xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_bmap.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_log.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
37 #include "xfs_ag.h"
38 #include "xfs_log_priv.h"
39 
40 struct kmem_cache *xfs_inode_cache;
41 
42 /*
43  * Used in xfs_itruncate_extents().  This is the maximum number of extents
44  * freed from a file in a single transaction.
45  */
46 #define	XFS_ITRUNC_MAX_EXTENTS	2
47 
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
50 	struct xfs_inode *);
51 
52 /*
53  * helper function to extract extent size hint from inode
54  */
55 xfs_extlen_t
56 xfs_get_extsz_hint(
57 	struct xfs_inode	*ip)
58 {
59 	/*
60 	 * No point in aligning allocations if we need to COW to actually
61 	 * write to them.
62 	 */
63 	if (xfs_is_always_cow_inode(ip))
64 		return 0;
65 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
66 		return ip->i_extsize;
67 	if (XFS_IS_REALTIME_INODE(ip))
68 		return ip->i_mount->m_sb.sb_rextsize;
69 	return 0;
70 }
71 
72 /*
73  * Helper function to extract CoW extent size hint from inode.
74  * Between the extent size hint and the CoW extent size hint, we
75  * return the greater of the two.  If the value is zero (automatic),
76  * use the default size.
77  */
78 xfs_extlen_t
79 xfs_get_cowextsz_hint(
80 	struct xfs_inode	*ip)
81 {
82 	xfs_extlen_t		a, b;
83 
84 	a = 0;
85 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
86 		a = ip->i_cowextsize;
87 	b = xfs_get_extsz_hint(ip);
88 
89 	a = max(a, b);
90 	if (a == 0)
91 		return XFS_DEFAULT_COWEXTSZ_HINT;
92 	return a;
93 }
94 
95 /*
96  * These two are wrapper routines around the xfs_ilock() routine used to
97  * centralize some grungy code.  They are used in places that wish to lock the
98  * inode solely for reading the extents.  The reason these places can't just
99  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
100  * bringing in of the extents from disk for a file in b-tree format.  If the
101  * inode is in b-tree format, then we need to lock the inode exclusively until
102  * the extents are read in.  Locking it exclusively all the time would limit
103  * our parallelism unnecessarily, though.  What we do instead is check to see
104  * if the extents have been read in yet, and only lock the inode exclusively
105  * if they have not.
106  *
107  * The functions return a value which should be given to the corresponding
108  * xfs_iunlock() call.
109  */
110 uint
111 xfs_ilock_data_map_shared(
112 	struct xfs_inode	*ip)
113 {
114 	uint			lock_mode = XFS_ILOCK_SHARED;
115 
116 	if (xfs_need_iread_extents(&ip->i_df))
117 		lock_mode = XFS_ILOCK_EXCL;
118 	xfs_ilock(ip, lock_mode);
119 	return lock_mode;
120 }
121 
122 uint
123 xfs_ilock_attr_map_shared(
124 	struct xfs_inode	*ip)
125 {
126 	uint			lock_mode = XFS_ILOCK_SHARED;
127 
128 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
129 		lock_mode = XFS_ILOCK_EXCL;
130 	xfs_ilock(ip, lock_mode);
131 	return lock_mode;
132 }
133 
134 /*
135  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
136  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
137  * various combinations of the locks to be obtained.
138  *
139  * The 3 locks should always be ordered so that the IO lock is obtained first,
140  * the mmap lock second and the ilock last in order to prevent deadlock.
141  *
142  * Basic locking order:
143  *
144  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
145  *
146  * mmap_lock locking order:
147  *
148  * i_rwsem -> page lock -> mmap_lock
149  * mmap_lock -> invalidate_lock -> page_lock
150  *
151  * The difference in mmap_lock locking order mean that we cannot hold the
152  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
153  * can fault in pages during copy in/out (for buffered IO) or require the
154  * mmap_lock in get_user_pages() to map the user pages into the kernel address
155  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
156  * fault because page faults already hold the mmap_lock.
157  *
158  * Hence to serialise fully against both syscall and mmap based IO, we need to
159  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
160  * both taken in places where we need to invalidate the page cache in a race
161  * free manner (e.g. truncate, hole punch and other extent manipulation
162  * functions).
163  */
164 void
165 xfs_ilock(
166 	xfs_inode_t		*ip,
167 	uint			lock_flags)
168 {
169 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
170 
171 	/*
172 	 * You can't set both SHARED and EXCL for the same lock,
173 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
174 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
175 	 */
176 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
177 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
178 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
179 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
180 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
181 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
182 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
183 
184 	if (lock_flags & XFS_IOLOCK_EXCL) {
185 		down_write_nested(&VFS_I(ip)->i_rwsem,
186 				  XFS_IOLOCK_DEP(lock_flags));
187 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
188 		down_read_nested(&VFS_I(ip)->i_rwsem,
189 				 XFS_IOLOCK_DEP(lock_flags));
190 	}
191 
192 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
193 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
194 				  XFS_MMAPLOCK_DEP(lock_flags));
195 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
196 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
197 				 XFS_MMAPLOCK_DEP(lock_flags));
198 	}
199 
200 	if (lock_flags & XFS_ILOCK_EXCL)
201 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 	else if (lock_flags & XFS_ILOCK_SHARED)
203 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
204 }
205 
206 /*
207  * This is just like xfs_ilock(), except that the caller
208  * is guaranteed not to sleep.  It returns 1 if it gets
209  * the requested locks and 0 otherwise.  If the IO lock is
210  * obtained but the inode lock cannot be, then the IO lock
211  * is dropped before returning.
212  *
213  * ip -- the inode being locked
214  * lock_flags -- this parameter indicates the inode's locks to be
215  *       to be locked.  See the comment for xfs_ilock() for a list
216  *	 of valid values.
217  */
218 int
219 xfs_ilock_nowait(
220 	xfs_inode_t		*ip,
221 	uint			lock_flags)
222 {
223 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
224 
225 	/*
226 	 * You can't set both SHARED and EXCL for the same lock,
227 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
228 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
229 	 */
230 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
231 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
233 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
234 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
235 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
236 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
237 
238 	if (lock_flags & XFS_IOLOCK_EXCL) {
239 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
240 			goto out;
241 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
242 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
243 			goto out;
244 	}
245 
246 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
247 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
248 			goto out_undo_iolock;
249 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
250 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
251 			goto out_undo_iolock;
252 	}
253 
254 	if (lock_flags & XFS_ILOCK_EXCL) {
255 		if (!mrtryupdate(&ip->i_lock))
256 			goto out_undo_mmaplock;
257 	} else if (lock_flags & XFS_ILOCK_SHARED) {
258 		if (!mrtryaccess(&ip->i_lock))
259 			goto out_undo_mmaplock;
260 	}
261 	return 1;
262 
263 out_undo_mmaplock:
264 	if (lock_flags & XFS_MMAPLOCK_EXCL)
265 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
266 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
267 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
268 out_undo_iolock:
269 	if (lock_flags & XFS_IOLOCK_EXCL)
270 		up_write(&VFS_I(ip)->i_rwsem);
271 	else if (lock_flags & XFS_IOLOCK_SHARED)
272 		up_read(&VFS_I(ip)->i_rwsem);
273 out:
274 	return 0;
275 }
276 
277 /*
278  * xfs_iunlock() is used to drop the inode locks acquired with
279  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
280  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
281  * that we know which locks to drop.
282  *
283  * ip -- the inode being unlocked
284  * lock_flags -- this parameter indicates the inode's locks to be
285  *       to be unlocked.  See the comment for xfs_ilock() for a list
286  *	 of valid values for this parameter.
287  *
288  */
289 void
290 xfs_iunlock(
291 	xfs_inode_t		*ip,
292 	uint			lock_flags)
293 {
294 	/*
295 	 * You can't set both SHARED and EXCL for the same lock,
296 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
297 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
298 	 */
299 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
300 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
302 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
303 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
304 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
305 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
306 	ASSERT(lock_flags != 0);
307 
308 	if (lock_flags & XFS_IOLOCK_EXCL)
309 		up_write(&VFS_I(ip)->i_rwsem);
310 	else if (lock_flags & XFS_IOLOCK_SHARED)
311 		up_read(&VFS_I(ip)->i_rwsem);
312 
313 	if (lock_flags & XFS_MMAPLOCK_EXCL)
314 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
315 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
316 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
317 
318 	if (lock_flags & XFS_ILOCK_EXCL)
319 		mrunlock_excl(&ip->i_lock);
320 	else if (lock_flags & XFS_ILOCK_SHARED)
321 		mrunlock_shared(&ip->i_lock);
322 
323 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
324 }
325 
326 /*
327  * give up write locks.  the i/o lock cannot be held nested
328  * if it is being demoted.
329  */
330 void
331 xfs_ilock_demote(
332 	xfs_inode_t		*ip,
333 	uint			lock_flags)
334 {
335 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
336 	ASSERT((lock_flags &
337 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
338 
339 	if (lock_flags & XFS_ILOCK_EXCL)
340 		mrdemote(&ip->i_lock);
341 	if (lock_flags & XFS_MMAPLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
343 	if (lock_flags & XFS_IOLOCK_EXCL)
344 		downgrade_write(&VFS_I(ip)->i_rwsem);
345 
346 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
347 }
348 
349 #if defined(DEBUG) || defined(XFS_WARN)
350 static inline bool
351 __xfs_rwsem_islocked(
352 	struct rw_semaphore	*rwsem,
353 	bool			shared)
354 {
355 	if (!debug_locks)
356 		return rwsem_is_locked(rwsem);
357 
358 	if (!shared)
359 		return lockdep_is_held_type(rwsem, 0);
360 
361 	/*
362 	 * We are checking that the lock is held at least in shared
363 	 * mode but don't care that it might be held exclusively
364 	 * (i.e. shared | excl). Hence we check if the lock is held
365 	 * in any mode rather than an explicit shared mode.
366 	 */
367 	return lockdep_is_held_type(rwsem, -1);
368 }
369 
370 bool
371 xfs_isilocked(
372 	struct xfs_inode	*ip,
373 	uint			lock_flags)
374 {
375 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
376 		if (!(lock_flags & XFS_ILOCK_SHARED))
377 			return !!ip->i_lock.mr_writer;
378 		return rwsem_is_locked(&ip->i_lock.mr_lock);
379 	}
380 
381 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
382 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
383 				(lock_flags & XFS_IOLOCK_SHARED));
384 	}
385 
386 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
387 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
388 				(lock_flags & XFS_IOLOCK_SHARED));
389 	}
390 
391 	ASSERT(0);
392 	return false;
393 }
394 #endif
395 
396 /*
397  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
398  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
399  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
400  * errors and warnings.
401  */
402 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
403 static bool
404 xfs_lockdep_subclass_ok(
405 	int subclass)
406 {
407 	return subclass < MAX_LOCKDEP_SUBCLASSES;
408 }
409 #else
410 #define xfs_lockdep_subclass_ok(subclass)	(true)
411 #endif
412 
413 /*
414  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
415  * value. This can be called for any type of inode lock combination, including
416  * parent locking. Care must be taken to ensure we don't overrun the subclass
417  * storage fields in the class mask we build.
418  */
419 static inline int
420 xfs_lock_inumorder(int lock_mode, int subclass)
421 {
422 	int	class = 0;
423 
424 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
425 			      XFS_ILOCK_RTSUM)));
426 	ASSERT(xfs_lockdep_subclass_ok(subclass));
427 
428 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
429 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
430 		class += subclass << XFS_IOLOCK_SHIFT;
431 	}
432 
433 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
434 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
435 		class += subclass << XFS_MMAPLOCK_SHIFT;
436 	}
437 
438 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
439 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
440 		class += subclass << XFS_ILOCK_SHIFT;
441 	}
442 
443 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
444 }
445 
446 /*
447  * The following routine will lock n inodes in exclusive mode.  We assume the
448  * caller calls us with the inodes in i_ino order.
449  *
450  * We need to detect deadlock where an inode that we lock is in the AIL and we
451  * start waiting for another inode that is locked by a thread in a long running
452  * transaction (such as truncate). This can result in deadlock since the long
453  * running trans might need to wait for the inode we just locked in order to
454  * push the tail and free space in the log.
455  *
456  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
457  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
458  * lock more than one at a time, lockdep will report false positives saying we
459  * have violated locking orders.
460  */
461 static void
462 xfs_lock_inodes(
463 	struct xfs_inode	**ips,
464 	int			inodes,
465 	uint			lock_mode)
466 {
467 	int			attempts = 0, i, j, try_lock;
468 	struct xfs_log_item	*lp;
469 
470 	/*
471 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
472 	 * support an arbitrary depth of locking here, but absolute limits on
473 	 * inodes depend on the type of locking and the limits placed by
474 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
475 	 * the asserts.
476 	 */
477 	ASSERT(ips && inodes >= 2 && inodes <= 5);
478 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
479 			    XFS_ILOCK_EXCL));
480 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
481 			      XFS_ILOCK_SHARED)));
482 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
483 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
484 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
485 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
486 
487 	if (lock_mode & XFS_IOLOCK_EXCL) {
488 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
489 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
490 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
491 
492 	try_lock = 0;
493 	i = 0;
494 again:
495 	for (; i < inodes; i++) {
496 		ASSERT(ips[i]);
497 
498 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
499 			continue;
500 
501 		/*
502 		 * If try_lock is not set yet, make sure all locked inodes are
503 		 * not in the AIL.  If any are, set try_lock to be used later.
504 		 */
505 		if (!try_lock) {
506 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
507 				lp = &ips[j]->i_itemp->ili_item;
508 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
509 					try_lock++;
510 			}
511 		}
512 
513 		/*
514 		 * If any of the previous locks we have locked is in the AIL,
515 		 * we must TRY to get the second and subsequent locks. If
516 		 * we can't get any, we must release all we have
517 		 * and try again.
518 		 */
519 		if (!try_lock) {
520 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
521 			continue;
522 		}
523 
524 		/* try_lock means we have an inode locked that is in the AIL. */
525 		ASSERT(i != 0);
526 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
527 			continue;
528 
529 		/*
530 		 * Unlock all previous guys and try again.  xfs_iunlock will try
531 		 * to push the tail if the inode is in the AIL.
532 		 */
533 		attempts++;
534 		for (j = i - 1; j >= 0; j--) {
535 			/*
536 			 * Check to see if we've already unlocked this one.  Not
537 			 * the first one going back, and the inode ptr is the
538 			 * same.
539 			 */
540 			if (j != (i - 1) && ips[j] == ips[j + 1])
541 				continue;
542 
543 			xfs_iunlock(ips[j], lock_mode);
544 		}
545 
546 		if ((attempts % 5) == 0) {
547 			delay(1); /* Don't just spin the CPU */
548 		}
549 		i = 0;
550 		try_lock = 0;
551 		goto again;
552 	}
553 }
554 
555 /*
556  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
557  * mmaplock must be double-locked separately since we use i_rwsem and
558  * invalidate_lock for that. We now support taking one lock EXCL and the
559  * other SHARED.
560  */
561 void
562 xfs_lock_two_inodes(
563 	struct xfs_inode	*ip0,
564 	uint			ip0_mode,
565 	struct xfs_inode	*ip1,
566 	uint			ip1_mode)
567 {
568 	int			attempts = 0;
569 	struct xfs_log_item	*lp;
570 
571 	ASSERT(hweight32(ip0_mode) == 1);
572 	ASSERT(hweight32(ip1_mode) == 1);
573 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
574 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
575 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
576 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
577 	ASSERT(ip0->i_ino != ip1->i_ino);
578 
579 	if (ip0->i_ino > ip1->i_ino) {
580 		swap(ip0, ip1);
581 		swap(ip0_mode, ip1_mode);
582 	}
583 
584  again:
585 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
586 
587 	/*
588 	 * If the first lock we have locked is in the AIL, we must TRY to get
589 	 * the second lock. If we can't get it, we must release the first one
590 	 * and try again.
591 	 */
592 	lp = &ip0->i_itemp->ili_item;
593 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
594 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
595 			xfs_iunlock(ip0, ip0_mode);
596 			if ((++attempts % 5) == 0)
597 				delay(1); /* Don't just spin the CPU */
598 			goto again;
599 		}
600 	} else {
601 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
602 	}
603 }
604 
605 uint
606 xfs_ip2xflags(
607 	struct xfs_inode	*ip)
608 {
609 	uint			flags = 0;
610 
611 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
612 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
613 			flags |= FS_XFLAG_REALTIME;
614 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
615 			flags |= FS_XFLAG_PREALLOC;
616 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
617 			flags |= FS_XFLAG_IMMUTABLE;
618 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
619 			flags |= FS_XFLAG_APPEND;
620 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
621 			flags |= FS_XFLAG_SYNC;
622 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
623 			flags |= FS_XFLAG_NOATIME;
624 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
625 			flags |= FS_XFLAG_NODUMP;
626 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
627 			flags |= FS_XFLAG_RTINHERIT;
628 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
629 			flags |= FS_XFLAG_PROJINHERIT;
630 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
631 			flags |= FS_XFLAG_NOSYMLINKS;
632 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
633 			flags |= FS_XFLAG_EXTSIZE;
634 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
635 			flags |= FS_XFLAG_EXTSZINHERIT;
636 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
637 			flags |= FS_XFLAG_NODEFRAG;
638 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
639 			flags |= FS_XFLAG_FILESTREAM;
640 	}
641 
642 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
643 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
644 			flags |= FS_XFLAG_DAX;
645 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
646 			flags |= FS_XFLAG_COWEXTSIZE;
647 	}
648 
649 	if (XFS_IFORK_Q(ip))
650 		flags |= FS_XFLAG_HASATTR;
651 	return flags;
652 }
653 
654 /*
655  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
656  * is allowed, otherwise it has to be an exact match. If a CI match is found,
657  * ci_name->name will point to a the actual name (caller must free) or
658  * will be set to NULL if an exact match is found.
659  */
660 int
661 xfs_lookup(
662 	struct xfs_inode	*dp,
663 	const struct xfs_name	*name,
664 	struct xfs_inode	**ipp,
665 	struct xfs_name		*ci_name)
666 {
667 	xfs_ino_t		inum;
668 	int			error;
669 
670 	trace_xfs_lookup(dp, name);
671 
672 	if (xfs_is_shutdown(dp->i_mount))
673 		return -EIO;
674 
675 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
676 	if (error)
677 		goto out_unlock;
678 
679 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
680 	if (error)
681 		goto out_free_name;
682 
683 	return 0;
684 
685 out_free_name:
686 	if (ci_name)
687 		kmem_free(ci_name->name);
688 out_unlock:
689 	*ipp = NULL;
690 	return error;
691 }
692 
693 /* Propagate di_flags from a parent inode to a child inode. */
694 static void
695 xfs_inode_inherit_flags(
696 	struct xfs_inode	*ip,
697 	const struct xfs_inode	*pip)
698 {
699 	unsigned int		di_flags = 0;
700 	xfs_failaddr_t		failaddr;
701 	umode_t			mode = VFS_I(ip)->i_mode;
702 
703 	if (S_ISDIR(mode)) {
704 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
705 			di_flags |= XFS_DIFLAG_RTINHERIT;
706 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
707 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
708 			ip->i_extsize = pip->i_extsize;
709 		}
710 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
711 			di_flags |= XFS_DIFLAG_PROJINHERIT;
712 	} else if (S_ISREG(mode)) {
713 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
714 		    xfs_has_realtime(ip->i_mount))
715 			di_flags |= XFS_DIFLAG_REALTIME;
716 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
717 			di_flags |= XFS_DIFLAG_EXTSIZE;
718 			ip->i_extsize = pip->i_extsize;
719 		}
720 	}
721 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
722 	    xfs_inherit_noatime)
723 		di_flags |= XFS_DIFLAG_NOATIME;
724 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
725 	    xfs_inherit_nodump)
726 		di_flags |= XFS_DIFLAG_NODUMP;
727 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
728 	    xfs_inherit_sync)
729 		di_flags |= XFS_DIFLAG_SYNC;
730 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
731 	    xfs_inherit_nosymlinks)
732 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
733 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
734 	    xfs_inherit_nodefrag)
735 		di_flags |= XFS_DIFLAG_NODEFRAG;
736 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
737 		di_flags |= XFS_DIFLAG_FILESTREAM;
738 
739 	ip->i_diflags |= di_flags;
740 
741 	/*
742 	 * Inode verifiers on older kernels only check that the extent size
743 	 * hint is an integer multiple of the rt extent size on realtime files.
744 	 * They did not check the hint alignment on a directory with both
745 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
746 	 * propagated from a directory into a new realtime file, new file
747 	 * allocations will fail due to math errors in the rt allocator and/or
748 	 * trip the verifiers.  Validate the hint settings in the new file so
749 	 * that we don't let broken hints propagate.
750 	 */
751 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
752 			VFS_I(ip)->i_mode, ip->i_diflags);
753 	if (failaddr) {
754 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
755 				   XFS_DIFLAG_EXTSZINHERIT);
756 		ip->i_extsize = 0;
757 	}
758 }
759 
760 /* Propagate di_flags2 from a parent inode to a child inode. */
761 static void
762 xfs_inode_inherit_flags2(
763 	struct xfs_inode	*ip,
764 	const struct xfs_inode	*pip)
765 {
766 	xfs_failaddr_t		failaddr;
767 
768 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
769 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
770 		ip->i_cowextsize = pip->i_cowextsize;
771 	}
772 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
773 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
774 
775 	/* Don't let invalid cowextsize hints propagate. */
776 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
777 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
778 	if (failaddr) {
779 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
780 		ip->i_cowextsize = 0;
781 	}
782 }
783 
784 /*
785  * Initialise a newly allocated inode and return the in-core inode to the
786  * caller locked exclusively.
787  */
788 int
789 xfs_init_new_inode(
790 	struct user_namespace	*mnt_userns,
791 	struct xfs_trans	*tp,
792 	struct xfs_inode	*pip,
793 	xfs_ino_t		ino,
794 	umode_t			mode,
795 	xfs_nlink_t		nlink,
796 	dev_t			rdev,
797 	prid_t			prid,
798 	bool			init_xattrs,
799 	struct xfs_inode	**ipp)
800 {
801 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
802 	struct xfs_mount	*mp = tp->t_mountp;
803 	struct xfs_inode	*ip;
804 	unsigned int		flags;
805 	int			error;
806 	struct timespec64	tv;
807 	struct inode		*inode;
808 
809 	/*
810 	 * Protect against obviously corrupt allocation btree records. Later
811 	 * xfs_iget checks will catch re-allocation of other active in-memory
812 	 * and on-disk inodes. If we don't catch reallocating the parent inode
813 	 * here we will deadlock in xfs_iget() so we have to do these checks
814 	 * first.
815 	 */
816 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
817 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
818 		return -EFSCORRUPTED;
819 	}
820 
821 	/*
822 	 * Get the in-core inode with the lock held exclusively to prevent
823 	 * others from looking at until we're done.
824 	 */
825 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
826 	if (error)
827 		return error;
828 
829 	ASSERT(ip != NULL);
830 	inode = VFS_I(ip);
831 	set_nlink(inode, nlink);
832 	inode->i_rdev = rdev;
833 	ip->i_projid = prid;
834 
835 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
836 		inode_fsuid_set(inode, mnt_userns);
837 		inode->i_gid = dir->i_gid;
838 		inode->i_mode = mode;
839 	} else {
840 		inode_init_owner(mnt_userns, inode, dir, mode);
841 	}
842 
843 	/*
844 	 * If the group ID of the new file does not match the effective group
845 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
846 	 * (and only if the irix_sgid_inherit compatibility variable is set).
847 	 */
848 	if (irix_sgid_inherit &&
849 	    (inode->i_mode & S_ISGID) &&
850 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
851 		inode->i_mode &= ~S_ISGID;
852 
853 	ip->i_disk_size = 0;
854 	ip->i_df.if_nextents = 0;
855 	ASSERT(ip->i_nblocks == 0);
856 
857 	tv = current_time(inode);
858 	inode->i_mtime = tv;
859 	inode->i_atime = tv;
860 	inode->i_ctime = tv;
861 
862 	ip->i_extsize = 0;
863 	ip->i_diflags = 0;
864 
865 	if (xfs_has_v3inodes(mp)) {
866 		inode_set_iversion(inode, 1);
867 		ip->i_cowextsize = 0;
868 		ip->i_crtime = tv;
869 	}
870 
871 	flags = XFS_ILOG_CORE;
872 	switch (mode & S_IFMT) {
873 	case S_IFIFO:
874 	case S_IFCHR:
875 	case S_IFBLK:
876 	case S_IFSOCK:
877 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
878 		flags |= XFS_ILOG_DEV;
879 		break;
880 	case S_IFREG:
881 	case S_IFDIR:
882 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
883 			xfs_inode_inherit_flags(ip, pip);
884 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
885 			xfs_inode_inherit_flags2(ip, pip);
886 		fallthrough;
887 	case S_IFLNK:
888 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
889 		ip->i_df.if_bytes = 0;
890 		ip->i_df.if_u1.if_root = NULL;
891 		break;
892 	default:
893 		ASSERT(0);
894 	}
895 
896 	/*
897 	 * If we need to create attributes immediately after allocating the
898 	 * inode, initialise an empty attribute fork right now. We use the
899 	 * default fork offset for attributes here as we don't know exactly what
900 	 * size or how many attributes we might be adding. We can do this
901 	 * safely here because we know the data fork is completely empty and
902 	 * this saves us from needing to run a separate transaction to set the
903 	 * fork offset in the immediate future.
904 	 */
905 	if (init_xattrs && xfs_has_attr(mp)) {
906 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
907 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
908 	}
909 
910 	/*
911 	 * Log the new values stuffed into the inode.
912 	 */
913 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
914 	xfs_trans_log_inode(tp, ip, flags);
915 
916 	/* now that we have an i_mode we can setup the inode structure */
917 	xfs_setup_inode(ip);
918 
919 	*ipp = ip;
920 	return 0;
921 }
922 
923 /*
924  * Decrement the link count on an inode & log the change.  If this causes the
925  * link count to go to zero, move the inode to AGI unlinked list so that it can
926  * be freed when the last active reference goes away via xfs_inactive().
927  */
928 static int			/* error */
929 xfs_droplink(
930 	xfs_trans_t *tp,
931 	xfs_inode_t *ip)
932 {
933 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
934 
935 	drop_nlink(VFS_I(ip));
936 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
937 
938 	if (VFS_I(ip)->i_nlink)
939 		return 0;
940 
941 	return xfs_iunlink(tp, ip);
942 }
943 
944 /*
945  * Increment the link count on an inode & log the change.
946  */
947 static void
948 xfs_bumplink(
949 	xfs_trans_t *tp,
950 	xfs_inode_t *ip)
951 {
952 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
953 
954 	inc_nlink(VFS_I(ip));
955 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
956 }
957 
958 int
959 xfs_create(
960 	struct user_namespace	*mnt_userns,
961 	xfs_inode_t		*dp,
962 	struct xfs_name		*name,
963 	umode_t			mode,
964 	dev_t			rdev,
965 	bool			init_xattrs,
966 	xfs_inode_t		**ipp)
967 {
968 	int			is_dir = S_ISDIR(mode);
969 	struct xfs_mount	*mp = dp->i_mount;
970 	struct xfs_inode	*ip = NULL;
971 	struct xfs_trans	*tp = NULL;
972 	int			error;
973 	bool                    unlock_dp_on_error = false;
974 	prid_t			prid;
975 	struct xfs_dquot	*udqp = NULL;
976 	struct xfs_dquot	*gdqp = NULL;
977 	struct xfs_dquot	*pdqp = NULL;
978 	struct xfs_trans_res	*tres;
979 	uint			resblks;
980 	xfs_ino_t		ino;
981 
982 	trace_xfs_create(dp, name);
983 
984 	if (xfs_is_shutdown(mp))
985 		return -EIO;
986 
987 	prid = xfs_get_initial_prid(dp);
988 
989 	/*
990 	 * Make sure that we have allocated dquot(s) on disk.
991 	 */
992 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
993 			mapped_fsgid(mnt_userns, &init_user_ns), prid,
994 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
995 			&udqp, &gdqp, &pdqp);
996 	if (error)
997 		return error;
998 
999 	if (is_dir) {
1000 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1001 		tres = &M_RES(mp)->tr_mkdir;
1002 	} else {
1003 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1004 		tres = &M_RES(mp)->tr_create;
1005 	}
1006 
1007 	/*
1008 	 * Initially assume that the file does not exist and
1009 	 * reserve the resources for that case.  If that is not
1010 	 * the case we'll drop the one we have and get a more
1011 	 * appropriate transaction later.
1012 	 */
1013 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1014 			&tp);
1015 	if (error == -ENOSPC) {
1016 		/* flush outstanding delalloc blocks and retry */
1017 		xfs_flush_inodes(mp);
1018 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1019 				resblks, &tp);
1020 	}
1021 	if (error)
1022 		goto out_release_dquots;
1023 
1024 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1025 	unlock_dp_on_error = true;
1026 
1027 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1028 			XFS_IEXT_DIR_MANIP_CNT(mp));
1029 	if (error)
1030 		goto out_trans_cancel;
1031 
1032 	/*
1033 	 * A newly created regular or special file just has one directory
1034 	 * entry pointing to them, but a directory also the "." entry
1035 	 * pointing to itself.
1036 	 */
1037 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1038 	if (!error)
1039 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1040 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1041 	if (error)
1042 		goto out_trans_cancel;
1043 
1044 	/*
1045 	 * Now we join the directory inode to the transaction.  We do not do it
1046 	 * earlier because xfs_dialloc might commit the previous transaction
1047 	 * (and release all the locks).  An error from here on will result in
1048 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1049 	 * error path.
1050 	 */
1051 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1052 	unlock_dp_on_error = false;
1053 
1054 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1055 					resblks - XFS_IALLOC_SPACE_RES(mp));
1056 	if (error) {
1057 		ASSERT(error != -ENOSPC);
1058 		goto out_trans_cancel;
1059 	}
1060 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1061 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1062 
1063 	if (is_dir) {
1064 		error = xfs_dir_init(tp, ip, dp);
1065 		if (error)
1066 			goto out_trans_cancel;
1067 
1068 		xfs_bumplink(tp, dp);
1069 	}
1070 
1071 	/*
1072 	 * If this is a synchronous mount, make sure that the
1073 	 * create transaction goes to disk before returning to
1074 	 * the user.
1075 	 */
1076 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1077 		xfs_trans_set_sync(tp);
1078 
1079 	/*
1080 	 * Attach the dquot(s) to the inodes and modify them incore.
1081 	 * These ids of the inode couldn't have changed since the new
1082 	 * inode has been locked ever since it was created.
1083 	 */
1084 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1085 
1086 	error = xfs_trans_commit(tp);
1087 	if (error)
1088 		goto out_release_inode;
1089 
1090 	xfs_qm_dqrele(udqp);
1091 	xfs_qm_dqrele(gdqp);
1092 	xfs_qm_dqrele(pdqp);
1093 
1094 	*ipp = ip;
1095 	return 0;
1096 
1097  out_trans_cancel:
1098 	xfs_trans_cancel(tp);
1099  out_release_inode:
1100 	/*
1101 	 * Wait until after the current transaction is aborted to finish the
1102 	 * setup of the inode and release the inode.  This prevents recursive
1103 	 * transactions and deadlocks from xfs_inactive.
1104 	 */
1105 	if (ip) {
1106 		xfs_finish_inode_setup(ip);
1107 		xfs_irele(ip);
1108 	}
1109  out_release_dquots:
1110 	xfs_qm_dqrele(udqp);
1111 	xfs_qm_dqrele(gdqp);
1112 	xfs_qm_dqrele(pdqp);
1113 
1114 	if (unlock_dp_on_error)
1115 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1116 	return error;
1117 }
1118 
1119 int
1120 xfs_create_tmpfile(
1121 	struct user_namespace	*mnt_userns,
1122 	struct xfs_inode	*dp,
1123 	umode_t			mode,
1124 	struct xfs_inode	**ipp)
1125 {
1126 	struct xfs_mount	*mp = dp->i_mount;
1127 	struct xfs_inode	*ip = NULL;
1128 	struct xfs_trans	*tp = NULL;
1129 	int			error;
1130 	prid_t                  prid;
1131 	struct xfs_dquot	*udqp = NULL;
1132 	struct xfs_dquot	*gdqp = NULL;
1133 	struct xfs_dquot	*pdqp = NULL;
1134 	struct xfs_trans_res	*tres;
1135 	uint			resblks;
1136 	xfs_ino_t		ino;
1137 
1138 	if (xfs_is_shutdown(mp))
1139 		return -EIO;
1140 
1141 	prid = xfs_get_initial_prid(dp);
1142 
1143 	/*
1144 	 * Make sure that we have allocated dquot(s) on disk.
1145 	 */
1146 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1147 			mapped_fsgid(mnt_userns, &init_user_ns), prid,
1148 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1149 			&udqp, &gdqp, &pdqp);
1150 	if (error)
1151 		return error;
1152 
1153 	resblks = XFS_IALLOC_SPACE_RES(mp);
1154 	tres = &M_RES(mp)->tr_create_tmpfile;
1155 
1156 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1157 			&tp);
1158 	if (error)
1159 		goto out_release_dquots;
1160 
1161 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1162 	if (!error)
1163 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1164 				0, 0, prid, false, &ip);
1165 	if (error)
1166 		goto out_trans_cancel;
1167 
1168 	if (xfs_has_wsync(mp))
1169 		xfs_trans_set_sync(tp);
1170 
1171 	/*
1172 	 * Attach the dquot(s) to the inodes and modify them incore.
1173 	 * These ids of the inode couldn't have changed since the new
1174 	 * inode has been locked ever since it was created.
1175 	 */
1176 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1177 
1178 	error = xfs_iunlink(tp, ip);
1179 	if (error)
1180 		goto out_trans_cancel;
1181 
1182 	error = xfs_trans_commit(tp);
1183 	if (error)
1184 		goto out_release_inode;
1185 
1186 	xfs_qm_dqrele(udqp);
1187 	xfs_qm_dqrele(gdqp);
1188 	xfs_qm_dqrele(pdqp);
1189 
1190 	*ipp = ip;
1191 	return 0;
1192 
1193  out_trans_cancel:
1194 	xfs_trans_cancel(tp);
1195  out_release_inode:
1196 	/*
1197 	 * Wait until after the current transaction is aborted to finish the
1198 	 * setup of the inode and release the inode.  This prevents recursive
1199 	 * transactions and deadlocks from xfs_inactive.
1200 	 */
1201 	if (ip) {
1202 		xfs_finish_inode_setup(ip);
1203 		xfs_irele(ip);
1204 	}
1205  out_release_dquots:
1206 	xfs_qm_dqrele(udqp);
1207 	xfs_qm_dqrele(gdqp);
1208 	xfs_qm_dqrele(pdqp);
1209 
1210 	return error;
1211 }
1212 
1213 int
1214 xfs_link(
1215 	xfs_inode_t		*tdp,
1216 	xfs_inode_t		*sip,
1217 	struct xfs_name		*target_name)
1218 {
1219 	xfs_mount_t		*mp = tdp->i_mount;
1220 	xfs_trans_t		*tp;
1221 	int			error, nospace_error = 0;
1222 	int			resblks;
1223 
1224 	trace_xfs_link(tdp, target_name);
1225 
1226 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1227 
1228 	if (xfs_is_shutdown(mp))
1229 		return -EIO;
1230 
1231 	error = xfs_qm_dqattach(sip);
1232 	if (error)
1233 		goto std_return;
1234 
1235 	error = xfs_qm_dqattach(tdp);
1236 	if (error)
1237 		goto std_return;
1238 
1239 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1240 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1241 			&tp, &nospace_error);
1242 	if (error)
1243 		goto std_return;
1244 
1245 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1246 			XFS_IEXT_DIR_MANIP_CNT(mp));
1247 	if (error)
1248 		goto error_return;
1249 
1250 	/*
1251 	 * If we are using project inheritance, we only allow hard link
1252 	 * creation in our tree when the project IDs are the same; else
1253 	 * the tree quota mechanism could be circumvented.
1254 	 */
1255 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1256 		     tdp->i_projid != sip->i_projid)) {
1257 		error = -EXDEV;
1258 		goto error_return;
1259 	}
1260 
1261 	if (!resblks) {
1262 		error = xfs_dir_canenter(tp, tdp, target_name);
1263 		if (error)
1264 			goto error_return;
1265 	}
1266 
1267 	/*
1268 	 * Handle initial link state of O_TMPFILE inode
1269 	 */
1270 	if (VFS_I(sip)->i_nlink == 0) {
1271 		struct xfs_perag	*pag;
1272 
1273 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1274 		error = xfs_iunlink_remove(tp, pag, sip);
1275 		xfs_perag_put(pag);
1276 		if (error)
1277 			goto error_return;
1278 	}
1279 
1280 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1281 				   resblks);
1282 	if (error)
1283 		goto error_return;
1284 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1285 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1286 
1287 	xfs_bumplink(tp, sip);
1288 
1289 	/*
1290 	 * If this is a synchronous mount, make sure that the
1291 	 * link transaction goes to disk before returning to
1292 	 * the user.
1293 	 */
1294 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1295 		xfs_trans_set_sync(tp);
1296 
1297 	return xfs_trans_commit(tp);
1298 
1299  error_return:
1300 	xfs_trans_cancel(tp);
1301  std_return:
1302 	if (error == -ENOSPC && nospace_error)
1303 		error = nospace_error;
1304 	return error;
1305 }
1306 
1307 /* Clear the reflink flag and the cowblocks tag if possible. */
1308 static void
1309 xfs_itruncate_clear_reflink_flags(
1310 	struct xfs_inode	*ip)
1311 {
1312 	struct xfs_ifork	*dfork;
1313 	struct xfs_ifork	*cfork;
1314 
1315 	if (!xfs_is_reflink_inode(ip))
1316 		return;
1317 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1318 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1319 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1320 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1321 	if (cfork->if_bytes == 0)
1322 		xfs_inode_clear_cowblocks_tag(ip);
1323 }
1324 
1325 /*
1326  * Free up the underlying blocks past new_size.  The new size must be smaller
1327  * than the current size.  This routine can be used both for the attribute and
1328  * data fork, and does not modify the inode size, which is left to the caller.
1329  *
1330  * The transaction passed to this routine must have made a permanent log
1331  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1332  * given transaction and start new ones, so make sure everything involved in
1333  * the transaction is tidy before calling here.  Some transaction will be
1334  * returned to the caller to be committed.  The incoming transaction must
1335  * already include the inode, and both inode locks must be held exclusively.
1336  * The inode must also be "held" within the transaction.  On return the inode
1337  * will be "held" within the returned transaction.  This routine does NOT
1338  * require any disk space to be reserved for it within the transaction.
1339  *
1340  * If we get an error, we must return with the inode locked and linked into the
1341  * current transaction. This keeps things simple for the higher level code,
1342  * because it always knows that the inode is locked and held in the transaction
1343  * that returns to it whether errors occur or not.  We don't mark the inode
1344  * dirty on error so that transactions can be easily aborted if possible.
1345  */
1346 int
1347 xfs_itruncate_extents_flags(
1348 	struct xfs_trans	**tpp,
1349 	struct xfs_inode	*ip,
1350 	int			whichfork,
1351 	xfs_fsize_t		new_size,
1352 	int			flags)
1353 {
1354 	struct xfs_mount	*mp = ip->i_mount;
1355 	struct xfs_trans	*tp = *tpp;
1356 	xfs_fileoff_t		first_unmap_block;
1357 	xfs_filblks_t		unmap_len;
1358 	int			error = 0;
1359 
1360 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1361 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1362 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1363 	ASSERT(new_size <= XFS_ISIZE(ip));
1364 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1365 	ASSERT(ip->i_itemp != NULL);
1366 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1367 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1368 
1369 	trace_xfs_itruncate_extents_start(ip, new_size);
1370 
1371 	flags |= xfs_bmapi_aflag(whichfork);
1372 
1373 	/*
1374 	 * Since it is possible for space to become allocated beyond
1375 	 * the end of the file (in a crash where the space is allocated
1376 	 * but the inode size is not yet updated), simply remove any
1377 	 * blocks which show up between the new EOF and the maximum
1378 	 * possible file size.
1379 	 *
1380 	 * We have to free all the blocks to the bmbt maximum offset, even if
1381 	 * the page cache can't scale that far.
1382 	 */
1383 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1384 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1385 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1386 		return 0;
1387 	}
1388 
1389 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1390 	while (unmap_len > 0) {
1391 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1392 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1393 				flags, XFS_ITRUNC_MAX_EXTENTS);
1394 		if (error)
1395 			goto out;
1396 
1397 		/* free the just unmapped extents */
1398 		error = xfs_defer_finish(&tp);
1399 		if (error)
1400 			goto out;
1401 	}
1402 
1403 	if (whichfork == XFS_DATA_FORK) {
1404 		/* Remove all pending CoW reservations. */
1405 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1406 				first_unmap_block, XFS_MAX_FILEOFF, true);
1407 		if (error)
1408 			goto out;
1409 
1410 		xfs_itruncate_clear_reflink_flags(ip);
1411 	}
1412 
1413 	/*
1414 	 * Always re-log the inode so that our permanent transaction can keep
1415 	 * on rolling it forward in the log.
1416 	 */
1417 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1418 
1419 	trace_xfs_itruncate_extents_end(ip, new_size);
1420 
1421 out:
1422 	*tpp = tp;
1423 	return error;
1424 }
1425 
1426 int
1427 xfs_release(
1428 	xfs_inode_t	*ip)
1429 {
1430 	xfs_mount_t	*mp = ip->i_mount;
1431 	int		error = 0;
1432 
1433 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1434 		return 0;
1435 
1436 	/* If this is a read-only mount, don't do this (would generate I/O) */
1437 	if (xfs_is_readonly(mp))
1438 		return 0;
1439 
1440 	if (!xfs_is_shutdown(mp)) {
1441 		int truncated;
1442 
1443 		/*
1444 		 * If we previously truncated this file and removed old data
1445 		 * in the process, we want to initiate "early" writeout on
1446 		 * the last close.  This is an attempt to combat the notorious
1447 		 * NULL files problem which is particularly noticeable from a
1448 		 * truncate down, buffered (re-)write (delalloc), followed by
1449 		 * a crash.  What we are effectively doing here is
1450 		 * significantly reducing the time window where we'd otherwise
1451 		 * be exposed to that problem.
1452 		 */
1453 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1454 		if (truncated) {
1455 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1456 			if (ip->i_delayed_blks > 0) {
1457 				error = filemap_flush(VFS_I(ip)->i_mapping);
1458 				if (error)
1459 					return error;
1460 			}
1461 		}
1462 	}
1463 
1464 	if (VFS_I(ip)->i_nlink == 0)
1465 		return 0;
1466 
1467 	/*
1468 	 * If we can't get the iolock just skip truncating the blocks past EOF
1469 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1470 	 * another chance to drop them once the last reference to the inode is
1471 	 * dropped, so we'll never leak blocks permanently.
1472 	 */
1473 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1474 		return 0;
1475 
1476 	if (xfs_can_free_eofblocks(ip, false)) {
1477 		/*
1478 		 * Check if the inode is being opened, written and closed
1479 		 * frequently and we have delayed allocation blocks outstanding
1480 		 * (e.g. streaming writes from the NFS server), truncating the
1481 		 * blocks past EOF will cause fragmentation to occur.
1482 		 *
1483 		 * In this case don't do the truncation, but we have to be
1484 		 * careful how we detect this case. Blocks beyond EOF show up as
1485 		 * i_delayed_blks even when the inode is clean, so we need to
1486 		 * truncate them away first before checking for a dirty release.
1487 		 * Hence on the first dirty close we will still remove the
1488 		 * speculative allocation, but after that we will leave it in
1489 		 * place.
1490 		 */
1491 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1492 			goto out_unlock;
1493 
1494 		error = xfs_free_eofblocks(ip);
1495 		if (error)
1496 			goto out_unlock;
1497 
1498 		/* delalloc blocks after truncation means it really is dirty */
1499 		if (ip->i_delayed_blks)
1500 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1501 	}
1502 
1503 out_unlock:
1504 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1505 	return error;
1506 }
1507 
1508 /*
1509  * xfs_inactive_truncate
1510  *
1511  * Called to perform a truncate when an inode becomes unlinked.
1512  */
1513 STATIC int
1514 xfs_inactive_truncate(
1515 	struct xfs_inode *ip)
1516 {
1517 	struct xfs_mount	*mp = ip->i_mount;
1518 	struct xfs_trans	*tp;
1519 	int			error;
1520 
1521 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1522 	if (error) {
1523 		ASSERT(xfs_is_shutdown(mp));
1524 		return error;
1525 	}
1526 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1527 	xfs_trans_ijoin(tp, ip, 0);
1528 
1529 	/*
1530 	 * Log the inode size first to prevent stale data exposure in the event
1531 	 * of a system crash before the truncate completes. See the related
1532 	 * comment in xfs_vn_setattr_size() for details.
1533 	 */
1534 	ip->i_disk_size = 0;
1535 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1536 
1537 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1538 	if (error)
1539 		goto error_trans_cancel;
1540 
1541 	ASSERT(ip->i_df.if_nextents == 0);
1542 
1543 	error = xfs_trans_commit(tp);
1544 	if (error)
1545 		goto error_unlock;
1546 
1547 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1548 	return 0;
1549 
1550 error_trans_cancel:
1551 	xfs_trans_cancel(tp);
1552 error_unlock:
1553 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1554 	return error;
1555 }
1556 
1557 /*
1558  * xfs_inactive_ifree()
1559  *
1560  * Perform the inode free when an inode is unlinked.
1561  */
1562 STATIC int
1563 xfs_inactive_ifree(
1564 	struct xfs_inode *ip)
1565 {
1566 	struct xfs_mount	*mp = ip->i_mount;
1567 	struct xfs_trans	*tp;
1568 	int			error;
1569 
1570 	/*
1571 	 * We try to use a per-AG reservation for any block needed by the finobt
1572 	 * tree, but as the finobt feature predates the per-AG reservation
1573 	 * support a degraded file system might not have enough space for the
1574 	 * reservation at mount time.  In that case try to dip into the reserved
1575 	 * pool and pray.
1576 	 *
1577 	 * Send a warning if the reservation does happen to fail, as the inode
1578 	 * now remains allocated and sits on the unlinked list until the fs is
1579 	 * repaired.
1580 	 */
1581 	if (unlikely(mp->m_finobt_nores)) {
1582 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1583 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1584 				&tp);
1585 	} else {
1586 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1587 	}
1588 	if (error) {
1589 		if (error == -ENOSPC) {
1590 			xfs_warn_ratelimited(mp,
1591 			"Failed to remove inode(s) from unlinked list. "
1592 			"Please free space, unmount and run xfs_repair.");
1593 		} else {
1594 			ASSERT(xfs_is_shutdown(mp));
1595 		}
1596 		return error;
1597 	}
1598 
1599 	/*
1600 	 * We do not hold the inode locked across the entire rolling transaction
1601 	 * here. We only need to hold it for the first transaction that
1602 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1603 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1604 	 * here breaks the relationship between cluster buffer invalidation and
1605 	 * stale inode invalidation on cluster buffer item journal commit
1606 	 * completion, and can result in leaving dirty stale inodes hanging
1607 	 * around in memory.
1608 	 *
1609 	 * We have no need for serialising this inode operation against other
1610 	 * operations - we freed the inode and hence reallocation is required
1611 	 * and that will serialise on reallocating the space the deferops need
1612 	 * to free. Hence we can unlock the inode on the first commit of
1613 	 * the transaction rather than roll it right through the deferops. This
1614 	 * avoids relogging the XFS_ISTALE inode.
1615 	 *
1616 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1617 	 * by asserting that the inode is still locked when it returns.
1618 	 */
1619 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1620 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1621 
1622 	error = xfs_ifree(tp, ip);
1623 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1624 	if (error) {
1625 		/*
1626 		 * If we fail to free the inode, shut down.  The cancel
1627 		 * might do that, we need to make sure.  Otherwise the
1628 		 * inode might be lost for a long time or forever.
1629 		 */
1630 		if (!xfs_is_shutdown(mp)) {
1631 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1632 				__func__, error);
1633 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1634 		}
1635 		xfs_trans_cancel(tp);
1636 		return error;
1637 	}
1638 
1639 	/*
1640 	 * Credit the quota account(s). The inode is gone.
1641 	 */
1642 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1643 
1644 	/*
1645 	 * Just ignore errors at this point.  There is nothing we can do except
1646 	 * to try to keep going. Make sure it's not a silent error.
1647 	 */
1648 	error = xfs_trans_commit(tp);
1649 	if (error)
1650 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1651 			__func__, error);
1652 
1653 	return 0;
1654 }
1655 
1656 /*
1657  * Returns true if we need to update the on-disk metadata before we can free
1658  * the memory used by this inode.  Updates include freeing post-eof
1659  * preallocations; freeing COW staging extents; and marking the inode free in
1660  * the inobt if it is on the unlinked list.
1661  */
1662 bool
1663 xfs_inode_needs_inactive(
1664 	struct xfs_inode	*ip)
1665 {
1666 	struct xfs_mount	*mp = ip->i_mount;
1667 	struct xfs_ifork	*cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1668 
1669 	/*
1670 	 * If the inode is already free, then there can be nothing
1671 	 * to clean up here.
1672 	 */
1673 	if (VFS_I(ip)->i_mode == 0)
1674 		return false;
1675 
1676 	/* If this is a read-only mount, don't do this (would generate I/O) */
1677 	if (xfs_is_readonly(mp))
1678 		return false;
1679 
1680 	/* If the log isn't running, push inodes straight to reclaim. */
1681 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1682 		return false;
1683 
1684 	/* Metadata inodes require explicit resource cleanup. */
1685 	if (xfs_is_metadata_inode(ip))
1686 		return false;
1687 
1688 	/* Want to clean out the cow blocks if there are any. */
1689 	if (cow_ifp && cow_ifp->if_bytes > 0)
1690 		return true;
1691 
1692 	/* Unlinked files must be freed. */
1693 	if (VFS_I(ip)->i_nlink == 0)
1694 		return true;
1695 
1696 	/*
1697 	 * This file isn't being freed, so check if there are post-eof blocks
1698 	 * to free.  @force is true because we are evicting an inode from the
1699 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1700 	 * free space accounting.
1701 	 *
1702 	 * Note: don't bother with iolock here since lockdep complains about
1703 	 * acquiring it in reclaim context. We have the only reference to the
1704 	 * inode at this point anyways.
1705 	 */
1706 	return xfs_can_free_eofblocks(ip, true);
1707 }
1708 
1709 /*
1710  * xfs_inactive
1711  *
1712  * This is called when the vnode reference count for the vnode
1713  * goes to zero.  If the file has been unlinked, then it must
1714  * now be truncated.  Also, we clear all of the read-ahead state
1715  * kept for the inode here since the file is now closed.
1716  */
1717 void
1718 xfs_inactive(
1719 	xfs_inode_t	*ip)
1720 {
1721 	struct xfs_mount	*mp;
1722 	int			error;
1723 	int			truncate = 0;
1724 
1725 	/*
1726 	 * If the inode is already free, then there can be nothing
1727 	 * to clean up here.
1728 	 */
1729 	if (VFS_I(ip)->i_mode == 0) {
1730 		ASSERT(ip->i_df.if_broot_bytes == 0);
1731 		goto out;
1732 	}
1733 
1734 	mp = ip->i_mount;
1735 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1736 
1737 	/* If this is a read-only mount, don't do this (would generate I/O) */
1738 	if (xfs_is_readonly(mp))
1739 		goto out;
1740 
1741 	/* Metadata inodes require explicit resource cleanup. */
1742 	if (xfs_is_metadata_inode(ip))
1743 		goto out;
1744 
1745 	/* Try to clean out the cow blocks if there are any. */
1746 	if (xfs_inode_has_cow_data(ip))
1747 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1748 
1749 	if (VFS_I(ip)->i_nlink != 0) {
1750 		/*
1751 		 * force is true because we are evicting an inode from the
1752 		 * cache. Post-eof blocks must be freed, lest we end up with
1753 		 * broken free space accounting.
1754 		 *
1755 		 * Note: don't bother with iolock here since lockdep complains
1756 		 * about acquiring it in reclaim context. We have the only
1757 		 * reference to the inode at this point anyways.
1758 		 */
1759 		if (xfs_can_free_eofblocks(ip, true))
1760 			xfs_free_eofblocks(ip);
1761 
1762 		goto out;
1763 	}
1764 
1765 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1766 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1767 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1768 		truncate = 1;
1769 
1770 	error = xfs_qm_dqattach(ip);
1771 	if (error)
1772 		goto out;
1773 
1774 	if (S_ISLNK(VFS_I(ip)->i_mode))
1775 		error = xfs_inactive_symlink(ip);
1776 	else if (truncate)
1777 		error = xfs_inactive_truncate(ip);
1778 	if (error)
1779 		goto out;
1780 
1781 	/*
1782 	 * If there are attributes associated with the file then blow them away
1783 	 * now.  The code calls a routine that recursively deconstructs the
1784 	 * attribute fork. If also blows away the in-core attribute fork.
1785 	 */
1786 	if (XFS_IFORK_Q(ip)) {
1787 		error = xfs_attr_inactive(ip);
1788 		if (error)
1789 			goto out;
1790 	}
1791 
1792 	ASSERT(!ip->i_afp);
1793 	ASSERT(ip->i_forkoff == 0);
1794 
1795 	/*
1796 	 * Free the inode.
1797 	 */
1798 	xfs_inactive_ifree(ip);
1799 
1800 out:
1801 	/*
1802 	 * We're done making metadata updates for this inode, so we can release
1803 	 * the attached dquots.
1804 	 */
1805 	xfs_qm_dqdetach(ip);
1806 }
1807 
1808 /*
1809  * In-Core Unlinked List Lookups
1810  * =============================
1811  *
1812  * Every inode is supposed to be reachable from some other piece of metadata
1813  * with the exception of the root directory.  Inodes with a connection to a
1814  * file descriptor but not linked from anywhere in the on-disk directory tree
1815  * are collectively known as unlinked inodes, though the filesystem itself
1816  * maintains links to these inodes so that on-disk metadata are consistent.
1817  *
1818  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1819  * header contains a number of buckets that point to an inode, and each inode
1820  * record has a pointer to the next inode in the hash chain.  This
1821  * singly-linked list causes scaling problems in the iunlink remove function
1822  * because we must walk that list to find the inode that points to the inode
1823  * being removed from the unlinked hash bucket list.
1824  *
1825  * What if we modelled the unlinked list as a collection of records capturing
1826  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1827  * have a fast way to look up unlinked list predecessors, which avoids the
1828  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1829  * rhashtable.
1830  *
1831  * Because this is a backref cache, we ignore operational failures since the
1832  * iunlink code can fall back to the slow bucket walk.  The only errors that
1833  * should bubble out are for obviously incorrect situations.
1834  *
1835  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1836  * access or have otherwise provided for concurrency control.
1837  */
1838 
1839 /* Capture a "X.next_unlinked = Y" relationship. */
1840 struct xfs_iunlink {
1841 	struct rhash_head	iu_rhash_head;
1842 	xfs_agino_t		iu_agino;		/* X */
1843 	xfs_agino_t		iu_next_unlinked;	/* Y */
1844 };
1845 
1846 /* Unlinked list predecessor lookup hashtable construction */
1847 static int
1848 xfs_iunlink_obj_cmpfn(
1849 	struct rhashtable_compare_arg	*arg,
1850 	const void			*obj)
1851 {
1852 	const xfs_agino_t		*key = arg->key;
1853 	const struct xfs_iunlink	*iu = obj;
1854 
1855 	if (iu->iu_next_unlinked != *key)
1856 		return 1;
1857 	return 0;
1858 }
1859 
1860 static const struct rhashtable_params xfs_iunlink_hash_params = {
1861 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1862 	.key_len		= sizeof(xfs_agino_t),
1863 	.key_offset		= offsetof(struct xfs_iunlink,
1864 					   iu_next_unlinked),
1865 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1866 	.automatic_shrinking	= true,
1867 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1868 };
1869 
1870 /*
1871  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1872  * relation is found.
1873  */
1874 static xfs_agino_t
1875 xfs_iunlink_lookup_backref(
1876 	struct xfs_perag	*pag,
1877 	xfs_agino_t		agino)
1878 {
1879 	struct xfs_iunlink	*iu;
1880 
1881 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1882 			xfs_iunlink_hash_params);
1883 	return iu ? iu->iu_agino : NULLAGINO;
1884 }
1885 
1886 /*
1887  * Take ownership of an iunlink cache entry and insert it into the hash table.
1888  * If successful, the entry will be owned by the cache; if not, it is freed.
1889  * Either way, the caller does not own @iu after this call.
1890  */
1891 static int
1892 xfs_iunlink_insert_backref(
1893 	struct xfs_perag	*pag,
1894 	struct xfs_iunlink	*iu)
1895 {
1896 	int			error;
1897 
1898 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1899 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1900 	/*
1901 	 * Fail loudly if there already was an entry because that's a sign of
1902 	 * corruption of in-memory data.  Also fail loudly if we see an error
1903 	 * code we didn't anticipate from the rhashtable code.  Currently we
1904 	 * only anticipate ENOMEM.
1905 	 */
1906 	if (error) {
1907 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1908 		kmem_free(iu);
1909 	}
1910 	/*
1911 	 * Absorb any runtime errors that aren't a result of corruption because
1912 	 * this is a cache and we can always fall back to bucket list scanning.
1913 	 */
1914 	if (error != 0 && error != -EEXIST)
1915 		error = 0;
1916 	return error;
1917 }
1918 
1919 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1920 static int
1921 xfs_iunlink_add_backref(
1922 	struct xfs_perag	*pag,
1923 	xfs_agino_t		prev_agino,
1924 	xfs_agino_t		this_agino)
1925 {
1926 	struct xfs_iunlink	*iu;
1927 
1928 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1929 		return 0;
1930 
1931 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1932 	iu->iu_agino = prev_agino;
1933 	iu->iu_next_unlinked = this_agino;
1934 
1935 	return xfs_iunlink_insert_backref(pag, iu);
1936 }
1937 
1938 /*
1939  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1940  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1941  * wasn't any such entry then we don't bother.
1942  */
1943 static int
1944 xfs_iunlink_change_backref(
1945 	struct xfs_perag	*pag,
1946 	xfs_agino_t		agino,
1947 	xfs_agino_t		next_unlinked)
1948 {
1949 	struct xfs_iunlink	*iu;
1950 	int			error;
1951 
1952 	/* Look up the old entry; if there wasn't one then exit. */
1953 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1954 			xfs_iunlink_hash_params);
1955 	if (!iu)
1956 		return 0;
1957 
1958 	/*
1959 	 * Remove the entry.  This shouldn't ever return an error, but if we
1960 	 * couldn't remove the old entry we don't want to add it again to the
1961 	 * hash table, and if the entry disappeared on us then someone's
1962 	 * violated the locking rules and we need to fail loudly.  Either way
1963 	 * we cannot remove the inode because internal state is or would have
1964 	 * been corrupt.
1965 	 */
1966 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1967 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1968 	if (error)
1969 		return error;
1970 
1971 	/* If there is no new next entry just free our item and return. */
1972 	if (next_unlinked == NULLAGINO) {
1973 		kmem_free(iu);
1974 		return 0;
1975 	}
1976 
1977 	/* Update the entry and re-add it to the hash table. */
1978 	iu->iu_next_unlinked = next_unlinked;
1979 	return xfs_iunlink_insert_backref(pag, iu);
1980 }
1981 
1982 /* Set up the in-core predecessor structures. */
1983 int
1984 xfs_iunlink_init(
1985 	struct xfs_perag	*pag)
1986 {
1987 	return rhashtable_init(&pag->pagi_unlinked_hash,
1988 			&xfs_iunlink_hash_params);
1989 }
1990 
1991 /* Free the in-core predecessor structures. */
1992 static void
1993 xfs_iunlink_free_item(
1994 	void			*ptr,
1995 	void			*arg)
1996 {
1997 	struct xfs_iunlink	*iu = ptr;
1998 	bool			*freed_anything = arg;
1999 
2000 	*freed_anything = true;
2001 	kmem_free(iu);
2002 }
2003 
2004 void
2005 xfs_iunlink_destroy(
2006 	struct xfs_perag	*pag)
2007 {
2008 	bool			freed_anything = false;
2009 
2010 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2011 			xfs_iunlink_free_item, &freed_anything);
2012 
2013 	ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
2014 }
2015 
2016 /*
2017  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2018  * is responsible for validating the old value.
2019  */
2020 STATIC int
2021 xfs_iunlink_update_bucket(
2022 	struct xfs_trans	*tp,
2023 	struct xfs_perag	*pag,
2024 	struct xfs_buf		*agibp,
2025 	unsigned int		bucket_index,
2026 	xfs_agino_t		new_agino)
2027 {
2028 	struct xfs_agi		*agi = agibp->b_addr;
2029 	xfs_agino_t		old_value;
2030 	int			offset;
2031 
2032 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
2033 
2034 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2035 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2036 			old_value, new_agino);
2037 
2038 	/*
2039 	 * We should never find the head of the list already set to the value
2040 	 * passed in because either we're adding or removing ourselves from the
2041 	 * head of the list.
2042 	 */
2043 	if (old_value == new_agino) {
2044 		xfs_buf_mark_corrupt(agibp);
2045 		return -EFSCORRUPTED;
2046 	}
2047 
2048 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2049 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2050 			(sizeof(xfs_agino_t) * bucket_index);
2051 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2052 	return 0;
2053 }
2054 
2055 /* Set an on-disk inode's next_unlinked pointer. */
2056 STATIC void
2057 xfs_iunlink_update_dinode(
2058 	struct xfs_trans	*tp,
2059 	struct xfs_perag	*pag,
2060 	xfs_agino_t		agino,
2061 	struct xfs_buf		*ibp,
2062 	struct xfs_dinode	*dip,
2063 	struct xfs_imap		*imap,
2064 	xfs_agino_t		next_agino)
2065 {
2066 	struct xfs_mount	*mp = tp->t_mountp;
2067 	int			offset;
2068 
2069 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2070 
2071 	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2072 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2073 
2074 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2075 	offset = imap->im_boffset +
2076 			offsetof(struct xfs_dinode, di_next_unlinked);
2077 
2078 	/* need to recalc the inode CRC if appropriate */
2079 	xfs_dinode_calc_crc(mp, dip);
2080 	xfs_trans_inode_buf(tp, ibp);
2081 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2082 }
2083 
2084 /* Set an in-core inode's unlinked pointer and return the old value. */
2085 STATIC int
2086 xfs_iunlink_update_inode(
2087 	struct xfs_trans	*tp,
2088 	struct xfs_inode	*ip,
2089 	struct xfs_perag	*pag,
2090 	xfs_agino_t		next_agino,
2091 	xfs_agino_t		*old_next_agino)
2092 {
2093 	struct xfs_mount	*mp = tp->t_mountp;
2094 	struct xfs_dinode	*dip;
2095 	struct xfs_buf		*ibp;
2096 	xfs_agino_t		old_value;
2097 	int			error;
2098 
2099 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2100 
2101 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2102 	if (error)
2103 		return error;
2104 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2105 
2106 	/* Make sure the old pointer isn't garbage. */
2107 	old_value = be32_to_cpu(dip->di_next_unlinked);
2108 	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2109 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2110 				sizeof(*dip), __this_address);
2111 		error = -EFSCORRUPTED;
2112 		goto out;
2113 	}
2114 
2115 	/*
2116 	 * Since we're updating a linked list, we should never find that the
2117 	 * current pointer is the same as the new value, unless we're
2118 	 * terminating the list.
2119 	 */
2120 	*old_next_agino = old_value;
2121 	if (old_value == next_agino) {
2122 		if (next_agino != NULLAGINO) {
2123 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2124 					dip, sizeof(*dip), __this_address);
2125 			error = -EFSCORRUPTED;
2126 		}
2127 		goto out;
2128 	}
2129 
2130 	/* Ok, update the new pointer. */
2131 	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2132 			ibp, dip, &ip->i_imap, next_agino);
2133 	return 0;
2134 out:
2135 	xfs_trans_brelse(tp, ibp);
2136 	return error;
2137 }
2138 
2139 /*
2140  * This is called when the inode's link count has gone to 0 or we are creating
2141  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2142  *
2143  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2144  * list when the inode is freed.
2145  */
2146 STATIC int
2147 xfs_iunlink(
2148 	struct xfs_trans	*tp,
2149 	struct xfs_inode	*ip)
2150 {
2151 	struct xfs_mount	*mp = tp->t_mountp;
2152 	struct xfs_perag	*pag;
2153 	struct xfs_agi		*agi;
2154 	struct xfs_buf		*agibp;
2155 	xfs_agino_t		next_agino;
2156 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2157 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2158 	int			error;
2159 
2160 	ASSERT(VFS_I(ip)->i_nlink == 0);
2161 	ASSERT(VFS_I(ip)->i_mode != 0);
2162 	trace_xfs_iunlink(ip);
2163 
2164 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2165 
2166 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2167 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2168 	if (error)
2169 		goto out;
2170 	agi = agibp->b_addr;
2171 
2172 	/*
2173 	 * Get the index into the agi hash table for the list this inode will
2174 	 * go on.  Make sure the pointer isn't garbage and that this inode
2175 	 * isn't already on the list.
2176 	 */
2177 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2178 	if (next_agino == agino ||
2179 	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2180 		xfs_buf_mark_corrupt(agibp);
2181 		error = -EFSCORRUPTED;
2182 		goto out;
2183 	}
2184 
2185 	if (next_agino != NULLAGINO) {
2186 		xfs_agino_t		old_agino;
2187 
2188 		/*
2189 		 * There is already another inode in the bucket, so point this
2190 		 * inode to the current head of the list.
2191 		 */
2192 		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2193 				&old_agino);
2194 		if (error)
2195 			goto out;
2196 		ASSERT(old_agino == NULLAGINO);
2197 
2198 		/*
2199 		 * agino has been unlinked, add a backref from the next inode
2200 		 * back to agino.
2201 		 */
2202 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2203 		if (error)
2204 			goto out;
2205 	}
2206 
2207 	/* Point the head of the list to point to this inode. */
2208 	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2209 out:
2210 	xfs_perag_put(pag);
2211 	return error;
2212 }
2213 
2214 /* Return the imap, dinode pointer, and buffer for an inode. */
2215 STATIC int
2216 xfs_iunlink_map_ino(
2217 	struct xfs_trans	*tp,
2218 	xfs_agnumber_t		agno,
2219 	xfs_agino_t		agino,
2220 	struct xfs_imap		*imap,
2221 	struct xfs_dinode	**dipp,
2222 	struct xfs_buf		**bpp)
2223 {
2224 	struct xfs_mount	*mp = tp->t_mountp;
2225 	int			error;
2226 
2227 	imap->im_blkno = 0;
2228 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2229 	if (error) {
2230 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2231 				__func__, error);
2232 		return error;
2233 	}
2234 
2235 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2236 	if (error) {
2237 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2238 				__func__, error);
2239 		return error;
2240 	}
2241 
2242 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2243 	return 0;
2244 }
2245 
2246 /*
2247  * Walk the unlinked chain from @head_agino until we find the inode that
2248  * points to @target_agino.  Return the inode number, map, dinode pointer,
2249  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2250  *
2251  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2252  * @agino, @imap, @dipp, and @bpp are all output parameters.
2253  *
2254  * Do not call this function if @target_agino is the head of the list.
2255  */
2256 STATIC int
2257 xfs_iunlink_map_prev(
2258 	struct xfs_trans	*tp,
2259 	struct xfs_perag	*pag,
2260 	xfs_agino_t		head_agino,
2261 	xfs_agino_t		target_agino,
2262 	xfs_agino_t		*agino,
2263 	struct xfs_imap		*imap,
2264 	struct xfs_dinode	**dipp,
2265 	struct xfs_buf		**bpp)
2266 {
2267 	struct xfs_mount	*mp = tp->t_mountp;
2268 	xfs_agino_t		next_agino;
2269 	int			error;
2270 
2271 	ASSERT(head_agino != target_agino);
2272 	*bpp = NULL;
2273 
2274 	/* See if our backref cache can find it faster. */
2275 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2276 	if (*agino != NULLAGINO) {
2277 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2278 				dipp, bpp);
2279 		if (error)
2280 			return error;
2281 
2282 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2283 			return 0;
2284 
2285 		/*
2286 		 * If we get here the cache contents were corrupt, so drop the
2287 		 * buffer and fall back to walking the bucket list.
2288 		 */
2289 		xfs_trans_brelse(tp, *bpp);
2290 		*bpp = NULL;
2291 		WARN_ON_ONCE(1);
2292 	}
2293 
2294 	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2295 
2296 	/* Otherwise, walk the entire bucket until we find it. */
2297 	next_agino = head_agino;
2298 	while (next_agino != target_agino) {
2299 		xfs_agino_t	unlinked_agino;
2300 
2301 		if (*bpp)
2302 			xfs_trans_brelse(tp, *bpp);
2303 
2304 		*agino = next_agino;
2305 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2306 				dipp, bpp);
2307 		if (error)
2308 			return error;
2309 
2310 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2311 		/*
2312 		 * Make sure this pointer is valid and isn't an obvious
2313 		 * infinite loop.
2314 		 */
2315 		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2316 		    next_agino == unlinked_agino) {
2317 			XFS_CORRUPTION_ERROR(__func__,
2318 					XFS_ERRLEVEL_LOW, mp,
2319 					*dipp, sizeof(**dipp));
2320 			error = -EFSCORRUPTED;
2321 			return error;
2322 		}
2323 		next_agino = unlinked_agino;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Pull the on-disk inode from the AGI unlinked list.
2331  */
2332 STATIC int
2333 xfs_iunlink_remove(
2334 	struct xfs_trans	*tp,
2335 	struct xfs_perag	*pag,
2336 	struct xfs_inode	*ip)
2337 {
2338 	struct xfs_mount	*mp = tp->t_mountp;
2339 	struct xfs_agi		*agi;
2340 	struct xfs_buf		*agibp;
2341 	struct xfs_buf		*last_ibp;
2342 	struct xfs_dinode	*last_dip = NULL;
2343 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2344 	xfs_agino_t		next_agino;
2345 	xfs_agino_t		head_agino;
2346 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2347 	int			error;
2348 
2349 	trace_xfs_iunlink_remove(ip);
2350 
2351 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2352 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2353 	if (error)
2354 		return error;
2355 	agi = agibp->b_addr;
2356 
2357 	/*
2358 	 * Get the index into the agi hash table for the list this inode will
2359 	 * go on.  Make sure the head pointer isn't garbage.
2360 	 */
2361 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2362 	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2363 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2364 				agi, sizeof(*agi));
2365 		return -EFSCORRUPTED;
2366 	}
2367 
2368 	/*
2369 	 * Set our inode's next_unlinked pointer to NULL and then return
2370 	 * the old pointer value so that we can update whatever was previous
2371 	 * to us in the list to point to whatever was next in the list.
2372 	 */
2373 	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2374 	if (error)
2375 		return error;
2376 
2377 	/*
2378 	 * If there was a backref pointing from the next inode back to this
2379 	 * one, remove it because we've removed this inode from the list.
2380 	 *
2381 	 * Later, if this inode was in the middle of the list we'll update
2382 	 * this inode's backref to point from the next inode.
2383 	 */
2384 	if (next_agino != NULLAGINO) {
2385 		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2386 		if (error)
2387 			return error;
2388 	}
2389 
2390 	if (head_agino != agino) {
2391 		struct xfs_imap	imap;
2392 		xfs_agino_t	prev_agino;
2393 
2394 		/* We need to search the list for the inode being freed. */
2395 		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2396 				&prev_agino, &imap, &last_dip, &last_ibp);
2397 		if (error)
2398 			return error;
2399 
2400 		/* Point the previous inode on the list to the next inode. */
2401 		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2402 				last_dip, &imap, next_agino);
2403 
2404 		/*
2405 		 * Now we deal with the backref for this inode.  If this inode
2406 		 * pointed at a real inode, change the backref that pointed to
2407 		 * us to point to our old next.  If this inode was the end of
2408 		 * the list, delete the backref that pointed to us.  Note that
2409 		 * change_backref takes care of deleting the backref if
2410 		 * next_agino is NULLAGINO.
2411 		 */
2412 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2413 				next_agino);
2414 	}
2415 
2416 	/* Point the head of the list to the next unlinked inode. */
2417 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2418 			next_agino);
2419 }
2420 
2421 /*
2422  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2423  * mark it stale. We should only find clean inodes in this lookup that aren't
2424  * already stale.
2425  */
2426 static void
2427 xfs_ifree_mark_inode_stale(
2428 	struct xfs_perag	*pag,
2429 	struct xfs_inode	*free_ip,
2430 	xfs_ino_t		inum)
2431 {
2432 	struct xfs_mount	*mp = pag->pag_mount;
2433 	struct xfs_inode_log_item *iip;
2434 	struct xfs_inode	*ip;
2435 
2436 retry:
2437 	rcu_read_lock();
2438 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2439 
2440 	/* Inode not in memory, nothing to do */
2441 	if (!ip) {
2442 		rcu_read_unlock();
2443 		return;
2444 	}
2445 
2446 	/*
2447 	 * because this is an RCU protected lookup, we could find a recently
2448 	 * freed or even reallocated inode during the lookup. We need to check
2449 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2450 	 * valid, the wrong inode or stale.
2451 	 */
2452 	spin_lock(&ip->i_flags_lock);
2453 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2454 		goto out_iflags_unlock;
2455 
2456 	/*
2457 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2458 	 * other inodes that we did not find in the list attached to the buffer
2459 	 * and are not already marked stale. If we can't lock it, back off and
2460 	 * retry.
2461 	 */
2462 	if (ip != free_ip) {
2463 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2464 			spin_unlock(&ip->i_flags_lock);
2465 			rcu_read_unlock();
2466 			delay(1);
2467 			goto retry;
2468 		}
2469 	}
2470 	ip->i_flags |= XFS_ISTALE;
2471 
2472 	/*
2473 	 * If the inode is flushing, it is already attached to the buffer.  All
2474 	 * we needed to do here is mark the inode stale so buffer IO completion
2475 	 * will remove it from the AIL.
2476 	 */
2477 	iip = ip->i_itemp;
2478 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2479 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2480 		ASSERT(iip->ili_last_fields);
2481 		goto out_iunlock;
2482 	}
2483 
2484 	/*
2485 	 * Inodes not attached to the buffer can be released immediately.
2486 	 * Everything else has to go through xfs_iflush_abort() on journal
2487 	 * commit as the flock synchronises removal of the inode from the
2488 	 * cluster buffer against inode reclaim.
2489 	 */
2490 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2491 		goto out_iunlock;
2492 
2493 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2494 	spin_unlock(&ip->i_flags_lock);
2495 	rcu_read_unlock();
2496 
2497 	/* we have a dirty inode in memory that has not yet been flushed. */
2498 	spin_lock(&iip->ili_lock);
2499 	iip->ili_last_fields = iip->ili_fields;
2500 	iip->ili_fields = 0;
2501 	iip->ili_fsync_fields = 0;
2502 	spin_unlock(&iip->ili_lock);
2503 	ASSERT(iip->ili_last_fields);
2504 
2505 	if (ip != free_ip)
2506 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2507 	return;
2508 
2509 out_iunlock:
2510 	if (ip != free_ip)
2511 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2512 out_iflags_unlock:
2513 	spin_unlock(&ip->i_flags_lock);
2514 	rcu_read_unlock();
2515 }
2516 
2517 /*
2518  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2519  * inodes that are in memory - they all must be marked stale and attached to
2520  * the cluster buffer.
2521  */
2522 static int
2523 xfs_ifree_cluster(
2524 	struct xfs_trans	*tp,
2525 	struct xfs_perag	*pag,
2526 	struct xfs_inode	*free_ip,
2527 	struct xfs_icluster	*xic)
2528 {
2529 	struct xfs_mount	*mp = free_ip->i_mount;
2530 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2531 	struct xfs_buf		*bp;
2532 	xfs_daddr_t		blkno;
2533 	xfs_ino_t		inum = xic->first_ino;
2534 	int			nbufs;
2535 	int			i, j;
2536 	int			ioffset;
2537 	int			error;
2538 
2539 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2540 
2541 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2542 		/*
2543 		 * The allocation bitmap tells us which inodes of the chunk were
2544 		 * physically allocated. Skip the cluster if an inode falls into
2545 		 * a sparse region.
2546 		 */
2547 		ioffset = inum - xic->first_ino;
2548 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2549 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2550 			continue;
2551 		}
2552 
2553 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554 					 XFS_INO_TO_AGBNO(mp, inum));
2555 
2556 		/*
2557 		 * We obtain and lock the backing buffer first in the process
2558 		 * here to ensure dirty inodes attached to the buffer remain in
2559 		 * the flushing state while we mark them stale.
2560 		 *
2561 		 * If we scan the in-memory inodes first, then buffer IO can
2562 		 * complete before we get a lock on it, and hence we may fail
2563 		 * to mark all the active inodes on the buffer stale.
2564 		 */
2565 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2566 				mp->m_bsize * igeo->blocks_per_cluster,
2567 				XBF_UNMAPPED, &bp);
2568 		if (error)
2569 			return error;
2570 
2571 		/*
2572 		 * This buffer may not have been correctly initialised as we
2573 		 * didn't read it from disk. That's not important because we are
2574 		 * only using to mark the buffer as stale in the log, and to
2575 		 * attach stale cached inodes on it. That means it will never be
2576 		 * dispatched for IO. If it is, we want to know about it, and we
2577 		 * want it to fail. We can acheive this by adding a write
2578 		 * verifier to the buffer.
2579 		 */
2580 		bp->b_ops = &xfs_inode_buf_ops;
2581 
2582 		/*
2583 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2584 		 * too. This requires lookups, and will skip inodes that we've
2585 		 * already marked XFS_ISTALE.
2586 		 */
2587 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2588 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2589 
2590 		xfs_trans_stale_inode_buf(tp, bp);
2591 		xfs_trans_binval(tp, bp);
2592 	}
2593 	return 0;
2594 }
2595 
2596 /*
2597  * This is called to return an inode to the inode free list.  The inode should
2598  * already be truncated to 0 length and have no pages associated with it.  This
2599  * routine also assumes that the inode is already a part of the transaction.
2600  *
2601  * The on-disk copy of the inode will have been added to the list of unlinked
2602  * inodes in the AGI. We need to remove the inode from that list atomically with
2603  * respect to freeing it here.
2604  */
2605 int
2606 xfs_ifree(
2607 	struct xfs_trans	*tp,
2608 	struct xfs_inode	*ip)
2609 {
2610 	struct xfs_mount	*mp = ip->i_mount;
2611 	struct xfs_perag	*pag;
2612 	struct xfs_icluster	xic = { 0 };
2613 	struct xfs_inode_log_item *iip = ip->i_itemp;
2614 	int			error;
2615 
2616 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2617 	ASSERT(VFS_I(ip)->i_nlink == 0);
2618 	ASSERT(ip->i_df.if_nextents == 0);
2619 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2620 	ASSERT(ip->i_nblocks == 0);
2621 
2622 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2623 
2624 	/*
2625 	 * Free the inode first so that we guarantee that the AGI lock is going
2626 	 * to be taken before we remove the inode from the unlinked list. This
2627 	 * makes the AGI lock -> unlinked list modification order the same as
2628 	 * used in O_TMPFILE creation.
2629 	 */
2630 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2631 	if (error)
2632 		return error;
2633 
2634 	error = xfs_iunlink_remove(tp, pag, ip);
2635 	if (error)
2636 		goto out;
2637 
2638 	/*
2639 	 * Free any local-format data sitting around before we reset the
2640 	 * data fork to extents format.  Note that the attr fork data has
2641 	 * already been freed by xfs_attr_inactive.
2642 	 */
2643 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2644 		kmem_free(ip->i_df.if_u1.if_data);
2645 		ip->i_df.if_u1.if_data = NULL;
2646 		ip->i_df.if_bytes = 0;
2647 	}
2648 
2649 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2650 	ip->i_diflags = 0;
2651 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2652 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2653 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2654 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2655 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2656 
2657 	/* Don't attempt to replay owner changes for a deleted inode */
2658 	spin_lock(&iip->ili_lock);
2659 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2660 	spin_unlock(&iip->ili_lock);
2661 
2662 	/*
2663 	 * Bump the generation count so no one will be confused
2664 	 * by reincarnations of this inode.
2665 	 */
2666 	VFS_I(ip)->i_generation++;
2667 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2668 
2669 	if (xic.deleted)
2670 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2671 out:
2672 	xfs_perag_put(pag);
2673 	return error;
2674 }
2675 
2676 /*
2677  * This is called to unpin an inode.  The caller must have the inode locked
2678  * in at least shared mode so that the buffer cannot be subsequently pinned
2679  * once someone is waiting for it to be unpinned.
2680  */
2681 static void
2682 xfs_iunpin(
2683 	struct xfs_inode	*ip)
2684 {
2685 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2686 
2687 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2688 
2689 	/* Give the log a push to start the unpinning I/O */
2690 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2691 
2692 }
2693 
2694 static void
2695 __xfs_iunpin_wait(
2696 	struct xfs_inode	*ip)
2697 {
2698 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2699 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2700 
2701 	xfs_iunpin(ip);
2702 
2703 	do {
2704 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2705 		if (xfs_ipincount(ip))
2706 			io_schedule();
2707 	} while (xfs_ipincount(ip));
2708 	finish_wait(wq, &wait.wq_entry);
2709 }
2710 
2711 void
2712 xfs_iunpin_wait(
2713 	struct xfs_inode	*ip)
2714 {
2715 	if (xfs_ipincount(ip))
2716 		__xfs_iunpin_wait(ip);
2717 }
2718 
2719 /*
2720  * Removing an inode from the namespace involves removing the directory entry
2721  * and dropping the link count on the inode. Removing the directory entry can
2722  * result in locking an AGF (directory blocks were freed) and removing a link
2723  * count can result in placing the inode on an unlinked list which results in
2724  * locking an AGI.
2725  *
2726  * The big problem here is that we have an ordering constraint on AGF and AGI
2727  * locking - inode allocation locks the AGI, then can allocate a new extent for
2728  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2729  * removes the inode from the unlinked list, requiring that we lock the AGI
2730  * first, and then freeing the inode can result in an inode chunk being freed
2731  * and hence freeing disk space requiring that we lock an AGF.
2732  *
2733  * Hence the ordering that is imposed by other parts of the code is AGI before
2734  * AGF. This means we cannot remove the directory entry before we drop the inode
2735  * reference count and put it on the unlinked list as this results in a lock
2736  * order of AGF then AGI, and this can deadlock against inode allocation and
2737  * freeing. Therefore we must drop the link counts before we remove the
2738  * directory entry.
2739  *
2740  * This is still safe from a transactional point of view - it is not until we
2741  * get to xfs_defer_finish() that we have the possibility of multiple
2742  * transactions in this operation. Hence as long as we remove the directory
2743  * entry and drop the link count in the first transaction of the remove
2744  * operation, there are no transactional constraints on the ordering here.
2745  */
2746 int
2747 xfs_remove(
2748 	xfs_inode_t             *dp,
2749 	struct xfs_name		*name,
2750 	xfs_inode_t		*ip)
2751 {
2752 	xfs_mount_t		*mp = dp->i_mount;
2753 	xfs_trans_t             *tp = NULL;
2754 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2755 	int			dontcare;
2756 	int                     error = 0;
2757 	uint			resblks;
2758 
2759 	trace_xfs_remove(dp, name);
2760 
2761 	if (xfs_is_shutdown(mp))
2762 		return -EIO;
2763 
2764 	error = xfs_qm_dqattach(dp);
2765 	if (error)
2766 		goto std_return;
2767 
2768 	error = xfs_qm_dqattach(ip);
2769 	if (error)
2770 		goto std_return;
2771 
2772 	/*
2773 	 * We try to get the real space reservation first, allowing for
2774 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2775 	 * can't get the space reservation then we use 0 instead, and avoid the
2776 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2777 	 * tries to happen, instead trimming the LAST block from the directory.
2778 	 *
2779 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2780 	 * the directory code can handle a reservationless update and we don't
2781 	 * want to prevent a user from trying to free space by deleting things.
2782 	 */
2783 	resblks = XFS_REMOVE_SPACE_RES(mp);
2784 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2785 			&tp, &dontcare);
2786 	if (error) {
2787 		ASSERT(error != -ENOSPC);
2788 		goto std_return;
2789 	}
2790 
2791 	/*
2792 	 * If we're removing a directory perform some additional validation.
2793 	 */
2794 	if (is_dir) {
2795 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2796 		if (VFS_I(ip)->i_nlink != 2) {
2797 			error = -ENOTEMPTY;
2798 			goto out_trans_cancel;
2799 		}
2800 		if (!xfs_dir_isempty(ip)) {
2801 			error = -ENOTEMPTY;
2802 			goto out_trans_cancel;
2803 		}
2804 
2805 		/* Drop the link from ip's "..".  */
2806 		error = xfs_droplink(tp, dp);
2807 		if (error)
2808 			goto out_trans_cancel;
2809 
2810 		/* Drop the "." link from ip to self.  */
2811 		error = xfs_droplink(tp, ip);
2812 		if (error)
2813 			goto out_trans_cancel;
2814 
2815 		/*
2816 		 * Point the unlinked child directory's ".." entry to the root
2817 		 * directory to eliminate back-references to inodes that may
2818 		 * get freed before the child directory is closed.  If the fs
2819 		 * gets shrunk, this can lead to dirent inode validation errors.
2820 		 */
2821 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2822 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2823 					tp->t_mountp->m_sb.sb_rootino, 0);
2824 			if (error)
2825 				return error;
2826 		}
2827 	} else {
2828 		/*
2829 		 * When removing a non-directory we need to log the parent
2830 		 * inode here.  For a directory this is done implicitly
2831 		 * by the xfs_droplink call for the ".." entry.
2832 		 */
2833 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2834 	}
2835 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2836 
2837 	/* Drop the link from dp to ip. */
2838 	error = xfs_droplink(tp, ip);
2839 	if (error)
2840 		goto out_trans_cancel;
2841 
2842 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2843 	if (error) {
2844 		ASSERT(error != -ENOENT);
2845 		goto out_trans_cancel;
2846 	}
2847 
2848 	/*
2849 	 * If this is a synchronous mount, make sure that the
2850 	 * remove transaction goes to disk before returning to
2851 	 * the user.
2852 	 */
2853 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2854 		xfs_trans_set_sync(tp);
2855 
2856 	error = xfs_trans_commit(tp);
2857 	if (error)
2858 		goto std_return;
2859 
2860 	if (is_dir && xfs_inode_is_filestream(ip))
2861 		xfs_filestream_deassociate(ip);
2862 
2863 	return 0;
2864 
2865  out_trans_cancel:
2866 	xfs_trans_cancel(tp);
2867  std_return:
2868 	return error;
2869 }
2870 
2871 /*
2872  * Enter all inodes for a rename transaction into a sorted array.
2873  */
2874 #define __XFS_SORT_INODES	5
2875 STATIC void
2876 xfs_sort_for_rename(
2877 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2878 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2879 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2880 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2881 	struct xfs_inode	*wip,	/* in: whiteout inode */
2882 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2883 	int			*num_inodes)  /* in/out: inodes in array */
2884 {
2885 	int			i, j;
2886 
2887 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2888 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2889 
2890 	/*
2891 	 * i_tab contains a list of pointers to inodes.  We initialize
2892 	 * the table here & we'll sort it.  We will then use it to
2893 	 * order the acquisition of the inode locks.
2894 	 *
2895 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2896 	 */
2897 	i = 0;
2898 	i_tab[i++] = dp1;
2899 	i_tab[i++] = dp2;
2900 	i_tab[i++] = ip1;
2901 	if (ip2)
2902 		i_tab[i++] = ip2;
2903 	if (wip)
2904 		i_tab[i++] = wip;
2905 	*num_inodes = i;
2906 
2907 	/*
2908 	 * Sort the elements via bubble sort.  (Remember, there are at
2909 	 * most 5 elements to sort, so this is adequate.)
2910 	 */
2911 	for (i = 0; i < *num_inodes; i++) {
2912 		for (j = 1; j < *num_inodes; j++) {
2913 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2914 				struct xfs_inode *temp = i_tab[j];
2915 				i_tab[j] = i_tab[j-1];
2916 				i_tab[j-1] = temp;
2917 			}
2918 		}
2919 	}
2920 }
2921 
2922 static int
2923 xfs_finish_rename(
2924 	struct xfs_trans	*tp)
2925 {
2926 	/*
2927 	 * If this is a synchronous mount, make sure that the rename transaction
2928 	 * goes to disk before returning to the user.
2929 	 */
2930 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2931 		xfs_trans_set_sync(tp);
2932 
2933 	return xfs_trans_commit(tp);
2934 }
2935 
2936 /*
2937  * xfs_cross_rename()
2938  *
2939  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2940  */
2941 STATIC int
2942 xfs_cross_rename(
2943 	struct xfs_trans	*tp,
2944 	struct xfs_inode	*dp1,
2945 	struct xfs_name		*name1,
2946 	struct xfs_inode	*ip1,
2947 	struct xfs_inode	*dp2,
2948 	struct xfs_name		*name2,
2949 	struct xfs_inode	*ip2,
2950 	int			spaceres)
2951 {
2952 	int		error = 0;
2953 	int		ip1_flags = 0;
2954 	int		ip2_flags = 0;
2955 	int		dp2_flags = 0;
2956 
2957 	/* Swap inode number for dirent in first parent */
2958 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2959 	if (error)
2960 		goto out_trans_abort;
2961 
2962 	/* Swap inode number for dirent in second parent */
2963 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2964 	if (error)
2965 		goto out_trans_abort;
2966 
2967 	/*
2968 	 * If we're renaming one or more directories across different parents,
2969 	 * update the respective ".." entries (and link counts) to match the new
2970 	 * parents.
2971 	 */
2972 	if (dp1 != dp2) {
2973 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2974 
2975 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2976 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2977 						dp1->i_ino, spaceres);
2978 			if (error)
2979 				goto out_trans_abort;
2980 
2981 			/* transfer ip2 ".." reference to dp1 */
2982 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2983 				error = xfs_droplink(tp, dp2);
2984 				if (error)
2985 					goto out_trans_abort;
2986 				xfs_bumplink(tp, dp1);
2987 			}
2988 
2989 			/*
2990 			 * Although ip1 isn't changed here, userspace needs
2991 			 * to be warned about the change, so that applications
2992 			 * relying on it (like backup ones), will properly
2993 			 * notify the change
2994 			 */
2995 			ip1_flags |= XFS_ICHGTIME_CHG;
2996 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2997 		}
2998 
2999 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3000 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3001 						dp2->i_ino, spaceres);
3002 			if (error)
3003 				goto out_trans_abort;
3004 
3005 			/* transfer ip1 ".." reference to dp2 */
3006 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3007 				error = xfs_droplink(tp, dp1);
3008 				if (error)
3009 					goto out_trans_abort;
3010 				xfs_bumplink(tp, dp2);
3011 			}
3012 
3013 			/*
3014 			 * Although ip2 isn't changed here, userspace needs
3015 			 * to be warned about the change, so that applications
3016 			 * relying on it (like backup ones), will properly
3017 			 * notify the change
3018 			 */
3019 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3020 			ip2_flags |= XFS_ICHGTIME_CHG;
3021 		}
3022 	}
3023 
3024 	if (ip1_flags) {
3025 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3026 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3027 	}
3028 	if (ip2_flags) {
3029 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3030 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3031 	}
3032 	if (dp2_flags) {
3033 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3034 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3035 	}
3036 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3037 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3038 	return xfs_finish_rename(tp);
3039 
3040 out_trans_abort:
3041 	xfs_trans_cancel(tp);
3042 	return error;
3043 }
3044 
3045 /*
3046  * xfs_rename_alloc_whiteout()
3047  *
3048  * Return a referenced, unlinked, unlocked inode that can be used as a
3049  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3050  * crash between allocating the inode and linking it into the rename transaction
3051  * recovery will free the inode and we won't leak it.
3052  */
3053 static int
3054 xfs_rename_alloc_whiteout(
3055 	struct user_namespace	*mnt_userns,
3056 	struct xfs_inode	*dp,
3057 	struct xfs_inode	**wip)
3058 {
3059 	struct xfs_inode	*tmpfile;
3060 	int			error;
3061 
3062 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3063 				   &tmpfile);
3064 	if (error)
3065 		return error;
3066 
3067 	/*
3068 	 * Prepare the tmpfile inode as if it were created through the VFS.
3069 	 * Complete the inode setup and flag it as linkable.  nlink is already
3070 	 * zero, so we can skip the drop_nlink.
3071 	 */
3072 	xfs_setup_iops(tmpfile);
3073 	xfs_finish_inode_setup(tmpfile);
3074 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3075 
3076 	*wip = tmpfile;
3077 	return 0;
3078 }
3079 
3080 /*
3081  * xfs_rename
3082  */
3083 int
3084 xfs_rename(
3085 	struct user_namespace	*mnt_userns,
3086 	struct xfs_inode	*src_dp,
3087 	struct xfs_name		*src_name,
3088 	struct xfs_inode	*src_ip,
3089 	struct xfs_inode	*target_dp,
3090 	struct xfs_name		*target_name,
3091 	struct xfs_inode	*target_ip,
3092 	unsigned int		flags)
3093 {
3094 	struct xfs_mount	*mp = src_dp->i_mount;
3095 	struct xfs_trans	*tp;
3096 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3097 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3098 	int			i;
3099 	int			num_inodes = __XFS_SORT_INODES;
3100 	bool			new_parent = (src_dp != target_dp);
3101 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3102 	int			spaceres;
3103 	bool			retried = false;
3104 	int			error, nospace_error = 0;
3105 
3106 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3107 
3108 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3109 		return -EINVAL;
3110 
3111 	/*
3112 	 * If we are doing a whiteout operation, allocate the whiteout inode
3113 	 * we will be placing at the target and ensure the type is set
3114 	 * appropriately.
3115 	 */
3116 	if (flags & RENAME_WHITEOUT) {
3117 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3118 		if (error)
3119 			return error;
3120 
3121 		/* setup target dirent info as whiteout */
3122 		src_name->type = XFS_DIR3_FT_CHRDEV;
3123 	}
3124 
3125 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3126 				inodes, &num_inodes);
3127 
3128 retry:
3129 	nospace_error = 0;
3130 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3131 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3132 	if (error == -ENOSPC) {
3133 		nospace_error = error;
3134 		spaceres = 0;
3135 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3136 				&tp);
3137 	}
3138 	if (error)
3139 		goto out_release_wip;
3140 
3141 	/*
3142 	 * Attach the dquots to the inodes
3143 	 */
3144 	error = xfs_qm_vop_rename_dqattach(inodes);
3145 	if (error)
3146 		goto out_trans_cancel;
3147 
3148 	/*
3149 	 * Lock all the participating inodes. Depending upon whether
3150 	 * the target_name exists in the target directory, and
3151 	 * whether the target directory is the same as the source
3152 	 * directory, we can lock from 2 to 4 inodes.
3153 	 */
3154 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3155 
3156 	/*
3157 	 * Join all the inodes to the transaction. From this point on,
3158 	 * we can rely on either trans_commit or trans_cancel to unlock
3159 	 * them.
3160 	 */
3161 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3162 	if (new_parent)
3163 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3164 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3165 	if (target_ip)
3166 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3167 	if (wip)
3168 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3169 
3170 	/*
3171 	 * If we are using project inheritance, we only allow renames
3172 	 * into our tree when the project IDs are the same; else the
3173 	 * tree quota mechanism would be circumvented.
3174 	 */
3175 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3176 		     target_dp->i_projid != src_ip->i_projid)) {
3177 		error = -EXDEV;
3178 		goto out_trans_cancel;
3179 	}
3180 
3181 	/* RENAME_EXCHANGE is unique from here on. */
3182 	if (flags & RENAME_EXCHANGE)
3183 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3184 					target_dp, target_name, target_ip,
3185 					spaceres);
3186 
3187 	/*
3188 	 * Try to reserve quota to handle an expansion of the target directory.
3189 	 * We'll allow the rename to continue in reservationless mode if we hit
3190 	 * a space usage constraint.  If we trigger reservationless mode, save
3191 	 * the errno if there isn't any free space in the target directory.
3192 	 */
3193 	if (spaceres != 0) {
3194 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3195 				0, false);
3196 		if (error == -EDQUOT || error == -ENOSPC) {
3197 			if (!retried) {
3198 				xfs_trans_cancel(tp);
3199 				xfs_blockgc_free_quota(target_dp, 0);
3200 				retried = true;
3201 				goto retry;
3202 			}
3203 
3204 			nospace_error = error;
3205 			spaceres = 0;
3206 			error = 0;
3207 		}
3208 		if (error)
3209 			goto out_trans_cancel;
3210 	}
3211 
3212 	/*
3213 	 * Check for expected errors before we dirty the transaction
3214 	 * so we can return an error without a transaction abort.
3215 	 *
3216 	 * Extent count overflow check:
3217 	 *
3218 	 * From the perspective of src_dp, a rename operation is essentially a
3219 	 * directory entry remove operation. Hence the only place where we check
3220 	 * for extent count overflow for src_dp is in
3221 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3222 	 * -ENOSPC when it detects a possible extent count overflow and in
3223 	 * response, the higher layers of directory handling code do the
3224 	 * following:
3225 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3226 	 *    future remove operation removes them.
3227 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3228 	 *    Leaf space and unmaps the last block.
3229 	 *
3230 	 * For target_dp, there are two cases depending on whether the
3231 	 * destination directory entry exists or not.
3232 	 *
3233 	 * When destination directory entry does not exist (i.e. target_ip ==
3234 	 * NULL), extent count overflow check is performed only when transaction
3235 	 * has a non-zero sized space reservation associated with it.  With a
3236 	 * zero-sized space reservation, XFS allows a rename operation to
3237 	 * continue only when the directory has sufficient free space in its
3238 	 * data/leaf/free space blocks to hold the new entry.
3239 	 *
3240 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3241 	 * we need to do is change the inode number associated with the already
3242 	 * existing entry. Hence there is no need to perform an extent count
3243 	 * overflow check.
3244 	 */
3245 	if (target_ip == NULL) {
3246 		/*
3247 		 * If there's no space reservation, check the entry will
3248 		 * fit before actually inserting it.
3249 		 */
3250 		if (!spaceres) {
3251 			error = xfs_dir_canenter(tp, target_dp, target_name);
3252 			if (error)
3253 				goto out_trans_cancel;
3254 		} else {
3255 			error = xfs_iext_count_may_overflow(target_dp,
3256 					XFS_DATA_FORK,
3257 					XFS_IEXT_DIR_MANIP_CNT(mp));
3258 			if (error)
3259 				goto out_trans_cancel;
3260 		}
3261 	} else {
3262 		/*
3263 		 * If target exists and it's a directory, check that whether
3264 		 * it can be destroyed.
3265 		 */
3266 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3267 		    (!xfs_dir_isempty(target_ip) ||
3268 		     (VFS_I(target_ip)->i_nlink > 2))) {
3269 			error = -EEXIST;
3270 			goto out_trans_cancel;
3271 		}
3272 	}
3273 
3274 	/*
3275 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3276 	 * whiteout inode off the unlinked list and to handle dropping the
3277 	 * nlink of the target inode.  Per locking order rules, do this in
3278 	 * increasing AG order and before directory block allocation tries to
3279 	 * grab AGFs because we grab AGIs before AGFs.
3280 	 *
3281 	 * The (vfs) caller must ensure that if src is a directory then
3282 	 * target_ip is either null or an empty directory.
3283 	 */
3284 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3285 		if (inodes[i] == wip ||
3286 		    (inodes[i] == target_ip &&
3287 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3288 			struct xfs_buf	*bp;
3289 			xfs_agnumber_t	agno;
3290 
3291 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3292 			error = xfs_read_agi(mp, tp, agno, &bp);
3293 			if (error)
3294 				goto out_trans_cancel;
3295 		}
3296 	}
3297 
3298 	/*
3299 	 * Directory entry creation below may acquire the AGF. Remove
3300 	 * the whiteout from the unlinked list first to preserve correct
3301 	 * AGI/AGF locking order. This dirties the transaction so failures
3302 	 * after this point will abort and log recovery will clean up the
3303 	 * mess.
3304 	 *
3305 	 * For whiteouts, we need to bump the link count on the whiteout
3306 	 * inode. After this point, we have a real link, clear the tmpfile
3307 	 * state flag from the inode so it doesn't accidentally get misused
3308 	 * in future.
3309 	 */
3310 	if (wip) {
3311 		struct xfs_perag	*pag;
3312 
3313 		ASSERT(VFS_I(wip)->i_nlink == 0);
3314 
3315 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3316 		error = xfs_iunlink_remove(tp, pag, wip);
3317 		xfs_perag_put(pag);
3318 		if (error)
3319 			goto out_trans_cancel;
3320 
3321 		xfs_bumplink(tp, wip);
3322 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3323 	}
3324 
3325 	/*
3326 	 * Set up the target.
3327 	 */
3328 	if (target_ip == NULL) {
3329 		/*
3330 		 * If target does not exist and the rename crosses
3331 		 * directories, adjust the target directory link count
3332 		 * to account for the ".." reference from the new entry.
3333 		 */
3334 		error = xfs_dir_createname(tp, target_dp, target_name,
3335 					   src_ip->i_ino, spaceres);
3336 		if (error)
3337 			goto out_trans_cancel;
3338 
3339 		xfs_trans_ichgtime(tp, target_dp,
3340 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3341 
3342 		if (new_parent && src_is_directory) {
3343 			xfs_bumplink(tp, target_dp);
3344 		}
3345 	} else { /* target_ip != NULL */
3346 		/*
3347 		 * Link the source inode under the target name.
3348 		 * If the source inode is a directory and we are moving
3349 		 * it across directories, its ".." entry will be
3350 		 * inconsistent until we replace that down below.
3351 		 *
3352 		 * In case there is already an entry with the same
3353 		 * name at the destination directory, remove it first.
3354 		 */
3355 		error = xfs_dir_replace(tp, target_dp, target_name,
3356 					src_ip->i_ino, spaceres);
3357 		if (error)
3358 			goto out_trans_cancel;
3359 
3360 		xfs_trans_ichgtime(tp, target_dp,
3361 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3362 
3363 		/*
3364 		 * Decrement the link count on the target since the target
3365 		 * dir no longer points to it.
3366 		 */
3367 		error = xfs_droplink(tp, target_ip);
3368 		if (error)
3369 			goto out_trans_cancel;
3370 
3371 		if (src_is_directory) {
3372 			/*
3373 			 * Drop the link from the old "." entry.
3374 			 */
3375 			error = xfs_droplink(tp, target_ip);
3376 			if (error)
3377 				goto out_trans_cancel;
3378 		}
3379 	} /* target_ip != NULL */
3380 
3381 	/*
3382 	 * Remove the source.
3383 	 */
3384 	if (new_parent && src_is_directory) {
3385 		/*
3386 		 * Rewrite the ".." entry to point to the new
3387 		 * directory.
3388 		 */
3389 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3390 					target_dp->i_ino, spaceres);
3391 		ASSERT(error != -EEXIST);
3392 		if (error)
3393 			goto out_trans_cancel;
3394 	}
3395 
3396 	/*
3397 	 * We always want to hit the ctime on the source inode.
3398 	 *
3399 	 * This isn't strictly required by the standards since the source
3400 	 * inode isn't really being changed, but old unix file systems did
3401 	 * it and some incremental backup programs won't work without it.
3402 	 */
3403 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3404 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3405 
3406 	/*
3407 	 * Adjust the link count on src_dp.  This is necessary when
3408 	 * renaming a directory, either within one parent when
3409 	 * the target existed, or across two parent directories.
3410 	 */
3411 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3412 
3413 		/*
3414 		 * Decrement link count on src_directory since the
3415 		 * entry that's moved no longer points to it.
3416 		 */
3417 		error = xfs_droplink(tp, src_dp);
3418 		if (error)
3419 			goto out_trans_cancel;
3420 	}
3421 
3422 	/*
3423 	 * For whiteouts, we only need to update the source dirent with the
3424 	 * inode number of the whiteout inode rather than removing it
3425 	 * altogether.
3426 	 */
3427 	if (wip) {
3428 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3429 					spaceres);
3430 	} else {
3431 		/*
3432 		 * NOTE: We don't need to check for extent count overflow here
3433 		 * because the dir remove name code will leave the dir block in
3434 		 * place if the extent count would overflow.
3435 		 */
3436 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3437 					   spaceres);
3438 	}
3439 
3440 	if (error)
3441 		goto out_trans_cancel;
3442 
3443 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3444 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3445 	if (new_parent)
3446 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3447 
3448 	error = xfs_finish_rename(tp);
3449 	if (wip)
3450 		xfs_irele(wip);
3451 	return error;
3452 
3453 out_trans_cancel:
3454 	xfs_trans_cancel(tp);
3455 out_release_wip:
3456 	if (wip)
3457 		xfs_irele(wip);
3458 	if (error == -ENOSPC && nospace_error)
3459 		error = nospace_error;
3460 	return error;
3461 }
3462 
3463 static int
3464 xfs_iflush(
3465 	struct xfs_inode	*ip,
3466 	struct xfs_buf		*bp)
3467 {
3468 	struct xfs_inode_log_item *iip = ip->i_itemp;
3469 	struct xfs_dinode	*dip;
3470 	struct xfs_mount	*mp = ip->i_mount;
3471 	int			error;
3472 
3473 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3474 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3475 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3476 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3477 	ASSERT(iip->ili_item.li_buf == bp);
3478 
3479 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3480 
3481 	/*
3482 	 * We don't flush the inode if any of the following checks fail, but we
3483 	 * do still update the log item and attach to the backing buffer as if
3484 	 * the flush happened. This is a formality to facilitate predictable
3485 	 * error handling as the caller will shutdown and fail the buffer.
3486 	 */
3487 	error = -EFSCORRUPTED;
3488 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3489 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3490 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3491 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3492 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3493 		goto flush_out;
3494 	}
3495 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3496 		if (XFS_TEST_ERROR(
3497 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3498 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3499 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3500 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3501 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3502 				__func__, ip->i_ino, ip);
3503 			goto flush_out;
3504 		}
3505 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3506 		if (XFS_TEST_ERROR(
3507 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3508 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3509 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3510 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3511 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3512 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3513 				__func__, ip->i_ino, ip);
3514 			goto flush_out;
3515 		}
3516 	}
3517 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3518 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3519 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3520 			"%s: detected corrupt incore inode %Lu, "
3521 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3522 			__func__, ip->i_ino,
3523 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3524 			ip->i_nblocks, ip);
3525 		goto flush_out;
3526 	}
3527 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3528 				mp, XFS_ERRTAG_IFLUSH_6)) {
3529 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3530 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3531 			__func__, ip->i_ino, ip->i_forkoff, ip);
3532 		goto flush_out;
3533 	}
3534 
3535 	/*
3536 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3537 	 * count for correct sequencing.  We bump the flush iteration count so
3538 	 * we can detect flushes which postdate a log record during recovery.
3539 	 * This is redundant as we now log every change and hence this can't
3540 	 * happen but we need to still do it to ensure backwards compatibility
3541 	 * with old kernels that predate logging all inode changes.
3542 	 */
3543 	if (!xfs_has_v3inodes(mp))
3544 		ip->i_flushiter++;
3545 
3546 	/*
3547 	 * If there are inline format data / attr forks attached to this inode,
3548 	 * make sure they are not corrupt.
3549 	 */
3550 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3551 	    xfs_ifork_verify_local_data(ip))
3552 		goto flush_out;
3553 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3554 	    xfs_ifork_verify_local_attr(ip))
3555 		goto flush_out;
3556 
3557 	/*
3558 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3559 	 * copy out the core of the inode, because if the inode is dirty at all
3560 	 * the core must be.
3561 	 */
3562 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3563 
3564 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3565 	if (!xfs_has_v3inodes(mp)) {
3566 		if (ip->i_flushiter == DI_MAX_FLUSH)
3567 			ip->i_flushiter = 0;
3568 	}
3569 
3570 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3571 	if (XFS_IFORK_Q(ip))
3572 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3573 
3574 	/*
3575 	 * We've recorded everything logged in the inode, so we'd like to clear
3576 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3577 	 * However, we can't stop logging all this information until the data
3578 	 * we've copied into the disk buffer is written to disk.  If we did we
3579 	 * might overwrite the copy of the inode in the log with all the data
3580 	 * after re-logging only part of it, and in the face of a crash we
3581 	 * wouldn't have all the data we need to recover.
3582 	 *
3583 	 * What we do is move the bits to the ili_last_fields field.  When
3584 	 * logging the inode, these bits are moved back to the ili_fields field.
3585 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3586 	 * we know that the information those bits represent is permanently on
3587 	 * disk.  As long as the flush completes before the inode is logged
3588 	 * again, then both ili_fields and ili_last_fields will be cleared.
3589 	 */
3590 	error = 0;
3591 flush_out:
3592 	spin_lock(&iip->ili_lock);
3593 	iip->ili_last_fields = iip->ili_fields;
3594 	iip->ili_fields = 0;
3595 	iip->ili_fsync_fields = 0;
3596 	spin_unlock(&iip->ili_lock);
3597 
3598 	/*
3599 	 * Store the current LSN of the inode so that we can tell whether the
3600 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3601 	 */
3602 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3603 				&iip->ili_item.li_lsn);
3604 
3605 	/* generate the checksum. */
3606 	xfs_dinode_calc_crc(mp, dip);
3607 	return error;
3608 }
3609 
3610 /*
3611  * Non-blocking flush of dirty inode metadata into the backing buffer.
3612  *
3613  * The caller must have a reference to the inode and hold the cluster buffer
3614  * locked. The function will walk across all the inodes on the cluster buffer it
3615  * can find and lock without blocking, and flush them to the cluster buffer.
3616  *
3617  * On successful flushing of at least one inode, the caller must write out the
3618  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3619  * the caller needs to release the buffer. On failure, the filesystem will be
3620  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3621  * will be returned.
3622  */
3623 int
3624 xfs_iflush_cluster(
3625 	struct xfs_buf		*bp)
3626 {
3627 	struct xfs_mount	*mp = bp->b_mount;
3628 	struct xfs_log_item	*lip, *n;
3629 	struct xfs_inode	*ip;
3630 	struct xfs_inode_log_item *iip;
3631 	int			clcount = 0;
3632 	int			error = 0;
3633 
3634 	/*
3635 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3636 	 * will remove itself from the list.
3637 	 */
3638 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3639 		iip = (struct xfs_inode_log_item *)lip;
3640 		ip = iip->ili_inode;
3641 
3642 		/*
3643 		 * Quick and dirty check to avoid locks if possible.
3644 		 */
3645 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3646 			continue;
3647 		if (xfs_ipincount(ip))
3648 			continue;
3649 
3650 		/*
3651 		 * The inode is still attached to the buffer, which means it is
3652 		 * dirty but reclaim might try to grab it. Check carefully for
3653 		 * that, and grab the ilock while still holding the i_flags_lock
3654 		 * to guarantee reclaim will not be able to reclaim this inode
3655 		 * once we drop the i_flags_lock.
3656 		 */
3657 		spin_lock(&ip->i_flags_lock);
3658 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3659 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3660 			spin_unlock(&ip->i_flags_lock);
3661 			continue;
3662 		}
3663 
3664 		/*
3665 		 * ILOCK will pin the inode against reclaim and prevent
3666 		 * concurrent transactions modifying the inode while we are
3667 		 * flushing the inode. If we get the lock, set the flushing
3668 		 * state before we drop the i_flags_lock.
3669 		 */
3670 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3671 			spin_unlock(&ip->i_flags_lock);
3672 			continue;
3673 		}
3674 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3675 		spin_unlock(&ip->i_flags_lock);
3676 
3677 		/*
3678 		 * Abort flushing this inode if we are shut down because the
3679 		 * inode may not currently be in the AIL. This can occur when
3680 		 * log I/O failure unpins the inode without inserting into the
3681 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3682 		 * that otherwise looks like it should be flushed.
3683 		 */
3684 		if (xlog_is_shutdown(mp->m_log)) {
3685 			xfs_iunpin_wait(ip);
3686 			xfs_iflush_abort(ip);
3687 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3688 			error = -EIO;
3689 			continue;
3690 		}
3691 
3692 		/* don't block waiting on a log force to unpin dirty inodes */
3693 		if (xfs_ipincount(ip)) {
3694 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3695 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3696 			continue;
3697 		}
3698 
3699 		if (!xfs_inode_clean(ip))
3700 			error = xfs_iflush(ip, bp);
3701 		else
3702 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3703 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3704 		if (error)
3705 			break;
3706 		clcount++;
3707 	}
3708 
3709 	if (error) {
3710 		/*
3711 		 * Shutdown first so we kill the log before we release this
3712 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3713 		 * of the log, failing it before the _log_ is shut down can
3714 		 * result in the log tail being moved forward in the journal
3715 		 * on disk because log writes can still be taking place. Hence
3716 		 * unpinning the tail will allow the ICREATE intent to be
3717 		 * removed from the log an recovery will fail with uninitialised
3718 		 * inode cluster buffers.
3719 		 */
3720 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3721 		bp->b_flags |= XBF_ASYNC;
3722 		xfs_buf_ioend_fail(bp);
3723 		return error;
3724 	}
3725 
3726 	if (!clcount)
3727 		return -EAGAIN;
3728 
3729 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3730 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3731 	return 0;
3732 
3733 }
3734 
3735 /* Release an inode. */
3736 void
3737 xfs_irele(
3738 	struct xfs_inode	*ip)
3739 {
3740 	trace_xfs_irele(ip, _RET_IP_);
3741 	iput(VFS_I(ip));
3742 }
3743 
3744 /*
3745  * Ensure all commited transactions touching the inode are written to the log.
3746  */
3747 int
3748 xfs_log_force_inode(
3749 	struct xfs_inode	*ip)
3750 {
3751 	xfs_csn_t		seq = 0;
3752 
3753 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3754 	if (xfs_ipincount(ip))
3755 		seq = ip->i_itemp->ili_commit_seq;
3756 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3757 
3758 	if (!seq)
3759 		return 0;
3760 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3761 }
3762 
3763 /*
3764  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3765  * abide vfs locking order (lowest pointer value goes first) and breaking the
3766  * layout leases before proceeding.  The loop is needed because we cannot call
3767  * the blocking break_layout() with the iolocks held, and therefore have to
3768  * back out both locks.
3769  */
3770 static int
3771 xfs_iolock_two_inodes_and_break_layout(
3772 	struct inode		*src,
3773 	struct inode		*dest)
3774 {
3775 	int			error;
3776 
3777 	if (src > dest)
3778 		swap(src, dest);
3779 
3780 retry:
3781 	/* Wait to break both inodes' layouts before we start locking. */
3782 	error = break_layout(src, true);
3783 	if (error)
3784 		return error;
3785 	if (src != dest) {
3786 		error = break_layout(dest, true);
3787 		if (error)
3788 			return error;
3789 	}
3790 
3791 	/* Lock one inode and make sure nobody got in and leased it. */
3792 	inode_lock(src);
3793 	error = break_layout(src, false);
3794 	if (error) {
3795 		inode_unlock(src);
3796 		if (error == -EWOULDBLOCK)
3797 			goto retry;
3798 		return error;
3799 	}
3800 
3801 	if (src == dest)
3802 		return 0;
3803 
3804 	/* Lock the other inode and make sure nobody got in and leased it. */
3805 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3806 	error = break_layout(dest, false);
3807 	if (error) {
3808 		inode_unlock(src);
3809 		inode_unlock(dest);
3810 		if (error == -EWOULDBLOCK)
3811 			goto retry;
3812 		return error;
3813 	}
3814 
3815 	return 0;
3816 }
3817 
3818 /*
3819  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3820  * mmap activity.
3821  */
3822 int
3823 xfs_ilock2_io_mmap(
3824 	struct xfs_inode	*ip1,
3825 	struct xfs_inode	*ip2)
3826 {
3827 	int			ret;
3828 
3829 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3830 	if (ret)
3831 		return ret;
3832 	filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3833 				    VFS_I(ip2)->i_mapping);
3834 	return 0;
3835 }
3836 
3837 /* Unlock both inodes to allow IO and mmap activity. */
3838 void
3839 xfs_iunlock2_io_mmap(
3840 	struct xfs_inode	*ip1,
3841 	struct xfs_inode	*ip2)
3842 {
3843 	filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3844 				      VFS_I(ip2)->i_mapping);
3845 	inode_unlock(VFS_I(ip2));
3846 	if (ip1 != ip2)
3847 		inode_unlock(VFS_I(ip1));
3848 }
3849