xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 0545810f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40 
41 struct kmem_cache *xfs_inode_cache;
42 
43 /*
44  * Used in xfs_itruncate_extents().  This is the maximum number of extents
45  * freed from a file in a single transaction.
46  */
47 #define	XFS_ITRUNC_MAX_EXTENTS	2
48 
49 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
50 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
51 	struct xfs_inode *);
52 
53 /*
54  * helper function to extract extent size hint from inode
55  */
56 xfs_extlen_t
57 xfs_get_extsz_hint(
58 	struct xfs_inode	*ip)
59 {
60 	/*
61 	 * No point in aligning allocations if we need to COW to actually
62 	 * write to them.
63 	 */
64 	if (xfs_is_always_cow_inode(ip))
65 		return 0;
66 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
67 		return ip->i_extsize;
68 	if (XFS_IS_REALTIME_INODE(ip))
69 		return ip->i_mount->m_sb.sb_rextsize;
70 	return 0;
71 }
72 
73 /*
74  * Helper function to extract CoW extent size hint from inode.
75  * Between the extent size hint and the CoW extent size hint, we
76  * return the greater of the two.  If the value is zero (automatic),
77  * use the default size.
78  */
79 xfs_extlen_t
80 xfs_get_cowextsz_hint(
81 	struct xfs_inode	*ip)
82 {
83 	xfs_extlen_t		a, b;
84 
85 	a = 0;
86 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
87 		a = ip->i_cowextsize;
88 	b = xfs_get_extsz_hint(ip);
89 
90 	a = max(a, b);
91 	if (a == 0)
92 		return XFS_DEFAULT_COWEXTSZ_HINT;
93 	return a;
94 }
95 
96 /*
97  * These two are wrapper routines around the xfs_ilock() routine used to
98  * centralize some grungy code.  They are used in places that wish to lock the
99  * inode solely for reading the extents.  The reason these places can't just
100  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
101  * bringing in of the extents from disk for a file in b-tree format.  If the
102  * inode is in b-tree format, then we need to lock the inode exclusively until
103  * the extents are read in.  Locking it exclusively all the time would limit
104  * our parallelism unnecessarily, though.  What we do instead is check to see
105  * if the extents have been read in yet, and only lock the inode exclusively
106  * if they have not.
107  *
108  * The functions return a value which should be given to the corresponding
109  * xfs_iunlock() call.
110  */
111 uint
112 xfs_ilock_data_map_shared(
113 	struct xfs_inode	*ip)
114 {
115 	uint			lock_mode = XFS_ILOCK_SHARED;
116 
117 	if (xfs_need_iread_extents(&ip->i_df))
118 		lock_mode = XFS_ILOCK_EXCL;
119 	xfs_ilock(ip, lock_mode);
120 	return lock_mode;
121 }
122 
123 uint
124 xfs_ilock_attr_map_shared(
125 	struct xfs_inode	*ip)
126 {
127 	uint			lock_mode = XFS_ILOCK_SHARED;
128 
129 	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * You can't set both SHARED and EXCL for the same lock,
137  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
138  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
139  * to set in lock_flags.
140  */
141 static inline void
142 xfs_lock_flags_assert(
143 	uint		lock_flags)
144 {
145 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
146 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
147 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
148 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
149 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
150 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
151 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
152 	ASSERT(lock_flags != 0);
153 }
154 
155 /*
156  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
157  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
158  * various combinations of the locks to be obtained.
159  *
160  * The 3 locks should always be ordered so that the IO lock is obtained first,
161  * the mmap lock second and the ilock last in order to prevent deadlock.
162  *
163  * Basic locking order:
164  *
165  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
166  *
167  * mmap_lock locking order:
168  *
169  * i_rwsem -> page lock -> mmap_lock
170  * mmap_lock -> invalidate_lock -> page_lock
171  *
172  * The difference in mmap_lock locking order mean that we cannot hold the
173  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
174  * can fault in pages during copy in/out (for buffered IO) or require the
175  * mmap_lock in get_user_pages() to map the user pages into the kernel address
176  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
177  * fault because page faults already hold the mmap_lock.
178  *
179  * Hence to serialise fully against both syscall and mmap based IO, we need to
180  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
181  * both taken in places where we need to invalidate the page cache in a race
182  * free manner (e.g. truncate, hole punch and other extent manipulation
183  * functions).
184  */
185 void
186 xfs_ilock(
187 	xfs_inode_t		*ip,
188 	uint			lock_flags)
189 {
190 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191 
192 	xfs_lock_flags_assert(lock_flags);
193 
194 	if (lock_flags & XFS_IOLOCK_EXCL) {
195 		down_write_nested(&VFS_I(ip)->i_rwsem,
196 				  XFS_IOLOCK_DEP(lock_flags));
197 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
198 		down_read_nested(&VFS_I(ip)->i_rwsem,
199 				 XFS_IOLOCK_DEP(lock_flags));
200 	}
201 
202 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
203 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
204 				  XFS_MMAPLOCK_DEP(lock_flags));
205 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
206 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
207 				 XFS_MMAPLOCK_DEP(lock_flags));
208 	}
209 
210 	if (lock_flags & XFS_ILOCK_EXCL)
211 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 	else if (lock_flags & XFS_ILOCK_SHARED)
213 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214 }
215 
216 /*
217  * This is just like xfs_ilock(), except that the caller
218  * is guaranteed not to sleep.  It returns 1 if it gets
219  * the requested locks and 0 otherwise.  If the IO lock is
220  * obtained but the inode lock cannot be, then the IO lock
221  * is dropped before returning.
222  *
223  * ip -- the inode being locked
224  * lock_flags -- this parameter indicates the inode's locks to be
225  *       to be locked.  See the comment for xfs_ilock() for a list
226  *	 of valid values.
227  */
228 int
229 xfs_ilock_nowait(
230 	xfs_inode_t		*ip,
231 	uint			lock_flags)
232 {
233 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234 
235 	xfs_lock_flags_assert(lock_flags);
236 
237 	if (lock_flags & XFS_IOLOCK_EXCL) {
238 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 			goto out;
240 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
241 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 			goto out;
243 	}
244 
245 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 			goto out_undo_iolock;
248 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 			goto out_undo_iolock;
251 	}
252 
253 	if (lock_flags & XFS_ILOCK_EXCL) {
254 		if (!mrtryupdate(&ip->i_lock))
255 			goto out_undo_mmaplock;
256 	} else if (lock_flags & XFS_ILOCK_SHARED) {
257 		if (!mrtryaccess(&ip->i_lock))
258 			goto out_undo_mmaplock;
259 	}
260 	return 1;
261 
262 out_undo_mmaplock:
263 	if (lock_flags & XFS_MMAPLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 out_undo_iolock:
268 	if (lock_flags & XFS_IOLOCK_EXCL)
269 		up_write(&VFS_I(ip)->i_rwsem);
270 	else if (lock_flags & XFS_IOLOCK_SHARED)
271 		up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 	return 0;
274 }
275 
276 /*
277  * xfs_iunlock() is used to drop the inode locks acquired with
278  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
279  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280  * that we know which locks to drop.
281  *
282  * ip -- the inode being unlocked
283  * lock_flags -- this parameter indicates the inode's locks to be
284  *       to be unlocked.  See the comment for xfs_ilock() for a list
285  *	 of valid values for this parameter.
286  *
287  */
288 void
289 xfs_iunlock(
290 	xfs_inode_t		*ip,
291 	uint			lock_flags)
292 {
293 	xfs_lock_flags_assert(lock_flags);
294 
295 	if (lock_flags & XFS_IOLOCK_EXCL)
296 		up_write(&VFS_I(ip)->i_rwsem);
297 	else if (lock_flags & XFS_IOLOCK_SHARED)
298 		up_read(&VFS_I(ip)->i_rwsem);
299 
300 	if (lock_flags & XFS_MMAPLOCK_EXCL)
301 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
302 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
303 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
304 
305 	if (lock_flags & XFS_ILOCK_EXCL)
306 		mrunlock_excl(&ip->i_lock);
307 	else if (lock_flags & XFS_ILOCK_SHARED)
308 		mrunlock_shared(&ip->i_lock);
309 
310 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311 }
312 
313 /*
314  * give up write locks.  the i/o lock cannot be held nested
315  * if it is being demoted.
316  */
317 void
318 xfs_ilock_demote(
319 	xfs_inode_t		*ip,
320 	uint			lock_flags)
321 {
322 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323 	ASSERT((lock_flags &
324 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
325 
326 	if (lock_flags & XFS_ILOCK_EXCL)
327 		mrdemote(&ip->i_lock);
328 	if (lock_flags & XFS_MMAPLOCK_EXCL)
329 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
330 	if (lock_flags & XFS_IOLOCK_EXCL)
331 		downgrade_write(&VFS_I(ip)->i_rwsem);
332 
333 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
334 }
335 
336 #if defined(DEBUG) || defined(XFS_WARN)
337 static inline bool
338 __xfs_rwsem_islocked(
339 	struct rw_semaphore	*rwsem,
340 	bool			shared)
341 {
342 	if (!debug_locks)
343 		return rwsem_is_locked(rwsem);
344 
345 	if (!shared)
346 		return lockdep_is_held_type(rwsem, 0);
347 
348 	/*
349 	 * We are checking that the lock is held at least in shared
350 	 * mode but don't care that it might be held exclusively
351 	 * (i.e. shared | excl). Hence we check if the lock is held
352 	 * in any mode rather than an explicit shared mode.
353 	 */
354 	return lockdep_is_held_type(rwsem, -1);
355 }
356 
357 bool
358 xfs_isilocked(
359 	struct xfs_inode	*ip,
360 	uint			lock_flags)
361 {
362 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 		if (!(lock_flags & XFS_ILOCK_SHARED))
364 			return !!ip->i_lock.mr_writer;
365 		return rwsem_is_locked(&ip->i_lock.mr_lock);
366 	}
367 
368 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
370 				(lock_flags & XFS_MMAPLOCK_SHARED));
371 	}
372 
373 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
374 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
375 				(lock_flags & XFS_IOLOCK_SHARED));
376 	}
377 
378 	ASSERT(0);
379 	return false;
380 }
381 #endif
382 
383 /*
384  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
385  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
386  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
387  * errors and warnings.
388  */
389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
390 static bool
391 xfs_lockdep_subclass_ok(
392 	int subclass)
393 {
394 	return subclass < MAX_LOCKDEP_SUBCLASSES;
395 }
396 #else
397 #define xfs_lockdep_subclass_ok(subclass)	(true)
398 #endif
399 
400 /*
401  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
402  * value. This can be called for any type of inode lock combination, including
403  * parent locking. Care must be taken to ensure we don't overrun the subclass
404  * storage fields in the class mask we build.
405  */
406 static inline uint
407 xfs_lock_inumorder(
408 	uint	lock_mode,
409 	uint	subclass)
410 {
411 	uint	class = 0;
412 
413 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414 			      XFS_ILOCK_RTSUM)));
415 	ASSERT(xfs_lockdep_subclass_ok(subclass));
416 
417 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
418 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
419 		class += subclass << XFS_IOLOCK_SHIFT;
420 	}
421 
422 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
423 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
424 		class += subclass << XFS_MMAPLOCK_SHIFT;
425 	}
426 
427 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
428 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
429 		class += subclass << XFS_ILOCK_SHIFT;
430 	}
431 
432 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
433 }
434 
435 /*
436  * The following routine will lock n inodes in exclusive mode.  We assume the
437  * caller calls us with the inodes in i_ino order.
438  *
439  * We need to detect deadlock where an inode that we lock is in the AIL and we
440  * start waiting for another inode that is locked by a thread in a long running
441  * transaction (such as truncate). This can result in deadlock since the long
442  * running trans might need to wait for the inode we just locked in order to
443  * push the tail and free space in the log.
444  *
445  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
446  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
447  * lock more than one at a time, lockdep will report false positives saying we
448  * have violated locking orders.
449  */
450 static void
451 xfs_lock_inodes(
452 	struct xfs_inode	**ips,
453 	int			inodes,
454 	uint			lock_mode)
455 {
456 	int			attempts = 0;
457 	uint			i;
458 	int			j;
459 	bool			try_lock;
460 	struct xfs_log_item	*lp;
461 
462 	/*
463 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
464 	 * support an arbitrary depth of locking here, but absolute limits on
465 	 * inodes depend on the type of locking and the limits placed by
466 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
467 	 * the asserts.
468 	 */
469 	ASSERT(ips && inodes >= 2 && inodes <= 5);
470 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 			    XFS_ILOCK_EXCL));
472 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 			      XFS_ILOCK_SHARED)));
474 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478 
479 	if (lock_mode & XFS_IOLOCK_EXCL) {
480 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
483 
484 again:
485 	try_lock = false;
486 	i = 0;
487 	for (; i < inodes; i++) {
488 		ASSERT(ips[i]);
489 
490 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
491 			continue;
492 
493 		/*
494 		 * If try_lock is not set yet, make sure all locked inodes are
495 		 * not in the AIL.  If any are, set try_lock to be used later.
496 		 */
497 		if (!try_lock) {
498 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
499 				lp = &ips[j]->i_itemp->ili_item;
500 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
501 					try_lock = true;
502 			}
503 		}
504 
505 		/*
506 		 * If any of the previous locks we have locked is in the AIL,
507 		 * we must TRY to get the second and subsequent locks. If
508 		 * we can't get any, we must release all we have
509 		 * and try again.
510 		 */
511 		if (!try_lock) {
512 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513 			continue;
514 		}
515 
516 		/* try_lock means we have an inode locked that is in the AIL. */
517 		ASSERT(i != 0);
518 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519 			continue;
520 
521 		/*
522 		 * Unlock all previous guys and try again.  xfs_iunlock will try
523 		 * to push the tail if the inode is in the AIL.
524 		 */
525 		attempts++;
526 		for (j = i - 1; j >= 0; j--) {
527 			/*
528 			 * Check to see if we've already unlocked this one.  Not
529 			 * the first one going back, and the inode ptr is the
530 			 * same.
531 			 */
532 			if (j != (i - 1) && ips[j] == ips[j + 1])
533 				continue;
534 
535 			xfs_iunlock(ips[j], lock_mode);
536 		}
537 
538 		if ((attempts % 5) == 0) {
539 			delay(1); /* Don't just spin the CPU */
540 		}
541 		goto again;
542 	}
543 }
544 
545 /*
546  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
547  * mmaplock must be double-locked separately since we use i_rwsem and
548  * invalidate_lock for that. We now support taking one lock EXCL and the
549  * other SHARED.
550  */
551 void
552 xfs_lock_two_inodes(
553 	struct xfs_inode	*ip0,
554 	uint			ip0_mode,
555 	struct xfs_inode	*ip1,
556 	uint			ip1_mode)
557 {
558 	int			attempts = 0;
559 	struct xfs_log_item	*lp;
560 
561 	ASSERT(hweight32(ip0_mode) == 1);
562 	ASSERT(hweight32(ip1_mode) == 1);
563 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
565 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
567 	ASSERT(ip0->i_ino != ip1->i_ino);
568 
569 	if (ip0->i_ino > ip1->i_ino) {
570 		swap(ip0, ip1);
571 		swap(ip0_mode, ip1_mode);
572 	}
573 
574  again:
575 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576 
577 	/*
578 	 * If the first lock we have locked is in the AIL, we must TRY to get
579 	 * the second lock. If we can't get it, we must release the first one
580 	 * and try again.
581 	 */
582 	lp = &ip0->i_itemp->ili_item;
583 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 			xfs_iunlock(ip0, ip0_mode);
586 			if ((++attempts % 5) == 0)
587 				delay(1); /* Don't just spin the CPU */
588 			goto again;
589 		}
590 	} else {
591 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 	}
593 }
594 
595 uint
596 xfs_ip2xflags(
597 	struct xfs_inode	*ip)
598 {
599 	uint			flags = 0;
600 
601 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
602 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
603 			flags |= FS_XFLAG_REALTIME;
604 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
605 			flags |= FS_XFLAG_PREALLOC;
606 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
607 			flags |= FS_XFLAG_IMMUTABLE;
608 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
609 			flags |= FS_XFLAG_APPEND;
610 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
611 			flags |= FS_XFLAG_SYNC;
612 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
613 			flags |= FS_XFLAG_NOATIME;
614 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
615 			flags |= FS_XFLAG_NODUMP;
616 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
617 			flags |= FS_XFLAG_RTINHERIT;
618 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
619 			flags |= FS_XFLAG_PROJINHERIT;
620 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
621 			flags |= FS_XFLAG_NOSYMLINKS;
622 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
623 			flags |= FS_XFLAG_EXTSIZE;
624 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
625 			flags |= FS_XFLAG_EXTSZINHERIT;
626 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
627 			flags |= FS_XFLAG_NODEFRAG;
628 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
629 			flags |= FS_XFLAG_FILESTREAM;
630 	}
631 
632 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
633 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
634 			flags |= FS_XFLAG_DAX;
635 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
636 			flags |= FS_XFLAG_COWEXTSIZE;
637 	}
638 
639 	if (xfs_inode_has_attr_fork(ip))
640 		flags |= FS_XFLAG_HASATTR;
641 	return flags;
642 }
643 
644 /*
645  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
646  * is allowed, otherwise it has to be an exact match. If a CI match is found,
647  * ci_name->name will point to a the actual name (caller must free) or
648  * will be set to NULL if an exact match is found.
649  */
650 int
651 xfs_lookup(
652 	struct xfs_inode	*dp,
653 	const struct xfs_name	*name,
654 	struct xfs_inode	**ipp,
655 	struct xfs_name		*ci_name)
656 {
657 	xfs_ino_t		inum;
658 	int			error;
659 
660 	trace_xfs_lookup(dp, name);
661 
662 	if (xfs_is_shutdown(dp->i_mount))
663 		return -EIO;
664 
665 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
666 	if (error)
667 		goto out_unlock;
668 
669 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
670 	if (error)
671 		goto out_free_name;
672 
673 	return 0;
674 
675 out_free_name:
676 	if (ci_name)
677 		kmem_free(ci_name->name);
678 out_unlock:
679 	*ipp = NULL;
680 	return error;
681 }
682 
683 /* Propagate di_flags from a parent inode to a child inode. */
684 static void
685 xfs_inode_inherit_flags(
686 	struct xfs_inode	*ip,
687 	const struct xfs_inode	*pip)
688 {
689 	unsigned int		di_flags = 0;
690 	xfs_failaddr_t		failaddr;
691 	umode_t			mode = VFS_I(ip)->i_mode;
692 
693 	if (S_ISDIR(mode)) {
694 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
695 			di_flags |= XFS_DIFLAG_RTINHERIT;
696 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
697 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
698 			ip->i_extsize = pip->i_extsize;
699 		}
700 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
701 			di_flags |= XFS_DIFLAG_PROJINHERIT;
702 	} else if (S_ISREG(mode)) {
703 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
704 		    xfs_has_realtime(ip->i_mount))
705 			di_flags |= XFS_DIFLAG_REALTIME;
706 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
707 			di_flags |= XFS_DIFLAG_EXTSIZE;
708 			ip->i_extsize = pip->i_extsize;
709 		}
710 	}
711 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
712 	    xfs_inherit_noatime)
713 		di_flags |= XFS_DIFLAG_NOATIME;
714 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
715 	    xfs_inherit_nodump)
716 		di_flags |= XFS_DIFLAG_NODUMP;
717 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
718 	    xfs_inherit_sync)
719 		di_flags |= XFS_DIFLAG_SYNC;
720 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
721 	    xfs_inherit_nosymlinks)
722 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
723 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
724 	    xfs_inherit_nodefrag)
725 		di_flags |= XFS_DIFLAG_NODEFRAG;
726 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
727 		di_flags |= XFS_DIFLAG_FILESTREAM;
728 
729 	ip->i_diflags |= di_flags;
730 
731 	/*
732 	 * Inode verifiers on older kernels only check that the extent size
733 	 * hint is an integer multiple of the rt extent size on realtime files.
734 	 * They did not check the hint alignment on a directory with both
735 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
736 	 * propagated from a directory into a new realtime file, new file
737 	 * allocations will fail due to math errors in the rt allocator and/or
738 	 * trip the verifiers.  Validate the hint settings in the new file so
739 	 * that we don't let broken hints propagate.
740 	 */
741 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
742 			VFS_I(ip)->i_mode, ip->i_diflags);
743 	if (failaddr) {
744 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
745 				   XFS_DIFLAG_EXTSZINHERIT);
746 		ip->i_extsize = 0;
747 	}
748 }
749 
750 /* Propagate di_flags2 from a parent inode to a child inode. */
751 static void
752 xfs_inode_inherit_flags2(
753 	struct xfs_inode	*ip,
754 	const struct xfs_inode	*pip)
755 {
756 	xfs_failaddr_t		failaddr;
757 
758 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
759 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
760 		ip->i_cowextsize = pip->i_cowextsize;
761 	}
762 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
763 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
764 
765 	/* Don't let invalid cowextsize hints propagate. */
766 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
767 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768 	if (failaddr) {
769 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
770 		ip->i_cowextsize = 0;
771 	}
772 }
773 
774 /*
775  * Initialise a newly allocated inode and return the in-core inode to the
776  * caller locked exclusively.
777  */
778 int
779 xfs_init_new_inode(
780 	struct mnt_idmap	*idmap,
781 	struct xfs_trans	*tp,
782 	struct xfs_inode	*pip,
783 	xfs_ino_t		ino,
784 	umode_t			mode,
785 	xfs_nlink_t		nlink,
786 	dev_t			rdev,
787 	prid_t			prid,
788 	bool			init_xattrs,
789 	struct xfs_inode	**ipp)
790 {
791 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
792 	struct xfs_mount	*mp = tp->t_mountp;
793 	struct xfs_inode	*ip;
794 	unsigned int		flags;
795 	int			error;
796 	struct timespec64	tv;
797 	struct inode		*inode;
798 
799 	/*
800 	 * Protect against obviously corrupt allocation btree records. Later
801 	 * xfs_iget checks will catch re-allocation of other active in-memory
802 	 * and on-disk inodes. If we don't catch reallocating the parent inode
803 	 * here we will deadlock in xfs_iget() so we have to do these checks
804 	 * first.
805 	 */
806 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
807 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
808 		return -EFSCORRUPTED;
809 	}
810 
811 	/*
812 	 * Get the in-core inode with the lock held exclusively to prevent
813 	 * others from looking at until we're done.
814 	 */
815 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
816 	if (error)
817 		return error;
818 
819 	ASSERT(ip != NULL);
820 	inode = VFS_I(ip);
821 	set_nlink(inode, nlink);
822 	inode->i_rdev = rdev;
823 	ip->i_projid = prid;
824 
825 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
826 		inode_fsuid_set(inode, idmap);
827 		inode->i_gid = dir->i_gid;
828 		inode->i_mode = mode;
829 	} else {
830 		inode_init_owner(idmap, inode, dir, mode);
831 	}
832 
833 	/*
834 	 * If the group ID of the new file does not match the effective group
835 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
836 	 * (and only if the irix_sgid_inherit compatibility variable is set).
837 	 */
838 	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
839 	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
840 		inode->i_mode &= ~S_ISGID;
841 
842 	ip->i_disk_size = 0;
843 	ip->i_df.if_nextents = 0;
844 	ASSERT(ip->i_nblocks == 0);
845 
846 	tv = current_time(inode);
847 	inode->i_mtime = tv;
848 	inode->i_atime = tv;
849 	inode->i_ctime = tv;
850 
851 	ip->i_extsize = 0;
852 	ip->i_diflags = 0;
853 
854 	if (xfs_has_v3inodes(mp)) {
855 		inode_set_iversion(inode, 1);
856 		ip->i_cowextsize = 0;
857 		ip->i_crtime = tv;
858 	}
859 
860 	flags = XFS_ILOG_CORE;
861 	switch (mode & S_IFMT) {
862 	case S_IFIFO:
863 	case S_IFCHR:
864 	case S_IFBLK:
865 	case S_IFSOCK:
866 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
867 		flags |= XFS_ILOG_DEV;
868 		break;
869 	case S_IFREG:
870 	case S_IFDIR:
871 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
872 			xfs_inode_inherit_flags(ip, pip);
873 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
874 			xfs_inode_inherit_flags2(ip, pip);
875 		fallthrough;
876 	case S_IFLNK:
877 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
878 		ip->i_df.if_bytes = 0;
879 		ip->i_df.if_u1.if_root = NULL;
880 		break;
881 	default:
882 		ASSERT(0);
883 	}
884 
885 	/*
886 	 * If we need to create attributes immediately after allocating the
887 	 * inode, initialise an empty attribute fork right now. We use the
888 	 * default fork offset for attributes here as we don't know exactly what
889 	 * size or how many attributes we might be adding. We can do this
890 	 * safely here because we know the data fork is completely empty and
891 	 * this saves us from needing to run a separate transaction to set the
892 	 * fork offset in the immediate future.
893 	 */
894 	if (init_xattrs && xfs_has_attr(mp)) {
895 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
896 		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
897 	}
898 
899 	/*
900 	 * Log the new values stuffed into the inode.
901 	 */
902 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
903 	xfs_trans_log_inode(tp, ip, flags);
904 
905 	/* now that we have an i_mode we can setup the inode structure */
906 	xfs_setup_inode(ip);
907 
908 	*ipp = ip;
909 	return 0;
910 }
911 
912 /*
913  * Decrement the link count on an inode & log the change.  If this causes the
914  * link count to go to zero, move the inode to AGI unlinked list so that it can
915  * be freed when the last active reference goes away via xfs_inactive().
916  */
917 static int			/* error */
918 xfs_droplink(
919 	xfs_trans_t *tp,
920 	xfs_inode_t *ip)
921 {
922 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
923 
924 	drop_nlink(VFS_I(ip));
925 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
926 
927 	if (VFS_I(ip)->i_nlink)
928 		return 0;
929 
930 	return xfs_iunlink(tp, ip);
931 }
932 
933 /*
934  * Increment the link count on an inode & log the change.
935  */
936 static void
937 xfs_bumplink(
938 	xfs_trans_t *tp,
939 	xfs_inode_t *ip)
940 {
941 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
942 
943 	inc_nlink(VFS_I(ip));
944 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
945 }
946 
947 int
948 xfs_create(
949 	struct mnt_idmap	*idmap,
950 	xfs_inode_t		*dp,
951 	struct xfs_name		*name,
952 	umode_t			mode,
953 	dev_t			rdev,
954 	bool			init_xattrs,
955 	xfs_inode_t		**ipp)
956 {
957 	int			is_dir = S_ISDIR(mode);
958 	struct xfs_mount	*mp = dp->i_mount;
959 	struct xfs_inode	*ip = NULL;
960 	struct xfs_trans	*tp = NULL;
961 	int			error;
962 	bool                    unlock_dp_on_error = false;
963 	prid_t			prid;
964 	struct xfs_dquot	*udqp = NULL;
965 	struct xfs_dquot	*gdqp = NULL;
966 	struct xfs_dquot	*pdqp = NULL;
967 	struct xfs_trans_res	*tres;
968 	uint			resblks;
969 	xfs_ino_t		ino;
970 
971 	trace_xfs_create(dp, name);
972 
973 	if (xfs_is_shutdown(mp))
974 		return -EIO;
975 
976 	prid = xfs_get_initial_prid(dp);
977 
978 	/*
979 	 * Make sure that we have allocated dquot(s) on disk.
980 	 */
981 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
982 			mapped_fsgid(idmap, &init_user_ns), prid,
983 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
984 			&udqp, &gdqp, &pdqp);
985 	if (error)
986 		return error;
987 
988 	if (is_dir) {
989 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
990 		tres = &M_RES(mp)->tr_mkdir;
991 	} else {
992 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
993 		tres = &M_RES(mp)->tr_create;
994 	}
995 
996 	/*
997 	 * Initially assume that the file does not exist and
998 	 * reserve the resources for that case.  If that is not
999 	 * the case we'll drop the one we have and get a more
1000 	 * appropriate transaction later.
1001 	 */
1002 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1003 			&tp);
1004 	if (error == -ENOSPC) {
1005 		/* flush outstanding delalloc blocks and retry */
1006 		xfs_flush_inodes(mp);
1007 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1008 				resblks, &tp);
1009 	}
1010 	if (error)
1011 		goto out_release_dquots;
1012 
1013 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1014 	unlock_dp_on_error = true;
1015 
1016 	/*
1017 	 * A newly created regular or special file just has one directory
1018 	 * entry pointing to them, but a directory also the "." entry
1019 	 * pointing to itself.
1020 	 */
1021 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1022 	if (!error)
1023 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1024 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1025 	if (error)
1026 		goto out_trans_cancel;
1027 
1028 	/*
1029 	 * Now we join the directory inode to the transaction.  We do not do it
1030 	 * earlier because xfs_dialloc might commit the previous transaction
1031 	 * (and release all the locks).  An error from here on will result in
1032 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1033 	 * error path.
1034 	 */
1035 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1036 	unlock_dp_on_error = false;
1037 
1038 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1039 					resblks - XFS_IALLOC_SPACE_RES(mp));
1040 	if (error) {
1041 		ASSERT(error != -ENOSPC);
1042 		goto out_trans_cancel;
1043 	}
1044 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1045 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1046 
1047 	if (is_dir) {
1048 		error = xfs_dir_init(tp, ip, dp);
1049 		if (error)
1050 			goto out_trans_cancel;
1051 
1052 		xfs_bumplink(tp, dp);
1053 	}
1054 
1055 	/*
1056 	 * If this is a synchronous mount, make sure that the
1057 	 * create transaction goes to disk before returning to
1058 	 * the user.
1059 	 */
1060 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1061 		xfs_trans_set_sync(tp);
1062 
1063 	/*
1064 	 * Attach the dquot(s) to the inodes and modify them incore.
1065 	 * These ids of the inode couldn't have changed since the new
1066 	 * inode has been locked ever since it was created.
1067 	 */
1068 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1069 
1070 	error = xfs_trans_commit(tp);
1071 	if (error)
1072 		goto out_release_inode;
1073 
1074 	xfs_qm_dqrele(udqp);
1075 	xfs_qm_dqrele(gdqp);
1076 	xfs_qm_dqrele(pdqp);
1077 
1078 	*ipp = ip;
1079 	return 0;
1080 
1081  out_trans_cancel:
1082 	xfs_trans_cancel(tp);
1083  out_release_inode:
1084 	/*
1085 	 * Wait until after the current transaction is aborted to finish the
1086 	 * setup of the inode and release the inode.  This prevents recursive
1087 	 * transactions and deadlocks from xfs_inactive.
1088 	 */
1089 	if (ip) {
1090 		xfs_finish_inode_setup(ip);
1091 		xfs_irele(ip);
1092 	}
1093  out_release_dquots:
1094 	xfs_qm_dqrele(udqp);
1095 	xfs_qm_dqrele(gdqp);
1096 	xfs_qm_dqrele(pdqp);
1097 
1098 	if (unlock_dp_on_error)
1099 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1100 	return error;
1101 }
1102 
1103 int
1104 xfs_create_tmpfile(
1105 	struct mnt_idmap	*idmap,
1106 	struct xfs_inode	*dp,
1107 	umode_t			mode,
1108 	struct xfs_inode	**ipp)
1109 {
1110 	struct xfs_mount	*mp = dp->i_mount;
1111 	struct xfs_inode	*ip = NULL;
1112 	struct xfs_trans	*tp = NULL;
1113 	int			error;
1114 	prid_t                  prid;
1115 	struct xfs_dquot	*udqp = NULL;
1116 	struct xfs_dquot	*gdqp = NULL;
1117 	struct xfs_dquot	*pdqp = NULL;
1118 	struct xfs_trans_res	*tres;
1119 	uint			resblks;
1120 	xfs_ino_t		ino;
1121 
1122 	if (xfs_is_shutdown(mp))
1123 		return -EIO;
1124 
1125 	prid = xfs_get_initial_prid(dp);
1126 
1127 	/*
1128 	 * Make sure that we have allocated dquot(s) on disk.
1129 	 */
1130 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1131 			mapped_fsgid(idmap, &init_user_ns), prid,
1132 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1133 			&udqp, &gdqp, &pdqp);
1134 	if (error)
1135 		return error;
1136 
1137 	resblks = XFS_IALLOC_SPACE_RES(mp);
1138 	tres = &M_RES(mp)->tr_create_tmpfile;
1139 
1140 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1141 			&tp);
1142 	if (error)
1143 		goto out_release_dquots;
1144 
1145 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1146 	if (!error)
1147 		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1148 				0, 0, prid, false, &ip);
1149 	if (error)
1150 		goto out_trans_cancel;
1151 
1152 	if (xfs_has_wsync(mp))
1153 		xfs_trans_set_sync(tp);
1154 
1155 	/*
1156 	 * Attach the dquot(s) to the inodes and modify them incore.
1157 	 * These ids of the inode couldn't have changed since the new
1158 	 * inode has been locked ever since it was created.
1159 	 */
1160 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1161 
1162 	error = xfs_iunlink(tp, ip);
1163 	if (error)
1164 		goto out_trans_cancel;
1165 
1166 	error = xfs_trans_commit(tp);
1167 	if (error)
1168 		goto out_release_inode;
1169 
1170 	xfs_qm_dqrele(udqp);
1171 	xfs_qm_dqrele(gdqp);
1172 	xfs_qm_dqrele(pdqp);
1173 
1174 	*ipp = ip;
1175 	return 0;
1176 
1177  out_trans_cancel:
1178 	xfs_trans_cancel(tp);
1179  out_release_inode:
1180 	/*
1181 	 * Wait until after the current transaction is aborted to finish the
1182 	 * setup of the inode and release the inode.  This prevents recursive
1183 	 * transactions and deadlocks from xfs_inactive.
1184 	 */
1185 	if (ip) {
1186 		xfs_finish_inode_setup(ip);
1187 		xfs_irele(ip);
1188 	}
1189  out_release_dquots:
1190 	xfs_qm_dqrele(udqp);
1191 	xfs_qm_dqrele(gdqp);
1192 	xfs_qm_dqrele(pdqp);
1193 
1194 	return error;
1195 }
1196 
1197 int
1198 xfs_link(
1199 	xfs_inode_t		*tdp,
1200 	xfs_inode_t		*sip,
1201 	struct xfs_name		*target_name)
1202 {
1203 	xfs_mount_t		*mp = tdp->i_mount;
1204 	xfs_trans_t		*tp;
1205 	int			error, nospace_error = 0;
1206 	int			resblks;
1207 
1208 	trace_xfs_link(tdp, target_name);
1209 
1210 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1211 
1212 	if (xfs_is_shutdown(mp))
1213 		return -EIO;
1214 
1215 	error = xfs_qm_dqattach(sip);
1216 	if (error)
1217 		goto std_return;
1218 
1219 	error = xfs_qm_dqattach(tdp);
1220 	if (error)
1221 		goto std_return;
1222 
1223 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1224 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1225 			&tp, &nospace_error);
1226 	if (error)
1227 		goto std_return;
1228 
1229 	/*
1230 	 * If we are using project inheritance, we only allow hard link
1231 	 * creation in our tree when the project IDs are the same; else
1232 	 * the tree quota mechanism could be circumvented.
1233 	 */
1234 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1235 		     tdp->i_projid != sip->i_projid)) {
1236 		error = -EXDEV;
1237 		goto error_return;
1238 	}
1239 
1240 	if (!resblks) {
1241 		error = xfs_dir_canenter(tp, tdp, target_name);
1242 		if (error)
1243 			goto error_return;
1244 	}
1245 
1246 	/*
1247 	 * Handle initial link state of O_TMPFILE inode
1248 	 */
1249 	if (VFS_I(sip)->i_nlink == 0) {
1250 		struct xfs_perag	*pag;
1251 
1252 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1253 		error = xfs_iunlink_remove(tp, pag, sip);
1254 		xfs_perag_put(pag);
1255 		if (error)
1256 			goto error_return;
1257 	}
1258 
1259 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1260 				   resblks);
1261 	if (error)
1262 		goto error_return;
1263 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1265 
1266 	xfs_bumplink(tp, sip);
1267 
1268 	/*
1269 	 * If this is a synchronous mount, make sure that the
1270 	 * link transaction goes to disk before returning to
1271 	 * the user.
1272 	 */
1273 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1274 		xfs_trans_set_sync(tp);
1275 
1276 	return xfs_trans_commit(tp);
1277 
1278  error_return:
1279 	xfs_trans_cancel(tp);
1280  std_return:
1281 	if (error == -ENOSPC && nospace_error)
1282 		error = nospace_error;
1283 	return error;
1284 }
1285 
1286 /* Clear the reflink flag and the cowblocks tag if possible. */
1287 static void
1288 xfs_itruncate_clear_reflink_flags(
1289 	struct xfs_inode	*ip)
1290 {
1291 	struct xfs_ifork	*dfork;
1292 	struct xfs_ifork	*cfork;
1293 
1294 	if (!xfs_is_reflink_inode(ip))
1295 		return;
1296 	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1297 	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1298 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1299 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1300 	if (cfork->if_bytes == 0)
1301 		xfs_inode_clear_cowblocks_tag(ip);
1302 }
1303 
1304 /*
1305  * Free up the underlying blocks past new_size.  The new size must be smaller
1306  * than the current size.  This routine can be used both for the attribute and
1307  * data fork, and does not modify the inode size, which is left to the caller.
1308  *
1309  * The transaction passed to this routine must have made a permanent log
1310  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1311  * given transaction and start new ones, so make sure everything involved in
1312  * the transaction is tidy before calling here.  Some transaction will be
1313  * returned to the caller to be committed.  The incoming transaction must
1314  * already include the inode, and both inode locks must be held exclusively.
1315  * The inode must also be "held" within the transaction.  On return the inode
1316  * will be "held" within the returned transaction.  This routine does NOT
1317  * require any disk space to be reserved for it within the transaction.
1318  *
1319  * If we get an error, we must return with the inode locked and linked into the
1320  * current transaction. This keeps things simple for the higher level code,
1321  * because it always knows that the inode is locked and held in the transaction
1322  * that returns to it whether errors occur or not.  We don't mark the inode
1323  * dirty on error so that transactions can be easily aborted if possible.
1324  */
1325 int
1326 xfs_itruncate_extents_flags(
1327 	struct xfs_trans	**tpp,
1328 	struct xfs_inode	*ip,
1329 	int			whichfork,
1330 	xfs_fsize_t		new_size,
1331 	int			flags)
1332 {
1333 	struct xfs_mount	*mp = ip->i_mount;
1334 	struct xfs_trans	*tp = *tpp;
1335 	xfs_fileoff_t		first_unmap_block;
1336 	xfs_filblks_t		unmap_len;
1337 	int			error = 0;
1338 
1339 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1340 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1341 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1342 	ASSERT(new_size <= XFS_ISIZE(ip));
1343 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1344 	ASSERT(ip->i_itemp != NULL);
1345 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1346 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1347 
1348 	trace_xfs_itruncate_extents_start(ip, new_size);
1349 
1350 	flags |= xfs_bmapi_aflag(whichfork);
1351 
1352 	/*
1353 	 * Since it is possible for space to become allocated beyond
1354 	 * the end of the file (in a crash where the space is allocated
1355 	 * but the inode size is not yet updated), simply remove any
1356 	 * blocks which show up between the new EOF and the maximum
1357 	 * possible file size.
1358 	 *
1359 	 * We have to free all the blocks to the bmbt maximum offset, even if
1360 	 * the page cache can't scale that far.
1361 	 */
1362 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1363 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1364 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1365 		return 0;
1366 	}
1367 
1368 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1369 	while (unmap_len > 0) {
1370 		ASSERT(tp->t_highest_agno == NULLAGNUMBER);
1371 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1372 				flags, XFS_ITRUNC_MAX_EXTENTS);
1373 		if (error)
1374 			goto out;
1375 
1376 		/* free the just unmapped extents */
1377 		error = xfs_defer_finish(&tp);
1378 		if (error)
1379 			goto out;
1380 	}
1381 
1382 	if (whichfork == XFS_DATA_FORK) {
1383 		/* Remove all pending CoW reservations. */
1384 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1385 				first_unmap_block, XFS_MAX_FILEOFF, true);
1386 		if (error)
1387 			goto out;
1388 
1389 		xfs_itruncate_clear_reflink_flags(ip);
1390 	}
1391 
1392 	/*
1393 	 * Always re-log the inode so that our permanent transaction can keep
1394 	 * on rolling it forward in the log.
1395 	 */
1396 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1397 
1398 	trace_xfs_itruncate_extents_end(ip, new_size);
1399 
1400 out:
1401 	*tpp = tp;
1402 	return error;
1403 }
1404 
1405 int
1406 xfs_release(
1407 	xfs_inode_t	*ip)
1408 {
1409 	xfs_mount_t	*mp = ip->i_mount;
1410 	int		error = 0;
1411 
1412 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1413 		return 0;
1414 
1415 	/* If this is a read-only mount, don't do this (would generate I/O) */
1416 	if (xfs_is_readonly(mp))
1417 		return 0;
1418 
1419 	if (!xfs_is_shutdown(mp)) {
1420 		int truncated;
1421 
1422 		/*
1423 		 * If we previously truncated this file and removed old data
1424 		 * in the process, we want to initiate "early" writeout on
1425 		 * the last close.  This is an attempt to combat the notorious
1426 		 * NULL files problem which is particularly noticeable from a
1427 		 * truncate down, buffered (re-)write (delalloc), followed by
1428 		 * a crash.  What we are effectively doing here is
1429 		 * significantly reducing the time window where we'd otherwise
1430 		 * be exposed to that problem.
1431 		 */
1432 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1433 		if (truncated) {
1434 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1435 			if (ip->i_delayed_blks > 0) {
1436 				error = filemap_flush(VFS_I(ip)->i_mapping);
1437 				if (error)
1438 					return error;
1439 			}
1440 		}
1441 	}
1442 
1443 	if (VFS_I(ip)->i_nlink == 0)
1444 		return 0;
1445 
1446 	/*
1447 	 * If we can't get the iolock just skip truncating the blocks past EOF
1448 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1449 	 * another chance to drop them once the last reference to the inode is
1450 	 * dropped, so we'll never leak blocks permanently.
1451 	 */
1452 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1453 		return 0;
1454 
1455 	if (xfs_can_free_eofblocks(ip, false)) {
1456 		/*
1457 		 * Check if the inode is being opened, written and closed
1458 		 * frequently and we have delayed allocation blocks outstanding
1459 		 * (e.g. streaming writes from the NFS server), truncating the
1460 		 * blocks past EOF will cause fragmentation to occur.
1461 		 *
1462 		 * In this case don't do the truncation, but we have to be
1463 		 * careful how we detect this case. Blocks beyond EOF show up as
1464 		 * i_delayed_blks even when the inode is clean, so we need to
1465 		 * truncate them away first before checking for a dirty release.
1466 		 * Hence on the first dirty close we will still remove the
1467 		 * speculative allocation, but after that we will leave it in
1468 		 * place.
1469 		 */
1470 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1471 			goto out_unlock;
1472 
1473 		error = xfs_free_eofblocks(ip);
1474 		if (error)
1475 			goto out_unlock;
1476 
1477 		/* delalloc blocks after truncation means it really is dirty */
1478 		if (ip->i_delayed_blks)
1479 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1480 	}
1481 
1482 out_unlock:
1483 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1484 	return error;
1485 }
1486 
1487 /*
1488  * xfs_inactive_truncate
1489  *
1490  * Called to perform a truncate when an inode becomes unlinked.
1491  */
1492 STATIC int
1493 xfs_inactive_truncate(
1494 	struct xfs_inode *ip)
1495 {
1496 	struct xfs_mount	*mp = ip->i_mount;
1497 	struct xfs_trans	*tp;
1498 	int			error;
1499 
1500 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1501 	if (error) {
1502 		ASSERT(xfs_is_shutdown(mp));
1503 		return error;
1504 	}
1505 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1506 	xfs_trans_ijoin(tp, ip, 0);
1507 
1508 	/*
1509 	 * Log the inode size first to prevent stale data exposure in the event
1510 	 * of a system crash before the truncate completes. See the related
1511 	 * comment in xfs_vn_setattr_size() for details.
1512 	 */
1513 	ip->i_disk_size = 0;
1514 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1515 
1516 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1517 	if (error)
1518 		goto error_trans_cancel;
1519 
1520 	ASSERT(ip->i_df.if_nextents == 0);
1521 
1522 	error = xfs_trans_commit(tp);
1523 	if (error)
1524 		goto error_unlock;
1525 
1526 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1527 	return 0;
1528 
1529 error_trans_cancel:
1530 	xfs_trans_cancel(tp);
1531 error_unlock:
1532 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533 	return error;
1534 }
1535 
1536 /*
1537  * xfs_inactive_ifree()
1538  *
1539  * Perform the inode free when an inode is unlinked.
1540  */
1541 STATIC int
1542 xfs_inactive_ifree(
1543 	struct xfs_inode *ip)
1544 {
1545 	struct xfs_mount	*mp = ip->i_mount;
1546 	struct xfs_trans	*tp;
1547 	int			error;
1548 
1549 	/*
1550 	 * We try to use a per-AG reservation for any block needed by the finobt
1551 	 * tree, but as the finobt feature predates the per-AG reservation
1552 	 * support a degraded file system might not have enough space for the
1553 	 * reservation at mount time.  In that case try to dip into the reserved
1554 	 * pool and pray.
1555 	 *
1556 	 * Send a warning if the reservation does happen to fail, as the inode
1557 	 * now remains allocated and sits on the unlinked list until the fs is
1558 	 * repaired.
1559 	 */
1560 	if (unlikely(mp->m_finobt_nores)) {
1561 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1562 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1563 				&tp);
1564 	} else {
1565 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1566 	}
1567 	if (error) {
1568 		if (error == -ENOSPC) {
1569 			xfs_warn_ratelimited(mp,
1570 			"Failed to remove inode(s) from unlinked list. "
1571 			"Please free space, unmount and run xfs_repair.");
1572 		} else {
1573 			ASSERT(xfs_is_shutdown(mp));
1574 		}
1575 		return error;
1576 	}
1577 
1578 	/*
1579 	 * We do not hold the inode locked across the entire rolling transaction
1580 	 * here. We only need to hold it for the first transaction that
1581 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1582 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1583 	 * here breaks the relationship between cluster buffer invalidation and
1584 	 * stale inode invalidation on cluster buffer item journal commit
1585 	 * completion, and can result in leaving dirty stale inodes hanging
1586 	 * around in memory.
1587 	 *
1588 	 * We have no need for serialising this inode operation against other
1589 	 * operations - we freed the inode and hence reallocation is required
1590 	 * and that will serialise on reallocating the space the deferops need
1591 	 * to free. Hence we can unlock the inode on the first commit of
1592 	 * the transaction rather than roll it right through the deferops. This
1593 	 * avoids relogging the XFS_ISTALE inode.
1594 	 *
1595 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1596 	 * by asserting that the inode is still locked when it returns.
1597 	 */
1598 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1599 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1600 
1601 	error = xfs_ifree(tp, ip);
1602 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1603 	if (error) {
1604 		/*
1605 		 * If we fail to free the inode, shut down.  The cancel
1606 		 * might do that, we need to make sure.  Otherwise the
1607 		 * inode might be lost for a long time or forever.
1608 		 */
1609 		if (!xfs_is_shutdown(mp)) {
1610 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1611 				__func__, error);
1612 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1613 		}
1614 		xfs_trans_cancel(tp);
1615 		return error;
1616 	}
1617 
1618 	/*
1619 	 * Credit the quota account(s). The inode is gone.
1620 	 */
1621 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1622 
1623 	/*
1624 	 * Just ignore errors at this point.  There is nothing we can do except
1625 	 * to try to keep going. Make sure it's not a silent error.
1626 	 */
1627 	error = xfs_trans_commit(tp);
1628 	if (error)
1629 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1630 			__func__, error);
1631 
1632 	return 0;
1633 }
1634 
1635 /*
1636  * Returns true if we need to update the on-disk metadata before we can free
1637  * the memory used by this inode.  Updates include freeing post-eof
1638  * preallocations; freeing COW staging extents; and marking the inode free in
1639  * the inobt if it is on the unlinked list.
1640  */
1641 bool
1642 xfs_inode_needs_inactive(
1643 	struct xfs_inode	*ip)
1644 {
1645 	struct xfs_mount	*mp = ip->i_mount;
1646 	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1647 
1648 	/*
1649 	 * If the inode is already free, then there can be nothing
1650 	 * to clean up here.
1651 	 */
1652 	if (VFS_I(ip)->i_mode == 0)
1653 		return false;
1654 
1655 	/* If this is a read-only mount, don't do this (would generate I/O) */
1656 	if (xfs_is_readonly(mp))
1657 		return false;
1658 
1659 	/* If the log isn't running, push inodes straight to reclaim. */
1660 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1661 		return false;
1662 
1663 	/* Metadata inodes require explicit resource cleanup. */
1664 	if (xfs_is_metadata_inode(ip))
1665 		return false;
1666 
1667 	/* Want to clean out the cow blocks if there are any. */
1668 	if (cow_ifp && cow_ifp->if_bytes > 0)
1669 		return true;
1670 
1671 	/* Unlinked files must be freed. */
1672 	if (VFS_I(ip)->i_nlink == 0)
1673 		return true;
1674 
1675 	/*
1676 	 * This file isn't being freed, so check if there are post-eof blocks
1677 	 * to free.  @force is true because we are evicting an inode from the
1678 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1679 	 * free space accounting.
1680 	 *
1681 	 * Note: don't bother with iolock here since lockdep complains about
1682 	 * acquiring it in reclaim context. We have the only reference to the
1683 	 * inode at this point anyways.
1684 	 */
1685 	return xfs_can_free_eofblocks(ip, true);
1686 }
1687 
1688 /*
1689  * xfs_inactive
1690  *
1691  * This is called when the vnode reference count for the vnode
1692  * goes to zero.  If the file has been unlinked, then it must
1693  * now be truncated.  Also, we clear all of the read-ahead state
1694  * kept for the inode here since the file is now closed.
1695  */
1696 void
1697 xfs_inactive(
1698 	xfs_inode_t	*ip)
1699 {
1700 	struct xfs_mount	*mp;
1701 	int			error;
1702 	int			truncate = 0;
1703 
1704 	/*
1705 	 * If the inode is already free, then there can be nothing
1706 	 * to clean up here.
1707 	 */
1708 	if (VFS_I(ip)->i_mode == 0) {
1709 		ASSERT(ip->i_df.if_broot_bytes == 0);
1710 		goto out;
1711 	}
1712 
1713 	mp = ip->i_mount;
1714 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1715 
1716 	/* If this is a read-only mount, don't do this (would generate I/O) */
1717 	if (xfs_is_readonly(mp))
1718 		goto out;
1719 
1720 	/* Metadata inodes require explicit resource cleanup. */
1721 	if (xfs_is_metadata_inode(ip))
1722 		goto out;
1723 
1724 	/* Try to clean out the cow blocks if there are any. */
1725 	if (xfs_inode_has_cow_data(ip))
1726 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1727 
1728 	if (VFS_I(ip)->i_nlink != 0) {
1729 		/*
1730 		 * force is true because we are evicting an inode from the
1731 		 * cache. Post-eof blocks must be freed, lest we end up with
1732 		 * broken free space accounting.
1733 		 *
1734 		 * Note: don't bother with iolock here since lockdep complains
1735 		 * about acquiring it in reclaim context. We have the only
1736 		 * reference to the inode at this point anyways.
1737 		 */
1738 		if (xfs_can_free_eofblocks(ip, true))
1739 			xfs_free_eofblocks(ip);
1740 
1741 		goto out;
1742 	}
1743 
1744 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1745 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1746 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1747 		truncate = 1;
1748 
1749 	error = xfs_qm_dqattach(ip);
1750 	if (error)
1751 		goto out;
1752 
1753 	if (S_ISLNK(VFS_I(ip)->i_mode))
1754 		error = xfs_inactive_symlink(ip);
1755 	else if (truncate)
1756 		error = xfs_inactive_truncate(ip);
1757 	if (error)
1758 		goto out;
1759 
1760 	/*
1761 	 * If there are attributes associated with the file then blow them away
1762 	 * now.  The code calls a routine that recursively deconstructs the
1763 	 * attribute fork. If also blows away the in-core attribute fork.
1764 	 */
1765 	if (xfs_inode_has_attr_fork(ip)) {
1766 		error = xfs_attr_inactive(ip);
1767 		if (error)
1768 			goto out;
1769 	}
1770 
1771 	ASSERT(ip->i_forkoff == 0);
1772 
1773 	/*
1774 	 * Free the inode.
1775 	 */
1776 	xfs_inactive_ifree(ip);
1777 
1778 out:
1779 	/*
1780 	 * We're done making metadata updates for this inode, so we can release
1781 	 * the attached dquots.
1782 	 */
1783 	xfs_qm_dqdetach(ip);
1784 }
1785 
1786 /*
1787  * In-Core Unlinked List Lookups
1788  * =============================
1789  *
1790  * Every inode is supposed to be reachable from some other piece of metadata
1791  * with the exception of the root directory.  Inodes with a connection to a
1792  * file descriptor but not linked from anywhere in the on-disk directory tree
1793  * are collectively known as unlinked inodes, though the filesystem itself
1794  * maintains links to these inodes so that on-disk metadata are consistent.
1795  *
1796  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1797  * header contains a number of buckets that point to an inode, and each inode
1798  * record has a pointer to the next inode in the hash chain.  This
1799  * singly-linked list causes scaling problems in the iunlink remove function
1800  * because we must walk that list to find the inode that points to the inode
1801  * being removed from the unlinked hash bucket list.
1802  *
1803  * Hence we keep an in-memory double linked list to link each inode on an
1804  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1805  * based lists would require having 64 list heads in the perag, one for each
1806  * list. This is expensive in terms of memory (think millions of AGs) and cache
1807  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1808  * must be referenced at the VFS level to keep them on the list and hence we
1809  * have an existence guarantee for inodes on the unlinked list.
1810  *
1811  * Given we have an existence guarantee, we can use lockless inode cache lookups
1812  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1813  * for the double linked unlinked list, and we don't need any extra locking to
1814  * keep the list safe as all manipulations are done under the AGI buffer lock.
1815  * Keeping the list up to date does not require memory allocation, just finding
1816  * the XFS inode and updating the next/prev unlinked list aginos.
1817  */
1818 
1819 /*
1820  * Find an inode on the unlinked list. This does not take references to the
1821  * inode as we have existence guarantees by holding the AGI buffer lock and that
1822  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1823  * don't find the inode in cache, then let the caller handle the situation.
1824  */
1825 static struct xfs_inode *
1826 xfs_iunlink_lookup(
1827 	struct xfs_perag	*pag,
1828 	xfs_agino_t		agino)
1829 {
1830 	struct xfs_inode	*ip;
1831 
1832 	rcu_read_lock();
1833 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1834 
1835 	/*
1836 	 * Inode not in memory or in RCU freeing limbo should not happen.
1837 	 * Warn about this and let the caller handle the failure.
1838 	 */
1839 	if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1840 		rcu_read_unlock();
1841 		return NULL;
1842 	}
1843 	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1844 	rcu_read_unlock();
1845 	return ip;
1846 }
1847 
1848 /* Update the prev pointer of the next agino. */
1849 static int
1850 xfs_iunlink_update_backref(
1851 	struct xfs_perag	*pag,
1852 	xfs_agino_t		prev_agino,
1853 	xfs_agino_t		next_agino)
1854 {
1855 	struct xfs_inode	*ip;
1856 
1857 	/* No update necessary if we are at the end of the list. */
1858 	if (next_agino == NULLAGINO)
1859 		return 0;
1860 
1861 	ip = xfs_iunlink_lookup(pag, next_agino);
1862 	if (!ip)
1863 		return -EFSCORRUPTED;
1864 	ip->i_prev_unlinked = prev_agino;
1865 	return 0;
1866 }
1867 
1868 /*
1869  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1870  * is responsible for validating the old value.
1871  */
1872 STATIC int
1873 xfs_iunlink_update_bucket(
1874 	struct xfs_trans	*tp,
1875 	struct xfs_perag	*pag,
1876 	struct xfs_buf		*agibp,
1877 	unsigned int		bucket_index,
1878 	xfs_agino_t		new_agino)
1879 {
1880 	struct xfs_agi		*agi = agibp->b_addr;
1881 	xfs_agino_t		old_value;
1882 	int			offset;
1883 
1884 	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1885 
1886 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1887 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1888 			old_value, new_agino);
1889 
1890 	/*
1891 	 * We should never find the head of the list already set to the value
1892 	 * passed in because either we're adding or removing ourselves from the
1893 	 * head of the list.
1894 	 */
1895 	if (old_value == new_agino) {
1896 		xfs_buf_mark_corrupt(agibp);
1897 		return -EFSCORRUPTED;
1898 	}
1899 
1900 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1901 	offset = offsetof(struct xfs_agi, agi_unlinked) +
1902 			(sizeof(xfs_agino_t) * bucket_index);
1903 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1904 	return 0;
1905 }
1906 
1907 static int
1908 xfs_iunlink_insert_inode(
1909 	struct xfs_trans	*tp,
1910 	struct xfs_perag	*pag,
1911 	struct xfs_buf		*agibp,
1912 	struct xfs_inode	*ip)
1913 {
1914 	struct xfs_mount	*mp = tp->t_mountp;
1915 	struct xfs_agi		*agi = agibp->b_addr;
1916 	xfs_agino_t		next_agino;
1917 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1918 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1919 	int			error;
1920 
1921 	/*
1922 	 * Get the index into the agi hash table for the list this inode will
1923 	 * go on.  Make sure the pointer isn't garbage and that this inode
1924 	 * isn't already on the list.
1925 	 */
1926 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1927 	if (next_agino == agino ||
1928 	    !xfs_verify_agino_or_null(pag, next_agino)) {
1929 		xfs_buf_mark_corrupt(agibp);
1930 		return -EFSCORRUPTED;
1931 	}
1932 
1933 	/*
1934 	 * Update the prev pointer in the next inode to point back to this
1935 	 * inode.
1936 	 */
1937 	error = xfs_iunlink_update_backref(pag, agino, next_agino);
1938 	if (error)
1939 		return error;
1940 
1941 	if (next_agino != NULLAGINO) {
1942 		/*
1943 		 * There is already another inode in the bucket, so point this
1944 		 * inode to the current head of the list.
1945 		 */
1946 		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
1947 		if (error)
1948 			return error;
1949 		ip->i_next_unlinked = next_agino;
1950 	}
1951 
1952 	/* Point the head of the list to point to this inode. */
1953 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
1954 }
1955 
1956 /*
1957  * This is called when the inode's link count has gone to 0 or we are creating
1958  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
1959  *
1960  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1961  * list when the inode is freed.
1962  */
1963 STATIC int
1964 xfs_iunlink(
1965 	struct xfs_trans	*tp,
1966 	struct xfs_inode	*ip)
1967 {
1968 	struct xfs_mount	*mp = tp->t_mountp;
1969 	struct xfs_perag	*pag;
1970 	struct xfs_buf		*agibp;
1971 	int			error;
1972 
1973 	ASSERT(VFS_I(ip)->i_nlink == 0);
1974 	ASSERT(VFS_I(ip)->i_mode != 0);
1975 	trace_xfs_iunlink(ip);
1976 
1977 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1978 
1979 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
1980 	error = xfs_read_agi(pag, tp, &agibp);
1981 	if (error)
1982 		goto out;
1983 
1984 	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
1985 out:
1986 	xfs_perag_put(pag);
1987 	return error;
1988 }
1989 
1990 static int
1991 xfs_iunlink_remove_inode(
1992 	struct xfs_trans	*tp,
1993 	struct xfs_perag	*pag,
1994 	struct xfs_buf		*agibp,
1995 	struct xfs_inode	*ip)
1996 {
1997 	struct xfs_mount	*mp = tp->t_mountp;
1998 	struct xfs_agi		*agi = agibp->b_addr;
1999 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2000 	xfs_agino_t		head_agino;
2001 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2002 	int			error;
2003 
2004 	trace_xfs_iunlink_remove(ip);
2005 
2006 	/*
2007 	 * Get the index into the agi hash table for the list this inode will
2008 	 * go on.  Make sure the head pointer isn't garbage.
2009 	 */
2010 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2011 	if (!xfs_verify_agino(pag, head_agino)) {
2012 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2013 				agi, sizeof(*agi));
2014 		return -EFSCORRUPTED;
2015 	}
2016 
2017 	/*
2018 	 * Set our inode's next_unlinked pointer to NULL and then return
2019 	 * the old pointer value so that we can update whatever was previous
2020 	 * to us in the list to point to whatever was next in the list.
2021 	 */
2022 	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2023 	if (error)
2024 		return error;
2025 
2026 	/*
2027 	 * Update the prev pointer in the next inode to point back to previous
2028 	 * inode in the chain.
2029 	 */
2030 	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2031 			ip->i_next_unlinked);
2032 	if (error)
2033 		return error;
2034 
2035 	if (head_agino != agino) {
2036 		struct xfs_inode	*prev_ip;
2037 
2038 		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2039 		if (!prev_ip)
2040 			return -EFSCORRUPTED;
2041 
2042 		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2043 				ip->i_next_unlinked);
2044 		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2045 	} else {
2046 		/* Point the head of the list to the next unlinked inode. */
2047 		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2048 				ip->i_next_unlinked);
2049 	}
2050 
2051 	ip->i_next_unlinked = NULLAGINO;
2052 	ip->i_prev_unlinked = NULLAGINO;
2053 	return error;
2054 }
2055 
2056 /*
2057  * Pull the on-disk inode from the AGI unlinked list.
2058  */
2059 STATIC int
2060 xfs_iunlink_remove(
2061 	struct xfs_trans	*tp,
2062 	struct xfs_perag	*pag,
2063 	struct xfs_inode	*ip)
2064 {
2065 	struct xfs_buf		*agibp;
2066 	int			error;
2067 
2068 	trace_xfs_iunlink_remove(ip);
2069 
2070 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2071 	error = xfs_read_agi(pag, tp, &agibp);
2072 	if (error)
2073 		return error;
2074 
2075 	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2076 }
2077 
2078 /*
2079  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2080  * mark it stale. We should only find clean inodes in this lookup that aren't
2081  * already stale.
2082  */
2083 static void
2084 xfs_ifree_mark_inode_stale(
2085 	struct xfs_perag	*pag,
2086 	struct xfs_inode	*free_ip,
2087 	xfs_ino_t		inum)
2088 {
2089 	struct xfs_mount	*mp = pag->pag_mount;
2090 	struct xfs_inode_log_item *iip;
2091 	struct xfs_inode	*ip;
2092 
2093 retry:
2094 	rcu_read_lock();
2095 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2096 
2097 	/* Inode not in memory, nothing to do */
2098 	if (!ip) {
2099 		rcu_read_unlock();
2100 		return;
2101 	}
2102 
2103 	/*
2104 	 * because this is an RCU protected lookup, we could find a recently
2105 	 * freed or even reallocated inode during the lookup. We need to check
2106 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2107 	 * valid, the wrong inode or stale.
2108 	 */
2109 	spin_lock(&ip->i_flags_lock);
2110 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2111 		goto out_iflags_unlock;
2112 
2113 	/*
2114 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2115 	 * other inodes that we did not find in the list attached to the buffer
2116 	 * and are not already marked stale. If we can't lock it, back off and
2117 	 * retry.
2118 	 */
2119 	if (ip != free_ip) {
2120 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2121 			spin_unlock(&ip->i_flags_lock);
2122 			rcu_read_unlock();
2123 			delay(1);
2124 			goto retry;
2125 		}
2126 	}
2127 	ip->i_flags |= XFS_ISTALE;
2128 
2129 	/*
2130 	 * If the inode is flushing, it is already attached to the buffer.  All
2131 	 * we needed to do here is mark the inode stale so buffer IO completion
2132 	 * will remove it from the AIL.
2133 	 */
2134 	iip = ip->i_itemp;
2135 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2136 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2137 		ASSERT(iip->ili_last_fields);
2138 		goto out_iunlock;
2139 	}
2140 
2141 	/*
2142 	 * Inodes not attached to the buffer can be released immediately.
2143 	 * Everything else has to go through xfs_iflush_abort() on journal
2144 	 * commit as the flock synchronises removal of the inode from the
2145 	 * cluster buffer against inode reclaim.
2146 	 */
2147 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2148 		goto out_iunlock;
2149 
2150 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2151 	spin_unlock(&ip->i_flags_lock);
2152 	rcu_read_unlock();
2153 
2154 	/* we have a dirty inode in memory that has not yet been flushed. */
2155 	spin_lock(&iip->ili_lock);
2156 	iip->ili_last_fields = iip->ili_fields;
2157 	iip->ili_fields = 0;
2158 	iip->ili_fsync_fields = 0;
2159 	spin_unlock(&iip->ili_lock);
2160 	ASSERT(iip->ili_last_fields);
2161 
2162 	if (ip != free_ip)
2163 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2164 	return;
2165 
2166 out_iunlock:
2167 	if (ip != free_ip)
2168 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2169 out_iflags_unlock:
2170 	spin_unlock(&ip->i_flags_lock);
2171 	rcu_read_unlock();
2172 }
2173 
2174 /*
2175  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2176  * inodes that are in memory - they all must be marked stale and attached to
2177  * the cluster buffer.
2178  */
2179 static int
2180 xfs_ifree_cluster(
2181 	struct xfs_trans	*tp,
2182 	struct xfs_perag	*pag,
2183 	struct xfs_inode	*free_ip,
2184 	struct xfs_icluster	*xic)
2185 {
2186 	struct xfs_mount	*mp = free_ip->i_mount;
2187 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2188 	struct xfs_buf		*bp;
2189 	xfs_daddr_t		blkno;
2190 	xfs_ino_t		inum = xic->first_ino;
2191 	int			nbufs;
2192 	int			i, j;
2193 	int			ioffset;
2194 	int			error;
2195 
2196 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2197 
2198 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2199 		/*
2200 		 * The allocation bitmap tells us which inodes of the chunk were
2201 		 * physically allocated. Skip the cluster if an inode falls into
2202 		 * a sparse region.
2203 		 */
2204 		ioffset = inum - xic->first_ino;
2205 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2206 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2207 			continue;
2208 		}
2209 
2210 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211 					 XFS_INO_TO_AGBNO(mp, inum));
2212 
2213 		/*
2214 		 * We obtain and lock the backing buffer first in the process
2215 		 * here to ensure dirty inodes attached to the buffer remain in
2216 		 * the flushing state while we mark them stale.
2217 		 *
2218 		 * If we scan the in-memory inodes first, then buffer IO can
2219 		 * complete before we get a lock on it, and hence we may fail
2220 		 * to mark all the active inodes on the buffer stale.
2221 		 */
2222 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2223 				mp->m_bsize * igeo->blocks_per_cluster,
2224 				XBF_UNMAPPED, &bp);
2225 		if (error)
2226 			return error;
2227 
2228 		/*
2229 		 * This buffer may not have been correctly initialised as we
2230 		 * didn't read it from disk. That's not important because we are
2231 		 * only using to mark the buffer as stale in the log, and to
2232 		 * attach stale cached inodes on it. That means it will never be
2233 		 * dispatched for IO. If it is, we want to know about it, and we
2234 		 * want it to fail. We can acheive this by adding a write
2235 		 * verifier to the buffer.
2236 		 */
2237 		bp->b_ops = &xfs_inode_buf_ops;
2238 
2239 		/*
2240 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2241 		 * too. This requires lookups, and will skip inodes that we've
2242 		 * already marked XFS_ISTALE.
2243 		 */
2244 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2245 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2246 
2247 		xfs_trans_stale_inode_buf(tp, bp);
2248 		xfs_trans_binval(tp, bp);
2249 	}
2250 	return 0;
2251 }
2252 
2253 /*
2254  * This is called to return an inode to the inode free list.  The inode should
2255  * already be truncated to 0 length and have no pages associated with it.  This
2256  * routine also assumes that the inode is already a part of the transaction.
2257  *
2258  * The on-disk copy of the inode will have been added to the list of unlinked
2259  * inodes in the AGI. We need to remove the inode from that list atomically with
2260  * respect to freeing it here.
2261  */
2262 int
2263 xfs_ifree(
2264 	struct xfs_trans	*tp,
2265 	struct xfs_inode	*ip)
2266 {
2267 	struct xfs_mount	*mp = ip->i_mount;
2268 	struct xfs_perag	*pag;
2269 	struct xfs_icluster	xic = { 0 };
2270 	struct xfs_inode_log_item *iip = ip->i_itemp;
2271 	int			error;
2272 
2273 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2274 	ASSERT(VFS_I(ip)->i_nlink == 0);
2275 	ASSERT(ip->i_df.if_nextents == 0);
2276 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2277 	ASSERT(ip->i_nblocks == 0);
2278 
2279 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2280 
2281 	/*
2282 	 * Free the inode first so that we guarantee that the AGI lock is going
2283 	 * to be taken before we remove the inode from the unlinked list. This
2284 	 * makes the AGI lock -> unlinked list modification order the same as
2285 	 * used in O_TMPFILE creation.
2286 	 */
2287 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2288 	if (error)
2289 		goto out;
2290 
2291 	error = xfs_iunlink_remove(tp, pag, ip);
2292 	if (error)
2293 		goto out;
2294 
2295 	/*
2296 	 * Free any local-format data sitting around before we reset the
2297 	 * data fork to extents format.  Note that the attr fork data has
2298 	 * already been freed by xfs_attr_inactive.
2299 	 */
2300 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2301 		kmem_free(ip->i_df.if_u1.if_data);
2302 		ip->i_df.if_u1.if_data = NULL;
2303 		ip->i_df.if_bytes = 0;
2304 	}
2305 
2306 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2307 	ip->i_diflags = 0;
2308 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2309 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2310 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2311 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2312 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2313 
2314 	/* Don't attempt to replay owner changes for a deleted inode */
2315 	spin_lock(&iip->ili_lock);
2316 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2317 	spin_unlock(&iip->ili_lock);
2318 
2319 	/*
2320 	 * Bump the generation count so no one will be confused
2321 	 * by reincarnations of this inode.
2322 	 */
2323 	VFS_I(ip)->i_generation++;
2324 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2325 
2326 	if (xic.deleted)
2327 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2328 out:
2329 	xfs_perag_put(pag);
2330 	return error;
2331 }
2332 
2333 /*
2334  * This is called to unpin an inode.  The caller must have the inode locked
2335  * in at least shared mode so that the buffer cannot be subsequently pinned
2336  * once someone is waiting for it to be unpinned.
2337  */
2338 static void
2339 xfs_iunpin(
2340 	struct xfs_inode	*ip)
2341 {
2342 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2343 
2344 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2345 
2346 	/* Give the log a push to start the unpinning I/O */
2347 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2348 
2349 }
2350 
2351 static void
2352 __xfs_iunpin_wait(
2353 	struct xfs_inode	*ip)
2354 {
2355 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2356 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2357 
2358 	xfs_iunpin(ip);
2359 
2360 	do {
2361 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2362 		if (xfs_ipincount(ip))
2363 			io_schedule();
2364 	} while (xfs_ipincount(ip));
2365 	finish_wait(wq, &wait.wq_entry);
2366 }
2367 
2368 void
2369 xfs_iunpin_wait(
2370 	struct xfs_inode	*ip)
2371 {
2372 	if (xfs_ipincount(ip))
2373 		__xfs_iunpin_wait(ip);
2374 }
2375 
2376 /*
2377  * Removing an inode from the namespace involves removing the directory entry
2378  * and dropping the link count on the inode. Removing the directory entry can
2379  * result in locking an AGF (directory blocks were freed) and removing a link
2380  * count can result in placing the inode on an unlinked list which results in
2381  * locking an AGI.
2382  *
2383  * The big problem here is that we have an ordering constraint on AGF and AGI
2384  * locking - inode allocation locks the AGI, then can allocate a new extent for
2385  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2386  * removes the inode from the unlinked list, requiring that we lock the AGI
2387  * first, and then freeing the inode can result in an inode chunk being freed
2388  * and hence freeing disk space requiring that we lock an AGF.
2389  *
2390  * Hence the ordering that is imposed by other parts of the code is AGI before
2391  * AGF. This means we cannot remove the directory entry before we drop the inode
2392  * reference count and put it on the unlinked list as this results in a lock
2393  * order of AGF then AGI, and this can deadlock against inode allocation and
2394  * freeing. Therefore we must drop the link counts before we remove the
2395  * directory entry.
2396  *
2397  * This is still safe from a transactional point of view - it is not until we
2398  * get to xfs_defer_finish() that we have the possibility of multiple
2399  * transactions in this operation. Hence as long as we remove the directory
2400  * entry and drop the link count in the first transaction of the remove
2401  * operation, there are no transactional constraints on the ordering here.
2402  */
2403 int
2404 xfs_remove(
2405 	xfs_inode_t             *dp,
2406 	struct xfs_name		*name,
2407 	xfs_inode_t		*ip)
2408 {
2409 	xfs_mount_t		*mp = dp->i_mount;
2410 	xfs_trans_t             *tp = NULL;
2411 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2412 	int			dontcare;
2413 	int                     error = 0;
2414 	uint			resblks;
2415 
2416 	trace_xfs_remove(dp, name);
2417 
2418 	if (xfs_is_shutdown(mp))
2419 		return -EIO;
2420 
2421 	error = xfs_qm_dqattach(dp);
2422 	if (error)
2423 		goto std_return;
2424 
2425 	error = xfs_qm_dqattach(ip);
2426 	if (error)
2427 		goto std_return;
2428 
2429 	/*
2430 	 * We try to get the real space reservation first, allowing for
2431 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2432 	 * can't get the space reservation then we use 0 instead, and avoid the
2433 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2434 	 * tries to happen, instead trimming the LAST block from the directory.
2435 	 *
2436 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2437 	 * the directory code can handle a reservationless update and we don't
2438 	 * want to prevent a user from trying to free space by deleting things.
2439 	 */
2440 	resblks = XFS_REMOVE_SPACE_RES(mp);
2441 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2442 			&tp, &dontcare);
2443 	if (error) {
2444 		ASSERT(error != -ENOSPC);
2445 		goto std_return;
2446 	}
2447 
2448 	/*
2449 	 * If we're removing a directory perform some additional validation.
2450 	 */
2451 	if (is_dir) {
2452 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2453 		if (VFS_I(ip)->i_nlink != 2) {
2454 			error = -ENOTEMPTY;
2455 			goto out_trans_cancel;
2456 		}
2457 		if (!xfs_dir_isempty(ip)) {
2458 			error = -ENOTEMPTY;
2459 			goto out_trans_cancel;
2460 		}
2461 
2462 		/* Drop the link from ip's "..".  */
2463 		error = xfs_droplink(tp, dp);
2464 		if (error)
2465 			goto out_trans_cancel;
2466 
2467 		/* Drop the "." link from ip to self.  */
2468 		error = xfs_droplink(tp, ip);
2469 		if (error)
2470 			goto out_trans_cancel;
2471 
2472 		/*
2473 		 * Point the unlinked child directory's ".." entry to the root
2474 		 * directory to eliminate back-references to inodes that may
2475 		 * get freed before the child directory is closed.  If the fs
2476 		 * gets shrunk, this can lead to dirent inode validation errors.
2477 		 */
2478 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2479 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2480 					tp->t_mountp->m_sb.sb_rootino, 0);
2481 			if (error)
2482 				goto out_trans_cancel;
2483 		}
2484 	} else {
2485 		/*
2486 		 * When removing a non-directory we need to log the parent
2487 		 * inode here.  For a directory this is done implicitly
2488 		 * by the xfs_droplink call for the ".." entry.
2489 		 */
2490 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2491 	}
2492 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2493 
2494 	/* Drop the link from dp to ip. */
2495 	error = xfs_droplink(tp, ip);
2496 	if (error)
2497 		goto out_trans_cancel;
2498 
2499 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2500 	if (error) {
2501 		ASSERT(error != -ENOENT);
2502 		goto out_trans_cancel;
2503 	}
2504 
2505 	/*
2506 	 * If this is a synchronous mount, make sure that the
2507 	 * remove transaction goes to disk before returning to
2508 	 * the user.
2509 	 */
2510 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2511 		xfs_trans_set_sync(tp);
2512 
2513 	error = xfs_trans_commit(tp);
2514 	if (error)
2515 		goto std_return;
2516 
2517 	if (is_dir && xfs_inode_is_filestream(ip))
2518 		xfs_filestream_deassociate(ip);
2519 
2520 	return 0;
2521 
2522  out_trans_cancel:
2523 	xfs_trans_cancel(tp);
2524  std_return:
2525 	return error;
2526 }
2527 
2528 /*
2529  * Enter all inodes for a rename transaction into a sorted array.
2530  */
2531 #define __XFS_SORT_INODES	5
2532 STATIC void
2533 xfs_sort_for_rename(
2534 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2535 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2536 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2537 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2538 	struct xfs_inode	*wip,	/* in: whiteout inode */
2539 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2540 	int			*num_inodes)  /* in/out: inodes in array */
2541 {
2542 	int			i, j;
2543 
2544 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2545 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2546 
2547 	/*
2548 	 * i_tab contains a list of pointers to inodes.  We initialize
2549 	 * the table here & we'll sort it.  We will then use it to
2550 	 * order the acquisition of the inode locks.
2551 	 *
2552 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2553 	 */
2554 	i = 0;
2555 	i_tab[i++] = dp1;
2556 	i_tab[i++] = dp2;
2557 	i_tab[i++] = ip1;
2558 	if (ip2)
2559 		i_tab[i++] = ip2;
2560 	if (wip)
2561 		i_tab[i++] = wip;
2562 	*num_inodes = i;
2563 
2564 	/*
2565 	 * Sort the elements via bubble sort.  (Remember, there are at
2566 	 * most 5 elements to sort, so this is adequate.)
2567 	 */
2568 	for (i = 0; i < *num_inodes; i++) {
2569 		for (j = 1; j < *num_inodes; j++) {
2570 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2571 				struct xfs_inode *temp = i_tab[j];
2572 				i_tab[j] = i_tab[j-1];
2573 				i_tab[j-1] = temp;
2574 			}
2575 		}
2576 	}
2577 }
2578 
2579 static int
2580 xfs_finish_rename(
2581 	struct xfs_trans	*tp)
2582 {
2583 	/*
2584 	 * If this is a synchronous mount, make sure that the rename transaction
2585 	 * goes to disk before returning to the user.
2586 	 */
2587 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2588 		xfs_trans_set_sync(tp);
2589 
2590 	return xfs_trans_commit(tp);
2591 }
2592 
2593 /*
2594  * xfs_cross_rename()
2595  *
2596  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2597  */
2598 STATIC int
2599 xfs_cross_rename(
2600 	struct xfs_trans	*tp,
2601 	struct xfs_inode	*dp1,
2602 	struct xfs_name		*name1,
2603 	struct xfs_inode	*ip1,
2604 	struct xfs_inode	*dp2,
2605 	struct xfs_name		*name2,
2606 	struct xfs_inode	*ip2,
2607 	int			spaceres)
2608 {
2609 	int		error = 0;
2610 	int		ip1_flags = 0;
2611 	int		ip2_flags = 0;
2612 	int		dp2_flags = 0;
2613 
2614 	/* Swap inode number for dirent in first parent */
2615 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2616 	if (error)
2617 		goto out_trans_abort;
2618 
2619 	/* Swap inode number for dirent in second parent */
2620 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2621 	if (error)
2622 		goto out_trans_abort;
2623 
2624 	/*
2625 	 * If we're renaming one or more directories across different parents,
2626 	 * update the respective ".." entries (and link counts) to match the new
2627 	 * parents.
2628 	 */
2629 	if (dp1 != dp2) {
2630 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2631 
2632 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2633 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2634 						dp1->i_ino, spaceres);
2635 			if (error)
2636 				goto out_trans_abort;
2637 
2638 			/* transfer ip2 ".." reference to dp1 */
2639 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2640 				error = xfs_droplink(tp, dp2);
2641 				if (error)
2642 					goto out_trans_abort;
2643 				xfs_bumplink(tp, dp1);
2644 			}
2645 
2646 			/*
2647 			 * Although ip1 isn't changed here, userspace needs
2648 			 * to be warned about the change, so that applications
2649 			 * relying on it (like backup ones), will properly
2650 			 * notify the change
2651 			 */
2652 			ip1_flags |= XFS_ICHGTIME_CHG;
2653 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2654 		}
2655 
2656 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2657 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2658 						dp2->i_ino, spaceres);
2659 			if (error)
2660 				goto out_trans_abort;
2661 
2662 			/* transfer ip1 ".." reference to dp2 */
2663 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2664 				error = xfs_droplink(tp, dp1);
2665 				if (error)
2666 					goto out_trans_abort;
2667 				xfs_bumplink(tp, dp2);
2668 			}
2669 
2670 			/*
2671 			 * Although ip2 isn't changed here, userspace needs
2672 			 * to be warned about the change, so that applications
2673 			 * relying on it (like backup ones), will properly
2674 			 * notify the change
2675 			 */
2676 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2677 			ip2_flags |= XFS_ICHGTIME_CHG;
2678 		}
2679 	}
2680 
2681 	if (ip1_flags) {
2682 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2683 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2684 	}
2685 	if (ip2_flags) {
2686 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2687 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2688 	}
2689 	if (dp2_flags) {
2690 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2691 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2692 	}
2693 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2694 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2695 	return xfs_finish_rename(tp);
2696 
2697 out_trans_abort:
2698 	xfs_trans_cancel(tp);
2699 	return error;
2700 }
2701 
2702 /*
2703  * xfs_rename_alloc_whiteout()
2704  *
2705  * Return a referenced, unlinked, unlocked inode that can be used as a
2706  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2707  * crash between allocating the inode and linking it into the rename transaction
2708  * recovery will free the inode and we won't leak it.
2709  */
2710 static int
2711 xfs_rename_alloc_whiteout(
2712 	struct mnt_idmap	*idmap,
2713 	struct xfs_name		*src_name,
2714 	struct xfs_inode	*dp,
2715 	struct xfs_inode	**wip)
2716 {
2717 	struct xfs_inode	*tmpfile;
2718 	struct qstr		name;
2719 	int			error;
2720 
2721 	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2722 				   &tmpfile);
2723 	if (error)
2724 		return error;
2725 
2726 	name.name = src_name->name;
2727 	name.len = src_name->len;
2728 	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2729 	if (error) {
2730 		xfs_finish_inode_setup(tmpfile);
2731 		xfs_irele(tmpfile);
2732 		return error;
2733 	}
2734 
2735 	/*
2736 	 * Prepare the tmpfile inode as if it were created through the VFS.
2737 	 * Complete the inode setup and flag it as linkable.  nlink is already
2738 	 * zero, so we can skip the drop_nlink.
2739 	 */
2740 	xfs_setup_iops(tmpfile);
2741 	xfs_finish_inode_setup(tmpfile);
2742 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2743 
2744 	*wip = tmpfile;
2745 	return 0;
2746 }
2747 
2748 /*
2749  * xfs_rename
2750  */
2751 int
2752 xfs_rename(
2753 	struct mnt_idmap	*idmap,
2754 	struct xfs_inode	*src_dp,
2755 	struct xfs_name		*src_name,
2756 	struct xfs_inode	*src_ip,
2757 	struct xfs_inode	*target_dp,
2758 	struct xfs_name		*target_name,
2759 	struct xfs_inode	*target_ip,
2760 	unsigned int		flags)
2761 {
2762 	struct xfs_mount	*mp = src_dp->i_mount;
2763 	struct xfs_trans	*tp;
2764 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2765 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2766 	int			i;
2767 	int			num_inodes = __XFS_SORT_INODES;
2768 	bool			new_parent = (src_dp != target_dp);
2769 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2770 	int			spaceres;
2771 	bool			retried = false;
2772 	int			error, nospace_error = 0;
2773 
2774 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2775 
2776 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2777 		return -EINVAL;
2778 
2779 	/*
2780 	 * If we are doing a whiteout operation, allocate the whiteout inode
2781 	 * we will be placing at the target and ensure the type is set
2782 	 * appropriately.
2783 	 */
2784 	if (flags & RENAME_WHITEOUT) {
2785 		error = xfs_rename_alloc_whiteout(idmap, src_name,
2786 						  target_dp, &wip);
2787 		if (error)
2788 			return error;
2789 
2790 		/* setup target dirent info as whiteout */
2791 		src_name->type = XFS_DIR3_FT_CHRDEV;
2792 	}
2793 
2794 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2795 				inodes, &num_inodes);
2796 
2797 retry:
2798 	nospace_error = 0;
2799 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2800 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2801 	if (error == -ENOSPC) {
2802 		nospace_error = error;
2803 		spaceres = 0;
2804 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2805 				&tp);
2806 	}
2807 	if (error)
2808 		goto out_release_wip;
2809 
2810 	/*
2811 	 * Attach the dquots to the inodes
2812 	 */
2813 	error = xfs_qm_vop_rename_dqattach(inodes);
2814 	if (error)
2815 		goto out_trans_cancel;
2816 
2817 	/*
2818 	 * Lock all the participating inodes. Depending upon whether
2819 	 * the target_name exists in the target directory, and
2820 	 * whether the target directory is the same as the source
2821 	 * directory, we can lock from 2 to 5 inodes.
2822 	 */
2823 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2824 
2825 	/*
2826 	 * Join all the inodes to the transaction. From this point on,
2827 	 * we can rely on either trans_commit or trans_cancel to unlock
2828 	 * them.
2829 	 */
2830 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2831 	if (new_parent)
2832 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2833 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2834 	if (target_ip)
2835 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2836 	if (wip)
2837 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2838 
2839 	/*
2840 	 * If we are using project inheritance, we only allow renames
2841 	 * into our tree when the project IDs are the same; else the
2842 	 * tree quota mechanism would be circumvented.
2843 	 */
2844 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2845 		     target_dp->i_projid != src_ip->i_projid)) {
2846 		error = -EXDEV;
2847 		goto out_trans_cancel;
2848 	}
2849 
2850 	/* RENAME_EXCHANGE is unique from here on. */
2851 	if (flags & RENAME_EXCHANGE)
2852 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2853 					target_dp, target_name, target_ip,
2854 					spaceres);
2855 
2856 	/*
2857 	 * Try to reserve quota to handle an expansion of the target directory.
2858 	 * We'll allow the rename to continue in reservationless mode if we hit
2859 	 * a space usage constraint.  If we trigger reservationless mode, save
2860 	 * the errno if there isn't any free space in the target directory.
2861 	 */
2862 	if (spaceres != 0) {
2863 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2864 				0, false);
2865 		if (error == -EDQUOT || error == -ENOSPC) {
2866 			if (!retried) {
2867 				xfs_trans_cancel(tp);
2868 				xfs_blockgc_free_quota(target_dp, 0);
2869 				retried = true;
2870 				goto retry;
2871 			}
2872 
2873 			nospace_error = error;
2874 			spaceres = 0;
2875 			error = 0;
2876 		}
2877 		if (error)
2878 			goto out_trans_cancel;
2879 	}
2880 
2881 	/*
2882 	 * Check for expected errors before we dirty the transaction
2883 	 * so we can return an error without a transaction abort.
2884 	 */
2885 	if (target_ip == NULL) {
2886 		/*
2887 		 * If there's no space reservation, check the entry will
2888 		 * fit before actually inserting it.
2889 		 */
2890 		if (!spaceres) {
2891 			error = xfs_dir_canenter(tp, target_dp, target_name);
2892 			if (error)
2893 				goto out_trans_cancel;
2894 		}
2895 	} else {
2896 		/*
2897 		 * If target exists and it's a directory, check that whether
2898 		 * it can be destroyed.
2899 		 */
2900 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2901 		    (!xfs_dir_isempty(target_ip) ||
2902 		     (VFS_I(target_ip)->i_nlink > 2))) {
2903 			error = -EEXIST;
2904 			goto out_trans_cancel;
2905 		}
2906 	}
2907 
2908 	/*
2909 	 * Lock the AGI buffers we need to handle bumping the nlink of the
2910 	 * whiteout inode off the unlinked list and to handle dropping the
2911 	 * nlink of the target inode.  Per locking order rules, do this in
2912 	 * increasing AG order and before directory block allocation tries to
2913 	 * grab AGFs because we grab AGIs before AGFs.
2914 	 *
2915 	 * The (vfs) caller must ensure that if src is a directory then
2916 	 * target_ip is either null or an empty directory.
2917 	 */
2918 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2919 		if (inodes[i] == wip ||
2920 		    (inodes[i] == target_ip &&
2921 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2922 			struct xfs_perag	*pag;
2923 			struct xfs_buf		*bp;
2924 
2925 			pag = xfs_perag_get(mp,
2926 					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2927 			error = xfs_read_agi(pag, tp, &bp);
2928 			xfs_perag_put(pag);
2929 			if (error)
2930 				goto out_trans_cancel;
2931 		}
2932 	}
2933 
2934 	/*
2935 	 * Directory entry creation below may acquire the AGF. Remove
2936 	 * the whiteout from the unlinked list first to preserve correct
2937 	 * AGI/AGF locking order. This dirties the transaction so failures
2938 	 * after this point will abort and log recovery will clean up the
2939 	 * mess.
2940 	 *
2941 	 * For whiteouts, we need to bump the link count on the whiteout
2942 	 * inode. After this point, we have a real link, clear the tmpfile
2943 	 * state flag from the inode so it doesn't accidentally get misused
2944 	 * in future.
2945 	 */
2946 	if (wip) {
2947 		struct xfs_perag	*pag;
2948 
2949 		ASSERT(VFS_I(wip)->i_nlink == 0);
2950 
2951 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2952 		error = xfs_iunlink_remove(tp, pag, wip);
2953 		xfs_perag_put(pag);
2954 		if (error)
2955 			goto out_trans_cancel;
2956 
2957 		xfs_bumplink(tp, wip);
2958 		VFS_I(wip)->i_state &= ~I_LINKABLE;
2959 	}
2960 
2961 	/*
2962 	 * Set up the target.
2963 	 */
2964 	if (target_ip == NULL) {
2965 		/*
2966 		 * If target does not exist and the rename crosses
2967 		 * directories, adjust the target directory link count
2968 		 * to account for the ".." reference from the new entry.
2969 		 */
2970 		error = xfs_dir_createname(tp, target_dp, target_name,
2971 					   src_ip->i_ino, spaceres);
2972 		if (error)
2973 			goto out_trans_cancel;
2974 
2975 		xfs_trans_ichgtime(tp, target_dp,
2976 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2977 
2978 		if (new_parent && src_is_directory) {
2979 			xfs_bumplink(tp, target_dp);
2980 		}
2981 	} else { /* target_ip != NULL */
2982 		/*
2983 		 * Link the source inode under the target name.
2984 		 * If the source inode is a directory and we are moving
2985 		 * it across directories, its ".." entry will be
2986 		 * inconsistent until we replace that down below.
2987 		 *
2988 		 * In case there is already an entry with the same
2989 		 * name at the destination directory, remove it first.
2990 		 */
2991 		error = xfs_dir_replace(tp, target_dp, target_name,
2992 					src_ip->i_ino, spaceres);
2993 		if (error)
2994 			goto out_trans_cancel;
2995 
2996 		xfs_trans_ichgtime(tp, target_dp,
2997 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2998 
2999 		/*
3000 		 * Decrement the link count on the target since the target
3001 		 * dir no longer points to it.
3002 		 */
3003 		error = xfs_droplink(tp, target_ip);
3004 		if (error)
3005 			goto out_trans_cancel;
3006 
3007 		if (src_is_directory) {
3008 			/*
3009 			 * Drop the link from the old "." entry.
3010 			 */
3011 			error = xfs_droplink(tp, target_ip);
3012 			if (error)
3013 				goto out_trans_cancel;
3014 		}
3015 	} /* target_ip != NULL */
3016 
3017 	/*
3018 	 * Remove the source.
3019 	 */
3020 	if (new_parent && src_is_directory) {
3021 		/*
3022 		 * Rewrite the ".." entry to point to the new
3023 		 * directory.
3024 		 */
3025 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3026 					target_dp->i_ino, spaceres);
3027 		ASSERT(error != -EEXIST);
3028 		if (error)
3029 			goto out_trans_cancel;
3030 	}
3031 
3032 	/*
3033 	 * We always want to hit the ctime on the source inode.
3034 	 *
3035 	 * This isn't strictly required by the standards since the source
3036 	 * inode isn't really being changed, but old unix file systems did
3037 	 * it and some incremental backup programs won't work without it.
3038 	 */
3039 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3040 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3041 
3042 	/*
3043 	 * Adjust the link count on src_dp.  This is necessary when
3044 	 * renaming a directory, either within one parent when
3045 	 * the target existed, or across two parent directories.
3046 	 */
3047 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3048 
3049 		/*
3050 		 * Decrement link count on src_directory since the
3051 		 * entry that's moved no longer points to it.
3052 		 */
3053 		error = xfs_droplink(tp, src_dp);
3054 		if (error)
3055 			goto out_trans_cancel;
3056 	}
3057 
3058 	/*
3059 	 * For whiteouts, we only need to update the source dirent with the
3060 	 * inode number of the whiteout inode rather than removing it
3061 	 * altogether.
3062 	 */
3063 	if (wip)
3064 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3065 					spaceres);
3066 	else
3067 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3068 					   spaceres);
3069 
3070 	if (error)
3071 		goto out_trans_cancel;
3072 
3073 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3074 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3075 	if (new_parent)
3076 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3077 
3078 	error = xfs_finish_rename(tp);
3079 	if (wip)
3080 		xfs_irele(wip);
3081 	return error;
3082 
3083 out_trans_cancel:
3084 	xfs_trans_cancel(tp);
3085 out_release_wip:
3086 	if (wip)
3087 		xfs_irele(wip);
3088 	if (error == -ENOSPC && nospace_error)
3089 		error = nospace_error;
3090 	return error;
3091 }
3092 
3093 static int
3094 xfs_iflush(
3095 	struct xfs_inode	*ip,
3096 	struct xfs_buf		*bp)
3097 {
3098 	struct xfs_inode_log_item *iip = ip->i_itemp;
3099 	struct xfs_dinode	*dip;
3100 	struct xfs_mount	*mp = ip->i_mount;
3101 	int			error;
3102 
3103 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3104 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3105 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3106 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3107 	ASSERT(iip->ili_item.li_buf == bp);
3108 
3109 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3110 
3111 	/*
3112 	 * We don't flush the inode if any of the following checks fail, but we
3113 	 * do still update the log item and attach to the backing buffer as if
3114 	 * the flush happened. This is a formality to facilitate predictable
3115 	 * error handling as the caller will shutdown and fail the buffer.
3116 	 */
3117 	error = -EFSCORRUPTED;
3118 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3119 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3120 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3121 			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3122 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3123 		goto flush_out;
3124 	}
3125 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3126 		if (XFS_TEST_ERROR(
3127 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3128 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3129 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3130 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3131 				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3132 				__func__, ip->i_ino, ip);
3133 			goto flush_out;
3134 		}
3135 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3136 		if (XFS_TEST_ERROR(
3137 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3138 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3139 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3140 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3141 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3142 				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3143 				__func__, ip->i_ino, ip);
3144 			goto flush_out;
3145 		}
3146 	}
3147 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3148 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3149 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3150 			"%s: detected corrupt incore inode %llu, "
3151 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3152 			__func__, ip->i_ino,
3153 			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3154 			ip->i_nblocks, ip);
3155 		goto flush_out;
3156 	}
3157 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3158 				mp, XFS_ERRTAG_IFLUSH_6)) {
3159 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3160 			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3161 			__func__, ip->i_ino, ip->i_forkoff, ip);
3162 		goto flush_out;
3163 	}
3164 
3165 	/*
3166 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3167 	 * count for correct sequencing.  We bump the flush iteration count so
3168 	 * we can detect flushes which postdate a log record during recovery.
3169 	 * This is redundant as we now log every change and hence this can't
3170 	 * happen but we need to still do it to ensure backwards compatibility
3171 	 * with old kernels that predate logging all inode changes.
3172 	 */
3173 	if (!xfs_has_v3inodes(mp))
3174 		ip->i_flushiter++;
3175 
3176 	/*
3177 	 * If there are inline format data / attr forks attached to this inode,
3178 	 * make sure they are not corrupt.
3179 	 */
3180 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3181 	    xfs_ifork_verify_local_data(ip))
3182 		goto flush_out;
3183 	if (xfs_inode_has_attr_fork(ip) &&
3184 	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3185 	    xfs_ifork_verify_local_attr(ip))
3186 		goto flush_out;
3187 
3188 	/*
3189 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3190 	 * copy out the core of the inode, because if the inode is dirty at all
3191 	 * the core must be.
3192 	 */
3193 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3194 
3195 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3196 	if (!xfs_has_v3inodes(mp)) {
3197 		if (ip->i_flushiter == DI_MAX_FLUSH)
3198 			ip->i_flushiter = 0;
3199 	}
3200 
3201 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3202 	if (xfs_inode_has_attr_fork(ip))
3203 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3204 
3205 	/*
3206 	 * We've recorded everything logged in the inode, so we'd like to clear
3207 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3208 	 * However, we can't stop logging all this information until the data
3209 	 * we've copied into the disk buffer is written to disk.  If we did we
3210 	 * might overwrite the copy of the inode in the log with all the data
3211 	 * after re-logging only part of it, and in the face of a crash we
3212 	 * wouldn't have all the data we need to recover.
3213 	 *
3214 	 * What we do is move the bits to the ili_last_fields field.  When
3215 	 * logging the inode, these bits are moved back to the ili_fields field.
3216 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3217 	 * we know that the information those bits represent is permanently on
3218 	 * disk.  As long as the flush completes before the inode is logged
3219 	 * again, then both ili_fields and ili_last_fields will be cleared.
3220 	 */
3221 	error = 0;
3222 flush_out:
3223 	spin_lock(&iip->ili_lock);
3224 	iip->ili_last_fields = iip->ili_fields;
3225 	iip->ili_fields = 0;
3226 	iip->ili_fsync_fields = 0;
3227 	spin_unlock(&iip->ili_lock);
3228 
3229 	/*
3230 	 * Store the current LSN of the inode so that we can tell whether the
3231 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3232 	 */
3233 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3234 				&iip->ili_item.li_lsn);
3235 
3236 	/* generate the checksum. */
3237 	xfs_dinode_calc_crc(mp, dip);
3238 	return error;
3239 }
3240 
3241 /*
3242  * Non-blocking flush of dirty inode metadata into the backing buffer.
3243  *
3244  * The caller must have a reference to the inode and hold the cluster buffer
3245  * locked. The function will walk across all the inodes on the cluster buffer it
3246  * can find and lock without blocking, and flush them to the cluster buffer.
3247  *
3248  * On successful flushing of at least one inode, the caller must write out the
3249  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3250  * the caller needs to release the buffer. On failure, the filesystem will be
3251  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3252  * will be returned.
3253  */
3254 int
3255 xfs_iflush_cluster(
3256 	struct xfs_buf		*bp)
3257 {
3258 	struct xfs_mount	*mp = bp->b_mount;
3259 	struct xfs_log_item	*lip, *n;
3260 	struct xfs_inode	*ip;
3261 	struct xfs_inode_log_item *iip;
3262 	int			clcount = 0;
3263 	int			error = 0;
3264 
3265 	/*
3266 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3267 	 * will remove itself from the list.
3268 	 */
3269 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3270 		iip = (struct xfs_inode_log_item *)lip;
3271 		ip = iip->ili_inode;
3272 
3273 		/*
3274 		 * Quick and dirty check to avoid locks if possible.
3275 		 */
3276 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3277 			continue;
3278 		if (xfs_ipincount(ip))
3279 			continue;
3280 
3281 		/*
3282 		 * The inode is still attached to the buffer, which means it is
3283 		 * dirty but reclaim might try to grab it. Check carefully for
3284 		 * that, and grab the ilock while still holding the i_flags_lock
3285 		 * to guarantee reclaim will not be able to reclaim this inode
3286 		 * once we drop the i_flags_lock.
3287 		 */
3288 		spin_lock(&ip->i_flags_lock);
3289 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3290 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3291 			spin_unlock(&ip->i_flags_lock);
3292 			continue;
3293 		}
3294 
3295 		/*
3296 		 * ILOCK will pin the inode against reclaim and prevent
3297 		 * concurrent transactions modifying the inode while we are
3298 		 * flushing the inode. If we get the lock, set the flushing
3299 		 * state before we drop the i_flags_lock.
3300 		 */
3301 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3302 			spin_unlock(&ip->i_flags_lock);
3303 			continue;
3304 		}
3305 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3306 		spin_unlock(&ip->i_flags_lock);
3307 
3308 		/*
3309 		 * Abort flushing this inode if we are shut down because the
3310 		 * inode may not currently be in the AIL. This can occur when
3311 		 * log I/O failure unpins the inode without inserting into the
3312 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3313 		 * that otherwise looks like it should be flushed.
3314 		 */
3315 		if (xlog_is_shutdown(mp->m_log)) {
3316 			xfs_iunpin_wait(ip);
3317 			xfs_iflush_abort(ip);
3318 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3319 			error = -EIO;
3320 			continue;
3321 		}
3322 
3323 		/* don't block waiting on a log force to unpin dirty inodes */
3324 		if (xfs_ipincount(ip)) {
3325 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3326 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3327 			continue;
3328 		}
3329 
3330 		if (!xfs_inode_clean(ip))
3331 			error = xfs_iflush(ip, bp);
3332 		else
3333 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3334 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3335 		if (error)
3336 			break;
3337 		clcount++;
3338 	}
3339 
3340 	if (error) {
3341 		/*
3342 		 * Shutdown first so we kill the log before we release this
3343 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3344 		 * of the log, failing it before the _log_ is shut down can
3345 		 * result in the log tail being moved forward in the journal
3346 		 * on disk because log writes can still be taking place. Hence
3347 		 * unpinning the tail will allow the ICREATE intent to be
3348 		 * removed from the log an recovery will fail with uninitialised
3349 		 * inode cluster buffers.
3350 		 */
3351 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3352 		bp->b_flags |= XBF_ASYNC;
3353 		xfs_buf_ioend_fail(bp);
3354 		return error;
3355 	}
3356 
3357 	if (!clcount)
3358 		return -EAGAIN;
3359 
3360 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3361 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3362 	return 0;
3363 
3364 }
3365 
3366 /* Release an inode. */
3367 void
3368 xfs_irele(
3369 	struct xfs_inode	*ip)
3370 {
3371 	trace_xfs_irele(ip, _RET_IP_);
3372 	iput(VFS_I(ip));
3373 }
3374 
3375 /*
3376  * Ensure all commited transactions touching the inode are written to the log.
3377  */
3378 int
3379 xfs_log_force_inode(
3380 	struct xfs_inode	*ip)
3381 {
3382 	xfs_csn_t		seq = 0;
3383 
3384 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3385 	if (xfs_ipincount(ip))
3386 		seq = ip->i_itemp->ili_commit_seq;
3387 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3388 
3389 	if (!seq)
3390 		return 0;
3391 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3392 }
3393 
3394 /*
3395  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3396  * abide vfs locking order (lowest pointer value goes first) and breaking the
3397  * layout leases before proceeding.  The loop is needed because we cannot call
3398  * the blocking break_layout() with the iolocks held, and therefore have to
3399  * back out both locks.
3400  */
3401 static int
3402 xfs_iolock_two_inodes_and_break_layout(
3403 	struct inode		*src,
3404 	struct inode		*dest)
3405 {
3406 	int			error;
3407 
3408 	if (src > dest)
3409 		swap(src, dest);
3410 
3411 retry:
3412 	/* Wait to break both inodes' layouts before we start locking. */
3413 	error = break_layout(src, true);
3414 	if (error)
3415 		return error;
3416 	if (src != dest) {
3417 		error = break_layout(dest, true);
3418 		if (error)
3419 			return error;
3420 	}
3421 
3422 	/* Lock one inode and make sure nobody got in and leased it. */
3423 	inode_lock(src);
3424 	error = break_layout(src, false);
3425 	if (error) {
3426 		inode_unlock(src);
3427 		if (error == -EWOULDBLOCK)
3428 			goto retry;
3429 		return error;
3430 	}
3431 
3432 	if (src == dest)
3433 		return 0;
3434 
3435 	/* Lock the other inode and make sure nobody got in and leased it. */
3436 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3437 	error = break_layout(dest, false);
3438 	if (error) {
3439 		inode_unlock(src);
3440 		inode_unlock(dest);
3441 		if (error == -EWOULDBLOCK)
3442 			goto retry;
3443 		return error;
3444 	}
3445 
3446 	return 0;
3447 }
3448 
3449 static int
3450 xfs_mmaplock_two_inodes_and_break_dax_layout(
3451 	struct xfs_inode	*ip1,
3452 	struct xfs_inode	*ip2)
3453 {
3454 	int			error;
3455 	bool			retry;
3456 	struct page		*page;
3457 
3458 	if (ip1->i_ino > ip2->i_ino)
3459 		swap(ip1, ip2);
3460 
3461 again:
3462 	retry = false;
3463 	/* Lock the first inode */
3464 	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3465 	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3466 	if (error || retry) {
3467 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3468 		if (error == 0 && retry)
3469 			goto again;
3470 		return error;
3471 	}
3472 
3473 	if (ip1 == ip2)
3474 		return 0;
3475 
3476 	/* Nested lock the second inode */
3477 	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3478 	/*
3479 	 * We cannot use xfs_break_dax_layouts() directly here because it may
3480 	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3481 	 * for this nested lock case.
3482 	 */
3483 	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3484 	if (page && page_ref_count(page) != 1) {
3485 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3486 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3487 		goto again;
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 /*
3494  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3495  * mmap activity.
3496  */
3497 int
3498 xfs_ilock2_io_mmap(
3499 	struct xfs_inode	*ip1,
3500 	struct xfs_inode	*ip2)
3501 {
3502 	int			ret;
3503 
3504 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3505 	if (ret)
3506 		return ret;
3507 
3508 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3509 		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3510 		if (ret) {
3511 			inode_unlock(VFS_I(ip2));
3512 			if (ip1 != ip2)
3513 				inode_unlock(VFS_I(ip1));
3514 			return ret;
3515 		}
3516 	} else
3517 		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3518 					    VFS_I(ip2)->i_mapping);
3519 
3520 	return 0;
3521 }
3522 
3523 /* Unlock both inodes to allow IO and mmap activity. */
3524 void
3525 xfs_iunlock2_io_mmap(
3526 	struct xfs_inode	*ip1,
3527 	struct xfs_inode	*ip2)
3528 {
3529 	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3530 		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3531 		if (ip1 != ip2)
3532 			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3533 	} else
3534 		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3535 					      VFS_I(ip2)->i_mapping);
3536 
3537 	inode_unlock(VFS_I(ip2));
3538 	if (ip1 != ip2)
3539 		inode_unlock(VFS_I(ip1));
3540 }
3541