xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 149ed3d404c9bd00f0fadc35215a9e7a54c5cfd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
50 
51 /*
52  * helper function to extract extent size hint from inode
53  */
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 	struct xfs_inode	*ip)
57 {
58 	/*
59 	 * No point in aligning allocations if we need to COW to actually
60 	 * write to them.
61 	 */
62 	if (xfs_is_always_cow_inode(ip))
63 		return 0;
64 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 		return ip->i_d.di_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_d.di_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 		lock_mode = XFS_ILOCK_EXCL;
118 	xfs_ilock(ip, lock_mode);
119 	return lock_mode;
120 }
121 
122 uint
123 xfs_ilock_attr_map_shared(
124 	struct xfs_inode	*ip)
125 {
126 	uint			lock_mode = XFS_ILOCK_SHARED;
127 
128 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_sem locking order:
148  *
149  * i_rwsem -> page lock -> mmap_sem
150  * mmap_sem -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_sem locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_sem.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
443 xfs_lock_inodes(
444 	struct xfs_inode	**ips,
445 	int			inodes,
446 	uint			lock_mode)
447 {
448 	int			attempts = 0, i, j, try_lock;
449 	struct xfs_log_item	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = &ips[j]->i_itemp->ili_item;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	struct xfs_log_item	*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = &ip0->i_itemp->ili_item;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 void
602 __xfs_iflock(
603 	struct xfs_inode	*ip)
604 {
605 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607 
608 	do {
609 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 		if (xfs_isiflocked(ip))
611 			io_schedule();
612 	} while (!xfs_iflock_nowait(ip));
613 
614 	finish_wait(wq, &wait.wq_entry);
615 }
616 
617 STATIC uint
618 _xfs_dic2xflags(
619 	uint16_t		di_flags,
620 	uint64_t		di_flags2,
621 	bool			has_attr)
622 {
623 	uint			flags = 0;
624 
625 	if (di_flags & XFS_DIFLAG_ANY) {
626 		if (di_flags & XFS_DIFLAG_REALTIME)
627 			flags |= FS_XFLAG_REALTIME;
628 		if (di_flags & XFS_DIFLAG_PREALLOC)
629 			flags |= FS_XFLAG_PREALLOC;
630 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 			flags |= FS_XFLAG_IMMUTABLE;
632 		if (di_flags & XFS_DIFLAG_APPEND)
633 			flags |= FS_XFLAG_APPEND;
634 		if (di_flags & XFS_DIFLAG_SYNC)
635 			flags |= FS_XFLAG_SYNC;
636 		if (di_flags & XFS_DIFLAG_NOATIME)
637 			flags |= FS_XFLAG_NOATIME;
638 		if (di_flags & XFS_DIFLAG_NODUMP)
639 			flags |= FS_XFLAG_NODUMP;
640 		if (di_flags & XFS_DIFLAG_RTINHERIT)
641 			flags |= FS_XFLAG_RTINHERIT;
642 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 			flags |= FS_XFLAG_PROJINHERIT;
644 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 			flags |= FS_XFLAG_NOSYMLINKS;
646 		if (di_flags & XFS_DIFLAG_EXTSIZE)
647 			flags |= FS_XFLAG_EXTSIZE;
648 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 			flags |= FS_XFLAG_EXTSZINHERIT;
650 		if (di_flags & XFS_DIFLAG_NODEFRAG)
651 			flags |= FS_XFLAG_NODEFRAG;
652 		if (di_flags & XFS_DIFLAG_FILESTREAM)
653 			flags |= FS_XFLAG_FILESTREAM;
654 	}
655 
656 	if (di_flags2 & XFS_DIFLAG2_ANY) {
657 		if (di_flags2 & XFS_DIFLAG2_DAX)
658 			flags |= FS_XFLAG_DAX;
659 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 			flags |= FS_XFLAG_COWEXTSIZE;
661 	}
662 
663 	if (has_attr)
664 		flags |= FS_XFLAG_HASATTR;
665 
666 	return flags;
667 }
668 
669 uint
670 xfs_ip2xflags(
671 	struct xfs_inode	*ip)
672 {
673 	struct xfs_icdinode	*dic = &ip->i_d;
674 
675 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
676 }
677 
678 /*
679  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680  * is allowed, otherwise it has to be an exact match. If a CI match is found,
681  * ci_name->name will point to a the actual name (caller must free) or
682  * will be set to NULL if an exact match is found.
683  */
684 int
685 xfs_lookup(
686 	xfs_inode_t		*dp,
687 	struct xfs_name		*name,
688 	xfs_inode_t		**ipp,
689 	struct xfs_name		*ci_name)
690 {
691 	xfs_ino_t		inum;
692 	int			error;
693 
694 	trace_xfs_lookup(dp, name);
695 
696 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 		return -EIO;
698 
699 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
700 	if (error)
701 		goto out_unlock;
702 
703 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 	if (error)
705 		goto out_free_name;
706 
707 	return 0;
708 
709 out_free_name:
710 	if (ci_name)
711 		kmem_free(ci_name->name);
712 out_unlock:
713 	*ipp = NULL;
714 	return error;
715 }
716 
717 /*
718  * Allocate an inode on disk and return a copy of its in-core version.
719  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
720  * appropriately within the inode.  The uid and gid for the inode are
721  * set according to the contents of the given cred structure.
722  *
723  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724  * has a free inode available, call xfs_iget() to obtain the in-core
725  * version of the allocated inode.  Finally, fill in the inode and
726  * log its initial contents.  In this case, ialloc_context would be
727  * set to NULL.
728  *
729  * If xfs_dialloc() does not have an available inode, it will replenish
730  * its supply by doing an allocation. Since we can only do one
731  * allocation within a transaction without deadlocks, we must commit
732  * the current transaction before returning the inode itself.
733  * In this case, therefore, we will set ialloc_context and return.
734  * The caller should then commit the current transaction, start a new
735  * transaction, and call xfs_ialloc() again to actually get the inode.
736  *
737  * To ensure that some other process does not grab the inode that
738  * was allocated during the first call to xfs_ialloc(), this routine
739  * also returns the [locked] bp pointing to the head of the freelist
740  * as ialloc_context.  The caller should hold this buffer across
741  * the commit and pass it back into this routine on the second call.
742  *
743  * If we are allocating quota inodes, we do not have a parent inode
744  * to attach to or associate with (i.e. pip == NULL) because they
745  * are not linked into the directory structure - they are attached
746  * directly to the superblock - and so have no parent.
747  */
748 static int
749 xfs_ialloc(
750 	xfs_trans_t	*tp,
751 	xfs_inode_t	*pip,
752 	umode_t		mode,
753 	xfs_nlink_t	nlink,
754 	dev_t		rdev,
755 	prid_t		prid,
756 	xfs_buf_t	**ialloc_context,
757 	xfs_inode_t	**ipp)
758 {
759 	struct xfs_mount *mp = tp->t_mountp;
760 	xfs_ino_t	ino;
761 	xfs_inode_t	*ip;
762 	uint		flags;
763 	int		error;
764 	struct timespec64 tv;
765 	struct inode	*inode;
766 
767 	/*
768 	 * Call the space management code to pick
769 	 * the on-disk inode to be allocated.
770 	 */
771 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 			    ialloc_context, &ino);
773 	if (error)
774 		return error;
775 	if (*ialloc_context || ino == NULLFSINO) {
776 		*ipp = NULL;
777 		return 0;
778 	}
779 	ASSERT(*ialloc_context == NULL);
780 
781 	/*
782 	 * Protect against obviously corrupt allocation btree records. Later
783 	 * xfs_iget checks will catch re-allocation of other active in-memory
784 	 * and on-disk inodes. If we don't catch reallocating the parent inode
785 	 * here we will deadlock in xfs_iget() so we have to do these checks
786 	 * first.
787 	 */
788 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 		return -EFSCORRUPTED;
791 	}
792 
793 	/*
794 	 * Get the in-core inode with the lock held exclusively.
795 	 * This is because we're setting fields here we need
796 	 * to prevent others from looking at until we're done.
797 	 */
798 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 			 XFS_ILOCK_EXCL, &ip);
800 	if (error)
801 		return error;
802 	ASSERT(ip != NULL);
803 	inode = VFS_I(ip);
804 	inode->i_mode = mode;
805 	set_nlink(inode, nlink);
806 	inode->i_uid = current_fsuid();
807 	inode->i_rdev = rdev;
808 	ip->i_d.di_projid = prid;
809 
810 	if (pip && XFS_INHERIT_GID(pip)) {
811 		inode->i_gid = VFS_I(pip)->i_gid;
812 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
813 			inode->i_mode |= S_ISGID;
814 	} else {
815 		inode->i_gid = current_fsgid();
816 	}
817 
818 	/*
819 	 * If the group ID of the new file does not match the effective group
820 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
821 	 * (and only if the irix_sgid_inherit compatibility variable is set).
822 	 */
823 	if (irix_sgid_inherit &&
824 	    (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
825 		inode->i_mode &= ~S_ISGID;
826 
827 	ip->i_d.di_size = 0;
828 	ip->i_d.di_nextents = 0;
829 	ASSERT(ip->i_d.di_nblocks == 0);
830 
831 	tv = current_time(inode);
832 	inode->i_mtime = tv;
833 	inode->i_atime = tv;
834 	inode->i_ctime = tv;
835 
836 	ip->i_d.di_extsize = 0;
837 	ip->i_d.di_dmevmask = 0;
838 	ip->i_d.di_dmstate = 0;
839 	ip->i_d.di_flags = 0;
840 
841 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
842 		inode_set_iversion(inode, 1);
843 		ip->i_d.di_flags2 = 0;
844 		ip->i_d.di_cowextsize = 0;
845 		ip->i_d.di_crtime = tv;
846 	}
847 
848 	flags = XFS_ILOG_CORE;
849 	switch (mode & S_IFMT) {
850 	case S_IFIFO:
851 	case S_IFCHR:
852 	case S_IFBLK:
853 	case S_IFSOCK:
854 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
855 		ip->i_df.if_flags = 0;
856 		flags |= XFS_ILOG_DEV;
857 		break;
858 	case S_IFREG:
859 	case S_IFDIR:
860 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
861 			uint		di_flags = 0;
862 
863 			if (S_ISDIR(mode)) {
864 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
865 					di_flags |= XFS_DIFLAG_RTINHERIT;
866 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
867 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
868 					ip->i_d.di_extsize = pip->i_d.di_extsize;
869 				}
870 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
871 					di_flags |= XFS_DIFLAG_PROJINHERIT;
872 			} else if (S_ISREG(mode)) {
873 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
874 					di_flags |= XFS_DIFLAG_REALTIME;
875 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
876 					di_flags |= XFS_DIFLAG_EXTSIZE;
877 					ip->i_d.di_extsize = pip->i_d.di_extsize;
878 				}
879 			}
880 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
881 			    xfs_inherit_noatime)
882 				di_flags |= XFS_DIFLAG_NOATIME;
883 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
884 			    xfs_inherit_nodump)
885 				di_flags |= XFS_DIFLAG_NODUMP;
886 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
887 			    xfs_inherit_sync)
888 				di_flags |= XFS_DIFLAG_SYNC;
889 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
890 			    xfs_inherit_nosymlinks)
891 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
892 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
893 			    xfs_inherit_nodefrag)
894 				di_flags |= XFS_DIFLAG_NODEFRAG;
895 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
896 				di_flags |= XFS_DIFLAG_FILESTREAM;
897 
898 			ip->i_d.di_flags |= di_flags;
899 		}
900 		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
901 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
902 				ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
903 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
904 			}
905 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
906 				ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
907 		}
908 		/* FALLTHROUGH */
909 	case S_IFLNK:
910 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
911 		ip->i_df.if_flags = XFS_IFEXTENTS;
912 		ip->i_df.if_bytes = 0;
913 		ip->i_df.if_u1.if_root = NULL;
914 		break;
915 	default:
916 		ASSERT(0);
917 	}
918 	/*
919 	 * Attribute fork settings for new inode.
920 	 */
921 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
922 	ip->i_d.di_anextents = 0;
923 
924 	/*
925 	 * Log the new values stuffed into the inode.
926 	 */
927 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
928 	xfs_trans_log_inode(tp, ip, flags);
929 
930 	/* now that we have an i_mode we can setup the inode structure */
931 	xfs_setup_inode(ip);
932 
933 	*ipp = ip;
934 	return 0;
935 }
936 
937 /*
938  * Allocates a new inode from disk and return a pointer to the
939  * incore copy. This routine will internally commit the current
940  * transaction and allocate a new one if the Space Manager needed
941  * to do an allocation to replenish the inode free-list.
942  *
943  * This routine is designed to be called from xfs_create and
944  * xfs_create_dir.
945  *
946  */
947 int
948 xfs_dir_ialloc(
949 	xfs_trans_t	**tpp,		/* input: current transaction;
950 					   output: may be a new transaction. */
951 	xfs_inode_t	*dp,		/* directory within whose allocate
952 					   the inode. */
953 	umode_t		mode,
954 	xfs_nlink_t	nlink,
955 	dev_t		rdev,
956 	prid_t		prid,		/* project id */
957 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
958 					   locked. */
959 {
960 	xfs_trans_t	*tp;
961 	xfs_inode_t	*ip;
962 	xfs_buf_t	*ialloc_context = NULL;
963 	int		code;
964 	void		*dqinfo;
965 	uint		tflags;
966 
967 	tp = *tpp;
968 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
969 
970 	/*
971 	 * xfs_ialloc will return a pointer to an incore inode if
972 	 * the Space Manager has an available inode on the free
973 	 * list. Otherwise, it will do an allocation and replenish
974 	 * the freelist.  Since we can only do one allocation per
975 	 * transaction without deadlocks, we will need to commit the
976 	 * current transaction and start a new one.  We will then
977 	 * need to call xfs_ialloc again to get the inode.
978 	 *
979 	 * If xfs_ialloc did an allocation to replenish the freelist,
980 	 * it returns the bp containing the head of the freelist as
981 	 * ialloc_context. We will hold a lock on it across the
982 	 * transaction commit so that no other process can steal
983 	 * the inode(s) that we've just allocated.
984 	 */
985 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
986 			&ip);
987 
988 	/*
989 	 * Return an error if we were unable to allocate a new inode.
990 	 * This should only happen if we run out of space on disk or
991 	 * encounter a disk error.
992 	 */
993 	if (code) {
994 		*ipp = NULL;
995 		return code;
996 	}
997 	if (!ialloc_context && !ip) {
998 		*ipp = NULL;
999 		return -ENOSPC;
1000 	}
1001 
1002 	/*
1003 	 * If the AGI buffer is non-NULL, then we were unable to get an
1004 	 * inode in one operation.  We need to commit the current
1005 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1006 	 * to succeed the second time.
1007 	 */
1008 	if (ialloc_context) {
1009 		/*
1010 		 * Normally, xfs_trans_commit releases all the locks.
1011 		 * We call bhold to hang on to the ialloc_context across
1012 		 * the commit.  Holding this buffer prevents any other
1013 		 * processes from doing any allocations in this
1014 		 * allocation group.
1015 		 */
1016 		xfs_trans_bhold(tp, ialloc_context);
1017 
1018 		/*
1019 		 * We want the quota changes to be associated with the next
1020 		 * transaction, NOT this one. So, detach the dqinfo from this
1021 		 * and attach it to the next transaction.
1022 		 */
1023 		dqinfo = NULL;
1024 		tflags = 0;
1025 		if (tp->t_dqinfo) {
1026 			dqinfo = (void *)tp->t_dqinfo;
1027 			tp->t_dqinfo = NULL;
1028 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1029 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1030 		}
1031 
1032 		code = xfs_trans_roll(&tp);
1033 
1034 		/*
1035 		 * Re-attach the quota info that we detached from prev trx.
1036 		 */
1037 		if (dqinfo) {
1038 			tp->t_dqinfo = dqinfo;
1039 			tp->t_flags |= tflags;
1040 		}
1041 
1042 		if (code) {
1043 			xfs_buf_relse(ialloc_context);
1044 			*tpp = tp;
1045 			*ipp = NULL;
1046 			return code;
1047 		}
1048 		xfs_trans_bjoin(tp, ialloc_context);
1049 
1050 		/*
1051 		 * Call ialloc again. Since we've locked out all
1052 		 * other allocations in this allocation group,
1053 		 * this call should always succeed.
1054 		 */
1055 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1056 				  &ialloc_context, &ip);
1057 
1058 		/*
1059 		 * If we get an error at this point, return to the caller
1060 		 * so that the current transaction can be aborted.
1061 		 */
1062 		if (code) {
1063 			*tpp = tp;
1064 			*ipp = NULL;
1065 			return code;
1066 		}
1067 		ASSERT(!ialloc_context && ip);
1068 
1069 	}
1070 
1071 	*ipp = ip;
1072 	*tpp = tp;
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Decrement the link count on an inode & log the change.  If this causes the
1079  * link count to go to zero, move the inode to AGI unlinked list so that it can
1080  * be freed when the last active reference goes away via xfs_inactive().
1081  */
1082 static int			/* error */
1083 xfs_droplink(
1084 	xfs_trans_t *tp,
1085 	xfs_inode_t *ip)
1086 {
1087 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1088 
1089 	drop_nlink(VFS_I(ip));
1090 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1091 
1092 	if (VFS_I(ip)->i_nlink)
1093 		return 0;
1094 
1095 	return xfs_iunlink(tp, ip);
1096 }
1097 
1098 /*
1099  * Increment the link count on an inode & log the change.
1100  */
1101 static void
1102 xfs_bumplink(
1103 	xfs_trans_t *tp,
1104 	xfs_inode_t *ip)
1105 {
1106 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107 
1108 	inc_nlink(VFS_I(ip));
1109 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1110 }
1111 
1112 int
1113 xfs_create(
1114 	xfs_inode_t		*dp,
1115 	struct xfs_name		*name,
1116 	umode_t			mode,
1117 	dev_t			rdev,
1118 	xfs_inode_t		**ipp)
1119 {
1120 	int			is_dir = S_ISDIR(mode);
1121 	struct xfs_mount	*mp = dp->i_mount;
1122 	struct xfs_inode	*ip = NULL;
1123 	struct xfs_trans	*tp = NULL;
1124 	int			error;
1125 	bool                    unlock_dp_on_error = false;
1126 	prid_t			prid;
1127 	struct xfs_dquot	*udqp = NULL;
1128 	struct xfs_dquot	*gdqp = NULL;
1129 	struct xfs_dquot	*pdqp = NULL;
1130 	struct xfs_trans_res	*tres;
1131 	uint			resblks;
1132 
1133 	trace_xfs_create(dp, name);
1134 
1135 	if (XFS_FORCED_SHUTDOWN(mp))
1136 		return -EIO;
1137 
1138 	prid = xfs_get_initial_prid(dp);
1139 
1140 	/*
1141 	 * Make sure that we have allocated dquot(s) on disk.
1142 	 */
1143 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1144 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1145 					&udqp, &gdqp, &pdqp);
1146 	if (error)
1147 		return error;
1148 
1149 	if (is_dir) {
1150 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1151 		tres = &M_RES(mp)->tr_mkdir;
1152 	} else {
1153 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1154 		tres = &M_RES(mp)->tr_create;
1155 	}
1156 
1157 	/*
1158 	 * Initially assume that the file does not exist and
1159 	 * reserve the resources for that case.  If that is not
1160 	 * the case we'll drop the one we have and get a more
1161 	 * appropriate transaction later.
1162 	 */
1163 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1164 	if (error == -ENOSPC) {
1165 		/* flush outstanding delalloc blocks and retry */
1166 		xfs_flush_inodes(mp);
1167 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1168 	}
1169 	if (error)
1170 		goto out_release_inode;
1171 
1172 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1173 	unlock_dp_on_error = true;
1174 
1175 	/*
1176 	 * Reserve disk quota and the inode.
1177 	 */
1178 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1179 						pdqp, resblks, 1, 0);
1180 	if (error)
1181 		goto out_trans_cancel;
1182 
1183 	/*
1184 	 * A newly created regular or special file just has one directory
1185 	 * entry pointing to them, but a directory also the "." entry
1186 	 * pointing to itself.
1187 	 */
1188 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1189 	if (error)
1190 		goto out_trans_cancel;
1191 
1192 	/*
1193 	 * Now we join the directory inode to the transaction.  We do not do it
1194 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1195 	 * (and release all the locks).  An error from here on will result in
1196 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1197 	 * error path.
1198 	 */
1199 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1200 	unlock_dp_on_error = false;
1201 
1202 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1203 				   resblks ?
1204 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1205 	if (error) {
1206 		ASSERT(error != -ENOSPC);
1207 		goto out_trans_cancel;
1208 	}
1209 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1210 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1211 
1212 	if (is_dir) {
1213 		error = xfs_dir_init(tp, ip, dp);
1214 		if (error)
1215 			goto out_trans_cancel;
1216 
1217 		xfs_bumplink(tp, dp);
1218 	}
1219 
1220 	/*
1221 	 * If this is a synchronous mount, make sure that the
1222 	 * create transaction goes to disk before returning to
1223 	 * the user.
1224 	 */
1225 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1226 		xfs_trans_set_sync(tp);
1227 
1228 	/*
1229 	 * Attach the dquot(s) to the inodes and modify them incore.
1230 	 * These ids of the inode couldn't have changed since the new
1231 	 * inode has been locked ever since it was created.
1232 	 */
1233 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1234 
1235 	error = xfs_trans_commit(tp);
1236 	if (error)
1237 		goto out_release_inode;
1238 
1239 	xfs_qm_dqrele(udqp);
1240 	xfs_qm_dqrele(gdqp);
1241 	xfs_qm_dqrele(pdqp);
1242 
1243 	*ipp = ip;
1244 	return 0;
1245 
1246  out_trans_cancel:
1247 	xfs_trans_cancel(tp);
1248  out_release_inode:
1249 	/*
1250 	 * Wait until after the current transaction is aborted to finish the
1251 	 * setup of the inode and release the inode.  This prevents recursive
1252 	 * transactions and deadlocks from xfs_inactive.
1253 	 */
1254 	if (ip) {
1255 		xfs_finish_inode_setup(ip);
1256 		xfs_irele(ip);
1257 	}
1258 
1259 	xfs_qm_dqrele(udqp);
1260 	xfs_qm_dqrele(gdqp);
1261 	xfs_qm_dqrele(pdqp);
1262 
1263 	if (unlock_dp_on_error)
1264 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1265 	return error;
1266 }
1267 
1268 int
1269 xfs_create_tmpfile(
1270 	struct xfs_inode	*dp,
1271 	umode_t			mode,
1272 	struct xfs_inode	**ipp)
1273 {
1274 	struct xfs_mount	*mp = dp->i_mount;
1275 	struct xfs_inode	*ip = NULL;
1276 	struct xfs_trans	*tp = NULL;
1277 	int			error;
1278 	prid_t                  prid;
1279 	struct xfs_dquot	*udqp = NULL;
1280 	struct xfs_dquot	*gdqp = NULL;
1281 	struct xfs_dquot	*pdqp = NULL;
1282 	struct xfs_trans_res	*tres;
1283 	uint			resblks;
1284 
1285 	if (XFS_FORCED_SHUTDOWN(mp))
1286 		return -EIO;
1287 
1288 	prid = xfs_get_initial_prid(dp);
1289 
1290 	/*
1291 	 * Make sure that we have allocated dquot(s) on disk.
1292 	 */
1293 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1294 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1295 				&udqp, &gdqp, &pdqp);
1296 	if (error)
1297 		return error;
1298 
1299 	resblks = XFS_IALLOC_SPACE_RES(mp);
1300 	tres = &M_RES(mp)->tr_create_tmpfile;
1301 
1302 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1303 	if (error)
1304 		goto out_release_inode;
1305 
1306 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1307 						pdqp, resblks, 1, 0);
1308 	if (error)
1309 		goto out_trans_cancel;
1310 
1311 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1312 	if (error)
1313 		goto out_trans_cancel;
1314 
1315 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1316 		xfs_trans_set_sync(tp);
1317 
1318 	/*
1319 	 * Attach the dquot(s) to the inodes and modify them incore.
1320 	 * These ids of the inode couldn't have changed since the new
1321 	 * inode has been locked ever since it was created.
1322 	 */
1323 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1324 
1325 	error = xfs_iunlink(tp, ip);
1326 	if (error)
1327 		goto out_trans_cancel;
1328 
1329 	error = xfs_trans_commit(tp);
1330 	if (error)
1331 		goto out_release_inode;
1332 
1333 	xfs_qm_dqrele(udqp);
1334 	xfs_qm_dqrele(gdqp);
1335 	xfs_qm_dqrele(pdqp);
1336 
1337 	*ipp = ip;
1338 	return 0;
1339 
1340  out_trans_cancel:
1341 	xfs_trans_cancel(tp);
1342  out_release_inode:
1343 	/*
1344 	 * Wait until after the current transaction is aborted to finish the
1345 	 * setup of the inode and release the inode.  This prevents recursive
1346 	 * transactions and deadlocks from xfs_inactive.
1347 	 */
1348 	if (ip) {
1349 		xfs_finish_inode_setup(ip);
1350 		xfs_irele(ip);
1351 	}
1352 
1353 	xfs_qm_dqrele(udqp);
1354 	xfs_qm_dqrele(gdqp);
1355 	xfs_qm_dqrele(pdqp);
1356 
1357 	return error;
1358 }
1359 
1360 int
1361 xfs_link(
1362 	xfs_inode_t		*tdp,
1363 	xfs_inode_t		*sip,
1364 	struct xfs_name		*target_name)
1365 {
1366 	xfs_mount_t		*mp = tdp->i_mount;
1367 	xfs_trans_t		*tp;
1368 	int			error;
1369 	int			resblks;
1370 
1371 	trace_xfs_link(tdp, target_name);
1372 
1373 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1374 
1375 	if (XFS_FORCED_SHUTDOWN(mp))
1376 		return -EIO;
1377 
1378 	error = xfs_qm_dqattach(sip);
1379 	if (error)
1380 		goto std_return;
1381 
1382 	error = xfs_qm_dqattach(tdp);
1383 	if (error)
1384 		goto std_return;
1385 
1386 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1387 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1388 	if (error == -ENOSPC) {
1389 		resblks = 0;
1390 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1391 	}
1392 	if (error)
1393 		goto std_return;
1394 
1395 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1396 
1397 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1398 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1399 
1400 	/*
1401 	 * If we are using project inheritance, we only allow hard link
1402 	 * creation in our tree when the project IDs are the same; else
1403 	 * the tree quota mechanism could be circumvented.
1404 	 */
1405 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1406 		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1407 		error = -EXDEV;
1408 		goto error_return;
1409 	}
1410 
1411 	if (!resblks) {
1412 		error = xfs_dir_canenter(tp, tdp, target_name);
1413 		if (error)
1414 			goto error_return;
1415 	}
1416 
1417 	/*
1418 	 * Handle initial link state of O_TMPFILE inode
1419 	 */
1420 	if (VFS_I(sip)->i_nlink == 0) {
1421 		error = xfs_iunlink_remove(tp, sip);
1422 		if (error)
1423 			goto error_return;
1424 	}
1425 
1426 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1427 				   resblks);
1428 	if (error)
1429 		goto error_return;
1430 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1431 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1432 
1433 	xfs_bumplink(tp, sip);
1434 
1435 	/*
1436 	 * If this is a synchronous mount, make sure that the
1437 	 * link transaction goes to disk before returning to
1438 	 * the user.
1439 	 */
1440 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1441 		xfs_trans_set_sync(tp);
1442 
1443 	return xfs_trans_commit(tp);
1444 
1445  error_return:
1446 	xfs_trans_cancel(tp);
1447  std_return:
1448 	return error;
1449 }
1450 
1451 /* Clear the reflink flag and the cowblocks tag if possible. */
1452 static void
1453 xfs_itruncate_clear_reflink_flags(
1454 	struct xfs_inode	*ip)
1455 {
1456 	struct xfs_ifork	*dfork;
1457 	struct xfs_ifork	*cfork;
1458 
1459 	if (!xfs_is_reflink_inode(ip))
1460 		return;
1461 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1462 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1463 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1464 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1465 	if (cfork->if_bytes == 0)
1466 		xfs_inode_clear_cowblocks_tag(ip);
1467 }
1468 
1469 /*
1470  * Free up the underlying blocks past new_size.  The new size must be smaller
1471  * than the current size.  This routine can be used both for the attribute and
1472  * data fork, and does not modify the inode size, which is left to the caller.
1473  *
1474  * The transaction passed to this routine must have made a permanent log
1475  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1476  * given transaction and start new ones, so make sure everything involved in
1477  * the transaction is tidy before calling here.  Some transaction will be
1478  * returned to the caller to be committed.  The incoming transaction must
1479  * already include the inode, and both inode locks must be held exclusively.
1480  * The inode must also be "held" within the transaction.  On return the inode
1481  * will be "held" within the returned transaction.  This routine does NOT
1482  * require any disk space to be reserved for it within the transaction.
1483  *
1484  * If we get an error, we must return with the inode locked and linked into the
1485  * current transaction. This keeps things simple for the higher level code,
1486  * because it always knows that the inode is locked and held in the transaction
1487  * that returns to it whether errors occur or not.  We don't mark the inode
1488  * dirty on error so that transactions can be easily aborted if possible.
1489  */
1490 int
1491 xfs_itruncate_extents_flags(
1492 	struct xfs_trans	**tpp,
1493 	struct xfs_inode	*ip,
1494 	int			whichfork,
1495 	xfs_fsize_t		new_size,
1496 	int			flags)
1497 {
1498 	struct xfs_mount	*mp = ip->i_mount;
1499 	struct xfs_trans	*tp = *tpp;
1500 	xfs_fileoff_t		first_unmap_block;
1501 	xfs_filblks_t		unmap_len;
1502 	int			error = 0;
1503 
1504 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1505 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1506 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1507 	ASSERT(new_size <= XFS_ISIZE(ip));
1508 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1509 	ASSERT(ip->i_itemp != NULL);
1510 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1511 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1512 
1513 	trace_xfs_itruncate_extents_start(ip, new_size);
1514 
1515 	flags |= xfs_bmapi_aflag(whichfork);
1516 
1517 	/*
1518 	 * Since it is possible for space to become allocated beyond
1519 	 * the end of the file (in a crash where the space is allocated
1520 	 * but the inode size is not yet updated), simply remove any
1521 	 * blocks which show up between the new EOF and the maximum
1522 	 * possible file size.
1523 	 *
1524 	 * We have to free all the blocks to the bmbt maximum offset, even if
1525 	 * the page cache can't scale that far.
1526 	 */
1527 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1528 	if (first_unmap_block >= XFS_MAX_FILEOFF) {
1529 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1530 		return 0;
1531 	}
1532 
1533 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1534 	while (unmap_len > 0) {
1535 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1536 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1537 				flags, XFS_ITRUNC_MAX_EXTENTS);
1538 		if (error)
1539 			goto out;
1540 
1541 		/*
1542 		 * Duplicate the transaction that has the permanent
1543 		 * reservation and commit the old transaction.
1544 		 */
1545 		error = xfs_defer_finish(&tp);
1546 		if (error)
1547 			goto out;
1548 
1549 		error = xfs_trans_roll_inode(&tp, ip);
1550 		if (error)
1551 			goto out;
1552 	}
1553 
1554 	if (whichfork == XFS_DATA_FORK) {
1555 		/* Remove all pending CoW reservations. */
1556 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1557 				first_unmap_block, XFS_MAX_FILEOFF, true);
1558 		if (error)
1559 			goto out;
1560 
1561 		xfs_itruncate_clear_reflink_flags(ip);
1562 	}
1563 
1564 	/*
1565 	 * Always re-log the inode so that our permanent transaction can keep
1566 	 * on rolling it forward in the log.
1567 	 */
1568 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1569 
1570 	trace_xfs_itruncate_extents_end(ip, new_size);
1571 
1572 out:
1573 	*tpp = tp;
1574 	return error;
1575 }
1576 
1577 int
1578 xfs_release(
1579 	xfs_inode_t	*ip)
1580 {
1581 	xfs_mount_t	*mp = ip->i_mount;
1582 	int		error;
1583 
1584 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1585 		return 0;
1586 
1587 	/* If this is a read-only mount, don't do this (would generate I/O) */
1588 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1589 		return 0;
1590 
1591 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1592 		int truncated;
1593 
1594 		/*
1595 		 * If we previously truncated this file and removed old data
1596 		 * in the process, we want to initiate "early" writeout on
1597 		 * the last close.  This is an attempt to combat the notorious
1598 		 * NULL files problem which is particularly noticeable from a
1599 		 * truncate down, buffered (re-)write (delalloc), followed by
1600 		 * a crash.  What we are effectively doing here is
1601 		 * significantly reducing the time window where we'd otherwise
1602 		 * be exposed to that problem.
1603 		 */
1604 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1605 		if (truncated) {
1606 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1607 			if (ip->i_delayed_blks > 0) {
1608 				error = filemap_flush(VFS_I(ip)->i_mapping);
1609 				if (error)
1610 					return error;
1611 			}
1612 		}
1613 	}
1614 
1615 	if (VFS_I(ip)->i_nlink == 0)
1616 		return 0;
1617 
1618 	if (xfs_can_free_eofblocks(ip, false)) {
1619 
1620 		/*
1621 		 * Check if the inode is being opened, written and closed
1622 		 * frequently and we have delayed allocation blocks outstanding
1623 		 * (e.g. streaming writes from the NFS server), truncating the
1624 		 * blocks past EOF will cause fragmentation to occur.
1625 		 *
1626 		 * In this case don't do the truncation, but we have to be
1627 		 * careful how we detect this case. Blocks beyond EOF show up as
1628 		 * i_delayed_blks even when the inode is clean, so we need to
1629 		 * truncate them away first before checking for a dirty release.
1630 		 * Hence on the first dirty close we will still remove the
1631 		 * speculative allocation, but after that we will leave it in
1632 		 * place.
1633 		 */
1634 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1635 			return 0;
1636 		/*
1637 		 * If we can't get the iolock just skip truncating the blocks
1638 		 * past EOF because we could deadlock with the mmap_sem
1639 		 * otherwise. We'll get another chance to drop them once the
1640 		 * last reference to the inode is dropped, so we'll never leak
1641 		 * blocks permanently.
1642 		 */
1643 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1644 			error = xfs_free_eofblocks(ip);
1645 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1646 			if (error)
1647 				return error;
1648 		}
1649 
1650 		/* delalloc blocks after truncation means it really is dirty */
1651 		if (ip->i_delayed_blks)
1652 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1653 	}
1654 	return 0;
1655 }
1656 
1657 /*
1658  * xfs_inactive_truncate
1659  *
1660  * Called to perform a truncate when an inode becomes unlinked.
1661  */
1662 STATIC int
1663 xfs_inactive_truncate(
1664 	struct xfs_inode *ip)
1665 {
1666 	struct xfs_mount	*mp = ip->i_mount;
1667 	struct xfs_trans	*tp;
1668 	int			error;
1669 
1670 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1671 	if (error) {
1672 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1673 		return error;
1674 	}
1675 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1676 	xfs_trans_ijoin(tp, ip, 0);
1677 
1678 	/*
1679 	 * Log the inode size first to prevent stale data exposure in the event
1680 	 * of a system crash before the truncate completes. See the related
1681 	 * comment in xfs_vn_setattr_size() for details.
1682 	 */
1683 	ip->i_d.di_size = 0;
1684 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1685 
1686 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1687 	if (error)
1688 		goto error_trans_cancel;
1689 
1690 	ASSERT(ip->i_d.di_nextents == 0);
1691 
1692 	error = xfs_trans_commit(tp);
1693 	if (error)
1694 		goto error_unlock;
1695 
1696 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1697 	return 0;
1698 
1699 error_trans_cancel:
1700 	xfs_trans_cancel(tp);
1701 error_unlock:
1702 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1703 	return error;
1704 }
1705 
1706 /*
1707  * xfs_inactive_ifree()
1708  *
1709  * Perform the inode free when an inode is unlinked.
1710  */
1711 STATIC int
1712 xfs_inactive_ifree(
1713 	struct xfs_inode *ip)
1714 {
1715 	struct xfs_mount	*mp = ip->i_mount;
1716 	struct xfs_trans	*tp;
1717 	int			error;
1718 
1719 	/*
1720 	 * We try to use a per-AG reservation for any block needed by the finobt
1721 	 * tree, but as the finobt feature predates the per-AG reservation
1722 	 * support a degraded file system might not have enough space for the
1723 	 * reservation at mount time.  In that case try to dip into the reserved
1724 	 * pool and pray.
1725 	 *
1726 	 * Send a warning if the reservation does happen to fail, as the inode
1727 	 * now remains allocated and sits on the unlinked list until the fs is
1728 	 * repaired.
1729 	 */
1730 	if (unlikely(mp->m_finobt_nores)) {
1731 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1732 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1733 				&tp);
1734 	} else {
1735 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1736 	}
1737 	if (error) {
1738 		if (error == -ENOSPC) {
1739 			xfs_warn_ratelimited(mp,
1740 			"Failed to remove inode(s) from unlinked list. "
1741 			"Please free space, unmount and run xfs_repair.");
1742 		} else {
1743 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1744 		}
1745 		return error;
1746 	}
1747 
1748 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1749 	xfs_trans_ijoin(tp, ip, 0);
1750 
1751 	error = xfs_ifree(tp, ip);
1752 	if (error) {
1753 		/*
1754 		 * If we fail to free the inode, shut down.  The cancel
1755 		 * might do that, we need to make sure.  Otherwise the
1756 		 * inode might be lost for a long time or forever.
1757 		 */
1758 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1759 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1760 				__func__, error);
1761 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1762 		}
1763 		xfs_trans_cancel(tp);
1764 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1765 		return error;
1766 	}
1767 
1768 	/*
1769 	 * Credit the quota account(s). The inode is gone.
1770 	 */
1771 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1772 
1773 	/*
1774 	 * Just ignore errors at this point.  There is nothing we can do except
1775 	 * to try to keep going. Make sure it's not a silent error.
1776 	 */
1777 	error = xfs_trans_commit(tp);
1778 	if (error)
1779 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1780 			__func__, error);
1781 
1782 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1783 	return 0;
1784 }
1785 
1786 /*
1787  * xfs_inactive
1788  *
1789  * This is called when the vnode reference count for the vnode
1790  * goes to zero.  If the file has been unlinked, then it must
1791  * now be truncated.  Also, we clear all of the read-ahead state
1792  * kept for the inode here since the file is now closed.
1793  */
1794 void
1795 xfs_inactive(
1796 	xfs_inode_t	*ip)
1797 {
1798 	struct xfs_mount	*mp;
1799 	int			error;
1800 	int			truncate = 0;
1801 
1802 	/*
1803 	 * If the inode is already free, then there can be nothing
1804 	 * to clean up here.
1805 	 */
1806 	if (VFS_I(ip)->i_mode == 0) {
1807 		ASSERT(ip->i_df.if_broot_bytes == 0);
1808 		return;
1809 	}
1810 
1811 	mp = ip->i_mount;
1812 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1813 
1814 	/* If this is a read-only mount, don't do this (would generate I/O) */
1815 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1816 		return;
1817 
1818 	/* Try to clean out the cow blocks if there are any. */
1819 	if (xfs_inode_has_cow_data(ip))
1820 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1821 
1822 	if (VFS_I(ip)->i_nlink != 0) {
1823 		/*
1824 		 * force is true because we are evicting an inode from the
1825 		 * cache. Post-eof blocks must be freed, lest we end up with
1826 		 * broken free space accounting.
1827 		 *
1828 		 * Note: don't bother with iolock here since lockdep complains
1829 		 * about acquiring it in reclaim context. We have the only
1830 		 * reference to the inode at this point anyways.
1831 		 */
1832 		if (xfs_can_free_eofblocks(ip, true))
1833 			xfs_free_eofblocks(ip);
1834 
1835 		return;
1836 	}
1837 
1838 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1839 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1840 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1841 		truncate = 1;
1842 
1843 	error = xfs_qm_dqattach(ip);
1844 	if (error)
1845 		return;
1846 
1847 	if (S_ISLNK(VFS_I(ip)->i_mode))
1848 		error = xfs_inactive_symlink(ip);
1849 	else if (truncate)
1850 		error = xfs_inactive_truncate(ip);
1851 	if (error)
1852 		return;
1853 
1854 	/*
1855 	 * If there are attributes associated with the file then blow them away
1856 	 * now.  The code calls a routine that recursively deconstructs the
1857 	 * attribute fork. If also blows away the in-core attribute fork.
1858 	 */
1859 	if (XFS_IFORK_Q(ip)) {
1860 		error = xfs_attr_inactive(ip);
1861 		if (error)
1862 			return;
1863 	}
1864 
1865 	ASSERT(!ip->i_afp);
1866 	ASSERT(ip->i_d.di_anextents == 0);
1867 	ASSERT(ip->i_d.di_forkoff == 0);
1868 
1869 	/*
1870 	 * Free the inode.
1871 	 */
1872 	error = xfs_inactive_ifree(ip);
1873 	if (error)
1874 		return;
1875 
1876 	/*
1877 	 * Release the dquots held by inode, if any.
1878 	 */
1879 	xfs_qm_dqdetach(ip);
1880 }
1881 
1882 /*
1883  * In-Core Unlinked List Lookups
1884  * =============================
1885  *
1886  * Every inode is supposed to be reachable from some other piece of metadata
1887  * with the exception of the root directory.  Inodes with a connection to a
1888  * file descriptor but not linked from anywhere in the on-disk directory tree
1889  * are collectively known as unlinked inodes, though the filesystem itself
1890  * maintains links to these inodes so that on-disk metadata are consistent.
1891  *
1892  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1893  * header contains a number of buckets that point to an inode, and each inode
1894  * record has a pointer to the next inode in the hash chain.  This
1895  * singly-linked list causes scaling problems in the iunlink remove function
1896  * because we must walk that list to find the inode that points to the inode
1897  * being removed from the unlinked hash bucket list.
1898  *
1899  * What if we modelled the unlinked list as a collection of records capturing
1900  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1901  * have a fast way to look up unlinked list predecessors, which avoids the
1902  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1903  * rhashtable.
1904  *
1905  * Because this is a backref cache, we ignore operational failures since the
1906  * iunlink code can fall back to the slow bucket walk.  The only errors that
1907  * should bubble out are for obviously incorrect situations.
1908  *
1909  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1910  * access or have otherwise provided for concurrency control.
1911  */
1912 
1913 /* Capture a "X.next_unlinked = Y" relationship. */
1914 struct xfs_iunlink {
1915 	struct rhash_head	iu_rhash_head;
1916 	xfs_agino_t		iu_agino;		/* X */
1917 	xfs_agino_t		iu_next_unlinked;	/* Y */
1918 };
1919 
1920 /* Unlinked list predecessor lookup hashtable construction */
1921 static int
1922 xfs_iunlink_obj_cmpfn(
1923 	struct rhashtable_compare_arg	*arg,
1924 	const void			*obj)
1925 {
1926 	const xfs_agino_t		*key = arg->key;
1927 	const struct xfs_iunlink	*iu = obj;
1928 
1929 	if (iu->iu_next_unlinked != *key)
1930 		return 1;
1931 	return 0;
1932 }
1933 
1934 static const struct rhashtable_params xfs_iunlink_hash_params = {
1935 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1936 	.key_len		= sizeof(xfs_agino_t),
1937 	.key_offset		= offsetof(struct xfs_iunlink,
1938 					   iu_next_unlinked),
1939 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1940 	.automatic_shrinking	= true,
1941 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1942 };
1943 
1944 /*
1945  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1946  * relation is found.
1947  */
1948 static xfs_agino_t
1949 xfs_iunlink_lookup_backref(
1950 	struct xfs_perag	*pag,
1951 	xfs_agino_t		agino)
1952 {
1953 	struct xfs_iunlink	*iu;
1954 
1955 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1956 			xfs_iunlink_hash_params);
1957 	return iu ? iu->iu_agino : NULLAGINO;
1958 }
1959 
1960 /*
1961  * Take ownership of an iunlink cache entry and insert it into the hash table.
1962  * If successful, the entry will be owned by the cache; if not, it is freed.
1963  * Either way, the caller does not own @iu after this call.
1964  */
1965 static int
1966 xfs_iunlink_insert_backref(
1967 	struct xfs_perag	*pag,
1968 	struct xfs_iunlink	*iu)
1969 {
1970 	int			error;
1971 
1972 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1973 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1974 	/*
1975 	 * Fail loudly if there already was an entry because that's a sign of
1976 	 * corruption of in-memory data.  Also fail loudly if we see an error
1977 	 * code we didn't anticipate from the rhashtable code.  Currently we
1978 	 * only anticipate ENOMEM.
1979 	 */
1980 	if (error) {
1981 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1982 		kmem_free(iu);
1983 	}
1984 	/*
1985 	 * Absorb any runtime errors that aren't a result of corruption because
1986 	 * this is a cache and we can always fall back to bucket list scanning.
1987 	 */
1988 	if (error != 0 && error != -EEXIST)
1989 		error = 0;
1990 	return error;
1991 }
1992 
1993 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1994 static int
1995 xfs_iunlink_add_backref(
1996 	struct xfs_perag	*pag,
1997 	xfs_agino_t		prev_agino,
1998 	xfs_agino_t		this_agino)
1999 {
2000 	struct xfs_iunlink	*iu;
2001 
2002 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2003 		return 0;
2004 
2005 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2006 	iu->iu_agino = prev_agino;
2007 	iu->iu_next_unlinked = this_agino;
2008 
2009 	return xfs_iunlink_insert_backref(pag, iu);
2010 }
2011 
2012 /*
2013  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2014  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2015  * wasn't any such entry then we don't bother.
2016  */
2017 static int
2018 xfs_iunlink_change_backref(
2019 	struct xfs_perag	*pag,
2020 	xfs_agino_t		agino,
2021 	xfs_agino_t		next_unlinked)
2022 {
2023 	struct xfs_iunlink	*iu;
2024 	int			error;
2025 
2026 	/* Look up the old entry; if there wasn't one then exit. */
2027 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2028 			xfs_iunlink_hash_params);
2029 	if (!iu)
2030 		return 0;
2031 
2032 	/*
2033 	 * Remove the entry.  This shouldn't ever return an error, but if we
2034 	 * couldn't remove the old entry we don't want to add it again to the
2035 	 * hash table, and if the entry disappeared on us then someone's
2036 	 * violated the locking rules and we need to fail loudly.  Either way
2037 	 * we cannot remove the inode because internal state is or would have
2038 	 * been corrupt.
2039 	 */
2040 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2041 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2042 	if (error)
2043 		return error;
2044 
2045 	/* If there is no new next entry just free our item and return. */
2046 	if (next_unlinked == NULLAGINO) {
2047 		kmem_free(iu);
2048 		return 0;
2049 	}
2050 
2051 	/* Update the entry and re-add it to the hash table. */
2052 	iu->iu_next_unlinked = next_unlinked;
2053 	return xfs_iunlink_insert_backref(pag, iu);
2054 }
2055 
2056 /* Set up the in-core predecessor structures. */
2057 int
2058 xfs_iunlink_init(
2059 	struct xfs_perag	*pag)
2060 {
2061 	return rhashtable_init(&pag->pagi_unlinked_hash,
2062 			&xfs_iunlink_hash_params);
2063 }
2064 
2065 /* Free the in-core predecessor structures. */
2066 static void
2067 xfs_iunlink_free_item(
2068 	void			*ptr,
2069 	void			*arg)
2070 {
2071 	struct xfs_iunlink	*iu = ptr;
2072 	bool			*freed_anything = arg;
2073 
2074 	*freed_anything = true;
2075 	kmem_free(iu);
2076 }
2077 
2078 void
2079 xfs_iunlink_destroy(
2080 	struct xfs_perag	*pag)
2081 {
2082 	bool			freed_anything = false;
2083 
2084 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2085 			xfs_iunlink_free_item, &freed_anything);
2086 
2087 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2088 }
2089 
2090 /*
2091  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2092  * is responsible for validating the old value.
2093  */
2094 STATIC int
2095 xfs_iunlink_update_bucket(
2096 	struct xfs_trans	*tp,
2097 	xfs_agnumber_t		agno,
2098 	struct xfs_buf		*agibp,
2099 	unsigned int		bucket_index,
2100 	xfs_agino_t		new_agino)
2101 {
2102 	struct xfs_agi		*agi = agibp->b_addr;
2103 	xfs_agino_t		old_value;
2104 	int			offset;
2105 
2106 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2107 
2108 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2109 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2110 			old_value, new_agino);
2111 
2112 	/*
2113 	 * We should never find the head of the list already set to the value
2114 	 * passed in because either we're adding or removing ourselves from the
2115 	 * head of the list.
2116 	 */
2117 	if (old_value == new_agino) {
2118 		xfs_buf_mark_corrupt(agibp);
2119 		return -EFSCORRUPTED;
2120 	}
2121 
2122 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2123 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2124 			(sizeof(xfs_agino_t) * bucket_index);
2125 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2126 	return 0;
2127 }
2128 
2129 /* Set an on-disk inode's next_unlinked pointer. */
2130 STATIC void
2131 xfs_iunlink_update_dinode(
2132 	struct xfs_trans	*tp,
2133 	xfs_agnumber_t		agno,
2134 	xfs_agino_t		agino,
2135 	struct xfs_buf		*ibp,
2136 	struct xfs_dinode	*dip,
2137 	struct xfs_imap		*imap,
2138 	xfs_agino_t		next_agino)
2139 {
2140 	struct xfs_mount	*mp = tp->t_mountp;
2141 	int			offset;
2142 
2143 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2144 
2145 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2146 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2147 
2148 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2149 	offset = imap->im_boffset +
2150 			offsetof(struct xfs_dinode, di_next_unlinked);
2151 
2152 	/* need to recalc the inode CRC if appropriate */
2153 	xfs_dinode_calc_crc(mp, dip);
2154 	xfs_trans_inode_buf(tp, ibp);
2155 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2156 	xfs_inobp_check(mp, ibp);
2157 }
2158 
2159 /* Set an in-core inode's unlinked pointer and return the old value. */
2160 STATIC int
2161 xfs_iunlink_update_inode(
2162 	struct xfs_trans	*tp,
2163 	struct xfs_inode	*ip,
2164 	xfs_agnumber_t		agno,
2165 	xfs_agino_t		next_agino,
2166 	xfs_agino_t		*old_next_agino)
2167 {
2168 	struct xfs_mount	*mp = tp->t_mountp;
2169 	struct xfs_dinode	*dip;
2170 	struct xfs_buf		*ibp;
2171 	xfs_agino_t		old_value;
2172 	int			error;
2173 
2174 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2175 
2176 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2177 	if (error)
2178 		return error;
2179 
2180 	/* Make sure the old pointer isn't garbage. */
2181 	old_value = be32_to_cpu(dip->di_next_unlinked);
2182 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2183 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2184 				sizeof(*dip), __this_address);
2185 		error = -EFSCORRUPTED;
2186 		goto out;
2187 	}
2188 
2189 	/*
2190 	 * Since we're updating a linked list, we should never find that the
2191 	 * current pointer is the same as the new value, unless we're
2192 	 * terminating the list.
2193 	 */
2194 	*old_next_agino = old_value;
2195 	if (old_value == next_agino) {
2196 		if (next_agino != NULLAGINO) {
2197 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2198 					dip, sizeof(*dip), __this_address);
2199 			error = -EFSCORRUPTED;
2200 		}
2201 		goto out;
2202 	}
2203 
2204 	/* Ok, update the new pointer. */
2205 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2206 			ibp, dip, &ip->i_imap, next_agino);
2207 	return 0;
2208 out:
2209 	xfs_trans_brelse(tp, ibp);
2210 	return error;
2211 }
2212 
2213 /*
2214  * This is called when the inode's link count has gone to 0 or we are creating
2215  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2216  *
2217  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2218  * list when the inode is freed.
2219  */
2220 STATIC int
2221 xfs_iunlink(
2222 	struct xfs_trans	*tp,
2223 	struct xfs_inode	*ip)
2224 {
2225 	struct xfs_mount	*mp = tp->t_mountp;
2226 	struct xfs_agi		*agi;
2227 	struct xfs_buf		*agibp;
2228 	xfs_agino_t		next_agino;
2229 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2230 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2231 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2232 	int			error;
2233 
2234 	ASSERT(VFS_I(ip)->i_nlink == 0);
2235 	ASSERT(VFS_I(ip)->i_mode != 0);
2236 	trace_xfs_iunlink(ip);
2237 
2238 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2239 	error = xfs_read_agi(mp, tp, agno, &agibp);
2240 	if (error)
2241 		return error;
2242 	agi = agibp->b_addr;
2243 
2244 	/*
2245 	 * Get the index into the agi hash table for the list this inode will
2246 	 * go on.  Make sure the pointer isn't garbage and that this inode
2247 	 * isn't already on the list.
2248 	 */
2249 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2250 	if (next_agino == agino ||
2251 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2252 		xfs_buf_mark_corrupt(agibp);
2253 		return -EFSCORRUPTED;
2254 	}
2255 
2256 	if (next_agino != NULLAGINO) {
2257 		struct xfs_perag	*pag;
2258 		xfs_agino_t		old_agino;
2259 
2260 		/*
2261 		 * There is already another inode in the bucket, so point this
2262 		 * inode to the current head of the list.
2263 		 */
2264 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2265 				&old_agino);
2266 		if (error)
2267 			return error;
2268 		ASSERT(old_agino == NULLAGINO);
2269 
2270 		/*
2271 		 * agino has been unlinked, add a backref from the next inode
2272 		 * back to agino.
2273 		 */
2274 		pag = xfs_perag_get(mp, agno);
2275 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2276 		xfs_perag_put(pag);
2277 		if (error)
2278 			return error;
2279 	}
2280 
2281 	/* Point the head of the list to point to this inode. */
2282 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2283 }
2284 
2285 /* Return the imap, dinode pointer, and buffer for an inode. */
2286 STATIC int
2287 xfs_iunlink_map_ino(
2288 	struct xfs_trans	*tp,
2289 	xfs_agnumber_t		agno,
2290 	xfs_agino_t		agino,
2291 	struct xfs_imap		*imap,
2292 	struct xfs_dinode	**dipp,
2293 	struct xfs_buf		**bpp)
2294 {
2295 	struct xfs_mount	*mp = tp->t_mountp;
2296 	int			error;
2297 
2298 	imap->im_blkno = 0;
2299 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2300 	if (error) {
2301 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2302 				__func__, error);
2303 		return error;
2304 	}
2305 
2306 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2307 	if (error) {
2308 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2309 				__func__, error);
2310 		return error;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 /*
2317  * Walk the unlinked chain from @head_agino until we find the inode that
2318  * points to @target_agino.  Return the inode number, map, dinode pointer,
2319  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2320  *
2321  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2322  * @agino, @imap, @dipp, and @bpp are all output parameters.
2323  *
2324  * Do not call this function if @target_agino is the head of the list.
2325  */
2326 STATIC int
2327 xfs_iunlink_map_prev(
2328 	struct xfs_trans	*tp,
2329 	xfs_agnumber_t		agno,
2330 	xfs_agino_t		head_agino,
2331 	xfs_agino_t		target_agino,
2332 	xfs_agino_t		*agino,
2333 	struct xfs_imap		*imap,
2334 	struct xfs_dinode	**dipp,
2335 	struct xfs_buf		**bpp,
2336 	struct xfs_perag	*pag)
2337 {
2338 	struct xfs_mount	*mp = tp->t_mountp;
2339 	xfs_agino_t		next_agino;
2340 	int			error;
2341 
2342 	ASSERT(head_agino != target_agino);
2343 	*bpp = NULL;
2344 
2345 	/* See if our backref cache can find it faster. */
2346 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2347 	if (*agino != NULLAGINO) {
2348 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2349 		if (error)
2350 			return error;
2351 
2352 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2353 			return 0;
2354 
2355 		/*
2356 		 * If we get here the cache contents were corrupt, so drop the
2357 		 * buffer and fall back to walking the bucket list.
2358 		 */
2359 		xfs_trans_brelse(tp, *bpp);
2360 		*bpp = NULL;
2361 		WARN_ON_ONCE(1);
2362 	}
2363 
2364 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2365 
2366 	/* Otherwise, walk the entire bucket until we find it. */
2367 	next_agino = head_agino;
2368 	while (next_agino != target_agino) {
2369 		xfs_agino_t	unlinked_agino;
2370 
2371 		if (*bpp)
2372 			xfs_trans_brelse(tp, *bpp);
2373 
2374 		*agino = next_agino;
2375 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2376 				bpp);
2377 		if (error)
2378 			return error;
2379 
2380 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2381 		/*
2382 		 * Make sure this pointer is valid and isn't an obvious
2383 		 * infinite loop.
2384 		 */
2385 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2386 		    next_agino == unlinked_agino) {
2387 			XFS_CORRUPTION_ERROR(__func__,
2388 					XFS_ERRLEVEL_LOW, mp,
2389 					*dipp, sizeof(**dipp));
2390 			error = -EFSCORRUPTED;
2391 			return error;
2392 		}
2393 		next_agino = unlinked_agino;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 /*
2400  * Pull the on-disk inode from the AGI unlinked list.
2401  */
2402 STATIC int
2403 xfs_iunlink_remove(
2404 	struct xfs_trans	*tp,
2405 	struct xfs_inode	*ip)
2406 {
2407 	struct xfs_mount	*mp = tp->t_mountp;
2408 	struct xfs_agi		*agi;
2409 	struct xfs_buf		*agibp;
2410 	struct xfs_buf		*last_ibp;
2411 	struct xfs_dinode	*last_dip = NULL;
2412 	struct xfs_perag	*pag = NULL;
2413 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2414 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2415 	xfs_agino_t		next_agino;
2416 	xfs_agino_t		head_agino;
2417 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2418 	int			error;
2419 
2420 	trace_xfs_iunlink_remove(ip);
2421 
2422 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2423 	error = xfs_read_agi(mp, tp, agno, &agibp);
2424 	if (error)
2425 		return error;
2426 	agi = agibp->b_addr;
2427 
2428 	/*
2429 	 * Get the index into the agi hash table for the list this inode will
2430 	 * go on.  Make sure the head pointer isn't garbage.
2431 	 */
2432 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2433 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2434 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2435 				agi, sizeof(*agi));
2436 		return -EFSCORRUPTED;
2437 	}
2438 
2439 	/*
2440 	 * Set our inode's next_unlinked pointer to NULL and then return
2441 	 * the old pointer value so that we can update whatever was previous
2442 	 * to us in the list to point to whatever was next in the list.
2443 	 */
2444 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2445 	if (error)
2446 		return error;
2447 
2448 	/*
2449 	 * If there was a backref pointing from the next inode back to this
2450 	 * one, remove it because we've removed this inode from the list.
2451 	 *
2452 	 * Later, if this inode was in the middle of the list we'll update
2453 	 * this inode's backref to point from the next inode.
2454 	 */
2455 	if (next_agino != NULLAGINO) {
2456 		pag = xfs_perag_get(mp, agno);
2457 		error = xfs_iunlink_change_backref(pag, next_agino,
2458 				NULLAGINO);
2459 		if (error)
2460 			goto out;
2461 	}
2462 
2463 	if (head_agino == agino) {
2464 		/* Point the head of the list to the next unlinked inode. */
2465 		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2466 				next_agino);
2467 		if (error)
2468 			goto out;
2469 	} else {
2470 		struct xfs_imap	imap;
2471 		xfs_agino_t	prev_agino;
2472 
2473 		if (!pag)
2474 			pag = xfs_perag_get(mp, agno);
2475 
2476 		/* We need to search the list for the inode being freed. */
2477 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2478 				&prev_agino, &imap, &last_dip, &last_ibp,
2479 				pag);
2480 		if (error)
2481 			goto out;
2482 
2483 		/* Point the previous inode on the list to the next inode. */
2484 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2485 				last_dip, &imap, next_agino);
2486 
2487 		/*
2488 		 * Now we deal with the backref for this inode.  If this inode
2489 		 * pointed at a real inode, change the backref that pointed to
2490 		 * us to point to our old next.  If this inode was the end of
2491 		 * the list, delete the backref that pointed to us.  Note that
2492 		 * change_backref takes care of deleting the backref if
2493 		 * next_agino is NULLAGINO.
2494 		 */
2495 		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2496 		if (error)
2497 			goto out;
2498 	}
2499 
2500 out:
2501 	if (pag)
2502 		xfs_perag_put(pag);
2503 	return error;
2504 }
2505 
2506 /*
2507  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2508  * inodes that are in memory - they all must be marked stale and attached to
2509  * the cluster buffer.
2510  */
2511 STATIC int
2512 xfs_ifree_cluster(
2513 	xfs_inode_t		*free_ip,
2514 	xfs_trans_t		*tp,
2515 	struct xfs_icluster	*xic)
2516 {
2517 	xfs_mount_t		*mp = free_ip->i_mount;
2518 	int			nbufs;
2519 	int			i, j;
2520 	int			ioffset;
2521 	xfs_daddr_t		blkno;
2522 	xfs_buf_t		*bp;
2523 	xfs_inode_t		*ip;
2524 	xfs_inode_log_item_t	*iip;
2525 	struct xfs_log_item	*lip;
2526 	struct xfs_perag	*pag;
2527 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2528 	xfs_ino_t		inum;
2529 	int			error;
2530 
2531 	inum = xic->first_ino;
2532 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2533 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2534 
2535 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2536 		/*
2537 		 * The allocation bitmap tells us which inodes of the chunk were
2538 		 * physically allocated. Skip the cluster if an inode falls into
2539 		 * a sparse region.
2540 		 */
2541 		ioffset = inum - xic->first_ino;
2542 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2543 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2544 			continue;
2545 		}
2546 
2547 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2548 					 XFS_INO_TO_AGBNO(mp, inum));
2549 
2550 		/*
2551 		 * We obtain and lock the backing buffer first in the process
2552 		 * here, as we have to ensure that any dirty inode that we
2553 		 * can't get the flush lock on is attached to the buffer.
2554 		 * If we scan the in-memory inodes first, then buffer IO can
2555 		 * complete before we get a lock on it, and hence we may fail
2556 		 * to mark all the active inodes on the buffer stale.
2557 		 */
2558 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2559 				mp->m_bsize * igeo->blocks_per_cluster,
2560 				XBF_UNMAPPED, &bp);
2561 		if (error)
2562 			return error;
2563 
2564 		/*
2565 		 * This buffer may not have been correctly initialised as we
2566 		 * didn't read it from disk. That's not important because we are
2567 		 * only using to mark the buffer as stale in the log, and to
2568 		 * attach stale cached inodes on it. That means it will never be
2569 		 * dispatched for IO. If it is, we want to know about it, and we
2570 		 * want it to fail. We can acheive this by adding a write
2571 		 * verifier to the buffer.
2572 		 */
2573 		bp->b_ops = &xfs_inode_buf_ops;
2574 
2575 		/*
2576 		 * Walk the inodes already attached to the buffer and mark them
2577 		 * stale. These will all have the flush locks held, so an
2578 		 * in-memory inode walk can't lock them. By marking them all
2579 		 * stale first, we will not attempt to lock them in the loop
2580 		 * below as the XFS_ISTALE flag will be set.
2581 		 */
2582 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2583 			if (lip->li_type == XFS_LI_INODE) {
2584 				iip = (xfs_inode_log_item_t *)lip;
2585 				ASSERT(iip->ili_logged == 1);
2586 				lip->li_cb = xfs_istale_done;
2587 				xfs_trans_ail_copy_lsn(mp->m_ail,
2588 							&iip->ili_flush_lsn,
2589 							&iip->ili_item.li_lsn);
2590 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2591 			}
2592 		}
2593 
2594 
2595 		/*
2596 		 * For each inode in memory attempt to add it to the inode
2597 		 * buffer and set it up for being staled on buffer IO
2598 		 * completion.  This is safe as we've locked out tail pushing
2599 		 * and flushing by locking the buffer.
2600 		 *
2601 		 * We have already marked every inode that was part of a
2602 		 * transaction stale above, which means there is no point in
2603 		 * even trying to lock them.
2604 		 */
2605 		for (i = 0; i < igeo->inodes_per_cluster; i++) {
2606 retry:
2607 			rcu_read_lock();
2608 			ip = radix_tree_lookup(&pag->pag_ici_root,
2609 					XFS_INO_TO_AGINO(mp, (inum + i)));
2610 
2611 			/* Inode not in memory, nothing to do */
2612 			if (!ip) {
2613 				rcu_read_unlock();
2614 				continue;
2615 			}
2616 
2617 			/*
2618 			 * because this is an RCU protected lookup, we could
2619 			 * find a recently freed or even reallocated inode
2620 			 * during the lookup. We need to check under the
2621 			 * i_flags_lock for a valid inode here. Skip it if it
2622 			 * is not valid, the wrong inode or stale.
2623 			 */
2624 			spin_lock(&ip->i_flags_lock);
2625 			if (ip->i_ino != inum + i ||
2626 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2627 				spin_unlock(&ip->i_flags_lock);
2628 				rcu_read_unlock();
2629 				continue;
2630 			}
2631 			spin_unlock(&ip->i_flags_lock);
2632 
2633 			/*
2634 			 * Don't try to lock/unlock the current inode, but we
2635 			 * _cannot_ skip the other inodes that we did not find
2636 			 * in the list attached to the buffer and are not
2637 			 * already marked stale. If we can't lock it, back off
2638 			 * and retry.
2639 			 */
2640 			if (ip != free_ip) {
2641 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2642 					rcu_read_unlock();
2643 					delay(1);
2644 					goto retry;
2645 				}
2646 
2647 				/*
2648 				 * Check the inode number again in case we're
2649 				 * racing with freeing in xfs_reclaim_inode().
2650 				 * See the comments in that function for more
2651 				 * information as to why the initial check is
2652 				 * not sufficient.
2653 				 */
2654 				if (ip->i_ino != inum + i) {
2655 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2656 					rcu_read_unlock();
2657 					continue;
2658 				}
2659 			}
2660 			rcu_read_unlock();
2661 
2662 			xfs_iflock(ip);
2663 			xfs_iflags_set(ip, XFS_ISTALE);
2664 
2665 			/*
2666 			 * we don't need to attach clean inodes or those only
2667 			 * with unlogged changes (which we throw away, anyway).
2668 			 */
2669 			iip = ip->i_itemp;
2670 			if (!iip || xfs_inode_clean(ip)) {
2671 				ASSERT(ip != free_ip);
2672 				xfs_ifunlock(ip);
2673 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2674 				continue;
2675 			}
2676 
2677 			iip->ili_last_fields = iip->ili_fields;
2678 			iip->ili_fields = 0;
2679 			iip->ili_fsync_fields = 0;
2680 			iip->ili_logged = 1;
2681 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2682 						&iip->ili_item.li_lsn);
2683 
2684 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2685 						  &iip->ili_item);
2686 
2687 			if (ip != free_ip)
2688 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2689 		}
2690 
2691 		xfs_trans_stale_inode_buf(tp, bp);
2692 		xfs_trans_binval(tp, bp);
2693 	}
2694 
2695 	xfs_perag_put(pag);
2696 	return 0;
2697 }
2698 
2699 /*
2700  * Free any local-format buffers sitting around before we reset to
2701  * extents format.
2702  */
2703 static inline void
2704 xfs_ifree_local_data(
2705 	struct xfs_inode	*ip,
2706 	int			whichfork)
2707 {
2708 	struct xfs_ifork	*ifp;
2709 
2710 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2711 		return;
2712 
2713 	ifp = XFS_IFORK_PTR(ip, whichfork);
2714 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2715 }
2716 
2717 /*
2718  * This is called to return an inode to the inode free list.
2719  * The inode should already be truncated to 0 length and have
2720  * no pages associated with it.  This routine also assumes that
2721  * the inode is already a part of the transaction.
2722  *
2723  * The on-disk copy of the inode will have been added to the list
2724  * of unlinked inodes in the AGI. We need to remove the inode from
2725  * that list atomically with respect to freeing it here.
2726  */
2727 int
2728 xfs_ifree(
2729 	struct xfs_trans	*tp,
2730 	struct xfs_inode	*ip)
2731 {
2732 	int			error;
2733 	struct xfs_icluster	xic = { 0 };
2734 
2735 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2736 	ASSERT(VFS_I(ip)->i_nlink == 0);
2737 	ASSERT(ip->i_d.di_nextents == 0);
2738 	ASSERT(ip->i_d.di_anextents == 0);
2739 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2740 	ASSERT(ip->i_d.di_nblocks == 0);
2741 
2742 	/*
2743 	 * Pull the on-disk inode from the AGI unlinked list.
2744 	 */
2745 	error = xfs_iunlink_remove(tp, ip);
2746 	if (error)
2747 		return error;
2748 
2749 	error = xfs_difree(tp, ip->i_ino, &xic);
2750 	if (error)
2751 		return error;
2752 
2753 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2754 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2755 
2756 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2757 	ip->i_d.di_flags = 0;
2758 	ip->i_d.di_flags2 = 0;
2759 	ip->i_d.di_dmevmask = 0;
2760 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2761 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2762 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2763 
2764 	/* Don't attempt to replay owner changes for a deleted inode */
2765 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2766 
2767 	/*
2768 	 * Bump the generation count so no one will be confused
2769 	 * by reincarnations of this inode.
2770 	 */
2771 	VFS_I(ip)->i_generation++;
2772 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2773 
2774 	if (xic.deleted)
2775 		error = xfs_ifree_cluster(ip, tp, &xic);
2776 
2777 	return error;
2778 }
2779 
2780 /*
2781  * This is called to unpin an inode.  The caller must have the inode locked
2782  * in at least shared mode so that the buffer cannot be subsequently pinned
2783  * once someone is waiting for it to be unpinned.
2784  */
2785 static void
2786 xfs_iunpin(
2787 	struct xfs_inode	*ip)
2788 {
2789 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2790 
2791 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2792 
2793 	/* Give the log a push to start the unpinning I/O */
2794 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2795 
2796 }
2797 
2798 static void
2799 __xfs_iunpin_wait(
2800 	struct xfs_inode	*ip)
2801 {
2802 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2803 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2804 
2805 	xfs_iunpin(ip);
2806 
2807 	do {
2808 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2809 		if (xfs_ipincount(ip))
2810 			io_schedule();
2811 	} while (xfs_ipincount(ip));
2812 	finish_wait(wq, &wait.wq_entry);
2813 }
2814 
2815 void
2816 xfs_iunpin_wait(
2817 	struct xfs_inode	*ip)
2818 {
2819 	if (xfs_ipincount(ip))
2820 		__xfs_iunpin_wait(ip);
2821 }
2822 
2823 /*
2824  * Removing an inode from the namespace involves removing the directory entry
2825  * and dropping the link count on the inode. Removing the directory entry can
2826  * result in locking an AGF (directory blocks were freed) and removing a link
2827  * count can result in placing the inode on an unlinked list which results in
2828  * locking an AGI.
2829  *
2830  * The big problem here is that we have an ordering constraint on AGF and AGI
2831  * locking - inode allocation locks the AGI, then can allocate a new extent for
2832  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2833  * removes the inode from the unlinked list, requiring that we lock the AGI
2834  * first, and then freeing the inode can result in an inode chunk being freed
2835  * and hence freeing disk space requiring that we lock an AGF.
2836  *
2837  * Hence the ordering that is imposed by other parts of the code is AGI before
2838  * AGF. This means we cannot remove the directory entry before we drop the inode
2839  * reference count and put it on the unlinked list as this results in a lock
2840  * order of AGF then AGI, and this can deadlock against inode allocation and
2841  * freeing. Therefore we must drop the link counts before we remove the
2842  * directory entry.
2843  *
2844  * This is still safe from a transactional point of view - it is not until we
2845  * get to xfs_defer_finish() that we have the possibility of multiple
2846  * transactions in this operation. Hence as long as we remove the directory
2847  * entry and drop the link count in the first transaction of the remove
2848  * operation, there are no transactional constraints on the ordering here.
2849  */
2850 int
2851 xfs_remove(
2852 	xfs_inode_t             *dp,
2853 	struct xfs_name		*name,
2854 	xfs_inode_t		*ip)
2855 {
2856 	xfs_mount_t		*mp = dp->i_mount;
2857 	xfs_trans_t             *tp = NULL;
2858 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2859 	int                     error = 0;
2860 	uint			resblks;
2861 
2862 	trace_xfs_remove(dp, name);
2863 
2864 	if (XFS_FORCED_SHUTDOWN(mp))
2865 		return -EIO;
2866 
2867 	error = xfs_qm_dqattach(dp);
2868 	if (error)
2869 		goto std_return;
2870 
2871 	error = xfs_qm_dqattach(ip);
2872 	if (error)
2873 		goto std_return;
2874 
2875 	/*
2876 	 * We try to get the real space reservation first,
2877 	 * allowing for directory btree deletion(s) implying
2878 	 * possible bmap insert(s).  If we can't get the space
2879 	 * reservation then we use 0 instead, and avoid the bmap
2880 	 * btree insert(s) in the directory code by, if the bmap
2881 	 * insert tries to happen, instead trimming the LAST
2882 	 * block from the directory.
2883 	 */
2884 	resblks = XFS_REMOVE_SPACE_RES(mp);
2885 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2886 	if (error == -ENOSPC) {
2887 		resblks = 0;
2888 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2889 				&tp);
2890 	}
2891 	if (error) {
2892 		ASSERT(error != -ENOSPC);
2893 		goto std_return;
2894 	}
2895 
2896 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2897 
2898 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2899 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2900 
2901 	/*
2902 	 * If we're removing a directory perform some additional validation.
2903 	 */
2904 	if (is_dir) {
2905 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2906 		if (VFS_I(ip)->i_nlink != 2) {
2907 			error = -ENOTEMPTY;
2908 			goto out_trans_cancel;
2909 		}
2910 		if (!xfs_dir_isempty(ip)) {
2911 			error = -ENOTEMPTY;
2912 			goto out_trans_cancel;
2913 		}
2914 
2915 		/* Drop the link from ip's "..".  */
2916 		error = xfs_droplink(tp, dp);
2917 		if (error)
2918 			goto out_trans_cancel;
2919 
2920 		/* Drop the "." link from ip to self.  */
2921 		error = xfs_droplink(tp, ip);
2922 		if (error)
2923 			goto out_trans_cancel;
2924 	} else {
2925 		/*
2926 		 * When removing a non-directory we need to log the parent
2927 		 * inode here.  For a directory this is done implicitly
2928 		 * by the xfs_droplink call for the ".." entry.
2929 		 */
2930 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2931 	}
2932 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2933 
2934 	/* Drop the link from dp to ip. */
2935 	error = xfs_droplink(tp, ip);
2936 	if (error)
2937 		goto out_trans_cancel;
2938 
2939 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2940 	if (error) {
2941 		ASSERT(error != -ENOENT);
2942 		goto out_trans_cancel;
2943 	}
2944 
2945 	/*
2946 	 * If this is a synchronous mount, make sure that the
2947 	 * remove transaction goes to disk before returning to
2948 	 * the user.
2949 	 */
2950 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2951 		xfs_trans_set_sync(tp);
2952 
2953 	error = xfs_trans_commit(tp);
2954 	if (error)
2955 		goto std_return;
2956 
2957 	if (is_dir && xfs_inode_is_filestream(ip))
2958 		xfs_filestream_deassociate(ip);
2959 
2960 	return 0;
2961 
2962  out_trans_cancel:
2963 	xfs_trans_cancel(tp);
2964  std_return:
2965 	return error;
2966 }
2967 
2968 /*
2969  * Enter all inodes for a rename transaction into a sorted array.
2970  */
2971 #define __XFS_SORT_INODES	5
2972 STATIC void
2973 xfs_sort_for_rename(
2974 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2975 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2976 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2977 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2978 	struct xfs_inode	*wip,	/* in: whiteout inode */
2979 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2980 	int			*num_inodes)  /* in/out: inodes in array */
2981 {
2982 	int			i, j;
2983 
2984 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2985 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2986 
2987 	/*
2988 	 * i_tab contains a list of pointers to inodes.  We initialize
2989 	 * the table here & we'll sort it.  We will then use it to
2990 	 * order the acquisition of the inode locks.
2991 	 *
2992 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2993 	 */
2994 	i = 0;
2995 	i_tab[i++] = dp1;
2996 	i_tab[i++] = dp2;
2997 	i_tab[i++] = ip1;
2998 	if (ip2)
2999 		i_tab[i++] = ip2;
3000 	if (wip)
3001 		i_tab[i++] = wip;
3002 	*num_inodes = i;
3003 
3004 	/*
3005 	 * Sort the elements via bubble sort.  (Remember, there are at
3006 	 * most 5 elements to sort, so this is adequate.)
3007 	 */
3008 	for (i = 0; i < *num_inodes; i++) {
3009 		for (j = 1; j < *num_inodes; j++) {
3010 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3011 				struct xfs_inode *temp = i_tab[j];
3012 				i_tab[j] = i_tab[j-1];
3013 				i_tab[j-1] = temp;
3014 			}
3015 		}
3016 	}
3017 }
3018 
3019 static int
3020 xfs_finish_rename(
3021 	struct xfs_trans	*tp)
3022 {
3023 	/*
3024 	 * If this is a synchronous mount, make sure that the rename transaction
3025 	 * goes to disk before returning to the user.
3026 	 */
3027 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3028 		xfs_trans_set_sync(tp);
3029 
3030 	return xfs_trans_commit(tp);
3031 }
3032 
3033 /*
3034  * xfs_cross_rename()
3035  *
3036  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3037  */
3038 STATIC int
3039 xfs_cross_rename(
3040 	struct xfs_trans	*tp,
3041 	struct xfs_inode	*dp1,
3042 	struct xfs_name		*name1,
3043 	struct xfs_inode	*ip1,
3044 	struct xfs_inode	*dp2,
3045 	struct xfs_name		*name2,
3046 	struct xfs_inode	*ip2,
3047 	int			spaceres)
3048 {
3049 	int		error = 0;
3050 	int		ip1_flags = 0;
3051 	int		ip2_flags = 0;
3052 	int		dp2_flags = 0;
3053 
3054 	/* Swap inode number for dirent in first parent */
3055 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3056 	if (error)
3057 		goto out_trans_abort;
3058 
3059 	/* Swap inode number for dirent in second parent */
3060 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3061 	if (error)
3062 		goto out_trans_abort;
3063 
3064 	/*
3065 	 * If we're renaming one or more directories across different parents,
3066 	 * update the respective ".." entries (and link counts) to match the new
3067 	 * parents.
3068 	 */
3069 	if (dp1 != dp2) {
3070 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3071 
3072 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3073 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3074 						dp1->i_ino, spaceres);
3075 			if (error)
3076 				goto out_trans_abort;
3077 
3078 			/* transfer ip2 ".." reference to dp1 */
3079 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3080 				error = xfs_droplink(tp, dp2);
3081 				if (error)
3082 					goto out_trans_abort;
3083 				xfs_bumplink(tp, dp1);
3084 			}
3085 
3086 			/*
3087 			 * Although ip1 isn't changed here, userspace needs
3088 			 * to be warned about the change, so that applications
3089 			 * relying on it (like backup ones), will properly
3090 			 * notify the change
3091 			 */
3092 			ip1_flags |= XFS_ICHGTIME_CHG;
3093 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3094 		}
3095 
3096 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3097 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3098 						dp2->i_ino, spaceres);
3099 			if (error)
3100 				goto out_trans_abort;
3101 
3102 			/* transfer ip1 ".." reference to dp2 */
3103 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3104 				error = xfs_droplink(tp, dp1);
3105 				if (error)
3106 					goto out_trans_abort;
3107 				xfs_bumplink(tp, dp2);
3108 			}
3109 
3110 			/*
3111 			 * Although ip2 isn't changed here, userspace needs
3112 			 * to be warned about the change, so that applications
3113 			 * relying on it (like backup ones), will properly
3114 			 * notify the change
3115 			 */
3116 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3117 			ip2_flags |= XFS_ICHGTIME_CHG;
3118 		}
3119 	}
3120 
3121 	if (ip1_flags) {
3122 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3123 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3124 	}
3125 	if (ip2_flags) {
3126 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3127 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3128 	}
3129 	if (dp2_flags) {
3130 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3131 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3132 	}
3133 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3134 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3135 	return xfs_finish_rename(tp);
3136 
3137 out_trans_abort:
3138 	xfs_trans_cancel(tp);
3139 	return error;
3140 }
3141 
3142 /*
3143  * xfs_rename_alloc_whiteout()
3144  *
3145  * Return a referenced, unlinked, unlocked inode that that can be used as a
3146  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3147  * crash between allocating the inode and linking it into the rename transaction
3148  * recovery will free the inode and we won't leak it.
3149  */
3150 static int
3151 xfs_rename_alloc_whiteout(
3152 	struct xfs_inode	*dp,
3153 	struct xfs_inode	**wip)
3154 {
3155 	struct xfs_inode	*tmpfile;
3156 	int			error;
3157 
3158 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3159 	if (error)
3160 		return error;
3161 
3162 	/*
3163 	 * Prepare the tmpfile inode as if it were created through the VFS.
3164 	 * Complete the inode setup and flag it as linkable.  nlink is already
3165 	 * zero, so we can skip the drop_nlink.
3166 	 */
3167 	xfs_setup_iops(tmpfile);
3168 	xfs_finish_inode_setup(tmpfile);
3169 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3170 
3171 	*wip = tmpfile;
3172 	return 0;
3173 }
3174 
3175 /*
3176  * xfs_rename
3177  */
3178 int
3179 xfs_rename(
3180 	struct xfs_inode	*src_dp,
3181 	struct xfs_name		*src_name,
3182 	struct xfs_inode	*src_ip,
3183 	struct xfs_inode	*target_dp,
3184 	struct xfs_name		*target_name,
3185 	struct xfs_inode	*target_ip,
3186 	unsigned int		flags)
3187 {
3188 	struct xfs_mount	*mp = src_dp->i_mount;
3189 	struct xfs_trans	*tp;
3190 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3191 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3192 	struct xfs_buf		*agibp;
3193 	int			num_inodes = __XFS_SORT_INODES;
3194 	bool			new_parent = (src_dp != target_dp);
3195 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3196 	int			spaceres;
3197 	int			error;
3198 
3199 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3200 
3201 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3202 		return -EINVAL;
3203 
3204 	/*
3205 	 * If we are doing a whiteout operation, allocate the whiteout inode
3206 	 * we will be placing at the target and ensure the type is set
3207 	 * appropriately.
3208 	 */
3209 	if (flags & RENAME_WHITEOUT) {
3210 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3211 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3212 		if (error)
3213 			return error;
3214 
3215 		/* setup target dirent info as whiteout */
3216 		src_name->type = XFS_DIR3_FT_CHRDEV;
3217 	}
3218 
3219 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3220 				inodes, &num_inodes);
3221 
3222 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3223 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3224 	if (error == -ENOSPC) {
3225 		spaceres = 0;
3226 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3227 				&tp);
3228 	}
3229 	if (error)
3230 		goto out_release_wip;
3231 
3232 	/*
3233 	 * Attach the dquots to the inodes
3234 	 */
3235 	error = xfs_qm_vop_rename_dqattach(inodes);
3236 	if (error)
3237 		goto out_trans_cancel;
3238 
3239 	/*
3240 	 * Lock all the participating inodes. Depending upon whether
3241 	 * the target_name exists in the target directory, and
3242 	 * whether the target directory is the same as the source
3243 	 * directory, we can lock from 2 to 4 inodes.
3244 	 */
3245 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3246 
3247 	/*
3248 	 * Join all the inodes to the transaction. From this point on,
3249 	 * we can rely on either trans_commit or trans_cancel to unlock
3250 	 * them.
3251 	 */
3252 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3253 	if (new_parent)
3254 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3255 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3256 	if (target_ip)
3257 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3258 	if (wip)
3259 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3260 
3261 	/*
3262 	 * If we are using project inheritance, we only allow renames
3263 	 * into our tree when the project IDs are the same; else the
3264 	 * tree quota mechanism would be circumvented.
3265 	 */
3266 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3267 		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3268 		error = -EXDEV;
3269 		goto out_trans_cancel;
3270 	}
3271 
3272 	/* RENAME_EXCHANGE is unique from here on. */
3273 	if (flags & RENAME_EXCHANGE)
3274 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3275 					target_dp, target_name, target_ip,
3276 					spaceres);
3277 
3278 	/*
3279 	 * Check for expected errors before we dirty the transaction
3280 	 * so we can return an error without a transaction abort.
3281 	 */
3282 	if (target_ip == NULL) {
3283 		/*
3284 		 * If there's no space reservation, check the entry will
3285 		 * fit before actually inserting it.
3286 		 */
3287 		if (!spaceres) {
3288 			error = xfs_dir_canenter(tp, target_dp, target_name);
3289 			if (error)
3290 				goto out_trans_cancel;
3291 		}
3292 	} else {
3293 		/*
3294 		 * If target exists and it's a directory, check that whether
3295 		 * it can be destroyed.
3296 		 */
3297 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3298 		    (!xfs_dir_isempty(target_ip) ||
3299 		     (VFS_I(target_ip)->i_nlink > 2))) {
3300 			error = -EEXIST;
3301 			goto out_trans_cancel;
3302 		}
3303 	}
3304 
3305 	/*
3306 	 * Directory entry creation below may acquire the AGF. Remove
3307 	 * the whiteout from the unlinked list first to preserve correct
3308 	 * AGI/AGF locking order. This dirties the transaction so failures
3309 	 * after this point will abort and log recovery will clean up the
3310 	 * mess.
3311 	 *
3312 	 * For whiteouts, we need to bump the link count on the whiteout
3313 	 * inode. After this point, we have a real link, clear the tmpfile
3314 	 * state flag from the inode so it doesn't accidentally get misused
3315 	 * in future.
3316 	 */
3317 	if (wip) {
3318 		ASSERT(VFS_I(wip)->i_nlink == 0);
3319 		error = xfs_iunlink_remove(tp, wip);
3320 		if (error)
3321 			goto out_trans_cancel;
3322 
3323 		xfs_bumplink(tp, wip);
3324 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3325 	}
3326 
3327 	/*
3328 	 * Set up the target.
3329 	 */
3330 	if (target_ip == NULL) {
3331 		/*
3332 		 * If target does not exist and the rename crosses
3333 		 * directories, adjust the target directory link count
3334 		 * to account for the ".." reference from the new entry.
3335 		 */
3336 		error = xfs_dir_createname(tp, target_dp, target_name,
3337 					   src_ip->i_ino, spaceres);
3338 		if (error)
3339 			goto out_trans_cancel;
3340 
3341 		xfs_trans_ichgtime(tp, target_dp,
3342 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3343 
3344 		if (new_parent && src_is_directory) {
3345 			xfs_bumplink(tp, target_dp);
3346 		}
3347 	} else { /* target_ip != NULL */
3348 		/*
3349 		 * Link the source inode under the target name.
3350 		 * If the source inode is a directory and we are moving
3351 		 * it across directories, its ".." entry will be
3352 		 * inconsistent until we replace that down below.
3353 		 *
3354 		 * In case there is already an entry with the same
3355 		 * name at the destination directory, remove it first.
3356 		 */
3357 
3358 		/*
3359 		 * Check whether the replace operation will need to allocate
3360 		 * blocks.  This happens when the shortform directory lacks
3361 		 * space and we have to convert it to a block format directory.
3362 		 * When more blocks are necessary, we must lock the AGI first
3363 		 * to preserve locking order (AGI -> AGF).
3364 		 */
3365 		if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3366 			error = xfs_read_agi(mp, tp,
3367 					XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3368 					&agibp);
3369 			if (error)
3370 				goto out_trans_cancel;
3371 		}
3372 
3373 		error = xfs_dir_replace(tp, target_dp, target_name,
3374 					src_ip->i_ino, spaceres);
3375 		if (error)
3376 			goto out_trans_cancel;
3377 
3378 		xfs_trans_ichgtime(tp, target_dp,
3379 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3380 
3381 		/*
3382 		 * Decrement the link count on the target since the target
3383 		 * dir no longer points to it.
3384 		 */
3385 		error = xfs_droplink(tp, target_ip);
3386 		if (error)
3387 			goto out_trans_cancel;
3388 
3389 		if (src_is_directory) {
3390 			/*
3391 			 * Drop the link from the old "." entry.
3392 			 */
3393 			error = xfs_droplink(tp, target_ip);
3394 			if (error)
3395 				goto out_trans_cancel;
3396 		}
3397 	} /* target_ip != NULL */
3398 
3399 	/*
3400 	 * Remove the source.
3401 	 */
3402 	if (new_parent && src_is_directory) {
3403 		/*
3404 		 * Rewrite the ".." entry to point to the new
3405 		 * directory.
3406 		 */
3407 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3408 					target_dp->i_ino, spaceres);
3409 		ASSERT(error != -EEXIST);
3410 		if (error)
3411 			goto out_trans_cancel;
3412 	}
3413 
3414 	/*
3415 	 * We always want to hit the ctime on the source inode.
3416 	 *
3417 	 * This isn't strictly required by the standards since the source
3418 	 * inode isn't really being changed, but old unix file systems did
3419 	 * it and some incremental backup programs won't work without it.
3420 	 */
3421 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3422 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3423 
3424 	/*
3425 	 * Adjust the link count on src_dp.  This is necessary when
3426 	 * renaming a directory, either within one parent when
3427 	 * the target existed, or across two parent directories.
3428 	 */
3429 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3430 
3431 		/*
3432 		 * Decrement link count on src_directory since the
3433 		 * entry that's moved no longer points to it.
3434 		 */
3435 		error = xfs_droplink(tp, src_dp);
3436 		if (error)
3437 			goto out_trans_cancel;
3438 	}
3439 
3440 	/*
3441 	 * For whiteouts, we only need to update the source dirent with the
3442 	 * inode number of the whiteout inode rather than removing it
3443 	 * altogether.
3444 	 */
3445 	if (wip) {
3446 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3447 					spaceres);
3448 	} else
3449 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3450 					   spaceres);
3451 	if (error)
3452 		goto out_trans_cancel;
3453 
3454 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3455 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3456 	if (new_parent)
3457 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3458 
3459 	error = xfs_finish_rename(tp);
3460 	if (wip)
3461 		xfs_irele(wip);
3462 	return error;
3463 
3464 out_trans_cancel:
3465 	xfs_trans_cancel(tp);
3466 out_release_wip:
3467 	if (wip)
3468 		xfs_irele(wip);
3469 	return error;
3470 }
3471 
3472 STATIC int
3473 xfs_iflush_cluster(
3474 	struct xfs_inode	*ip,
3475 	struct xfs_buf		*bp)
3476 {
3477 	struct xfs_mount	*mp = ip->i_mount;
3478 	struct xfs_perag	*pag;
3479 	unsigned long		first_index, mask;
3480 	int			cilist_size;
3481 	struct xfs_inode	**cilist;
3482 	struct xfs_inode	*cip;
3483 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3484 	int			nr_found;
3485 	int			clcount = 0;
3486 	int			i;
3487 
3488 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3489 
3490 	cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3491 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3492 	if (!cilist)
3493 		goto out_put;
3494 
3495 	mask = ~(igeo->inodes_per_cluster - 1);
3496 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3497 	rcu_read_lock();
3498 	/* really need a gang lookup range call here */
3499 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3500 					first_index, igeo->inodes_per_cluster);
3501 	if (nr_found == 0)
3502 		goto out_free;
3503 
3504 	for (i = 0; i < nr_found; i++) {
3505 		cip = cilist[i];
3506 		if (cip == ip)
3507 			continue;
3508 
3509 		/*
3510 		 * because this is an RCU protected lookup, we could find a
3511 		 * recently freed or even reallocated inode during the lookup.
3512 		 * We need to check under the i_flags_lock for a valid inode
3513 		 * here. Skip it if it is not valid or the wrong inode.
3514 		 */
3515 		spin_lock(&cip->i_flags_lock);
3516 		if (!cip->i_ino ||
3517 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3518 			spin_unlock(&cip->i_flags_lock);
3519 			continue;
3520 		}
3521 
3522 		/*
3523 		 * Once we fall off the end of the cluster, no point checking
3524 		 * any more inodes in the list because they will also all be
3525 		 * outside the cluster.
3526 		 */
3527 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3528 			spin_unlock(&cip->i_flags_lock);
3529 			break;
3530 		}
3531 		spin_unlock(&cip->i_flags_lock);
3532 
3533 		/*
3534 		 * Do an un-protected check to see if the inode is dirty and
3535 		 * is a candidate for flushing.  These checks will be repeated
3536 		 * later after the appropriate locks are acquired.
3537 		 */
3538 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3539 			continue;
3540 
3541 		/*
3542 		 * Try to get locks.  If any are unavailable or it is pinned,
3543 		 * then this inode cannot be flushed and is skipped.
3544 		 */
3545 
3546 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3547 			continue;
3548 		if (!xfs_iflock_nowait(cip)) {
3549 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3550 			continue;
3551 		}
3552 		if (xfs_ipincount(cip)) {
3553 			xfs_ifunlock(cip);
3554 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3555 			continue;
3556 		}
3557 
3558 
3559 		/*
3560 		 * Check the inode number again, just to be certain we are not
3561 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3562 		 * in that function for more information as to why the initial
3563 		 * check is not sufficient.
3564 		 */
3565 		if (!cip->i_ino) {
3566 			xfs_ifunlock(cip);
3567 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3568 			continue;
3569 		}
3570 
3571 		/*
3572 		 * arriving here means that this inode can be flushed.  First
3573 		 * re-check that it's dirty before flushing.
3574 		 */
3575 		if (!xfs_inode_clean(cip)) {
3576 			int	error;
3577 			error = xfs_iflush_int(cip, bp);
3578 			if (error) {
3579 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3580 				goto cluster_corrupt_out;
3581 			}
3582 			clcount++;
3583 		} else {
3584 			xfs_ifunlock(cip);
3585 		}
3586 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3587 	}
3588 
3589 	if (clcount) {
3590 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3591 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3592 	}
3593 
3594 out_free:
3595 	rcu_read_unlock();
3596 	kmem_free(cilist);
3597 out_put:
3598 	xfs_perag_put(pag);
3599 	return 0;
3600 
3601 
3602 cluster_corrupt_out:
3603 	/*
3604 	 * Corruption detected in the clustering loop.  Invalidate the
3605 	 * inode buffer and shut down the filesystem.
3606 	 */
3607 	rcu_read_unlock();
3608 
3609 	/*
3610 	 * We'll always have an inode attached to the buffer for completion
3611 	 * process by the time we are called from xfs_iflush(). Hence we have
3612 	 * always need to do IO completion processing to abort the inodes
3613 	 * attached to the buffer.  handle them just like the shutdown case in
3614 	 * xfs_buf_submit().
3615 	 */
3616 	ASSERT(bp->b_iodone);
3617 	bp->b_flags |= XBF_ASYNC;
3618 	bp->b_flags &= ~XBF_DONE;
3619 	xfs_buf_stale(bp);
3620 	xfs_buf_ioerror(bp, -EIO);
3621 	xfs_buf_ioend(bp);
3622 
3623 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3624 
3625 	/* abort the corrupt inode, as it was not attached to the buffer */
3626 	xfs_iflush_abort(cip, false);
3627 	kmem_free(cilist);
3628 	xfs_perag_put(pag);
3629 	return -EFSCORRUPTED;
3630 }
3631 
3632 /*
3633  * Flush dirty inode metadata into the backing buffer.
3634  *
3635  * The caller must have the inode lock and the inode flush lock held.  The
3636  * inode lock will still be held upon return to the caller, and the inode
3637  * flush lock will be released after the inode has reached the disk.
3638  *
3639  * The caller must write out the buffer returned in *bpp and release it.
3640  */
3641 int
3642 xfs_iflush(
3643 	struct xfs_inode	*ip,
3644 	struct xfs_buf		**bpp)
3645 {
3646 	struct xfs_mount	*mp = ip->i_mount;
3647 	struct xfs_buf		*bp = NULL;
3648 	struct xfs_dinode	*dip;
3649 	int			error;
3650 
3651 	XFS_STATS_INC(mp, xs_iflush_count);
3652 
3653 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3654 	ASSERT(xfs_isiflocked(ip));
3655 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3656 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3657 
3658 	*bpp = NULL;
3659 
3660 	xfs_iunpin_wait(ip);
3661 
3662 	/*
3663 	 * For stale inodes we cannot rely on the backing buffer remaining
3664 	 * stale in cache for the remaining life of the stale inode and so
3665 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3666 	 * inodes below. We have to check this after ensuring the inode is
3667 	 * unpinned so that it is safe to reclaim the stale inode after the
3668 	 * flush call.
3669 	 */
3670 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3671 		xfs_ifunlock(ip);
3672 		return 0;
3673 	}
3674 
3675 	/*
3676 	 * This may have been unpinned because the filesystem is shutting
3677 	 * down forcibly. If that's the case we must not write this inode
3678 	 * to disk, because the log record didn't make it to disk.
3679 	 *
3680 	 * We also have to remove the log item from the AIL in this case,
3681 	 * as we wait for an empty AIL as part of the unmount process.
3682 	 */
3683 	if (XFS_FORCED_SHUTDOWN(mp)) {
3684 		error = -EIO;
3685 		goto abort_out;
3686 	}
3687 
3688 	/*
3689 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3690 	 * operation here, so we may get  an EAGAIN error. In that case, we
3691 	 * simply want to return with the inode still dirty.
3692 	 *
3693 	 * If we get any other error, we effectively have a corruption situation
3694 	 * and we cannot flush the inode, so we treat it the same as failing
3695 	 * xfs_iflush_int().
3696 	 */
3697 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3698 			       0);
3699 	if (error == -EAGAIN) {
3700 		xfs_ifunlock(ip);
3701 		return error;
3702 	}
3703 	if (error)
3704 		goto corrupt_out;
3705 
3706 	/*
3707 	 * First flush out the inode that xfs_iflush was called with.
3708 	 */
3709 	error = xfs_iflush_int(ip, bp);
3710 	if (error)
3711 		goto corrupt_out;
3712 
3713 	/*
3714 	 * If the buffer is pinned then push on the log now so we won't
3715 	 * get stuck waiting in the write for too long.
3716 	 */
3717 	if (xfs_buf_ispinned(bp))
3718 		xfs_log_force(mp, 0);
3719 
3720 	/*
3721 	 * inode clustering: try to gather other inodes into this write
3722 	 *
3723 	 * Note: Any error during clustering will result in the filesystem
3724 	 * being shut down and completion callbacks run on the cluster buffer.
3725 	 * As we have already flushed and attached this inode to the buffer,
3726 	 * it has already been aborted and released by xfs_iflush_cluster() and
3727 	 * so we have no further error handling to do here.
3728 	 */
3729 	error = xfs_iflush_cluster(ip, bp);
3730 	if (error)
3731 		return error;
3732 
3733 	*bpp = bp;
3734 	return 0;
3735 
3736 corrupt_out:
3737 	if (bp)
3738 		xfs_buf_relse(bp);
3739 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3740 abort_out:
3741 	/* abort the corrupt inode, as it was not attached to the buffer */
3742 	xfs_iflush_abort(ip, false);
3743 	return error;
3744 }
3745 
3746 /*
3747  * If there are inline format data / attr forks attached to this inode,
3748  * make sure they're not corrupt.
3749  */
3750 bool
3751 xfs_inode_verify_forks(
3752 	struct xfs_inode	*ip)
3753 {
3754 	struct xfs_ifork	*ifp;
3755 	xfs_failaddr_t		fa;
3756 
3757 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3758 	if (fa) {
3759 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3760 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3761 				ifp->if_u1.if_data, ifp->if_bytes, fa);
3762 		return false;
3763 	}
3764 
3765 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3766 	if (fa) {
3767 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3768 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3769 				ifp ? ifp->if_u1.if_data : NULL,
3770 				ifp ? ifp->if_bytes : 0, fa);
3771 		return false;
3772 	}
3773 	return true;
3774 }
3775 
3776 STATIC int
3777 xfs_iflush_int(
3778 	struct xfs_inode	*ip,
3779 	struct xfs_buf		*bp)
3780 {
3781 	struct xfs_inode_log_item *iip = ip->i_itemp;
3782 	struct xfs_dinode	*dip;
3783 	struct xfs_mount	*mp = ip->i_mount;
3784 
3785 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3786 	ASSERT(xfs_isiflocked(ip));
3787 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3788 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3789 	ASSERT(iip != NULL && iip->ili_fields != 0);
3790 
3791 	/* set *dip = inode's place in the buffer */
3792 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3793 
3794 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3795 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3796 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3797 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3798 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3799 		goto corrupt_out;
3800 	}
3801 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3802 		if (XFS_TEST_ERROR(
3803 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3804 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3805 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3806 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3807 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3808 				__func__, ip->i_ino, ip);
3809 			goto corrupt_out;
3810 		}
3811 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3812 		if (XFS_TEST_ERROR(
3813 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3814 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3815 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3816 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3817 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3819 				__func__, ip->i_ino, ip);
3820 			goto corrupt_out;
3821 		}
3822 	}
3823 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3824 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3825 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3826 			"%s: detected corrupt incore inode %Lu, "
3827 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3828 			__func__, ip->i_ino,
3829 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3830 			ip->i_d.di_nblocks, ip);
3831 		goto corrupt_out;
3832 	}
3833 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3834 				mp, XFS_ERRTAG_IFLUSH_6)) {
3835 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3836 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3837 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3838 		goto corrupt_out;
3839 	}
3840 
3841 	/*
3842 	 * Inode item log recovery for v2 inodes are dependent on the
3843 	 * di_flushiter count for correct sequencing. We bump the flush
3844 	 * iteration count so we can detect flushes which postdate a log record
3845 	 * during recovery. This is redundant as we now log every change and
3846 	 * hence this can't happen but we need to still do it to ensure
3847 	 * backwards compatibility with old kernels that predate logging all
3848 	 * inode changes.
3849 	 */
3850 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3851 		ip->i_d.di_flushiter++;
3852 
3853 	/* Check the inline fork data before we write out. */
3854 	if (!xfs_inode_verify_forks(ip))
3855 		goto corrupt_out;
3856 
3857 	/*
3858 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3859 	 * copy out the core of the inode, because if the inode is dirty at all
3860 	 * the core must be.
3861 	 */
3862 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3863 
3864 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3865 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3866 		ip->i_d.di_flushiter = 0;
3867 
3868 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3869 	if (XFS_IFORK_Q(ip))
3870 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3871 	xfs_inobp_check(mp, bp);
3872 
3873 	/*
3874 	 * We've recorded everything logged in the inode, so we'd like to clear
3875 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3876 	 * However, we can't stop logging all this information until the data
3877 	 * we've copied into the disk buffer is written to disk.  If we did we
3878 	 * might overwrite the copy of the inode in the log with all the data
3879 	 * after re-logging only part of it, and in the face of a crash we
3880 	 * wouldn't have all the data we need to recover.
3881 	 *
3882 	 * What we do is move the bits to the ili_last_fields field.  When
3883 	 * logging the inode, these bits are moved back to the ili_fields field.
3884 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3885 	 * know that the information those bits represent is permanently on
3886 	 * disk.  As long as the flush completes before the inode is logged
3887 	 * again, then both ili_fields and ili_last_fields will be cleared.
3888 	 *
3889 	 * We can play with the ili_fields bits here, because the inode lock
3890 	 * must be held exclusively in order to set bits there and the flush
3891 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3892 	 * done routine can tell whether or not to look in the AIL.  Also, store
3893 	 * the current LSN of the inode so that we can tell whether the item has
3894 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3895 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3896 	 * atomically.
3897 	 */
3898 	iip->ili_last_fields = iip->ili_fields;
3899 	iip->ili_fields = 0;
3900 	iip->ili_fsync_fields = 0;
3901 	iip->ili_logged = 1;
3902 
3903 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3904 				&iip->ili_item.li_lsn);
3905 
3906 	/*
3907 	 * Attach the function xfs_iflush_done to the inode's
3908 	 * buffer.  This will remove the inode from the AIL
3909 	 * and unlock the inode's flush lock when the inode is
3910 	 * completely written to disk.
3911 	 */
3912 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3913 
3914 	/* generate the checksum. */
3915 	xfs_dinode_calc_crc(mp, dip);
3916 
3917 	ASSERT(!list_empty(&bp->b_li_list));
3918 	ASSERT(bp->b_iodone != NULL);
3919 	return 0;
3920 
3921 corrupt_out:
3922 	return -EFSCORRUPTED;
3923 }
3924 
3925 /* Release an inode. */
3926 void
3927 xfs_irele(
3928 	struct xfs_inode	*ip)
3929 {
3930 	trace_xfs_irele(ip, _RET_IP_);
3931 	iput(VFS_I(ip));
3932 }
3933