1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 28 #include <linux/iversion.h> 29 30 /* Radix tree tags for incore inode tree. */ 31 32 /* inode is to be reclaimed */ 33 #define XFS_ICI_RECLAIM_TAG 0 34 /* Inode has speculative preallocations (posteof or cow) to clean. */ 35 #define XFS_ICI_BLOCKGC_TAG 1 36 37 /* 38 * The goal for walking incore inodes. These can correspond with incore inode 39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 40 */ 41 enum xfs_icwalk_goal { 42 /* Goals directly associated with tagged inodes. */ 43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 45 }; 46 47 static int xfs_icwalk(struct xfs_mount *mp, 48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 49 static int xfs_icwalk_ag(struct xfs_perag *pag, 50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 51 52 /* 53 * Private inode cache walk flags for struct xfs_icwalk. Must not 54 * coincide with XFS_ICWALK_FLAGS_VALID. 55 */ 56 57 /* Stop scanning after icw_scan_limit inodes. */ 58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 59 60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 62 63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 64 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 65 XFS_ICWALK_FLAG_UNION) 66 67 /* 68 * Allocate and initialise an xfs_inode. 69 */ 70 struct xfs_inode * 71 xfs_inode_alloc( 72 struct xfs_mount *mp, 73 xfs_ino_t ino) 74 { 75 struct xfs_inode *ip; 76 77 /* 78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 79 * and return NULL here on ENOMEM. 80 */ 81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 82 83 if (inode_init_always(mp->m_super, VFS_I(ip))) { 84 kmem_cache_free(xfs_inode_cache, ip); 85 return NULL; 86 } 87 88 /* VFS doesn't initialise i_mode or i_state! */ 89 VFS_I(ip)->i_mode = 0; 90 VFS_I(ip)->i_state = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_cowfp = NULL; 102 memset(&ip->i_af, 0, sizeof(ip->i_af)); 103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 104 memset(&ip->i_df, 0, sizeof(ip->i_df)); 105 ip->i_flags = 0; 106 ip->i_delayed_blks = 0; 107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 108 ip->i_nblocks = 0; 109 ip->i_forkoff = 0; 110 ip->i_sick = 0; 111 ip->i_checked = 0; 112 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 113 INIT_LIST_HEAD(&ip->i_ioend_list); 114 spin_lock_init(&ip->i_ioend_lock); 115 ip->i_next_unlinked = NULLAGINO; 116 ip->i_prev_unlinked = NULLAGINO; 117 118 return ip; 119 } 120 121 STATIC void 122 xfs_inode_free_callback( 123 struct rcu_head *head) 124 { 125 struct inode *inode = container_of(head, struct inode, i_rcu); 126 struct xfs_inode *ip = XFS_I(inode); 127 128 switch (VFS_I(ip)->i_mode & S_IFMT) { 129 case S_IFREG: 130 case S_IFDIR: 131 case S_IFLNK: 132 xfs_idestroy_fork(&ip->i_df); 133 break; 134 } 135 136 xfs_ifork_zap_attr(ip); 137 138 if (ip->i_cowfp) { 139 xfs_idestroy_fork(ip->i_cowfp); 140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 141 } 142 if (ip->i_itemp) { 143 ASSERT(!test_bit(XFS_LI_IN_AIL, 144 &ip->i_itemp->ili_item.li_flags)); 145 xfs_inode_item_destroy(ip); 146 ip->i_itemp = NULL; 147 } 148 149 kmem_cache_free(xfs_inode_cache, ip); 150 } 151 152 static void 153 __xfs_inode_free( 154 struct xfs_inode *ip) 155 { 156 /* asserts to verify all state is correct here */ 157 ASSERT(atomic_read(&ip->i_pincount) == 0); 158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 159 XFS_STATS_DEC(ip->i_mount, vn_active); 160 161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 162 } 163 164 void 165 xfs_inode_free( 166 struct xfs_inode *ip) 167 { 168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 169 170 /* 171 * Because we use RCU freeing we need to ensure the inode always 172 * appears to be reclaimed with an invalid inode number when in the 173 * free state. The ip->i_flags_lock provides the barrier against lookup 174 * races. 175 */ 176 spin_lock(&ip->i_flags_lock); 177 ip->i_flags = XFS_IRECLAIM; 178 ip->i_ino = 0; 179 spin_unlock(&ip->i_flags_lock); 180 181 __xfs_inode_free(ip); 182 } 183 184 /* 185 * Queue background inode reclaim work if there are reclaimable inodes and there 186 * isn't reclaim work already scheduled or in progress. 187 */ 188 static void 189 xfs_reclaim_work_queue( 190 struct xfs_mount *mp) 191 { 192 193 rcu_read_lock(); 194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 197 } 198 rcu_read_unlock(); 199 } 200 201 /* 202 * Background scanning to trim preallocated space. This is queued based on the 203 * 'speculative_prealloc_lifetime' tunable (5m by default). 204 */ 205 static inline void 206 xfs_blockgc_queue( 207 struct xfs_perag *pag) 208 { 209 struct xfs_mount *mp = pag->pag_mount; 210 211 if (!xfs_is_blockgc_enabled(mp)) 212 return; 213 214 rcu_read_lock(); 215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 216 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 217 &pag->pag_blockgc_work, 218 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 219 rcu_read_unlock(); 220 } 221 222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 223 static void 224 xfs_perag_set_inode_tag( 225 struct xfs_perag *pag, 226 xfs_agino_t agino, 227 unsigned int tag) 228 { 229 struct xfs_mount *mp = pag->pag_mount; 230 bool was_tagged; 231 232 lockdep_assert_held(&pag->pag_ici_lock); 233 234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 236 237 if (tag == XFS_ICI_RECLAIM_TAG) 238 pag->pag_ici_reclaimable++; 239 240 if (was_tagged) 241 return; 242 243 /* propagate the tag up into the perag radix tree */ 244 spin_lock(&mp->m_perag_lock); 245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 246 spin_unlock(&mp->m_perag_lock); 247 248 /* start background work */ 249 switch (tag) { 250 case XFS_ICI_RECLAIM_TAG: 251 xfs_reclaim_work_queue(mp); 252 break; 253 case XFS_ICI_BLOCKGC_TAG: 254 xfs_blockgc_queue(pag); 255 break; 256 } 257 258 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 259 } 260 261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 262 static void 263 xfs_perag_clear_inode_tag( 264 struct xfs_perag *pag, 265 xfs_agino_t agino, 266 unsigned int tag) 267 { 268 struct xfs_mount *mp = pag->pag_mount; 269 270 lockdep_assert_held(&pag->pag_ici_lock); 271 272 /* 273 * Reclaim can signal (with a null agino) that it cleared its own tag 274 * by removing the inode from the radix tree. 275 */ 276 if (agino != NULLAGINO) 277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 278 else 279 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 280 281 if (tag == XFS_ICI_RECLAIM_TAG) 282 pag->pag_ici_reclaimable--; 283 284 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 285 return; 286 287 /* clear the tag from the perag radix tree */ 288 spin_lock(&mp->m_perag_lock); 289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 290 spin_unlock(&mp->m_perag_lock); 291 292 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 293 } 294 295 /* 296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 297 * part of the structure. This is made more complex by the fact we store 298 * information about the on-disk values in the VFS inode and so we can't just 299 * overwrite the values unconditionally. Hence we save the parameters we 300 * need to retain across reinitialisation, and rewrite them into the VFS inode 301 * after reinitialisation even if it fails. 302 */ 303 static int 304 xfs_reinit_inode( 305 struct xfs_mount *mp, 306 struct inode *inode) 307 { 308 int error; 309 uint32_t nlink = inode->i_nlink; 310 uint32_t generation = inode->i_generation; 311 uint64_t version = inode_peek_iversion(inode); 312 umode_t mode = inode->i_mode; 313 dev_t dev = inode->i_rdev; 314 kuid_t uid = inode->i_uid; 315 kgid_t gid = inode->i_gid; 316 317 error = inode_init_always(mp->m_super, inode); 318 319 set_nlink(inode, nlink); 320 inode->i_generation = generation; 321 inode_set_iversion_queried(inode, version); 322 inode->i_mode = mode; 323 inode->i_rdev = dev; 324 inode->i_uid = uid; 325 inode->i_gid = gid; 326 mapping_set_large_folios(inode->i_mapping); 327 return error; 328 } 329 330 /* 331 * Carefully nudge an inode whose VFS state has been torn down back into a 332 * usable state. Drops the i_flags_lock and the rcu read lock. 333 */ 334 static int 335 xfs_iget_recycle( 336 struct xfs_perag *pag, 337 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 338 { 339 struct xfs_mount *mp = ip->i_mount; 340 struct inode *inode = VFS_I(ip); 341 int error; 342 343 trace_xfs_iget_recycle(ip); 344 345 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 346 return -EAGAIN; 347 348 /* 349 * We need to make it look like the inode is being reclaimed to prevent 350 * the actual reclaim workers from stomping over us while we recycle 351 * the inode. We can't clear the radix tree tag yet as it requires 352 * pag_ici_lock to be held exclusive. 353 */ 354 ip->i_flags |= XFS_IRECLAIM; 355 356 spin_unlock(&ip->i_flags_lock); 357 rcu_read_unlock(); 358 359 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 360 error = xfs_reinit_inode(mp, inode); 361 xfs_iunlock(ip, XFS_ILOCK_EXCL); 362 if (error) { 363 /* 364 * Re-initializing the inode failed, and we are in deep 365 * trouble. Try to re-add it to the reclaim list. 366 */ 367 rcu_read_lock(); 368 spin_lock(&ip->i_flags_lock); 369 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 370 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 371 spin_unlock(&ip->i_flags_lock); 372 rcu_read_unlock(); 373 374 trace_xfs_iget_recycle_fail(ip); 375 return error; 376 } 377 378 spin_lock(&pag->pag_ici_lock); 379 spin_lock(&ip->i_flags_lock); 380 381 /* 382 * Clear the per-lifetime state in the inode as we are now effectively 383 * a new inode and need to return to the initial state before reuse 384 * occurs. 385 */ 386 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 387 ip->i_flags |= XFS_INEW; 388 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 389 XFS_ICI_RECLAIM_TAG); 390 inode->i_state = I_NEW; 391 spin_unlock(&ip->i_flags_lock); 392 spin_unlock(&pag->pag_ici_lock); 393 394 return 0; 395 } 396 397 /* 398 * If we are allocating a new inode, then check what was returned is 399 * actually a free, empty inode. If we are not allocating an inode, 400 * then check we didn't find a free inode. 401 * 402 * Returns: 403 * 0 if the inode free state matches the lookup context 404 * -ENOENT if the inode is free and we are not allocating 405 * -EFSCORRUPTED if there is any state mismatch at all 406 */ 407 static int 408 xfs_iget_check_free_state( 409 struct xfs_inode *ip, 410 int flags) 411 { 412 if (flags & XFS_IGET_CREATE) { 413 /* should be a free inode */ 414 if (VFS_I(ip)->i_mode != 0) { 415 xfs_warn(ip->i_mount, 416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 417 ip->i_ino, VFS_I(ip)->i_mode); 418 return -EFSCORRUPTED; 419 } 420 421 if (ip->i_nblocks != 0) { 422 xfs_warn(ip->i_mount, 423 "Corruption detected! Free inode 0x%llx has blocks allocated!", 424 ip->i_ino); 425 return -EFSCORRUPTED; 426 } 427 return 0; 428 } 429 430 /* should be an allocated inode */ 431 if (VFS_I(ip)->i_mode == 0) 432 return -ENOENT; 433 434 return 0; 435 } 436 437 /* Make all pending inactivation work start immediately. */ 438 static void 439 xfs_inodegc_queue_all( 440 struct xfs_mount *mp) 441 { 442 struct xfs_inodegc *gc; 443 int cpu; 444 445 for_each_online_cpu(cpu) { 446 gc = per_cpu_ptr(mp->m_inodegc, cpu); 447 if (!llist_empty(&gc->list)) 448 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 449 } 450 } 451 452 /* 453 * Check the validity of the inode we just found it the cache 454 */ 455 static int 456 xfs_iget_cache_hit( 457 struct xfs_perag *pag, 458 struct xfs_inode *ip, 459 xfs_ino_t ino, 460 int flags, 461 int lock_flags) __releases(RCU) 462 { 463 struct inode *inode = VFS_I(ip); 464 struct xfs_mount *mp = ip->i_mount; 465 int error; 466 467 /* 468 * check for re-use of an inode within an RCU grace period due to the 469 * radix tree nodes not being updated yet. We monitor for this by 470 * setting the inode number to zero before freeing the inode structure. 471 * If the inode has been reallocated and set up, then the inode number 472 * will not match, so check for that, too. 473 */ 474 spin_lock(&ip->i_flags_lock); 475 if (ip->i_ino != ino) 476 goto out_skip; 477 478 /* 479 * If we are racing with another cache hit that is currently 480 * instantiating this inode or currently recycling it out of 481 * reclaimable state, wait for the initialisation to complete 482 * before continuing. 483 * 484 * If we're racing with the inactivation worker we also want to wait. 485 * If we're creating a new file, it's possible that the worker 486 * previously marked the inode as free on disk but hasn't finished 487 * updating the incore state yet. The AGI buffer will be dirty and 488 * locked to the icreate transaction, so a synchronous push of the 489 * inodegc workers would result in deadlock. For a regular iget, the 490 * worker is running already, so we might as well wait. 491 * 492 * XXX(hch): eventually we should do something equivalent to 493 * wait_on_inode to wait for these flags to be cleared 494 * instead of polling for it. 495 */ 496 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 497 goto out_skip; 498 499 if (ip->i_flags & XFS_NEED_INACTIVE) { 500 /* Unlinked inodes cannot be re-grabbed. */ 501 if (VFS_I(ip)->i_nlink == 0) { 502 error = -ENOENT; 503 goto out_error; 504 } 505 goto out_inodegc_flush; 506 } 507 508 /* 509 * Check the inode free state is valid. This also detects lookup 510 * racing with unlinks. 511 */ 512 error = xfs_iget_check_free_state(ip, flags); 513 if (error) 514 goto out_error; 515 516 /* Skip inodes that have no vfs state. */ 517 if ((flags & XFS_IGET_INCORE) && 518 (ip->i_flags & XFS_IRECLAIMABLE)) 519 goto out_skip; 520 521 /* The inode fits the selection criteria; process it. */ 522 if (ip->i_flags & XFS_IRECLAIMABLE) { 523 /* Drops i_flags_lock and RCU read lock. */ 524 error = xfs_iget_recycle(pag, ip); 525 if (error == -EAGAIN) 526 goto out_skip; 527 if (error) 528 return error; 529 } else { 530 /* If the VFS inode is being torn down, pause and try again. */ 531 if (!igrab(inode)) 532 goto out_skip; 533 534 /* We've got a live one. */ 535 spin_unlock(&ip->i_flags_lock); 536 rcu_read_unlock(); 537 trace_xfs_iget_hit(ip); 538 } 539 540 if (lock_flags != 0) 541 xfs_ilock(ip, lock_flags); 542 543 if (!(flags & XFS_IGET_INCORE)) 544 xfs_iflags_clear(ip, XFS_ISTALE); 545 XFS_STATS_INC(mp, xs_ig_found); 546 547 return 0; 548 549 out_skip: 550 trace_xfs_iget_skip(ip); 551 XFS_STATS_INC(mp, xs_ig_frecycle); 552 error = -EAGAIN; 553 out_error: 554 spin_unlock(&ip->i_flags_lock); 555 rcu_read_unlock(); 556 return error; 557 558 out_inodegc_flush: 559 spin_unlock(&ip->i_flags_lock); 560 rcu_read_unlock(); 561 /* 562 * Do not wait for the workers, because the caller could hold an AGI 563 * buffer lock. We're just going to sleep in a loop anyway. 564 */ 565 if (xfs_is_inodegc_enabled(mp)) 566 xfs_inodegc_queue_all(mp); 567 return -EAGAIN; 568 } 569 570 static int 571 xfs_iget_cache_miss( 572 struct xfs_mount *mp, 573 struct xfs_perag *pag, 574 xfs_trans_t *tp, 575 xfs_ino_t ino, 576 struct xfs_inode **ipp, 577 int flags, 578 int lock_flags) 579 { 580 struct xfs_inode *ip; 581 int error; 582 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 583 int iflags; 584 585 ip = xfs_inode_alloc(mp, ino); 586 if (!ip) 587 return -ENOMEM; 588 589 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 590 if (error) 591 goto out_destroy; 592 593 /* 594 * For version 5 superblocks, if we are initialising a new inode and we 595 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 596 * simply build the new inode core with a random generation number. 597 * 598 * For version 4 (and older) superblocks, log recovery is dependent on 599 * the i_flushiter field being initialised from the current on-disk 600 * value and hence we must also read the inode off disk even when 601 * initializing new inodes. 602 */ 603 if (xfs_has_v3inodes(mp) && 604 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 605 VFS_I(ip)->i_generation = get_random_u32(); 606 } else { 607 struct xfs_buf *bp; 608 609 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 610 if (error) 611 goto out_destroy; 612 613 error = xfs_inode_from_disk(ip, 614 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 615 if (!error) 616 xfs_buf_set_ref(bp, XFS_INO_REF); 617 xfs_trans_brelse(tp, bp); 618 619 if (error) 620 goto out_destroy; 621 } 622 623 trace_xfs_iget_miss(ip); 624 625 /* 626 * Check the inode free state is valid. This also detects lookup 627 * racing with unlinks. 628 */ 629 error = xfs_iget_check_free_state(ip, flags); 630 if (error) 631 goto out_destroy; 632 633 /* 634 * Preload the radix tree so we can insert safely under the 635 * write spinlock. Note that we cannot sleep inside the preload 636 * region. Since we can be called from transaction context, don't 637 * recurse into the file system. 638 */ 639 if (radix_tree_preload(GFP_NOFS)) { 640 error = -EAGAIN; 641 goto out_destroy; 642 } 643 644 /* 645 * Because the inode hasn't been added to the radix-tree yet it can't 646 * be found by another thread, so we can do the non-sleeping lock here. 647 */ 648 if (lock_flags) { 649 if (!xfs_ilock_nowait(ip, lock_flags)) 650 BUG(); 651 } 652 653 /* 654 * These values must be set before inserting the inode into the radix 655 * tree as the moment it is inserted a concurrent lookup (allowed by the 656 * RCU locking mechanism) can find it and that lookup must see that this 657 * is an inode currently under construction (i.e. that XFS_INEW is set). 658 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 659 * memory barrier that ensures this detection works correctly at lookup 660 * time. 661 */ 662 iflags = XFS_INEW; 663 if (flags & XFS_IGET_DONTCACHE) 664 d_mark_dontcache(VFS_I(ip)); 665 ip->i_udquot = NULL; 666 ip->i_gdquot = NULL; 667 ip->i_pdquot = NULL; 668 xfs_iflags_set(ip, iflags); 669 670 /* insert the new inode */ 671 spin_lock(&pag->pag_ici_lock); 672 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 673 if (unlikely(error)) { 674 WARN_ON(error != -EEXIST); 675 XFS_STATS_INC(mp, xs_ig_dup); 676 error = -EAGAIN; 677 goto out_preload_end; 678 } 679 spin_unlock(&pag->pag_ici_lock); 680 radix_tree_preload_end(); 681 682 *ipp = ip; 683 return 0; 684 685 out_preload_end: 686 spin_unlock(&pag->pag_ici_lock); 687 radix_tree_preload_end(); 688 if (lock_flags) 689 xfs_iunlock(ip, lock_flags); 690 out_destroy: 691 __destroy_inode(VFS_I(ip)); 692 xfs_inode_free(ip); 693 return error; 694 } 695 696 /* 697 * Look up an inode by number in the given file system. The inode is looked up 698 * in the cache held in each AG. If the inode is found in the cache, initialise 699 * the vfs inode if necessary. 700 * 701 * If it is not in core, read it in from the file system's device, add it to the 702 * cache and initialise the vfs inode. 703 * 704 * The inode is locked according to the value of the lock_flags parameter. 705 * Inode lookup is only done during metadata operations and not as part of the 706 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 707 */ 708 int 709 xfs_iget( 710 struct xfs_mount *mp, 711 struct xfs_trans *tp, 712 xfs_ino_t ino, 713 uint flags, 714 uint lock_flags, 715 struct xfs_inode **ipp) 716 { 717 struct xfs_inode *ip; 718 struct xfs_perag *pag; 719 xfs_agino_t agino; 720 int error; 721 722 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 723 724 /* reject inode numbers outside existing AGs */ 725 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 726 return -EINVAL; 727 728 XFS_STATS_INC(mp, xs_ig_attempts); 729 730 /* get the perag structure and ensure that it's inode capable */ 731 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 732 agino = XFS_INO_TO_AGINO(mp, ino); 733 734 again: 735 error = 0; 736 rcu_read_lock(); 737 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 738 739 if (ip) { 740 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 741 if (error) 742 goto out_error_or_again; 743 } else { 744 rcu_read_unlock(); 745 if (flags & XFS_IGET_INCORE) { 746 error = -ENODATA; 747 goto out_error_or_again; 748 } 749 XFS_STATS_INC(mp, xs_ig_missed); 750 751 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 752 flags, lock_flags); 753 if (error) 754 goto out_error_or_again; 755 } 756 xfs_perag_put(pag); 757 758 *ipp = ip; 759 760 /* 761 * If we have a real type for an on-disk inode, we can setup the inode 762 * now. If it's a new inode being created, xfs_init_new_inode will 763 * handle it. 764 */ 765 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 766 xfs_setup_existing_inode(ip); 767 return 0; 768 769 out_error_or_again: 770 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 771 error == -EAGAIN) { 772 delay(1); 773 goto again; 774 } 775 xfs_perag_put(pag); 776 return error; 777 } 778 779 /* 780 * "Is this a cached inode that's also allocated?" 781 * 782 * Look up an inode by number in the given file system. If the inode is 783 * in cache and isn't in purgatory, return 1 if the inode is allocated 784 * and 0 if it is not. For all other cases (not in cache, being torn 785 * down, etc.), return a negative error code. 786 * 787 * The caller has to prevent inode allocation and freeing activity, 788 * presumably by locking the AGI buffer. This is to ensure that an 789 * inode cannot transition from allocated to freed until the caller is 790 * ready to allow that. If the inode is in an intermediate state (new, 791 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 792 * inode is not in the cache, -ENOENT will be returned. The caller must 793 * deal with these scenarios appropriately. 794 * 795 * This is a specialized use case for the online scrubber; if you're 796 * reading this, you probably want xfs_iget. 797 */ 798 int 799 xfs_icache_inode_is_allocated( 800 struct xfs_mount *mp, 801 struct xfs_trans *tp, 802 xfs_ino_t ino, 803 bool *inuse) 804 { 805 struct xfs_inode *ip; 806 int error; 807 808 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 809 if (error) 810 return error; 811 812 *inuse = !!(VFS_I(ip)->i_mode); 813 xfs_irele(ip); 814 return 0; 815 } 816 817 /* 818 * Grab the inode for reclaim exclusively. 819 * 820 * We have found this inode via a lookup under RCU, so the inode may have 821 * already been freed, or it may be in the process of being recycled by 822 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 823 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 824 * will not be set. Hence we need to check for both these flag conditions to 825 * avoid inodes that are no longer reclaim candidates. 826 * 827 * Note: checking for other state flags here, under the i_flags_lock or not, is 828 * racy and should be avoided. Those races should be resolved only after we have 829 * ensured that we are able to reclaim this inode and the world can see that we 830 * are going to reclaim it. 831 * 832 * Return true if we grabbed it, false otherwise. 833 */ 834 static bool 835 xfs_reclaim_igrab( 836 struct xfs_inode *ip, 837 struct xfs_icwalk *icw) 838 { 839 ASSERT(rcu_read_lock_held()); 840 841 spin_lock(&ip->i_flags_lock); 842 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 843 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 844 /* not a reclaim candidate. */ 845 spin_unlock(&ip->i_flags_lock); 846 return false; 847 } 848 849 /* Don't reclaim a sick inode unless the caller asked for it. */ 850 if (ip->i_sick && 851 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 852 spin_unlock(&ip->i_flags_lock); 853 return false; 854 } 855 856 __xfs_iflags_set(ip, XFS_IRECLAIM); 857 spin_unlock(&ip->i_flags_lock); 858 return true; 859 } 860 861 /* 862 * Inode reclaim is non-blocking, so the default action if progress cannot be 863 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 864 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 865 * blocking anymore and hence we can wait for the inode to be able to reclaim 866 * it. 867 * 868 * We do no IO here - if callers require inodes to be cleaned they must push the 869 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 870 * done in the background in a non-blocking manner, and enables memory reclaim 871 * to make progress without blocking. 872 */ 873 static void 874 xfs_reclaim_inode( 875 struct xfs_inode *ip, 876 struct xfs_perag *pag) 877 { 878 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 879 880 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 881 goto out; 882 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 883 goto out_iunlock; 884 885 /* 886 * Check for log shutdown because aborting the inode can move the log 887 * tail and corrupt in memory state. This is fine if the log is shut 888 * down, but if the log is still active and only the mount is shut down 889 * then the in-memory log tail movement caused by the abort can be 890 * incorrectly propagated to disk. 891 */ 892 if (xlog_is_shutdown(ip->i_mount->m_log)) { 893 xfs_iunpin_wait(ip); 894 xfs_iflush_shutdown_abort(ip); 895 goto reclaim; 896 } 897 if (xfs_ipincount(ip)) 898 goto out_clear_flush; 899 if (!xfs_inode_clean(ip)) 900 goto out_clear_flush; 901 902 xfs_iflags_clear(ip, XFS_IFLUSHING); 903 reclaim: 904 trace_xfs_inode_reclaiming(ip); 905 906 /* 907 * Because we use RCU freeing we need to ensure the inode always appears 908 * to be reclaimed with an invalid inode number when in the free state. 909 * We do this as early as possible under the ILOCK so that 910 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 911 * detect races with us here. By doing this, we guarantee that once 912 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 913 * it will see either a valid inode that will serialise correctly, or it 914 * will see an invalid inode that it can skip. 915 */ 916 spin_lock(&ip->i_flags_lock); 917 ip->i_flags = XFS_IRECLAIM; 918 ip->i_ino = 0; 919 ip->i_sick = 0; 920 ip->i_checked = 0; 921 spin_unlock(&ip->i_flags_lock); 922 923 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 924 xfs_iunlock(ip, XFS_ILOCK_EXCL); 925 926 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 927 /* 928 * Remove the inode from the per-AG radix tree. 929 * 930 * Because radix_tree_delete won't complain even if the item was never 931 * added to the tree assert that it's been there before to catch 932 * problems with the inode life time early on. 933 */ 934 spin_lock(&pag->pag_ici_lock); 935 if (!radix_tree_delete(&pag->pag_ici_root, 936 XFS_INO_TO_AGINO(ip->i_mount, ino))) 937 ASSERT(0); 938 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 939 spin_unlock(&pag->pag_ici_lock); 940 941 /* 942 * Here we do an (almost) spurious inode lock in order to coordinate 943 * with inode cache radix tree lookups. This is because the lookup 944 * can reference the inodes in the cache without taking references. 945 * 946 * We make that OK here by ensuring that we wait until the inode is 947 * unlocked after the lookup before we go ahead and free it. 948 */ 949 xfs_ilock(ip, XFS_ILOCK_EXCL); 950 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 951 xfs_iunlock(ip, XFS_ILOCK_EXCL); 952 ASSERT(xfs_inode_clean(ip)); 953 954 __xfs_inode_free(ip); 955 return; 956 957 out_clear_flush: 958 xfs_iflags_clear(ip, XFS_IFLUSHING); 959 out_iunlock: 960 xfs_iunlock(ip, XFS_ILOCK_EXCL); 961 out: 962 xfs_iflags_clear(ip, XFS_IRECLAIM); 963 } 964 965 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 966 static inline bool 967 xfs_want_reclaim_sick( 968 struct xfs_mount *mp) 969 { 970 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 971 xfs_is_shutdown(mp); 972 } 973 974 void 975 xfs_reclaim_inodes( 976 struct xfs_mount *mp) 977 { 978 struct xfs_icwalk icw = { 979 .icw_flags = 0, 980 }; 981 982 if (xfs_want_reclaim_sick(mp)) 983 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 984 985 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 986 xfs_ail_push_all_sync(mp->m_ail); 987 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 988 } 989 } 990 991 /* 992 * The shrinker infrastructure determines how many inodes we should scan for 993 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 994 * push the AIL here. We also want to proactively free up memory if we can to 995 * minimise the amount of work memory reclaim has to do so we kick the 996 * background reclaim if it isn't already scheduled. 997 */ 998 long 999 xfs_reclaim_inodes_nr( 1000 struct xfs_mount *mp, 1001 unsigned long nr_to_scan) 1002 { 1003 struct xfs_icwalk icw = { 1004 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1005 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1006 }; 1007 1008 if (xfs_want_reclaim_sick(mp)) 1009 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1010 1011 /* kick background reclaimer and push the AIL */ 1012 xfs_reclaim_work_queue(mp); 1013 xfs_ail_push_all(mp->m_ail); 1014 1015 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1016 return 0; 1017 } 1018 1019 /* 1020 * Return the number of reclaimable inodes in the filesystem for 1021 * the shrinker to determine how much to reclaim. 1022 */ 1023 long 1024 xfs_reclaim_inodes_count( 1025 struct xfs_mount *mp) 1026 { 1027 struct xfs_perag *pag; 1028 xfs_agnumber_t ag = 0; 1029 long reclaimable = 0; 1030 1031 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1032 ag = pag->pag_agno + 1; 1033 reclaimable += pag->pag_ici_reclaimable; 1034 xfs_perag_put(pag); 1035 } 1036 return reclaimable; 1037 } 1038 1039 STATIC bool 1040 xfs_icwalk_match_id( 1041 struct xfs_inode *ip, 1042 struct xfs_icwalk *icw) 1043 { 1044 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1045 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1046 return false; 1047 1048 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1049 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1050 return false; 1051 1052 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1053 ip->i_projid != icw->icw_prid) 1054 return false; 1055 1056 return true; 1057 } 1058 1059 /* 1060 * A union-based inode filtering algorithm. Process the inode if any of the 1061 * criteria match. This is for global/internal scans only. 1062 */ 1063 STATIC bool 1064 xfs_icwalk_match_id_union( 1065 struct xfs_inode *ip, 1066 struct xfs_icwalk *icw) 1067 { 1068 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1069 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1070 return true; 1071 1072 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1073 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1074 return true; 1075 1076 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1077 ip->i_projid == icw->icw_prid) 1078 return true; 1079 1080 return false; 1081 } 1082 1083 /* 1084 * Is this inode @ip eligible for eof/cow block reclamation, given some 1085 * filtering parameters @icw? The inode is eligible if @icw is null or 1086 * if the predicate functions match. 1087 */ 1088 static bool 1089 xfs_icwalk_match( 1090 struct xfs_inode *ip, 1091 struct xfs_icwalk *icw) 1092 { 1093 bool match; 1094 1095 if (!icw) 1096 return true; 1097 1098 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1099 match = xfs_icwalk_match_id_union(ip, icw); 1100 else 1101 match = xfs_icwalk_match_id(ip, icw); 1102 if (!match) 1103 return false; 1104 1105 /* skip the inode if the file size is too small */ 1106 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1107 XFS_ISIZE(ip) < icw->icw_min_file_size) 1108 return false; 1109 1110 return true; 1111 } 1112 1113 /* 1114 * This is a fast pass over the inode cache to try to get reclaim moving on as 1115 * many inodes as possible in a short period of time. It kicks itself every few 1116 * seconds, as well as being kicked by the inode cache shrinker when memory 1117 * goes low. 1118 */ 1119 void 1120 xfs_reclaim_worker( 1121 struct work_struct *work) 1122 { 1123 struct xfs_mount *mp = container_of(to_delayed_work(work), 1124 struct xfs_mount, m_reclaim_work); 1125 1126 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1127 xfs_reclaim_work_queue(mp); 1128 } 1129 1130 STATIC int 1131 xfs_inode_free_eofblocks( 1132 struct xfs_inode *ip, 1133 struct xfs_icwalk *icw, 1134 unsigned int *lockflags) 1135 { 1136 bool wait; 1137 1138 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1139 1140 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1141 return 0; 1142 1143 /* 1144 * If the mapping is dirty the operation can block and wait for some 1145 * time. Unless we are waiting, skip it. 1146 */ 1147 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1148 return 0; 1149 1150 if (!xfs_icwalk_match(ip, icw)) 1151 return 0; 1152 1153 /* 1154 * If the caller is waiting, return -EAGAIN to keep the background 1155 * scanner moving and revisit the inode in a subsequent pass. 1156 */ 1157 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1158 if (wait) 1159 return -EAGAIN; 1160 return 0; 1161 } 1162 *lockflags |= XFS_IOLOCK_EXCL; 1163 1164 if (xfs_can_free_eofblocks(ip, false)) 1165 return xfs_free_eofblocks(ip); 1166 1167 /* inode could be preallocated or append-only */ 1168 trace_xfs_inode_free_eofblocks_invalid(ip); 1169 xfs_inode_clear_eofblocks_tag(ip); 1170 return 0; 1171 } 1172 1173 static void 1174 xfs_blockgc_set_iflag( 1175 struct xfs_inode *ip, 1176 unsigned long iflag) 1177 { 1178 struct xfs_mount *mp = ip->i_mount; 1179 struct xfs_perag *pag; 1180 1181 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1182 1183 /* 1184 * Don't bother locking the AG and looking up in the radix trees 1185 * if we already know that we have the tag set. 1186 */ 1187 if (ip->i_flags & iflag) 1188 return; 1189 spin_lock(&ip->i_flags_lock); 1190 ip->i_flags |= iflag; 1191 spin_unlock(&ip->i_flags_lock); 1192 1193 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1194 spin_lock(&pag->pag_ici_lock); 1195 1196 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1197 XFS_ICI_BLOCKGC_TAG); 1198 1199 spin_unlock(&pag->pag_ici_lock); 1200 xfs_perag_put(pag); 1201 } 1202 1203 void 1204 xfs_inode_set_eofblocks_tag( 1205 xfs_inode_t *ip) 1206 { 1207 trace_xfs_inode_set_eofblocks_tag(ip); 1208 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1209 } 1210 1211 static void 1212 xfs_blockgc_clear_iflag( 1213 struct xfs_inode *ip, 1214 unsigned long iflag) 1215 { 1216 struct xfs_mount *mp = ip->i_mount; 1217 struct xfs_perag *pag; 1218 bool clear_tag; 1219 1220 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1221 1222 spin_lock(&ip->i_flags_lock); 1223 ip->i_flags &= ~iflag; 1224 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1225 spin_unlock(&ip->i_flags_lock); 1226 1227 if (!clear_tag) 1228 return; 1229 1230 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1231 spin_lock(&pag->pag_ici_lock); 1232 1233 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1234 XFS_ICI_BLOCKGC_TAG); 1235 1236 spin_unlock(&pag->pag_ici_lock); 1237 xfs_perag_put(pag); 1238 } 1239 1240 void 1241 xfs_inode_clear_eofblocks_tag( 1242 xfs_inode_t *ip) 1243 { 1244 trace_xfs_inode_clear_eofblocks_tag(ip); 1245 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1246 } 1247 1248 /* 1249 * Set ourselves up to free CoW blocks from this file. If it's already clean 1250 * then we can bail out quickly, but otherwise we must back off if the file 1251 * is undergoing some kind of write. 1252 */ 1253 static bool 1254 xfs_prep_free_cowblocks( 1255 struct xfs_inode *ip) 1256 { 1257 /* 1258 * Just clear the tag if we have an empty cow fork or none at all. It's 1259 * possible the inode was fully unshared since it was originally tagged. 1260 */ 1261 if (!xfs_inode_has_cow_data(ip)) { 1262 trace_xfs_inode_free_cowblocks_invalid(ip); 1263 xfs_inode_clear_cowblocks_tag(ip); 1264 return false; 1265 } 1266 1267 /* 1268 * If the mapping is dirty or under writeback we cannot touch the 1269 * CoW fork. Leave it alone if we're in the midst of a directio. 1270 */ 1271 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1272 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1273 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1274 atomic_read(&VFS_I(ip)->i_dio_count)) 1275 return false; 1276 1277 return true; 1278 } 1279 1280 /* 1281 * Automatic CoW Reservation Freeing 1282 * 1283 * These functions automatically garbage collect leftover CoW reservations 1284 * that were made on behalf of a cowextsize hint when we start to run out 1285 * of quota or when the reservations sit around for too long. If the file 1286 * has dirty pages or is undergoing writeback, its CoW reservations will 1287 * be retained. 1288 * 1289 * The actual garbage collection piggybacks off the same code that runs 1290 * the speculative EOF preallocation garbage collector. 1291 */ 1292 STATIC int 1293 xfs_inode_free_cowblocks( 1294 struct xfs_inode *ip, 1295 struct xfs_icwalk *icw, 1296 unsigned int *lockflags) 1297 { 1298 bool wait; 1299 int ret = 0; 1300 1301 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1302 1303 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1304 return 0; 1305 1306 if (!xfs_prep_free_cowblocks(ip)) 1307 return 0; 1308 1309 if (!xfs_icwalk_match(ip, icw)) 1310 return 0; 1311 1312 /* 1313 * If the caller is waiting, return -EAGAIN to keep the background 1314 * scanner moving and revisit the inode in a subsequent pass. 1315 */ 1316 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1317 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1318 if (wait) 1319 return -EAGAIN; 1320 return 0; 1321 } 1322 *lockflags |= XFS_IOLOCK_EXCL; 1323 1324 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1325 if (wait) 1326 return -EAGAIN; 1327 return 0; 1328 } 1329 *lockflags |= XFS_MMAPLOCK_EXCL; 1330 1331 /* 1332 * Check again, nobody else should be able to dirty blocks or change 1333 * the reflink iflag now that we have the first two locks held. 1334 */ 1335 if (xfs_prep_free_cowblocks(ip)) 1336 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1337 return ret; 1338 } 1339 1340 void 1341 xfs_inode_set_cowblocks_tag( 1342 xfs_inode_t *ip) 1343 { 1344 trace_xfs_inode_set_cowblocks_tag(ip); 1345 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1346 } 1347 1348 void 1349 xfs_inode_clear_cowblocks_tag( 1350 xfs_inode_t *ip) 1351 { 1352 trace_xfs_inode_clear_cowblocks_tag(ip); 1353 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1354 } 1355 1356 /* Disable post-EOF and CoW block auto-reclamation. */ 1357 void 1358 xfs_blockgc_stop( 1359 struct xfs_mount *mp) 1360 { 1361 struct xfs_perag *pag; 1362 xfs_agnumber_t agno; 1363 1364 if (!xfs_clear_blockgc_enabled(mp)) 1365 return; 1366 1367 for_each_perag(mp, agno, pag) 1368 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1369 trace_xfs_blockgc_stop(mp, __return_address); 1370 } 1371 1372 /* Enable post-EOF and CoW block auto-reclamation. */ 1373 void 1374 xfs_blockgc_start( 1375 struct xfs_mount *mp) 1376 { 1377 struct xfs_perag *pag; 1378 xfs_agnumber_t agno; 1379 1380 if (xfs_set_blockgc_enabled(mp)) 1381 return; 1382 1383 trace_xfs_blockgc_start(mp, __return_address); 1384 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1385 xfs_blockgc_queue(pag); 1386 } 1387 1388 /* Don't try to run block gc on an inode that's in any of these states. */ 1389 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1390 XFS_NEED_INACTIVE | \ 1391 XFS_INACTIVATING | \ 1392 XFS_IRECLAIMABLE | \ 1393 XFS_IRECLAIM) 1394 /* 1395 * Decide if the given @ip is eligible for garbage collection of speculative 1396 * preallocations, and grab it if so. Returns true if it's ready to go or 1397 * false if we should just ignore it. 1398 */ 1399 static bool 1400 xfs_blockgc_igrab( 1401 struct xfs_inode *ip) 1402 { 1403 struct inode *inode = VFS_I(ip); 1404 1405 ASSERT(rcu_read_lock_held()); 1406 1407 /* Check for stale RCU freed inode */ 1408 spin_lock(&ip->i_flags_lock); 1409 if (!ip->i_ino) 1410 goto out_unlock_noent; 1411 1412 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1413 goto out_unlock_noent; 1414 spin_unlock(&ip->i_flags_lock); 1415 1416 /* nothing to sync during shutdown */ 1417 if (xfs_is_shutdown(ip->i_mount)) 1418 return false; 1419 1420 /* If we can't grab the inode, it must on it's way to reclaim. */ 1421 if (!igrab(inode)) 1422 return false; 1423 1424 /* inode is valid */ 1425 return true; 1426 1427 out_unlock_noent: 1428 spin_unlock(&ip->i_flags_lock); 1429 return false; 1430 } 1431 1432 /* Scan one incore inode for block preallocations that we can remove. */ 1433 static int 1434 xfs_blockgc_scan_inode( 1435 struct xfs_inode *ip, 1436 struct xfs_icwalk *icw) 1437 { 1438 unsigned int lockflags = 0; 1439 int error; 1440 1441 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1442 if (error) 1443 goto unlock; 1444 1445 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1446 unlock: 1447 if (lockflags) 1448 xfs_iunlock(ip, lockflags); 1449 xfs_irele(ip); 1450 return error; 1451 } 1452 1453 /* Background worker that trims preallocated space. */ 1454 void 1455 xfs_blockgc_worker( 1456 struct work_struct *work) 1457 { 1458 struct xfs_perag *pag = container_of(to_delayed_work(work), 1459 struct xfs_perag, pag_blockgc_work); 1460 struct xfs_mount *mp = pag->pag_mount; 1461 int error; 1462 1463 trace_xfs_blockgc_worker(mp, __return_address); 1464 1465 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1466 if (error) 1467 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1468 pag->pag_agno, error); 1469 xfs_blockgc_queue(pag); 1470 } 1471 1472 /* 1473 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1474 * and cowblocks. 1475 */ 1476 int 1477 xfs_blockgc_free_space( 1478 struct xfs_mount *mp, 1479 struct xfs_icwalk *icw) 1480 { 1481 int error; 1482 1483 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1484 1485 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1486 if (error) 1487 return error; 1488 1489 xfs_inodegc_flush(mp); 1490 return 0; 1491 } 1492 1493 /* 1494 * Reclaim all the free space that we can by scheduling the background blockgc 1495 * and inodegc workers immediately and waiting for them all to clear. 1496 */ 1497 void 1498 xfs_blockgc_flush_all( 1499 struct xfs_mount *mp) 1500 { 1501 struct xfs_perag *pag; 1502 xfs_agnumber_t agno; 1503 1504 trace_xfs_blockgc_flush_all(mp, __return_address); 1505 1506 /* 1507 * For each blockgc worker, move its queue time up to now. If it 1508 * wasn't queued, it will not be requeued. Then flush whatever's 1509 * left. 1510 */ 1511 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1512 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1513 &pag->pag_blockgc_work, 0); 1514 1515 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1516 flush_delayed_work(&pag->pag_blockgc_work); 1517 1518 xfs_inodegc_flush(mp); 1519 } 1520 1521 /* 1522 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1523 * quota caused an allocation failure, so we make a best effort by including 1524 * each quota under low free space conditions (less than 1% free space) in the 1525 * scan. 1526 * 1527 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1528 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1529 * MMAPLOCK. 1530 */ 1531 int 1532 xfs_blockgc_free_dquots( 1533 struct xfs_mount *mp, 1534 struct xfs_dquot *udqp, 1535 struct xfs_dquot *gdqp, 1536 struct xfs_dquot *pdqp, 1537 unsigned int iwalk_flags) 1538 { 1539 struct xfs_icwalk icw = {0}; 1540 bool do_work = false; 1541 1542 if (!udqp && !gdqp && !pdqp) 1543 return 0; 1544 1545 /* 1546 * Run a scan to free blocks using the union filter to cover all 1547 * applicable quotas in a single scan. 1548 */ 1549 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1550 1551 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1552 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1553 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1554 do_work = true; 1555 } 1556 1557 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1558 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1559 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1560 do_work = true; 1561 } 1562 1563 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1564 icw.icw_prid = pdqp->q_id; 1565 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1566 do_work = true; 1567 } 1568 1569 if (!do_work) 1570 return 0; 1571 1572 return xfs_blockgc_free_space(mp, &icw); 1573 } 1574 1575 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1576 int 1577 xfs_blockgc_free_quota( 1578 struct xfs_inode *ip, 1579 unsigned int iwalk_flags) 1580 { 1581 return xfs_blockgc_free_dquots(ip->i_mount, 1582 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1583 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1584 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1585 } 1586 1587 /* XFS Inode Cache Walking Code */ 1588 1589 /* 1590 * The inode lookup is done in batches to keep the amount of lock traffic and 1591 * radix tree lookups to a minimum. The batch size is a trade off between 1592 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1593 * be too greedy. 1594 */ 1595 #define XFS_LOOKUP_BATCH 32 1596 1597 1598 /* 1599 * Decide if we want to grab this inode in anticipation of doing work towards 1600 * the goal. 1601 */ 1602 static inline bool 1603 xfs_icwalk_igrab( 1604 enum xfs_icwalk_goal goal, 1605 struct xfs_inode *ip, 1606 struct xfs_icwalk *icw) 1607 { 1608 switch (goal) { 1609 case XFS_ICWALK_BLOCKGC: 1610 return xfs_blockgc_igrab(ip); 1611 case XFS_ICWALK_RECLAIM: 1612 return xfs_reclaim_igrab(ip, icw); 1613 default: 1614 return false; 1615 } 1616 } 1617 1618 /* 1619 * Process an inode. Each processing function must handle any state changes 1620 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1621 */ 1622 static inline int 1623 xfs_icwalk_process_inode( 1624 enum xfs_icwalk_goal goal, 1625 struct xfs_inode *ip, 1626 struct xfs_perag *pag, 1627 struct xfs_icwalk *icw) 1628 { 1629 int error = 0; 1630 1631 switch (goal) { 1632 case XFS_ICWALK_BLOCKGC: 1633 error = xfs_blockgc_scan_inode(ip, icw); 1634 break; 1635 case XFS_ICWALK_RECLAIM: 1636 xfs_reclaim_inode(ip, pag); 1637 break; 1638 } 1639 return error; 1640 } 1641 1642 /* 1643 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1644 * process them in some manner. 1645 */ 1646 static int 1647 xfs_icwalk_ag( 1648 struct xfs_perag *pag, 1649 enum xfs_icwalk_goal goal, 1650 struct xfs_icwalk *icw) 1651 { 1652 struct xfs_mount *mp = pag->pag_mount; 1653 uint32_t first_index; 1654 int last_error = 0; 1655 int skipped; 1656 bool done; 1657 int nr_found; 1658 1659 restart: 1660 done = false; 1661 skipped = 0; 1662 if (goal == XFS_ICWALK_RECLAIM) 1663 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1664 else 1665 first_index = 0; 1666 nr_found = 0; 1667 do { 1668 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1669 int error = 0; 1670 int i; 1671 1672 rcu_read_lock(); 1673 1674 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1675 (void **) batch, first_index, 1676 XFS_LOOKUP_BATCH, goal); 1677 if (!nr_found) { 1678 done = true; 1679 rcu_read_unlock(); 1680 break; 1681 } 1682 1683 /* 1684 * Grab the inodes before we drop the lock. if we found 1685 * nothing, nr == 0 and the loop will be skipped. 1686 */ 1687 for (i = 0; i < nr_found; i++) { 1688 struct xfs_inode *ip = batch[i]; 1689 1690 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1691 batch[i] = NULL; 1692 1693 /* 1694 * Update the index for the next lookup. Catch 1695 * overflows into the next AG range which can occur if 1696 * we have inodes in the last block of the AG and we 1697 * are currently pointing to the last inode. 1698 * 1699 * Because we may see inodes that are from the wrong AG 1700 * due to RCU freeing and reallocation, only update the 1701 * index if it lies in this AG. It was a race that lead 1702 * us to see this inode, so another lookup from the 1703 * same index will not find it again. 1704 */ 1705 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1706 continue; 1707 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1708 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1709 done = true; 1710 } 1711 1712 /* unlock now we've grabbed the inodes. */ 1713 rcu_read_unlock(); 1714 1715 for (i = 0; i < nr_found; i++) { 1716 if (!batch[i]) 1717 continue; 1718 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1719 icw); 1720 if (error == -EAGAIN) { 1721 skipped++; 1722 continue; 1723 } 1724 if (error && last_error != -EFSCORRUPTED) 1725 last_error = error; 1726 } 1727 1728 /* bail out if the filesystem is corrupted. */ 1729 if (error == -EFSCORRUPTED) 1730 break; 1731 1732 cond_resched(); 1733 1734 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1735 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1736 if (icw->icw_scan_limit <= 0) 1737 break; 1738 } 1739 } while (nr_found && !done); 1740 1741 if (goal == XFS_ICWALK_RECLAIM) { 1742 if (done) 1743 first_index = 0; 1744 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1745 } 1746 1747 if (skipped) { 1748 delay(1); 1749 goto restart; 1750 } 1751 return last_error; 1752 } 1753 1754 /* Walk all incore inodes to achieve a given goal. */ 1755 static int 1756 xfs_icwalk( 1757 struct xfs_mount *mp, 1758 enum xfs_icwalk_goal goal, 1759 struct xfs_icwalk *icw) 1760 { 1761 struct xfs_perag *pag; 1762 int error = 0; 1763 int last_error = 0; 1764 xfs_agnumber_t agno; 1765 1766 for_each_perag_tag(mp, agno, pag, goal) { 1767 error = xfs_icwalk_ag(pag, goal, icw); 1768 if (error) { 1769 last_error = error; 1770 if (error == -EFSCORRUPTED) { 1771 xfs_perag_rele(pag); 1772 break; 1773 } 1774 } 1775 } 1776 return last_error; 1777 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1778 } 1779 1780 #ifdef DEBUG 1781 static void 1782 xfs_check_delalloc( 1783 struct xfs_inode *ip, 1784 int whichfork) 1785 { 1786 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1787 struct xfs_bmbt_irec got; 1788 struct xfs_iext_cursor icur; 1789 1790 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1791 return; 1792 do { 1793 if (isnullstartblock(got.br_startblock)) { 1794 xfs_warn(ip->i_mount, 1795 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1796 ip->i_ino, 1797 whichfork == XFS_DATA_FORK ? "data" : "cow", 1798 got.br_startoff, got.br_blockcount); 1799 } 1800 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1801 } 1802 #else 1803 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1804 #endif 1805 1806 /* Schedule the inode for reclaim. */ 1807 static void 1808 xfs_inodegc_set_reclaimable( 1809 struct xfs_inode *ip) 1810 { 1811 struct xfs_mount *mp = ip->i_mount; 1812 struct xfs_perag *pag; 1813 1814 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1815 xfs_check_delalloc(ip, XFS_DATA_FORK); 1816 xfs_check_delalloc(ip, XFS_COW_FORK); 1817 ASSERT(0); 1818 } 1819 1820 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1821 spin_lock(&pag->pag_ici_lock); 1822 spin_lock(&ip->i_flags_lock); 1823 1824 trace_xfs_inode_set_reclaimable(ip); 1825 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1826 ip->i_flags |= XFS_IRECLAIMABLE; 1827 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1828 XFS_ICI_RECLAIM_TAG); 1829 1830 spin_unlock(&ip->i_flags_lock); 1831 spin_unlock(&pag->pag_ici_lock); 1832 xfs_perag_put(pag); 1833 } 1834 1835 /* 1836 * Free all speculative preallocations and possibly even the inode itself. 1837 * This is the last chance to make changes to an otherwise unreferenced file 1838 * before incore reclamation happens. 1839 */ 1840 static void 1841 xfs_inodegc_inactivate( 1842 struct xfs_inode *ip) 1843 { 1844 trace_xfs_inode_inactivating(ip); 1845 xfs_inactive(ip); 1846 xfs_inodegc_set_reclaimable(ip); 1847 } 1848 1849 void 1850 xfs_inodegc_worker( 1851 struct work_struct *work) 1852 { 1853 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1854 struct xfs_inodegc, work); 1855 struct llist_node *node = llist_del_all(&gc->list); 1856 struct xfs_inode *ip, *n; 1857 unsigned int nofs_flag; 1858 1859 WRITE_ONCE(gc->items, 0); 1860 1861 if (!node) 1862 return; 1863 1864 /* 1865 * We can allocate memory here while doing writeback on behalf of 1866 * memory reclaim. To avoid memory allocation deadlocks set the 1867 * task-wide nofs context for the following operations. 1868 */ 1869 nofs_flag = memalloc_nofs_save(); 1870 1871 ip = llist_entry(node, struct xfs_inode, i_gclist); 1872 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); 1873 1874 WRITE_ONCE(gc->shrinker_hits, 0); 1875 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1876 xfs_iflags_set(ip, XFS_INACTIVATING); 1877 xfs_inodegc_inactivate(ip); 1878 } 1879 1880 memalloc_nofs_restore(nofs_flag); 1881 } 1882 1883 /* 1884 * Expedite all pending inodegc work to run immediately. This does not wait for 1885 * completion of the work. 1886 */ 1887 void 1888 xfs_inodegc_push( 1889 struct xfs_mount *mp) 1890 { 1891 if (!xfs_is_inodegc_enabled(mp)) 1892 return; 1893 trace_xfs_inodegc_push(mp, __return_address); 1894 xfs_inodegc_queue_all(mp); 1895 } 1896 1897 /* 1898 * Force all currently queued inode inactivation work to run immediately and 1899 * wait for the work to finish. 1900 */ 1901 void 1902 xfs_inodegc_flush( 1903 struct xfs_mount *mp) 1904 { 1905 xfs_inodegc_push(mp); 1906 trace_xfs_inodegc_flush(mp, __return_address); 1907 flush_workqueue(mp->m_inodegc_wq); 1908 } 1909 1910 /* 1911 * Flush all the pending work and then disable the inode inactivation background 1912 * workers and wait for them to stop. 1913 */ 1914 void 1915 xfs_inodegc_stop( 1916 struct xfs_mount *mp) 1917 { 1918 if (!xfs_clear_inodegc_enabled(mp)) 1919 return; 1920 1921 xfs_inodegc_queue_all(mp); 1922 drain_workqueue(mp->m_inodegc_wq); 1923 1924 trace_xfs_inodegc_stop(mp, __return_address); 1925 } 1926 1927 /* 1928 * Enable the inode inactivation background workers and schedule deferred inode 1929 * inactivation work if there is any. 1930 */ 1931 void 1932 xfs_inodegc_start( 1933 struct xfs_mount *mp) 1934 { 1935 if (xfs_set_inodegc_enabled(mp)) 1936 return; 1937 1938 trace_xfs_inodegc_start(mp, __return_address); 1939 xfs_inodegc_queue_all(mp); 1940 } 1941 1942 #ifdef CONFIG_XFS_RT 1943 static inline bool 1944 xfs_inodegc_want_queue_rt_file( 1945 struct xfs_inode *ip) 1946 { 1947 struct xfs_mount *mp = ip->i_mount; 1948 1949 if (!XFS_IS_REALTIME_INODE(ip)) 1950 return false; 1951 1952 if (__percpu_counter_compare(&mp->m_frextents, 1953 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 1954 XFS_FDBLOCKS_BATCH) < 0) 1955 return true; 1956 1957 return false; 1958 } 1959 #else 1960 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1961 #endif /* CONFIG_XFS_RT */ 1962 1963 /* 1964 * Schedule the inactivation worker when: 1965 * 1966 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1967 * - There is less than 5% free space left. 1968 * - Any of the quotas for this inode are near an enforcement limit. 1969 */ 1970 static inline bool 1971 xfs_inodegc_want_queue_work( 1972 struct xfs_inode *ip, 1973 unsigned int items) 1974 { 1975 struct xfs_mount *mp = ip->i_mount; 1976 1977 if (items > mp->m_ino_geo.inodes_per_cluster) 1978 return true; 1979 1980 if (__percpu_counter_compare(&mp->m_fdblocks, 1981 mp->m_low_space[XFS_LOWSP_5_PCNT], 1982 XFS_FDBLOCKS_BATCH) < 0) 1983 return true; 1984 1985 if (xfs_inodegc_want_queue_rt_file(ip)) 1986 return true; 1987 1988 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 1989 return true; 1990 1991 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 1992 return true; 1993 1994 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 1995 return true; 1996 1997 return false; 1998 } 1999 2000 /* 2001 * Upper bound on the number of inodes in each AG that can be queued for 2002 * inactivation at any given time, to avoid monopolizing the workqueue. 2003 */ 2004 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2005 2006 /* 2007 * Make the frontend wait for inactivations when: 2008 * 2009 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2010 * - The queue depth exceeds the maximum allowable percpu backlog. 2011 * 2012 * Note: If the current thread is running a transaction, we don't ever want to 2013 * wait for other transactions because that could introduce a deadlock. 2014 */ 2015 static inline bool 2016 xfs_inodegc_want_flush_work( 2017 struct xfs_inode *ip, 2018 unsigned int items, 2019 unsigned int shrinker_hits) 2020 { 2021 if (current->journal_info) 2022 return false; 2023 2024 if (shrinker_hits > 0) 2025 return true; 2026 2027 if (items > XFS_INODEGC_MAX_BACKLOG) 2028 return true; 2029 2030 return false; 2031 } 2032 2033 /* 2034 * Queue a background inactivation worker if there are inodes that need to be 2035 * inactivated and higher level xfs code hasn't disabled the background 2036 * workers. 2037 */ 2038 static void 2039 xfs_inodegc_queue( 2040 struct xfs_inode *ip) 2041 { 2042 struct xfs_mount *mp = ip->i_mount; 2043 struct xfs_inodegc *gc; 2044 int items; 2045 unsigned int shrinker_hits; 2046 unsigned long queue_delay = 1; 2047 2048 trace_xfs_inode_set_need_inactive(ip); 2049 spin_lock(&ip->i_flags_lock); 2050 ip->i_flags |= XFS_NEED_INACTIVE; 2051 spin_unlock(&ip->i_flags_lock); 2052 2053 gc = get_cpu_ptr(mp->m_inodegc); 2054 llist_add(&ip->i_gclist, &gc->list); 2055 items = READ_ONCE(gc->items); 2056 WRITE_ONCE(gc->items, items + 1); 2057 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2058 2059 /* 2060 * We queue the work while holding the current CPU so that the work 2061 * is scheduled to run on this CPU. 2062 */ 2063 if (!xfs_is_inodegc_enabled(mp)) { 2064 put_cpu_ptr(gc); 2065 return; 2066 } 2067 2068 if (xfs_inodegc_want_queue_work(ip, items)) 2069 queue_delay = 0; 2070 2071 trace_xfs_inodegc_queue(mp, __return_address); 2072 mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay); 2073 put_cpu_ptr(gc); 2074 2075 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2076 trace_xfs_inodegc_throttle(mp, __return_address); 2077 flush_delayed_work(&gc->work); 2078 } 2079 } 2080 2081 /* 2082 * Fold the dead CPU inodegc queue into the current CPUs queue. 2083 */ 2084 void 2085 xfs_inodegc_cpu_dead( 2086 struct xfs_mount *mp, 2087 unsigned int dead_cpu) 2088 { 2089 struct xfs_inodegc *dead_gc, *gc; 2090 struct llist_node *first, *last; 2091 unsigned int count = 0; 2092 2093 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); 2094 cancel_delayed_work_sync(&dead_gc->work); 2095 2096 if (llist_empty(&dead_gc->list)) 2097 return; 2098 2099 first = dead_gc->list.first; 2100 last = first; 2101 while (last->next) { 2102 last = last->next; 2103 count++; 2104 } 2105 dead_gc->list.first = NULL; 2106 dead_gc->items = 0; 2107 2108 /* Add pending work to current CPU */ 2109 gc = get_cpu_ptr(mp->m_inodegc); 2110 llist_add_batch(first, last, &gc->list); 2111 count += READ_ONCE(gc->items); 2112 WRITE_ONCE(gc->items, count); 2113 2114 if (xfs_is_inodegc_enabled(mp)) { 2115 trace_xfs_inodegc_queue(mp, __return_address); 2116 mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0); 2117 } 2118 put_cpu_ptr(gc); 2119 } 2120 2121 /* 2122 * We set the inode flag atomically with the radix tree tag. Once we get tag 2123 * lookups on the radix tree, this inode flag can go away. 2124 * 2125 * We always use background reclaim here because even if the inode is clean, it 2126 * still may be under IO and hence we have wait for IO completion to occur 2127 * before we can reclaim the inode. The background reclaim path handles this 2128 * more efficiently than we can here, so simply let background reclaim tear down 2129 * all inodes. 2130 */ 2131 void 2132 xfs_inode_mark_reclaimable( 2133 struct xfs_inode *ip) 2134 { 2135 struct xfs_mount *mp = ip->i_mount; 2136 bool need_inactive; 2137 2138 XFS_STATS_INC(mp, vn_reclaim); 2139 2140 /* 2141 * We should never get here with any of the reclaim flags already set. 2142 */ 2143 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2144 2145 need_inactive = xfs_inode_needs_inactive(ip); 2146 if (need_inactive) { 2147 xfs_inodegc_queue(ip); 2148 return; 2149 } 2150 2151 /* Going straight to reclaim, so drop the dquots. */ 2152 xfs_qm_dqdetach(ip); 2153 xfs_inodegc_set_reclaimable(ip); 2154 } 2155 2156 /* 2157 * Register a phony shrinker so that we can run background inodegc sooner when 2158 * there's memory pressure. Inactivation does not itself free any memory but 2159 * it does make inodes reclaimable, which eventually frees memory. 2160 * 2161 * The count function, seek value, and batch value are crafted to trigger the 2162 * scan function during the second round of scanning. Hopefully this means 2163 * that we reclaimed enough memory that initiating metadata transactions won't 2164 * make things worse. 2165 */ 2166 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2167 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2168 2169 static unsigned long 2170 xfs_inodegc_shrinker_count( 2171 struct shrinker *shrink, 2172 struct shrink_control *sc) 2173 { 2174 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2175 m_inodegc_shrinker); 2176 struct xfs_inodegc *gc; 2177 int cpu; 2178 2179 if (!xfs_is_inodegc_enabled(mp)) 2180 return 0; 2181 2182 for_each_online_cpu(cpu) { 2183 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2184 if (!llist_empty(&gc->list)) 2185 return XFS_INODEGC_SHRINKER_COUNT; 2186 } 2187 2188 return 0; 2189 } 2190 2191 static unsigned long 2192 xfs_inodegc_shrinker_scan( 2193 struct shrinker *shrink, 2194 struct shrink_control *sc) 2195 { 2196 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2197 m_inodegc_shrinker); 2198 struct xfs_inodegc *gc; 2199 int cpu; 2200 bool no_items = true; 2201 2202 if (!xfs_is_inodegc_enabled(mp)) 2203 return SHRINK_STOP; 2204 2205 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2206 2207 for_each_online_cpu(cpu) { 2208 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2209 if (!llist_empty(&gc->list)) { 2210 unsigned int h = READ_ONCE(gc->shrinker_hits); 2211 2212 WRITE_ONCE(gc->shrinker_hits, h + 1); 2213 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2214 no_items = false; 2215 } 2216 } 2217 2218 /* 2219 * If there are no inodes to inactivate, we don't want the shrinker 2220 * to think there's deferred work to call us back about. 2221 */ 2222 if (no_items) 2223 return LONG_MAX; 2224 2225 return SHRINK_STOP; 2226 } 2227 2228 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2229 int 2230 xfs_inodegc_register_shrinker( 2231 struct xfs_mount *mp) 2232 { 2233 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2234 2235 shrink->count_objects = xfs_inodegc_shrinker_count; 2236 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2237 shrink->seeks = 0; 2238 shrink->flags = SHRINKER_NONSLAB; 2239 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2240 2241 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id); 2242 } 2243