1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_iunlink_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 #include "xfs_ag.h" 39 #include "xfs_log_priv.h" 40 41 struct kmem_cache *xfs_inode_cache; 42 43 /* 44 * Used in xfs_itruncate_extents(). This is the maximum number of extents 45 * freed from a file in a single transaction. 46 */ 47 #define XFS_ITRUNC_MAX_EXTENTS 2 48 49 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 50 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 51 struct xfs_inode *); 52 53 /* 54 * helper function to extract extent size hint from inode 55 */ 56 xfs_extlen_t 57 xfs_get_extsz_hint( 58 struct xfs_inode *ip) 59 { 60 /* 61 * No point in aligning allocations if we need to COW to actually 62 * write to them. 63 */ 64 if (xfs_is_always_cow_inode(ip)) 65 return 0; 66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 67 return ip->i_extsize; 68 if (XFS_IS_REALTIME_INODE(ip)) 69 return ip->i_mount->m_sb.sb_rextsize; 70 return 0; 71 } 72 73 /* 74 * Helper function to extract CoW extent size hint from inode. 75 * Between the extent size hint and the CoW extent size hint, we 76 * return the greater of the two. If the value is zero (automatic), 77 * use the default size. 78 */ 79 xfs_extlen_t 80 xfs_get_cowextsz_hint( 81 struct xfs_inode *ip) 82 { 83 xfs_extlen_t a, b; 84 85 a = 0; 86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 87 a = ip->i_cowextsize; 88 b = xfs_get_extsz_hint(ip); 89 90 a = max(a, b); 91 if (a == 0) 92 return XFS_DEFAULT_COWEXTSZ_HINT; 93 return a; 94 } 95 96 /* 97 * These two are wrapper routines around the xfs_ilock() routine used to 98 * centralize some grungy code. They are used in places that wish to lock the 99 * inode solely for reading the extents. The reason these places can't just 100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 101 * bringing in of the extents from disk for a file in b-tree format. If the 102 * inode is in b-tree format, then we need to lock the inode exclusively until 103 * the extents are read in. Locking it exclusively all the time would limit 104 * our parallelism unnecessarily, though. What we do instead is check to see 105 * if the extents have been read in yet, and only lock the inode exclusively 106 * if they have not. 107 * 108 * The functions return a value which should be given to the corresponding 109 * xfs_iunlock() call. 110 */ 111 uint 112 xfs_ilock_data_map_shared( 113 struct xfs_inode *ip) 114 { 115 uint lock_mode = XFS_ILOCK_SHARED; 116 117 if (xfs_need_iread_extents(&ip->i_df)) 118 lock_mode = XFS_ILOCK_EXCL; 119 xfs_ilock(ip, lock_mode); 120 return lock_mode; 121 } 122 123 uint 124 xfs_ilock_attr_map_shared( 125 struct xfs_inode *ip) 126 { 127 uint lock_mode = XFS_ILOCK_SHARED; 128 129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * You can't set both SHARED and EXCL for the same lock, 137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 139 * to set in lock_flags. 140 */ 141 static inline void 142 xfs_lock_flags_assert( 143 uint lock_flags) 144 { 145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 152 ASSERT(lock_flags != 0); 153 } 154 155 /* 156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 158 * various combinations of the locks to be obtained. 159 * 160 * The 3 locks should always be ordered so that the IO lock is obtained first, 161 * the mmap lock second and the ilock last in order to prevent deadlock. 162 * 163 * Basic locking order: 164 * 165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 166 * 167 * mmap_lock locking order: 168 * 169 * i_rwsem -> page lock -> mmap_lock 170 * mmap_lock -> invalidate_lock -> page_lock 171 * 172 * The difference in mmap_lock locking order mean that we cannot hold the 173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 174 * can fault in pages during copy in/out (for buffered IO) or require the 175 * mmap_lock in get_user_pages() to map the user pages into the kernel address 176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 177 * fault because page faults already hold the mmap_lock. 178 * 179 * Hence to serialise fully against both syscall and mmap based IO, we need to 180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 181 * both taken in places where we need to invalidate the page cache in a race 182 * free manner (e.g. truncate, hole punch and other extent manipulation 183 * functions). 184 */ 185 void 186 xfs_ilock( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 191 192 xfs_lock_flags_assert(lock_flags); 193 194 if (lock_flags & XFS_IOLOCK_EXCL) { 195 down_write_nested(&VFS_I(ip)->i_rwsem, 196 XFS_IOLOCK_DEP(lock_flags)); 197 } else if (lock_flags & XFS_IOLOCK_SHARED) { 198 down_read_nested(&VFS_I(ip)->i_rwsem, 199 XFS_IOLOCK_DEP(lock_flags)); 200 } 201 202 if (lock_flags & XFS_MMAPLOCK_EXCL) { 203 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 204 XFS_MMAPLOCK_DEP(lock_flags)); 205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 206 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 207 XFS_MMAPLOCK_DEP(lock_flags)); 208 } 209 210 if (lock_flags & XFS_ILOCK_EXCL) 211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 else if (lock_flags & XFS_ILOCK_SHARED) 213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 214 } 215 216 /* 217 * This is just like xfs_ilock(), except that the caller 218 * is guaranteed not to sleep. It returns 1 if it gets 219 * the requested locks and 0 otherwise. If the IO lock is 220 * obtained but the inode lock cannot be, then the IO lock 221 * is dropped before returning. 222 * 223 * ip -- the inode being locked 224 * lock_flags -- this parameter indicates the inode's locks to be 225 * to be locked. See the comment for xfs_ilock() for a list 226 * of valid values. 227 */ 228 int 229 xfs_ilock_nowait( 230 xfs_inode_t *ip, 231 uint lock_flags) 232 { 233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 234 235 xfs_lock_flags_assert(lock_flags); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 xfs_lock_flags_assert(lock_flags); 294 295 if (lock_flags & XFS_IOLOCK_EXCL) 296 up_write(&VFS_I(ip)->i_rwsem); 297 else if (lock_flags & XFS_IOLOCK_SHARED) 298 up_read(&VFS_I(ip)->i_rwsem); 299 300 if (lock_flags & XFS_MMAPLOCK_EXCL) 301 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 302 else if (lock_flags & XFS_MMAPLOCK_SHARED) 303 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 304 305 if (lock_flags & XFS_ILOCK_EXCL) 306 mrunlock_excl(&ip->i_lock); 307 else if (lock_flags & XFS_ILOCK_SHARED) 308 mrunlock_shared(&ip->i_lock); 309 310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 311 } 312 313 /* 314 * give up write locks. the i/o lock cannot be held nested 315 * if it is being demoted. 316 */ 317 void 318 xfs_ilock_demote( 319 xfs_inode_t *ip, 320 uint lock_flags) 321 { 322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 323 ASSERT((lock_flags & 324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 325 326 if (lock_flags & XFS_ILOCK_EXCL) 327 mrdemote(&ip->i_lock); 328 if (lock_flags & XFS_MMAPLOCK_EXCL) 329 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 330 if (lock_flags & XFS_IOLOCK_EXCL) 331 downgrade_write(&VFS_I(ip)->i_rwsem); 332 333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 334 } 335 336 #if defined(DEBUG) || defined(XFS_WARN) 337 static inline bool 338 __xfs_rwsem_islocked( 339 struct rw_semaphore *rwsem, 340 bool shared) 341 { 342 if (!debug_locks) 343 return rwsem_is_locked(rwsem); 344 345 if (!shared) 346 return lockdep_is_held_type(rwsem, 0); 347 348 /* 349 * We are checking that the lock is held at least in shared 350 * mode but don't care that it might be held exclusively 351 * (i.e. shared | excl). Hence we check if the lock is held 352 * in any mode rather than an explicit shared mode. 353 */ 354 return lockdep_is_held_type(rwsem, -1); 355 } 356 357 bool 358 xfs_isilocked( 359 struct xfs_inode *ip, 360 uint lock_flags) 361 { 362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 363 if (!(lock_flags & XFS_ILOCK_SHARED)) 364 return !!ip->i_lock.mr_writer; 365 return rwsem_is_locked(&ip->i_lock.mr_lock); 366 } 367 368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, 370 (lock_flags & XFS_MMAPLOCK_SHARED)); 371 } 372 373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 374 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 375 (lock_flags & XFS_IOLOCK_SHARED)); 376 } 377 378 ASSERT(0); 379 return false; 380 } 381 #endif 382 383 /* 384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 387 * errors and warnings. 388 */ 389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 390 static bool 391 xfs_lockdep_subclass_ok( 392 int subclass) 393 { 394 return subclass < MAX_LOCKDEP_SUBCLASSES; 395 } 396 #else 397 #define xfs_lockdep_subclass_ok(subclass) (true) 398 #endif 399 400 /* 401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 402 * value. This can be called for any type of inode lock combination, including 403 * parent locking. Care must be taken to ensure we don't overrun the subclass 404 * storage fields in the class mask we build. 405 */ 406 static inline uint 407 xfs_lock_inumorder( 408 uint lock_mode, 409 uint subclass) 410 { 411 uint class = 0; 412 413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 414 XFS_ILOCK_RTSUM))); 415 ASSERT(xfs_lockdep_subclass_ok(subclass)); 416 417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 419 class += subclass << XFS_IOLOCK_SHIFT; 420 } 421 422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 424 class += subclass << XFS_MMAPLOCK_SHIFT; 425 } 426 427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 429 class += subclass << XFS_ILOCK_SHIFT; 430 } 431 432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 433 } 434 435 /* 436 * The following routine will lock n inodes in exclusive mode. We assume the 437 * caller calls us with the inodes in i_ino order. 438 * 439 * We need to detect deadlock where an inode that we lock is in the AIL and we 440 * start waiting for another inode that is locked by a thread in a long running 441 * transaction (such as truncate). This can result in deadlock since the long 442 * running trans might need to wait for the inode we just locked in order to 443 * push the tail and free space in the log. 444 * 445 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 447 * lock more than one at a time, lockdep will report false positives saying we 448 * have violated locking orders. 449 */ 450 static void 451 xfs_lock_inodes( 452 struct xfs_inode **ips, 453 int inodes, 454 uint lock_mode) 455 { 456 int attempts = 0; 457 uint i; 458 int j; 459 bool try_lock; 460 struct xfs_log_item *lp; 461 462 /* 463 * Currently supports between 2 and 5 inodes with exclusive locking. We 464 * support an arbitrary depth of locking here, but absolute limits on 465 * inodes depend on the type of locking and the limits placed by 466 * lockdep annotations in xfs_lock_inumorder. These are all checked by 467 * the asserts. 468 */ 469 ASSERT(ips && inodes >= 2 && inodes <= 5); 470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 471 XFS_ILOCK_EXCL)); 472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 473 XFS_ILOCK_SHARED))); 474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 478 479 if (lock_mode & XFS_IOLOCK_EXCL) { 480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 481 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 483 484 again: 485 try_lock = false; 486 i = 0; 487 for (; i < inodes; i++) { 488 ASSERT(ips[i]); 489 490 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 491 continue; 492 493 /* 494 * If try_lock is not set yet, make sure all locked inodes are 495 * not in the AIL. If any are, set try_lock to be used later. 496 */ 497 if (!try_lock) { 498 for (j = (i - 1); j >= 0 && !try_lock; j--) { 499 lp = &ips[j]->i_itemp->ili_item; 500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 501 try_lock = true; 502 } 503 } 504 505 /* 506 * If any of the previous locks we have locked is in the AIL, 507 * we must TRY to get the second and subsequent locks. If 508 * we can't get any, we must release all we have 509 * and try again. 510 */ 511 if (!try_lock) { 512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 513 continue; 514 } 515 516 /* try_lock means we have an inode locked that is in the AIL. */ 517 ASSERT(i != 0); 518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 519 continue; 520 521 /* 522 * Unlock all previous guys and try again. xfs_iunlock will try 523 * to push the tail if the inode is in the AIL. 524 */ 525 attempts++; 526 for (j = i - 1; j >= 0; j--) { 527 /* 528 * Check to see if we've already unlocked this one. Not 529 * the first one going back, and the inode ptr is the 530 * same. 531 */ 532 if (j != (i - 1) && ips[j] == ips[j + 1]) 533 continue; 534 535 xfs_iunlock(ips[j], lock_mode); 536 } 537 538 if ((attempts % 5) == 0) { 539 delay(1); /* Don't just spin the CPU */ 540 } 541 goto again; 542 } 543 } 544 545 /* 546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 547 * mmaplock must be double-locked separately since we use i_rwsem and 548 * invalidate_lock for that. We now support taking one lock EXCL and the 549 * other SHARED. 550 */ 551 void 552 xfs_lock_two_inodes( 553 struct xfs_inode *ip0, 554 uint ip0_mode, 555 struct xfs_inode *ip1, 556 uint ip1_mode) 557 { 558 int attempts = 0; 559 struct xfs_log_item *lp; 560 561 ASSERT(hweight32(ip0_mode) == 1); 562 ASSERT(hweight32(ip1_mode) == 1); 563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 567 ASSERT(ip0->i_ino != ip1->i_ino); 568 569 if (ip0->i_ino > ip1->i_ino) { 570 swap(ip0, ip1); 571 swap(ip0_mode, ip1_mode); 572 } 573 574 again: 575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 576 577 /* 578 * If the first lock we have locked is in the AIL, we must TRY to get 579 * the second lock. If we can't get it, we must release the first one 580 * and try again. 581 */ 582 lp = &ip0->i_itemp->ili_item; 583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 585 xfs_iunlock(ip0, ip0_mode); 586 if ((++attempts % 5) == 0) 587 delay(1); /* Don't just spin the CPU */ 588 goto again; 589 } 590 } else { 591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 592 } 593 } 594 595 uint 596 xfs_ip2xflags( 597 struct xfs_inode *ip) 598 { 599 uint flags = 0; 600 601 if (ip->i_diflags & XFS_DIFLAG_ANY) { 602 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 603 flags |= FS_XFLAG_REALTIME; 604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 605 flags |= FS_XFLAG_PREALLOC; 606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 607 flags |= FS_XFLAG_IMMUTABLE; 608 if (ip->i_diflags & XFS_DIFLAG_APPEND) 609 flags |= FS_XFLAG_APPEND; 610 if (ip->i_diflags & XFS_DIFLAG_SYNC) 611 flags |= FS_XFLAG_SYNC; 612 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 613 flags |= FS_XFLAG_NOATIME; 614 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 615 flags |= FS_XFLAG_NODUMP; 616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 617 flags |= FS_XFLAG_RTINHERIT; 618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 619 flags |= FS_XFLAG_PROJINHERIT; 620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 621 flags |= FS_XFLAG_NOSYMLINKS; 622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 623 flags |= FS_XFLAG_EXTSIZE; 624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 625 flags |= FS_XFLAG_EXTSZINHERIT; 626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 627 flags |= FS_XFLAG_NODEFRAG; 628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 629 flags |= FS_XFLAG_FILESTREAM; 630 } 631 632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 634 flags |= FS_XFLAG_DAX; 635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 636 flags |= FS_XFLAG_COWEXTSIZE; 637 } 638 639 if (xfs_inode_has_attr_fork(ip)) 640 flags |= FS_XFLAG_HASATTR; 641 return flags; 642 } 643 644 /* 645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 646 * is allowed, otherwise it has to be an exact match. If a CI match is found, 647 * ci_name->name will point to a the actual name (caller must free) or 648 * will be set to NULL if an exact match is found. 649 */ 650 int 651 xfs_lookup( 652 struct xfs_inode *dp, 653 const struct xfs_name *name, 654 struct xfs_inode **ipp, 655 struct xfs_name *ci_name) 656 { 657 xfs_ino_t inum; 658 int error; 659 660 trace_xfs_lookup(dp, name); 661 662 if (xfs_is_shutdown(dp->i_mount)) 663 return -EIO; 664 665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 666 if (error) 667 goto out_unlock; 668 669 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 670 if (error) 671 goto out_free_name; 672 673 return 0; 674 675 out_free_name: 676 if (ci_name) 677 kmem_free(ci_name->name); 678 out_unlock: 679 *ipp = NULL; 680 return error; 681 } 682 683 /* Propagate di_flags from a parent inode to a child inode. */ 684 static void 685 xfs_inode_inherit_flags( 686 struct xfs_inode *ip, 687 const struct xfs_inode *pip) 688 { 689 unsigned int di_flags = 0; 690 xfs_failaddr_t failaddr; 691 umode_t mode = VFS_I(ip)->i_mode; 692 693 if (S_ISDIR(mode)) { 694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 695 di_flags |= XFS_DIFLAG_RTINHERIT; 696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 697 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 698 ip->i_extsize = pip->i_extsize; 699 } 700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 701 di_flags |= XFS_DIFLAG_PROJINHERIT; 702 } else if (S_ISREG(mode)) { 703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 704 xfs_has_realtime(ip->i_mount)) 705 di_flags |= XFS_DIFLAG_REALTIME; 706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 707 di_flags |= XFS_DIFLAG_EXTSIZE; 708 ip->i_extsize = pip->i_extsize; 709 } 710 } 711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 712 xfs_inherit_noatime) 713 di_flags |= XFS_DIFLAG_NOATIME; 714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 715 xfs_inherit_nodump) 716 di_flags |= XFS_DIFLAG_NODUMP; 717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 718 xfs_inherit_sync) 719 di_flags |= XFS_DIFLAG_SYNC; 720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 721 xfs_inherit_nosymlinks) 722 di_flags |= XFS_DIFLAG_NOSYMLINKS; 723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 724 xfs_inherit_nodefrag) 725 di_flags |= XFS_DIFLAG_NODEFRAG; 726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 727 di_flags |= XFS_DIFLAG_FILESTREAM; 728 729 ip->i_diflags |= di_flags; 730 731 /* 732 * Inode verifiers on older kernels only check that the extent size 733 * hint is an integer multiple of the rt extent size on realtime files. 734 * They did not check the hint alignment on a directory with both 735 * rtinherit and extszinherit flags set. If the misaligned hint is 736 * propagated from a directory into a new realtime file, new file 737 * allocations will fail due to math errors in the rt allocator and/or 738 * trip the verifiers. Validate the hint settings in the new file so 739 * that we don't let broken hints propagate. 740 */ 741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 742 VFS_I(ip)->i_mode, ip->i_diflags); 743 if (failaddr) { 744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 745 XFS_DIFLAG_EXTSZINHERIT); 746 ip->i_extsize = 0; 747 } 748 } 749 750 /* Propagate di_flags2 from a parent inode to a child inode. */ 751 static void 752 xfs_inode_inherit_flags2( 753 struct xfs_inode *ip, 754 const struct xfs_inode *pip) 755 { 756 xfs_failaddr_t failaddr; 757 758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 760 ip->i_cowextsize = pip->i_cowextsize; 761 } 762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 763 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 764 765 /* Don't let invalid cowextsize hints propagate. */ 766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 768 if (failaddr) { 769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 770 ip->i_cowextsize = 0; 771 } 772 } 773 774 /* 775 * Initialise a newly allocated inode and return the in-core inode to the 776 * caller locked exclusively. 777 */ 778 int 779 xfs_init_new_inode( 780 struct mnt_idmap *idmap, 781 struct xfs_trans *tp, 782 struct xfs_inode *pip, 783 xfs_ino_t ino, 784 umode_t mode, 785 xfs_nlink_t nlink, 786 dev_t rdev, 787 prid_t prid, 788 bool init_xattrs, 789 struct xfs_inode **ipp) 790 { 791 struct inode *dir = pip ? VFS_I(pip) : NULL; 792 struct xfs_mount *mp = tp->t_mountp; 793 struct xfs_inode *ip; 794 unsigned int flags; 795 int error; 796 struct timespec64 tv; 797 struct inode *inode; 798 799 /* 800 * Protect against obviously corrupt allocation btree records. Later 801 * xfs_iget checks will catch re-allocation of other active in-memory 802 * and on-disk inodes. If we don't catch reallocating the parent inode 803 * here we will deadlock in xfs_iget() so we have to do these checks 804 * first. 805 */ 806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 808 return -EFSCORRUPTED; 809 } 810 811 /* 812 * Get the in-core inode with the lock held exclusively to prevent 813 * others from looking at until we're done. 814 */ 815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 816 if (error) 817 return error; 818 819 ASSERT(ip != NULL); 820 inode = VFS_I(ip); 821 set_nlink(inode, nlink); 822 inode->i_rdev = rdev; 823 ip->i_projid = prid; 824 825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 826 inode_fsuid_set(inode, idmap); 827 inode->i_gid = dir->i_gid; 828 inode->i_mode = mode; 829 } else { 830 inode_init_owner(idmap, inode, dir, mode); 831 } 832 833 /* 834 * If the group ID of the new file does not match the effective group 835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 836 * (and only if the irix_sgid_inherit compatibility variable is set). 837 */ 838 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && 839 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode))) 840 inode->i_mode &= ~S_ISGID; 841 842 ip->i_disk_size = 0; 843 ip->i_df.if_nextents = 0; 844 ASSERT(ip->i_nblocks == 0); 845 846 tv = inode_set_ctime_current(inode); 847 inode->i_mtime = tv; 848 inode->i_atime = tv; 849 850 ip->i_extsize = 0; 851 ip->i_diflags = 0; 852 853 if (xfs_has_v3inodes(mp)) { 854 inode_set_iversion(inode, 1); 855 ip->i_cowextsize = 0; 856 ip->i_crtime = tv; 857 } 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 866 flags |= XFS_ILOG_DEV; 867 break; 868 case S_IFREG: 869 case S_IFDIR: 870 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 871 xfs_inode_inherit_flags(ip, pip); 872 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 873 xfs_inode_inherit_flags2(ip, pip); 874 fallthrough; 875 case S_IFLNK: 876 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 877 ip->i_df.if_bytes = 0; 878 ip->i_df.if_u1.if_root = NULL; 879 break; 880 default: 881 ASSERT(0); 882 } 883 884 /* 885 * If we need to create attributes immediately after allocating the 886 * inode, initialise an empty attribute fork right now. We use the 887 * default fork offset for attributes here as we don't know exactly what 888 * size or how many attributes we might be adding. We can do this 889 * safely here because we know the data fork is completely empty and 890 * this saves us from needing to run a separate transaction to set the 891 * fork offset in the immediate future. 892 */ 893 if (init_xattrs && xfs_has_attr(mp)) { 894 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 895 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 896 } 897 898 /* 899 * Log the new values stuffed into the inode. 900 */ 901 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 902 xfs_trans_log_inode(tp, ip, flags); 903 904 /* now that we have an i_mode we can setup the inode structure */ 905 xfs_setup_inode(ip); 906 907 *ipp = ip; 908 return 0; 909 } 910 911 /* 912 * Decrement the link count on an inode & log the change. If this causes the 913 * link count to go to zero, move the inode to AGI unlinked list so that it can 914 * be freed when the last active reference goes away via xfs_inactive(). 915 */ 916 static int /* error */ 917 xfs_droplink( 918 xfs_trans_t *tp, 919 xfs_inode_t *ip) 920 { 921 if (VFS_I(ip)->i_nlink == 0) { 922 xfs_alert(ip->i_mount, 923 "%s: Attempt to drop inode (%llu) with nlink zero.", 924 __func__, ip->i_ino); 925 return -EFSCORRUPTED; 926 } 927 928 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 929 930 drop_nlink(VFS_I(ip)); 931 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 932 933 if (VFS_I(ip)->i_nlink) 934 return 0; 935 936 return xfs_iunlink(tp, ip); 937 } 938 939 /* 940 * Increment the link count on an inode & log the change. 941 */ 942 static void 943 xfs_bumplink( 944 xfs_trans_t *tp, 945 xfs_inode_t *ip) 946 { 947 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 948 949 inc_nlink(VFS_I(ip)); 950 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 951 } 952 953 int 954 xfs_create( 955 struct mnt_idmap *idmap, 956 xfs_inode_t *dp, 957 struct xfs_name *name, 958 umode_t mode, 959 dev_t rdev, 960 bool init_xattrs, 961 xfs_inode_t **ipp) 962 { 963 int is_dir = S_ISDIR(mode); 964 struct xfs_mount *mp = dp->i_mount; 965 struct xfs_inode *ip = NULL; 966 struct xfs_trans *tp = NULL; 967 int error; 968 bool unlock_dp_on_error = false; 969 prid_t prid; 970 struct xfs_dquot *udqp = NULL; 971 struct xfs_dquot *gdqp = NULL; 972 struct xfs_dquot *pdqp = NULL; 973 struct xfs_trans_res *tres; 974 uint resblks; 975 xfs_ino_t ino; 976 977 trace_xfs_create(dp, name); 978 979 if (xfs_is_shutdown(mp)) 980 return -EIO; 981 982 prid = xfs_get_initial_prid(dp); 983 984 /* 985 * Make sure that we have allocated dquot(s) on disk. 986 */ 987 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 988 mapped_fsgid(idmap, &init_user_ns), prid, 989 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 990 &udqp, &gdqp, &pdqp); 991 if (error) 992 return error; 993 994 if (is_dir) { 995 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 996 tres = &M_RES(mp)->tr_mkdir; 997 } else { 998 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 999 tres = &M_RES(mp)->tr_create; 1000 } 1001 1002 /* 1003 * Initially assume that the file does not exist and 1004 * reserve the resources for that case. If that is not 1005 * the case we'll drop the one we have and get a more 1006 * appropriate transaction later. 1007 */ 1008 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1009 &tp); 1010 if (error == -ENOSPC) { 1011 /* flush outstanding delalloc blocks and retry */ 1012 xfs_flush_inodes(mp); 1013 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1014 resblks, &tp); 1015 } 1016 if (error) 1017 goto out_release_dquots; 1018 1019 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1020 unlock_dp_on_error = true; 1021 1022 /* 1023 * A newly created regular or special file just has one directory 1024 * entry pointing to them, but a directory also the "." entry 1025 * pointing to itself. 1026 */ 1027 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1028 if (!error) 1029 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1030 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1031 if (error) 1032 goto out_trans_cancel; 1033 1034 /* 1035 * Now we join the directory inode to the transaction. We do not do it 1036 * earlier because xfs_dialloc might commit the previous transaction 1037 * (and release all the locks). An error from here on will result in 1038 * the transaction cancel unlocking dp so don't do it explicitly in the 1039 * error path. 1040 */ 1041 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1042 unlock_dp_on_error = false; 1043 1044 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1045 resblks - XFS_IALLOC_SPACE_RES(mp)); 1046 if (error) { 1047 ASSERT(error != -ENOSPC); 1048 goto out_trans_cancel; 1049 } 1050 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1051 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1052 1053 if (is_dir) { 1054 error = xfs_dir_init(tp, ip, dp); 1055 if (error) 1056 goto out_trans_cancel; 1057 1058 xfs_bumplink(tp, dp); 1059 } 1060 1061 /* 1062 * If this is a synchronous mount, make sure that the 1063 * create transaction goes to disk before returning to 1064 * the user. 1065 */ 1066 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1067 xfs_trans_set_sync(tp); 1068 1069 /* 1070 * Attach the dquot(s) to the inodes and modify them incore. 1071 * These ids of the inode couldn't have changed since the new 1072 * inode has been locked ever since it was created. 1073 */ 1074 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1075 1076 error = xfs_trans_commit(tp); 1077 if (error) 1078 goto out_release_inode; 1079 1080 xfs_qm_dqrele(udqp); 1081 xfs_qm_dqrele(gdqp); 1082 xfs_qm_dqrele(pdqp); 1083 1084 *ipp = ip; 1085 return 0; 1086 1087 out_trans_cancel: 1088 xfs_trans_cancel(tp); 1089 out_release_inode: 1090 /* 1091 * Wait until after the current transaction is aborted to finish the 1092 * setup of the inode and release the inode. This prevents recursive 1093 * transactions and deadlocks from xfs_inactive. 1094 */ 1095 if (ip) { 1096 xfs_finish_inode_setup(ip); 1097 xfs_irele(ip); 1098 } 1099 out_release_dquots: 1100 xfs_qm_dqrele(udqp); 1101 xfs_qm_dqrele(gdqp); 1102 xfs_qm_dqrele(pdqp); 1103 1104 if (unlock_dp_on_error) 1105 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1106 return error; 1107 } 1108 1109 int 1110 xfs_create_tmpfile( 1111 struct mnt_idmap *idmap, 1112 struct xfs_inode *dp, 1113 umode_t mode, 1114 struct xfs_inode **ipp) 1115 { 1116 struct xfs_mount *mp = dp->i_mount; 1117 struct xfs_inode *ip = NULL; 1118 struct xfs_trans *tp = NULL; 1119 int error; 1120 prid_t prid; 1121 struct xfs_dquot *udqp = NULL; 1122 struct xfs_dquot *gdqp = NULL; 1123 struct xfs_dquot *pdqp = NULL; 1124 struct xfs_trans_res *tres; 1125 uint resblks; 1126 xfs_ino_t ino; 1127 1128 if (xfs_is_shutdown(mp)) 1129 return -EIO; 1130 1131 prid = xfs_get_initial_prid(dp); 1132 1133 /* 1134 * Make sure that we have allocated dquot(s) on disk. 1135 */ 1136 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1137 mapped_fsgid(idmap, &init_user_ns), prid, 1138 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1139 &udqp, &gdqp, &pdqp); 1140 if (error) 1141 return error; 1142 1143 resblks = XFS_IALLOC_SPACE_RES(mp); 1144 tres = &M_RES(mp)->tr_create_tmpfile; 1145 1146 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1147 &tp); 1148 if (error) 1149 goto out_release_dquots; 1150 1151 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1152 if (!error) 1153 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1154 0, 0, prid, false, &ip); 1155 if (error) 1156 goto out_trans_cancel; 1157 1158 if (xfs_has_wsync(mp)) 1159 xfs_trans_set_sync(tp); 1160 1161 /* 1162 * Attach the dquot(s) to the inodes and modify them incore. 1163 * These ids of the inode couldn't have changed since the new 1164 * inode has been locked ever since it was created. 1165 */ 1166 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1167 1168 error = xfs_iunlink(tp, ip); 1169 if (error) 1170 goto out_trans_cancel; 1171 1172 error = xfs_trans_commit(tp); 1173 if (error) 1174 goto out_release_inode; 1175 1176 xfs_qm_dqrele(udqp); 1177 xfs_qm_dqrele(gdqp); 1178 xfs_qm_dqrele(pdqp); 1179 1180 *ipp = ip; 1181 return 0; 1182 1183 out_trans_cancel: 1184 xfs_trans_cancel(tp); 1185 out_release_inode: 1186 /* 1187 * Wait until after the current transaction is aborted to finish the 1188 * setup of the inode and release the inode. This prevents recursive 1189 * transactions and deadlocks from xfs_inactive. 1190 */ 1191 if (ip) { 1192 xfs_finish_inode_setup(ip); 1193 xfs_irele(ip); 1194 } 1195 out_release_dquots: 1196 xfs_qm_dqrele(udqp); 1197 xfs_qm_dqrele(gdqp); 1198 xfs_qm_dqrele(pdqp); 1199 1200 return error; 1201 } 1202 1203 int 1204 xfs_link( 1205 xfs_inode_t *tdp, 1206 xfs_inode_t *sip, 1207 struct xfs_name *target_name) 1208 { 1209 xfs_mount_t *mp = tdp->i_mount; 1210 xfs_trans_t *tp; 1211 int error, nospace_error = 0; 1212 int resblks; 1213 1214 trace_xfs_link(tdp, target_name); 1215 1216 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1217 1218 if (xfs_is_shutdown(mp)) 1219 return -EIO; 1220 1221 error = xfs_qm_dqattach(sip); 1222 if (error) 1223 goto std_return; 1224 1225 error = xfs_qm_dqattach(tdp); 1226 if (error) 1227 goto std_return; 1228 1229 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1230 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1231 &tp, &nospace_error); 1232 if (error) 1233 goto std_return; 1234 1235 /* 1236 * If we are using project inheritance, we only allow hard link 1237 * creation in our tree when the project IDs are the same; else 1238 * the tree quota mechanism could be circumvented. 1239 */ 1240 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1241 tdp->i_projid != sip->i_projid)) { 1242 /* 1243 * Project quota setup skips special files which can 1244 * leave inodes in a PROJINHERIT directory without a 1245 * project ID set. We need to allow links to be made 1246 * to these "project-less" inodes because userspace 1247 * expects them to succeed after project ID setup, 1248 * but everything else should be rejected. 1249 */ 1250 if (!special_file(VFS_I(sip)->i_mode) || 1251 sip->i_projid != 0) { 1252 error = -EXDEV; 1253 goto error_return; 1254 } 1255 } 1256 1257 if (!resblks) { 1258 error = xfs_dir_canenter(tp, tdp, target_name); 1259 if (error) 1260 goto error_return; 1261 } 1262 1263 /* 1264 * Handle initial link state of O_TMPFILE inode 1265 */ 1266 if (VFS_I(sip)->i_nlink == 0) { 1267 struct xfs_perag *pag; 1268 1269 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1270 error = xfs_iunlink_remove(tp, pag, sip); 1271 xfs_perag_put(pag); 1272 if (error) 1273 goto error_return; 1274 } 1275 1276 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1277 resblks); 1278 if (error) 1279 goto error_return; 1280 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1281 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1282 1283 xfs_bumplink(tp, sip); 1284 1285 /* 1286 * If this is a synchronous mount, make sure that the 1287 * link transaction goes to disk before returning to 1288 * the user. 1289 */ 1290 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1291 xfs_trans_set_sync(tp); 1292 1293 return xfs_trans_commit(tp); 1294 1295 error_return: 1296 xfs_trans_cancel(tp); 1297 std_return: 1298 if (error == -ENOSPC && nospace_error) 1299 error = nospace_error; 1300 return error; 1301 } 1302 1303 /* Clear the reflink flag and the cowblocks tag if possible. */ 1304 static void 1305 xfs_itruncate_clear_reflink_flags( 1306 struct xfs_inode *ip) 1307 { 1308 struct xfs_ifork *dfork; 1309 struct xfs_ifork *cfork; 1310 1311 if (!xfs_is_reflink_inode(ip)) 1312 return; 1313 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1314 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1315 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1316 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1317 if (cfork->if_bytes == 0) 1318 xfs_inode_clear_cowblocks_tag(ip); 1319 } 1320 1321 /* 1322 * Free up the underlying blocks past new_size. The new size must be smaller 1323 * than the current size. This routine can be used both for the attribute and 1324 * data fork, and does not modify the inode size, which is left to the caller. 1325 * 1326 * The transaction passed to this routine must have made a permanent log 1327 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1328 * given transaction and start new ones, so make sure everything involved in 1329 * the transaction is tidy before calling here. Some transaction will be 1330 * returned to the caller to be committed. The incoming transaction must 1331 * already include the inode, and both inode locks must be held exclusively. 1332 * The inode must also be "held" within the transaction. On return the inode 1333 * will be "held" within the returned transaction. This routine does NOT 1334 * require any disk space to be reserved for it within the transaction. 1335 * 1336 * If we get an error, we must return with the inode locked and linked into the 1337 * current transaction. This keeps things simple for the higher level code, 1338 * because it always knows that the inode is locked and held in the transaction 1339 * that returns to it whether errors occur or not. We don't mark the inode 1340 * dirty on error so that transactions can be easily aborted if possible. 1341 */ 1342 int 1343 xfs_itruncate_extents_flags( 1344 struct xfs_trans **tpp, 1345 struct xfs_inode *ip, 1346 int whichfork, 1347 xfs_fsize_t new_size, 1348 int flags) 1349 { 1350 struct xfs_mount *mp = ip->i_mount; 1351 struct xfs_trans *tp = *tpp; 1352 xfs_fileoff_t first_unmap_block; 1353 xfs_filblks_t unmap_len; 1354 int error = 0; 1355 1356 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1357 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1358 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1359 ASSERT(new_size <= XFS_ISIZE(ip)); 1360 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1361 ASSERT(ip->i_itemp != NULL); 1362 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1363 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1364 1365 trace_xfs_itruncate_extents_start(ip, new_size); 1366 1367 flags |= xfs_bmapi_aflag(whichfork); 1368 1369 /* 1370 * Since it is possible for space to become allocated beyond 1371 * the end of the file (in a crash where the space is allocated 1372 * but the inode size is not yet updated), simply remove any 1373 * blocks which show up between the new EOF and the maximum 1374 * possible file size. 1375 * 1376 * We have to free all the blocks to the bmbt maximum offset, even if 1377 * the page cache can't scale that far. 1378 */ 1379 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1380 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1381 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1382 return 0; 1383 } 1384 1385 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1386 while (unmap_len > 0) { 1387 ASSERT(tp->t_highest_agno == NULLAGNUMBER); 1388 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1389 flags, XFS_ITRUNC_MAX_EXTENTS); 1390 if (error) 1391 goto out; 1392 1393 /* free the just unmapped extents */ 1394 error = xfs_defer_finish(&tp); 1395 if (error) 1396 goto out; 1397 } 1398 1399 if (whichfork == XFS_DATA_FORK) { 1400 /* Remove all pending CoW reservations. */ 1401 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1402 first_unmap_block, XFS_MAX_FILEOFF, true); 1403 if (error) 1404 goto out; 1405 1406 xfs_itruncate_clear_reflink_flags(ip); 1407 } 1408 1409 /* 1410 * Always re-log the inode so that our permanent transaction can keep 1411 * on rolling it forward in the log. 1412 */ 1413 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1414 1415 trace_xfs_itruncate_extents_end(ip, new_size); 1416 1417 out: 1418 *tpp = tp; 1419 return error; 1420 } 1421 1422 int 1423 xfs_release( 1424 xfs_inode_t *ip) 1425 { 1426 xfs_mount_t *mp = ip->i_mount; 1427 int error = 0; 1428 1429 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1430 return 0; 1431 1432 /* If this is a read-only mount, don't do this (would generate I/O) */ 1433 if (xfs_is_readonly(mp)) 1434 return 0; 1435 1436 if (!xfs_is_shutdown(mp)) { 1437 int truncated; 1438 1439 /* 1440 * If we previously truncated this file and removed old data 1441 * in the process, we want to initiate "early" writeout on 1442 * the last close. This is an attempt to combat the notorious 1443 * NULL files problem which is particularly noticeable from a 1444 * truncate down, buffered (re-)write (delalloc), followed by 1445 * a crash. What we are effectively doing here is 1446 * significantly reducing the time window where we'd otherwise 1447 * be exposed to that problem. 1448 */ 1449 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1450 if (truncated) { 1451 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1452 if (ip->i_delayed_blks > 0) { 1453 error = filemap_flush(VFS_I(ip)->i_mapping); 1454 if (error) 1455 return error; 1456 } 1457 } 1458 } 1459 1460 if (VFS_I(ip)->i_nlink == 0) 1461 return 0; 1462 1463 /* 1464 * If we can't get the iolock just skip truncating the blocks past EOF 1465 * because we could deadlock with the mmap_lock otherwise. We'll get 1466 * another chance to drop them once the last reference to the inode is 1467 * dropped, so we'll never leak blocks permanently. 1468 */ 1469 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1470 return 0; 1471 1472 if (xfs_can_free_eofblocks(ip, false)) { 1473 /* 1474 * Check if the inode is being opened, written and closed 1475 * frequently and we have delayed allocation blocks outstanding 1476 * (e.g. streaming writes from the NFS server), truncating the 1477 * blocks past EOF will cause fragmentation to occur. 1478 * 1479 * In this case don't do the truncation, but we have to be 1480 * careful how we detect this case. Blocks beyond EOF show up as 1481 * i_delayed_blks even when the inode is clean, so we need to 1482 * truncate them away first before checking for a dirty release. 1483 * Hence on the first dirty close we will still remove the 1484 * speculative allocation, but after that we will leave it in 1485 * place. 1486 */ 1487 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1488 goto out_unlock; 1489 1490 error = xfs_free_eofblocks(ip); 1491 if (error) 1492 goto out_unlock; 1493 1494 /* delalloc blocks after truncation means it really is dirty */ 1495 if (ip->i_delayed_blks) 1496 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1497 } 1498 1499 out_unlock: 1500 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1501 return error; 1502 } 1503 1504 /* 1505 * xfs_inactive_truncate 1506 * 1507 * Called to perform a truncate when an inode becomes unlinked. 1508 */ 1509 STATIC int 1510 xfs_inactive_truncate( 1511 struct xfs_inode *ip) 1512 { 1513 struct xfs_mount *mp = ip->i_mount; 1514 struct xfs_trans *tp; 1515 int error; 1516 1517 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1518 if (error) { 1519 ASSERT(xfs_is_shutdown(mp)); 1520 return error; 1521 } 1522 xfs_ilock(ip, XFS_ILOCK_EXCL); 1523 xfs_trans_ijoin(tp, ip, 0); 1524 1525 /* 1526 * Log the inode size first to prevent stale data exposure in the event 1527 * of a system crash before the truncate completes. See the related 1528 * comment in xfs_vn_setattr_size() for details. 1529 */ 1530 ip->i_disk_size = 0; 1531 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1532 1533 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1534 if (error) 1535 goto error_trans_cancel; 1536 1537 ASSERT(ip->i_df.if_nextents == 0); 1538 1539 error = xfs_trans_commit(tp); 1540 if (error) 1541 goto error_unlock; 1542 1543 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1544 return 0; 1545 1546 error_trans_cancel: 1547 xfs_trans_cancel(tp); 1548 error_unlock: 1549 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1550 return error; 1551 } 1552 1553 /* 1554 * xfs_inactive_ifree() 1555 * 1556 * Perform the inode free when an inode is unlinked. 1557 */ 1558 STATIC int 1559 xfs_inactive_ifree( 1560 struct xfs_inode *ip) 1561 { 1562 struct xfs_mount *mp = ip->i_mount; 1563 struct xfs_trans *tp; 1564 int error; 1565 1566 /* 1567 * We try to use a per-AG reservation for any block needed by the finobt 1568 * tree, but as the finobt feature predates the per-AG reservation 1569 * support a degraded file system might not have enough space for the 1570 * reservation at mount time. In that case try to dip into the reserved 1571 * pool and pray. 1572 * 1573 * Send a warning if the reservation does happen to fail, as the inode 1574 * now remains allocated and sits on the unlinked list until the fs is 1575 * repaired. 1576 */ 1577 if (unlikely(mp->m_finobt_nores)) { 1578 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1579 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1580 &tp); 1581 } else { 1582 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1583 } 1584 if (error) { 1585 if (error == -ENOSPC) { 1586 xfs_warn_ratelimited(mp, 1587 "Failed to remove inode(s) from unlinked list. " 1588 "Please free space, unmount and run xfs_repair."); 1589 } else { 1590 ASSERT(xfs_is_shutdown(mp)); 1591 } 1592 return error; 1593 } 1594 1595 /* 1596 * We do not hold the inode locked across the entire rolling transaction 1597 * here. We only need to hold it for the first transaction that 1598 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1599 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1600 * here breaks the relationship between cluster buffer invalidation and 1601 * stale inode invalidation on cluster buffer item journal commit 1602 * completion, and can result in leaving dirty stale inodes hanging 1603 * around in memory. 1604 * 1605 * We have no need for serialising this inode operation against other 1606 * operations - we freed the inode and hence reallocation is required 1607 * and that will serialise on reallocating the space the deferops need 1608 * to free. Hence we can unlock the inode on the first commit of 1609 * the transaction rather than roll it right through the deferops. This 1610 * avoids relogging the XFS_ISTALE inode. 1611 * 1612 * We check that xfs_ifree() hasn't grown an internal transaction roll 1613 * by asserting that the inode is still locked when it returns. 1614 */ 1615 xfs_ilock(ip, XFS_ILOCK_EXCL); 1616 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1617 1618 error = xfs_ifree(tp, ip); 1619 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1620 if (error) { 1621 /* 1622 * If we fail to free the inode, shut down. The cancel 1623 * might do that, we need to make sure. Otherwise the 1624 * inode might be lost for a long time or forever. 1625 */ 1626 if (!xfs_is_shutdown(mp)) { 1627 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1628 __func__, error); 1629 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1630 } 1631 xfs_trans_cancel(tp); 1632 return error; 1633 } 1634 1635 /* 1636 * Credit the quota account(s). The inode is gone. 1637 */ 1638 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1639 1640 return xfs_trans_commit(tp); 1641 } 1642 1643 /* 1644 * Returns true if we need to update the on-disk metadata before we can free 1645 * the memory used by this inode. Updates include freeing post-eof 1646 * preallocations; freeing COW staging extents; and marking the inode free in 1647 * the inobt if it is on the unlinked list. 1648 */ 1649 bool 1650 xfs_inode_needs_inactive( 1651 struct xfs_inode *ip) 1652 { 1653 struct xfs_mount *mp = ip->i_mount; 1654 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1655 1656 /* 1657 * If the inode is already free, then there can be nothing 1658 * to clean up here. 1659 */ 1660 if (VFS_I(ip)->i_mode == 0) 1661 return false; 1662 1663 /* 1664 * If this is a read-only mount, don't do this (would generate I/O) 1665 * unless we're in log recovery and cleaning the iunlinked list. 1666 */ 1667 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1668 return false; 1669 1670 /* If the log isn't running, push inodes straight to reclaim. */ 1671 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1672 return false; 1673 1674 /* Metadata inodes require explicit resource cleanup. */ 1675 if (xfs_is_metadata_inode(ip)) 1676 return false; 1677 1678 /* Want to clean out the cow blocks if there are any. */ 1679 if (cow_ifp && cow_ifp->if_bytes > 0) 1680 return true; 1681 1682 /* Unlinked files must be freed. */ 1683 if (VFS_I(ip)->i_nlink == 0) 1684 return true; 1685 1686 /* 1687 * This file isn't being freed, so check if there are post-eof blocks 1688 * to free. @force is true because we are evicting an inode from the 1689 * cache. Post-eof blocks must be freed, lest we end up with broken 1690 * free space accounting. 1691 * 1692 * Note: don't bother with iolock here since lockdep complains about 1693 * acquiring it in reclaim context. We have the only reference to the 1694 * inode at this point anyways. 1695 */ 1696 return xfs_can_free_eofblocks(ip, true); 1697 } 1698 1699 /* 1700 * xfs_inactive 1701 * 1702 * This is called when the vnode reference count for the vnode 1703 * goes to zero. If the file has been unlinked, then it must 1704 * now be truncated. Also, we clear all of the read-ahead state 1705 * kept for the inode here since the file is now closed. 1706 */ 1707 int 1708 xfs_inactive( 1709 xfs_inode_t *ip) 1710 { 1711 struct xfs_mount *mp; 1712 int error = 0; 1713 int truncate = 0; 1714 1715 /* 1716 * If the inode is already free, then there can be nothing 1717 * to clean up here. 1718 */ 1719 if (VFS_I(ip)->i_mode == 0) { 1720 ASSERT(ip->i_df.if_broot_bytes == 0); 1721 goto out; 1722 } 1723 1724 mp = ip->i_mount; 1725 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1726 1727 /* 1728 * If this is a read-only mount, don't do this (would generate I/O) 1729 * unless we're in log recovery and cleaning the iunlinked list. 1730 */ 1731 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1732 goto out; 1733 1734 /* Metadata inodes require explicit resource cleanup. */ 1735 if (xfs_is_metadata_inode(ip)) 1736 goto out; 1737 1738 /* Try to clean out the cow blocks if there are any. */ 1739 if (xfs_inode_has_cow_data(ip)) 1740 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1741 1742 if (VFS_I(ip)->i_nlink != 0) { 1743 /* 1744 * force is true because we are evicting an inode from the 1745 * cache. Post-eof blocks must be freed, lest we end up with 1746 * broken free space accounting. 1747 * 1748 * Note: don't bother with iolock here since lockdep complains 1749 * about acquiring it in reclaim context. We have the only 1750 * reference to the inode at this point anyways. 1751 */ 1752 if (xfs_can_free_eofblocks(ip, true)) 1753 error = xfs_free_eofblocks(ip); 1754 1755 goto out; 1756 } 1757 1758 if (S_ISREG(VFS_I(ip)->i_mode) && 1759 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1760 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1761 truncate = 1; 1762 1763 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1764 /* 1765 * If this inode is being inactivated during a quotacheck and 1766 * has not yet been scanned by quotacheck, we /must/ remove 1767 * the dquots from the inode before inactivation changes the 1768 * block and inode counts. Most probably this is a result of 1769 * reloading the incore iunlinked list to purge unrecovered 1770 * unlinked inodes. 1771 */ 1772 xfs_qm_dqdetach(ip); 1773 } else { 1774 error = xfs_qm_dqattach(ip); 1775 if (error) 1776 goto out; 1777 } 1778 1779 if (S_ISLNK(VFS_I(ip)->i_mode)) 1780 error = xfs_inactive_symlink(ip); 1781 else if (truncate) 1782 error = xfs_inactive_truncate(ip); 1783 if (error) 1784 goto out; 1785 1786 /* 1787 * If there are attributes associated with the file then blow them away 1788 * now. The code calls a routine that recursively deconstructs the 1789 * attribute fork. If also blows away the in-core attribute fork. 1790 */ 1791 if (xfs_inode_has_attr_fork(ip)) { 1792 error = xfs_attr_inactive(ip); 1793 if (error) 1794 goto out; 1795 } 1796 1797 ASSERT(ip->i_forkoff == 0); 1798 1799 /* 1800 * Free the inode. 1801 */ 1802 error = xfs_inactive_ifree(ip); 1803 1804 out: 1805 /* 1806 * We're done making metadata updates for this inode, so we can release 1807 * the attached dquots. 1808 */ 1809 xfs_qm_dqdetach(ip); 1810 return error; 1811 } 1812 1813 /* 1814 * In-Core Unlinked List Lookups 1815 * ============================= 1816 * 1817 * Every inode is supposed to be reachable from some other piece of metadata 1818 * with the exception of the root directory. Inodes with a connection to a 1819 * file descriptor but not linked from anywhere in the on-disk directory tree 1820 * are collectively known as unlinked inodes, though the filesystem itself 1821 * maintains links to these inodes so that on-disk metadata are consistent. 1822 * 1823 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1824 * header contains a number of buckets that point to an inode, and each inode 1825 * record has a pointer to the next inode in the hash chain. This 1826 * singly-linked list causes scaling problems in the iunlink remove function 1827 * because we must walk that list to find the inode that points to the inode 1828 * being removed from the unlinked hash bucket list. 1829 * 1830 * Hence we keep an in-memory double linked list to link each inode on an 1831 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 1832 * based lists would require having 64 list heads in the perag, one for each 1833 * list. This is expensive in terms of memory (think millions of AGs) and cache 1834 * misses on lookups. Instead, use the fact that inodes on the unlinked list 1835 * must be referenced at the VFS level to keep them on the list and hence we 1836 * have an existence guarantee for inodes on the unlinked list. 1837 * 1838 * Given we have an existence guarantee, we can use lockless inode cache lookups 1839 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 1840 * for the double linked unlinked list, and we don't need any extra locking to 1841 * keep the list safe as all manipulations are done under the AGI buffer lock. 1842 * Keeping the list up to date does not require memory allocation, just finding 1843 * the XFS inode and updating the next/prev unlinked list aginos. 1844 */ 1845 1846 /* 1847 * Find an inode on the unlinked list. This does not take references to the 1848 * inode as we have existence guarantees by holding the AGI buffer lock and that 1849 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1850 * don't find the inode in cache, then let the caller handle the situation. 1851 */ 1852 static struct xfs_inode * 1853 xfs_iunlink_lookup( 1854 struct xfs_perag *pag, 1855 xfs_agino_t agino) 1856 { 1857 struct xfs_inode *ip; 1858 1859 rcu_read_lock(); 1860 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1861 if (!ip) { 1862 /* Caller can handle inode not being in memory. */ 1863 rcu_read_unlock(); 1864 return NULL; 1865 } 1866 1867 /* 1868 * Inode in RCU freeing limbo should not happen. Warn about this and 1869 * let the caller handle the failure. 1870 */ 1871 if (WARN_ON_ONCE(!ip->i_ino)) { 1872 rcu_read_unlock(); 1873 return NULL; 1874 } 1875 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1876 rcu_read_unlock(); 1877 return ip; 1878 } 1879 1880 /* 1881 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode 1882 * is not in cache. 1883 */ 1884 static int 1885 xfs_iunlink_update_backref( 1886 struct xfs_perag *pag, 1887 xfs_agino_t prev_agino, 1888 xfs_agino_t next_agino) 1889 { 1890 struct xfs_inode *ip; 1891 1892 /* No update necessary if we are at the end of the list. */ 1893 if (next_agino == NULLAGINO) 1894 return 0; 1895 1896 ip = xfs_iunlink_lookup(pag, next_agino); 1897 if (!ip) 1898 return -ENOLINK; 1899 1900 ip->i_prev_unlinked = prev_agino; 1901 return 0; 1902 } 1903 1904 /* 1905 * Point the AGI unlinked bucket at an inode and log the results. The caller 1906 * is responsible for validating the old value. 1907 */ 1908 STATIC int 1909 xfs_iunlink_update_bucket( 1910 struct xfs_trans *tp, 1911 struct xfs_perag *pag, 1912 struct xfs_buf *agibp, 1913 unsigned int bucket_index, 1914 xfs_agino_t new_agino) 1915 { 1916 struct xfs_agi *agi = agibp->b_addr; 1917 xfs_agino_t old_value; 1918 int offset; 1919 1920 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 1921 1922 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1923 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 1924 old_value, new_agino); 1925 1926 /* 1927 * We should never find the head of the list already set to the value 1928 * passed in because either we're adding or removing ourselves from the 1929 * head of the list. 1930 */ 1931 if (old_value == new_agino) { 1932 xfs_buf_mark_corrupt(agibp); 1933 return -EFSCORRUPTED; 1934 } 1935 1936 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 1937 offset = offsetof(struct xfs_agi, agi_unlinked) + 1938 (sizeof(xfs_agino_t) * bucket_index); 1939 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 1940 return 0; 1941 } 1942 1943 /* 1944 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1945 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1946 * to the unlinked list. 1947 */ 1948 STATIC int 1949 xfs_iunlink_reload_next( 1950 struct xfs_trans *tp, 1951 struct xfs_buf *agibp, 1952 xfs_agino_t prev_agino, 1953 xfs_agino_t next_agino) 1954 { 1955 struct xfs_perag *pag = agibp->b_pag; 1956 struct xfs_mount *mp = pag->pag_mount; 1957 struct xfs_inode *next_ip = NULL; 1958 xfs_ino_t ino; 1959 int error; 1960 1961 ASSERT(next_agino != NULLAGINO); 1962 1963 #ifdef DEBUG 1964 rcu_read_lock(); 1965 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1966 ASSERT(next_ip == NULL); 1967 rcu_read_unlock(); 1968 #endif 1969 1970 xfs_info_ratelimited(mp, 1971 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1972 next_agino, pag->pag_agno); 1973 1974 /* 1975 * Use an untrusted lookup just to be cautious in case the AGI has been 1976 * corrupted and now points at a free inode. That shouldn't happen, 1977 * but we'd rather shut down now since we're already running in a weird 1978 * situation. 1979 */ 1980 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 1981 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 1982 if (error) 1983 return error; 1984 1985 /* If this is not an unlinked inode, something is very wrong. */ 1986 if (VFS_I(next_ip)->i_nlink != 0) { 1987 error = -EFSCORRUPTED; 1988 goto rele; 1989 } 1990 1991 next_ip->i_prev_unlinked = prev_agino; 1992 trace_xfs_iunlink_reload_next(next_ip); 1993 rele: 1994 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1995 if (xfs_is_quotacheck_running(mp) && next_ip) 1996 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1997 xfs_irele(next_ip); 1998 return error; 1999 } 2000 2001 static int 2002 xfs_iunlink_insert_inode( 2003 struct xfs_trans *tp, 2004 struct xfs_perag *pag, 2005 struct xfs_buf *agibp, 2006 struct xfs_inode *ip) 2007 { 2008 struct xfs_mount *mp = tp->t_mountp; 2009 struct xfs_agi *agi = agibp->b_addr; 2010 xfs_agino_t next_agino; 2011 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2012 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2013 int error; 2014 2015 /* 2016 * Get the index into the agi hash table for the list this inode will 2017 * go on. Make sure the pointer isn't garbage and that this inode 2018 * isn't already on the list. 2019 */ 2020 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2021 if (next_agino == agino || 2022 !xfs_verify_agino_or_null(pag, next_agino)) { 2023 xfs_buf_mark_corrupt(agibp); 2024 return -EFSCORRUPTED; 2025 } 2026 2027 /* 2028 * Update the prev pointer in the next inode to point back to this 2029 * inode. 2030 */ 2031 error = xfs_iunlink_update_backref(pag, agino, next_agino); 2032 if (error == -ENOLINK) 2033 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); 2034 if (error) 2035 return error; 2036 2037 if (next_agino != NULLAGINO) { 2038 /* 2039 * There is already another inode in the bucket, so point this 2040 * inode to the current head of the list. 2041 */ 2042 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 2043 if (error) 2044 return error; 2045 ip->i_next_unlinked = next_agino; 2046 } 2047 2048 /* Point the head of the list to point to this inode. */ 2049 ip->i_prev_unlinked = NULLAGINO; 2050 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2051 } 2052 2053 /* 2054 * This is called when the inode's link count has gone to 0 or we are creating 2055 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2056 * 2057 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2058 * list when the inode is freed. 2059 */ 2060 STATIC int 2061 xfs_iunlink( 2062 struct xfs_trans *tp, 2063 struct xfs_inode *ip) 2064 { 2065 struct xfs_mount *mp = tp->t_mountp; 2066 struct xfs_perag *pag; 2067 struct xfs_buf *agibp; 2068 int error; 2069 2070 ASSERT(VFS_I(ip)->i_nlink == 0); 2071 ASSERT(VFS_I(ip)->i_mode != 0); 2072 trace_xfs_iunlink(ip); 2073 2074 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2075 2076 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2077 error = xfs_read_agi(pag, tp, &agibp); 2078 if (error) 2079 goto out; 2080 2081 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 2082 out: 2083 xfs_perag_put(pag); 2084 return error; 2085 } 2086 2087 static int 2088 xfs_iunlink_remove_inode( 2089 struct xfs_trans *tp, 2090 struct xfs_perag *pag, 2091 struct xfs_buf *agibp, 2092 struct xfs_inode *ip) 2093 { 2094 struct xfs_mount *mp = tp->t_mountp; 2095 struct xfs_agi *agi = agibp->b_addr; 2096 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2097 xfs_agino_t head_agino; 2098 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2099 int error; 2100 2101 trace_xfs_iunlink_remove(ip); 2102 2103 /* 2104 * Get the index into the agi hash table for the list this inode will 2105 * go on. Make sure the head pointer isn't garbage. 2106 */ 2107 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2108 if (!xfs_verify_agino(pag, head_agino)) { 2109 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2110 agi, sizeof(*agi)); 2111 return -EFSCORRUPTED; 2112 } 2113 2114 /* 2115 * Set our inode's next_unlinked pointer to NULL and then return 2116 * the old pointer value so that we can update whatever was previous 2117 * to us in the list to point to whatever was next in the list. 2118 */ 2119 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2120 if (error) 2121 return error; 2122 2123 /* 2124 * Update the prev pointer in the next inode to point back to previous 2125 * inode in the chain. 2126 */ 2127 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2128 ip->i_next_unlinked); 2129 if (error == -ENOLINK) 2130 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, 2131 ip->i_next_unlinked); 2132 if (error) 2133 return error; 2134 2135 if (head_agino != agino) { 2136 struct xfs_inode *prev_ip; 2137 2138 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2139 if (!prev_ip) 2140 return -EFSCORRUPTED; 2141 2142 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2143 ip->i_next_unlinked); 2144 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2145 } else { 2146 /* Point the head of the list to the next unlinked inode. */ 2147 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2148 ip->i_next_unlinked); 2149 } 2150 2151 ip->i_next_unlinked = NULLAGINO; 2152 ip->i_prev_unlinked = 0; 2153 return error; 2154 } 2155 2156 /* 2157 * Pull the on-disk inode from the AGI unlinked list. 2158 */ 2159 STATIC int 2160 xfs_iunlink_remove( 2161 struct xfs_trans *tp, 2162 struct xfs_perag *pag, 2163 struct xfs_inode *ip) 2164 { 2165 struct xfs_buf *agibp; 2166 int error; 2167 2168 trace_xfs_iunlink_remove(ip); 2169 2170 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2171 error = xfs_read_agi(pag, tp, &agibp); 2172 if (error) 2173 return error; 2174 2175 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2176 } 2177 2178 /* 2179 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2180 * mark it stale. We should only find clean inodes in this lookup that aren't 2181 * already stale. 2182 */ 2183 static void 2184 xfs_ifree_mark_inode_stale( 2185 struct xfs_perag *pag, 2186 struct xfs_inode *free_ip, 2187 xfs_ino_t inum) 2188 { 2189 struct xfs_mount *mp = pag->pag_mount; 2190 struct xfs_inode_log_item *iip; 2191 struct xfs_inode *ip; 2192 2193 retry: 2194 rcu_read_lock(); 2195 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2196 2197 /* Inode not in memory, nothing to do */ 2198 if (!ip) { 2199 rcu_read_unlock(); 2200 return; 2201 } 2202 2203 /* 2204 * because this is an RCU protected lookup, we could find a recently 2205 * freed or even reallocated inode during the lookup. We need to check 2206 * under the i_flags_lock for a valid inode here. Skip it if it is not 2207 * valid, the wrong inode or stale. 2208 */ 2209 spin_lock(&ip->i_flags_lock); 2210 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2211 goto out_iflags_unlock; 2212 2213 /* 2214 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2215 * other inodes that we did not find in the list attached to the buffer 2216 * and are not already marked stale. If we can't lock it, back off and 2217 * retry. 2218 */ 2219 if (ip != free_ip) { 2220 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2221 spin_unlock(&ip->i_flags_lock); 2222 rcu_read_unlock(); 2223 delay(1); 2224 goto retry; 2225 } 2226 } 2227 ip->i_flags |= XFS_ISTALE; 2228 2229 /* 2230 * If the inode is flushing, it is already attached to the buffer. All 2231 * we needed to do here is mark the inode stale so buffer IO completion 2232 * will remove it from the AIL. 2233 */ 2234 iip = ip->i_itemp; 2235 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2236 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2237 ASSERT(iip->ili_last_fields); 2238 goto out_iunlock; 2239 } 2240 2241 /* 2242 * Inodes not attached to the buffer can be released immediately. 2243 * Everything else has to go through xfs_iflush_abort() on journal 2244 * commit as the flock synchronises removal of the inode from the 2245 * cluster buffer against inode reclaim. 2246 */ 2247 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2248 goto out_iunlock; 2249 2250 __xfs_iflags_set(ip, XFS_IFLUSHING); 2251 spin_unlock(&ip->i_flags_lock); 2252 rcu_read_unlock(); 2253 2254 /* we have a dirty inode in memory that has not yet been flushed. */ 2255 spin_lock(&iip->ili_lock); 2256 iip->ili_last_fields = iip->ili_fields; 2257 iip->ili_fields = 0; 2258 iip->ili_fsync_fields = 0; 2259 spin_unlock(&iip->ili_lock); 2260 ASSERT(iip->ili_last_fields); 2261 2262 if (ip != free_ip) 2263 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2264 return; 2265 2266 out_iunlock: 2267 if (ip != free_ip) 2268 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2269 out_iflags_unlock: 2270 spin_unlock(&ip->i_flags_lock); 2271 rcu_read_unlock(); 2272 } 2273 2274 /* 2275 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2276 * inodes that are in memory - they all must be marked stale and attached to 2277 * the cluster buffer. 2278 */ 2279 static int 2280 xfs_ifree_cluster( 2281 struct xfs_trans *tp, 2282 struct xfs_perag *pag, 2283 struct xfs_inode *free_ip, 2284 struct xfs_icluster *xic) 2285 { 2286 struct xfs_mount *mp = free_ip->i_mount; 2287 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2288 struct xfs_buf *bp; 2289 xfs_daddr_t blkno; 2290 xfs_ino_t inum = xic->first_ino; 2291 int nbufs; 2292 int i, j; 2293 int ioffset; 2294 int error; 2295 2296 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2297 2298 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2299 /* 2300 * The allocation bitmap tells us which inodes of the chunk were 2301 * physically allocated. Skip the cluster if an inode falls into 2302 * a sparse region. 2303 */ 2304 ioffset = inum - xic->first_ino; 2305 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2306 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2307 continue; 2308 } 2309 2310 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2311 XFS_INO_TO_AGBNO(mp, inum)); 2312 2313 /* 2314 * We obtain and lock the backing buffer first in the process 2315 * here to ensure dirty inodes attached to the buffer remain in 2316 * the flushing state while we mark them stale. 2317 * 2318 * If we scan the in-memory inodes first, then buffer IO can 2319 * complete before we get a lock on it, and hence we may fail 2320 * to mark all the active inodes on the buffer stale. 2321 */ 2322 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2323 mp->m_bsize * igeo->blocks_per_cluster, 2324 XBF_UNMAPPED, &bp); 2325 if (error) 2326 return error; 2327 2328 /* 2329 * This buffer may not have been correctly initialised as we 2330 * didn't read it from disk. That's not important because we are 2331 * only using to mark the buffer as stale in the log, and to 2332 * attach stale cached inodes on it. That means it will never be 2333 * dispatched for IO. If it is, we want to know about it, and we 2334 * want it to fail. We can acheive this by adding a write 2335 * verifier to the buffer. 2336 */ 2337 bp->b_ops = &xfs_inode_buf_ops; 2338 2339 /* 2340 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2341 * too. This requires lookups, and will skip inodes that we've 2342 * already marked XFS_ISTALE. 2343 */ 2344 for (i = 0; i < igeo->inodes_per_cluster; i++) 2345 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2346 2347 xfs_trans_stale_inode_buf(tp, bp); 2348 xfs_trans_binval(tp, bp); 2349 } 2350 return 0; 2351 } 2352 2353 /* 2354 * This is called to return an inode to the inode free list. The inode should 2355 * already be truncated to 0 length and have no pages associated with it. This 2356 * routine also assumes that the inode is already a part of the transaction. 2357 * 2358 * The on-disk copy of the inode will have been added to the list of unlinked 2359 * inodes in the AGI. We need to remove the inode from that list atomically with 2360 * respect to freeing it here. 2361 */ 2362 int 2363 xfs_ifree( 2364 struct xfs_trans *tp, 2365 struct xfs_inode *ip) 2366 { 2367 struct xfs_mount *mp = ip->i_mount; 2368 struct xfs_perag *pag; 2369 struct xfs_icluster xic = { 0 }; 2370 struct xfs_inode_log_item *iip = ip->i_itemp; 2371 int error; 2372 2373 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2374 ASSERT(VFS_I(ip)->i_nlink == 0); 2375 ASSERT(ip->i_df.if_nextents == 0); 2376 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2377 ASSERT(ip->i_nblocks == 0); 2378 2379 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2380 2381 /* 2382 * Free the inode first so that we guarantee that the AGI lock is going 2383 * to be taken before we remove the inode from the unlinked list. This 2384 * makes the AGI lock -> unlinked list modification order the same as 2385 * used in O_TMPFILE creation. 2386 */ 2387 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2388 if (error) 2389 goto out; 2390 2391 error = xfs_iunlink_remove(tp, pag, ip); 2392 if (error) 2393 goto out; 2394 2395 /* 2396 * Free any local-format data sitting around before we reset the 2397 * data fork to extents format. Note that the attr fork data has 2398 * already been freed by xfs_attr_inactive. 2399 */ 2400 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2401 kmem_free(ip->i_df.if_u1.if_data); 2402 ip->i_df.if_u1.if_data = NULL; 2403 ip->i_df.if_bytes = 0; 2404 } 2405 2406 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2407 ip->i_diflags = 0; 2408 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2409 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2410 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2411 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2412 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2413 2414 /* Don't attempt to replay owner changes for a deleted inode */ 2415 spin_lock(&iip->ili_lock); 2416 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2417 spin_unlock(&iip->ili_lock); 2418 2419 /* 2420 * Bump the generation count so no one will be confused 2421 * by reincarnations of this inode. 2422 */ 2423 VFS_I(ip)->i_generation++; 2424 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2425 2426 if (xic.deleted) 2427 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2428 out: 2429 xfs_perag_put(pag); 2430 return error; 2431 } 2432 2433 /* 2434 * This is called to unpin an inode. The caller must have the inode locked 2435 * in at least shared mode so that the buffer cannot be subsequently pinned 2436 * once someone is waiting for it to be unpinned. 2437 */ 2438 static void 2439 xfs_iunpin( 2440 struct xfs_inode *ip) 2441 { 2442 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2443 2444 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2445 2446 /* Give the log a push to start the unpinning I/O */ 2447 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2448 2449 } 2450 2451 static void 2452 __xfs_iunpin_wait( 2453 struct xfs_inode *ip) 2454 { 2455 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2456 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2457 2458 xfs_iunpin(ip); 2459 2460 do { 2461 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2462 if (xfs_ipincount(ip)) 2463 io_schedule(); 2464 } while (xfs_ipincount(ip)); 2465 finish_wait(wq, &wait.wq_entry); 2466 } 2467 2468 void 2469 xfs_iunpin_wait( 2470 struct xfs_inode *ip) 2471 { 2472 if (xfs_ipincount(ip)) 2473 __xfs_iunpin_wait(ip); 2474 } 2475 2476 /* 2477 * Removing an inode from the namespace involves removing the directory entry 2478 * and dropping the link count on the inode. Removing the directory entry can 2479 * result in locking an AGF (directory blocks were freed) and removing a link 2480 * count can result in placing the inode on an unlinked list which results in 2481 * locking an AGI. 2482 * 2483 * The big problem here is that we have an ordering constraint on AGF and AGI 2484 * locking - inode allocation locks the AGI, then can allocate a new extent for 2485 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2486 * removes the inode from the unlinked list, requiring that we lock the AGI 2487 * first, and then freeing the inode can result in an inode chunk being freed 2488 * and hence freeing disk space requiring that we lock an AGF. 2489 * 2490 * Hence the ordering that is imposed by other parts of the code is AGI before 2491 * AGF. This means we cannot remove the directory entry before we drop the inode 2492 * reference count and put it on the unlinked list as this results in a lock 2493 * order of AGF then AGI, and this can deadlock against inode allocation and 2494 * freeing. Therefore we must drop the link counts before we remove the 2495 * directory entry. 2496 * 2497 * This is still safe from a transactional point of view - it is not until we 2498 * get to xfs_defer_finish() that we have the possibility of multiple 2499 * transactions in this operation. Hence as long as we remove the directory 2500 * entry and drop the link count in the first transaction of the remove 2501 * operation, there are no transactional constraints on the ordering here. 2502 */ 2503 int 2504 xfs_remove( 2505 xfs_inode_t *dp, 2506 struct xfs_name *name, 2507 xfs_inode_t *ip) 2508 { 2509 xfs_mount_t *mp = dp->i_mount; 2510 xfs_trans_t *tp = NULL; 2511 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2512 int dontcare; 2513 int error = 0; 2514 uint resblks; 2515 2516 trace_xfs_remove(dp, name); 2517 2518 if (xfs_is_shutdown(mp)) 2519 return -EIO; 2520 2521 error = xfs_qm_dqattach(dp); 2522 if (error) 2523 goto std_return; 2524 2525 error = xfs_qm_dqattach(ip); 2526 if (error) 2527 goto std_return; 2528 2529 /* 2530 * We try to get the real space reservation first, allowing for 2531 * directory btree deletion(s) implying possible bmap insert(s). If we 2532 * can't get the space reservation then we use 0 instead, and avoid the 2533 * bmap btree insert(s) in the directory code by, if the bmap insert 2534 * tries to happen, instead trimming the LAST block from the directory. 2535 * 2536 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2537 * the directory code can handle a reservationless update and we don't 2538 * want to prevent a user from trying to free space by deleting things. 2539 */ 2540 resblks = XFS_REMOVE_SPACE_RES(mp); 2541 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2542 &tp, &dontcare); 2543 if (error) { 2544 ASSERT(error != -ENOSPC); 2545 goto std_return; 2546 } 2547 2548 /* 2549 * If we're removing a directory perform some additional validation. 2550 */ 2551 if (is_dir) { 2552 ASSERT(VFS_I(ip)->i_nlink >= 2); 2553 if (VFS_I(ip)->i_nlink != 2) { 2554 error = -ENOTEMPTY; 2555 goto out_trans_cancel; 2556 } 2557 if (!xfs_dir_isempty(ip)) { 2558 error = -ENOTEMPTY; 2559 goto out_trans_cancel; 2560 } 2561 2562 /* Drop the link from ip's "..". */ 2563 error = xfs_droplink(tp, dp); 2564 if (error) 2565 goto out_trans_cancel; 2566 2567 /* Drop the "." link from ip to self. */ 2568 error = xfs_droplink(tp, ip); 2569 if (error) 2570 goto out_trans_cancel; 2571 2572 /* 2573 * Point the unlinked child directory's ".." entry to the root 2574 * directory to eliminate back-references to inodes that may 2575 * get freed before the child directory is closed. If the fs 2576 * gets shrunk, this can lead to dirent inode validation errors. 2577 */ 2578 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2579 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2580 tp->t_mountp->m_sb.sb_rootino, 0); 2581 if (error) 2582 goto out_trans_cancel; 2583 } 2584 } else { 2585 /* 2586 * When removing a non-directory we need to log the parent 2587 * inode here. For a directory this is done implicitly 2588 * by the xfs_droplink call for the ".." entry. 2589 */ 2590 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2591 } 2592 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2593 2594 /* Drop the link from dp to ip. */ 2595 error = xfs_droplink(tp, ip); 2596 if (error) 2597 goto out_trans_cancel; 2598 2599 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2600 if (error) { 2601 ASSERT(error != -ENOENT); 2602 goto out_trans_cancel; 2603 } 2604 2605 /* 2606 * If this is a synchronous mount, make sure that the 2607 * remove transaction goes to disk before returning to 2608 * the user. 2609 */ 2610 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2611 xfs_trans_set_sync(tp); 2612 2613 error = xfs_trans_commit(tp); 2614 if (error) 2615 goto std_return; 2616 2617 if (is_dir && xfs_inode_is_filestream(ip)) 2618 xfs_filestream_deassociate(ip); 2619 2620 return 0; 2621 2622 out_trans_cancel: 2623 xfs_trans_cancel(tp); 2624 std_return: 2625 return error; 2626 } 2627 2628 /* 2629 * Enter all inodes for a rename transaction into a sorted array. 2630 */ 2631 #define __XFS_SORT_INODES 5 2632 STATIC void 2633 xfs_sort_for_rename( 2634 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2635 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2636 struct xfs_inode *ip1, /* in: inode of old entry */ 2637 struct xfs_inode *ip2, /* in: inode of new entry */ 2638 struct xfs_inode *wip, /* in: whiteout inode */ 2639 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2640 int *num_inodes) /* in/out: inodes in array */ 2641 { 2642 int i, j; 2643 2644 ASSERT(*num_inodes == __XFS_SORT_INODES); 2645 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2646 2647 /* 2648 * i_tab contains a list of pointers to inodes. We initialize 2649 * the table here & we'll sort it. We will then use it to 2650 * order the acquisition of the inode locks. 2651 * 2652 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2653 */ 2654 i = 0; 2655 i_tab[i++] = dp1; 2656 i_tab[i++] = dp2; 2657 i_tab[i++] = ip1; 2658 if (ip2) 2659 i_tab[i++] = ip2; 2660 if (wip) 2661 i_tab[i++] = wip; 2662 *num_inodes = i; 2663 2664 /* 2665 * Sort the elements via bubble sort. (Remember, there are at 2666 * most 5 elements to sort, so this is adequate.) 2667 */ 2668 for (i = 0; i < *num_inodes; i++) { 2669 for (j = 1; j < *num_inodes; j++) { 2670 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2671 struct xfs_inode *temp = i_tab[j]; 2672 i_tab[j] = i_tab[j-1]; 2673 i_tab[j-1] = temp; 2674 } 2675 } 2676 } 2677 } 2678 2679 static int 2680 xfs_finish_rename( 2681 struct xfs_trans *tp) 2682 { 2683 /* 2684 * If this is a synchronous mount, make sure that the rename transaction 2685 * goes to disk before returning to the user. 2686 */ 2687 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2688 xfs_trans_set_sync(tp); 2689 2690 return xfs_trans_commit(tp); 2691 } 2692 2693 /* 2694 * xfs_cross_rename() 2695 * 2696 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2697 */ 2698 STATIC int 2699 xfs_cross_rename( 2700 struct xfs_trans *tp, 2701 struct xfs_inode *dp1, 2702 struct xfs_name *name1, 2703 struct xfs_inode *ip1, 2704 struct xfs_inode *dp2, 2705 struct xfs_name *name2, 2706 struct xfs_inode *ip2, 2707 int spaceres) 2708 { 2709 int error = 0; 2710 int ip1_flags = 0; 2711 int ip2_flags = 0; 2712 int dp2_flags = 0; 2713 2714 /* Swap inode number for dirent in first parent */ 2715 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2716 if (error) 2717 goto out_trans_abort; 2718 2719 /* Swap inode number for dirent in second parent */ 2720 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2721 if (error) 2722 goto out_trans_abort; 2723 2724 /* 2725 * If we're renaming one or more directories across different parents, 2726 * update the respective ".." entries (and link counts) to match the new 2727 * parents. 2728 */ 2729 if (dp1 != dp2) { 2730 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2731 2732 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2733 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2734 dp1->i_ino, spaceres); 2735 if (error) 2736 goto out_trans_abort; 2737 2738 /* transfer ip2 ".." reference to dp1 */ 2739 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2740 error = xfs_droplink(tp, dp2); 2741 if (error) 2742 goto out_trans_abort; 2743 xfs_bumplink(tp, dp1); 2744 } 2745 2746 /* 2747 * Although ip1 isn't changed here, userspace needs 2748 * to be warned about the change, so that applications 2749 * relying on it (like backup ones), will properly 2750 * notify the change 2751 */ 2752 ip1_flags |= XFS_ICHGTIME_CHG; 2753 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2754 } 2755 2756 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2757 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2758 dp2->i_ino, spaceres); 2759 if (error) 2760 goto out_trans_abort; 2761 2762 /* transfer ip1 ".." reference to dp2 */ 2763 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2764 error = xfs_droplink(tp, dp1); 2765 if (error) 2766 goto out_trans_abort; 2767 xfs_bumplink(tp, dp2); 2768 } 2769 2770 /* 2771 * Although ip2 isn't changed here, userspace needs 2772 * to be warned about the change, so that applications 2773 * relying on it (like backup ones), will properly 2774 * notify the change 2775 */ 2776 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2777 ip2_flags |= XFS_ICHGTIME_CHG; 2778 } 2779 } 2780 2781 if (ip1_flags) { 2782 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2783 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2784 } 2785 if (ip2_flags) { 2786 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2787 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2788 } 2789 if (dp2_flags) { 2790 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2791 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2792 } 2793 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2794 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2795 return xfs_finish_rename(tp); 2796 2797 out_trans_abort: 2798 xfs_trans_cancel(tp); 2799 return error; 2800 } 2801 2802 /* 2803 * xfs_rename_alloc_whiteout() 2804 * 2805 * Return a referenced, unlinked, unlocked inode that can be used as a 2806 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2807 * crash between allocating the inode and linking it into the rename transaction 2808 * recovery will free the inode and we won't leak it. 2809 */ 2810 static int 2811 xfs_rename_alloc_whiteout( 2812 struct mnt_idmap *idmap, 2813 struct xfs_name *src_name, 2814 struct xfs_inode *dp, 2815 struct xfs_inode **wip) 2816 { 2817 struct xfs_inode *tmpfile; 2818 struct qstr name; 2819 int error; 2820 2821 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE, 2822 &tmpfile); 2823 if (error) 2824 return error; 2825 2826 name.name = src_name->name; 2827 name.len = src_name->len; 2828 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2829 if (error) { 2830 xfs_finish_inode_setup(tmpfile); 2831 xfs_irele(tmpfile); 2832 return error; 2833 } 2834 2835 /* 2836 * Prepare the tmpfile inode as if it were created through the VFS. 2837 * Complete the inode setup and flag it as linkable. nlink is already 2838 * zero, so we can skip the drop_nlink. 2839 */ 2840 xfs_setup_iops(tmpfile); 2841 xfs_finish_inode_setup(tmpfile); 2842 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2843 2844 *wip = tmpfile; 2845 return 0; 2846 } 2847 2848 /* 2849 * xfs_rename 2850 */ 2851 int 2852 xfs_rename( 2853 struct mnt_idmap *idmap, 2854 struct xfs_inode *src_dp, 2855 struct xfs_name *src_name, 2856 struct xfs_inode *src_ip, 2857 struct xfs_inode *target_dp, 2858 struct xfs_name *target_name, 2859 struct xfs_inode *target_ip, 2860 unsigned int flags) 2861 { 2862 struct xfs_mount *mp = src_dp->i_mount; 2863 struct xfs_trans *tp; 2864 struct xfs_inode *wip = NULL; /* whiteout inode */ 2865 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2866 int i; 2867 int num_inodes = __XFS_SORT_INODES; 2868 bool new_parent = (src_dp != target_dp); 2869 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2870 int spaceres; 2871 bool retried = false; 2872 int error, nospace_error = 0; 2873 2874 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2875 2876 if ((flags & RENAME_EXCHANGE) && !target_ip) 2877 return -EINVAL; 2878 2879 /* 2880 * If we are doing a whiteout operation, allocate the whiteout inode 2881 * we will be placing at the target and ensure the type is set 2882 * appropriately. 2883 */ 2884 if (flags & RENAME_WHITEOUT) { 2885 error = xfs_rename_alloc_whiteout(idmap, src_name, 2886 target_dp, &wip); 2887 if (error) 2888 return error; 2889 2890 /* setup target dirent info as whiteout */ 2891 src_name->type = XFS_DIR3_FT_CHRDEV; 2892 } 2893 2894 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2895 inodes, &num_inodes); 2896 2897 retry: 2898 nospace_error = 0; 2899 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2900 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2901 if (error == -ENOSPC) { 2902 nospace_error = error; 2903 spaceres = 0; 2904 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2905 &tp); 2906 } 2907 if (error) 2908 goto out_release_wip; 2909 2910 /* 2911 * Attach the dquots to the inodes 2912 */ 2913 error = xfs_qm_vop_rename_dqattach(inodes); 2914 if (error) 2915 goto out_trans_cancel; 2916 2917 /* 2918 * Lock all the participating inodes. Depending upon whether 2919 * the target_name exists in the target directory, and 2920 * whether the target directory is the same as the source 2921 * directory, we can lock from 2 to 5 inodes. 2922 */ 2923 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2924 2925 /* 2926 * Join all the inodes to the transaction. From this point on, 2927 * we can rely on either trans_commit or trans_cancel to unlock 2928 * them. 2929 */ 2930 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2931 if (new_parent) 2932 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2933 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2934 if (target_ip) 2935 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2936 if (wip) 2937 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2938 2939 /* 2940 * If we are using project inheritance, we only allow renames 2941 * into our tree when the project IDs are the same; else the 2942 * tree quota mechanism would be circumvented. 2943 */ 2944 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2945 target_dp->i_projid != src_ip->i_projid)) { 2946 error = -EXDEV; 2947 goto out_trans_cancel; 2948 } 2949 2950 /* RENAME_EXCHANGE is unique from here on. */ 2951 if (flags & RENAME_EXCHANGE) 2952 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2953 target_dp, target_name, target_ip, 2954 spaceres); 2955 2956 /* 2957 * Try to reserve quota to handle an expansion of the target directory. 2958 * We'll allow the rename to continue in reservationless mode if we hit 2959 * a space usage constraint. If we trigger reservationless mode, save 2960 * the errno if there isn't any free space in the target directory. 2961 */ 2962 if (spaceres != 0) { 2963 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2964 0, false); 2965 if (error == -EDQUOT || error == -ENOSPC) { 2966 if (!retried) { 2967 xfs_trans_cancel(tp); 2968 xfs_blockgc_free_quota(target_dp, 0); 2969 retried = true; 2970 goto retry; 2971 } 2972 2973 nospace_error = error; 2974 spaceres = 0; 2975 error = 0; 2976 } 2977 if (error) 2978 goto out_trans_cancel; 2979 } 2980 2981 /* 2982 * Check for expected errors before we dirty the transaction 2983 * so we can return an error without a transaction abort. 2984 */ 2985 if (target_ip == NULL) { 2986 /* 2987 * If there's no space reservation, check the entry will 2988 * fit before actually inserting it. 2989 */ 2990 if (!spaceres) { 2991 error = xfs_dir_canenter(tp, target_dp, target_name); 2992 if (error) 2993 goto out_trans_cancel; 2994 } 2995 } else { 2996 /* 2997 * If target exists and it's a directory, check that whether 2998 * it can be destroyed. 2999 */ 3000 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3001 (!xfs_dir_isempty(target_ip) || 3002 (VFS_I(target_ip)->i_nlink > 2))) { 3003 error = -EEXIST; 3004 goto out_trans_cancel; 3005 } 3006 } 3007 3008 /* 3009 * Lock the AGI buffers we need to handle bumping the nlink of the 3010 * whiteout inode off the unlinked list and to handle dropping the 3011 * nlink of the target inode. Per locking order rules, do this in 3012 * increasing AG order and before directory block allocation tries to 3013 * grab AGFs because we grab AGIs before AGFs. 3014 * 3015 * The (vfs) caller must ensure that if src is a directory then 3016 * target_ip is either null or an empty directory. 3017 */ 3018 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3019 if (inodes[i] == wip || 3020 (inodes[i] == target_ip && 3021 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3022 struct xfs_perag *pag; 3023 struct xfs_buf *bp; 3024 3025 pag = xfs_perag_get(mp, 3026 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 3027 error = xfs_read_agi(pag, tp, &bp); 3028 xfs_perag_put(pag); 3029 if (error) 3030 goto out_trans_cancel; 3031 } 3032 } 3033 3034 /* 3035 * Directory entry creation below may acquire the AGF. Remove 3036 * the whiteout from the unlinked list first to preserve correct 3037 * AGI/AGF locking order. This dirties the transaction so failures 3038 * after this point will abort and log recovery will clean up the 3039 * mess. 3040 * 3041 * For whiteouts, we need to bump the link count on the whiteout 3042 * inode. After this point, we have a real link, clear the tmpfile 3043 * state flag from the inode so it doesn't accidentally get misused 3044 * in future. 3045 */ 3046 if (wip) { 3047 struct xfs_perag *pag; 3048 3049 ASSERT(VFS_I(wip)->i_nlink == 0); 3050 3051 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3052 error = xfs_iunlink_remove(tp, pag, wip); 3053 xfs_perag_put(pag); 3054 if (error) 3055 goto out_trans_cancel; 3056 3057 xfs_bumplink(tp, wip); 3058 VFS_I(wip)->i_state &= ~I_LINKABLE; 3059 } 3060 3061 /* 3062 * Set up the target. 3063 */ 3064 if (target_ip == NULL) { 3065 /* 3066 * If target does not exist and the rename crosses 3067 * directories, adjust the target directory link count 3068 * to account for the ".." reference from the new entry. 3069 */ 3070 error = xfs_dir_createname(tp, target_dp, target_name, 3071 src_ip->i_ino, spaceres); 3072 if (error) 3073 goto out_trans_cancel; 3074 3075 xfs_trans_ichgtime(tp, target_dp, 3076 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3077 3078 if (new_parent && src_is_directory) { 3079 xfs_bumplink(tp, target_dp); 3080 } 3081 } else { /* target_ip != NULL */ 3082 /* 3083 * Link the source inode under the target name. 3084 * If the source inode is a directory and we are moving 3085 * it across directories, its ".." entry will be 3086 * inconsistent until we replace that down below. 3087 * 3088 * In case there is already an entry with the same 3089 * name at the destination directory, remove it first. 3090 */ 3091 error = xfs_dir_replace(tp, target_dp, target_name, 3092 src_ip->i_ino, spaceres); 3093 if (error) 3094 goto out_trans_cancel; 3095 3096 xfs_trans_ichgtime(tp, target_dp, 3097 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3098 3099 /* 3100 * Decrement the link count on the target since the target 3101 * dir no longer points to it. 3102 */ 3103 error = xfs_droplink(tp, target_ip); 3104 if (error) 3105 goto out_trans_cancel; 3106 3107 if (src_is_directory) { 3108 /* 3109 * Drop the link from the old "." entry. 3110 */ 3111 error = xfs_droplink(tp, target_ip); 3112 if (error) 3113 goto out_trans_cancel; 3114 } 3115 } /* target_ip != NULL */ 3116 3117 /* 3118 * Remove the source. 3119 */ 3120 if (new_parent && src_is_directory) { 3121 /* 3122 * Rewrite the ".." entry to point to the new 3123 * directory. 3124 */ 3125 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3126 target_dp->i_ino, spaceres); 3127 ASSERT(error != -EEXIST); 3128 if (error) 3129 goto out_trans_cancel; 3130 } 3131 3132 /* 3133 * We always want to hit the ctime on the source inode. 3134 * 3135 * This isn't strictly required by the standards since the source 3136 * inode isn't really being changed, but old unix file systems did 3137 * it and some incremental backup programs won't work without it. 3138 */ 3139 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3140 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3141 3142 /* 3143 * Adjust the link count on src_dp. This is necessary when 3144 * renaming a directory, either within one parent when 3145 * the target existed, or across two parent directories. 3146 */ 3147 if (src_is_directory && (new_parent || target_ip != NULL)) { 3148 3149 /* 3150 * Decrement link count on src_directory since the 3151 * entry that's moved no longer points to it. 3152 */ 3153 error = xfs_droplink(tp, src_dp); 3154 if (error) 3155 goto out_trans_cancel; 3156 } 3157 3158 /* 3159 * For whiteouts, we only need to update the source dirent with the 3160 * inode number of the whiteout inode rather than removing it 3161 * altogether. 3162 */ 3163 if (wip) 3164 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3165 spaceres); 3166 else 3167 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3168 spaceres); 3169 3170 if (error) 3171 goto out_trans_cancel; 3172 3173 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3174 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3175 if (new_parent) 3176 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3177 3178 error = xfs_finish_rename(tp); 3179 if (wip) 3180 xfs_irele(wip); 3181 return error; 3182 3183 out_trans_cancel: 3184 xfs_trans_cancel(tp); 3185 out_release_wip: 3186 if (wip) 3187 xfs_irele(wip); 3188 if (error == -ENOSPC && nospace_error) 3189 error = nospace_error; 3190 return error; 3191 } 3192 3193 static int 3194 xfs_iflush( 3195 struct xfs_inode *ip, 3196 struct xfs_buf *bp) 3197 { 3198 struct xfs_inode_log_item *iip = ip->i_itemp; 3199 struct xfs_dinode *dip; 3200 struct xfs_mount *mp = ip->i_mount; 3201 int error; 3202 3203 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3204 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3205 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3206 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3207 ASSERT(iip->ili_item.li_buf == bp); 3208 3209 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3210 3211 /* 3212 * We don't flush the inode if any of the following checks fail, but we 3213 * do still update the log item and attach to the backing buffer as if 3214 * the flush happened. This is a formality to facilitate predictable 3215 * error handling as the caller will shutdown and fail the buffer. 3216 */ 3217 error = -EFSCORRUPTED; 3218 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3219 mp, XFS_ERRTAG_IFLUSH_1)) { 3220 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3221 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 3222 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3223 goto flush_out; 3224 } 3225 if (S_ISREG(VFS_I(ip)->i_mode)) { 3226 if (XFS_TEST_ERROR( 3227 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3228 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3229 mp, XFS_ERRTAG_IFLUSH_3)) { 3230 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3231 "%s: Bad regular inode %llu, ptr "PTR_FMT, 3232 __func__, ip->i_ino, ip); 3233 goto flush_out; 3234 } 3235 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3236 if (XFS_TEST_ERROR( 3237 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3238 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3239 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3240 mp, XFS_ERRTAG_IFLUSH_4)) { 3241 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3242 "%s: Bad directory inode %llu, ptr "PTR_FMT, 3243 __func__, ip->i_ino, ip); 3244 goto flush_out; 3245 } 3246 } 3247 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3248 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3249 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3250 "%s: detected corrupt incore inode %llu, " 3251 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3252 __func__, ip->i_ino, 3253 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3254 ip->i_nblocks, ip); 3255 goto flush_out; 3256 } 3257 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3258 mp, XFS_ERRTAG_IFLUSH_6)) { 3259 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3260 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 3261 __func__, ip->i_ino, ip->i_forkoff, ip); 3262 goto flush_out; 3263 } 3264 3265 /* 3266 * Inode item log recovery for v2 inodes are dependent on the flushiter 3267 * count for correct sequencing. We bump the flush iteration count so 3268 * we can detect flushes which postdate a log record during recovery. 3269 * This is redundant as we now log every change and hence this can't 3270 * happen but we need to still do it to ensure backwards compatibility 3271 * with old kernels that predate logging all inode changes. 3272 */ 3273 if (!xfs_has_v3inodes(mp)) 3274 ip->i_flushiter++; 3275 3276 /* 3277 * If there are inline format data / attr forks attached to this inode, 3278 * make sure they are not corrupt. 3279 */ 3280 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3281 xfs_ifork_verify_local_data(ip)) 3282 goto flush_out; 3283 if (xfs_inode_has_attr_fork(ip) && 3284 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3285 xfs_ifork_verify_local_attr(ip)) 3286 goto flush_out; 3287 3288 /* 3289 * Copy the dirty parts of the inode into the on-disk inode. We always 3290 * copy out the core of the inode, because if the inode is dirty at all 3291 * the core must be. 3292 */ 3293 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3294 3295 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3296 if (!xfs_has_v3inodes(mp)) { 3297 if (ip->i_flushiter == DI_MAX_FLUSH) 3298 ip->i_flushiter = 0; 3299 } 3300 3301 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3302 if (xfs_inode_has_attr_fork(ip)) 3303 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3304 3305 /* 3306 * We've recorded everything logged in the inode, so we'd like to clear 3307 * the ili_fields bits so we don't log and flush things unnecessarily. 3308 * However, we can't stop logging all this information until the data 3309 * we've copied into the disk buffer is written to disk. If we did we 3310 * might overwrite the copy of the inode in the log with all the data 3311 * after re-logging only part of it, and in the face of a crash we 3312 * wouldn't have all the data we need to recover. 3313 * 3314 * What we do is move the bits to the ili_last_fields field. When 3315 * logging the inode, these bits are moved back to the ili_fields field. 3316 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3317 * we know that the information those bits represent is permanently on 3318 * disk. As long as the flush completes before the inode is logged 3319 * again, then both ili_fields and ili_last_fields will be cleared. 3320 */ 3321 error = 0; 3322 flush_out: 3323 spin_lock(&iip->ili_lock); 3324 iip->ili_last_fields = iip->ili_fields; 3325 iip->ili_fields = 0; 3326 iip->ili_fsync_fields = 0; 3327 spin_unlock(&iip->ili_lock); 3328 3329 /* 3330 * Store the current LSN of the inode so that we can tell whether the 3331 * item has moved in the AIL from xfs_buf_inode_iodone(). 3332 */ 3333 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3334 &iip->ili_item.li_lsn); 3335 3336 /* generate the checksum. */ 3337 xfs_dinode_calc_crc(mp, dip); 3338 return error; 3339 } 3340 3341 /* 3342 * Non-blocking flush of dirty inode metadata into the backing buffer. 3343 * 3344 * The caller must have a reference to the inode and hold the cluster buffer 3345 * locked. The function will walk across all the inodes on the cluster buffer it 3346 * can find and lock without blocking, and flush them to the cluster buffer. 3347 * 3348 * On successful flushing of at least one inode, the caller must write out the 3349 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3350 * the caller needs to release the buffer. On failure, the filesystem will be 3351 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3352 * will be returned. 3353 */ 3354 int 3355 xfs_iflush_cluster( 3356 struct xfs_buf *bp) 3357 { 3358 struct xfs_mount *mp = bp->b_mount; 3359 struct xfs_log_item *lip, *n; 3360 struct xfs_inode *ip; 3361 struct xfs_inode_log_item *iip; 3362 int clcount = 0; 3363 int error = 0; 3364 3365 /* 3366 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3367 * will remove itself from the list. 3368 */ 3369 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3370 iip = (struct xfs_inode_log_item *)lip; 3371 ip = iip->ili_inode; 3372 3373 /* 3374 * Quick and dirty check to avoid locks if possible. 3375 */ 3376 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3377 continue; 3378 if (xfs_ipincount(ip)) 3379 continue; 3380 3381 /* 3382 * The inode is still attached to the buffer, which means it is 3383 * dirty but reclaim might try to grab it. Check carefully for 3384 * that, and grab the ilock while still holding the i_flags_lock 3385 * to guarantee reclaim will not be able to reclaim this inode 3386 * once we drop the i_flags_lock. 3387 */ 3388 spin_lock(&ip->i_flags_lock); 3389 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3390 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3391 spin_unlock(&ip->i_flags_lock); 3392 continue; 3393 } 3394 3395 /* 3396 * ILOCK will pin the inode against reclaim and prevent 3397 * concurrent transactions modifying the inode while we are 3398 * flushing the inode. If we get the lock, set the flushing 3399 * state before we drop the i_flags_lock. 3400 */ 3401 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3402 spin_unlock(&ip->i_flags_lock); 3403 continue; 3404 } 3405 __xfs_iflags_set(ip, XFS_IFLUSHING); 3406 spin_unlock(&ip->i_flags_lock); 3407 3408 /* 3409 * Abort flushing this inode if we are shut down because the 3410 * inode may not currently be in the AIL. This can occur when 3411 * log I/O failure unpins the inode without inserting into the 3412 * AIL, leaving a dirty/unpinned inode attached to the buffer 3413 * that otherwise looks like it should be flushed. 3414 */ 3415 if (xlog_is_shutdown(mp->m_log)) { 3416 xfs_iunpin_wait(ip); 3417 xfs_iflush_abort(ip); 3418 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3419 error = -EIO; 3420 continue; 3421 } 3422 3423 /* don't block waiting on a log force to unpin dirty inodes */ 3424 if (xfs_ipincount(ip)) { 3425 xfs_iflags_clear(ip, XFS_IFLUSHING); 3426 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3427 continue; 3428 } 3429 3430 if (!xfs_inode_clean(ip)) 3431 error = xfs_iflush(ip, bp); 3432 else 3433 xfs_iflags_clear(ip, XFS_IFLUSHING); 3434 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3435 if (error) 3436 break; 3437 clcount++; 3438 } 3439 3440 if (error) { 3441 /* 3442 * Shutdown first so we kill the log before we release this 3443 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3444 * of the log, failing it before the _log_ is shut down can 3445 * result in the log tail being moved forward in the journal 3446 * on disk because log writes can still be taking place. Hence 3447 * unpinning the tail will allow the ICREATE intent to be 3448 * removed from the log an recovery will fail with uninitialised 3449 * inode cluster buffers. 3450 */ 3451 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3452 bp->b_flags |= XBF_ASYNC; 3453 xfs_buf_ioend_fail(bp); 3454 return error; 3455 } 3456 3457 if (!clcount) 3458 return -EAGAIN; 3459 3460 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3461 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3462 return 0; 3463 3464 } 3465 3466 /* Release an inode. */ 3467 void 3468 xfs_irele( 3469 struct xfs_inode *ip) 3470 { 3471 trace_xfs_irele(ip, _RET_IP_); 3472 iput(VFS_I(ip)); 3473 } 3474 3475 /* 3476 * Ensure all commited transactions touching the inode are written to the log. 3477 */ 3478 int 3479 xfs_log_force_inode( 3480 struct xfs_inode *ip) 3481 { 3482 xfs_csn_t seq = 0; 3483 3484 xfs_ilock(ip, XFS_ILOCK_SHARED); 3485 if (xfs_ipincount(ip)) 3486 seq = ip->i_itemp->ili_commit_seq; 3487 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3488 3489 if (!seq) 3490 return 0; 3491 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3492 } 3493 3494 /* 3495 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3496 * abide vfs locking order (lowest pointer value goes first) and breaking the 3497 * layout leases before proceeding. The loop is needed because we cannot call 3498 * the blocking break_layout() with the iolocks held, and therefore have to 3499 * back out both locks. 3500 */ 3501 static int 3502 xfs_iolock_two_inodes_and_break_layout( 3503 struct inode *src, 3504 struct inode *dest) 3505 { 3506 int error; 3507 3508 if (src > dest) 3509 swap(src, dest); 3510 3511 retry: 3512 /* Wait to break both inodes' layouts before we start locking. */ 3513 error = break_layout(src, true); 3514 if (error) 3515 return error; 3516 if (src != dest) { 3517 error = break_layout(dest, true); 3518 if (error) 3519 return error; 3520 } 3521 3522 /* Lock one inode and make sure nobody got in and leased it. */ 3523 inode_lock(src); 3524 error = break_layout(src, false); 3525 if (error) { 3526 inode_unlock(src); 3527 if (error == -EWOULDBLOCK) 3528 goto retry; 3529 return error; 3530 } 3531 3532 if (src == dest) 3533 return 0; 3534 3535 /* Lock the other inode and make sure nobody got in and leased it. */ 3536 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3537 error = break_layout(dest, false); 3538 if (error) { 3539 inode_unlock(src); 3540 inode_unlock(dest); 3541 if (error == -EWOULDBLOCK) 3542 goto retry; 3543 return error; 3544 } 3545 3546 return 0; 3547 } 3548 3549 static int 3550 xfs_mmaplock_two_inodes_and_break_dax_layout( 3551 struct xfs_inode *ip1, 3552 struct xfs_inode *ip2) 3553 { 3554 int error; 3555 bool retry; 3556 struct page *page; 3557 3558 if (ip1->i_ino > ip2->i_ino) 3559 swap(ip1, ip2); 3560 3561 again: 3562 retry = false; 3563 /* Lock the first inode */ 3564 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3565 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3566 if (error || retry) { 3567 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3568 if (error == 0 && retry) 3569 goto again; 3570 return error; 3571 } 3572 3573 if (ip1 == ip2) 3574 return 0; 3575 3576 /* Nested lock the second inode */ 3577 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3578 /* 3579 * We cannot use xfs_break_dax_layouts() directly here because it may 3580 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3581 * for this nested lock case. 3582 */ 3583 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3584 if (page && page_ref_count(page) != 1) { 3585 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3586 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3587 goto again; 3588 } 3589 3590 return 0; 3591 } 3592 3593 /* 3594 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3595 * mmap activity. 3596 */ 3597 int 3598 xfs_ilock2_io_mmap( 3599 struct xfs_inode *ip1, 3600 struct xfs_inode *ip2) 3601 { 3602 int ret; 3603 3604 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3605 if (ret) 3606 return ret; 3607 3608 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3609 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 3610 if (ret) { 3611 inode_unlock(VFS_I(ip2)); 3612 if (ip1 != ip2) 3613 inode_unlock(VFS_I(ip1)); 3614 return ret; 3615 } 3616 } else 3617 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3618 VFS_I(ip2)->i_mapping); 3619 3620 return 0; 3621 } 3622 3623 /* Unlock both inodes to allow IO and mmap activity. */ 3624 void 3625 xfs_iunlock2_io_mmap( 3626 struct xfs_inode *ip1, 3627 struct xfs_inode *ip2) 3628 { 3629 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3630 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3631 if (ip1 != ip2) 3632 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3633 } else 3634 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3635 VFS_I(ip2)->i_mapping); 3636 3637 inode_unlock(VFS_I(ip2)); 3638 if (ip1 != ip2) 3639 inode_unlock(VFS_I(ip1)); 3640 } 3641 3642 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ 3643 void 3644 xfs_iunlock2_remapping( 3645 struct xfs_inode *ip1, 3646 struct xfs_inode *ip2) 3647 { 3648 xfs_iflags_clear(ip1, XFS_IREMAPPING); 3649 3650 if (ip1 != ip2) 3651 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED); 3652 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3653 3654 if (ip1 != ip2) 3655 inode_unlock_shared(VFS_I(ip1)); 3656 inode_unlock(VFS_I(ip2)); 3657 } 3658 3659 /* 3660 * Reload the incore inode list for this inode. Caller should ensure that 3661 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 3662 * preventing other threads from executing. 3663 */ 3664 int 3665 xfs_inode_reload_unlinked_bucket( 3666 struct xfs_trans *tp, 3667 struct xfs_inode *ip) 3668 { 3669 struct xfs_mount *mp = tp->t_mountp; 3670 struct xfs_buf *agibp; 3671 struct xfs_agi *agi; 3672 struct xfs_perag *pag; 3673 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 3674 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 3675 xfs_agino_t prev_agino, next_agino; 3676 unsigned int bucket; 3677 bool foundit = false; 3678 int error; 3679 3680 /* Grab the first inode in the list */ 3681 pag = xfs_perag_get(mp, agno); 3682 error = xfs_ialloc_read_agi(pag, tp, &agibp); 3683 xfs_perag_put(pag); 3684 if (error) 3685 return error; 3686 3687 /* 3688 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 3689 * incore unlinked list pointers for this inode. Check once more to 3690 * see if we raced with anyone else to reload the unlinked list. 3691 */ 3692 if (!xfs_inode_unlinked_incomplete(ip)) { 3693 foundit = true; 3694 goto out_agibp; 3695 } 3696 3697 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 3698 agi = agibp->b_addr; 3699 3700 trace_xfs_inode_reload_unlinked_bucket(ip); 3701 3702 xfs_info_ratelimited(mp, 3703 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 3704 agino, agno); 3705 3706 prev_agino = NULLAGINO; 3707 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3708 while (next_agino != NULLAGINO) { 3709 struct xfs_inode *next_ip = NULL; 3710 3711 /* Found this caller's inode, set its backlink. */ 3712 if (next_agino == agino) { 3713 next_ip = ip; 3714 next_ip->i_prev_unlinked = prev_agino; 3715 foundit = true; 3716 goto next_inode; 3717 } 3718 3719 /* Try in-memory lookup first. */ 3720 next_ip = xfs_iunlink_lookup(pag, next_agino); 3721 if (next_ip) 3722 goto next_inode; 3723 3724 /* Inode not in memory, try reloading it. */ 3725 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 3726 next_agino); 3727 if (error) 3728 break; 3729 3730 /* Grab the reloaded inode. */ 3731 next_ip = xfs_iunlink_lookup(pag, next_agino); 3732 if (!next_ip) { 3733 /* No incore inode at all? We reloaded it... */ 3734 ASSERT(next_ip != NULL); 3735 error = -EFSCORRUPTED; 3736 break; 3737 } 3738 3739 next_inode: 3740 prev_agino = next_agino; 3741 next_agino = next_ip->i_next_unlinked; 3742 } 3743 3744 out_agibp: 3745 xfs_trans_brelse(tp, agibp); 3746 /* Should have found this inode somewhere in the iunlinked bucket. */ 3747 if (!error && !foundit) 3748 error = -EFSCORRUPTED; 3749 return error; 3750 } 3751 3752 /* Decide if this inode is missing its unlinked list and reload it. */ 3753 int 3754 xfs_inode_reload_unlinked( 3755 struct xfs_inode *ip) 3756 { 3757 struct xfs_trans *tp; 3758 int error; 3759 3760 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 3761 if (error) 3762 return error; 3763 3764 xfs_ilock(ip, XFS_ILOCK_SHARED); 3765 if (xfs_inode_unlinked_incomplete(ip)) 3766 error = xfs_inode_reload_unlinked_bucket(tp, ip); 3767 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3768 xfs_trans_cancel(tp); 3769 3770 return error; 3771 } 3772