xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 15b7cc78)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51 
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
61 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
62 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
63 
64 /*
65  * helper function to extract extent size hint from inode
66  */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 	struct xfs_inode	*ip)
70 {
71 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 		return ip->i_d.di_extsize;
73 	if (XFS_IS_REALTIME_INODE(ip))
74 		return ip->i_mount->m_sb.sb_rextsize;
75 	return 0;
76 }
77 
78 /*
79  * These two are wrapper routines around the xfs_ilock() routine used to
80  * centralize some grungy code.  They are used in places that wish to lock the
81  * inode solely for reading the extents.  The reason these places can't just
82  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83  * bringing in of the extents from disk for a file in b-tree format.  If the
84  * inode is in b-tree format, then we need to lock the inode exclusively until
85  * the extents are read in.  Locking it exclusively all the time would limit
86  * our parallelism unnecessarily, though.  What we do instead is check to see
87  * if the extents have been read in yet, and only lock the inode exclusively
88  * if they have not.
89  *
90  * The functions return a value which should be given to the corresponding
91  * xfs_iunlock() call.
92  */
93 uint
94 xfs_ilock_data_map_shared(
95 	struct xfs_inode	*ip)
96 {
97 	uint			lock_mode = XFS_ILOCK_SHARED;
98 
99 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 		lock_mode = XFS_ILOCK_EXCL;
102 	xfs_ilock(ip, lock_mode);
103 	return lock_mode;
104 }
105 
106 uint
107 xfs_ilock_attr_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 		lock_mode = XFS_ILOCK_EXCL;
115 	xfs_ilock(ip, lock_mode);
116 	return lock_mode;
117 }
118 
119 /*
120  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121  * the i_lock.  This routine allows various combinations of the locks to be
122  * obtained.
123  *
124  * The 3 locks should always be ordered so that the IO lock is obtained first,
125  * the mmap lock second and the ilock last in order to prevent deadlock.
126  *
127  * Basic locking order:
128  *
129  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130  *
131  * mmap_sem locking order:
132  *
133  * i_iolock -> page lock -> mmap_sem
134  * mmap_sem -> i_mmap_lock -> page_lock
135  *
136  * The difference in mmap_sem locking order mean that we cannot hold the
137  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139  * in get_user_pages() to map the user pages into the kernel address space for
140  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141  * page faults already hold the mmap_sem.
142  *
143  * Hence to serialise fully against both syscall and mmap based IO, we need to
144  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145  * taken in places where we need to invalidate the page cache in a race
146  * free manner (e.g. truncate, hole punch and other extent manipulation
147  * functions).
148  */
149 void
150 xfs_ilock(
151 	xfs_inode_t		*ip,
152 	uint			lock_flags)
153 {
154 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155 
156 	/*
157 	 * You can't set both SHARED and EXCL for the same lock,
158 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 	 */
161 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
168 
169 	if (lock_flags & XFS_IOLOCK_EXCL)
170 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 	else if (lock_flags & XFS_IOLOCK_SHARED)
172 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173 
174 	if (lock_flags & XFS_MMAPLOCK_EXCL)
175 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178 
179 	if (lock_flags & XFS_ILOCK_EXCL)
180 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 	else if (lock_flags & XFS_ILOCK_SHARED)
182 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 }
184 
185 /*
186  * This is just like xfs_ilock(), except that the caller
187  * is guaranteed not to sleep.  It returns 1 if it gets
188  * the requested locks and 0 otherwise.  If the IO lock is
189  * obtained but the inode lock cannot be, then the IO lock
190  * is dropped before returning.
191  *
192  * ip -- the inode being locked
193  * lock_flags -- this parameter indicates the inode's locks to be
194  *       to be locked.  See the comment for xfs_ilock() for a list
195  *	 of valid values.
196  */
197 int
198 xfs_ilock_nowait(
199 	xfs_inode_t		*ip,
200 	uint			lock_flags)
201 {
202 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203 
204 	/*
205 	 * You can't set both SHARED and EXCL for the same lock,
206 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 	 */
209 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
216 
217 	if (lock_flags & XFS_IOLOCK_EXCL) {
218 		if (!mrtryupdate(&ip->i_iolock))
219 			goto out;
220 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
221 		if (!mrtryaccess(&ip->i_iolock))
222 			goto out;
223 	}
224 
225 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 		if (!mrtryupdate(&ip->i_mmaplock))
227 			goto out_undo_iolock;
228 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 		if (!mrtryaccess(&ip->i_mmaplock))
230 			goto out_undo_iolock;
231 	}
232 
233 	if (lock_flags & XFS_ILOCK_EXCL) {
234 		if (!mrtryupdate(&ip->i_lock))
235 			goto out_undo_mmaplock;
236 	} else if (lock_flags & XFS_ILOCK_SHARED) {
237 		if (!mrtryaccess(&ip->i_lock))
238 			goto out_undo_mmaplock;
239 	}
240 	return 1;
241 
242 out_undo_mmaplock:
243 	if (lock_flags & XFS_MMAPLOCK_EXCL)
244 		mrunlock_excl(&ip->i_mmaplock);
245 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 		mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 	if (lock_flags & XFS_IOLOCK_EXCL)
249 		mrunlock_excl(&ip->i_iolock);
250 	else if (lock_flags & XFS_IOLOCK_SHARED)
251 		mrunlock_shared(&ip->i_iolock);
252 out:
253 	return 0;
254 }
255 
256 /*
257  * xfs_iunlock() is used to drop the inode locks acquired with
258  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
259  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260  * that we know which locks to drop.
261  *
262  * ip -- the inode being unlocked
263  * lock_flags -- this parameter indicates the inode's locks to be
264  *       to be unlocked.  See the comment for xfs_ilock() for a list
265  *	 of valid values for this parameter.
266  *
267  */
268 void
269 xfs_iunlock(
270 	xfs_inode_t		*ip,
271 	uint			lock_flags)
272 {
273 	/*
274 	 * You can't set both SHARED and EXCL for the same lock,
275 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 	 */
278 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
285 	ASSERT(lock_flags != 0);
286 
287 	if (lock_flags & XFS_IOLOCK_EXCL)
288 		mrunlock_excl(&ip->i_iolock);
289 	else if (lock_flags & XFS_IOLOCK_SHARED)
290 		mrunlock_shared(&ip->i_iolock);
291 
292 	if (lock_flags & XFS_MMAPLOCK_EXCL)
293 		mrunlock_excl(&ip->i_mmaplock);
294 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 		mrunlock_shared(&ip->i_mmaplock);
296 
297 	if (lock_flags & XFS_ILOCK_EXCL)
298 		mrunlock_excl(&ip->i_lock);
299 	else if (lock_flags & XFS_ILOCK_SHARED)
300 		mrunlock_shared(&ip->i_lock);
301 
302 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303 }
304 
305 /*
306  * give up write locks.  the i/o lock cannot be held nested
307  * if it is being demoted.
308  */
309 void
310 xfs_ilock_demote(
311 	xfs_inode_t		*ip,
312 	uint			lock_flags)
313 {
314 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 	ASSERT((lock_flags &
316 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317 
318 	if (lock_flags & XFS_ILOCK_EXCL)
319 		mrdemote(&ip->i_lock);
320 	if (lock_flags & XFS_MMAPLOCK_EXCL)
321 		mrdemote(&ip->i_mmaplock);
322 	if (lock_flags & XFS_IOLOCK_EXCL)
323 		mrdemote(&ip->i_iolock);
324 
325 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326 }
327 
328 #if defined(DEBUG) || defined(XFS_WARN)
329 int
330 xfs_isilocked(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 		if (!(lock_flags & XFS_ILOCK_SHARED))
336 			return !!ip->i_lock.mr_writer;
337 		return rwsem_is_locked(&ip->i_lock.mr_lock);
338 	}
339 
340 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 			return !!ip->i_mmaplock.mr_writer;
343 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 	}
345 
346 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 		if (!(lock_flags & XFS_IOLOCK_SHARED))
348 			return !!ip->i_iolock.mr_writer;
349 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 	}
351 
352 	ASSERT(0);
353 	return 0;
354 }
355 #endif
356 
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
364 
365 /*
366  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369  * errors and warnings.
370  */
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
372 static bool
373 xfs_lockdep_subclass_ok(
374 	int subclass)
375 {
376 	return subclass < MAX_LOCKDEP_SUBCLASSES;
377 }
378 #else
379 #define xfs_lockdep_subclass_ok(subclass)	(true)
380 #endif
381 
382 /*
383  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384  * value. This can be called for any type of inode lock combination, including
385  * parent locking. Care must be taken to ensure we don't overrun the subclass
386  * storage fields in the class mask we build.
387  */
388 static inline int
389 xfs_lock_inumorder(int lock_mode, int subclass)
390 {
391 	int	class = 0;
392 
393 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 			      XFS_ILOCK_RTSUM)));
395 	ASSERT(xfs_lockdep_subclass_ok(subclass));
396 
397 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
398 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
399 		ASSERT(xfs_lockdep_subclass_ok(subclass +
400 						XFS_IOLOCK_PARENT_VAL));
401 		class += subclass << XFS_IOLOCK_SHIFT;
402 		if (lock_mode & XFS_IOLOCK_PARENT)
403 			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
404 	}
405 
406 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
407 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 		class += subclass << XFS_MMAPLOCK_SHIFT;
409 	}
410 
411 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 		class += subclass << XFS_ILOCK_SHIFT;
414 	}
415 
416 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
417 }
418 
419 /*
420  * The following routine will lock n inodes in exclusive mode.  We assume the
421  * caller calls us with the inodes in i_ino order.
422  *
423  * We need to detect deadlock where an inode that we lock is in the AIL and we
424  * start waiting for another inode that is locked by a thread in a long running
425  * transaction (such as truncate). This can result in deadlock since the long
426  * running trans might need to wait for the inode we just locked in order to
427  * push the tail and free space in the log.
428  *
429  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431  * lock more than one at a time, lockdep will report false positives saying we
432  * have violated locking orders.
433  */
434 void
435 xfs_lock_inodes(
436 	xfs_inode_t	**ips,
437 	int		inodes,
438 	uint		lock_mode)
439 {
440 	int		attempts = 0, i, j, try_lock;
441 	xfs_log_item_t	*lp;
442 
443 	/*
444 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
445 	 * support an arbitrary depth of locking here, but absolute limits on
446 	 * inodes depend on the the type of locking and the limits placed by
447 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
448 	 * the asserts.
449 	 */
450 	ASSERT(ips && inodes >= 2 && inodes <= 5);
451 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 			    XFS_ILOCK_EXCL));
453 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 			      XFS_ILOCK_SHARED)));
455 	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461 
462 	if (lock_mode & XFS_IOLOCK_EXCL) {
463 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466 
467 	try_lock = 0;
468 	i = 0;
469 again:
470 	for (; i < inodes; i++) {
471 		ASSERT(ips[i]);
472 
473 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
474 			continue;
475 
476 		/*
477 		 * If try_lock is not set yet, make sure all locked inodes are
478 		 * not in the AIL.  If any are, set try_lock to be used later.
479 		 */
480 		if (!try_lock) {
481 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
483 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
484 					try_lock++;
485 			}
486 		}
487 
488 		/*
489 		 * If any of the previous locks we have locked is in the AIL,
490 		 * we must TRY to get the second and subsequent locks. If
491 		 * we can't get any, we must release all we have
492 		 * and try again.
493 		 */
494 		if (!try_lock) {
495 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 			continue;
497 		}
498 
499 		/* try_lock means we have an inode locked that is in the AIL. */
500 		ASSERT(i != 0);
501 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 			continue;
503 
504 		/*
505 		 * Unlock all previous guys and try again.  xfs_iunlock will try
506 		 * to push the tail if the inode is in the AIL.
507 		 */
508 		attempts++;
509 		for (j = i - 1; j >= 0; j--) {
510 			/*
511 			 * Check to see if we've already unlocked this one.  Not
512 			 * the first one going back, and the inode ptr is the
513 			 * same.
514 			 */
515 			if (j != (i - 1) && ips[j] == ips[j + 1])
516 				continue;
517 
518 			xfs_iunlock(ips[j], lock_mode);
519 		}
520 
521 		if ((attempts % 5) == 0) {
522 			delay(1); /* Don't just spin the CPU */
523 #ifdef DEBUG
524 			xfs_lock_delays++;
525 #endif
526 		}
527 		i = 0;
528 		try_lock = 0;
529 		goto again;
530 	}
531 
532 #ifdef DEBUG
533 	if (attempts) {
534 		if (attempts < 5) xfs_small_retries++;
535 		else if (attempts < 100) xfs_middle_retries++;
536 		else xfs_lots_retries++;
537 	} else {
538 		xfs_locked_n++;
539 	}
540 #endif
541 }
542 
543 /*
544  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546  * lock more than one at a time, lockdep will report false positives saying we
547  * have violated locking orders.
548  */
549 void
550 xfs_lock_two_inodes(
551 	xfs_inode_t		*ip0,
552 	xfs_inode_t		*ip1,
553 	uint			lock_mode)
554 {
555 	xfs_inode_t		*temp;
556 	int			attempts = 0;
557 	xfs_log_item_t		*lp;
558 
559 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 
565 	ASSERT(ip0->i_ino != ip1->i_ino);
566 
567 	if (ip0->i_ino > ip1->i_ino) {
568 		temp = ip0;
569 		ip0 = ip1;
570 		ip1 = temp;
571 	}
572 
573  again:
574 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575 
576 	/*
577 	 * If the first lock we have locked is in the AIL, we must TRY to get
578 	 * the second lock. If we can't get it, we must release the first one
579 	 * and try again.
580 	 */
581 	lp = (xfs_log_item_t *)ip0->i_itemp;
582 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 			xfs_iunlock(ip0, lock_mode);
585 			if ((++attempts % 5) == 0)
586 				delay(1); /* Don't just spin the CPU */
587 			goto again;
588 		}
589 	} else {
590 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 	}
592 }
593 
594 
595 void
596 __xfs_iflock(
597 	struct xfs_inode	*ip)
598 {
599 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601 
602 	do {
603 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 		if (xfs_isiflocked(ip))
605 			io_schedule();
606 	} while (!xfs_iflock_nowait(ip));
607 
608 	finish_wait(wq, &wait.wait);
609 }
610 
611 STATIC uint
612 _xfs_dic2xflags(
613 	__uint16_t		di_flags,
614 	uint64_t		di_flags2,
615 	bool			has_attr)
616 {
617 	uint			flags = 0;
618 
619 	if (di_flags & XFS_DIFLAG_ANY) {
620 		if (di_flags & XFS_DIFLAG_REALTIME)
621 			flags |= FS_XFLAG_REALTIME;
622 		if (di_flags & XFS_DIFLAG_PREALLOC)
623 			flags |= FS_XFLAG_PREALLOC;
624 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 			flags |= FS_XFLAG_IMMUTABLE;
626 		if (di_flags & XFS_DIFLAG_APPEND)
627 			flags |= FS_XFLAG_APPEND;
628 		if (di_flags & XFS_DIFLAG_SYNC)
629 			flags |= FS_XFLAG_SYNC;
630 		if (di_flags & XFS_DIFLAG_NOATIME)
631 			flags |= FS_XFLAG_NOATIME;
632 		if (di_flags & XFS_DIFLAG_NODUMP)
633 			flags |= FS_XFLAG_NODUMP;
634 		if (di_flags & XFS_DIFLAG_RTINHERIT)
635 			flags |= FS_XFLAG_RTINHERIT;
636 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 			flags |= FS_XFLAG_PROJINHERIT;
638 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 			flags |= FS_XFLAG_NOSYMLINKS;
640 		if (di_flags & XFS_DIFLAG_EXTSIZE)
641 			flags |= FS_XFLAG_EXTSIZE;
642 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 			flags |= FS_XFLAG_EXTSZINHERIT;
644 		if (di_flags & XFS_DIFLAG_NODEFRAG)
645 			flags |= FS_XFLAG_NODEFRAG;
646 		if (di_flags & XFS_DIFLAG_FILESTREAM)
647 			flags |= FS_XFLAG_FILESTREAM;
648 	}
649 
650 	if (di_flags2 & XFS_DIFLAG2_ANY) {
651 		if (di_flags2 & XFS_DIFLAG2_DAX)
652 			flags |= FS_XFLAG_DAX;
653 	}
654 
655 	if (has_attr)
656 		flags |= FS_XFLAG_HASATTR;
657 
658 	return flags;
659 }
660 
661 uint
662 xfs_ip2xflags(
663 	struct xfs_inode	*ip)
664 {
665 	struct xfs_icdinode	*dic = &ip->i_d;
666 
667 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
668 }
669 
670 uint
671 xfs_dic2xflags(
672 	struct xfs_dinode	*dip)
673 {
674 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 				be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
676 }
677 
678 /*
679  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680  * is allowed, otherwise it has to be an exact match. If a CI match is found,
681  * ci_name->name will point to a the actual name (caller must free) or
682  * will be set to NULL if an exact match is found.
683  */
684 int
685 xfs_lookup(
686 	xfs_inode_t		*dp,
687 	struct xfs_name		*name,
688 	xfs_inode_t		**ipp,
689 	struct xfs_name		*ci_name)
690 {
691 	xfs_ino_t		inum;
692 	int			error;
693 
694 	trace_xfs_lookup(dp, name);
695 
696 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 		return -EIO;
698 
699 	xfs_ilock(dp, XFS_IOLOCK_SHARED);
700 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
701 	if (error)
702 		goto out_unlock;
703 
704 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 	if (error)
706 		goto out_free_name;
707 
708 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 	return 0;
710 
711 out_free_name:
712 	if (ci_name)
713 		kmem_free(ci_name->name);
714 out_unlock:
715 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
716 	*ipp = NULL;
717 	return error;
718 }
719 
720 /*
721  * Allocate an inode on disk and return a copy of its in-core version.
722  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
723  * appropriately within the inode.  The uid and gid for the inode are
724  * set according to the contents of the given cred structure.
725  *
726  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
727  * has a free inode available, call xfs_iget() to obtain the in-core
728  * version of the allocated inode.  Finally, fill in the inode and
729  * log its initial contents.  In this case, ialloc_context would be
730  * set to NULL.
731  *
732  * If xfs_dialloc() does not have an available inode, it will replenish
733  * its supply by doing an allocation. Since we can only do one
734  * allocation within a transaction without deadlocks, we must commit
735  * the current transaction before returning the inode itself.
736  * In this case, therefore, we will set ialloc_context and return.
737  * The caller should then commit the current transaction, start a new
738  * transaction, and call xfs_ialloc() again to actually get the inode.
739  *
740  * To ensure that some other process does not grab the inode that
741  * was allocated during the first call to xfs_ialloc(), this routine
742  * also returns the [locked] bp pointing to the head of the freelist
743  * as ialloc_context.  The caller should hold this buffer across
744  * the commit and pass it back into this routine on the second call.
745  *
746  * If we are allocating quota inodes, we do not have a parent inode
747  * to attach to or associate with (i.e. pip == NULL) because they
748  * are not linked into the directory structure - they are attached
749  * directly to the superblock - and so have no parent.
750  */
751 int
752 xfs_ialloc(
753 	xfs_trans_t	*tp,
754 	xfs_inode_t	*pip,
755 	umode_t		mode,
756 	xfs_nlink_t	nlink,
757 	xfs_dev_t	rdev,
758 	prid_t		prid,
759 	int		okalloc,
760 	xfs_buf_t	**ialloc_context,
761 	xfs_inode_t	**ipp)
762 {
763 	struct xfs_mount *mp = tp->t_mountp;
764 	xfs_ino_t	ino;
765 	xfs_inode_t	*ip;
766 	uint		flags;
767 	int		error;
768 	struct timespec	tv;
769 	struct inode	*inode;
770 
771 	/*
772 	 * Call the space management code to pick
773 	 * the on-disk inode to be allocated.
774 	 */
775 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
776 			    ialloc_context, &ino);
777 	if (error)
778 		return error;
779 	if (*ialloc_context || ino == NULLFSINO) {
780 		*ipp = NULL;
781 		return 0;
782 	}
783 	ASSERT(*ialloc_context == NULL);
784 
785 	/*
786 	 * Get the in-core inode with the lock held exclusively.
787 	 * This is because we're setting fields here we need
788 	 * to prevent others from looking at until we're done.
789 	 */
790 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
791 			 XFS_ILOCK_EXCL, &ip);
792 	if (error)
793 		return error;
794 	ASSERT(ip != NULL);
795 	inode = VFS_I(ip);
796 
797 	/*
798 	 * We always convert v1 inodes to v2 now - we only support filesystems
799 	 * with >= v2 inode capability, so there is no reason for ever leaving
800 	 * an inode in v1 format.
801 	 */
802 	if (ip->i_d.di_version == 1)
803 		ip->i_d.di_version = 2;
804 
805 	inode->i_mode = mode;
806 	set_nlink(inode, nlink);
807 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
809 	xfs_set_projid(ip, prid);
810 
811 	if (pip && XFS_INHERIT_GID(pip)) {
812 		ip->i_d.di_gid = pip->i_d.di_gid;
813 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
814 			inode->i_mode |= S_ISGID;
815 	}
816 
817 	/*
818 	 * If the group ID of the new file does not match the effective group
819 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
820 	 * (and only if the irix_sgid_inherit compatibility variable is set).
821 	 */
822 	if ((irix_sgid_inherit) &&
823 	    (inode->i_mode & S_ISGID) &&
824 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
825 		inode->i_mode &= ~S_ISGID;
826 
827 	ip->i_d.di_size = 0;
828 	ip->i_d.di_nextents = 0;
829 	ASSERT(ip->i_d.di_nblocks == 0);
830 
831 	tv = current_fs_time(mp->m_super);
832 	inode->i_mtime = tv;
833 	inode->i_atime = tv;
834 	inode->i_ctime = tv;
835 
836 	ip->i_d.di_extsize = 0;
837 	ip->i_d.di_dmevmask = 0;
838 	ip->i_d.di_dmstate = 0;
839 	ip->i_d.di_flags = 0;
840 
841 	if (ip->i_d.di_version == 3) {
842 		inode->i_version = 1;
843 		ip->i_d.di_flags2 = 0;
844 		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
845 		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
846 	}
847 
848 
849 	flags = XFS_ILOG_CORE;
850 	switch (mode & S_IFMT) {
851 	case S_IFIFO:
852 	case S_IFCHR:
853 	case S_IFBLK:
854 	case S_IFSOCK:
855 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
856 		ip->i_df.if_u2.if_rdev = rdev;
857 		ip->i_df.if_flags = 0;
858 		flags |= XFS_ILOG_DEV;
859 		break;
860 	case S_IFREG:
861 	case S_IFDIR:
862 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
863 			uint64_t	di_flags2 = 0;
864 			uint		di_flags = 0;
865 
866 			if (S_ISDIR(mode)) {
867 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
868 					di_flags |= XFS_DIFLAG_RTINHERIT;
869 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
870 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
871 					ip->i_d.di_extsize = pip->i_d.di_extsize;
872 				}
873 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
874 					di_flags |= XFS_DIFLAG_PROJINHERIT;
875 			} else if (S_ISREG(mode)) {
876 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
877 					di_flags |= XFS_DIFLAG_REALTIME;
878 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
879 					di_flags |= XFS_DIFLAG_EXTSIZE;
880 					ip->i_d.di_extsize = pip->i_d.di_extsize;
881 				}
882 			}
883 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
884 			    xfs_inherit_noatime)
885 				di_flags |= XFS_DIFLAG_NOATIME;
886 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
887 			    xfs_inherit_nodump)
888 				di_flags |= XFS_DIFLAG_NODUMP;
889 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
890 			    xfs_inherit_sync)
891 				di_flags |= XFS_DIFLAG_SYNC;
892 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
893 			    xfs_inherit_nosymlinks)
894 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
895 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
896 			    xfs_inherit_nodefrag)
897 				di_flags |= XFS_DIFLAG_NODEFRAG;
898 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
899 				di_flags |= XFS_DIFLAG_FILESTREAM;
900 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
901 				di_flags2 |= XFS_DIFLAG2_DAX;
902 
903 			ip->i_d.di_flags |= di_flags;
904 			ip->i_d.di_flags2 |= di_flags2;
905 		}
906 		/* FALLTHROUGH */
907 	case S_IFLNK:
908 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
909 		ip->i_df.if_flags = XFS_IFEXTENTS;
910 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
911 		ip->i_df.if_u1.if_extents = NULL;
912 		break;
913 	default:
914 		ASSERT(0);
915 	}
916 	/*
917 	 * Attribute fork settings for new inode.
918 	 */
919 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
920 	ip->i_d.di_anextents = 0;
921 
922 	/*
923 	 * Log the new values stuffed into the inode.
924 	 */
925 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
926 	xfs_trans_log_inode(tp, ip, flags);
927 
928 	/* now that we have an i_mode we can setup the inode structure */
929 	xfs_setup_inode(ip);
930 
931 	*ipp = ip;
932 	return 0;
933 }
934 
935 /*
936  * Allocates a new inode from disk and return a pointer to the
937  * incore copy. This routine will internally commit the current
938  * transaction and allocate a new one if the Space Manager needed
939  * to do an allocation to replenish the inode free-list.
940  *
941  * This routine is designed to be called from xfs_create and
942  * xfs_create_dir.
943  *
944  */
945 int
946 xfs_dir_ialloc(
947 	xfs_trans_t	**tpp,		/* input: current transaction;
948 					   output: may be a new transaction. */
949 	xfs_inode_t	*dp,		/* directory within whose allocate
950 					   the inode. */
951 	umode_t		mode,
952 	xfs_nlink_t	nlink,
953 	xfs_dev_t	rdev,
954 	prid_t		prid,		/* project id */
955 	int		okalloc,	/* ok to allocate new space */
956 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
957 					   locked. */
958 	int		*committed)
959 
960 {
961 	xfs_trans_t	*tp;
962 	xfs_inode_t	*ip;
963 	xfs_buf_t	*ialloc_context = NULL;
964 	int		code;
965 	void		*dqinfo;
966 	uint		tflags;
967 
968 	tp = *tpp;
969 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
970 
971 	/*
972 	 * xfs_ialloc will return a pointer to an incore inode if
973 	 * the Space Manager has an available inode on the free
974 	 * list. Otherwise, it will do an allocation and replenish
975 	 * the freelist.  Since we can only do one allocation per
976 	 * transaction without deadlocks, we will need to commit the
977 	 * current transaction and start a new one.  We will then
978 	 * need to call xfs_ialloc again to get the inode.
979 	 *
980 	 * If xfs_ialloc did an allocation to replenish the freelist,
981 	 * it returns the bp containing the head of the freelist as
982 	 * ialloc_context. We will hold a lock on it across the
983 	 * transaction commit so that no other process can steal
984 	 * the inode(s) that we've just allocated.
985 	 */
986 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
987 			  &ialloc_context, &ip);
988 
989 	/*
990 	 * Return an error if we were unable to allocate a new inode.
991 	 * This should only happen if we run out of space on disk or
992 	 * encounter a disk error.
993 	 */
994 	if (code) {
995 		*ipp = NULL;
996 		return code;
997 	}
998 	if (!ialloc_context && !ip) {
999 		*ipp = NULL;
1000 		return -ENOSPC;
1001 	}
1002 
1003 	/*
1004 	 * If the AGI buffer is non-NULL, then we were unable to get an
1005 	 * inode in one operation.  We need to commit the current
1006 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1007 	 * to succeed the second time.
1008 	 */
1009 	if (ialloc_context) {
1010 		/*
1011 		 * Normally, xfs_trans_commit releases all the locks.
1012 		 * We call bhold to hang on to the ialloc_context across
1013 		 * the commit.  Holding this buffer prevents any other
1014 		 * processes from doing any allocations in this
1015 		 * allocation group.
1016 		 */
1017 		xfs_trans_bhold(tp, ialloc_context);
1018 
1019 		/*
1020 		 * We want the quota changes to be associated with the next
1021 		 * transaction, NOT this one. So, detach the dqinfo from this
1022 		 * and attach it to the next transaction.
1023 		 */
1024 		dqinfo = NULL;
1025 		tflags = 0;
1026 		if (tp->t_dqinfo) {
1027 			dqinfo = (void *)tp->t_dqinfo;
1028 			tp->t_dqinfo = NULL;
1029 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031 		}
1032 
1033 		code = xfs_trans_roll(&tp, NULL);
1034 		if (committed != NULL)
1035 			*committed = 1;
1036 
1037 		/*
1038 		 * Re-attach the quota info that we detached from prev trx.
1039 		 */
1040 		if (dqinfo) {
1041 			tp->t_dqinfo = dqinfo;
1042 			tp->t_flags |= tflags;
1043 		}
1044 
1045 		if (code) {
1046 			xfs_buf_relse(ialloc_context);
1047 			*tpp = tp;
1048 			*ipp = NULL;
1049 			return code;
1050 		}
1051 		xfs_trans_bjoin(tp, ialloc_context);
1052 
1053 		/*
1054 		 * Call ialloc again. Since we've locked out all
1055 		 * other allocations in this allocation group,
1056 		 * this call should always succeed.
1057 		 */
1058 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059 				  okalloc, &ialloc_context, &ip);
1060 
1061 		/*
1062 		 * If we get an error at this point, return to the caller
1063 		 * so that the current transaction can be aborted.
1064 		 */
1065 		if (code) {
1066 			*tpp = tp;
1067 			*ipp = NULL;
1068 			return code;
1069 		}
1070 		ASSERT(!ialloc_context && ip);
1071 
1072 	} else {
1073 		if (committed != NULL)
1074 			*committed = 0;
1075 	}
1076 
1077 	*ipp = ip;
1078 	*tpp = tp;
1079 
1080 	return 0;
1081 }
1082 
1083 /*
1084  * Decrement the link count on an inode & log the change.  If this causes the
1085  * link count to go to zero, move the inode to AGI unlinked list so that it can
1086  * be freed when the last active reference goes away via xfs_inactive().
1087  */
1088 int				/* error */
1089 xfs_droplink(
1090 	xfs_trans_t *tp,
1091 	xfs_inode_t *ip)
1092 {
1093 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094 
1095 	drop_nlink(VFS_I(ip));
1096 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097 
1098 	if (VFS_I(ip)->i_nlink)
1099 		return 0;
1100 
1101 	return xfs_iunlink(tp, ip);
1102 }
1103 
1104 /*
1105  * Increment the link count on an inode & log the change.
1106  */
1107 int
1108 xfs_bumplink(
1109 	xfs_trans_t *tp,
1110 	xfs_inode_t *ip)
1111 {
1112 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113 
1114 	ASSERT(ip->i_d.di_version > 1);
1115 	inc_nlink(VFS_I(ip));
1116 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117 	return 0;
1118 }
1119 
1120 int
1121 xfs_create(
1122 	xfs_inode_t		*dp,
1123 	struct xfs_name		*name,
1124 	umode_t			mode,
1125 	xfs_dev_t		rdev,
1126 	xfs_inode_t		**ipp)
1127 {
1128 	int			is_dir = S_ISDIR(mode);
1129 	struct xfs_mount	*mp = dp->i_mount;
1130 	struct xfs_inode	*ip = NULL;
1131 	struct xfs_trans	*tp = NULL;
1132 	int			error;
1133 	xfs_bmap_free_t		free_list;
1134 	xfs_fsblock_t		first_block;
1135 	bool                    unlock_dp_on_error = false;
1136 	prid_t			prid;
1137 	struct xfs_dquot	*udqp = NULL;
1138 	struct xfs_dquot	*gdqp = NULL;
1139 	struct xfs_dquot	*pdqp = NULL;
1140 	struct xfs_trans_res	*tres;
1141 	uint			resblks;
1142 
1143 	trace_xfs_create(dp, name);
1144 
1145 	if (XFS_FORCED_SHUTDOWN(mp))
1146 		return -EIO;
1147 
1148 	prid = xfs_get_initial_prid(dp);
1149 
1150 	/*
1151 	 * Make sure that we have allocated dquot(s) on disk.
1152 	 */
1153 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154 					xfs_kgid_to_gid(current_fsgid()), prid,
1155 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156 					&udqp, &gdqp, &pdqp);
1157 	if (error)
1158 		return error;
1159 
1160 	if (is_dir) {
1161 		rdev = 0;
1162 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163 		tres = &M_RES(mp)->tr_mkdir;
1164 	} else {
1165 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1166 		tres = &M_RES(mp)->tr_create;
1167 	}
1168 
1169 	/*
1170 	 * Initially assume that the file does not exist and
1171 	 * reserve the resources for that case.  If that is not
1172 	 * the case we'll drop the one we have and get a more
1173 	 * appropriate transaction later.
1174 	 */
1175 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1176 	if (error == -ENOSPC) {
1177 		/* flush outstanding delalloc blocks and retry */
1178 		xfs_flush_inodes(mp);
1179 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1180 	}
1181 	if (error == -ENOSPC) {
1182 		/* No space at all so try a "no-allocation" reservation */
1183 		resblks = 0;
1184 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1185 	}
1186 	if (error)
1187 		goto out_release_inode;
1188 
1189 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1190 		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1191 	unlock_dp_on_error = true;
1192 
1193 	xfs_bmap_init(&free_list, &first_block);
1194 
1195 	/*
1196 	 * Reserve disk quota and the inode.
1197 	 */
1198 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1199 						pdqp, resblks, 1, 0);
1200 	if (error)
1201 		goto out_trans_cancel;
1202 
1203 	if (!resblks) {
1204 		error = xfs_dir_canenter(tp, dp, name);
1205 		if (error)
1206 			goto out_trans_cancel;
1207 	}
1208 
1209 	/*
1210 	 * A newly created regular or special file just has one directory
1211 	 * entry pointing to them, but a directory also the "." entry
1212 	 * pointing to itself.
1213 	 */
1214 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1215 			       prid, resblks > 0, &ip, NULL);
1216 	if (error)
1217 		goto out_trans_cancel;
1218 
1219 	/*
1220 	 * Now we join the directory inode to the transaction.  We do not do it
1221 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1222 	 * (and release all the locks).  An error from here on will result in
1223 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1224 	 * error path.
1225 	 */
1226 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1227 	unlock_dp_on_error = false;
1228 
1229 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1230 					&first_block, &free_list, resblks ?
1231 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1232 	if (error) {
1233 		ASSERT(error != -ENOSPC);
1234 		goto out_trans_cancel;
1235 	}
1236 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1237 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1238 
1239 	if (is_dir) {
1240 		error = xfs_dir_init(tp, ip, dp);
1241 		if (error)
1242 			goto out_bmap_cancel;
1243 
1244 		error = xfs_bumplink(tp, dp);
1245 		if (error)
1246 			goto out_bmap_cancel;
1247 	}
1248 
1249 	/*
1250 	 * If this is a synchronous mount, make sure that the
1251 	 * create transaction goes to disk before returning to
1252 	 * the user.
1253 	 */
1254 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1255 		xfs_trans_set_sync(tp);
1256 
1257 	/*
1258 	 * Attach the dquot(s) to the inodes and modify them incore.
1259 	 * These ids of the inode couldn't have changed since the new
1260 	 * inode has been locked ever since it was created.
1261 	 */
1262 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1263 
1264 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1265 	if (error)
1266 		goto out_bmap_cancel;
1267 
1268 	error = xfs_trans_commit(tp);
1269 	if (error)
1270 		goto out_release_inode;
1271 
1272 	xfs_qm_dqrele(udqp);
1273 	xfs_qm_dqrele(gdqp);
1274 	xfs_qm_dqrele(pdqp);
1275 
1276 	*ipp = ip;
1277 	return 0;
1278 
1279  out_bmap_cancel:
1280 	xfs_bmap_cancel(&free_list);
1281  out_trans_cancel:
1282 	xfs_trans_cancel(tp);
1283  out_release_inode:
1284 	/*
1285 	 * Wait until after the current transaction is aborted to finish the
1286 	 * setup of the inode and release the inode.  This prevents recursive
1287 	 * transactions and deadlocks from xfs_inactive.
1288 	 */
1289 	if (ip) {
1290 		xfs_finish_inode_setup(ip);
1291 		IRELE(ip);
1292 	}
1293 
1294 	xfs_qm_dqrele(udqp);
1295 	xfs_qm_dqrele(gdqp);
1296 	xfs_qm_dqrele(pdqp);
1297 
1298 	if (unlock_dp_on_error)
1299 		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1300 	return error;
1301 }
1302 
1303 int
1304 xfs_create_tmpfile(
1305 	struct xfs_inode	*dp,
1306 	struct dentry		*dentry,
1307 	umode_t			mode,
1308 	struct xfs_inode	**ipp)
1309 {
1310 	struct xfs_mount	*mp = dp->i_mount;
1311 	struct xfs_inode	*ip = NULL;
1312 	struct xfs_trans	*tp = NULL;
1313 	int			error;
1314 	prid_t                  prid;
1315 	struct xfs_dquot	*udqp = NULL;
1316 	struct xfs_dquot	*gdqp = NULL;
1317 	struct xfs_dquot	*pdqp = NULL;
1318 	struct xfs_trans_res	*tres;
1319 	uint			resblks;
1320 
1321 	if (XFS_FORCED_SHUTDOWN(mp))
1322 		return -EIO;
1323 
1324 	prid = xfs_get_initial_prid(dp);
1325 
1326 	/*
1327 	 * Make sure that we have allocated dquot(s) on disk.
1328 	 */
1329 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1330 				xfs_kgid_to_gid(current_fsgid()), prid,
1331 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1332 				&udqp, &gdqp, &pdqp);
1333 	if (error)
1334 		return error;
1335 
1336 	resblks = XFS_IALLOC_SPACE_RES(mp);
1337 	tres = &M_RES(mp)->tr_create_tmpfile;
1338 
1339 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1340 	if (error == -ENOSPC) {
1341 		/* No space at all so try a "no-allocation" reservation */
1342 		resblks = 0;
1343 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1344 	}
1345 	if (error)
1346 		goto out_release_inode;
1347 
1348 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1349 						pdqp, resblks, 1, 0);
1350 	if (error)
1351 		goto out_trans_cancel;
1352 
1353 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1354 				prid, resblks > 0, &ip, NULL);
1355 	if (error)
1356 		goto out_trans_cancel;
1357 
1358 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1359 		xfs_trans_set_sync(tp);
1360 
1361 	/*
1362 	 * Attach the dquot(s) to the inodes and modify them incore.
1363 	 * These ids of the inode couldn't have changed since the new
1364 	 * inode has been locked ever since it was created.
1365 	 */
1366 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1367 
1368 	error = xfs_iunlink(tp, ip);
1369 	if (error)
1370 		goto out_trans_cancel;
1371 
1372 	error = xfs_trans_commit(tp);
1373 	if (error)
1374 		goto out_release_inode;
1375 
1376 	xfs_qm_dqrele(udqp);
1377 	xfs_qm_dqrele(gdqp);
1378 	xfs_qm_dqrele(pdqp);
1379 
1380 	*ipp = ip;
1381 	return 0;
1382 
1383  out_trans_cancel:
1384 	xfs_trans_cancel(tp);
1385  out_release_inode:
1386 	/*
1387 	 * Wait until after the current transaction is aborted to finish the
1388 	 * setup of the inode and release the inode.  This prevents recursive
1389 	 * transactions and deadlocks from xfs_inactive.
1390 	 */
1391 	if (ip) {
1392 		xfs_finish_inode_setup(ip);
1393 		IRELE(ip);
1394 	}
1395 
1396 	xfs_qm_dqrele(udqp);
1397 	xfs_qm_dqrele(gdqp);
1398 	xfs_qm_dqrele(pdqp);
1399 
1400 	return error;
1401 }
1402 
1403 int
1404 xfs_link(
1405 	xfs_inode_t		*tdp,
1406 	xfs_inode_t		*sip,
1407 	struct xfs_name		*target_name)
1408 {
1409 	xfs_mount_t		*mp = tdp->i_mount;
1410 	xfs_trans_t		*tp;
1411 	int			error;
1412 	xfs_bmap_free_t         free_list;
1413 	xfs_fsblock_t           first_block;
1414 	int			resblks;
1415 
1416 	trace_xfs_link(tdp, target_name);
1417 
1418 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1419 
1420 	if (XFS_FORCED_SHUTDOWN(mp))
1421 		return -EIO;
1422 
1423 	error = xfs_qm_dqattach(sip, 0);
1424 	if (error)
1425 		goto std_return;
1426 
1427 	error = xfs_qm_dqattach(tdp, 0);
1428 	if (error)
1429 		goto std_return;
1430 
1431 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1432 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1433 	if (error == -ENOSPC) {
1434 		resblks = 0;
1435 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1436 	}
1437 	if (error)
1438 		goto std_return;
1439 
1440 	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1441 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1442 
1443 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1444 	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1445 
1446 	/*
1447 	 * If we are using project inheritance, we only allow hard link
1448 	 * creation in our tree when the project IDs are the same; else
1449 	 * the tree quota mechanism could be circumvented.
1450 	 */
1451 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1452 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1453 		error = -EXDEV;
1454 		goto error_return;
1455 	}
1456 
1457 	if (!resblks) {
1458 		error = xfs_dir_canenter(tp, tdp, target_name);
1459 		if (error)
1460 			goto error_return;
1461 	}
1462 
1463 	xfs_bmap_init(&free_list, &first_block);
1464 
1465 	/*
1466 	 * Handle initial link state of O_TMPFILE inode
1467 	 */
1468 	if (VFS_I(sip)->i_nlink == 0) {
1469 		error = xfs_iunlink_remove(tp, sip);
1470 		if (error)
1471 			goto error_return;
1472 	}
1473 
1474 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1475 					&first_block, &free_list, resblks);
1476 	if (error)
1477 		goto error_return;
1478 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1479 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1480 
1481 	error = xfs_bumplink(tp, sip);
1482 	if (error)
1483 		goto error_return;
1484 
1485 	/*
1486 	 * If this is a synchronous mount, make sure that the
1487 	 * link transaction goes to disk before returning to
1488 	 * the user.
1489 	 */
1490 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1491 		xfs_trans_set_sync(tp);
1492 
1493 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1494 	if (error) {
1495 		xfs_bmap_cancel(&free_list);
1496 		goto error_return;
1497 	}
1498 
1499 	return xfs_trans_commit(tp);
1500 
1501  error_return:
1502 	xfs_trans_cancel(tp);
1503  std_return:
1504 	return error;
1505 }
1506 
1507 /*
1508  * Free up the underlying blocks past new_size.  The new size must be smaller
1509  * than the current size.  This routine can be used both for the attribute and
1510  * data fork, and does not modify the inode size, which is left to the caller.
1511  *
1512  * The transaction passed to this routine must have made a permanent log
1513  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1514  * given transaction and start new ones, so make sure everything involved in
1515  * the transaction is tidy before calling here.  Some transaction will be
1516  * returned to the caller to be committed.  The incoming transaction must
1517  * already include the inode, and both inode locks must be held exclusively.
1518  * The inode must also be "held" within the transaction.  On return the inode
1519  * will be "held" within the returned transaction.  This routine does NOT
1520  * require any disk space to be reserved for it within the transaction.
1521  *
1522  * If we get an error, we must return with the inode locked and linked into the
1523  * current transaction. This keeps things simple for the higher level code,
1524  * because it always knows that the inode is locked and held in the transaction
1525  * that returns to it whether errors occur or not.  We don't mark the inode
1526  * dirty on error so that transactions can be easily aborted if possible.
1527  */
1528 int
1529 xfs_itruncate_extents(
1530 	struct xfs_trans	**tpp,
1531 	struct xfs_inode	*ip,
1532 	int			whichfork,
1533 	xfs_fsize_t		new_size)
1534 {
1535 	struct xfs_mount	*mp = ip->i_mount;
1536 	struct xfs_trans	*tp = *tpp;
1537 	xfs_bmap_free_t		free_list;
1538 	xfs_fsblock_t		first_block;
1539 	xfs_fileoff_t		first_unmap_block;
1540 	xfs_fileoff_t		last_block;
1541 	xfs_filblks_t		unmap_len;
1542 	int			error = 0;
1543 	int			done = 0;
1544 
1545 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1546 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1547 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1548 	ASSERT(new_size <= XFS_ISIZE(ip));
1549 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1550 	ASSERT(ip->i_itemp != NULL);
1551 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1552 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1553 
1554 	trace_xfs_itruncate_extents_start(ip, new_size);
1555 
1556 	/*
1557 	 * Since it is possible for space to become allocated beyond
1558 	 * the end of the file (in a crash where the space is allocated
1559 	 * but the inode size is not yet updated), simply remove any
1560 	 * blocks which show up between the new EOF and the maximum
1561 	 * possible file size.  If the first block to be removed is
1562 	 * beyond the maximum file size (ie it is the same as last_block),
1563 	 * then there is nothing to do.
1564 	 */
1565 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1566 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1567 	if (first_unmap_block == last_block)
1568 		return 0;
1569 
1570 	ASSERT(first_unmap_block < last_block);
1571 	unmap_len = last_block - first_unmap_block + 1;
1572 	while (!done) {
1573 		xfs_bmap_init(&free_list, &first_block);
1574 		error = xfs_bunmapi(tp, ip,
1575 				    first_unmap_block, unmap_len,
1576 				    xfs_bmapi_aflag(whichfork),
1577 				    XFS_ITRUNC_MAX_EXTENTS,
1578 				    &first_block, &free_list,
1579 				    &done);
1580 		if (error)
1581 			goto out_bmap_cancel;
1582 
1583 		/*
1584 		 * Duplicate the transaction that has the permanent
1585 		 * reservation and commit the old transaction.
1586 		 */
1587 		error = xfs_bmap_finish(&tp, &free_list, ip);
1588 		if (error)
1589 			goto out_bmap_cancel;
1590 
1591 		error = xfs_trans_roll(&tp, ip);
1592 		if (error)
1593 			goto out;
1594 	}
1595 
1596 	/*
1597 	 * Always re-log the inode so that our permanent transaction can keep
1598 	 * on rolling it forward in the log.
1599 	 */
1600 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1601 
1602 	trace_xfs_itruncate_extents_end(ip, new_size);
1603 
1604 out:
1605 	*tpp = tp;
1606 	return error;
1607 out_bmap_cancel:
1608 	/*
1609 	 * If the bunmapi call encounters an error, return to the caller where
1610 	 * the transaction can be properly aborted.  We just need to make sure
1611 	 * we're not holding any resources that we were not when we came in.
1612 	 */
1613 	xfs_bmap_cancel(&free_list);
1614 	goto out;
1615 }
1616 
1617 int
1618 xfs_release(
1619 	xfs_inode_t	*ip)
1620 {
1621 	xfs_mount_t	*mp = ip->i_mount;
1622 	int		error;
1623 
1624 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1625 		return 0;
1626 
1627 	/* If this is a read-only mount, don't do this (would generate I/O) */
1628 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1629 		return 0;
1630 
1631 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1632 		int truncated;
1633 
1634 		/*
1635 		 * If we previously truncated this file and removed old data
1636 		 * in the process, we want to initiate "early" writeout on
1637 		 * the last close.  This is an attempt to combat the notorious
1638 		 * NULL files problem which is particularly noticeable from a
1639 		 * truncate down, buffered (re-)write (delalloc), followed by
1640 		 * a crash.  What we are effectively doing here is
1641 		 * significantly reducing the time window where we'd otherwise
1642 		 * be exposed to that problem.
1643 		 */
1644 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1645 		if (truncated) {
1646 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1647 			if (ip->i_delayed_blks > 0) {
1648 				error = filemap_flush(VFS_I(ip)->i_mapping);
1649 				if (error)
1650 					return error;
1651 			}
1652 		}
1653 	}
1654 
1655 	if (VFS_I(ip)->i_nlink == 0)
1656 		return 0;
1657 
1658 	if (xfs_can_free_eofblocks(ip, false)) {
1659 
1660 		/*
1661 		 * If we can't get the iolock just skip truncating the blocks
1662 		 * past EOF because we could deadlock with the mmap_sem
1663 		 * otherwise.  We'll get another chance to drop them once the
1664 		 * last reference to the inode is dropped, so we'll never leak
1665 		 * blocks permanently.
1666 		 *
1667 		 * Further, check if the inode is being opened, written and
1668 		 * closed frequently and we have delayed allocation blocks
1669 		 * outstanding (e.g. streaming writes from the NFS server),
1670 		 * truncating the blocks past EOF will cause fragmentation to
1671 		 * occur.
1672 		 *
1673 		 * In this case don't do the truncation, either, but we have to
1674 		 * be careful how we detect this case. Blocks beyond EOF show
1675 		 * up as i_delayed_blks even when the inode is clean, so we
1676 		 * need to truncate them away first before checking for a dirty
1677 		 * release. Hence on the first dirty close we will still remove
1678 		 * the speculative allocation, but after that we will leave it
1679 		 * in place.
1680 		 */
1681 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1682 			return 0;
1683 
1684 		error = xfs_free_eofblocks(mp, ip, true);
1685 		if (error && error != -EAGAIN)
1686 			return error;
1687 
1688 		/* delalloc blocks after truncation means it really is dirty */
1689 		if (ip->i_delayed_blks)
1690 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1691 	}
1692 	return 0;
1693 }
1694 
1695 /*
1696  * xfs_inactive_truncate
1697  *
1698  * Called to perform a truncate when an inode becomes unlinked.
1699  */
1700 STATIC int
1701 xfs_inactive_truncate(
1702 	struct xfs_inode *ip)
1703 {
1704 	struct xfs_mount	*mp = ip->i_mount;
1705 	struct xfs_trans	*tp;
1706 	int			error;
1707 
1708 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1709 	if (error) {
1710 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1711 		return error;
1712 	}
1713 
1714 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1715 	xfs_trans_ijoin(tp, ip, 0);
1716 
1717 	/*
1718 	 * Log the inode size first to prevent stale data exposure in the event
1719 	 * of a system crash before the truncate completes. See the related
1720 	 * comment in xfs_setattr_size() for details.
1721 	 */
1722 	ip->i_d.di_size = 0;
1723 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1724 
1725 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1726 	if (error)
1727 		goto error_trans_cancel;
1728 
1729 	ASSERT(ip->i_d.di_nextents == 0);
1730 
1731 	error = xfs_trans_commit(tp);
1732 	if (error)
1733 		goto error_unlock;
1734 
1735 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1736 	return 0;
1737 
1738 error_trans_cancel:
1739 	xfs_trans_cancel(tp);
1740 error_unlock:
1741 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1742 	return error;
1743 }
1744 
1745 /*
1746  * xfs_inactive_ifree()
1747  *
1748  * Perform the inode free when an inode is unlinked.
1749  */
1750 STATIC int
1751 xfs_inactive_ifree(
1752 	struct xfs_inode *ip)
1753 {
1754 	xfs_bmap_free_t		free_list;
1755 	xfs_fsblock_t		first_block;
1756 	struct xfs_mount	*mp = ip->i_mount;
1757 	struct xfs_trans	*tp;
1758 	int			error;
1759 
1760 	/*
1761 	 * The ifree transaction might need to allocate blocks for record
1762 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1763 	 * allow ifree to dip into the reserved block pool if necessary.
1764 	 *
1765 	 * Freeing large sets of inodes generally means freeing inode chunks,
1766 	 * directory and file data blocks, so this should be relatively safe.
1767 	 * Only under severe circumstances should it be possible to free enough
1768 	 * inodes to exhaust the reserve block pool via finobt expansion while
1769 	 * at the same time not creating free space in the filesystem.
1770 	 *
1771 	 * Send a warning if the reservation does happen to fail, as the inode
1772 	 * now remains allocated and sits on the unlinked list until the fs is
1773 	 * repaired.
1774 	 */
1775 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1776 			XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1777 	if (error) {
1778 		if (error == -ENOSPC) {
1779 			xfs_warn_ratelimited(mp,
1780 			"Failed to remove inode(s) from unlinked list. "
1781 			"Please free space, unmount and run xfs_repair.");
1782 		} else {
1783 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1784 		}
1785 		return error;
1786 	}
1787 
1788 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1789 	xfs_trans_ijoin(tp, ip, 0);
1790 
1791 	xfs_bmap_init(&free_list, &first_block);
1792 	error = xfs_ifree(tp, ip, &free_list);
1793 	if (error) {
1794 		/*
1795 		 * If we fail to free the inode, shut down.  The cancel
1796 		 * might do that, we need to make sure.  Otherwise the
1797 		 * inode might be lost for a long time or forever.
1798 		 */
1799 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1800 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1801 				__func__, error);
1802 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1803 		}
1804 		xfs_trans_cancel(tp);
1805 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1806 		return error;
1807 	}
1808 
1809 	/*
1810 	 * Credit the quota account(s). The inode is gone.
1811 	 */
1812 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1813 
1814 	/*
1815 	 * Just ignore errors at this point.  There is nothing we can do except
1816 	 * to try to keep going. Make sure it's not a silent error.
1817 	 */
1818 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1819 	if (error) {
1820 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1821 			__func__, error);
1822 		xfs_bmap_cancel(&free_list);
1823 	}
1824 	error = xfs_trans_commit(tp);
1825 	if (error)
1826 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1827 			__func__, error);
1828 
1829 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1830 	return 0;
1831 }
1832 
1833 /*
1834  * xfs_inactive
1835  *
1836  * This is called when the vnode reference count for the vnode
1837  * goes to zero.  If the file has been unlinked, then it must
1838  * now be truncated.  Also, we clear all of the read-ahead state
1839  * kept for the inode here since the file is now closed.
1840  */
1841 void
1842 xfs_inactive(
1843 	xfs_inode_t	*ip)
1844 {
1845 	struct xfs_mount	*mp;
1846 	int			error;
1847 	int			truncate = 0;
1848 
1849 	/*
1850 	 * If the inode is already free, then there can be nothing
1851 	 * to clean up here.
1852 	 */
1853 	if (VFS_I(ip)->i_mode == 0) {
1854 		ASSERT(ip->i_df.if_real_bytes == 0);
1855 		ASSERT(ip->i_df.if_broot_bytes == 0);
1856 		return;
1857 	}
1858 
1859 	mp = ip->i_mount;
1860 
1861 	/* If this is a read-only mount, don't do this (would generate I/O) */
1862 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1863 		return;
1864 
1865 	if (VFS_I(ip)->i_nlink != 0) {
1866 		/*
1867 		 * force is true because we are evicting an inode from the
1868 		 * cache. Post-eof blocks must be freed, lest we end up with
1869 		 * broken free space accounting.
1870 		 */
1871 		if (xfs_can_free_eofblocks(ip, true))
1872 			xfs_free_eofblocks(mp, ip, false);
1873 
1874 		return;
1875 	}
1876 
1877 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1878 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1879 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1880 		truncate = 1;
1881 
1882 	error = xfs_qm_dqattach(ip, 0);
1883 	if (error)
1884 		return;
1885 
1886 	if (S_ISLNK(VFS_I(ip)->i_mode))
1887 		error = xfs_inactive_symlink(ip);
1888 	else if (truncate)
1889 		error = xfs_inactive_truncate(ip);
1890 	if (error)
1891 		return;
1892 
1893 	/*
1894 	 * If there are attributes associated with the file then blow them away
1895 	 * now.  The code calls a routine that recursively deconstructs the
1896 	 * attribute fork. If also blows away the in-core attribute fork.
1897 	 */
1898 	if (XFS_IFORK_Q(ip)) {
1899 		error = xfs_attr_inactive(ip);
1900 		if (error)
1901 			return;
1902 	}
1903 
1904 	ASSERT(!ip->i_afp);
1905 	ASSERT(ip->i_d.di_anextents == 0);
1906 	ASSERT(ip->i_d.di_forkoff == 0);
1907 
1908 	/*
1909 	 * Free the inode.
1910 	 */
1911 	error = xfs_inactive_ifree(ip);
1912 	if (error)
1913 		return;
1914 
1915 	/*
1916 	 * Release the dquots held by inode, if any.
1917 	 */
1918 	xfs_qm_dqdetach(ip);
1919 }
1920 
1921 /*
1922  * This is called when the inode's link count goes to 0 or we are creating a
1923  * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1924  * set to true as the link count is dropped to zero by the VFS after we've
1925  * created the file successfully, so we have to add it to the unlinked list
1926  * while the link count is non-zero.
1927  *
1928  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1929  * list when the inode is freed.
1930  */
1931 STATIC int
1932 xfs_iunlink(
1933 	struct xfs_trans *tp,
1934 	struct xfs_inode *ip)
1935 {
1936 	xfs_mount_t	*mp = tp->t_mountp;
1937 	xfs_agi_t	*agi;
1938 	xfs_dinode_t	*dip;
1939 	xfs_buf_t	*agibp;
1940 	xfs_buf_t	*ibp;
1941 	xfs_agino_t	agino;
1942 	short		bucket_index;
1943 	int		offset;
1944 	int		error;
1945 
1946 	ASSERT(VFS_I(ip)->i_mode != 0);
1947 
1948 	/*
1949 	 * Get the agi buffer first.  It ensures lock ordering
1950 	 * on the list.
1951 	 */
1952 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1953 	if (error)
1954 		return error;
1955 	agi = XFS_BUF_TO_AGI(agibp);
1956 
1957 	/*
1958 	 * Get the index into the agi hash table for the
1959 	 * list this inode will go on.
1960 	 */
1961 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1962 	ASSERT(agino != 0);
1963 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1964 	ASSERT(agi->agi_unlinked[bucket_index]);
1965 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1966 
1967 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1968 		/*
1969 		 * There is already another inode in the bucket we need
1970 		 * to add ourselves to.  Add us at the front of the list.
1971 		 * Here we put the head pointer into our next pointer,
1972 		 * and then we fall through to point the head at us.
1973 		 */
1974 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1975 				       0, 0);
1976 		if (error)
1977 			return error;
1978 
1979 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1980 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1981 		offset = ip->i_imap.im_boffset +
1982 			offsetof(xfs_dinode_t, di_next_unlinked);
1983 
1984 		/* need to recalc the inode CRC if appropriate */
1985 		xfs_dinode_calc_crc(mp, dip);
1986 
1987 		xfs_trans_inode_buf(tp, ibp);
1988 		xfs_trans_log_buf(tp, ibp, offset,
1989 				  (offset + sizeof(xfs_agino_t) - 1));
1990 		xfs_inobp_check(mp, ibp);
1991 	}
1992 
1993 	/*
1994 	 * Point the bucket head pointer at the inode being inserted.
1995 	 */
1996 	ASSERT(agino != 0);
1997 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1998 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1999 		(sizeof(xfs_agino_t) * bucket_index);
2000 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2001 	xfs_trans_log_buf(tp, agibp, offset,
2002 			  (offset + sizeof(xfs_agino_t) - 1));
2003 	return 0;
2004 }
2005 
2006 /*
2007  * Pull the on-disk inode from the AGI unlinked list.
2008  */
2009 STATIC int
2010 xfs_iunlink_remove(
2011 	xfs_trans_t	*tp,
2012 	xfs_inode_t	*ip)
2013 {
2014 	xfs_ino_t	next_ino;
2015 	xfs_mount_t	*mp;
2016 	xfs_agi_t	*agi;
2017 	xfs_dinode_t	*dip;
2018 	xfs_buf_t	*agibp;
2019 	xfs_buf_t	*ibp;
2020 	xfs_agnumber_t	agno;
2021 	xfs_agino_t	agino;
2022 	xfs_agino_t	next_agino;
2023 	xfs_buf_t	*last_ibp;
2024 	xfs_dinode_t	*last_dip = NULL;
2025 	short		bucket_index;
2026 	int		offset, last_offset = 0;
2027 	int		error;
2028 
2029 	mp = tp->t_mountp;
2030 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2031 
2032 	/*
2033 	 * Get the agi buffer first.  It ensures lock ordering
2034 	 * on the list.
2035 	 */
2036 	error = xfs_read_agi(mp, tp, agno, &agibp);
2037 	if (error)
2038 		return error;
2039 
2040 	agi = XFS_BUF_TO_AGI(agibp);
2041 
2042 	/*
2043 	 * Get the index into the agi hash table for the
2044 	 * list this inode will go on.
2045 	 */
2046 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2047 	ASSERT(agino != 0);
2048 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2049 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2050 	ASSERT(agi->agi_unlinked[bucket_index]);
2051 
2052 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2053 		/*
2054 		 * We're at the head of the list.  Get the inode's on-disk
2055 		 * buffer to see if there is anyone after us on the list.
2056 		 * Only modify our next pointer if it is not already NULLAGINO.
2057 		 * This saves us the overhead of dealing with the buffer when
2058 		 * there is no need to change it.
2059 		 */
2060 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2061 				       0, 0);
2062 		if (error) {
2063 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2064 				__func__, error);
2065 			return error;
2066 		}
2067 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2068 		ASSERT(next_agino != 0);
2069 		if (next_agino != NULLAGINO) {
2070 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2071 			offset = ip->i_imap.im_boffset +
2072 				offsetof(xfs_dinode_t, di_next_unlinked);
2073 
2074 			/* need to recalc the inode CRC if appropriate */
2075 			xfs_dinode_calc_crc(mp, dip);
2076 
2077 			xfs_trans_inode_buf(tp, ibp);
2078 			xfs_trans_log_buf(tp, ibp, offset,
2079 					  (offset + sizeof(xfs_agino_t) - 1));
2080 			xfs_inobp_check(mp, ibp);
2081 		} else {
2082 			xfs_trans_brelse(tp, ibp);
2083 		}
2084 		/*
2085 		 * Point the bucket head pointer at the next inode.
2086 		 */
2087 		ASSERT(next_agino != 0);
2088 		ASSERT(next_agino != agino);
2089 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2090 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2091 			(sizeof(xfs_agino_t) * bucket_index);
2092 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2093 		xfs_trans_log_buf(tp, agibp, offset,
2094 				  (offset + sizeof(xfs_agino_t) - 1));
2095 	} else {
2096 		/*
2097 		 * We need to search the list for the inode being freed.
2098 		 */
2099 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2100 		last_ibp = NULL;
2101 		while (next_agino != agino) {
2102 			struct xfs_imap	imap;
2103 
2104 			if (last_ibp)
2105 				xfs_trans_brelse(tp, last_ibp);
2106 
2107 			imap.im_blkno = 0;
2108 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2109 
2110 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2111 			if (error) {
2112 				xfs_warn(mp,
2113 	"%s: xfs_imap returned error %d.",
2114 					 __func__, error);
2115 				return error;
2116 			}
2117 
2118 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2119 					       &last_ibp, 0, 0);
2120 			if (error) {
2121 				xfs_warn(mp,
2122 	"%s: xfs_imap_to_bp returned error %d.",
2123 					__func__, error);
2124 				return error;
2125 			}
2126 
2127 			last_offset = imap.im_boffset;
2128 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2129 			ASSERT(next_agino != NULLAGINO);
2130 			ASSERT(next_agino != 0);
2131 		}
2132 
2133 		/*
2134 		 * Now last_ibp points to the buffer previous to us on the
2135 		 * unlinked list.  Pull us from the list.
2136 		 */
2137 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2138 				       0, 0);
2139 		if (error) {
2140 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2141 				__func__, error);
2142 			return error;
2143 		}
2144 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2145 		ASSERT(next_agino != 0);
2146 		ASSERT(next_agino != agino);
2147 		if (next_agino != NULLAGINO) {
2148 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2149 			offset = ip->i_imap.im_boffset +
2150 				offsetof(xfs_dinode_t, di_next_unlinked);
2151 
2152 			/* need to recalc the inode CRC if appropriate */
2153 			xfs_dinode_calc_crc(mp, dip);
2154 
2155 			xfs_trans_inode_buf(tp, ibp);
2156 			xfs_trans_log_buf(tp, ibp, offset,
2157 					  (offset + sizeof(xfs_agino_t) - 1));
2158 			xfs_inobp_check(mp, ibp);
2159 		} else {
2160 			xfs_trans_brelse(tp, ibp);
2161 		}
2162 		/*
2163 		 * Point the previous inode on the list to the next inode.
2164 		 */
2165 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2166 		ASSERT(next_agino != 0);
2167 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2168 
2169 		/* need to recalc the inode CRC if appropriate */
2170 		xfs_dinode_calc_crc(mp, last_dip);
2171 
2172 		xfs_trans_inode_buf(tp, last_ibp);
2173 		xfs_trans_log_buf(tp, last_ibp, offset,
2174 				  (offset + sizeof(xfs_agino_t) - 1));
2175 		xfs_inobp_check(mp, last_ibp);
2176 	}
2177 	return 0;
2178 }
2179 
2180 /*
2181  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2182  * inodes that are in memory - they all must be marked stale and attached to
2183  * the cluster buffer.
2184  */
2185 STATIC int
2186 xfs_ifree_cluster(
2187 	xfs_inode_t		*free_ip,
2188 	xfs_trans_t		*tp,
2189 	struct xfs_icluster	*xic)
2190 {
2191 	xfs_mount_t		*mp = free_ip->i_mount;
2192 	int			blks_per_cluster;
2193 	int			inodes_per_cluster;
2194 	int			nbufs;
2195 	int			i, j;
2196 	int			ioffset;
2197 	xfs_daddr_t		blkno;
2198 	xfs_buf_t		*bp;
2199 	xfs_inode_t		*ip;
2200 	xfs_inode_log_item_t	*iip;
2201 	xfs_log_item_t		*lip;
2202 	struct xfs_perag	*pag;
2203 	xfs_ino_t		inum;
2204 
2205 	inum = xic->first_ino;
2206 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2207 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2208 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2209 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2210 
2211 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2212 		/*
2213 		 * The allocation bitmap tells us which inodes of the chunk were
2214 		 * physically allocated. Skip the cluster if an inode falls into
2215 		 * a sparse region.
2216 		 */
2217 		ioffset = inum - xic->first_ino;
2218 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2219 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2220 			continue;
2221 		}
2222 
2223 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2224 					 XFS_INO_TO_AGBNO(mp, inum));
2225 
2226 		/*
2227 		 * We obtain and lock the backing buffer first in the process
2228 		 * here, as we have to ensure that any dirty inode that we
2229 		 * can't get the flush lock on is attached to the buffer.
2230 		 * If we scan the in-memory inodes first, then buffer IO can
2231 		 * complete before we get a lock on it, and hence we may fail
2232 		 * to mark all the active inodes on the buffer stale.
2233 		 */
2234 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2235 					mp->m_bsize * blks_per_cluster,
2236 					XBF_UNMAPPED);
2237 
2238 		if (!bp)
2239 			return -ENOMEM;
2240 
2241 		/*
2242 		 * This buffer may not have been correctly initialised as we
2243 		 * didn't read it from disk. That's not important because we are
2244 		 * only using to mark the buffer as stale in the log, and to
2245 		 * attach stale cached inodes on it. That means it will never be
2246 		 * dispatched for IO. If it is, we want to know about it, and we
2247 		 * want it to fail. We can acheive this by adding a write
2248 		 * verifier to the buffer.
2249 		 */
2250 		 bp->b_ops = &xfs_inode_buf_ops;
2251 
2252 		/*
2253 		 * Walk the inodes already attached to the buffer and mark them
2254 		 * stale. These will all have the flush locks held, so an
2255 		 * in-memory inode walk can't lock them. By marking them all
2256 		 * stale first, we will not attempt to lock them in the loop
2257 		 * below as the XFS_ISTALE flag will be set.
2258 		 */
2259 		lip = bp->b_fspriv;
2260 		while (lip) {
2261 			if (lip->li_type == XFS_LI_INODE) {
2262 				iip = (xfs_inode_log_item_t *)lip;
2263 				ASSERT(iip->ili_logged == 1);
2264 				lip->li_cb = xfs_istale_done;
2265 				xfs_trans_ail_copy_lsn(mp->m_ail,
2266 							&iip->ili_flush_lsn,
2267 							&iip->ili_item.li_lsn);
2268 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2269 			}
2270 			lip = lip->li_bio_list;
2271 		}
2272 
2273 
2274 		/*
2275 		 * For each inode in memory attempt to add it to the inode
2276 		 * buffer and set it up for being staled on buffer IO
2277 		 * completion.  This is safe as we've locked out tail pushing
2278 		 * and flushing by locking the buffer.
2279 		 *
2280 		 * We have already marked every inode that was part of a
2281 		 * transaction stale above, which means there is no point in
2282 		 * even trying to lock them.
2283 		 */
2284 		for (i = 0; i < inodes_per_cluster; i++) {
2285 retry:
2286 			rcu_read_lock();
2287 			ip = radix_tree_lookup(&pag->pag_ici_root,
2288 					XFS_INO_TO_AGINO(mp, (inum + i)));
2289 
2290 			/* Inode not in memory, nothing to do */
2291 			if (!ip) {
2292 				rcu_read_unlock();
2293 				continue;
2294 			}
2295 
2296 			/*
2297 			 * because this is an RCU protected lookup, we could
2298 			 * find a recently freed or even reallocated inode
2299 			 * during the lookup. We need to check under the
2300 			 * i_flags_lock for a valid inode here. Skip it if it
2301 			 * is not valid, the wrong inode or stale.
2302 			 */
2303 			spin_lock(&ip->i_flags_lock);
2304 			if (ip->i_ino != inum + i ||
2305 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2306 				spin_unlock(&ip->i_flags_lock);
2307 				rcu_read_unlock();
2308 				continue;
2309 			}
2310 			spin_unlock(&ip->i_flags_lock);
2311 
2312 			/*
2313 			 * Don't try to lock/unlock the current inode, but we
2314 			 * _cannot_ skip the other inodes that we did not find
2315 			 * in the list attached to the buffer and are not
2316 			 * already marked stale. If we can't lock it, back off
2317 			 * and retry.
2318 			 */
2319 			if (ip != free_ip &&
2320 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2321 				rcu_read_unlock();
2322 				delay(1);
2323 				goto retry;
2324 			}
2325 			rcu_read_unlock();
2326 
2327 			xfs_iflock(ip);
2328 			xfs_iflags_set(ip, XFS_ISTALE);
2329 
2330 			/*
2331 			 * we don't need to attach clean inodes or those only
2332 			 * with unlogged changes (which we throw away, anyway).
2333 			 */
2334 			iip = ip->i_itemp;
2335 			if (!iip || xfs_inode_clean(ip)) {
2336 				ASSERT(ip != free_ip);
2337 				xfs_ifunlock(ip);
2338 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2339 				continue;
2340 			}
2341 
2342 			iip->ili_last_fields = iip->ili_fields;
2343 			iip->ili_fields = 0;
2344 			iip->ili_fsync_fields = 0;
2345 			iip->ili_logged = 1;
2346 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2347 						&iip->ili_item.li_lsn);
2348 
2349 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2350 						  &iip->ili_item);
2351 
2352 			if (ip != free_ip)
2353 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2354 		}
2355 
2356 		xfs_trans_stale_inode_buf(tp, bp);
2357 		xfs_trans_binval(tp, bp);
2358 	}
2359 
2360 	xfs_perag_put(pag);
2361 	return 0;
2362 }
2363 
2364 /*
2365  * This is called to return an inode to the inode free list.
2366  * The inode should already be truncated to 0 length and have
2367  * no pages associated with it.  This routine also assumes that
2368  * the inode is already a part of the transaction.
2369  *
2370  * The on-disk copy of the inode will have been added to the list
2371  * of unlinked inodes in the AGI. We need to remove the inode from
2372  * that list atomically with respect to freeing it here.
2373  */
2374 int
2375 xfs_ifree(
2376 	xfs_trans_t	*tp,
2377 	xfs_inode_t	*ip,
2378 	xfs_bmap_free_t	*flist)
2379 {
2380 	int			error;
2381 	struct xfs_icluster	xic = { 0 };
2382 
2383 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2384 	ASSERT(VFS_I(ip)->i_nlink == 0);
2385 	ASSERT(ip->i_d.di_nextents == 0);
2386 	ASSERT(ip->i_d.di_anextents == 0);
2387 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2388 	ASSERT(ip->i_d.di_nblocks == 0);
2389 
2390 	/*
2391 	 * Pull the on-disk inode from the AGI unlinked list.
2392 	 */
2393 	error = xfs_iunlink_remove(tp, ip);
2394 	if (error)
2395 		return error;
2396 
2397 	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2398 	if (error)
2399 		return error;
2400 
2401 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2402 	ip->i_d.di_flags = 0;
2403 	ip->i_d.di_dmevmask = 0;
2404 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2405 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2406 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2407 	/*
2408 	 * Bump the generation count so no one will be confused
2409 	 * by reincarnations of this inode.
2410 	 */
2411 	VFS_I(ip)->i_generation++;
2412 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2413 
2414 	if (xic.deleted)
2415 		error = xfs_ifree_cluster(ip, tp, &xic);
2416 
2417 	return error;
2418 }
2419 
2420 /*
2421  * This is called to unpin an inode.  The caller must have the inode locked
2422  * in at least shared mode so that the buffer cannot be subsequently pinned
2423  * once someone is waiting for it to be unpinned.
2424  */
2425 static void
2426 xfs_iunpin(
2427 	struct xfs_inode	*ip)
2428 {
2429 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2430 
2431 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2432 
2433 	/* Give the log a push to start the unpinning I/O */
2434 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2435 
2436 }
2437 
2438 static void
2439 __xfs_iunpin_wait(
2440 	struct xfs_inode	*ip)
2441 {
2442 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2443 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2444 
2445 	xfs_iunpin(ip);
2446 
2447 	do {
2448 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2449 		if (xfs_ipincount(ip))
2450 			io_schedule();
2451 	} while (xfs_ipincount(ip));
2452 	finish_wait(wq, &wait.wait);
2453 }
2454 
2455 void
2456 xfs_iunpin_wait(
2457 	struct xfs_inode	*ip)
2458 {
2459 	if (xfs_ipincount(ip))
2460 		__xfs_iunpin_wait(ip);
2461 }
2462 
2463 /*
2464  * Removing an inode from the namespace involves removing the directory entry
2465  * and dropping the link count on the inode. Removing the directory entry can
2466  * result in locking an AGF (directory blocks were freed) and removing a link
2467  * count can result in placing the inode on an unlinked list which results in
2468  * locking an AGI.
2469  *
2470  * The big problem here is that we have an ordering constraint on AGF and AGI
2471  * locking - inode allocation locks the AGI, then can allocate a new extent for
2472  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2473  * removes the inode from the unlinked list, requiring that we lock the AGI
2474  * first, and then freeing the inode can result in an inode chunk being freed
2475  * and hence freeing disk space requiring that we lock an AGF.
2476  *
2477  * Hence the ordering that is imposed by other parts of the code is AGI before
2478  * AGF. This means we cannot remove the directory entry before we drop the inode
2479  * reference count and put it on the unlinked list as this results in a lock
2480  * order of AGF then AGI, and this can deadlock against inode allocation and
2481  * freeing. Therefore we must drop the link counts before we remove the
2482  * directory entry.
2483  *
2484  * This is still safe from a transactional point of view - it is not until we
2485  * get to xfs_bmap_finish() that we have the possibility of multiple
2486  * transactions in this operation. Hence as long as we remove the directory
2487  * entry and drop the link count in the first transaction of the remove
2488  * operation, there are no transactional constraints on the ordering here.
2489  */
2490 int
2491 xfs_remove(
2492 	xfs_inode_t             *dp,
2493 	struct xfs_name		*name,
2494 	xfs_inode_t		*ip)
2495 {
2496 	xfs_mount_t		*mp = dp->i_mount;
2497 	xfs_trans_t             *tp = NULL;
2498 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2499 	int                     error = 0;
2500 	xfs_bmap_free_t         free_list;
2501 	xfs_fsblock_t           first_block;
2502 	uint			resblks;
2503 
2504 	trace_xfs_remove(dp, name);
2505 
2506 	if (XFS_FORCED_SHUTDOWN(mp))
2507 		return -EIO;
2508 
2509 	error = xfs_qm_dqattach(dp, 0);
2510 	if (error)
2511 		goto std_return;
2512 
2513 	error = xfs_qm_dqattach(ip, 0);
2514 	if (error)
2515 		goto std_return;
2516 
2517 	/*
2518 	 * We try to get the real space reservation first,
2519 	 * allowing for directory btree deletion(s) implying
2520 	 * possible bmap insert(s).  If we can't get the space
2521 	 * reservation then we use 0 instead, and avoid the bmap
2522 	 * btree insert(s) in the directory code by, if the bmap
2523 	 * insert tries to happen, instead trimming the LAST
2524 	 * block from the directory.
2525 	 */
2526 	resblks = XFS_REMOVE_SPACE_RES(mp);
2527 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2528 	if (error == -ENOSPC) {
2529 		resblks = 0;
2530 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2531 				&tp);
2532 	}
2533 	if (error) {
2534 		ASSERT(error != -ENOSPC);
2535 		goto std_return;
2536 	}
2537 
2538 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2539 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2540 
2541 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2542 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2543 
2544 	/*
2545 	 * If we're removing a directory perform some additional validation.
2546 	 */
2547 	if (is_dir) {
2548 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2549 		if (VFS_I(ip)->i_nlink != 2) {
2550 			error = -ENOTEMPTY;
2551 			goto out_trans_cancel;
2552 		}
2553 		if (!xfs_dir_isempty(ip)) {
2554 			error = -ENOTEMPTY;
2555 			goto out_trans_cancel;
2556 		}
2557 
2558 		/* Drop the link from ip's "..".  */
2559 		error = xfs_droplink(tp, dp);
2560 		if (error)
2561 			goto out_trans_cancel;
2562 
2563 		/* Drop the "." link from ip to self.  */
2564 		error = xfs_droplink(tp, ip);
2565 		if (error)
2566 			goto out_trans_cancel;
2567 	} else {
2568 		/*
2569 		 * When removing a non-directory we need to log the parent
2570 		 * inode here.  For a directory this is done implicitly
2571 		 * by the xfs_droplink call for the ".." entry.
2572 		 */
2573 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2574 	}
2575 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2576 
2577 	/* Drop the link from dp to ip. */
2578 	error = xfs_droplink(tp, ip);
2579 	if (error)
2580 		goto out_trans_cancel;
2581 
2582 	xfs_bmap_init(&free_list, &first_block);
2583 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2584 					&first_block, &free_list, resblks);
2585 	if (error) {
2586 		ASSERT(error != -ENOENT);
2587 		goto out_bmap_cancel;
2588 	}
2589 
2590 	/*
2591 	 * If this is a synchronous mount, make sure that the
2592 	 * remove transaction goes to disk before returning to
2593 	 * the user.
2594 	 */
2595 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2596 		xfs_trans_set_sync(tp);
2597 
2598 	error = xfs_bmap_finish(&tp, &free_list, NULL);
2599 	if (error)
2600 		goto out_bmap_cancel;
2601 
2602 	error = xfs_trans_commit(tp);
2603 	if (error)
2604 		goto std_return;
2605 
2606 	if (is_dir && xfs_inode_is_filestream(ip))
2607 		xfs_filestream_deassociate(ip);
2608 
2609 	return 0;
2610 
2611  out_bmap_cancel:
2612 	xfs_bmap_cancel(&free_list);
2613  out_trans_cancel:
2614 	xfs_trans_cancel(tp);
2615  std_return:
2616 	return error;
2617 }
2618 
2619 /*
2620  * Enter all inodes for a rename transaction into a sorted array.
2621  */
2622 #define __XFS_SORT_INODES	5
2623 STATIC void
2624 xfs_sort_for_rename(
2625 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2626 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2627 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2628 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2629 	struct xfs_inode	*wip,	/* in: whiteout inode */
2630 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2631 	int			*num_inodes)  /* in/out: inodes in array */
2632 {
2633 	int			i, j;
2634 
2635 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2636 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2637 
2638 	/*
2639 	 * i_tab contains a list of pointers to inodes.  We initialize
2640 	 * the table here & we'll sort it.  We will then use it to
2641 	 * order the acquisition of the inode locks.
2642 	 *
2643 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2644 	 */
2645 	i = 0;
2646 	i_tab[i++] = dp1;
2647 	i_tab[i++] = dp2;
2648 	i_tab[i++] = ip1;
2649 	if (ip2)
2650 		i_tab[i++] = ip2;
2651 	if (wip)
2652 		i_tab[i++] = wip;
2653 	*num_inodes = i;
2654 
2655 	/*
2656 	 * Sort the elements via bubble sort.  (Remember, there are at
2657 	 * most 5 elements to sort, so this is adequate.)
2658 	 */
2659 	for (i = 0; i < *num_inodes; i++) {
2660 		for (j = 1; j < *num_inodes; j++) {
2661 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2662 				struct xfs_inode *temp = i_tab[j];
2663 				i_tab[j] = i_tab[j-1];
2664 				i_tab[j-1] = temp;
2665 			}
2666 		}
2667 	}
2668 }
2669 
2670 static int
2671 xfs_finish_rename(
2672 	struct xfs_trans	*tp,
2673 	struct xfs_bmap_free	*free_list)
2674 {
2675 	int			error;
2676 
2677 	/*
2678 	 * If this is a synchronous mount, make sure that the rename transaction
2679 	 * goes to disk before returning to the user.
2680 	 */
2681 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2682 		xfs_trans_set_sync(tp);
2683 
2684 	error = xfs_bmap_finish(&tp, free_list, NULL);
2685 	if (error) {
2686 		xfs_bmap_cancel(free_list);
2687 		xfs_trans_cancel(tp);
2688 		return error;
2689 	}
2690 
2691 	return xfs_trans_commit(tp);
2692 }
2693 
2694 /*
2695  * xfs_cross_rename()
2696  *
2697  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2698  */
2699 STATIC int
2700 xfs_cross_rename(
2701 	struct xfs_trans	*tp,
2702 	struct xfs_inode	*dp1,
2703 	struct xfs_name		*name1,
2704 	struct xfs_inode	*ip1,
2705 	struct xfs_inode	*dp2,
2706 	struct xfs_name		*name2,
2707 	struct xfs_inode	*ip2,
2708 	struct xfs_bmap_free	*free_list,
2709 	xfs_fsblock_t		*first_block,
2710 	int			spaceres)
2711 {
2712 	int		error = 0;
2713 	int		ip1_flags = 0;
2714 	int		ip2_flags = 0;
2715 	int		dp2_flags = 0;
2716 
2717 	/* Swap inode number for dirent in first parent */
2718 	error = xfs_dir_replace(tp, dp1, name1,
2719 				ip2->i_ino,
2720 				first_block, free_list, spaceres);
2721 	if (error)
2722 		goto out_trans_abort;
2723 
2724 	/* Swap inode number for dirent in second parent */
2725 	error = xfs_dir_replace(tp, dp2, name2,
2726 				ip1->i_ino,
2727 				first_block, free_list, spaceres);
2728 	if (error)
2729 		goto out_trans_abort;
2730 
2731 	/*
2732 	 * If we're renaming one or more directories across different parents,
2733 	 * update the respective ".." entries (and link counts) to match the new
2734 	 * parents.
2735 	 */
2736 	if (dp1 != dp2) {
2737 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2738 
2739 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2740 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2741 						dp1->i_ino, first_block,
2742 						free_list, spaceres);
2743 			if (error)
2744 				goto out_trans_abort;
2745 
2746 			/* transfer ip2 ".." reference to dp1 */
2747 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2748 				error = xfs_droplink(tp, dp2);
2749 				if (error)
2750 					goto out_trans_abort;
2751 				error = xfs_bumplink(tp, dp1);
2752 				if (error)
2753 					goto out_trans_abort;
2754 			}
2755 
2756 			/*
2757 			 * Although ip1 isn't changed here, userspace needs
2758 			 * to be warned about the change, so that applications
2759 			 * relying on it (like backup ones), will properly
2760 			 * notify the change
2761 			 */
2762 			ip1_flags |= XFS_ICHGTIME_CHG;
2763 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2764 		}
2765 
2766 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2767 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2768 						dp2->i_ino, first_block,
2769 						free_list, spaceres);
2770 			if (error)
2771 				goto out_trans_abort;
2772 
2773 			/* transfer ip1 ".." reference to dp2 */
2774 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2775 				error = xfs_droplink(tp, dp1);
2776 				if (error)
2777 					goto out_trans_abort;
2778 				error = xfs_bumplink(tp, dp2);
2779 				if (error)
2780 					goto out_trans_abort;
2781 			}
2782 
2783 			/*
2784 			 * Although ip2 isn't changed here, userspace needs
2785 			 * to be warned about the change, so that applications
2786 			 * relying on it (like backup ones), will properly
2787 			 * notify the change
2788 			 */
2789 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2790 			ip2_flags |= XFS_ICHGTIME_CHG;
2791 		}
2792 	}
2793 
2794 	if (ip1_flags) {
2795 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2796 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2797 	}
2798 	if (ip2_flags) {
2799 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2800 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2801 	}
2802 	if (dp2_flags) {
2803 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2804 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2805 	}
2806 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2807 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2808 	return xfs_finish_rename(tp, free_list);
2809 
2810 out_trans_abort:
2811 	xfs_bmap_cancel(free_list);
2812 	xfs_trans_cancel(tp);
2813 	return error;
2814 }
2815 
2816 /*
2817  * xfs_rename_alloc_whiteout()
2818  *
2819  * Return a referenced, unlinked, unlocked inode that that can be used as a
2820  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2821  * crash between allocating the inode and linking it into the rename transaction
2822  * recovery will free the inode and we won't leak it.
2823  */
2824 static int
2825 xfs_rename_alloc_whiteout(
2826 	struct xfs_inode	*dp,
2827 	struct xfs_inode	**wip)
2828 {
2829 	struct xfs_inode	*tmpfile;
2830 	int			error;
2831 
2832 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2833 	if (error)
2834 		return error;
2835 
2836 	/*
2837 	 * Prepare the tmpfile inode as if it were created through the VFS.
2838 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2839 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2840 	 * and flag it as linkable.
2841 	 */
2842 	drop_nlink(VFS_I(tmpfile));
2843 	xfs_setup_iops(tmpfile);
2844 	xfs_finish_inode_setup(tmpfile);
2845 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2846 
2847 	*wip = tmpfile;
2848 	return 0;
2849 }
2850 
2851 /*
2852  * xfs_rename
2853  */
2854 int
2855 xfs_rename(
2856 	struct xfs_inode	*src_dp,
2857 	struct xfs_name		*src_name,
2858 	struct xfs_inode	*src_ip,
2859 	struct xfs_inode	*target_dp,
2860 	struct xfs_name		*target_name,
2861 	struct xfs_inode	*target_ip,
2862 	unsigned int		flags)
2863 {
2864 	struct xfs_mount	*mp = src_dp->i_mount;
2865 	struct xfs_trans	*tp;
2866 	struct xfs_bmap_free	free_list;
2867 	xfs_fsblock_t		first_block;
2868 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2869 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2870 	int			num_inodes = __XFS_SORT_INODES;
2871 	bool			new_parent = (src_dp != target_dp);
2872 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2873 	int			spaceres;
2874 	int			error;
2875 
2876 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2877 
2878 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2879 		return -EINVAL;
2880 
2881 	/*
2882 	 * If we are doing a whiteout operation, allocate the whiteout inode
2883 	 * we will be placing at the target and ensure the type is set
2884 	 * appropriately.
2885 	 */
2886 	if (flags & RENAME_WHITEOUT) {
2887 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2888 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2889 		if (error)
2890 			return error;
2891 
2892 		/* setup target dirent info as whiteout */
2893 		src_name->type = XFS_DIR3_FT_CHRDEV;
2894 	}
2895 
2896 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2897 				inodes, &num_inodes);
2898 
2899 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2900 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2901 	if (error == -ENOSPC) {
2902 		spaceres = 0;
2903 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2904 				&tp);
2905 	}
2906 	if (error)
2907 		goto out_release_wip;
2908 
2909 	/*
2910 	 * Attach the dquots to the inodes
2911 	 */
2912 	error = xfs_qm_vop_rename_dqattach(inodes);
2913 	if (error)
2914 		goto out_trans_cancel;
2915 
2916 	/*
2917 	 * Lock all the participating inodes. Depending upon whether
2918 	 * the target_name exists in the target directory, and
2919 	 * whether the target directory is the same as the source
2920 	 * directory, we can lock from 2 to 4 inodes.
2921 	 */
2922 	if (!new_parent)
2923 		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2924 	else
2925 		xfs_lock_two_inodes(src_dp, target_dp,
2926 				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2927 
2928 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2929 
2930 	/*
2931 	 * Join all the inodes to the transaction. From this point on,
2932 	 * we can rely on either trans_commit or trans_cancel to unlock
2933 	 * them.
2934 	 */
2935 	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2936 	if (new_parent)
2937 		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2938 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2939 	if (target_ip)
2940 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2941 	if (wip)
2942 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2943 
2944 	/*
2945 	 * If we are using project inheritance, we only allow renames
2946 	 * into our tree when the project IDs are the same; else the
2947 	 * tree quota mechanism would be circumvented.
2948 	 */
2949 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2950 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2951 		error = -EXDEV;
2952 		goto out_trans_cancel;
2953 	}
2954 
2955 	xfs_bmap_init(&free_list, &first_block);
2956 
2957 	/* RENAME_EXCHANGE is unique from here on. */
2958 	if (flags & RENAME_EXCHANGE)
2959 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2960 					target_dp, target_name, target_ip,
2961 					&free_list, &first_block, spaceres);
2962 
2963 	/*
2964 	 * Set up the target.
2965 	 */
2966 	if (target_ip == NULL) {
2967 		/*
2968 		 * If there's no space reservation, check the entry will
2969 		 * fit before actually inserting it.
2970 		 */
2971 		if (!spaceres) {
2972 			error = xfs_dir_canenter(tp, target_dp, target_name);
2973 			if (error)
2974 				goto out_trans_cancel;
2975 		}
2976 		/*
2977 		 * If target does not exist and the rename crosses
2978 		 * directories, adjust the target directory link count
2979 		 * to account for the ".." reference from the new entry.
2980 		 */
2981 		error = xfs_dir_createname(tp, target_dp, target_name,
2982 						src_ip->i_ino, &first_block,
2983 						&free_list, spaceres);
2984 		if (error)
2985 			goto out_bmap_cancel;
2986 
2987 		xfs_trans_ichgtime(tp, target_dp,
2988 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2989 
2990 		if (new_parent && src_is_directory) {
2991 			error = xfs_bumplink(tp, target_dp);
2992 			if (error)
2993 				goto out_bmap_cancel;
2994 		}
2995 	} else { /* target_ip != NULL */
2996 		/*
2997 		 * If target exists and it's a directory, check that both
2998 		 * target and source are directories and that target can be
2999 		 * destroyed, or that neither is a directory.
3000 		 */
3001 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3002 			/*
3003 			 * Make sure target dir is empty.
3004 			 */
3005 			if (!(xfs_dir_isempty(target_ip)) ||
3006 			    (VFS_I(target_ip)->i_nlink > 2)) {
3007 				error = -EEXIST;
3008 				goto out_trans_cancel;
3009 			}
3010 		}
3011 
3012 		/*
3013 		 * Link the source inode under the target name.
3014 		 * If the source inode is a directory and we are moving
3015 		 * it across directories, its ".." entry will be
3016 		 * inconsistent until we replace that down below.
3017 		 *
3018 		 * In case there is already an entry with the same
3019 		 * name at the destination directory, remove it first.
3020 		 */
3021 		error = xfs_dir_replace(tp, target_dp, target_name,
3022 					src_ip->i_ino,
3023 					&first_block, &free_list, spaceres);
3024 		if (error)
3025 			goto out_bmap_cancel;
3026 
3027 		xfs_trans_ichgtime(tp, target_dp,
3028 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3029 
3030 		/*
3031 		 * Decrement the link count on the target since the target
3032 		 * dir no longer points to it.
3033 		 */
3034 		error = xfs_droplink(tp, target_ip);
3035 		if (error)
3036 			goto out_bmap_cancel;
3037 
3038 		if (src_is_directory) {
3039 			/*
3040 			 * Drop the link from the old "." entry.
3041 			 */
3042 			error = xfs_droplink(tp, target_ip);
3043 			if (error)
3044 				goto out_bmap_cancel;
3045 		}
3046 	} /* target_ip != NULL */
3047 
3048 	/*
3049 	 * Remove the source.
3050 	 */
3051 	if (new_parent && src_is_directory) {
3052 		/*
3053 		 * Rewrite the ".." entry to point to the new
3054 		 * directory.
3055 		 */
3056 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3057 					target_dp->i_ino,
3058 					&first_block, &free_list, spaceres);
3059 		ASSERT(error != -EEXIST);
3060 		if (error)
3061 			goto out_bmap_cancel;
3062 	}
3063 
3064 	/*
3065 	 * We always want to hit the ctime on the source inode.
3066 	 *
3067 	 * This isn't strictly required by the standards since the source
3068 	 * inode isn't really being changed, but old unix file systems did
3069 	 * it and some incremental backup programs won't work without it.
3070 	 */
3071 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3072 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3073 
3074 	/*
3075 	 * Adjust the link count on src_dp.  This is necessary when
3076 	 * renaming a directory, either within one parent when
3077 	 * the target existed, or across two parent directories.
3078 	 */
3079 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3080 
3081 		/*
3082 		 * Decrement link count on src_directory since the
3083 		 * entry that's moved no longer points to it.
3084 		 */
3085 		error = xfs_droplink(tp, src_dp);
3086 		if (error)
3087 			goto out_bmap_cancel;
3088 	}
3089 
3090 	/*
3091 	 * For whiteouts, we only need to update the source dirent with the
3092 	 * inode number of the whiteout inode rather than removing it
3093 	 * altogether.
3094 	 */
3095 	if (wip) {
3096 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3097 					&first_block, &free_list, spaceres);
3098 	} else
3099 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3100 					   &first_block, &free_list, spaceres);
3101 	if (error)
3102 		goto out_bmap_cancel;
3103 
3104 	/*
3105 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3106 	 * This means that failures all the way up to this point leave the inode
3107 	 * on the unlinked list and so cleanup is a simple matter of dropping
3108 	 * the remaining reference to it. If we fail here after bumping the link
3109 	 * count, we're shutting down the filesystem so we'll never see the
3110 	 * intermediate state on disk.
3111 	 */
3112 	if (wip) {
3113 		ASSERT(VFS_I(wip)->i_nlink == 0);
3114 		error = xfs_bumplink(tp, wip);
3115 		if (error)
3116 			goto out_bmap_cancel;
3117 		error = xfs_iunlink_remove(tp, wip);
3118 		if (error)
3119 			goto out_bmap_cancel;
3120 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3121 
3122 		/*
3123 		 * Now we have a real link, clear the "I'm a tmpfile" state
3124 		 * flag from the inode so it doesn't accidentally get misused in
3125 		 * future.
3126 		 */
3127 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3128 	}
3129 
3130 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3131 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3132 	if (new_parent)
3133 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3134 
3135 	error = xfs_finish_rename(tp, &free_list);
3136 	if (wip)
3137 		IRELE(wip);
3138 	return error;
3139 
3140 out_bmap_cancel:
3141 	xfs_bmap_cancel(&free_list);
3142 out_trans_cancel:
3143 	xfs_trans_cancel(tp);
3144 out_release_wip:
3145 	if (wip)
3146 		IRELE(wip);
3147 	return error;
3148 }
3149 
3150 STATIC int
3151 xfs_iflush_cluster(
3152 	struct xfs_inode	*ip,
3153 	struct xfs_buf		*bp)
3154 {
3155 	struct xfs_mount	*mp = ip->i_mount;
3156 	struct xfs_perag	*pag;
3157 	unsigned long		first_index, mask;
3158 	unsigned long		inodes_per_cluster;
3159 	int			cilist_size;
3160 	struct xfs_inode	**cilist;
3161 	struct xfs_inode	*cip;
3162 	int			nr_found;
3163 	int			clcount = 0;
3164 	int			bufwasdelwri;
3165 	int			i;
3166 
3167 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3168 
3169 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3170 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3171 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3172 	if (!cilist)
3173 		goto out_put;
3174 
3175 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3176 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3177 	rcu_read_lock();
3178 	/* really need a gang lookup range call here */
3179 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3180 					first_index, inodes_per_cluster);
3181 	if (nr_found == 0)
3182 		goto out_free;
3183 
3184 	for (i = 0; i < nr_found; i++) {
3185 		cip = cilist[i];
3186 		if (cip == ip)
3187 			continue;
3188 
3189 		/*
3190 		 * because this is an RCU protected lookup, we could find a
3191 		 * recently freed or even reallocated inode during the lookup.
3192 		 * We need to check under the i_flags_lock for a valid inode
3193 		 * here. Skip it if it is not valid or the wrong inode.
3194 		 */
3195 		spin_lock(&cip->i_flags_lock);
3196 		if (!cip->i_ino ||
3197 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3198 			spin_unlock(&cip->i_flags_lock);
3199 			continue;
3200 		}
3201 
3202 		/*
3203 		 * Once we fall off the end of the cluster, no point checking
3204 		 * any more inodes in the list because they will also all be
3205 		 * outside the cluster.
3206 		 */
3207 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3208 			spin_unlock(&cip->i_flags_lock);
3209 			break;
3210 		}
3211 		spin_unlock(&cip->i_flags_lock);
3212 
3213 		/*
3214 		 * Do an un-protected check to see if the inode is dirty and
3215 		 * is a candidate for flushing.  These checks will be repeated
3216 		 * later after the appropriate locks are acquired.
3217 		 */
3218 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3219 			continue;
3220 
3221 		/*
3222 		 * Try to get locks.  If any are unavailable or it is pinned,
3223 		 * then this inode cannot be flushed and is skipped.
3224 		 */
3225 
3226 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3227 			continue;
3228 		if (!xfs_iflock_nowait(cip)) {
3229 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3230 			continue;
3231 		}
3232 		if (xfs_ipincount(cip)) {
3233 			xfs_ifunlock(cip);
3234 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3235 			continue;
3236 		}
3237 
3238 
3239 		/*
3240 		 * Check the inode number again, just to be certain we are not
3241 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3242 		 * in that function for more information as to why the initial
3243 		 * check is not sufficient.
3244 		 */
3245 		if (!cip->i_ino) {
3246 			xfs_ifunlock(cip);
3247 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3248 			continue;
3249 		}
3250 
3251 		/*
3252 		 * arriving here means that this inode can be flushed.  First
3253 		 * re-check that it's dirty before flushing.
3254 		 */
3255 		if (!xfs_inode_clean(cip)) {
3256 			int	error;
3257 			error = xfs_iflush_int(cip, bp);
3258 			if (error) {
3259 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3260 				goto cluster_corrupt_out;
3261 			}
3262 			clcount++;
3263 		} else {
3264 			xfs_ifunlock(cip);
3265 		}
3266 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3267 	}
3268 
3269 	if (clcount) {
3270 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3271 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3272 	}
3273 
3274 out_free:
3275 	rcu_read_unlock();
3276 	kmem_free(cilist);
3277 out_put:
3278 	xfs_perag_put(pag);
3279 	return 0;
3280 
3281 
3282 cluster_corrupt_out:
3283 	/*
3284 	 * Corruption detected in the clustering loop.  Invalidate the
3285 	 * inode buffer and shut down the filesystem.
3286 	 */
3287 	rcu_read_unlock();
3288 	/*
3289 	 * Clean up the buffer.  If it was delwri, just release it --
3290 	 * brelse can handle it with no problems.  If not, shut down the
3291 	 * filesystem before releasing the buffer.
3292 	 */
3293 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3294 	if (bufwasdelwri)
3295 		xfs_buf_relse(bp);
3296 
3297 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3298 
3299 	if (!bufwasdelwri) {
3300 		/*
3301 		 * Just like incore_relse: if we have b_iodone functions,
3302 		 * mark the buffer as an error and call them.  Otherwise
3303 		 * mark it as stale and brelse.
3304 		 */
3305 		if (bp->b_iodone) {
3306 			bp->b_flags &= ~XBF_DONE;
3307 			xfs_buf_stale(bp);
3308 			xfs_buf_ioerror(bp, -EIO);
3309 			xfs_buf_ioend(bp);
3310 		} else {
3311 			xfs_buf_stale(bp);
3312 			xfs_buf_relse(bp);
3313 		}
3314 	}
3315 
3316 	/*
3317 	 * Unlocks the flush lock
3318 	 */
3319 	xfs_iflush_abort(cip, false);
3320 	kmem_free(cilist);
3321 	xfs_perag_put(pag);
3322 	return -EFSCORRUPTED;
3323 }
3324 
3325 /*
3326  * Flush dirty inode metadata into the backing buffer.
3327  *
3328  * The caller must have the inode lock and the inode flush lock held.  The
3329  * inode lock will still be held upon return to the caller, and the inode
3330  * flush lock will be released after the inode has reached the disk.
3331  *
3332  * The caller must write out the buffer returned in *bpp and release it.
3333  */
3334 int
3335 xfs_iflush(
3336 	struct xfs_inode	*ip,
3337 	struct xfs_buf		**bpp)
3338 {
3339 	struct xfs_mount	*mp = ip->i_mount;
3340 	struct xfs_buf		*bp = NULL;
3341 	struct xfs_dinode	*dip;
3342 	int			error;
3343 
3344 	XFS_STATS_INC(mp, xs_iflush_count);
3345 
3346 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3347 	ASSERT(xfs_isiflocked(ip));
3348 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3349 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3350 
3351 	*bpp = NULL;
3352 
3353 	xfs_iunpin_wait(ip);
3354 
3355 	/*
3356 	 * For stale inodes we cannot rely on the backing buffer remaining
3357 	 * stale in cache for the remaining life of the stale inode and so
3358 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3359 	 * inodes below. We have to check this after ensuring the inode is
3360 	 * unpinned so that it is safe to reclaim the stale inode after the
3361 	 * flush call.
3362 	 */
3363 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3364 		xfs_ifunlock(ip);
3365 		return 0;
3366 	}
3367 
3368 	/*
3369 	 * This may have been unpinned because the filesystem is shutting
3370 	 * down forcibly. If that's the case we must not write this inode
3371 	 * to disk, because the log record didn't make it to disk.
3372 	 *
3373 	 * We also have to remove the log item from the AIL in this case,
3374 	 * as we wait for an empty AIL as part of the unmount process.
3375 	 */
3376 	if (XFS_FORCED_SHUTDOWN(mp)) {
3377 		error = -EIO;
3378 		goto abort_out;
3379 	}
3380 
3381 	/*
3382 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3383 	 * operation here, so we may get  an EAGAIN error. In that case, we
3384 	 * simply want to return with the inode still dirty.
3385 	 *
3386 	 * If we get any other error, we effectively have a corruption situation
3387 	 * and we cannot flush the inode, so we treat it the same as failing
3388 	 * xfs_iflush_int().
3389 	 */
3390 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3391 			       0);
3392 	if (error == -EAGAIN) {
3393 		xfs_ifunlock(ip);
3394 		return error;
3395 	}
3396 	if (error)
3397 		goto corrupt_out;
3398 
3399 	/*
3400 	 * First flush out the inode that xfs_iflush was called with.
3401 	 */
3402 	error = xfs_iflush_int(ip, bp);
3403 	if (error)
3404 		goto corrupt_out;
3405 
3406 	/*
3407 	 * If the buffer is pinned then push on the log now so we won't
3408 	 * get stuck waiting in the write for too long.
3409 	 */
3410 	if (xfs_buf_ispinned(bp))
3411 		xfs_log_force(mp, 0);
3412 
3413 	/*
3414 	 * inode clustering:
3415 	 * see if other inodes can be gathered into this write
3416 	 */
3417 	error = xfs_iflush_cluster(ip, bp);
3418 	if (error)
3419 		goto cluster_corrupt_out;
3420 
3421 	*bpp = bp;
3422 	return 0;
3423 
3424 corrupt_out:
3425 	if (bp)
3426 		xfs_buf_relse(bp);
3427 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3428 cluster_corrupt_out:
3429 	error = -EFSCORRUPTED;
3430 abort_out:
3431 	/*
3432 	 * Unlocks the flush lock
3433 	 */
3434 	xfs_iflush_abort(ip, false);
3435 	return error;
3436 }
3437 
3438 STATIC int
3439 xfs_iflush_int(
3440 	struct xfs_inode	*ip,
3441 	struct xfs_buf		*bp)
3442 {
3443 	struct xfs_inode_log_item *iip = ip->i_itemp;
3444 	struct xfs_dinode	*dip;
3445 	struct xfs_mount	*mp = ip->i_mount;
3446 
3447 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3448 	ASSERT(xfs_isiflocked(ip));
3449 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3450 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3451 	ASSERT(iip != NULL && iip->ili_fields != 0);
3452 	ASSERT(ip->i_d.di_version > 1);
3453 
3454 	/* set *dip = inode's place in the buffer */
3455 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3456 
3457 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3458 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3459 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3460 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3461 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3462 		goto corrupt_out;
3463 	}
3464 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3465 		if (XFS_TEST_ERROR(
3466 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3467 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3468 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3469 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3470 				"%s: Bad regular inode %Lu, ptr 0x%p",
3471 				__func__, ip->i_ino, ip);
3472 			goto corrupt_out;
3473 		}
3474 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3475 		if (XFS_TEST_ERROR(
3476 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3477 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3478 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3479 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3480 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481 				"%s: Bad directory inode %Lu, ptr 0x%p",
3482 				__func__, ip->i_ino, ip);
3483 			goto corrupt_out;
3484 		}
3485 	}
3486 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3487 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3488 				XFS_RANDOM_IFLUSH_5)) {
3489 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3490 			"%s: detected corrupt incore inode %Lu, "
3491 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3492 			__func__, ip->i_ino,
3493 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3494 			ip->i_d.di_nblocks, ip);
3495 		goto corrupt_out;
3496 	}
3497 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3498 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3499 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3500 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3501 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3502 		goto corrupt_out;
3503 	}
3504 
3505 	/*
3506 	 * Inode item log recovery for v2 inodes are dependent on the
3507 	 * di_flushiter count for correct sequencing. We bump the flush
3508 	 * iteration count so we can detect flushes which postdate a log record
3509 	 * during recovery. This is redundant as we now log every change and
3510 	 * hence this can't happen but we need to still do it to ensure
3511 	 * backwards compatibility with old kernels that predate logging all
3512 	 * inode changes.
3513 	 */
3514 	if (ip->i_d.di_version < 3)
3515 		ip->i_d.di_flushiter++;
3516 
3517 	/*
3518 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3519 	 * copy out the core of the inode, because if the inode is dirty at all
3520 	 * the core must be.
3521 	 */
3522 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3523 
3524 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3525 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3526 		ip->i_d.di_flushiter = 0;
3527 
3528 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3529 	if (XFS_IFORK_Q(ip))
3530 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3531 	xfs_inobp_check(mp, bp);
3532 
3533 	/*
3534 	 * We've recorded everything logged in the inode, so we'd like to clear
3535 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3536 	 * However, we can't stop logging all this information until the data
3537 	 * we've copied into the disk buffer is written to disk.  If we did we
3538 	 * might overwrite the copy of the inode in the log with all the data
3539 	 * after re-logging only part of it, and in the face of a crash we
3540 	 * wouldn't have all the data we need to recover.
3541 	 *
3542 	 * What we do is move the bits to the ili_last_fields field.  When
3543 	 * logging the inode, these bits are moved back to the ili_fields field.
3544 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3545 	 * know that the information those bits represent is permanently on
3546 	 * disk.  As long as the flush completes before the inode is logged
3547 	 * again, then both ili_fields and ili_last_fields will be cleared.
3548 	 *
3549 	 * We can play with the ili_fields bits here, because the inode lock
3550 	 * must be held exclusively in order to set bits there and the flush
3551 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3552 	 * done routine can tell whether or not to look in the AIL.  Also, store
3553 	 * the current LSN of the inode so that we can tell whether the item has
3554 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3555 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3556 	 * atomically.
3557 	 */
3558 	iip->ili_last_fields = iip->ili_fields;
3559 	iip->ili_fields = 0;
3560 	iip->ili_fsync_fields = 0;
3561 	iip->ili_logged = 1;
3562 
3563 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3564 				&iip->ili_item.li_lsn);
3565 
3566 	/*
3567 	 * Attach the function xfs_iflush_done to the inode's
3568 	 * buffer.  This will remove the inode from the AIL
3569 	 * and unlock the inode's flush lock when the inode is
3570 	 * completely written to disk.
3571 	 */
3572 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3573 
3574 	/* generate the checksum. */
3575 	xfs_dinode_calc_crc(mp, dip);
3576 
3577 	ASSERT(bp->b_fspriv != NULL);
3578 	ASSERT(bp->b_iodone != NULL);
3579 	return 0;
3580 
3581 corrupt_out:
3582 	return -EFSCORRUPTED;
3583 }
3584