp = tp->t_mountp; 2003 2004 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2005 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 2006 2007 /* 2008 * Get the agi buffer first. It ensures lock ordering 2009 * on the list. 2010 */ 2011 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 2012 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 2013 if (error) { 2014 cmn_err(CE_WARN, 2015 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 2016 error, mp->m_fsname); 2017 return error; 2018 } 2019 /* 2020 * Validate the magic number of the agi block. 2021 */ 2022 agi = XFS_BUF_TO_AGI(agibp); 2023 agi_ok = 2024 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && 2025 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); 2026 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 2027 XFS_RANDOM_IUNLINK_REMOVE))) { 2028 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 2029 mp, agi); 2030 xfs_trans_brelse(tp, agibp); 2031 cmn_err(CE_WARN, 2032 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 2033 mp->m_fsname); 2034 return XFS_ERROR(EFSCORRUPTED); 2035 } 2036 /* 2037 * Get the index into the agi hash table for the 2038 * list this inode will go on. 2039 */ 2040 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2041 ASSERT(agino != 0); 2042 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2043 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO); 2044 ASSERT(agi->agi_unlinked[bucket_index]); 2045 2046 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) { 2047 /* 2048 * We're at the head of the list. Get the inode's 2049 * on-disk buffer to see if there is anyone after us 2050 * on the list. Only modify our next pointer if it 2051 * is not already NULLAGINO. This saves us the overhead 2052 * of dealing with the buffer when there is no need to 2053 * change it. 2054 */ 2055 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 2056 if (error) { 2057 cmn_err(CE_WARN, 2058 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2059 error, mp->m_fsname); 2060 return error; 2061 } 2062 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2063 ASSERT(next_agino != 0); 2064 if (next_agino != NULLAGINO) { 2065 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2066 offset = ip->i_boffset + 2067 offsetof(xfs_dinode_t, di_next_unlinked); 2068 xfs_trans_inode_buf(tp, ibp); 2069 xfs_trans_log_buf(tp, ibp, offset, 2070 (offset + sizeof(xfs_agino_t) - 1)); 2071 xfs_inobp_check(mp, ibp); 2072 } else { 2073 xfs_trans_brelse(tp, ibp); 2074 } 2075 /* 2076 * Point the bucket head pointer at the next inode. 2077 */ 2078 ASSERT(next_agino != 0); 2079 ASSERT(next_agino != agino); 2080 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino); 2081 offset = offsetof(xfs_agi_t, agi_unlinked) + 2082 (sizeof(xfs_agino_t) * bucket_index); 2083 xfs_trans_log_buf(tp, agibp, offset, 2084 (offset + sizeof(xfs_agino_t) - 1)); 2085 } else { 2086 /* 2087 * We need to search the list for the inode being freed. 2088 */ 2089 next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT); 2090 last_ibp = NULL; 2091 while (next_agino != agino) { 2092 /* 2093 * If the last inode wasn't the one pointing to 2094 * us, then release its buffer since we're not 2095 * going to do anything with it. 2096 */ 2097 if (last_ibp != NULL) { 2098 xfs_trans_brelse(tp, last_ibp); 2099 } 2100 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2101 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 2102 &last_ibp, &last_offset); 2103 if (error) { 2104 cmn_err(CE_WARN, 2105 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2106 error, mp->m_fsname); 2107 return error; 2108 } 2109 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); 2110 ASSERT(next_agino != NULLAGINO); 2111 ASSERT(next_agino != 0); 2112 } 2113 /* 2114 * Now last_ibp points to the buffer previous to us on 2115 * the unlinked list. Pull us from the list. 2116 */ 2117 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); 2118 if (error) { 2119 cmn_err(CE_WARN, 2120 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2121 error, mp->m_fsname); 2122 return error; 2123 } 2124 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2125 ASSERT(next_agino != 0); 2126 ASSERT(next_agino != agino); 2127 if (next_agino != NULLAGINO) { 2128 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2129 offset = ip->i_boffset + 2130 offsetof(xfs_dinode_t, di_next_unlinked); 2131 xfs_trans_inode_buf(tp, ibp); 2132 xfs_trans_log_buf(tp, ibp, offset, 2133 (offset + sizeof(xfs_agino_t) - 1)); 2134 xfs_inobp_check(mp, ibp); 2135 } else { 2136 xfs_trans_brelse(tp, ibp); 2137 } 2138 /* 2139 * Point the previous inode on the list to the next inode. 2140 */ 2141 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); 2142 ASSERT(next_agino != 0); 2143 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2144 xfs_trans_inode_buf(tp, last_ibp); 2145 xfs_trans_log_buf(tp, last_ibp, offset, 2146 (offset + sizeof(xfs_agino_t) - 1)); 2147 xfs_inobp_check(mp, last_ibp); 2148 } 2149 return 0; 2150 } 2151 2152 static __inline__ int xfs_inode_clean(xfs_inode_t *ip) 2153 { 2154 return (((ip->i_itemp == NULL) || 2155 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && 2156 (ip->i_update_core == 0)); 2157 } 2158 2159 void 2160 xfs_ifree_cluster( 2161 xfs_inode_t *free_ip, 2162 xfs_trans_t *tp, 2163 xfs_ino_t inum) 2164 { 2165 xfs_mount_t *mp = free_ip->i_mount; 2166 int blks_per_cluster; 2167 int nbufs; 2168 int ninodes; 2169 int i, j, found, pre_flushed; 2170 xfs_daddr_t blkno; 2171 xfs_buf_t *bp; 2172 xfs_ihash_t *ih; 2173 xfs_inode_t *ip, **ip_found; 2174 xfs_inode_log_item_t *iip; 2175 xfs_log_item_t *lip; 2176 SPLDECL(s); 2177 2178 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2179 blks_per_cluster = 1; 2180 ninodes = mp->m_sb.sb_inopblock; 2181 nbufs = XFS_IALLOC_BLOCKS(mp); 2182 } else { 2183 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2184 mp->m_sb.sb_blocksize; 2185 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2186 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2187 } 2188 2189 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2190 2191 for (j = 0; j < nbufs; j++, inum += ninodes) { 2192 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2193 XFS_INO_TO_AGBNO(mp, inum)); 2194 2195 2196 /* 2197 * Look for each inode in memory and attempt to lock it, 2198 * we can be racing with flush and tail pushing here. 2199 * any inode we get the locks on, add to an array of 2200 * inode items to process later. 2201 * 2202 * The get the buffer lock, we could beat a flush 2203 * or tail pushing thread to the lock here, in which 2204 * case they will go looking for the inode buffer 2205 * and fail, we need some other form of interlock 2206 * here. 2207 */ 2208 found = 0; 2209 for (i = 0; i < ninodes; i++) { 2210 ih = XFS_IHASH(mp, inum + i); 2211 read_lock(&ih->ih_lock); 2212 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { 2213 if (ip->i_ino == inum + i) 2214 break; 2215 } 2216 2217 /* Inode not in memory or we found it already, 2218 * nothing to do 2219 */ 2220 if (!ip || (ip->i_flags & XFS_ISTALE)) { 2221 read_unlock(&ih->ih_lock); 2222 continue; 2223 } 2224 2225 if (xfs_inode_clean(ip)) { 2226 read_unlock(&ih->ih_lock); 2227 continue; 2228 } 2229 2230 /* If we can get the locks then add it to the 2231 * list, otherwise by the time we get the bp lock 2232 * below it will already be attached to the 2233 * inode buffer. 2234 */ 2235 2236 /* This inode will already be locked - by us, lets 2237 * keep it that way. 2238 */ 2239 2240 if (ip == free_ip) { 2241 if (xfs_iflock_nowait(ip)) { 2242 ip->i_flags |= XFS_ISTALE; 2243 2244 if (xfs_inode_clean(ip)) { 2245 xfs_ifunlock(ip); 2246 } else { 2247 ip_found[found++] = ip; 2248 } 2249 } 2250 read_unlock(&ih->ih_lock); 2251 continue; 2252 } 2253 2254 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2255 if (xfs_iflock_nowait(ip)) { 2256 ip->i_flags |= XFS_ISTALE; 2257 2258 if (xfs_inode_clean(ip)) { 2259 xfs_ifunlock(ip); 2260 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2261 } else { 2262 ip_found[found++] = ip; 2263 } 2264 } else { 2265 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2266 } 2267 } 2268 2269 read_unlock(&ih->ih_lock); 2270 } 2271 2272 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2273 mp->m_bsize * blks_per_cluster, 2274 XFS_BUF_LOCK); 2275 2276 pre_flushed = 0; 2277 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2278 while (lip) { 2279 if (lip->li_type == XFS_LI_INODE) { 2280 iip = (xfs_inode_log_item_t *)lip; 2281 ASSERT(iip->ili_logged == 1); 2282 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2283 AIL_LOCK(mp,s); 2284 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2285 AIL_UNLOCK(mp, s); 2286 iip->ili_inode->i_flags |= XFS_ISTALE; 2287 pre_flushed++; 2288 } 2289 lip = lip->li_bio_list; 2290 } 2291 2292 for (i = 0; i < found; i++) { 2293 ip = ip_found[i]; 2294 iip = ip->i_itemp; 2295 2296 if (!iip) { 2297 ip->i_update_core = 0; 2298 xfs_ifunlock(ip); 2299 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2300 continue; 2301 } 2302 2303 iip->ili_last_fields = iip->ili_format.ilf_fields; 2304 iip->ili_format.ilf_fields = 0; 2305 iip->ili_logged = 1; 2306 AIL_LOCK(mp,s); 2307 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2308 AIL_UNLOCK(mp, s); 2309 2310 xfs_buf_attach_iodone(bp, 2311 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2312 xfs_istale_done, (xfs_log_item_t *)iip); 2313 if (ip != free_ip) { 2314 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2315 } 2316 } 2317 2318 if (found || pre_flushed) 2319 xfs_trans_stale_inode_buf(tp, bp); 2320 xfs_trans_binval(tp, bp); 2321 } 2322 2323 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); 2324 } 2325 2326 /* 2327 * This is called to return an inode to the inode free list. 2328 * The inode should already be truncated to 0 length and have 2329 * no pages associated with it. This routine also assumes that 2330 * the inode is already a part of the transaction. 2331 * 2332 * The on-disk copy of the inode will have been added to the list 2333 * of unlinked inodes in the AGI. We need to remove the inode from 2334 * that list atomically with respect to freeing it here. 2335 */ 2336 int 2337 xfs_ifree( 2338 xfs_trans_t *tp, 2339 xfs_inode_t *ip, 2340 xfs_bmap_free_t *flist) 2341 { 2342 int error; 2343 int delete; 2344 xfs_ino_t first_ino; 2345 2346 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2347 ASSERT(ip->i_transp == tp); 2348 ASSERT(ip->i_d.di_nlink == 0); 2349 ASSERT(ip->i_d.di_nextents == 0); 2350 ASSERT(ip->i_d.di_anextents == 0); 2351 ASSERT((ip->i_d.di_size == 0) || 2352 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2353 ASSERT(ip->i_d.di_nblocks == 0); 2354 2355 /* 2356 * Pull the on-disk inode from the AGI unlinked list. 2357 */ 2358 error = xfs_iunlink_remove(tp, ip); 2359 if (error != 0) { 2360 return error; 2361 } 2362 2363 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2364 if (error != 0) { 2365 return error; 2366 } 2367 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2368 ip->i_d.di_flags = 0; 2369 ip->i_d.di_dmevmask = 0; 2370 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2371 ip->i_df.if_ext_max = 2372 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2373 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2374 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2375 /* 2376 * Bump the generation count so no one will be confused 2377 * by reincarnations of this inode. 2378 */ 2379 ip->i_d.di_gen++; 2380 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2381 2382 if (delete) { 2383 xfs_ifree_cluster(ip, tp, first_ino); 2384 } 2385 2386 return 0; 2387 } 2388 2389 /* 2390 * Reallocate the space for if_broot based on the number of records 2391 * being added or deleted as indicated in rec_diff. Move the records 2392 * and pointers in if_broot to fit the new size. When shrinking this 2393 * will eliminate holes between the records and pointers created by 2394 * the caller. When growing this will create holes to be filled in 2395 * by the caller. 2396 * 2397 * The caller must not request to add more records than would fit in 2398 * the on-disk inode root. If the if_broot is currently NULL, then 2399 * if we adding records one will be allocated. The caller must also 2400 * not request that the number of records go below zero, although 2401 * it can go to zero. 2402 * 2403 * ip -- the inode whose if_broot area is changing 2404 * ext_diff -- the change in the number of records, positive or negative, 2405 * requested for the if_broot array. 2406 */ 2407 void 2408 xfs_iroot_realloc( 2409 xfs_inode_t *ip, 2410 int rec_diff, 2411 int whichfork) 2412 { 2413 int cur_max; 2414 xfs_ifork_t *ifp; 2415 xfs_bmbt_block_t *new_broot; 2416 int new_max; 2417 size_t new_size; 2418 char *np; 2419 char *op; 2420 2421 /* 2422 * Handle the degenerate case quietly. 2423 */ 2424 if (rec_diff == 0) { 2425 return; 2426 } 2427 2428 ifp = XFS_IFORK_PTR(ip, whichfork); 2429 if (rec_diff > 0) { 2430 /* 2431 * If there wasn't any memory allocated before, just 2432 * allocate it now and get out. 2433 */ 2434 if (ifp->if_broot_bytes == 0) { 2435 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2436 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2437 KM_SLEEP); 2438 ifp->if_broot_bytes = (int)new_size; 2439 return; 2440 } 2441 2442 /* 2443 * If there is already an existing if_broot, then we need 2444 * to realloc() it and shift the pointers to their new 2445 * location. The records don't change location because 2446 * they are kept butted up against the btree block header. 2447 */ 2448 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2449 new_max = cur_max + rec_diff; 2450 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2451 ifp->if_broot = (xfs_bmbt_block_t *) 2452 kmem_realloc(ifp->if_broot, 2453 new_size, 2454 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2455 KM_SLEEP); 2456 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2457 ifp->if_broot_bytes); 2458 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2459 (int)new_size); 2460 ifp->if_broot_bytes = (int)new_size; 2461 ASSERT(ifp->if_broot_bytes <= 2462 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2463 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2464 return; 2465 } 2466 2467 /* 2468 * rec_diff is less than 0. In this case, we are shrinking the 2469 * if_broot buffer. It must already exist. If we go to zero 2470 * records, just get rid of the root and clear the status bit. 2471 */ 2472 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2473 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2474 new_max = cur_max + rec_diff; 2475 ASSERT(new_max >= 0); 2476 if (new_max > 0) 2477 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2478 else 2479 new_size = 0; 2480 if (new_size > 0) { 2481 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2482 /* 2483 * First copy over the btree block header. 2484 */ 2485 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2486 } else { 2487 new_broot = NULL; 2488 ifp->if_flags &= ~XFS_IFBROOT; 2489 } 2490 2491 /* 2492 * Only copy the records and pointers if there are any. 2493 */ 2494 if (new_max > 0) { 2495 /* 2496 * First copy the records. 2497 */ 2498 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2499 ifp->if_broot_bytes); 2500 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2501 (int)new_size); 2502 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2503 2504 /* 2505 * Then copy the pointers. 2506 */ 2507 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2508 ifp->if_broot_bytes); 2509 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2510 (int)new_size); 2511 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2512 } 2513 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2514 ifp->if_broot = new_broot; 2515 ifp->if_broot_bytes = (int)new_size; 2516 ASSERT(ifp->if_broot_bytes <= 2517 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2518 return; 2519 } 2520 2521 2522 /* 2523 * This is called when the amount of space needed for if_extents 2524 * is increased or decreased. The change in size is indicated by 2525 * the number of extents that need to be added or deleted in the 2526 * ext_diff parameter. 2527 * 2528 * If the amount of space needed has decreased below the size of the 2529 * inline buffer, then switch to using the inline buffer. Otherwise, 2530 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2531 * to what is needed. 2532 * 2533 * ip -- the inode whose if_extents area is changing 2534 * ext_diff -- the change in the number of extents, positive or negative, 2535 * requested for the if_extents array. 2536 */ 2537 void 2538 xfs_iext_realloc( 2539 xfs_inode_t *ip, 2540 int ext_diff, 2541 int whichfork) 2542 { 2543 int byte_diff; 2544 xfs_ifork_t *ifp; 2545 int new_size; 2546 uint rnew_size; 2547 2548 if (ext_diff == 0) { 2549 return; 2550 } 2551 2552 ifp = XFS_IFORK_PTR(ip, whichfork); 2553 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); 2554 new_size = (int)ifp->if_bytes + byte_diff; 2555 ASSERT(new_size >= 0); 2556 2557 if (new_size == 0) { 2558 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { 2559 ASSERT(ifp->if_real_bytes != 0); 2560 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 2561 } 2562 ifp->if_u1.if_extents = NULL; 2563 rnew_size = 0; 2564 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { 2565 /* 2566 * If the valid extents can fit in if_inline_ext, 2567 * copy them from the malloc'd vector and free it. 2568 */ 2569 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { 2570 /* 2571 * For now, empty files are format EXTENTS, 2572 * so the if_extents pointer is null. 2573 */ 2574 if (ifp->if_u1.if_extents) { 2575 memcpy(ifp->if_u2.if_inline_ext, 2576 ifp->if_u1.if_extents, new_size); 2577 kmem_free(ifp->if_u1.if_extents, 2578 ifp->if_real_bytes); 2579 } 2580 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 2581 } 2582 rnew_size = 0; 2583 } else { 2584 rnew_size = new_size; 2585 if ((rnew_size & (rnew_size - 1)) != 0) 2586 rnew_size = xfs_iroundup(rnew_size); 2587 /* 2588 * Stuck with malloc/realloc. 2589 */ 2590 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { 2591 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 2592 kmem_alloc(rnew_size, KM_SLEEP); 2593 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 2594 sizeof(ifp->if_u2.if_inline_ext)); 2595 } else if (rnew_size != ifp->if_real_bytes) { 2596 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 2597 kmem_realloc(ifp->if_u1.if_extents, 2598 rnew_size, 2599 ifp->if_real_bytes, 2600 KM_NOFS); 2601 } 2602 } 2603 ifp->if_real_bytes = rnew_size; 2604 ifp->if_bytes = new_size; 2605 } 2606 2607 2608 /* 2609 * This is called when the amount of space needed for if_data 2610 * is increased or decreased. The change in size is indicated by 2611 * the number of bytes that need to be added or deleted in the 2612 * byte_diff parameter. 2613 * 2614 * If the amount of space needed has decreased below the size of the 2615 * inline buffer, then switch to using the inline buffer. Otherwise, 2616 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2617 * to what is needed. 2618 * 2619 * ip -- the inode whose if_data area is changing 2620 * byte_diff -- the change in the number of bytes, positive or negative, 2621 * requested for the if_data array. 2622 */ 2623 void 2624 xfs_idata_realloc( 2625 xfs_inode_t *ip, 2626 int byte_diff, 2627 int whichfork) 2628 { 2629 xfs_ifork_t *ifp; 2630 int new_size; 2631 int real_size; 2632 2633 if (byte_diff == 0) { 2634 return; 2635 } 2636 2637 ifp = XFS_IFORK_PTR(ip, whichfork); 2638 new_size = (int)ifp->if_bytes + byte_diff; 2639 ASSERT(new_size >= 0); 2640 2641 if (new_size == 0) { 2642 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2643 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2644 } 2645 ifp->if_u1.if_data = NULL; 2646 real_size = 0; 2647 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2648 /* 2649 * If the valid extents/data can fit in if_inline_ext/data, 2650 * copy them from the malloc'd vector and free it. 2651 */ 2652 if (ifp->if_u1.if_data == NULL) { 2653 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2654 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2655 ASSERT(ifp->if_real_bytes != 0); 2656 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2657 new_size); 2658 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2659 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2660 } 2661 real_size = 0; 2662 } else { 2663 /* 2664 * Stuck with malloc/realloc. 2665 * For inline data, the underlying buffer must be 2666 * a multiple of 4 bytes in size so that it can be 2667 * logged and stay on word boundaries. We enforce 2668 * that here. 2669 */ 2670 real_size = roundup(new_size, 4); 2671 if (ifp->if_u1.if_data == NULL) { 2672 ASSERT(ifp->if_real_bytes == 0); 2673 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2674 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2675 /* 2676 * Only do the realloc if the underlying size 2677 * is really changing. 2678 */ 2679 if (ifp->if_real_bytes != real_size) { 2680 ifp->if_u1.if_data = 2681 kmem_realloc(ifp->if_u1.if_data, 2682 real_size, 2683 ifp->if_real_bytes, 2684 KM_SLEEP); 2685 } 2686 } else { 2687 ASSERT(ifp->if_real_bytes == 0); 2688 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2689 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2690 ifp->if_bytes); 2691 } 2692 } 2693 ifp->if_real_bytes = real_size; 2694 ifp->if_bytes = new_size; 2695 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2696 } 2697 2698 2699 2700 2701 /* 2702 * Map inode to disk block and offset. 2703 * 2704 * mp -- the mount point structure for the current file system 2705 * tp -- the current transaction 2706 * ino -- the inode number of the inode to be located 2707 * imap -- this structure is filled in with the information necessary 2708 * to retrieve the given inode from disk 2709 * flags -- flags to pass to xfs_dilocate indicating whether or not 2710 * lookups in the inode btree were OK or not 2711 */ 2712 int 2713 xfs_imap( 2714 xfs_mount_t *mp, 2715 xfs_trans_t *tp, 2716 xfs_ino_t ino, 2717 xfs_imap_t *imap, 2718 uint flags) 2719 { 2720 xfs_fsblock_t fsbno; 2721 int len; 2722 int off; 2723 int error; 2724 2725 fsbno = imap->im_blkno ? 2726 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2727 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2728 if (error != 0) { 2729 return error; 2730 } 2731 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2732 imap->im_len = XFS_FSB_TO_BB(mp, len); 2733 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2734 imap->im_ioffset = (ushort)off; 2735 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2736 return 0; 2737 } 2738 2739 void 2740 xfs_idestroy_fork( 2741 xfs_inode_t *ip, 2742 int whichfork) 2743 { 2744 xfs_ifork_t *ifp; 2745 2746 ifp = XFS_IFORK_PTR(ip, whichfork); 2747 if (ifp->if_broot != NULL) { 2748 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2749 ifp->if_broot = NULL; 2750 } 2751 2752 /* 2753 * If the format is local, then we can't have an extents 2754 * array so just look for an inline data array. If we're 2755 * not local then we may or may not have an extents list, 2756 * so check and free it up if we do. 2757 */ 2758 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2759 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2760 (ifp->if_u1.if_data != NULL)) { 2761 ASSERT(ifp->if_real_bytes != 0); 2762 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2763 ifp->if_u1.if_data = NULL; 2764 ifp->if_real_bytes = 0; 2765 } 2766 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2767 (ifp->if_u1.if_extents != NULL) && 2768 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { 2769 ASSERT(ifp->if_real_bytes != 0); 2770 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 2771 ifp->if_u1.if_extents = NULL; 2772 ifp->if_real_bytes = 0; 2773 } 2774 ASSERT(ifp->if_u1.if_extents == NULL || 2775 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2776 ASSERT(ifp->if_real_bytes == 0); 2777 if (whichfork == XFS_ATTR_FORK) { 2778 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2779 ip->i_afp = NULL; 2780 } 2781 } 2782 2783 /* 2784 * This is called free all the memory associated with an inode. 2785 * It must free the inode itself and any buffers allocated for 2786 * if_extents/if_data and if_broot. It must also free the lock 2787 * associated with the inode. 2788 */ 2789 void 2790 xfs_idestroy( 2791 xfs_inode_t *ip) 2792 { 2793 2794 switch (ip->i_d.di_mode & S_IFMT) { 2795 case S_IFREG: 2796 case S_IFDIR: 2797 case S_IFLNK: 2798 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2799 break; 2800 } 2801 if (ip->i_afp) 2802 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2803 mrfree(&ip->i_lock); 2804 mrfree(&ip->i_iolock); 2805 freesema(&ip->i_flock); 2806 #ifdef XFS_BMAP_TRACE 2807 ktrace_free(ip->i_xtrace); 2808 #endif 2809 #ifdef XFS_BMBT_TRACE 2810 ktrace_free(ip->i_btrace); 2811 #endif 2812 #ifdef XFS_RW_TRACE 2813 ktrace_free(ip->i_rwtrace); 2814 #endif 2815 #ifdef XFS_ILOCK_TRACE 2816 ktrace_free(ip->i_lock_trace); 2817 #endif 2818 #ifdef XFS_DIR2_TRACE 2819 ktrace_free(ip->i_dir_trace); 2820 #endif 2821 if (ip->i_itemp) { 2822 /* XXXdpd should be able to assert this but shutdown 2823 * is leaving the AIL behind. */ 2824 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || 2825 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2826 xfs_inode_item_destroy(ip); 2827 } 2828 kmem_zone_free(xfs_inode_zone, ip); 2829 } 2830 2831 2832 /* 2833 * Increment the pin count of the given buffer. 2834 * This value is protected by ipinlock spinlock in the mount structure. 2835 */ 2836 void 2837 xfs_ipin( 2838 xfs_inode_t *ip) 2839 { 2840 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2841 2842 atomic_inc(&ip->i_pincount); 2843 } 2844 2845 /* 2846 * Decrement the pin count of the given inode, and wake up 2847 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2848 * inode must have been previoulsy pinned with a call to xfs_ipin(). 2849 */ 2850 void 2851 xfs_iunpin( 2852 xfs_inode_t *ip) 2853 { 2854 ASSERT(atomic_read(&ip->i_pincount) > 0); 2855 2856 if (atomic_dec_and_test(&ip->i_pincount)) { 2857 vnode_t *vp = XFS_ITOV_NULL(ip); 2858 2859 /* make sync come back and flush this inode */ 2860 if (vp) { 2861 struct inode *inode = LINVFS_GET_IP(vp); 2862 2863 if (!(inode->i_state & I_NEW)) 2864 mark_inode_dirty_sync(inode); 2865 } 2866 2867 wake_up(&ip->i_ipin_wait); 2868 } 2869 } 2870 2871 /* 2872 * This is called to wait for the given inode to be unpinned. 2873 * It will sleep until this happens. The caller must have the 2874 * inode locked in at least shared mode so that the buffer cannot 2875 * be subsequently pinned once someone is waiting for it to be 2876 * unpinned. 2877 */ 2878 void 2879 xfs_iunpin_wait( 2880 xfs_inode_t *ip) 2881 { 2882 xfs_inode_log_item_t *iip; 2883 xfs_lsn_t lsn; 2884 2885 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); 2886 2887 if (atomic_read(&ip->i_pincount) == 0) { 2888 return; 2889 } 2890 2891 iip = ip->i_itemp; 2892 if (iip && iip->ili_last_lsn) { 2893 lsn = iip->ili_last_lsn; 2894 } else { 2895 lsn = (xfs_lsn_t)0; 2896 } 2897 2898 /* 2899 * Give the log a push so we don't wait here too long. 2900 */ 2901 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); 2902 2903 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2904 } 2905 2906 2907 /* 2908 * xfs_iextents_copy() 2909 * 2910 * This is called to copy the REAL extents (as opposed to the delayed 2911 * allocation extents) from the inode into the given buffer. It 2912 * returns the number of bytes copied into the buffer. 2913 * 2914 * If there are no delayed allocation extents, then we can just 2915 * memcpy() the extents into the buffer. Otherwise, we need to 2916 * examine each extent in turn and skip those which are delayed. 2917 */ 2918 int 2919 xfs_iextents_copy( 2920 xfs_inode_t *ip, 2921 xfs_bmbt_rec_t *buffer, 2922 int whichfork) 2923 { 2924 int copied; 2925 xfs_bmbt_rec_t *dest_ep; 2926 xfs_bmbt_rec_t *ep; 2927 #ifdef XFS_BMAP_TRACE 2928 static char fname[] = "xfs_iextents_copy"; 2929 #endif 2930 int i; 2931 xfs_ifork_t *ifp; 2932 int nrecs; 2933 xfs_fsblock_t start_block; 2934 2935 ifp = XFS_IFORK_PTR(ip, whichfork); 2936 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 2937 ASSERT(ifp->if_bytes > 0); 2938 2939 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2940 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); 2941 ASSERT(nrecs > 0); 2942 2943 /* 2944 * There are some delayed allocation extents in the 2945 * inode, so copy the extents one at a time and skip 2946 * the delayed ones. There must be at least one 2947 * non-delayed extent. 2948 */ 2949 ep = ifp->if_u1.if_extents; 2950 dest_ep = buffer; 2951 copied = 0; 2952 for (i = 0; i < nrecs; i++) { 2953 start_block = xfs_bmbt_get_startblock(ep); 2954 if (ISNULLSTARTBLOCK(start_block)) { 2955 /* 2956 * It's a delayed allocation extent, so skip it. 2957 */ 2958 ep++; 2959 continue; 2960 } 2961 2962 /* Translate to on disk format */ 2963 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), 2964 (__uint64_t*)&dest_ep->l0); 2965 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), 2966 (__uint64_t*)&dest_ep->l1); 2967 dest_ep++; 2968 ep++; 2969 copied++; 2970 } 2971 ASSERT(copied != 0); 2972 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); 2973 2974 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2975 } 2976 2977 /* 2978 * Each of the following cases stores data into the same region 2979 * of the on-disk inode, so only one of them can be valid at 2980 * any given time. While it is possible to have conflicting formats 2981 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2982 * in EXTENTS format, this can only happen when the fork has 2983 * changed formats after being modified but before being flushed. 2984 * In these cases, the format always takes precedence, because the 2985 * format indicates the current state of the fork. 2986 */ 2987 /*ARGSUSED*/ 2988 STATIC int 2989 xfs_iflush_fork( 2990 xfs_inode_t *ip, 2991 xfs_dinode_t *dip, 2992 xfs_inode_log_item_t *iip, 2993 int whichfork, 2994 xfs_buf_t *bp) 2995 { 2996 char *cp; 2997 xfs_ifork_t *ifp; 2998 xfs_mount_t *mp; 2999 #ifdef XFS_TRANS_DEBUG 3000 int first; 3001 #endif 3002 static const short brootflag[2] = 3003 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 3004 static const short dataflag[2] = 3005 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 3006 static const short extflag[2] = 3007 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 3008 3009 if (iip == NULL) 3010 return 0; 3011 ifp = XFS_IFORK_PTR(ip, whichfork); 3012 /* 3013 * This can happen if we gave up in iformat in an error path, 3014 * for the attribute fork. 3015 */ 3016 if (ifp == NULL) { 3017 ASSERT(whichfork == XFS_ATTR_FORK); 3018 return 0; 3019 } 3020 cp = XFS_DFORK_PTR(dip, whichfork); 3021 mp = ip->i_mount; 3022 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 3023 case XFS_DINODE_FMT_LOCAL: 3024 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 3025 (ifp->if_bytes > 0)) { 3026 ASSERT(ifp->if_u1.if_data != NULL); 3027 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 3028 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 3029 } 3030 if (whichfork == XFS_DATA_FORK) { 3031 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { 3032 XFS_ERROR_REPORT("xfs_iflush_fork", 3033 XFS_ERRLEVEL_LOW, mp); 3034 return XFS_ERROR(EFSCORRUPTED); 3035 } 3036 } 3037 break; 3038 3039 case XFS_DINODE_FMT_EXTENTS: 3040 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 3041 !(iip->ili_format.ilf_fields & extflag[whichfork])); 3042 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); 3043 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); 3044 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 3045 (ifp->if_bytes > 0)) { 3046 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 3047 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 3048 whichfork); 3049 } 3050 break; 3051 3052 case XFS_DINODE_FMT_BTREE: 3053 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 3054 (ifp->if_broot_bytes > 0)) { 3055 ASSERT(ifp->if_broot != NULL); 3056 ASSERT(ifp->if_broot_bytes <= 3057 (XFS_IFORK_SIZE(ip, whichfork) + 3058 XFS_BROOT_SIZE_ADJ)); 3059 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 3060 (xfs_bmdr_block_t *)cp, 3061 XFS_DFORK_SIZE(dip, mp, whichfork)); 3062 } 3063 break; 3064 3065 case XFS_DINODE_FMT_DEV: 3066 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 3067 ASSERT(whichfork == XFS_DATA_FORK); 3068 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); 3069 } 3070 break; 3071 3072 case XFS_DINODE_FMT_UUID: 3073 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 3074 ASSERT(whichfork == XFS_DATA_FORK); 3075 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 3076 sizeof(uuid_t)); 3077 } 3078 break; 3079 3080 default: 3081 ASSERT(0); 3082 break; 3083 } 3084 3085 return 0; 3086 } 3087 3088 /* 3089 * xfs_iflush() will write a modified inode's changes out to the 3090 * inode's on disk home. The caller must have the inode lock held 3091 * in at least shared mode and the inode flush semaphore must be 3092 * held as well. The inode lock will still be held upon return from 3093 * the call and the caller is free to unlock it. 3094 * The inode flush lock will be unlocked when the inode reaches the disk. 3095 * The flags indicate how the inode's buffer should be written out. 3096 */ 3097 int 3098 xfs_iflush( 3099 xfs_inode_t *ip, 3100 uint flags) 3101 { 3102 xfs_inode_log_item_t *iip; 3103 xfs_buf_t *bp; 3104 xfs_dinode_t *dip; 3105 xfs_mount_t *mp; 3106 int error; 3107 /* REFERENCED */ 3108 xfs_chash_t *ch; 3109 xfs_inode_t *iq; 3110 int clcount; /* count of inodes clustered */ 3111 int bufwasdelwri; 3112 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3113 SPLDECL(s); 3114 3115 XFS_STATS_INC(xs_iflush_count); 3116 3117 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3118 ASSERT(valusema(&ip->i_flock) <= 0); 3119 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3120 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3121 3122 iip = ip->i_itemp; 3123 mp = ip->i_mount; 3124 3125 /* 3126 * If the inode isn't dirty, then just release the inode 3127 * flush lock and do nothing. 3128 */ 3129 if ((ip->i_update_core == 0) && 3130 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3131 ASSERT((iip != NULL) ? 3132 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); 3133 xfs_ifunlock(ip); 3134 return 0; 3135 } 3136 3137 /* 3138 * We can't flush the inode until it is unpinned, so 3139 * wait for it. We know noone new can pin it, because 3140 * we are holding the inode lock shared and you need 3141 * to hold it exclusively to pin the inode. 3142 */ 3143 xfs_iunpin_wait(ip); 3144 3145 /* 3146 * This may have been unpinned because the filesystem is shutting 3147 * down forcibly. If that's the case we must not write this inode 3148 * to disk, because the log record didn't make it to disk! 3149 */ 3150 if (XFS_FORCED_SHUTDOWN(mp)) { 3151 ip->i_update_core = 0; 3152 if (iip) 3153 iip->ili_format.ilf_fields = 0; 3154 xfs_ifunlock(ip); 3155 return XFS_ERROR(EIO); 3156 } 3157 3158 /* 3159 * Get the buffer containing the on-disk inode. 3160 */ 3161 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); 3162 if (error != 0) { 3163 xfs_ifunlock(ip); 3164 return error; 3165 } 3166 3167 /* 3168 * Decide how buffer will be flushed out. This is done before 3169 * the call to xfs_iflush_int because this field is zeroed by it. 3170 */ 3171 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3172 /* 3173 * Flush out the inode buffer according to the directions 3174 * of the caller. In the cases where the caller has given 3175 * us a choice choose the non-delwri case. This is because 3176 * the inode is in the AIL and we need to get it out soon. 3177 */ 3178 switch (flags) { 3179 case XFS_IFLUSH_SYNC: 3180 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3181 flags = 0; 3182 break; 3183 case XFS_IFLUSH_ASYNC: 3184 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3185 flags = INT_ASYNC; 3186 break; 3187 case XFS_IFLUSH_DELWRI: 3188 flags = INT_DELWRI; 3189 break; 3190 default: 3191 ASSERT(0); 3192 flags = 0; 3193 break; 3194 } 3195 } else { 3196 switch (flags) { 3197 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3198 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3199 case XFS_IFLUSH_DELWRI: 3200 flags = INT_DELWRI; 3201 break; 3202 case XFS_IFLUSH_ASYNC: 3203 flags = INT_ASYNC; 3204 break; 3205 case XFS_IFLUSH_SYNC: 3206 flags = 0; 3207 break; 3208 default: 3209 ASSERT(0); 3210 flags = 0; 3211 break; 3212 } 3213 } 3214 3215 /* 3216 * First flush out the inode that xfs_iflush was called with. 3217 */ 3218 error = xfs_iflush_int(ip, bp); 3219 if (error) { 3220 goto corrupt_out; 3221 } 3222 3223 /* 3224 * inode clustering: 3225 * see if other inodes can be gathered into this write 3226 */ 3227 3228 ip->i_chash->chl_buf = bp; 3229 3230 ch = XFS_CHASH(mp, ip->i_blkno); 3231 s = mutex_spinlock(&ch->ch_lock); 3232 3233 clcount = 0; 3234 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { 3235 /* 3236 * Do an un-protected check to see if the inode is dirty and 3237 * is a candidate for flushing. These checks will be repeated 3238 * later after the appropriate locks are acquired. 3239 */ 3240 iip = iq->i_itemp; 3241 if ((iq->i_update_core == 0) && 3242 ((iip == NULL) || 3243 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && 3244 xfs_ipincount(iq) == 0) { 3245 continue; 3246 } 3247 3248 /* 3249 * Try to get locks. If any are unavailable, 3250 * then this inode cannot be flushed and is skipped. 3251 */ 3252 3253 /* get inode locks (just i_lock) */ 3254 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { 3255 /* get inode flush lock */ 3256 if (xfs_iflock_nowait(iq)) { 3257 /* check if pinned */ 3258 if (xfs_ipincount(iq) == 0) { 3259 /* arriving here means that 3260 * this inode can be flushed. 3261 * first re-check that it's 3262 * dirty 3263 */ 3264 iip = iq->i_itemp; 3265 if ((iq->i_update_core != 0)|| 3266 ((iip != NULL) && 3267 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3268 clcount++; 3269 error = xfs_iflush_int(iq, bp); 3270 if (error) { 3271 xfs_iunlock(iq, 3272 XFS_ILOCK_SHARED); 3273 goto cluster_corrupt_out; 3274 } 3275 } else { 3276 xfs_ifunlock(iq); 3277 } 3278 } else { 3279 xfs_ifunlock(iq); 3280 } 3281 } 3282 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3283 } 3284 } 3285 mutex_spinunlock(&ch->ch_lock, s); 3286 3287 if (clcount) { 3288 XFS_STATS_INC(xs_icluster_flushcnt); 3289 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3290 } 3291 3292 /* 3293 * If the buffer is pinned then push on the log so we won't 3294 * get stuck waiting in the write for too long. 3295 */ 3296 if (XFS_BUF_ISPINNED(bp)){ 3297 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3298 } 3299 3300 if (flags & INT_DELWRI) { 3301 xfs_bdwrite(mp, bp); 3302 } else if (flags & INT_ASYNC) { 3303 xfs_bawrite(mp, bp); 3304 } else { 3305 error = xfs_bwrite(mp, bp); 3306 } 3307 return error; 3308 3309 corrupt_out: 3310 xfs_buf_relse(bp); 3311 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); 3312 xfs_iflush_abort(ip); 3313 /* 3314 * Unlocks the flush lock 3315 */ 3316 return XFS_ERROR(EFSCORRUPTED); 3317 3318 cluster_corrupt_out: 3319 /* Corruption detected in the clustering loop. Invalidate the 3320 * inode buffer and shut down the filesystem. 3321 */ 3322 mutex_spinunlock(&ch->ch_lock, s); 3323 3324 /* 3325 * Clean up the buffer. If it was B_DELWRI, just release it -- 3326 * brelse can handle it with no problems. If not, shut down the 3327 * filesystem before releasing the buffer. 3328 */ 3329 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { 3330 xfs_buf_relse(bp); 3331 } 3332 3333 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); 3334 3335 if(!bufwasdelwri) { 3336 /* 3337 * Just like incore_relse: if we have b_iodone functions, 3338 * mark the buffer as an error and call them. Otherwise 3339 * mark it as stale and brelse. 3340 */ 3341 if (XFS_BUF_IODONE_FUNC(bp)) { 3342 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3343 XFS_BUF_UNDONE(bp); 3344 XFS_BUF_STALE(bp); 3345 XFS_BUF_SHUT(bp); 3346 XFS_BUF_ERROR(bp,EIO); 3347 xfs_biodone(bp); 3348 } else { 3349 XFS_BUF_STALE(bp); 3350 xfs_buf_relse(bp); 3351 } 3352 } 3353 3354 xfs_iflush_abort(iq); 3355 /* 3356 * Unlocks the flush lock 3357 */ 3358 return XFS_ERROR(EFSCORRUPTED); 3359 } 3360 3361 3362 STATIC int 3363 xfs_iflush_int( 3364 xfs_inode_t *ip, 3365 xfs_buf_t *bp) 3366 { 3367 xfs_inode_log_item_t *iip; 3368 xfs_dinode_t *dip; 3369 xfs_mount_t *mp; 3370 #ifdef XFS_TRANS_DEBUG 3371 int first; 3372 #endif 3373 SPLDECL(s); 3374 3375 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3376 ASSERT(valusema(&ip->i_flock) <= 0); 3377 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3378 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3379 3380 iip = ip->i_itemp; 3381 mp = ip->i_mount; 3382 3383 3384 /* 3385 * If the inode isn't dirty, then just release the inode 3386 * flush lock and do nothing. 3387 */ 3388 if ((ip->i_update_core == 0) && 3389 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3390 xfs_ifunlock(ip); 3391 return 0; 3392 } 3393 3394 /* set *dip = inode's place in the buffer */ 3395 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3396 3397 /* 3398 * Clear i_update_core before copying out the data. 3399 * This is for coordination with our timestamp updates 3400 * that don't hold the inode lock. They will always 3401 * update the timestamps BEFORE setting i_update_core, 3402 * so if we clear i_update_core after they set it we 3403 * are guaranteed to see their updates to the timestamps. 3404 * I believe that this depends on strongly ordered memory 3405 * semantics, but we have that. We use the SYNCHRONIZE 3406 * macro to make sure that the compiler does not reorder 3407 * the i_update_core access below the data copy below. 3408 */ 3409 ip->i_update_core = 0; 3410 SYNCHRONIZE(); 3411 3412 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, 3413 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3414 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3415 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3416 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); 3417 goto corrupt_out; 3418 } 3419 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3420 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3421 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3422 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3423 ip->i_ino, ip, ip->i_d.di_magic); 3424 goto corrupt_out; 3425 } 3426 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3427 if (XFS_TEST_ERROR( 3428 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3429 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3430 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3431 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3432 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3433 ip->i_ino, ip); 3434 goto corrupt_out; 3435 } 3436 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3437 if (XFS_TEST_ERROR( 3438 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3439 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3440 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3441 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3442 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3443 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3444 ip->i_ino, ip); 3445 goto corrupt_out; 3446 } 3447 } 3448 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3449 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3450 XFS_RANDOM_IFLUSH_5)) { 3451 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3452 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3453 ip->i_ino, 3454 ip->i_d.di_nextents + ip->i_d.di_anextents, 3455 ip->i_d.di_nblocks, 3456 ip); 3457 goto corrupt_out; 3458 } 3459 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3460 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3461 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3462 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3463 ip->i_ino, ip->i_d.di_forkoff, ip); 3464 goto corrupt_out; 3465 } 3466 /* 3467 * bump the flush iteration count, used to detect flushes which 3468 * postdate a log record during recovery. 3469 */ 3470 3471 ip->i_d.di_flushiter++; 3472 3473 /* 3474 * Copy the dirty parts of the inode into the on-disk 3475 * inode. We always copy out the core of the inode, 3476 * because if the inode is dirty at all the core must 3477 * be. 3478 */ 3479 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); 3480 3481 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3482 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3483 ip->i_d.di_flushiter = 0; 3484 3485 /* 3486 * If this is really an old format inode and the superblock version 3487 * has not been updated to support only new format inodes, then 3488 * convert back to the old inode format. If the superblock version 3489 * has been updated, then make the conversion permanent. 3490 */ 3491 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3492 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 3493 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3494 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 3495 /* 3496 * Convert it back. 3497 */ 3498 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3499 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); 3500 } else { 3501 /* 3502 * The superblock version has already been bumped, 3503 * so just make the conversion to the new inode 3504 * format permanent. 3505 */ 3506 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3507 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); 3508 ip->i_d.di_onlink = 0; 3509 dip->di_core.di_onlink = 0; 3510 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3511 memset(&(dip->di_core.di_pad[0]), 0, 3512 sizeof(dip->di_core.di_pad)); 3513 ASSERT(ip->i_d.di_projid == 0); 3514 } 3515 } 3516 3517 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { 3518 goto corrupt_out; 3519 } 3520 3521 if (XFS_IFORK_Q(ip)) { 3522 /* 3523 * The only error from xfs_iflush_fork is on the data fork. 3524 */ 3525 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3526 } 3527 xfs_inobp_check(mp, bp); 3528 3529 /* 3530 * We've recorded everything logged in the inode, so we'd 3531 * like to clear the ilf_fields bits so we don't log and 3532 * flush things unnecessarily. However, we can't stop 3533 * logging all this information until the data we've copied 3534 * into the disk buffer is written to disk. If we did we might 3535 * overwrite the copy of the inode in the log with all the 3536 * data after re-logging only part of it, and in the face of 3537 * a crash we wouldn't have all the data we need to recover. 3538 * 3539 * What we do is move the bits to the ili_last_fields field. 3540 * When logging the inode, these bits are moved back to the 3541 * ilf_fields field. In the xfs_iflush_done() routine we 3542 * clear ili_last_fields, since we know that the information 3543 * those bits represent is permanently on disk. As long as 3544 * the flush completes before the inode is logged again, then 3545 * both ilf_fields and ili_last_fields will be cleared. 3546 * 3547 * We can play with the ilf_fields bits here, because the inode 3548 * lock must be held exclusively in order to set bits there 3549 * and the flush lock protects the ili_last_fields bits. 3550 * Set ili_logged so the flush done 3551 * routine can tell whether or not to look in the AIL. 3552 * Also, store the current LSN of the inode so that we can tell 3553 * whether the item has moved in the AIL from xfs_iflush_done(). 3554 * In order to read the lsn we need the AIL lock, because 3555 * it is a 64 bit value that cannot be read atomically. 3556 */ 3557 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3558 iip->ili_last_fields = iip->ili_format.ilf_fields; 3559 iip->ili_format.ilf_fields = 0; 3560 iip->ili_logged = 1; 3561 3562 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3563 AIL_LOCK(mp,s); 3564 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3565 AIL_UNLOCK(mp, s); 3566 3567 /* 3568 * Attach the function xfs_iflush_done to the inode's 3569 * buffer. This will remove the inode from the AIL 3570 * and unlock the inode's flush lock when the inode is 3571 * completely written to disk. 3572 */ 3573 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3574 xfs_iflush_done, (xfs_log_item_t *)iip); 3575 3576 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3577 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3578 } else { 3579 /* 3580 * We're flushing an inode which is not in the AIL and has 3581 * not been logged but has i_update_core set. For this 3582 * case we can use a B_DELWRI flush and immediately drop 3583 * the inode flush lock because we can avoid the whole 3584 * AIL state thing. It's OK to drop the flush lock now, 3585 * because we've already locked the buffer and to do anything 3586 * you really need both. 3587 */ 3588 if (iip != NULL) { 3589 ASSERT(iip->ili_logged == 0); 3590 ASSERT(iip->ili_last_fields == 0); 3591 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3592 } 3593 xfs_ifunlock(ip); 3594 } 3595 3596 return 0; 3597 3598 corrupt_out: 3599 return XFS_ERROR(EFSCORRUPTED); 3600 } 3601 3602 3603 /* 3604 * Flush all inactive inodes in mp. Return true if no user references 3605 * were found, false otherwise. 3606 */ 3607 int 3608 xfs_iflush_all( 3609 xfs_mount_t *mp, 3610 int flag) 3611 { 3612 int busy; 3613 int done; 3614 int purged; 3615 xfs_inode_t *ip; 3616 vmap_t vmap; 3617 vnode_t *vp; 3618 3619 busy = done = 0; 3620 while (!done) { 3621 purged = 0; 3622 XFS_MOUNT_ILOCK(mp); 3623 ip = mp->m_inodes; 3624 if (ip == NULL) { 3625 break; 3626 } 3627 do { 3628 /* Make sure we skip markers inserted by sync */ 3629 if (ip->i_mount == NULL) { 3630 ip = ip->i_mnext; 3631 continue; 3632 } 3633 3634 /* 3635 * It's up to our caller to purge the root 3636 * and quota vnodes later. 3637 */ 3638 vp = XFS_ITOV_NULL(ip); 3639 3640 if (!vp) { 3641 XFS_MOUNT_IUNLOCK(mp); 3642 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3643 purged = 1; 3644 break; 3645 } 3646 3647 if (vn_count(vp) != 0) { 3648 if (vn_count(vp) == 1 && 3649 (ip == mp->m_rootip || 3650 (mp->m_quotainfo && 3651 (ip->i_ino == mp->m_sb.sb_uquotino || 3652 ip->i_ino == mp->m_sb.sb_gquotino)))) { 3653 3654 ip = ip->i_mnext; 3655 continue; 3656 } 3657 if (!(flag & XFS_FLUSH_ALL)) { 3658 busy = 1; 3659 done = 1; 3660 break; 3661 } 3662 /* 3663 * Ignore busy inodes but continue flushing 3664 * others. 3665 */ 3666 ip = ip->i_mnext; 3667 continue; 3668 } 3669 /* 3670 * Sample vp mapping while holding mp locked on MP 3671 * systems, so we don't purge a reclaimed or 3672 * nonexistent vnode. We break from the loop 3673 * since we know that we modify 3674 * it by pulling ourselves from it in xfs_reclaim() 3675 * called via vn_purge() below. Set ip to the next 3676 * entry in the list anyway so we'll know below 3677 * whether we reached the end or not. 3678 */ 3679 VMAP(vp, vmap); 3680 XFS_MOUNT_IUNLOCK(mp); 3681 3682 vn_purge(vp, &vmap); 3683 3684 purged = 1; 3685 break; 3686 } while (ip != mp->m_inodes); 3687 /* 3688 * We need to distinguish between when we exit the loop 3689 * after a purge and when we simply hit the end of the 3690 * list. We can't use the (ip == mp->m_inodes) test, 3691 * because when we purge an inode at the start of the list 3692 * the next inode on the list becomes mp->m_inodes. That 3693 * would cause such a test to bail out early. The purged 3694 * variable tells us how we got out of the loop. 3695 */ 3696 if (!purged) { 3697 done = 1; 3698 } 3699 } 3700 XFS_MOUNT_IUNLOCK(mp); 3701 return !busy; 3702 } 3703 3704 3705 /* 3706 * xfs_iaccess: check accessibility of inode for mode. 3707 */ 3708 int 3709 xfs_iaccess( 3710 xfs_inode_t *ip, 3711 mode_t mode, 3712 cred_t *cr) 3713 { 3714 int error; 3715 mode_t orgmode = mode; 3716 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); 3717 3718 if (mode & S_IWUSR) { 3719 umode_t imode = inode->i_mode; 3720 3721 if (IS_RDONLY(inode) && 3722 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) 3723 return XFS_ERROR(EROFS); 3724 3725 if (IS_IMMUTABLE(inode)) 3726 return XFS_ERROR(EACCES); 3727 } 3728 3729 /* 3730 * If there's an Access Control List it's used instead of 3731 * the mode bits. 3732 */ 3733 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) 3734 return error ? XFS_ERROR(error) : 0; 3735 3736 if (current_fsuid(cr) != ip->i_d.di_uid) { 3737 mode >>= 3; 3738 if (!in_group_p((gid_t)ip->i_d.di_gid)) 3739 mode >>= 3; 3740 } 3741 3742 /* 3743 * If the DACs are ok we don't need any capability check. 3744 */ 3745 if ((ip->i_d.di_mode & mode) == mode) 3746 return 0; 3747 /* 3748 * Read/write DACs are always overridable. 3749 * Executable DACs are overridable if at least one exec bit is set. 3750 */ 3751 if (!(orgmode & S_IXUSR) || 3752 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 3753 if (capable_cred(cr, CAP_DAC_OVERRIDE)) 3754 return 0; 3755 3756 if ((orgmode == S_IRUSR) || 3757 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { 3758 if (capable_cred(cr, CAP_DAC_READ_SEARCH)) 3759 return 0; 3760 #ifdef NOISE 3761 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); 3762 #endif /* NOISE */ 3763 return XFS_ERROR(EACCES); 3764 } 3765 return XFS_ERROR(EACCES); 3766 } 3767 3768 /* 3769 * xfs_iroundup: round up argument to next power of two 3770 */ 3771 uint 3772 xfs_iroundup( 3773 uint v) 3774 { 3775 int i; 3776 uint m; 3777 3778 if ((v & (v - 1)) == 0) 3779 return v; 3780 ASSERT((v & 0x80000000) == 0); 3781 if ((v & (v + 1)) == 0) 3782 return v + 1; 3783 for (i = 0, m = 1; i < 31; i++, m <<= 1) { 3784 if (v & m) 3785 continue; 3786 v |= m; 3787 if ((v & (v + 1)) == 0) 3788 return v + 1; 3789 } 3790 ASSERT(0); 3791 return( 0 ); 3792 } 3793 3794 /* 3795 * Change the requested timestamp in the given inode. 3796 * We don't lock across timestamp updates, and we don't log them but 3797 * we do record the fact that there is dirty information in core. 3798 * 3799 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG 3800 * with XFS_ICHGTIME_ACC to be sure that access time 3801 * update will take. Calling first with XFS_ICHGTIME_ACC 3802 * and then XFS_ICHGTIME_MOD may fail to modify the access 3803 * timestamp if the filesystem is mounted noacctm. 3804 */ 3805 void 3806 xfs_ichgtime(xfs_inode_t *ip, 3807 int flags) 3808 { 3809 timespec_t tv; 3810 vnode_t *vp = XFS_ITOV(ip); 3811 struct inode *inode = LINVFS_GET_IP(vp); 3812 3813 /* 3814 * We're not supposed to change timestamps in readonly-mounted 3815 * filesystems. Throw it away if anyone asks us. 3816 */ 3817 if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY)) 3818 return; 3819 3820 /* 3821 * Don't update access timestamps on reads if mounted "noatime" 3822 * Throw it away if anyone asks us. 3823 */ 3824 if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) && 3825 ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG)) 3826 == XFS_ICHGTIME_ACC)) 3827 return; 3828 3829 nanotime(&tv); 3830 if (flags & XFS_ICHGTIME_MOD) { 3831 VN_MTIMESET(vp, &tv); 3832 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 3833 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 3834 } 3835 if (flags & XFS_ICHGTIME_ACC) { 3836 VN_ATIMESET(vp, &tv); 3837 ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec; 3838 ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec; 3839 } 3840 if (flags & XFS_ICHGTIME_CHG) { 3841 VN_CTIMESET(vp, &tv); 3842 ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec; 3843 ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec; 3844 } 3845 3846 /* 3847 * We update the i_update_core field _after_ changing 3848 * the timestamps in order to coordinate properly with 3849 * xfs_iflush() so that we don't lose timestamp updates. 3850 * This keeps us from having to hold the inode lock 3851 * while doing this. We use the SYNCHRONIZE macro to 3852 * ensure that the compiler does not reorder the update 3853 * of i_update_core above the timestamp updates above. 3854 */ 3855 SYNCHRONIZE(); 3856 ip->i_update_core = 1; 3857 if (!(inode->i_state & I_LOCK)) 3858 mark_inode_dirty_sync(inode); 3859 } 3860 3861 #ifdef XFS_ILOCK_TRACE 3862 ktrace_t *xfs_ilock_trace_buf; 3863 3864 void 3865 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3866 { 3867 ktrace_enter(ip->i_lock_trace, 3868 (void *)ip, 3869 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3870 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3871 (void *)ra, /* caller of ilock */ 3872 (void *)(unsigned long)current_cpu(), 3873 (void *)(unsigned long)current_pid(), 3874 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3875 } 3876 #endif 3877