xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49 
50 /*
51  * helper function to extract extent size hint from inode
52  */
53 xfs_extlen_t
54 xfs_get_extsz_hint(
55 	struct xfs_inode	*ip)
56 {
57 	/*
58 	 * No point in aligning allocations if we need to COW to actually
59 	 * write to them.
60 	 */
61 	if (xfs_is_always_cow_inode(ip))
62 		return 0;
63 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
64 		return ip->i_extsize;
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return ip->i_mount->m_sb.sb_rextsize;
67 	return 0;
68 }
69 
70 /*
71  * Helper function to extract CoW extent size hint from inode.
72  * Between the extent size hint and the CoW extent size hint, we
73  * return the greater of the two.  If the value is zero (automatic),
74  * use the default size.
75  */
76 xfs_extlen_t
77 xfs_get_cowextsz_hint(
78 	struct xfs_inode	*ip)
79 {
80 	xfs_extlen_t		a, b;
81 
82 	a = 0;
83 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
84 		a = ip->i_cowextsize;
85 	b = xfs_get_extsz_hint(ip);
86 
87 	a = max(a, b);
88 	if (a == 0)
89 		return XFS_DEFAULT_COWEXTSZ_HINT;
90 	return a;
91 }
92 
93 /*
94  * These two are wrapper routines around the xfs_ilock() routine used to
95  * centralize some grungy code.  They are used in places that wish to lock the
96  * inode solely for reading the extents.  The reason these places can't just
97  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98  * bringing in of the extents from disk for a file in b-tree format.  If the
99  * inode is in b-tree format, then we need to lock the inode exclusively until
100  * the extents are read in.  Locking it exclusively all the time would limit
101  * our parallelism unnecessarily, though.  What we do instead is check to see
102  * if the extents have been read in yet, and only lock the inode exclusively
103  * if they have not.
104  *
105  * The functions return a value which should be given to the corresponding
106  * xfs_iunlock() call.
107  */
108 uint
109 xfs_ilock_data_map_shared(
110 	struct xfs_inode	*ip)
111 {
112 	uint			lock_mode = XFS_ILOCK_SHARED;
113 
114 	if (xfs_need_iread_extents(&ip->i_df))
115 		lock_mode = XFS_ILOCK_EXCL;
116 	xfs_ilock(ip, lock_mode);
117 	return lock_mode;
118 }
119 
120 uint
121 xfs_ilock_attr_map_shared(
122 	struct xfs_inode	*ip)
123 {
124 	uint			lock_mode = XFS_ILOCK_SHARED;
125 
126 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
127 		lock_mode = XFS_ILOCK_EXCL;
128 	xfs_ilock(ip, lock_mode);
129 	return lock_mode;
130 }
131 
132 /*
133  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
134  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
135  * various combinations of the locks to be obtained.
136  *
137  * The 3 locks should always be ordered so that the IO lock is obtained first,
138  * the mmap lock second and the ilock last in order to prevent deadlock.
139  *
140  * Basic locking order:
141  *
142  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
143  *
144  * mmap_lock locking order:
145  *
146  * i_rwsem -> page lock -> mmap_lock
147  * mmap_lock -> i_mmap_lock -> page_lock
148  *
149  * The difference in mmap_lock locking order mean that we cannot hold the
150  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
151  * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
152  * in get_user_pages() to map the user pages into the kernel address space for
153  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
154  * page faults already hold the mmap_lock.
155  *
156  * Hence to serialise fully against both syscall and mmap based IO, we need to
157  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
158  * taken in places where we need to invalidate the page cache in a race
159  * free manner (e.g. truncate, hole punch and other extent manipulation
160  * functions).
161  */
162 void
163 xfs_ilock(
164 	xfs_inode_t		*ip,
165 	uint			lock_flags)
166 {
167 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
168 
169 	/*
170 	 * You can't set both SHARED and EXCL for the same lock,
171 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
172 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
173 	 */
174 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
175 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
176 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
177 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
178 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
179 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
180 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
181 
182 	if (lock_flags & XFS_IOLOCK_EXCL) {
183 		down_write_nested(&VFS_I(ip)->i_rwsem,
184 				  XFS_IOLOCK_DEP(lock_flags));
185 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
186 		down_read_nested(&VFS_I(ip)->i_rwsem,
187 				 XFS_IOLOCK_DEP(lock_flags));
188 	}
189 
190 	if (lock_flags & XFS_MMAPLOCK_EXCL)
191 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
192 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
193 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
194 
195 	if (lock_flags & XFS_ILOCK_EXCL)
196 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
197 	else if (lock_flags & XFS_ILOCK_SHARED)
198 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
199 }
200 
201 /*
202  * This is just like xfs_ilock(), except that the caller
203  * is guaranteed not to sleep.  It returns 1 if it gets
204  * the requested locks and 0 otherwise.  If the IO lock is
205  * obtained but the inode lock cannot be, then the IO lock
206  * is dropped before returning.
207  *
208  * ip -- the inode being locked
209  * lock_flags -- this parameter indicates the inode's locks to be
210  *       to be locked.  See the comment for xfs_ilock() for a list
211  *	 of valid values.
212  */
213 int
214 xfs_ilock_nowait(
215 	xfs_inode_t		*ip,
216 	uint			lock_flags)
217 {
218 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
219 
220 	/*
221 	 * You can't set both SHARED and EXCL for the same lock,
222 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
223 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
224 	 */
225 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
226 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
227 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
228 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
229 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
230 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
231 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
232 
233 	if (lock_flags & XFS_IOLOCK_EXCL) {
234 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
235 			goto out;
236 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
237 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	}
240 
241 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
242 		if (!mrtryupdate(&ip->i_mmaplock))
243 			goto out_undo_iolock;
244 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
245 		if (!mrtryaccess(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	}
248 
249 	if (lock_flags & XFS_ILOCK_EXCL) {
250 		if (!mrtryupdate(&ip->i_lock))
251 			goto out_undo_mmaplock;
252 	} else if (lock_flags & XFS_ILOCK_SHARED) {
253 		if (!mrtryaccess(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	}
256 	return 1;
257 
258 out_undo_mmaplock:
259 	if (lock_flags & XFS_MMAPLOCK_EXCL)
260 		mrunlock_excl(&ip->i_mmaplock);
261 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
262 		mrunlock_shared(&ip->i_mmaplock);
263 out_undo_iolock:
264 	if (lock_flags & XFS_IOLOCK_EXCL)
265 		up_write(&VFS_I(ip)->i_rwsem);
266 	else if (lock_flags & XFS_IOLOCK_SHARED)
267 		up_read(&VFS_I(ip)->i_rwsem);
268 out:
269 	return 0;
270 }
271 
272 /*
273  * xfs_iunlock() is used to drop the inode locks acquired with
274  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
275  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
276  * that we know which locks to drop.
277  *
278  * ip -- the inode being unlocked
279  * lock_flags -- this parameter indicates the inode's locks to be
280  *       to be unlocked.  See the comment for xfs_ilock() for a list
281  *	 of valid values for this parameter.
282  *
283  */
284 void
285 xfs_iunlock(
286 	xfs_inode_t		*ip,
287 	uint			lock_flags)
288 {
289 	/*
290 	 * You can't set both SHARED and EXCL for the same lock,
291 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
292 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
293 	 */
294 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
295 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
296 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
297 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
298 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
299 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
300 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
301 	ASSERT(lock_flags != 0);
302 
303 	if (lock_flags & XFS_IOLOCK_EXCL)
304 		up_write(&VFS_I(ip)->i_rwsem);
305 	else if (lock_flags & XFS_IOLOCK_SHARED)
306 		up_read(&VFS_I(ip)->i_rwsem);
307 
308 	if (lock_flags & XFS_MMAPLOCK_EXCL)
309 		mrunlock_excl(&ip->i_mmaplock);
310 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
311 		mrunlock_shared(&ip->i_mmaplock);
312 
313 	if (lock_flags & XFS_ILOCK_EXCL)
314 		mrunlock_excl(&ip->i_lock);
315 	else if (lock_flags & XFS_ILOCK_SHARED)
316 		mrunlock_shared(&ip->i_lock);
317 
318 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
319 }
320 
321 /*
322  * give up write locks.  the i/o lock cannot be held nested
323  * if it is being demoted.
324  */
325 void
326 xfs_ilock_demote(
327 	xfs_inode_t		*ip,
328 	uint			lock_flags)
329 {
330 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
331 	ASSERT((lock_flags &
332 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
333 
334 	if (lock_flags & XFS_ILOCK_EXCL)
335 		mrdemote(&ip->i_lock);
336 	if (lock_flags & XFS_MMAPLOCK_EXCL)
337 		mrdemote(&ip->i_mmaplock);
338 	if (lock_flags & XFS_IOLOCK_EXCL)
339 		downgrade_write(&VFS_I(ip)->i_rwsem);
340 
341 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
342 }
343 
344 #if defined(DEBUG) || defined(XFS_WARN)
345 int
346 xfs_isilocked(
347 	xfs_inode_t		*ip,
348 	uint			lock_flags)
349 {
350 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
351 		if (!(lock_flags & XFS_ILOCK_SHARED))
352 			return !!ip->i_lock.mr_writer;
353 		return rwsem_is_locked(&ip->i_lock.mr_lock);
354 	}
355 
356 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
357 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
358 			return !!ip->i_mmaplock.mr_writer;
359 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
360 	}
361 
362 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
363 		if (!(lock_flags & XFS_IOLOCK_SHARED))
364 			return !debug_locks ||
365 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
366 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
367 	}
368 
369 	ASSERT(0);
370 	return 0;
371 }
372 #endif
373 
374 /*
375  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
376  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
377  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
378  * errors and warnings.
379  */
380 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
381 static bool
382 xfs_lockdep_subclass_ok(
383 	int subclass)
384 {
385 	return subclass < MAX_LOCKDEP_SUBCLASSES;
386 }
387 #else
388 #define xfs_lockdep_subclass_ok(subclass)	(true)
389 #endif
390 
391 /*
392  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
393  * value. This can be called for any type of inode lock combination, including
394  * parent locking. Care must be taken to ensure we don't overrun the subclass
395  * storage fields in the class mask we build.
396  */
397 static inline int
398 xfs_lock_inumorder(int lock_mode, int subclass)
399 {
400 	int	class = 0;
401 
402 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
403 			      XFS_ILOCK_RTSUM)));
404 	ASSERT(xfs_lockdep_subclass_ok(subclass));
405 
406 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
407 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
408 		class += subclass << XFS_IOLOCK_SHIFT;
409 	}
410 
411 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
412 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
413 		class += subclass << XFS_MMAPLOCK_SHIFT;
414 	}
415 
416 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
417 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
418 		class += subclass << XFS_ILOCK_SHIFT;
419 	}
420 
421 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
422 }
423 
424 /*
425  * The following routine will lock n inodes in exclusive mode.  We assume the
426  * caller calls us with the inodes in i_ino order.
427  *
428  * We need to detect deadlock where an inode that we lock is in the AIL and we
429  * start waiting for another inode that is locked by a thread in a long running
430  * transaction (such as truncate). This can result in deadlock since the long
431  * running trans might need to wait for the inode we just locked in order to
432  * push the tail and free space in the log.
433  *
434  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
435  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
436  * lock more than one at a time, lockdep will report false positives saying we
437  * have violated locking orders.
438  */
439 static void
440 xfs_lock_inodes(
441 	struct xfs_inode	**ips,
442 	int			inodes,
443 	uint			lock_mode)
444 {
445 	int			attempts = 0, i, j, try_lock;
446 	struct xfs_log_item	*lp;
447 
448 	/*
449 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
450 	 * support an arbitrary depth of locking here, but absolute limits on
451 	 * inodes depend on the type of locking and the limits placed by
452 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
453 	 * the asserts.
454 	 */
455 	ASSERT(ips && inodes >= 2 && inodes <= 5);
456 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
457 			    XFS_ILOCK_EXCL));
458 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
459 			      XFS_ILOCK_SHARED)));
460 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
461 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
462 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
463 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
464 
465 	if (lock_mode & XFS_IOLOCK_EXCL) {
466 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
467 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
468 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
469 
470 	try_lock = 0;
471 	i = 0;
472 again:
473 	for (; i < inodes; i++) {
474 		ASSERT(ips[i]);
475 
476 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
477 			continue;
478 
479 		/*
480 		 * If try_lock is not set yet, make sure all locked inodes are
481 		 * not in the AIL.  If any are, set try_lock to be used later.
482 		 */
483 		if (!try_lock) {
484 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
485 				lp = &ips[j]->i_itemp->ili_item;
486 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
487 					try_lock++;
488 			}
489 		}
490 
491 		/*
492 		 * If any of the previous locks we have locked is in the AIL,
493 		 * we must TRY to get the second and subsequent locks. If
494 		 * we can't get any, we must release all we have
495 		 * and try again.
496 		 */
497 		if (!try_lock) {
498 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
499 			continue;
500 		}
501 
502 		/* try_lock means we have an inode locked that is in the AIL. */
503 		ASSERT(i != 0);
504 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
505 			continue;
506 
507 		/*
508 		 * Unlock all previous guys and try again.  xfs_iunlock will try
509 		 * to push the tail if the inode is in the AIL.
510 		 */
511 		attempts++;
512 		for (j = i - 1; j >= 0; j--) {
513 			/*
514 			 * Check to see if we've already unlocked this one.  Not
515 			 * the first one going back, and the inode ptr is the
516 			 * same.
517 			 */
518 			if (j != (i - 1) && ips[j] == ips[j + 1])
519 				continue;
520 
521 			xfs_iunlock(ips[j], lock_mode);
522 		}
523 
524 		if ((attempts % 5) == 0) {
525 			delay(1); /* Don't just spin the CPU */
526 		}
527 		i = 0;
528 		try_lock = 0;
529 		goto again;
530 	}
531 }
532 
533 /*
534  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
535  * the mmaplock or the ilock, but not more than one type at a time. If we lock
536  * more than one at a time, lockdep will report false positives saying we have
537  * violated locking orders.  The iolock must be double-locked separately since
538  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
539  * SHARED.
540  */
541 void
542 xfs_lock_two_inodes(
543 	struct xfs_inode	*ip0,
544 	uint			ip0_mode,
545 	struct xfs_inode	*ip1,
546 	uint			ip1_mode)
547 {
548 	struct xfs_inode	*temp;
549 	uint			mode_temp;
550 	int			attempts = 0;
551 	struct xfs_log_item	*lp;
552 
553 	ASSERT(hweight32(ip0_mode) == 1);
554 	ASSERT(hweight32(ip1_mode) == 1);
555 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
556 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
557 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
558 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
560 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
561 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
562 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
563 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
564 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
565 
566 	ASSERT(ip0->i_ino != ip1->i_ino);
567 
568 	if (ip0->i_ino > ip1->i_ino) {
569 		temp = ip0;
570 		ip0 = ip1;
571 		ip1 = temp;
572 		mode_temp = ip0_mode;
573 		ip0_mode = ip1_mode;
574 		ip1_mode = mode_temp;
575 	}
576 
577  again:
578 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
579 
580 	/*
581 	 * If the first lock we have locked is in the AIL, we must TRY to get
582 	 * the second lock. If we can't get it, we must release the first one
583 	 * and try again.
584 	 */
585 	lp = &ip0->i_itemp->ili_item;
586 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
587 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
588 			xfs_iunlock(ip0, ip0_mode);
589 			if ((++attempts % 5) == 0)
590 				delay(1); /* Don't just spin the CPU */
591 			goto again;
592 		}
593 	} else {
594 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
595 	}
596 }
597 
598 uint
599 xfs_ip2xflags(
600 	struct xfs_inode	*ip)
601 {
602 	uint			flags = 0;
603 
604 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
605 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
606 			flags |= FS_XFLAG_REALTIME;
607 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
608 			flags |= FS_XFLAG_PREALLOC;
609 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
610 			flags |= FS_XFLAG_IMMUTABLE;
611 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
612 			flags |= FS_XFLAG_APPEND;
613 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
614 			flags |= FS_XFLAG_SYNC;
615 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
616 			flags |= FS_XFLAG_NOATIME;
617 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
618 			flags |= FS_XFLAG_NODUMP;
619 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
620 			flags |= FS_XFLAG_RTINHERIT;
621 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
622 			flags |= FS_XFLAG_PROJINHERIT;
623 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
624 			flags |= FS_XFLAG_NOSYMLINKS;
625 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
626 			flags |= FS_XFLAG_EXTSIZE;
627 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
628 			flags |= FS_XFLAG_EXTSZINHERIT;
629 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
630 			flags |= FS_XFLAG_NODEFRAG;
631 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
632 			flags |= FS_XFLAG_FILESTREAM;
633 	}
634 
635 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
636 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
637 			flags |= FS_XFLAG_DAX;
638 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
639 			flags |= FS_XFLAG_COWEXTSIZE;
640 	}
641 
642 	if (XFS_IFORK_Q(ip))
643 		flags |= FS_XFLAG_HASATTR;
644 	return flags;
645 }
646 
647 /*
648  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
649  * is allowed, otherwise it has to be an exact match. If a CI match is found,
650  * ci_name->name will point to a the actual name (caller must free) or
651  * will be set to NULL if an exact match is found.
652  */
653 int
654 xfs_lookup(
655 	xfs_inode_t		*dp,
656 	struct xfs_name		*name,
657 	xfs_inode_t		**ipp,
658 	struct xfs_name		*ci_name)
659 {
660 	xfs_ino_t		inum;
661 	int			error;
662 
663 	trace_xfs_lookup(dp, name);
664 
665 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
666 		return -EIO;
667 
668 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
669 	if (error)
670 		goto out_unlock;
671 
672 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
673 	if (error)
674 		goto out_free_name;
675 
676 	return 0;
677 
678 out_free_name:
679 	if (ci_name)
680 		kmem_free(ci_name->name);
681 out_unlock:
682 	*ipp = NULL;
683 	return error;
684 }
685 
686 /* Propagate di_flags from a parent inode to a child inode. */
687 static void
688 xfs_inode_inherit_flags(
689 	struct xfs_inode	*ip,
690 	const struct xfs_inode	*pip)
691 {
692 	unsigned int		di_flags = 0;
693 	xfs_failaddr_t		failaddr;
694 	umode_t			mode = VFS_I(ip)->i_mode;
695 
696 	if (S_ISDIR(mode)) {
697 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
698 			di_flags |= XFS_DIFLAG_RTINHERIT;
699 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
700 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
701 			ip->i_extsize = pip->i_extsize;
702 		}
703 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
704 			di_flags |= XFS_DIFLAG_PROJINHERIT;
705 	} else if (S_ISREG(mode)) {
706 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
707 		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
708 			di_flags |= XFS_DIFLAG_REALTIME;
709 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
710 			di_flags |= XFS_DIFLAG_EXTSIZE;
711 			ip->i_extsize = pip->i_extsize;
712 		}
713 	}
714 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
715 	    xfs_inherit_noatime)
716 		di_flags |= XFS_DIFLAG_NOATIME;
717 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
718 	    xfs_inherit_nodump)
719 		di_flags |= XFS_DIFLAG_NODUMP;
720 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
721 	    xfs_inherit_sync)
722 		di_flags |= XFS_DIFLAG_SYNC;
723 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
724 	    xfs_inherit_nosymlinks)
725 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
726 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
727 	    xfs_inherit_nodefrag)
728 		di_flags |= XFS_DIFLAG_NODEFRAG;
729 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
730 		di_flags |= XFS_DIFLAG_FILESTREAM;
731 
732 	ip->i_diflags |= di_flags;
733 
734 	/*
735 	 * Inode verifiers on older kernels only check that the extent size
736 	 * hint is an integer multiple of the rt extent size on realtime files.
737 	 * They did not check the hint alignment on a directory with both
738 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
739 	 * propagated from a directory into a new realtime file, new file
740 	 * allocations will fail due to math errors in the rt allocator and/or
741 	 * trip the verifiers.  Validate the hint settings in the new file so
742 	 * that we don't let broken hints propagate.
743 	 */
744 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
745 			VFS_I(ip)->i_mode, ip->i_diflags);
746 	if (failaddr) {
747 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
748 				   XFS_DIFLAG_EXTSZINHERIT);
749 		ip->i_extsize = 0;
750 	}
751 }
752 
753 /* Propagate di_flags2 from a parent inode to a child inode. */
754 static void
755 xfs_inode_inherit_flags2(
756 	struct xfs_inode	*ip,
757 	const struct xfs_inode	*pip)
758 {
759 	xfs_failaddr_t		failaddr;
760 
761 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
762 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
763 		ip->i_cowextsize = pip->i_cowextsize;
764 	}
765 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
766 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
767 
768 	/* Don't let invalid cowextsize hints propagate. */
769 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
770 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
771 	if (failaddr) {
772 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
773 		ip->i_cowextsize = 0;
774 	}
775 }
776 
777 /*
778  * Initialise a newly allocated inode and return the in-core inode to the
779  * caller locked exclusively.
780  */
781 static int
782 xfs_init_new_inode(
783 	struct user_namespace	*mnt_userns,
784 	struct xfs_trans	*tp,
785 	struct xfs_inode	*pip,
786 	xfs_ino_t		ino,
787 	umode_t			mode,
788 	xfs_nlink_t		nlink,
789 	dev_t			rdev,
790 	prid_t			prid,
791 	bool			init_xattrs,
792 	struct xfs_inode	**ipp)
793 {
794 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
795 	struct xfs_mount	*mp = tp->t_mountp;
796 	struct xfs_inode	*ip;
797 	unsigned int		flags;
798 	int			error;
799 	struct timespec64	tv;
800 	struct inode		*inode;
801 
802 	/*
803 	 * Protect against obviously corrupt allocation btree records. Later
804 	 * xfs_iget checks will catch re-allocation of other active in-memory
805 	 * and on-disk inodes. If we don't catch reallocating the parent inode
806 	 * here we will deadlock in xfs_iget() so we have to do these checks
807 	 * first.
808 	 */
809 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
810 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
811 		return -EFSCORRUPTED;
812 	}
813 
814 	/*
815 	 * Get the in-core inode with the lock held exclusively to prevent
816 	 * others from looking at until we're done.
817 	 */
818 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
819 	if (error)
820 		return error;
821 
822 	ASSERT(ip != NULL);
823 	inode = VFS_I(ip);
824 	set_nlink(inode, nlink);
825 	inode->i_rdev = rdev;
826 	ip->i_projid = prid;
827 
828 	if (dir && !(dir->i_mode & S_ISGID) &&
829 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
830 		inode_fsuid_set(inode, mnt_userns);
831 		inode->i_gid = dir->i_gid;
832 		inode->i_mode = mode;
833 	} else {
834 		inode_init_owner(mnt_userns, inode, dir, mode);
835 	}
836 
837 	/*
838 	 * If the group ID of the new file does not match the effective group
839 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
840 	 * (and only if the irix_sgid_inherit compatibility variable is set).
841 	 */
842 	if (irix_sgid_inherit &&
843 	    (inode->i_mode & S_ISGID) &&
844 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
845 		inode->i_mode &= ~S_ISGID;
846 
847 	ip->i_disk_size = 0;
848 	ip->i_df.if_nextents = 0;
849 	ASSERT(ip->i_nblocks == 0);
850 
851 	tv = current_time(inode);
852 	inode->i_mtime = tv;
853 	inode->i_atime = tv;
854 	inode->i_ctime = tv;
855 
856 	ip->i_extsize = 0;
857 	ip->i_diflags = 0;
858 
859 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
860 		inode_set_iversion(inode, 1);
861 		ip->i_cowextsize = 0;
862 		ip->i_crtime = tv;
863 	}
864 
865 	flags = XFS_ILOG_CORE;
866 	switch (mode & S_IFMT) {
867 	case S_IFIFO:
868 	case S_IFCHR:
869 	case S_IFBLK:
870 	case S_IFSOCK:
871 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
872 		flags |= XFS_ILOG_DEV;
873 		break;
874 	case S_IFREG:
875 	case S_IFDIR:
876 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
877 			xfs_inode_inherit_flags(ip, pip);
878 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
879 			xfs_inode_inherit_flags2(ip, pip);
880 		fallthrough;
881 	case S_IFLNK:
882 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
883 		ip->i_df.if_bytes = 0;
884 		ip->i_df.if_u1.if_root = NULL;
885 		break;
886 	default:
887 		ASSERT(0);
888 	}
889 
890 	/*
891 	 * If we need to create attributes immediately after allocating the
892 	 * inode, initialise an empty attribute fork right now. We use the
893 	 * default fork offset for attributes here as we don't know exactly what
894 	 * size or how many attributes we might be adding. We can do this
895 	 * safely here because we know the data fork is completely empty and
896 	 * this saves us from needing to run a separate transaction to set the
897 	 * fork offset in the immediate future.
898 	 */
899 	if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
900 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
901 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
902 	}
903 
904 	/*
905 	 * Log the new values stuffed into the inode.
906 	 */
907 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
908 	xfs_trans_log_inode(tp, ip, flags);
909 
910 	/* now that we have an i_mode we can setup the inode structure */
911 	xfs_setup_inode(ip);
912 
913 	*ipp = ip;
914 	return 0;
915 }
916 
917 /*
918  * Allocates a new inode from disk and return a pointer to the incore copy. This
919  * routine will internally commit the current transaction and allocate a new one
920  * if we needed to allocate more on-disk free inodes to perform the requested
921  * operation.
922  *
923  * If we are allocating quota inodes, we do not have a parent inode to attach to
924  * or associate with (i.e. dp == NULL) because they are not linked into the
925  * directory structure - they are attached directly to the superblock - and so
926  * have no parent.
927  */
928 int
929 xfs_dir_ialloc(
930 	struct user_namespace	*mnt_userns,
931 	struct xfs_trans	**tpp,
932 	struct xfs_inode	*dp,
933 	umode_t			mode,
934 	xfs_nlink_t		nlink,
935 	dev_t			rdev,
936 	prid_t			prid,
937 	bool			init_xattrs,
938 	struct xfs_inode	**ipp)
939 {
940 	struct xfs_buf		*agibp;
941 	xfs_ino_t		parent_ino = dp ? dp->i_ino : 0;
942 	xfs_ino_t		ino;
943 	int			error;
944 
945 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
946 
947 	/*
948 	 * Call the space management code to pick the on-disk inode to be
949 	 * allocated.
950 	 */
951 	error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp);
952 	if (error)
953 		return error;
954 
955 	if (!agibp)
956 		return -ENOSPC;
957 
958 	/* Allocate an inode from the selected AG */
959 	error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino);
960 	if (error)
961 		return error;
962 	ASSERT(ino != NULLFSINO);
963 
964 	return xfs_init_new_inode(mnt_userns, *tpp, dp, ino, mode, nlink, rdev,
965 				  prid, init_xattrs, ipp);
966 }
967 
968 /*
969  * Decrement the link count on an inode & log the change.  If this causes the
970  * link count to go to zero, move the inode to AGI unlinked list so that it can
971  * be freed when the last active reference goes away via xfs_inactive().
972  */
973 static int			/* error */
974 xfs_droplink(
975 	xfs_trans_t *tp,
976 	xfs_inode_t *ip)
977 {
978 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
979 
980 	drop_nlink(VFS_I(ip));
981 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
982 
983 	if (VFS_I(ip)->i_nlink)
984 		return 0;
985 
986 	return xfs_iunlink(tp, ip);
987 }
988 
989 /*
990  * Increment the link count on an inode & log the change.
991  */
992 static void
993 xfs_bumplink(
994 	xfs_trans_t *tp,
995 	xfs_inode_t *ip)
996 {
997 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
998 
999 	inc_nlink(VFS_I(ip));
1000 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1001 }
1002 
1003 int
1004 xfs_create(
1005 	struct user_namespace	*mnt_userns,
1006 	xfs_inode_t		*dp,
1007 	struct xfs_name		*name,
1008 	umode_t			mode,
1009 	dev_t			rdev,
1010 	bool			init_xattrs,
1011 	xfs_inode_t		**ipp)
1012 {
1013 	int			is_dir = S_ISDIR(mode);
1014 	struct xfs_mount	*mp = dp->i_mount;
1015 	struct xfs_inode	*ip = NULL;
1016 	struct xfs_trans	*tp = NULL;
1017 	int			error;
1018 	bool                    unlock_dp_on_error = false;
1019 	prid_t			prid;
1020 	struct xfs_dquot	*udqp = NULL;
1021 	struct xfs_dquot	*gdqp = NULL;
1022 	struct xfs_dquot	*pdqp = NULL;
1023 	struct xfs_trans_res	*tres;
1024 	uint			resblks;
1025 
1026 	trace_xfs_create(dp, name);
1027 
1028 	if (XFS_FORCED_SHUTDOWN(mp))
1029 		return -EIO;
1030 
1031 	prid = xfs_get_initial_prid(dp);
1032 
1033 	/*
1034 	 * Make sure that we have allocated dquot(s) on disk.
1035 	 */
1036 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1037 			mapped_fsgid(mnt_userns), prid,
1038 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1039 			&udqp, &gdqp, &pdqp);
1040 	if (error)
1041 		return error;
1042 
1043 	if (is_dir) {
1044 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1045 		tres = &M_RES(mp)->tr_mkdir;
1046 	} else {
1047 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1048 		tres = &M_RES(mp)->tr_create;
1049 	}
1050 
1051 	/*
1052 	 * Initially assume that the file does not exist and
1053 	 * reserve the resources for that case.  If that is not
1054 	 * the case we'll drop the one we have and get a more
1055 	 * appropriate transaction later.
1056 	 */
1057 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1058 			&tp);
1059 	if (error == -ENOSPC) {
1060 		/* flush outstanding delalloc blocks and retry */
1061 		xfs_flush_inodes(mp);
1062 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1063 				resblks, &tp);
1064 	}
1065 	if (error)
1066 		goto out_release_dquots;
1067 
1068 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1069 	unlock_dp_on_error = true;
1070 
1071 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1072 			XFS_IEXT_DIR_MANIP_CNT(mp));
1073 	if (error)
1074 		goto out_trans_cancel;
1075 
1076 	/*
1077 	 * A newly created regular or special file just has one directory
1078 	 * entry pointing to them, but a directory also the "." entry
1079 	 * pointing to itself.
1080 	 */
1081 	error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, is_dir ? 2 : 1, rdev,
1082 			       prid, init_xattrs, &ip);
1083 	if (error)
1084 		goto out_trans_cancel;
1085 
1086 	/*
1087 	 * Now we join the directory inode to the transaction.  We do not do it
1088 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1089 	 * (and release all the locks).  An error from here on will result in
1090 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1091 	 * error path.
1092 	 */
1093 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1094 	unlock_dp_on_error = false;
1095 
1096 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1097 					resblks - XFS_IALLOC_SPACE_RES(mp));
1098 	if (error) {
1099 		ASSERT(error != -ENOSPC);
1100 		goto out_trans_cancel;
1101 	}
1102 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1103 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1104 
1105 	if (is_dir) {
1106 		error = xfs_dir_init(tp, ip, dp);
1107 		if (error)
1108 			goto out_trans_cancel;
1109 
1110 		xfs_bumplink(tp, dp);
1111 	}
1112 
1113 	/*
1114 	 * If this is a synchronous mount, make sure that the
1115 	 * create transaction goes to disk before returning to
1116 	 * the user.
1117 	 */
1118 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1119 		xfs_trans_set_sync(tp);
1120 
1121 	/*
1122 	 * Attach the dquot(s) to the inodes and modify them incore.
1123 	 * These ids of the inode couldn't have changed since the new
1124 	 * inode has been locked ever since it was created.
1125 	 */
1126 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1127 
1128 	error = xfs_trans_commit(tp);
1129 	if (error)
1130 		goto out_release_inode;
1131 
1132 	xfs_qm_dqrele(udqp);
1133 	xfs_qm_dqrele(gdqp);
1134 	xfs_qm_dqrele(pdqp);
1135 
1136 	*ipp = ip;
1137 	return 0;
1138 
1139  out_trans_cancel:
1140 	xfs_trans_cancel(tp);
1141  out_release_inode:
1142 	/*
1143 	 * Wait until after the current transaction is aborted to finish the
1144 	 * setup of the inode and release the inode.  This prevents recursive
1145 	 * transactions and deadlocks from xfs_inactive.
1146 	 */
1147 	if (ip) {
1148 		xfs_finish_inode_setup(ip);
1149 		xfs_irele(ip);
1150 	}
1151  out_release_dquots:
1152 	xfs_qm_dqrele(udqp);
1153 	xfs_qm_dqrele(gdqp);
1154 	xfs_qm_dqrele(pdqp);
1155 
1156 	if (unlock_dp_on_error)
1157 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1158 	return error;
1159 }
1160 
1161 int
1162 xfs_create_tmpfile(
1163 	struct user_namespace	*mnt_userns,
1164 	struct xfs_inode	*dp,
1165 	umode_t			mode,
1166 	struct xfs_inode	**ipp)
1167 {
1168 	struct xfs_mount	*mp = dp->i_mount;
1169 	struct xfs_inode	*ip = NULL;
1170 	struct xfs_trans	*tp = NULL;
1171 	int			error;
1172 	prid_t                  prid;
1173 	struct xfs_dquot	*udqp = NULL;
1174 	struct xfs_dquot	*gdqp = NULL;
1175 	struct xfs_dquot	*pdqp = NULL;
1176 	struct xfs_trans_res	*tres;
1177 	uint			resblks;
1178 
1179 	if (XFS_FORCED_SHUTDOWN(mp))
1180 		return -EIO;
1181 
1182 	prid = xfs_get_initial_prid(dp);
1183 
1184 	/*
1185 	 * Make sure that we have allocated dquot(s) on disk.
1186 	 */
1187 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1188 			mapped_fsgid(mnt_userns), prid,
1189 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1190 			&udqp, &gdqp, &pdqp);
1191 	if (error)
1192 		return error;
1193 
1194 	resblks = XFS_IALLOC_SPACE_RES(mp);
1195 	tres = &M_RES(mp)->tr_create_tmpfile;
1196 
1197 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1198 			&tp);
1199 	if (error)
1200 		goto out_release_dquots;
1201 
1202 	error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, 0, 0, prid,
1203 				false, &ip);
1204 	if (error)
1205 		goto out_trans_cancel;
1206 
1207 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1208 		xfs_trans_set_sync(tp);
1209 
1210 	/*
1211 	 * Attach the dquot(s) to the inodes and modify them incore.
1212 	 * These ids of the inode couldn't have changed since the new
1213 	 * inode has been locked ever since it was created.
1214 	 */
1215 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1216 
1217 	error = xfs_iunlink(tp, ip);
1218 	if (error)
1219 		goto out_trans_cancel;
1220 
1221 	error = xfs_trans_commit(tp);
1222 	if (error)
1223 		goto out_release_inode;
1224 
1225 	xfs_qm_dqrele(udqp);
1226 	xfs_qm_dqrele(gdqp);
1227 	xfs_qm_dqrele(pdqp);
1228 
1229 	*ipp = ip;
1230 	return 0;
1231 
1232  out_trans_cancel:
1233 	xfs_trans_cancel(tp);
1234  out_release_inode:
1235 	/*
1236 	 * Wait until after the current transaction is aborted to finish the
1237 	 * setup of the inode and release the inode.  This prevents recursive
1238 	 * transactions and deadlocks from xfs_inactive.
1239 	 */
1240 	if (ip) {
1241 		xfs_finish_inode_setup(ip);
1242 		xfs_irele(ip);
1243 	}
1244  out_release_dquots:
1245 	xfs_qm_dqrele(udqp);
1246 	xfs_qm_dqrele(gdqp);
1247 	xfs_qm_dqrele(pdqp);
1248 
1249 	return error;
1250 }
1251 
1252 int
1253 xfs_link(
1254 	xfs_inode_t		*tdp,
1255 	xfs_inode_t		*sip,
1256 	struct xfs_name		*target_name)
1257 {
1258 	xfs_mount_t		*mp = tdp->i_mount;
1259 	xfs_trans_t		*tp;
1260 	int			error;
1261 	int			resblks;
1262 
1263 	trace_xfs_link(tdp, target_name);
1264 
1265 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1266 
1267 	if (XFS_FORCED_SHUTDOWN(mp))
1268 		return -EIO;
1269 
1270 	error = xfs_qm_dqattach(sip);
1271 	if (error)
1272 		goto std_return;
1273 
1274 	error = xfs_qm_dqattach(tdp);
1275 	if (error)
1276 		goto std_return;
1277 
1278 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1279 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1280 	if (error == -ENOSPC) {
1281 		resblks = 0;
1282 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1283 	}
1284 	if (error)
1285 		goto std_return;
1286 
1287 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1288 
1289 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1290 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1291 
1292 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1293 			XFS_IEXT_DIR_MANIP_CNT(mp));
1294 	if (error)
1295 		goto error_return;
1296 
1297 	/*
1298 	 * If we are using project inheritance, we only allow hard link
1299 	 * creation in our tree when the project IDs are the same; else
1300 	 * the tree quota mechanism could be circumvented.
1301 	 */
1302 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1303 		     tdp->i_projid != sip->i_projid)) {
1304 		error = -EXDEV;
1305 		goto error_return;
1306 	}
1307 
1308 	if (!resblks) {
1309 		error = xfs_dir_canenter(tp, tdp, target_name);
1310 		if (error)
1311 			goto error_return;
1312 	}
1313 
1314 	/*
1315 	 * Handle initial link state of O_TMPFILE inode
1316 	 */
1317 	if (VFS_I(sip)->i_nlink == 0) {
1318 		error = xfs_iunlink_remove(tp, sip);
1319 		if (error)
1320 			goto error_return;
1321 	}
1322 
1323 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1324 				   resblks);
1325 	if (error)
1326 		goto error_return;
1327 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1328 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1329 
1330 	xfs_bumplink(tp, sip);
1331 
1332 	/*
1333 	 * If this is a synchronous mount, make sure that the
1334 	 * link transaction goes to disk before returning to
1335 	 * the user.
1336 	 */
1337 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1338 		xfs_trans_set_sync(tp);
1339 
1340 	return xfs_trans_commit(tp);
1341 
1342  error_return:
1343 	xfs_trans_cancel(tp);
1344  std_return:
1345 	return error;
1346 }
1347 
1348 /* Clear the reflink flag and the cowblocks tag if possible. */
1349 static void
1350 xfs_itruncate_clear_reflink_flags(
1351 	struct xfs_inode	*ip)
1352 {
1353 	struct xfs_ifork	*dfork;
1354 	struct xfs_ifork	*cfork;
1355 
1356 	if (!xfs_is_reflink_inode(ip))
1357 		return;
1358 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1359 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1360 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1361 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1362 	if (cfork->if_bytes == 0)
1363 		xfs_inode_clear_cowblocks_tag(ip);
1364 }
1365 
1366 /*
1367  * Free up the underlying blocks past new_size.  The new size must be smaller
1368  * than the current size.  This routine can be used both for the attribute and
1369  * data fork, and does not modify the inode size, which is left to the caller.
1370  *
1371  * The transaction passed to this routine must have made a permanent log
1372  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1373  * given transaction and start new ones, so make sure everything involved in
1374  * the transaction is tidy before calling here.  Some transaction will be
1375  * returned to the caller to be committed.  The incoming transaction must
1376  * already include the inode, and both inode locks must be held exclusively.
1377  * The inode must also be "held" within the transaction.  On return the inode
1378  * will be "held" within the returned transaction.  This routine does NOT
1379  * require any disk space to be reserved for it within the transaction.
1380  *
1381  * If we get an error, we must return with the inode locked and linked into the
1382  * current transaction. This keeps things simple for the higher level code,
1383  * because it always knows that the inode is locked and held in the transaction
1384  * that returns to it whether errors occur or not.  We don't mark the inode
1385  * dirty on error so that transactions can be easily aborted if possible.
1386  */
1387 int
1388 xfs_itruncate_extents_flags(
1389 	struct xfs_trans	**tpp,
1390 	struct xfs_inode	*ip,
1391 	int			whichfork,
1392 	xfs_fsize_t		new_size,
1393 	int			flags)
1394 {
1395 	struct xfs_mount	*mp = ip->i_mount;
1396 	struct xfs_trans	*tp = *tpp;
1397 	xfs_fileoff_t		first_unmap_block;
1398 	xfs_filblks_t		unmap_len;
1399 	int			error = 0;
1400 
1401 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1402 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1403 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1404 	ASSERT(new_size <= XFS_ISIZE(ip));
1405 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1406 	ASSERT(ip->i_itemp != NULL);
1407 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1408 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1409 
1410 	trace_xfs_itruncate_extents_start(ip, new_size);
1411 
1412 	flags |= xfs_bmapi_aflag(whichfork);
1413 
1414 	/*
1415 	 * Since it is possible for space to become allocated beyond
1416 	 * the end of the file (in a crash where the space is allocated
1417 	 * but the inode size is not yet updated), simply remove any
1418 	 * blocks which show up between the new EOF and the maximum
1419 	 * possible file size.
1420 	 *
1421 	 * We have to free all the blocks to the bmbt maximum offset, even if
1422 	 * the page cache can't scale that far.
1423 	 */
1424 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1425 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1426 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1427 		return 0;
1428 	}
1429 
1430 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1431 	while (unmap_len > 0) {
1432 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1433 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1434 				flags, XFS_ITRUNC_MAX_EXTENTS);
1435 		if (error)
1436 			goto out;
1437 
1438 		/* free the just unmapped extents */
1439 		error = xfs_defer_finish(&tp);
1440 		if (error)
1441 			goto out;
1442 	}
1443 
1444 	if (whichfork == XFS_DATA_FORK) {
1445 		/* Remove all pending CoW reservations. */
1446 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1447 				first_unmap_block, XFS_MAX_FILEOFF, true);
1448 		if (error)
1449 			goto out;
1450 
1451 		xfs_itruncate_clear_reflink_flags(ip);
1452 	}
1453 
1454 	/*
1455 	 * Always re-log the inode so that our permanent transaction can keep
1456 	 * on rolling it forward in the log.
1457 	 */
1458 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1459 
1460 	trace_xfs_itruncate_extents_end(ip, new_size);
1461 
1462 out:
1463 	*tpp = tp;
1464 	return error;
1465 }
1466 
1467 int
1468 xfs_release(
1469 	xfs_inode_t	*ip)
1470 {
1471 	xfs_mount_t	*mp = ip->i_mount;
1472 	int		error = 0;
1473 
1474 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1475 		return 0;
1476 
1477 	/* If this is a read-only mount, don't do this (would generate I/O) */
1478 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1479 		return 0;
1480 
1481 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1482 		int truncated;
1483 
1484 		/*
1485 		 * If we previously truncated this file and removed old data
1486 		 * in the process, we want to initiate "early" writeout on
1487 		 * the last close.  This is an attempt to combat the notorious
1488 		 * NULL files problem which is particularly noticeable from a
1489 		 * truncate down, buffered (re-)write (delalloc), followed by
1490 		 * a crash.  What we are effectively doing here is
1491 		 * significantly reducing the time window where we'd otherwise
1492 		 * be exposed to that problem.
1493 		 */
1494 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1495 		if (truncated) {
1496 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1497 			if (ip->i_delayed_blks > 0) {
1498 				error = filemap_flush(VFS_I(ip)->i_mapping);
1499 				if (error)
1500 					return error;
1501 			}
1502 		}
1503 	}
1504 
1505 	if (VFS_I(ip)->i_nlink == 0)
1506 		return 0;
1507 
1508 	/*
1509 	 * If we can't get the iolock just skip truncating the blocks past EOF
1510 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1511 	 * another chance to drop them once the last reference to the inode is
1512 	 * dropped, so we'll never leak blocks permanently.
1513 	 */
1514 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1515 		return 0;
1516 
1517 	if (xfs_can_free_eofblocks(ip, false)) {
1518 		/*
1519 		 * Check if the inode is being opened, written and closed
1520 		 * frequently and we have delayed allocation blocks outstanding
1521 		 * (e.g. streaming writes from the NFS server), truncating the
1522 		 * blocks past EOF will cause fragmentation to occur.
1523 		 *
1524 		 * In this case don't do the truncation, but we have to be
1525 		 * careful how we detect this case. Blocks beyond EOF show up as
1526 		 * i_delayed_blks even when the inode is clean, so we need to
1527 		 * truncate them away first before checking for a dirty release.
1528 		 * Hence on the first dirty close we will still remove the
1529 		 * speculative allocation, but after that we will leave it in
1530 		 * place.
1531 		 */
1532 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1533 			goto out_unlock;
1534 
1535 		error = xfs_free_eofblocks(ip);
1536 		if (error)
1537 			goto out_unlock;
1538 
1539 		/* delalloc blocks after truncation means it really is dirty */
1540 		if (ip->i_delayed_blks)
1541 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1542 	}
1543 
1544 out_unlock:
1545 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1546 	return error;
1547 }
1548 
1549 /*
1550  * xfs_inactive_truncate
1551  *
1552  * Called to perform a truncate when an inode becomes unlinked.
1553  */
1554 STATIC int
1555 xfs_inactive_truncate(
1556 	struct xfs_inode *ip)
1557 {
1558 	struct xfs_mount	*mp = ip->i_mount;
1559 	struct xfs_trans	*tp;
1560 	int			error;
1561 
1562 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1563 	if (error) {
1564 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1565 		return error;
1566 	}
1567 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1568 	xfs_trans_ijoin(tp, ip, 0);
1569 
1570 	/*
1571 	 * Log the inode size first to prevent stale data exposure in the event
1572 	 * of a system crash before the truncate completes. See the related
1573 	 * comment in xfs_vn_setattr_size() for details.
1574 	 */
1575 	ip->i_disk_size = 0;
1576 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1577 
1578 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1579 	if (error)
1580 		goto error_trans_cancel;
1581 
1582 	ASSERT(ip->i_df.if_nextents == 0);
1583 
1584 	error = xfs_trans_commit(tp);
1585 	if (error)
1586 		goto error_unlock;
1587 
1588 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1589 	return 0;
1590 
1591 error_trans_cancel:
1592 	xfs_trans_cancel(tp);
1593 error_unlock:
1594 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1595 	return error;
1596 }
1597 
1598 /*
1599  * xfs_inactive_ifree()
1600  *
1601  * Perform the inode free when an inode is unlinked.
1602  */
1603 STATIC int
1604 xfs_inactive_ifree(
1605 	struct xfs_inode *ip)
1606 {
1607 	struct xfs_mount	*mp = ip->i_mount;
1608 	struct xfs_trans	*tp;
1609 	int			error;
1610 
1611 	/*
1612 	 * We try to use a per-AG reservation for any block needed by the finobt
1613 	 * tree, but as the finobt feature predates the per-AG reservation
1614 	 * support a degraded file system might not have enough space for the
1615 	 * reservation at mount time.  In that case try to dip into the reserved
1616 	 * pool and pray.
1617 	 *
1618 	 * Send a warning if the reservation does happen to fail, as the inode
1619 	 * now remains allocated and sits on the unlinked list until the fs is
1620 	 * repaired.
1621 	 */
1622 	if (unlikely(mp->m_finobt_nores)) {
1623 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1624 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1625 				&tp);
1626 	} else {
1627 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1628 	}
1629 	if (error) {
1630 		if (error == -ENOSPC) {
1631 			xfs_warn_ratelimited(mp,
1632 			"Failed to remove inode(s) from unlinked list. "
1633 			"Please free space, unmount and run xfs_repair.");
1634 		} else {
1635 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1636 		}
1637 		return error;
1638 	}
1639 
1640 	/*
1641 	 * We do not hold the inode locked across the entire rolling transaction
1642 	 * here. We only need to hold it for the first transaction that
1643 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1644 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1645 	 * here breaks the relationship between cluster buffer invalidation and
1646 	 * stale inode invalidation on cluster buffer item journal commit
1647 	 * completion, and can result in leaving dirty stale inodes hanging
1648 	 * around in memory.
1649 	 *
1650 	 * We have no need for serialising this inode operation against other
1651 	 * operations - we freed the inode and hence reallocation is required
1652 	 * and that will serialise on reallocating the space the deferops need
1653 	 * to free. Hence we can unlock the inode on the first commit of
1654 	 * the transaction rather than roll it right through the deferops. This
1655 	 * avoids relogging the XFS_ISTALE inode.
1656 	 *
1657 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1658 	 * by asserting that the inode is still locked when it returns.
1659 	 */
1660 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1661 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1662 
1663 	error = xfs_ifree(tp, ip);
1664 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1665 	if (error) {
1666 		/*
1667 		 * If we fail to free the inode, shut down.  The cancel
1668 		 * might do that, we need to make sure.  Otherwise the
1669 		 * inode might be lost for a long time or forever.
1670 		 */
1671 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1672 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1673 				__func__, error);
1674 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1675 		}
1676 		xfs_trans_cancel(tp);
1677 		return error;
1678 	}
1679 
1680 	/*
1681 	 * Credit the quota account(s). The inode is gone.
1682 	 */
1683 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1684 
1685 	/*
1686 	 * Just ignore errors at this point.  There is nothing we can do except
1687 	 * to try to keep going. Make sure it's not a silent error.
1688 	 */
1689 	error = xfs_trans_commit(tp);
1690 	if (error)
1691 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1692 			__func__, error);
1693 
1694 	return 0;
1695 }
1696 
1697 /*
1698  * xfs_inactive
1699  *
1700  * This is called when the vnode reference count for the vnode
1701  * goes to zero.  If the file has been unlinked, then it must
1702  * now be truncated.  Also, we clear all of the read-ahead state
1703  * kept for the inode here since the file is now closed.
1704  */
1705 void
1706 xfs_inactive(
1707 	xfs_inode_t	*ip)
1708 {
1709 	struct xfs_mount	*mp;
1710 	int			error;
1711 	int			truncate = 0;
1712 
1713 	/*
1714 	 * If the inode is already free, then there can be nothing
1715 	 * to clean up here.
1716 	 */
1717 	if (VFS_I(ip)->i_mode == 0) {
1718 		ASSERT(ip->i_df.if_broot_bytes == 0);
1719 		return;
1720 	}
1721 
1722 	mp = ip->i_mount;
1723 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1724 
1725 	/* If this is a read-only mount, don't do this (would generate I/O) */
1726 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1727 		return;
1728 
1729 	/* Metadata inodes require explicit resource cleanup. */
1730 	if (xfs_is_metadata_inode(ip))
1731 		return;
1732 
1733 	/* Try to clean out the cow blocks if there are any. */
1734 	if (xfs_inode_has_cow_data(ip))
1735 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1736 
1737 	if (VFS_I(ip)->i_nlink != 0) {
1738 		/*
1739 		 * force is true because we are evicting an inode from the
1740 		 * cache. Post-eof blocks must be freed, lest we end up with
1741 		 * broken free space accounting.
1742 		 *
1743 		 * Note: don't bother with iolock here since lockdep complains
1744 		 * about acquiring it in reclaim context. We have the only
1745 		 * reference to the inode at this point anyways.
1746 		 */
1747 		if (xfs_can_free_eofblocks(ip, true))
1748 			xfs_free_eofblocks(ip);
1749 
1750 		return;
1751 	}
1752 
1753 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1754 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1755 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1756 		truncate = 1;
1757 
1758 	error = xfs_qm_dqattach(ip);
1759 	if (error)
1760 		return;
1761 
1762 	if (S_ISLNK(VFS_I(ip)->i_mode))
1763 		error = xfs_inactive_symlink(ip);
1764 	else if (truncate)
1765 		error = xfs_inactive_truncate(ip);
1766 	if (error)
1767 		return;
1768 
1769 	/*
1770 	 * If there are attributes associated with the file then blow them away
1771 	 * now.  The code calls a routine that recursively deconstructs the
1772 	 * attribute fork. If also blows away the in-core attribute fork.
1773 	 */
1774 	if (XFS_IFORK_Q(ip)) {
1775 		error = xfs_attr_inactive(ip);
1776 		if (error)
1777 			return;
1778 	}
1779 
1780 	ASSERT(!ip->i_afp);
1781 	ASSERT(ip->i_forkoff == 0);
1782 
1783 	/*
1784 	 * Free the inode.
1785 	 */
1786 	error = xfs_inactive_ifree(ip);
1787 	if (error)
1788 		return;
1789 
1790 	/*
1791 	 * Release the dquots held by inode, if any.
1792 	 */
1793 	xfs_qm_dqdetach(ip);
1794 }
1795 
1796 /*
1797  * In-Core Unlinked List Lookups
1798  * =============================
1799  *
1800  * Every inode is supposed to be reachable from some other piece of metadata
1801  * with the exception of the root directory.  Inodes with a connection to a
1802  * file descriptor but not linked from anywhere in the on-disk directory tree
1803  * are collectively known as unlinked inodes, though the filesystem itself
1804  * maintains links to these inodes so that on-disk metadata are consistent.
1805  *
1806  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1807  * header contains a number of buckets that point to an inode, and each inode
1808  * record has a pointer to the next inode in the hash chain.  This
1809  * singly-linked list causes scaling problems in the iunlink remove function
1810  * because we must walk that list to find the inode that points to the inode
1811  * being removed from the unlinked hash bucket list.
1812  *
1813  * What if we modelled the unlinked list as a collection of records capturing
1814  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1815  * have a fast way to look up unlinked list predecessors, which avoids the
1816  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1817  * rhashtable.
1818  *
1819  * Because this is a backref cache, we ignore operational failures since the
1820  * iunlink code can fall back to the slow bucket walk.  The only errors that
1821  * should bubble out are for obviously incorrect situations.
1822  *
1823  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1824  * access or have otherwise provided for concurrency control.
1825  */
1826 
1827 /* Capture a "X.next_unlinked = Y" relationship. */
1828 struct xfs_iunlink {
1829 	struct rhash_head	iu_rhash_head;
1830 	xfs_agino_t		iu_agino;		/* X */
1831 	xfs_agino_t		iu_next_unlinked;	/* Y */
1832 };
1833 
1834 /* Unlinked list predecessor lookup hashtable construction */
1835 static int
1836 xfs_iunlink_obj_cmpfn(
1837 	struct rhashtable_compare_arg	*arg,
1838 	const void			*obj)
1839 {
1840 	const xfs_agino_t		*key = arg->key;
1841 	const struct xfs_iunlink	*iu = obj;
1842 
1843 	if (iu->iu_next_unlinked != *key)
1844 		return 1;
1845 	return 0;
1846 }
1847 
1848 static const struct rhashtable_params xfs_iunlink_hash_params = {
1849 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1850 	.key_len		= sizeof(xfs_agino_t),
1851 	.key_offset		= offsetof(struct xfs_iunlink,
1852 					   iu_next_unlinked),
1853 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1854 	.automatic_shrinking	= true,
1855 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1856 };
1857 
1858 /*
1859  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1860  * relation is found.
1861  */
1862 static xfs_agino_t
1863 xfs_iunlink_lookup_backref(
1864 	struct xfs_perag	*pag,
1865 	xfs_agino_t		agino)
1866 {
1867 	struct xfs_iunlink	*iu;
1868 
1869 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1870 			xfs_iunlink_hash_params);
1871 	return iu ? iu->iu_agino : NULLAGINO;
1872 }
1873 
1874 /*
1875  * Take ownership of an iunlink cache entry and insert it into the hash table.
1876  * If successful, the entry will be owned by the cache; if not, it is freed.
1877  * Either way, the caller does not own @iu after this call.
1878  */
1879 static int
1880 xfs_iunlink_insert_backref(
1881 	struct xfs_perag	*pag,
1882 	struct xfs_iunlink	*iu)
1883 {
1884 	int			error;
1885 
1886 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1887 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1888 	/*
1889 	 * Fail loudly if there already was an entry because that's a sign of
1890 	 * corruption of in-memory data.  Also fail loudly if we see an error
1891 	 * code we didn't anticipate from the rhashtable code.  Currently we
1892 	 * only anticipate ENOMEM.
1893 	 */
1894 	if (error) {
1895 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1896 		kmem_free(iu);
1897 	}
1898 	/*
1899 	 * Absorb any runtime errors that aren't a result of corruption because
1900 	 * this is a cache and we can always fall back to bucket list scanning.
1901 	 */
1902 	if (error != 0 && error != -EEXIST)
1903 		error = 0;
1904 	return error;
1905 }
1906 
1907 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1908 static int
1909 xfs_iunlink_add_backref(
1910 	struct xfs_perag	*pag,
1911 	xfs_agino_t		prev_agino,
1912 	xfs_agino_t		this_agino)
1913 {
1914 	struct xfs_iunlink	*iu;
1915 
1916 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1917 		return 0;
1918 
1919 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1920 	iu->iu_agino = prev_agino;
1921 	iu->iu_next_unlinked = this_agino;
1922 
1923 	return xfs_iunlink_insert_backref(pag, iu);
1924 }
1925 
1926 /*
1927  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1928  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1929  * wasn't any such entry then we don't bother.
1930  */
1931 static int
1932 xfs_iunlink_change_backref(
1933 	struct xfs_perag	*pag,
1934 	xfs_agino_t		agino,
1935 	xfs_agino_t		next_unlinked)
1936 {
1937 	struct xfs_iunlink	*iu;
1938 	int			error;
1939 
1940 	/* Look up the old entry; if there wasn't one then exit. */
1941 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1942 			xfs_iunlink_hash_params);
1943 	if (!iu)
1944 		return 0;
1945 
1946 	/*
1947 	 * Remove the entry.  This shouldn't ever return an error, but if we
1948 	 * couldn't remove the old entry we don't want to add it again to the
1949 	 * hash table, and if the entry disappeared on us then someone's
1950 	 * violated the locking rules and we need to fail loudly.  Either way
1951 	 * we cannot remove the inode because internal state is or would have
1952 	 * been corrupt.
1953 	 */
1954 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1955 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1956 	if (error)
1957 		return error;
1958 
1959 	/* If there is no new next entry just free our item and return. */
1960 	if (next_unlinked == NULLAGINO) {
1961 		kmem_free(iu);
1962 		return 0;
1963 	}
1964 
1965 	/* Update the entry and re-add it to the hash table. */
1966 	iu->iu_next_unlinked = next_unlinked;
1967 	return xfs_iunlink_insert_backref(pag, iu);
1968 }
1969 
1970 /* Set up the in-core predecessor structures. */
1971 int
1972 xfs_iunlink_init(
1973 	struct xfs_perag	*pag)
1974 {
1975 	return rhashtable_init(&pag->pagi_unlinked_hash,
1976 			&xfs_iunlink_hash_params);
1977 }
1978 
1979 /* Free the in-core predecessor structures. */
1980 static void
1981 xfs_iunlink_free_item(
1982 	void			*ptr,
1983 	void			*arg)
1984 {
1985 	struct xfs_iunlink	*iu = ptr;
1986 	bool			*freed_anything = arg;
1987 
1988 	*freed_anything = true;
1989 	kmem_free(iu);
1990 }
1991 
1992 void
1993 xfs_iunlink_destroy(
1994 	struct xfs_perag	*pag)
1995 {
1996 	bool			freed_anything = false;
1997 
1998 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1999 			xfs_iunlink_free_item, &freed_anything);
2000 
2001 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2002 }
2003 
2004 /*
2005  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2006  * is responsible for validating the old value.
2007  */
2008 STATIC int
2009 xfs_iunlink_update_bucket(
2010 	struct xfs_trans	*tp,
2011 	xfs_agnumber_t		agno,
2012 	struct xfs_buf		*agibp,
2013 	unsigned int		bucket_index,
2014 	xfs_agino_t		new_agino)
2015 {
2016 	struct xfs_agi		*agi = agibp->b_addr;
2017 	xfs_agino_t		old_value;
2018 	int			offset;
2019 
2020 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2021 
2022 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2023 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2024 			old_value, new_agino);
2025 
2026 	/*
2027 	 * We should never find the head of the list already set to the value
2028 	 * passed in because either we're adding or removing ourselves from the
2029 	 * head of the list.
2030 	 */
2031 	if (old_value == new_agino) {
2032 		xfs_buf_mark_corrupt(agibp);
2033 		return -EFSCORRUPTED;
2034 	}
2035 
2036 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2037 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2038 			(sizeof(xfs_agino_t) * bucket_index);
2039 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2040 	return 0;
2041 }
2042 
2043 /* Set an on-disk inode's next_unlinked pointer. */
2044 STATIC void
2045 xfs_iunlink_update_dinode(
2046 	struct xfs_trans	*tp,
2047 	xfs_agnumber_t		agno,
2048 	xfs_agino_t		agino,
2049 	struct xfs_buf		*ibp,
2050 	struct xfs_dinode	*dip,
2051 	struct xfs_imap		*imap,
2052 	xfs_agino_t		next_agino)
2053 {
2054 	struct xfs_mount	*mp = tp->t_mountp;
2055 	int			offset;
2056 
2057 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2058 
2059 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2060 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2061 
2062 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2063 	offset = imap->im_boffset +
2064 			offsetof(struct xfs_dinode, di_next_unlinked);
2065 
2066 	/* need to recalc the inode CRC if appropriate */
2067 	xfs_dinode_calc_crc(mp, dip);
2068 	xfs_trans_inode_buf(tp, ibp);
2069 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2070 }
2071 
2072 /* Set an in-core inode's unlinked pointer and return the old value. */
2073 STATIC int
2074 xfs_iunlink_update_inode(
2075 	struct xfs_trans	*tp,
2076 	struct xfs_inode	*ip,
2077 	xfs_agnumber_t		agno,
2078 	xfs_agino_t		next_agino,
2079 	xfs_agino_t		*old_next_agino)
2080 {
2081 	struct xfs_mount	*mp = tp->t_mountp;
2082 	struct xfs_dinode	*dip;
2083 	struct xfs_buf		*ibp;
2084 	xfs_agino_t		old_value;
2085 	int			error;
2086 
2087 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2088 
2089 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2090 	if (error)
2091 		return error;
2092 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2093 
2094 	/* Make sure the old pointer isn't garbage. */
2095 	old_value = be32_to_cpu(dip->di_next_unlinked);
2096 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2097 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2098 				sizeof(*dip), __this_address);
2099 		error = -EFSCORRUPTED;
2100 		goto out;
2101 	}
2102 
2103 	/*
2104 	 * Since we're updating a linked list, we should never find that the
2105 	 * current pointer is the same as the new value, unless we're
2106 	 * terminating the list.
2107 	 */
2108 	*old_next_agino = old_value;
2109 	if (old_value == next_agino) {
2110 		if (next_agino != NULLAGINO) {
2111 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2112 					dip, sizeof(*dip), __this_address);
2113 			error = -EFSCORRUPTED;
2114 		}
2115 		goto out;
2116 	}
2117 
2118 	/* Ok, update the new pointer. */
2119 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2120 			ibp, dip, &ip->i_imap, next_agino);
2121 	return 0;
2122 out:
2123 	xfs_trans_brelse(tp, ibp);
2124 	return error;
2125 }
2126 
2127 /*
2128  * This is called when the inode's link count has gone to 0 or we are creating
2129  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2130  *
2131  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2132  * list when the inode is freed.
2133  */
2134 STATIC int
2135 xfs_iunlink(
2136 	struct xfs_trans	*tp,
2137 	struct xfs_inode	*ip)
2138 {
2139 	struct xfs_mount	*mp = tp->t_mountp;
2140 	struct xfs_agi		*agi;
2141 	struct xfs_buf		*agibp;
2142 	xfs_agino_t		next_agino;
2143 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2144 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2145 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2146 	int			error;
2147 
2148 	ASSERT(VFS_I(ip)->i_nlink == 0);
2149 	ASSERT(VFS_I(ip)->i_mode != 0);
2150 	trace_xfs_iunlink(ip);
2151 
2152 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2153 	error = xfs_read_agi(mp, tp, agno, &agibp);
2154 	if (error)
2155 		return error;
2156 	agi = agibp->b_addr;
2157 
2158 	/*
2159 	 * Get the index into the agi hash table for the list this inode will
2160 	 * go on.  Make sure the pointer isn't garbage and that this inode
2161 	 * isn't already on the list.
2162 	 */
2163 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2164 	if (next_agino == agino ||
2165 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2166 		xfs_buf_mark_corrupt(agibp);
2167 		return -EFSCORRUPTED;
2168 	}
2169 
2170 	if (next_agino != NULLAGINO) {
2171 		xfs_agino_t		old_agino;
2172 
2173 		/*
2174 		 * There is already another inode in the bucket, so point this
2175 		 * inode to the current head of the list.
2176 		 */
2177 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2178 				&old_agino);
2179 		if (error)
2180 			return error;
2181 		ASSERT(old_agino == NULLAGINO);
2182 
2183 		/*
2184 		 * agino has been unlinked, add a backref from the next inode
2185 		 * back to agino.
2186 		 */
2187 		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2188 		if (error)
2189 			return error;
2190 	}
2191 
2192 	/* Point the head of the list to point to this inode. */
2193 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2194 }
2195 
2196 /* Return the imap, dinode pointer, and buffer for an inode. */
2197 STATIC int
2198 xfs_iunlink_map_ino(
2199 	struct xfs_trans	*tp,
2200 	xfs_agnumber_t		agno,
2201 	xfs_agino_t		agino,
2202 	struct xfs_imap		*imap,
2203 	struct xfs_dinode	**dipp,
2204 	struct xfs_buf		**bpp)
2205 {
2206 	struct xfs_mount	*mp = tp->t_mountp;
2207 	int			error;
2208 
2209 	imap->im_blkno = 0;
2210 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2211 	if (error) {
2212 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2213 				__func__, error);
2214 		return error;
2215 	}
2216 
2217 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2218 	if (error) {
2219 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2220 				__func__, error);
2221 		return error;
2222 	}
2223 
2224 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Walk the unlinked chain from @head_agino until we find the inode that
2230  * points to @target_agino.  Return the inode number, map, dinode pointer,
2231  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2232  *
2233  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2234  * @agino, @imap, @dipp, and @bpp are all output parameters.
2235  *
2236  * Do not call this function if @target_agino is the head of the list.
2237  */
2238 STATIC int
2239 xfs_iunlink_map_prev(
2240 	struct xfs_trans	*tp,
2241 	xfs_agnumber_t		agno,
2242 	xfs_agino_t		head_agino,
2243 	xfs_agino_t		target_agino,
2244 	xfs_agino_t		*agino,
2245 	struct xfs_imap		*imap,
2246 	struct xfs_dinode	**dipp,
2247 	struct xfs_buf		**bpp,
2248 	struct xfs_perag	*pag)
2249 {
2250 	struct xfs_mount	*mp = tp->t_mountp;
2251 	xfs_agino_t		next_agino;
2252 	int			error;
2253 
2254 	ASSERT(head_agino != target_agino);
2255 	*bpp = NULL;
2256 
2257 	/* See if our backref cache can find it faster. */
2258 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2259 	if (*agino != NULLAGINO) {
2260 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2261 		if (error)
2262 			return error;
2263 
2264 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2265 			return 0;
2266 
2267 		/*
2268 		 * If we get here the cache contents were corrupt, so drop the
2269 		 * buffer and fall back to walking the bucket list.
2270 		 */
2271 		xfs_trans_brelse(tp, *bpp);
2272 		*bpp = NULL;
2273 		WARN_ON_ONCE(1);
2274 	}
2275 
2276 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2277 
2278 	/* Otherwise, walk the entire bucket until we find it. */
2279 	next_agino = head_agino;
2280 	while (next_agino != target_agino) {
2281 		xfs_agino_t	unlinked_agino;
2282 
2283 		if (*bpp)
2284 			xfs_trans_brelse(tp, *bpp);
2285 
2286 		*agino = next_agino;
2287 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2288 				bpp);
2289 		if (error)
2290 			return error;
2291 
2292 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2293 		/*
2294 		 * Make sure this pointer is valid and isn't an obvious
2295 		 * infinite loop.
2296 		 */
2297 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2298 		    next_agino == unlinked_agino) {
2299 			XFS_CORRUPTION_ERROR(__func__,
2300 					XFS_ERRLEVEL_LOW, mp,
2301 					*dipp, sizeof(**dipp));
2302 			error = -EFSCORRUPTED;
2303 			return error;
2304 		}
2305 		next_agino = unlinked_agino;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 /*
2312  * Pull the on-disk inode from the AGI unlinked list.
2313  */
2314 STATIC int
2315 xfs_iunlink_remove(
2316 	struct xfs_trans	*tp,
2317 	struct xfs_inode	*ip)
2318 {
2319 	struct xfs_mount	*mp = tp->t_mountp;
2320 	struct xfs_agi		*agi;
2321 	struct xfs_buf		*agibp;
2322 	struct xfs_buf		*last_ibp;
2323 	struct xfs_dinode	*last_dip = NULL;
2324 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2325 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2326 	xfs_agino_t		next_agino;
2327 	xfs_agino_t		head_agino;
2328 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2329 	int			error;
2330 
2331 	trace_xfs_iunlink_remove(ip);
2332 
2333 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2334 	error = xfs_read_agi(mp, tp, agno, &agibp);
2335 	if (error)
2336 		return error;
2337 	agi = agibp->b_addr;
2338 
2339 	/*
2340 	 * Get the index into the agi hash table for the list this inode will
2341 	 * go on.  Make sure the head pointer isn't garbage.
2342 	 */
2343 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2344 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2345 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2346 				agi, sizeof(*agi));
2347 		return -EFSCORRUPTED;
2348 	}
2349 
2350 	/*
2351 	 * Set our inode's next_unlinked pointer to NULL and then return
2352 	 * the old pointer value so that we can update whatever was previous
2353 	 * to us in the list to point to whatever was next in the list.
2354 	 */
2355 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2356 	if (error)
2357 		return error;
2358 
2359 	/*
2360 	 * If there was a backref pointing from the next inode back to this
2361 	 * one, remove it because we've removed this inode from the list.
2362 	 *
2363 	 * Later, if this inode was in the middle of the list we'll update
2364 	 * this inode's backref to point from the next inode.
2365 	 */
2366 	if (next_agino != NULLAGINO) {
2367 		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2368 				NULLAGINO);
2369 		if (error)
2370 			return error;
2371 	}
2372 
2373 	if (head_agino != agino) {
2374 		struct xfs_imap	imap;
2375 		xfs_agino_t	prev_agino;
2376 
2377 		/* We need to search the list for the inode being freed. */
2378 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2379 				&prev_agino, &imap, &last_dip, &last_ibp,
2380 				agibp->b_pag);
2381 		if (error)
2382 			return error;
2383 
2384 		/* Point the previous inode on the list to the next inode. */
2385 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2386 				last_dip, &imap, next_agino);
2387 
2388 		/*
2389 		 * Now we deal with the backref for this inode.  If this inode
2390 		 * pointed at a real inode, change the backref that pointed to
2391 		 * us to point to our old next.  If this inode was the end of
2392 		 * the list, delete the backref that pointed to us.  Note that
2393 		 * change_backref takes care of deleting the backref if
2394 		 * next_agino is NULLAGINO.
2395 		 */
2396 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2397 				next_agino);
2398 	}
2399 
2400 	/* Point the head of the list to the next unlinked inode. */
2401 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2402 			next_agino);
2403 }
2404 
2405 /*
2406  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2407  * mark it stale. We should only find clean inodes in this lookup that aren't
2408  * already stale.
2409  */
2410 static void
2411 xfs_ifree_mark_inode_stale(
2412 	struct xfs_buf		*bp,
2413 	struct xfs_inode	*free_ip,
2414 	xfs_ino_t		inum)
2415 {
2416 	struct xfs_mount	*mp = bp->b_mount;
2417 	struct xfs_perag	*pag = bp->b_pag;
2418 	struct xfs_inode_log_item *iip;
2419 	struct xfs_inode	*ip;
2420 
2421 retry:
2422 	rcu_read_lock();
2423 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2424 
2425 	/* Inode not in memory, nothing to do */
2426 	if (!ip) {
2427 		rcu_read_unlock();
2428 		return;
2429 	}
2430 
2431 	/*
2432 	 * because this is an RCU protected lookup, we could find a recently
2433 	 * freed or even reallocated inode during the lookup. We need to check
2434 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2435 	 * valid, the wrong inode or stale.
2436 	 */
2437 	spin_lock(&ip->i_flags_lock);
2438 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2439 		goto out_iflags_unlock;
2440 
2441 	/*
2442 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2443 	 * other inodes that we did not find in the list attached to the buffer
2444 	 * and are not already marked stale. If we can't lock it, back off and
2445 	 * retry.
2446 	 */
2447 	if (ip != free_ip) {
2448 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2449 			spin_unlock(&ip->i_flags_lock);
2450 			rcu_read_unlock();
2451 			delay(1);
2452 			goto retry;
2453 		}
2454 	}
2455 	ip->i_flags |= XFS_ISTALE;
2456 
2457 	/*
2458 	 * If the inode is flushing, it is already attached to the buffer.  All
2459 	 * we needed to do here is mark the inode stale so buffer IO completion
2460 	 * will remove it from the AIL.
2461 	 */
2462 	iip = ip->i_itemp;
2463 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2464 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2465 		ASSERT(iip->ili_last_fields);
2466 		goto out_iunlock;
2467 	}
2468 
2469 	/*
2470 	 * Inodes not attached to the buffer can be released immediately.
2471 	 * Everything else has to go through xfs_iflush_abort() on journal
2472 	 * commit as the flock synchronises removal of the inode from the
2473 	 * cluster buffer against inode reclaim.
2474 	 */
2475 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2476 		goto out_iunlock;
2477 
2478 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2479 	spin_unlock(&ip->i_flags_lock);
2480 	rcu_read_unlock();
2481 
2482 	/* we have a dirty inode in memory that has not yet been flushed. */
2483 	spin_lock(&iip->ili_lock);
2484 	iip->ili_last_fields = iip->ili_fields;
2485 	iip->ili_fields = 0;
2486 	iip->ili_fsync_fields = 0;
2487 	spin_unlock(&iip->ili_lock);
2488 	ASSERT(iip->ili_last_fields);
2489 
2490 	if (ip != free_ip)
2491 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2492 	return;
2493 
2494 out_iunlock:
2495 	if (ip != free_ip)
2496 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2497 out_iflags_unlock:
2498 	spin_unlock(&ip->i_flags_lock);
2499 	rcu_read_unlock();
2500 }
2501 
2502 /*
2503  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2504  * inodes that are in memory - they all must be marked stale and attached to
2505  * the cluster buffer.
2506  */
2507 STATIC int
2508 xfs_ifree_cluster(
2509 	struct xfs_inode	*free_ip,
2510 	struct xfs_trans	*tp,
2511 	struct xfs_icluster	*xic)
2512 {
2513 	struct xfs_mount	*mp = free_ip->i_mount;
2514 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2515 	struct xfs_buf		*bp;
2516 	xfs_daddr_t		blkno;
2517 	xfs_ino_t		inum = xic->first_ino;
2518 	int			nbufs;
2519 	int			i, j;
2520 	int			ioffset;
2521 	int			error;
2522 
2523 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2524 
2525 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2526 		/*
2527 		 * The allocation bitmap tells us which inodes of the chunk were
2528 		 * physically allocated. Skip the cluster if an inode falls into
2529 		 * a sparse region.
2530 		 */
2531 		ioffset = inum - xic->first_ino;
2532 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2533 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2534 			continue;
2535 		}
2536 
2537 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2538 					 XFS_INO_TO_AGBNO(mp, inum));
2539 
2540 		/*
2541 		 * We obtain and lock the backing buffer first in the process
2542 		 * here to ensure dirty inodes attached to the buffer remain in
2543 		 * the flushing state while we mark them stale.
2544 		 *
2545 		 * If we scan the in-memory inodes first, then buffer IO can
2546 		 * complete before we get a lock on it, and hence we may fail
2547 		 * to mark all the active inodes on the buffer stale.
2548 		 */
2549 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2550 				mp->m_bsize * igeo->blocks_per_cluster,
2551 				XBF_UNMAPPED, &bp);
2552 		if (error)
2553 			return error;
2554 
2555 		/*
2556 		 * This buffer may not have been correctly initialised as we
2557 		 * didn't read it from disk. That's not important because we are
2558 		 * only using to mark the buffer as stale in the log, and to
2559 		 * attach stale cached inodes on it. That means it will never be
2560 		 * dispatched for IO. If it is, we want to know about it, and we
2561 		 * want it to fail. We can acheive this by adding a write
2562 		 * verifier to the buffer.
2563 		 */
2564 		bp->b_ops = &xfs_inode_buf_ops;
2565 
2566 		/*
2567 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2568 		 * too. This requires lookups, and will skip inodes that we've
2569 		 * already marked XFS_ISTALE.
2570 		 */
2571 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2572 			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2573 
2574 		xfs_trans_stale_inode_buf(tp, bp);
2575 		xfs_trans_binval(tp, bp);
2576 	}
2577 	return 0;
2578 }
2579 
2580 /*
2581  * This is called to return an inode to the inode free list.
2582  * The inode should already be truncated to 0 length and have
2583  * no pages associated with it.  This routine also assumes that
2584  * the inode is already a part of the transaction.
2585  *
2586  * The on-disk copy of the inode will have been added to the list
2587  * of unlinked inodes in the AGI. We need to remove the inode from
2588  * that list atomically with respect to freeing it here.
2589  */
2590 int
2591 xfs_ifree(
2592 	struct xfs_trans	*tp,
2593 	struct xfs_inode	*ip)
2594 {
2595 	int			error;
2596 	struct xfs_icluster	xic = { 0 };
2597 	struct xfs_inode_log_item *iip = ip->i_itemp;
2598 
2599 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2600 	ASSERT(VFS_I(ip)->i_nlink == 0);
2601 	ASSERT(ip->i_df.if_nextents == 0);
2602 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2603 	ASSERT(ip->i_nblocks == 0);
2604 
2605 	/*
2606 	 * Pull the on-disk inode from the AGI unlinked list.
2607 	 */
2608 	error = xfs_iunlink_remove(tp, ip);
2609 	if (error)
2610 		return error;
2611 
2612 	error = xfs_difree(tp, ip->i_ino, &xic);
2613 	if (error)
2614 		return error;
2615 
2616 	/*
2617 	 * Free any local-format data sitting around before we reset the
2618 	 * data fork to extents format.  Note that the attr fork data has
2619 	 * already been freed by xfs_attr_inactive.
2620 	 */
2621 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2622 		kmem_free(ip->i_df.if_u1.if_data);
2623 		ip->i_df.if_u1.if_data = NULL;
2624 		ip->i_df.if_bytes = 0;
2625 	}
2626 
2627 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2628 	ip->i_diflags = 0;
2629 	ip->i_diflags2 = ip->i_mount->m_ino_geo.new_diflags2;
2630 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2631 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2632 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2633 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2634 
2635 	/* Don't attempt to replay owner changes for a deleted inode */
2636 	spin_lock(&iip->ili_lock);
2637 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2638 	spin_unlock(&iip->ili_lock);
2639 
2640 	/*
2641 	 * Bump the generation count so no one will be confused
2642 	 * by reincarnations of this inode.
2643 	 */
2644 	VFS_I(ip)->i_generation++;
2645 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2646 
2647 	if (xic.deleted)
2648 		error = xfs_ifree_cluster(ip, tp, &xic);
2649 
2650 	return error;
2651 }
2652 
2653 /*
2654  * This is called to unpin an inode.  The caller must have the inode locked
2655  * in at least shared mode so that the buffer cannot be subsequently pinned
2656  * once someone is waiting for it to be unpinned.
2657  */
2658 static void
2659 xfs_iunpin(
2660 	struct xfs_inode	*ip)
2661 {
2662 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2663 
2664 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2665 
2666 	/* Give the log a push to start the unpinning I/O */
2667 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2668 
2669 }
2670 
2671 static void
2672 __xfs_iunpin_wait(
2673 	struct xfs_inode	*ip)
2674 {
2675 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2676 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2677 
2678 	xfs_iunpin(ip);
2679 
2680 	do {
2681 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2682 		if (xfs_ipincount(ip))
2683 			io_schedule();
2684 	} while (xfs_ipincount(ip));
2685 	finish_wait(wq, &wait.wq_entry);
2686 }
2687 
2688 void
2689 xfs_iunpin_wait(
2690 	struct xfs_inode	*ip)
2691 {
2692 	if (xfs_ipincount(ip))
2693 		__xfs_iunpin_wait(ip);
2694 }
2695 
2696 /*
2697  * Removing an inode from the namespace involves removing the directory entry
2698  * and dropping the link count on the inode. Removing the directory entry can
2699  * result in locking an AGF (directory blocks were freed) and removing a link
2700  * count can result in placing the inode on an unlinked list which results in
2701  * locking an AGI.
2702  *
2703  * The big problem here is that we have an ordering constraint on AGF and AGI
2704  * locking - inode allocation locks the AGI, then can allocate a new extent for
2705  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2706  * removes the inode from the unlinked list, requiring that we lock the AGI
2707  * first, and then freeing the inode can result in an inode chunk being freed
2708  * and hence freeing disk space requiring that we lock an AGF.
2709  *
2710  * Hence the ordering that is imposed by other parts of the code is AGI before
2711  * AGF. This means we cannot remove the directory entry before we drop the inode
2712  * reference count and put it on the unlinked list as this results in a lock
2713  * order of AGF then AGI, and this can deadlock against inode allocation and
2714  * freeing. Therefore we must drop the link counts before we remove the
2715  * directory entry.
2716  *
2717  * This is still safe from a transactional point of view - it is not until we
2718  * get to xfs_defer_finish() that we have the possibility of multiple
2719  * transactions in this operation. Hence as long as we remove the directory
2720  * entry and drop the link count in the first transaction of the remove
2721  * operation, there are no transactional constraints on the ordering here.
2722  */
2723 int
2724 xfs_remove(
2725 	xfs_inode_t             *dp,
2726 	struct xfs_name		*name,
2727 	xfs_inode_t		*ip)
2728 {
2729 	xfs_mount_t		*mp = dp->i_mount;
2730 	xfs_trans_t             *tp = NULL;
2731 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2732 	int                     error = 0;
2733 	uint			resblks;
2734 
2735 	trace_xfs_remove(dp, name);
2736 
2737 	if (XFS_FORCED_SHUTDOWN(mp))
2738 		return -EIO;
2739 
2740 	error = xfs_qm_dqattach(dp);
2741 	if (error)
2742 		goto std_return;
2743 
2744 	error = xfs_qm_dqattach(ip);
2745 	if (error)
2746 		goto std_return;
2747 
2748 	/*
2749 	 * We try to get the real space reservation first,
2750 	 * allowing for directory btree deletion(s) implying
2751 	 * possible bmap insert(s).  If we can't get the space
2752 	 * reservation then we use 0 instead, and avoid the bmap
2753 	 * btree insert(s) in the directory code by, if the bmap
2754 	 * insert tries to happen, instead trimming the LAST
2755 	 * block from the directory.
2756 	 */
2757 	resblks = XFS_REMOVE_SPACE_RES(mp);
2758 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2759 	if (error == -ENOSPC) {
2760 		resblks = 0;
2761 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2762 				&tp);
2763 	}
2764 	if (error) {
2765 		ASSERT(error != -ENOSPC);
2766 		goto std_return;
2767 	}
2768 
2769 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2770 
2771 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2772 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2773 
2774 	/*
2775 	 * If we're removing a directory perform some additional validation.
2776 	 */
2777 	if (is_dir) {
2778 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2779 		if (VFS_I(ip)->i_nlink != 2) {
2780 			error = -ENOTEMPTY;
2781 			goto out_trans_cancel;
2782 		}
2783 		if (!xfs_dir_isempty(ip)) {
2784 			error = -ENOTEMPTY;
2785 			goto out_trans_cancel;
2786 		}
2787 
2788 		/* Drop the link from ip's "..".  */
2789 		error = xfs_droplink(tp, dp);
2790 		if (error)
2791 			goto out_trans_cancel;
2792 
2793 		/* Drop the "." link from ip to self.  */
2794 		error = xfs_droplink(tp, ip);
2795 		if (error)
2796 			goto out_trans_cancel;
2797 	} else {
2798 		/*
2799 		 * When removing a non-directory we need to log the parent
2800 		 * inode here.  For a directory this is done implicitly
2801 		 * by the xfs_droplink call for the ".." entry.
2802 		 */
2803 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2804 	}
2805 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2806 
2807 	/* Drop the link from dp to ip. */
2808 	error = xfs_droplink(tp, ip);
2809 	if (error)
2810 		goto out_trans_cancel;
2811 
2812 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2813 	if (error) {
2814 		ASSERT(error != -ENOENT);
2815 		goto out_trans_cancel;
2816 	}
2817 
2818 	/*
2819 	 * If this is a synchronous mount, make sure that the
2820 	 * remove transaction goes to disk before returning to
2821 	 * the user.
2822 	 */
2823 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2824 		xfs_trans_set_sync(tp);
2825 
2826 	error = xfs_trans_commit(tp);
2827 	if (error)
2828 		goto std_return;
2829 
2830 	if (is_dir && xfs_inode_is_filestream(ip))
2831 		xfs_filestream_deassociate(ip);
2832 
2833 	return 0;
2834 
2835  out_trans_cancel:
2836 	xfs_trans_cancel(tp);
2837  std_return:
2838 	return error;
2839 }
2840 
2841 /*
2842  * Enter all inodes for a rename transaction into a sorted array.
2843  */
2844 #define __XFS_SORT_INODES	5
2845 STATIC void
2846 xfs_sort_for_rename(
2847 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2848 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2849 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2850 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2851 	struct xfs_inode	*wip,	/* in: whiteout inode */
2852 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2853 	int			*num_inodes)  /* in/out: inodes in array */
2854 {
2855 	int			i, j;
2856 
2857 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2858 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2859 
2860 	/*
2861 	 * i_tab contains a list of pointers to inodes.  We initialize
2862 	 * the table here & we'll sort it.  We will then use it to
2863 	 * order the acquisition of the inode locks.
2864 	 *
2865 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2866 	 */
2867 	i = 0;
2868 	i_tab[i++] = dp1;
2869 	i_tab[i++] = dp2;
2870 	i_tab[i++] = ip1;
2871 	if (ip2)
2872 		i_tab[i++] = ip2;
2873 	if (wip)
2874 		i_tab[i++] = wip;
2875 	*num_inodes = i;
2876 
2877 	/*
2878 	 * Sort the elements via bubble sort.  (Remember, there are at
2879 	 * most 5 elements to sort, so this is adequate.)
2880 	 */
2881 	for (i = 0; i < *num_inodes; i++) {
2882 		for (j = 1; j < *num_inodes; j++) {
2883 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2884 				struct xfs_inode *temp = i_tab[j];
2885 				i_tab[j] = i_tab[j-1];
2886 				i_tab[j-1] = temp;
2887 			}
2888 		}
2889 	}
2890 }
2891 
2892 static int
2893 xfs_finish_rename(
2894 	struct xfs_trans	*tp)
2895 {
2896 	/*
2897 	 * If this is a synchronous mount, make sure that the rename transaction
2898 	 * goes to disk before returning to the user.
2899 	 */
2900 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2901 		xfs_trans_set_sync(tp);
2902 
2903 	return xfs_trans_commit(tp);
2904 }
2905 
2906 /*
2907  * xfs_cross_rename()
2908  *
2909  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2910  */
2911 STATIC int
2912 xfs_cross_rename(
2913 	struct xfs_trans	*tp,
2914 	struct xfs_inode	*dp1,
2915 	struct xfs_name		*name1,
2916 	struct xfs_inode	*ip1,
2917 	struct xfs_inode	*dp2,
2918 	struct xfs_name		*name2,
2919 	struct xfs_inode	*ip2,
2920 	int			spaceres)
2921 {
2922 	int		error = 0;
2923 	int		ip1_flags = 0;
2924 	int		ip2_flags = 0;
2925 	int		dp2_flags = 0;
2926 
2927 	/* Swap inode number for dirent in first parent */
2928 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2929 	if (error)
2930 		goto out_trans_abort;
2931 
2932 	/* Swap inode number for dirent in second parent */
2933 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2934 	if (error)
2935 		goto out_trans_abort;
2936 
2937 	/*
2938 	 * If we're renaming one or more directories across different parents,
2939 	 * update the respective ".." entries (and link counts) to match the new
2940 	 * parents.
2941 	 */
2942 	if (dp1 != dp2) {
2943 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2944 
2945 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2946 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2947 						dp1->i_ino, spaceres);
2948 			if (error)
2949 				goto out_trans_abort;
2950 
2951 			/* transfer ip2 ".." reference to dp1 */
2952 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2953 				error = xfs_droplink(tp, dp2);
2954 				if (error)
2955 					goto out_trans_abort;
2956 				xfs_bumplink(tp, dp1);
2957 			}
2958 
2959 			/*
2960 			 * Although ip1 isn't changed here, userspace needs
2961 			 * to be warned about the change, so that applications
2962 			 * relying on it (like backup ones), will properly
2963 			 * notify the change
2964 			 */
2965 			ip1_flags |= XFS_ICHGTIME_CHG;
2966 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2967 		}
2968 
2969 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2970 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2971 						dp2->i_ino, spaceres);
2972 			if (error)
2973 				goto out_trans_abort;
2974 
2975 			/* transfer ip1 ".." reference to dp2 */
2976 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2977 				error = xfs_droplink(tp, dp1);
2978 				if (error)
2979 					goto out_trans_abort;
2980 				xfs_bumplink(tp, dp2);
2981 			}
2982 
2983 			/*
2984 			 * Although ip2 isn't changed here, userspace needs
2985 			 * to be warned about the change, so that applications
2986 			 * relying on it (like backup ones), will properly
2987 			 * notify the change
2988 			 */
2989 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2990 			ip2_flags |= XFS_ICHGTIME_CHG;
2991 		}
2992 	}
2993 
2994 	if (ip1_flags) {
2995 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2996 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2997 	}
2998 	if (ip2_flags) {
2999 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3000 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3001 	}
3002 	if (dp2_flags) {
3003 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3004 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3005 	}
3006 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3007 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3008 	return xfs_finish_rename(tp);
3009 
3010 out_trans_abort:
3011 	xfs_trans_cancel(tp);
3012 	return error;
3013 }
3014 
3015 /*
3016  * xfs_rename_alloc_whiteout()
3017  *
3018  * Return a referenced, unlinked, unlocked inode that can be used as a
3019  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3020  * crash between allocating the inode and linking it into the rename transaction
3021  * recovery will free the inode and we won't leak it.
3022  */
3023 static int
3024 xfs_rename_alloc_whiteout(
3025 	struct user_namespace	*mnt_userns,
3026 	struct xfs_inode	*dp,
3027 	struct xfs_inode	**wip)
3028 {
3029 	struct xfs_inode	*tmpfile;
3030 	int			error;
3031 
3032 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3033 				   &tmpfile);
3034 	if (error)
3035 		return error;
3036 
3037 	/*
3038 	 * Prepare the tmpfile inode as if it were created through the VFS.
3039 	 * Complete the inode setup and flag it as linkable.  nlink is already
3040 	 * zero, so we can skip the drop_nlink.
3041 	 */
3042 	xfs_setup_iops(tmpfile);
3043 	xfs_finish_inode_setup(tmpfile);
3044 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3045 
3046 	*wip = tmpfile;
3047 	return 0;
3048 }
3049 
3050 /*
3051  * xfs_rename
3052  */
3053 int
3054 xfs_rename(
3055 	struct user_namespace	*mnt_userns,
3056 	struct xfs_inode	*src_dp,
3057 	struct xfs_name		*src_name,
3058 	struct xfs_inode	*src_ip,
3059 	struct xfs_inode	*target_dp,
3060 	struct xfs_name		*target_name,
3061 	struct xfs_inode	*target_ip,
3062 	unsigned int		flags)
3063 {
3064 	struct xfs_mount	*mp = src_dp->i_mount;
3065 	struct xfs_trans	*tp;
3066 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3067 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3068 	int			i;
3069 	int			num_inodes = __XFS_SORT_INODES;
3070 	bool			new_parent = (src_dp != target_dp);
3071 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3072 	int			spaceres;
3073 	int			error;
3074 
3075 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3076 
3077 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3078 		return -EINVAL;
3079 
3080 	/*
3081 	 * If we are doing a whiteout operation, allocate the whiteout inode
3082 	 * we will be placing at the target and ensure the type is set
3083 	 * appropriately.
3084 	 */
3085 	if (flags & RENAME_WHITEOUT) {
3086 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3087 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3088 		if (error)
3089 			return error;
3090 
3091 		/* setup target dirent info as whiteout */
3092 		src_name->type = XFS_DIR3_FT_CHRDEV;
3093 	}
3094 
3095 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3096 				inodes, &num_inodes);
3097 
3098 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3099 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3100 	if (error == -ENOSPC) {
3101 		spaceres = 0;
3102 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3103 				&tp);
3104 	}
3105 	if (error)
3106 		goto out_release_wip;
3107 
3108 	/*
3109 	 * Attach the dquots to the inodes
3110 	 */
3111 	error = xfs_qm_vop_rename_dqattach(inodes);
3112 	if (error)
3113 		goto out_trans_cancel;
3114 
3115 	/*
3116 	 * Lock all the participating inodes. Depending upon whether
3117 	 * the target_name exists in the target directory, and
3118 	 * whether the target directory is the same as the source
3119 	 * directory, we can lock from 2 to 4 inodes.
3120 	 */
3121 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3122 
3123 	/*
3124 	 * Join all the inodes to the transaction. From this point on,
3125 	 * we can rely on either trans_commit or trans_cancel to unlock
3126 	 * them.
3127 	 */
3128 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3129 	if (new_parent)
3130 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3131 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3132 	if (target_ip)
3133 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3134 	if (wip)
3135 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3136 
3137 	/*
3138 	 * If we are using project inheritance, we only allow renames
3139 	 * into our tree when the project IDs are the same; else the
3140 	 * tree quota mechanism would be circumvented.
3141 	 */
3142 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3143 		     target_dp->i_projid != src_ip->i_projid)) {
3144 		error = -EXDEV;
3145 		goto out_trans_cancel;
3146 	}
3147 
3148 	/* RENAME_EXCHANGE is unique from here on. */
3149 	if (flags & RENAME_EXCHANGE)
3150 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3151 					target_dp, target_name, target_ip,
3152 					spaceres);
3153 
3154 	/*
3155 	 * Check for expected errors before we dirty the transaction
3156 	 * so we can return an error without a transaction abort.
3157 	 *
3158 	 * Extent count overflow check:
3159 	 *
3160 	 * From the perspective of src_dp, a rename operation is essentially a
3161 	 * directory entry remove operation. Hence the only place where we check
3162 	 * for extent count overflow for src_dp is in
3163 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3164 	 * -ENOSPC when it detects a possible extent count overflow and in
3165 	 * response, the higher layers of directory handling code do the
3166 	 * following:
3167 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3168 	 *    future remove operation removes them.
3169 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3170 	 *    Leaf space and unmaps the last block.
3171 	 *
3172 	 * For target_dp, there are two cases depending on whether the
3173 	 * destination directory entry exists or not.
3174 	 *
3175 	 * When destination directory entry does not exist (i.e. target_ip ==
3176 	 * NULL), extent count overflow check is performed only when transaction
3177 	 * has a non-zero sized space reservation associated with it.  With a
3178 	 * zero-sized space reservation, XFS allows a rename operation to
3179 	 * continue only when the directory has sufficient free space in its
3180 	 * data/leaf/free space blocks to hold the new entry.
3181 	 *
3182 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3183 	 * we need to do is change the inode number associated with the already
3184 	 * existing entry. Hence there is no need to perform an extent count
3185 	 * overflow check.
3186 	 */
3187 	if (target_ip == NULL) {
3188 		/*
3189 		 * If there's no space reservation, check the entry will
3190 		 * fit before actually inserting it.
3191 		 */
3192 		if (!spaceres) {
3193 			error = xfs_dir_canenter(tp, target_dp, target_name);
3194 			if (error)
3195 				goto out_trans_cancel;
3196 		} else {
3197 			error = xfs_iext_count_may_overflow(target_dp,
3198 					XFS_DATA_FORK,
3199 					XFS_IEXT_DIR_MANIP_CNT(mp));
3200 			if (error)
3201 				goto out_trans_cancel;
3202 		}
3203 	} else {
3204 		/*
3205 		 * If target exists and it's a directory, check that whether
3206 		 * it can be destroyed.
3207 		 */
3208 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3209 		    (!xfs_dir_isempty(target_ip) ||
3210 		     (VFS_I(target_ip)->i_nlink > 2))) {
3211 			error = -EEXIST;
3212 			goto out_trans_cancel;
3213 		}
3214 	}
3215 
3216 	/*
3217 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3218 	 * whiteout inode off the unlinked list and to handle dropping the
3219 	 * nlink of the target inode.  Per locking order rules, do this in
3220 	 * increasing AG order and before directory block allocation tries to
3221 	 * grab AGFs because we grab AGIs before AGFs.
3222 	 *
3223 	 * The (vfs) caller must ensure that if src is a directory then
3224 	 * target_ip is either null or an empty directory.
3225 	 */
3226 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3227 		if (inodes[i] == wip ||
3228 		    (inodes[i] == target_ip &&
3229 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3230 			struct xfs_buf	*bp;
3231 			xfs_agnumber_t	agno;
3232 
3233 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3234 			error = xfs_read_agi(mp, tp, agno, &bp);
3235 			if (error)
3236 				goto out_trans_cancel;
3237 		}
3238 	}
3239 
3240 	/*
3241 	 * Directory entry creation below may acquire the AGF. Remove
3242 	 * the whiteout from the unlinked list first to preserve correct
3243 	 * AGI/AGF locking order. This dirties the transaction so failures
3244 	 * after this point will abort and log recovery will clean up the
3245 	 * mess.
3246 	 *
3247 	 * For whiteouts, we need to bump the link count on the whiteout
3248 	 * inode. After this point, we have a real link, clear the tmpfile
3249 	 * state flag from the inode so it doesn't accidentally get misused
3250 	 * in future.
3251 	 */
3252 	if (wip) {
3253 		ASSERT(VFS_I(wip)->i_nlink == 0);
3254 		error = xfs_iunlink_remove(tp, wip);
3255 		if (error)
3256 			goto out_trans_cancel;
3257 
3258 		xfs_bumplink(tp, wip);
3259 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3260 	}
3261 
3262 	/*
3263 	 * Set up the target.
3264 	 */
3265 	if (target_ip == NULL) {
3266 		/*
3267 		 * If target does not exist and the rename crosses
3268 		 * directories, adjust the target directory link count
3269 		 * to account for the ".." reference from the new entry.
3270 		 */
3271 		error = xfs_dir_createname(tp, target_dp, target_name,
3272 					   src_ip->i_ino, spaceres);
3273 		if (error)
3274 			goto out_trans_cancel;
3275 
3276 		xfs_trans_ichgtime(tp, target_dp,
3277 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3278 
3279 		if (new_parent && src_is_directory) {
3280 			xfs_bumplink(tp, target_dp);
3281 		}
3282 	} else { /* target_ip != NULL */
3283 		/*
3284 		 * Link the source inode under the target name.
3285 		 * If the source inode is a directory and we are moving
3286 		 * it across directories, its ".." entry will be
3287 		 * inconsistent until we replace that down below.
3288 		 *
3289 		 * In case there is already an entry with the same
3290 		 * name at the destination directory, remove it first.
3291 		 */
3292 		error = xfs_dir_replace(tp, target_dp, target_name,
3293 					src_ip->i_ino, spaceres);
3294 		if (error)
3295 			goto out_trans_cancel;
3296 
3297 		xfs_trans_ichgtime(tp, target_dp,
3298 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3299 
3300 		/*
3301 		 * Decrement the link count on the target since the target
3302 		 * dir no longer points to it.
3303 		 */
3304 		error = xfs_droplink(tp, target_ip);
3305 		if (error)
3306 			goto out_trans_cancel;
3307 
3308 		if (src_is_directory) {
3309 			/*
3310 			 * Drop the link from the old "." entry.
3311 			 */
3312 			error = xfs_droplink(tp, target_ip);
3313 			if (error)
3314 				goto out_trans_cancel;
3315 		}
3316 	} /* target_ip != NULL */
3317 
3318 	/*
3319 	 * Remove the source.
3320 	 */
3321 	if (new_parent && src_is_directory) {
3322 		/*
3323 		 * Rewrite the ".." entry to point to the new
3324 		 * directory.
3325 		 */
3326 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3327 					target_dp->i_ino, spaceres);
3328 		ASSERT(error != -EEXIST);
3329 		if (error)
3330 			goto out_trans_cancel;
3331 	}
3332 
3333 	/*
3334 	 * We always want to hit the ctime on the source inode.
3335 	 *
3336 	 * This isn't strictly required by the standards since the source
3337 	 * inode isn't really being changed, but old unix file systems did
3338 	 * it and some incremental backup programs won't work without it.
3339 	 */
3340 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3341 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3342 
3343 	/*
3344 	 * Adjust the link count on src_dp.  This is necessary when
3345 	 * renaming a directory, either within one parent when
3346 	 * the target existed, or across two parent directories.
3347 	 */
3348 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3349 
3350 		/*
3351 		 * Decrement link count on src_directory since the
3352 		 * entry that's moved no longer points to it.
3353 		 */
3354 		error = xfs_droplink(tp, src_dp);
3355 		if (error)
3356 			goto out_trans_cancel;
3357 	}
3358 
3359 	/*
3360 	 * For whiteouts, we only need to update the source dirent with the
3361 	 * inode number of the whiteout inode rather than removing it
3362 	 * altogether.
3363 	 */
3364 	if (wip) {
3365 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3366 					spaceres);
3367 	} else {
3368 		/*
3369 		 * NOTE: We don't need to check for extent count overflow here
3370 		 * because the dir remove name code will leave the dir block in
3371 		 * place if the extent count would overflow.
3372 		 */
3373 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3374 					   spaceres);
3375 	}
3376 
3377 	if (error)
3378 		goto out_trans_cancel;
3379 
3380 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3381 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3382 	if (new_parent)
3383 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3384 
3385 	error = xfs_finish_rename(tp);
3386 	if (wip)
3387 		xfs_irele(wip);
3388 	return error;
3389 
3390 out_trans_cancel:
3391 	xfs_trans_cancel(tp);
3392 out_release_wip:
3393 	if (wip)
3394 		xfs_irele(wip);
3395 	return error;
3396 }
3397 
3398 static int
3399 xfs_iflush(
3400 	struct xfs_inode	*ip,
3401 	struct xfs_buf		*bp)
3402 {
3403 	struct xfs_inode_log_item *iip = ip->i_itemp;
3404 	struct xfs_dinode	*dip;
3405 	struct xfs_mount	*mp = ip->i_mount;
3406 	int			error;
3407 
3408 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3409 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3410 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3411 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3412 	ASSERT(iip->ili_item.li_buf == bp);
3413 
3414 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3415 
3416 	/*
3417 	 * We don't flush the inode if any of the following checks fail, but we
3418 	 * do still update the log item and attach to the backing buffer as if
3419 	 * the flush happened. This is a formality to facilitate predictable
3420 	 * error handling as the caller will shutdown and fail the buffer.
3421 	 */
3422 	error = -EFSCORRUPTED;
3423 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3424 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3425 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3426 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3427 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3428 		goto flush_out;
3429 	}
3430 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3431 		if (XFS_TEST_ERROR(
3432 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3433 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3434 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3435 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3436 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3437 				__func__, ip->i_ino, ip);
3438 			goto flush_out;
3439 		}
3440 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3441 		if (XFS_TEST_ERROR(
3442 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3443 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3444 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3445 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3446 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3447 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3448 				__func__, ip->i_ino, ip);
3449 			goto flush_out;
3450 		}
3451 	}
3452 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3453 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3454 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3455 			"%s: detected corrupt incore inode %Lu, "
3456 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3457 			__func__, ip->i_ino,
3458 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3459 			ip->i_nblocks, ip);
3460 		goto flush_out;
3461 	}
3462 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3463 				mp, XFS_ERRTAG_IFLUSH_6)) {
3464 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3465 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3466 			__func__, ip->i_ino, ip->i_forkoff, ip);
3467 		goto flush_out;
3468 	}
3469 
3470 	/*
3471 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3472 	 * count for correct sequencing.  We bump the flush iteration count so
3473 	 * we can detect flushes which postdate a log record during recovery.
3474 	 * This is redundant as we now log every change and hence this can't
3475 	 * happen but we need to still do it to ensure backwards compatibility
3476 	 * with old kernels that predate logging all inode changes.
3477 	 */
3478 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3479 		ip->i_flushiter++;
3480 
3481 	/*
3482 	 * If there are inline format data / attr forks attached to this inode,
3483 	 * make sure they are not corrupt.
3484 	 */
3485 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3486 	    xfs_ifork_verify_local_data(ip))
3487 		goto flush_out;
3488 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3489 	    xfs_ifork_verify_local_attr(ip))
3490 		goto flush_out;
3491 
3492 	/*
3493 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3494 	 * copy out the core of the inode, because if the inode is dirty at all
3495 	 * the core must be.
3496 	 */
3497 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3498 
3499 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3500 	if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3501 		if (ip->i_flushiter == DI_MAX_FLUSH)
3502 			ip->i_flushiter = 0;
3503 	}
3504 
3505 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3506 	if (XFS_IFORK_Q(ip))
3507 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3508 
3509 	/*
3510 	 * We've recorded everything logged in the inode, so we'd like to clear
3511 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3512 	 * However, we can't stop logging all this information until the data
3513 	 * we've copied into the disk buffer is written to disk.  If we did we
3514 	 * might overwrite the copy of the inode in the log with all the data
3515 	 * after re-logging only part of it, and in the face of a crash we
3516 	 * wouldn't have all the data we need to recover.
3517 	 *
3518 	 * What we do is move the bits to the ili_last_fields field.  When
3519 	 * logging the inode, these bits are moved back to the ili_fields field.
3520 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3521 	 * we know that the information those bits represent is permanently on
3522 	 * disk.  As long as the flush completes before the inode is logged
3523 	 * again, then both ili_fields and ili_last_fields will be cleared.
3524 	 */
3525 	error = 0;
3526 flush_out:
3527 	spin_lock(&iip->ili_lock);
3528 	iip->ili_last_fields = iip->ili_fields;
3529 	iip->ili_fields = 0;
3530 	iip->ili_fsync_fields = 0;
3531 	spin_unlock(&iip->ili_lock);
3532 
3533 	/*
3534 	 * Store the current LSN of the inode so that we can tell whether the
3535 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3536 	 */
3537 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3538 				&iip->ili_item.li_lsn);
3539 
3540 	/* generate the checksum. */
3541 	xfs_dinode_calc_crc(mp, dip);
3542 	return error;
3543 }
3544 
3545 /*
3546  * Non-blocking flush of dirty inode metadata into the backing buffer.
3547  *
3548  * The caller must have a reference to the inode and hold the cluster buffer
3549  * locked. The function will walk across all the inodes on the cluster buffer it
3550  * can find and lock without blocking, and flush them to the cluster buffer.
3551  *
3552  * On successful flushing of at least one inode, the caller must write out the
3553  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3554  * the caller needs to release the buffer. On failure, the filesystem will be
3555  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3556  * will be returned.
3557  */
3558 int
3559 xfs_iflush_cluster(
3560 	struct xfs_buf		*bp)
3561 {
3562 	struct xfs_mount	*mp = bp->b_mount;
3563 	struct xfs_log_item	*lip, *n;
3564 	struct xfs_inode	*ip;
3565 	struct xfs_inode_log_item *iip;
3566 	int			clcount = 0;
3567 	int			error = 0;
3568 
3569 	/*
3570 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3571 	 * can remove itself from the list.
3572 	 */
3573 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3574 		iip = (struct xfs_inode_log_item *)lip;
3575 		ip = iip->ili_inode;
3576 
3577 		/*
3578 		 * Quick and dirty check to avoid locks if possible.
3579 		 */
3580 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3581 			continue;
3582 		if (xfs_ipincount(ip))
3583 			continue;
3584 
3585 		/*
3586 		 * The inode is still attached to the buffer, which means it is
3587 		 * dirty but reclaim might try to grab it. Check carefully for
3588 		 * that, and grab the ilock while still holding the i_flags_lock
3589 		 * to guarantee reclaim will not be able to reclaim this inode
3590 		 * once we drop the i_flags_lock.
3591 		 */
3592 		spin_lock(&ip->i_flags_lock);
3593 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3594 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3595 			spin_unlock(&ip->i_flags_lock);
3596 			continue;
3597 		}
3598 
3599 		/*
3600 		 * ILOCK will pin the inode against reclaim and prevent
3601 		 * concurrent transactions modifying the inode while we are
3602 		 * flushing the inode. If we get the lock, set the flushing
3603 		 * state before we drop the i_flags_lock.
3604 		 */
3605 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3606 			spin_unlock(&ip->i_flags_lock);
3607 			continue;
3608 		}
3609 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3610 		spin_unlock(&ip->i_flags_lock);
3611 
3612 		/*
3613 		 * Abort flushing this inode if we are shut down because the
3614 		 * inode may not currently be in the AIL. This can occur when
3615 		 * log I/O failure unpins the inode without inserting into the
3616 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3617 		 * that otherwise looks like it should be flushed.
3618 		 */
3619 		if (XFS_FORCED_SHUTDOWN(mp)) {
3620 			xfs_iunpin_wait(ip);
3621 			xfs_iflush_abort(ip);
3622 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3623 			error = -EIO;
3624 			continue;
3625 		}
3626 
3627 		/* don't block waiting on a log force to unpin dirty inodes */
3628 		if (xfs_ipincount(ip)) {
3629 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3630 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3631 			continue;
3632 		}
3633 
3634 		if (!xfs_inode_clean(ip))
3635 			error = xfs_iflush(ip, bp);
3636 		else
3637 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3638 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3639 		if (error)
3640 			break;
3641 		clcount++;
3642 	}
3643 
3644 	if (error) {
3645 		bp->b_flags |= XBF_ASYNC;
3646 		xfs_buf_ioend_fail(bp);
3647 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3648 		return error;
3649 	}
3650 
3651 	if (!clcount)
3652 		return -EAGAIN;
3653 
3654 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3655 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3656 	return 0;
3657 
3658 }
3659 
3660 /* Release an inode. */
3661 void
3662 xfs_irele(
3663 	struct xfs_inode	*ip)
3664 {
3665 	trace_xfs_irele(ip, _RET_IP_);
3666 	iput(VFS_I(ip));
3667 }
3668 
3669 /*
3670  * Ensure all commited transactions touching the inode are written to the log.
3671  */
3672 int
3673 xfs_log_force_inode(
3674 	struct xfs_inode	*ip)
3675 {
3676 	xfs_lsn_t		lsn = 0;
3677 
3678 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3679 	if (xfs_ipincount(ip))
3680 		lsn = ip->i_itemp->ili_last_lsn;
3681 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3682 
3683 	if (!lsn)
3684 		return 0;
3685 	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3686 }
3687 
3688 /*
3689  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3690  * abide vfs locking order (lowest pointer value goes first) and breaking the
3691  * layout leases before proceeding.  The loop is needed because we cannot call
3692  * the blocking break_layout() with the iolocks held, and therefore have to
3693  * back out both locks.
3694  */
3695 static int
3696 xfs_iolock_two_inodes_and_break_layout(
3697 	struct inode		*src,
3698 	struct inode		*dest)
3699 {
3700 	int			error;
3701 
3702 	if (src > dest)
3703 		swap(src, dest);
3704 
3705 retry:
3706 	/* Wait to break both inodes' layouts before we start locking. */
3707 	error = break_layout(src, true);
3708 	if (error)
3709 		return error;
3710 	if (src != dest) {
3711 		error = break_layout(dest, true);
3712 		if (error)
3713 			return error;
3714 	}
3715 
3716 	/* Lock one inode and make sure nobody got in and leased it. */
3717 	inode_lock(src);
3718 	error = break_layout(src, false);
3719 	if (error) {
3720 		inode_unlock(src);
3721 		if (error == -EWOULDBLOCK)
3722 			goto retry;
3723 		return error;
3724 	}
3725 
3726 	if (src == dest)
3727 		return 0;
3728 
3729 	/* Lock the other inode and make sure nobody got in and leased it. */
3730 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3731 	error = break_layout(dest, false);
3732 	if (error) {
3733 		inode_unlock(src);
3734 		inode_unlock(dest);
3735 		if (error == -EWOULDBLOCK)
3736 			goto retry;
3737 		return error;
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 /*
3744  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3745  * mmap activity.
3746  */
3747 int
3748 xfs_ilock2_io_mmap(
3749 	struct xfs_inode	*ip1,
3750 	struct xfs_inode	*ip2)
3751 {
3752 	int			ret;
3753 
3754 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3755 	if (ret)
3756 		return ret;
3757 	if (ip1 == ip2)
3758 		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3759 	else
3760 		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3761 				    ip2, XFS_MMAPLOCK_EXCL);
3762 	return 0;
3763 }
3764 
3765 /* Unlock both inodes to allow IO and mmap activity. */
3766 void
3767 xfs_iunlock2_io_mmap(
3768 	struct xfs_inode	*ip1,
3769 	struct xfs_inode	*ip2)
3770 {
3771 	bool			same_inode = (ip1 == ip2);
3772 
3773 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3774 	if (!same_inode)
3775 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3776 	inode_unlock(VFS_I(ip2));
3777 	if (!same_inode)
3778 		inode_unlock(VFS_I(ip1));
3779 }
3780