1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_quota.h" 19 #include "xfs_trace.h" 20 #include "xfs_icache.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_dquot_item.h" 23 #include "xfs_dquot.h" 24 #include "xfs_reflink.h" 25 26 #include <linux/iversion.h> 27 28 /* 29 * Allocate and initialise an xfs_inode. 30 */ 31 struct xfs_inode * 32 xfs_inode_alloc( 33 struct xfs_mount *mp, 34 xfs_ino_t ino) 35 { 36 struct xfs_inode *ip; 37 38 /* 39 * if this didn't occur in transactions, we could use 40 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 41 * code up to do this anyway. 42 */ 43 ip = kmem_zone_alloc(xfs_inode_zone, 0); 44 if (!ip) 45 return NULL; 46 if (inode_init_always(mp->m_super, VFS_I(ip))) { 47 kmem_cache_free(xfs_inode_zone, ip); 48 return NULL; 49 } 50 51 /* VFS doesn't initialise i_mode! */ 52 VFS_I(ip)->i_mode = 0; 53 54 XFS_STATS_INC(mp, vn_active); 55 ASSERT(atomic_read(&ip->i_pincount) == 0); 56 ASSERT(!xfs_isiflocked(ip)); 57 ASSERT(ip->i_ino == 0); 58 59 /* initialise the xfs inode */ 60 ip->i_ino = ino; 61 ip->i_mount = mp; 62 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 63 ip->i_afp = NULL; 64 ip->i_cowfp = NULL; 65 ip->i_cnextents = 0; 66 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 67 memset(&ip->i_df, 0, sizeof(ip->i_df)); 68 ip->i_flags = 0; 69 ip->i_delayed_blks = 0; 70 memset(&ip->i_d, 0, sizeof(ip->i_d)); 71 ip->i_sick = 0; 72 ip->i_checked = 0; 73 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 74 INIT_LIST_HEAD(&ip->i_ioend_list); 75 spin_lock_init(&ip->i_ioend_lock); 76 77 return ip; 78 } 79 80 STATIC void 81 xfs_inode_free_callback( 82 struct rcu_head *head) 83 { 84 struct inode *inode = container_of(head, struct inode, i_rcu); 85 struct xfs_inode *ip = XFS_I(inode); 86 87 switch (VFS_I(ip)->i_mode & S_IFMT) { 88 case S_IFREG: 89 case S_IFDIR: 90 case S_IFLNK: 91 xfs_idestroy_fork(ip, XFS_DATA_FORK); 92 break; 93 } 94 95 if (ip->i_afp) 96 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 97 if (ip->i_cowfp) 98 xfs_idestroy_fork(ip, XFS_COW_FORK); 99 100 if (ip->i_itemp) { 101 ASSERT(!test_bit(XFS_LI_IN_AIL, 102 &ip->i_itemp->ili_item.li_flags)); 103 xfs_inode_item_destroy(ip); 104 ip->i_itemp = NULL; 105 } 106 107 kmem_cache_free(xfs_inode_zone, ip); 108 } 109 110 static void 111 __xfs_inode_free( 112 struct xfs_inode *ip) 113 { 114 /* asserts to verify all state is correct here */ 115 ASSERT(atomic_read(&ip->i_pincount) == 0); 116 XFS_STATS_DEC(ip->i_mount, vn_active); 117 118 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 119 } 120 121 void 122 xfs_inode_free( 123 struct xfs_inode *ip) 124 { 125 ASSERT(!xfs_isiflocked(ip)); 126 127 /* 128 * Because we use RCU freeing we need to ensure the inode always 129 * appears to be reclaimed with an invalid inode number when in the 130 * free state. The ip->i_flags_lock provides the barrier against lookup 131 * races. 132 */ 133 spin_lock(&ip->i_flags_lock); 134 ip->i_flags = XFS_IRECLAIM; 135 ip->i_ino = 0; 136 spin_unlock(&ip->i_flags_lock); 137 138 __xfs_inode_free(ip); 139 } 140 141 /* 142 * Queue a new inode reclaim pass if there are reclaimable inodes and there 143 * isn't a reclaim pass already in progress. By default it runs every 5s based 144 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 145 * tunable, but that can be done if this method proves to be ineffective or too 146 * aggressive. 147 */ 148 static void 149 xfs_reclaim_work_queue( 150 struct xfs_mount *mp) 151 { 152 153 rcu_read_lock(); 154 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 155 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 156 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 157 } 158 rcu_read_unlock(); 159 } 160 161 /* 162 * This is a fast pass over the inode cache to try to get reclaim moving on as 163 * many inodes as possible in a short period of time. It kicks itself every few 164 * seconds, as well as being kicked by the inode cache shrinker when memory 165 * goes low. It scans as quickly as possible avoiding locked inodes or those 166 * already being flushed, and once done schedules a future pass. 167 */ 168 void 169 xfs_reclaim_worker( 170 struct work_struct *work) 171 { 172 struct xfs_mount *mp = container_of(to_delayed_work(work), 173 struct xfs_mount, m_reclaim_work); 174 175 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 176 xfs_reclaim_work_queue(mp); 177 } 178 179 static void 180 xfs_perag_set_reclaim_tag( 181 struct xfs_perag *pag) 182 { 183 struct xfs_mount *mp = pag->pag_mount; 184 185 lockdep_assert_held(&pag->pag_ici_lock); 186 if (pag->pag_ici_reclaimable++) 187 return; 188 189 /* propagate the reclaim tag up into the perag radix tree */ 190 spin_lock(&mp->m_perag_lock); 191 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 192 XFS_ICI_RECLAIM_TAG); 193 spin_unlock(&mp->m_perag_lock); 194 195 /* schedule periodic background inode reclaim */ 196 xfs_reclaim_work_queue(mp); 197 198 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 199 } 200 201 static void 202 xfs_perag_clear_reclaim_tag( 203 struct xfs_perag *pag) 204 { 205 struct xfs_mount *mp = pag->pag_mount; 206 207 lockdep_assert_held(&pag->pag_ici_lock); 208 if (--pag->pag_ici_reclaimable) 209 return; 210 211 /* clear the reclaim tag from the perag radix tree */ 212 spin_lock(&mp->m_perag_lock); 213 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 214 XFS_ICI_RECLAIM_TAG); 215 spin_unlock(&mp->m_perag_lock); 216 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 217 } 218 219 220 /* 221 * We set the inode flag atomically with the radix tree tag. 222 * Once we get tag lookups on the radix tree, this inode flag 223 * can go away. 224 */ 225 void 226 xfs_inode_set_reclaim_tag( 227 struct xfs_inode *ip) 228 { 229 struct xfs_mount *mp = ip->i_mount; 230 struct xfs_perag *pag; 231 232 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 233 spin_lock(&pag->pag_ici_lock); 234 spin_lock(&ip->i_flags_lock); 235 236 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 237 XFS_ICI_RECLAIM_TAG); 238 xfs_perag_set_reclaim_tag(pag); 239 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 240 241 spin_unlock(&ip->i_flags_lock); 242 spin_unlock(&pag->pag_ici_lock); 243 xfs_perag_put(pag); 244 } 245 246 STATIC void 247 xfs_inode_clear_reclaim_tag( 248 struct xfs_perag *pag, 249 xfs_ino_t ino) 250 { 251 radix_tree_tag_clear(&pag->pag_ici_root, 252 XFS_INO_TO_AGINO(pag->pag_mount, ino), 253 XFS_ICI_RECLAIM_TAG); 254 xfs_perag_clear_reclaim_tag(pag); 255 } 256 257 static void 258 xfs_inew_wait( 259 struct xfs_inode *ip) 260 { 261 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 262 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 263 264 do { 265 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 266 if (!xfs_iflags_test(ip, XFS_INEW)) 267 break; 268 schedule(); 269 } while (true); 270 finish_wait(wq, &wait.wq_entry); 271 } 272 273 /* 274 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 275 * part of the structure. This is made more complex by the fact we store 276 * information about the on-disk values in the VFS inode and so we can't just 277 * overwrite the values unconditionally. Hence we save the parameters we 278 * need to retain across reinitialisation, and rewrite them into the VFS inode 279 * after reinitialisation even if it fails. 280 */ 281 static int 282 xfs_reinit_inode( 283 struct xfs_mount *mp, 284 struct inode *inode) 285 { 286 int error; 287 uint32_t nlink = inode->i_nlink; 288 uint32_t generation = inode->i_generation; 289 uint64_t version = inode_peek_iversion(inode); 290 umode_t mode = inode->i_mode; 291 dev_t dev = inode->i_rdev; 292 293 error = inode_init_always(mp->m_super, inode); 294 295 set_nlink(inode, nlink); 296 inode->i_generation = generation; 297 inode_set_iversion_queried(inode, version); 298 inode->i_mode = mode; 299 inode->i_rdev = dev; 300 return error; 301 } 302 303 /* 304 * If we are allocating a new inode, then check what was returned is 305 * actually a free, empty inode. If we are not allocating an inode, 306 * then check we didn't find a free inode. 307 * 308 * Returns: 309 * 0 if the inode free state matches the lookup context 310 * -ENOENT if the inode is free and we are not allocating 311 * -EFSCORRUPTED if there is any state mismatch at all 312 */ 313 static int 314 xfs_iget_check_free_state( 315 struct xfs_inode *ip, 316 int flags) 317 { 318 if (flags & XFS_IGET_CREATE) { 319 /* should be a free inode */ 320 if (VFS_I(ip)->i_mode != 0) { 321 xfs_warn(ip->i_mount, 322 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 323 ip->i_ino, VFS_I(ip)->i_mode); 324 return -EFSCORRUPTED; 325 } 326 327 if (ip->i_d.di_nblocks != 0) { 328 xfs_warn(ip->i_mount, 329 "Corruption detected! Free inode 0x%llx has blocks allocated!", 330 ip->i_ino); 331 return -EFSCORRUPTED; 332 } 333 return 0; 334 } 335 336 /* should be an allocated inode */ 337 if (VFS_I(ip)->i_mode == 0) 338 return -ENOENT; 339 340 return 0; 341 } 342 343 /* 344 * Check the validity of the inode we just found it the cache 345 */ 346 static int 347 xfs_iget_cache_hit( 348 struct xfs_perag *pag, 349 struct xfs_inode *ip, 350 xfs_ino_t ino, 351 int flags, 352 int lock_flags) __releases(RCU) 353 { 354 struct inode *inode = VFS_I(ip); 355 struct xfs_mount *mp = ip->i_mount; 356 int error; 357 358 /* 359 * check for re-use of an inode within an RCU grace period due to the 360 * radix tree nodes not being updated yet. We monitor for this by 361 * setting the inode number to zero before freeing the inode structure. 362 * If the inode has been reallocated and set up, then the inode number 363 * will not match, so check for that, too. 364 */ 365 spin_lock(&ip->i_flags_lock); 366 if (ip->i_ino != ino) { 367 trace_xfs_iget_skip(ip); 368 XFS_STATS_INC(mp, xs_ig_frecycle); 369 error = -EAGAIN; 370 goto out_error; 371 } 372 373 374 /* 375 * If we are racing with another cache hit that is currently 376 * instantiating this inode or currently recycling it out of 377 * reclaimabe state, wait for the initialisation to complete 378 * before continuing. 379 * 380 * XXX(hch): eventually we should do something equivalent to 381 * wait_on_inode to wait for these flags to be cleared 382 * instead of polling for it. 383 */ 384 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 385 trace_xfs_iget_skip(ip); 386 XFS_STATS_INC(mp, xs_ig_frecycle); 387 error = -EAGAIN; 388 goto out_error; 389 } 390 391 /* 392 * Check the inode free state is valid. This also detects lookup 393 * racing with unlinks. 394 */ 395 error = xfs_iget_check_free_state(ip, flags); 396 if (error) 397 goto out_error; 398 399 /* 400 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 401 * Need to carefully get it back into useable state. 402 */ 403 if (ip->i_flags & XFS_IRECLAIMABLE) { 404 trace_xfs_iget_reclaim(ip); 405 406 if (flags & XFS_IGET_INCORE) { 407 error = -EAGAIN; 408 goto out_error; 409 } 410 411 /* 412 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 413 * from stomping over us while we recycle the inode. We can't 414 * clear the radix tree reclaimable tag yet as it requires 415 * pag_ici_lock to be held exclusive. 416 */ 417 ip->i_flags |= XFS_IRECLAIM; 418 419 spin_unlock(&ip->i_flags_lock); 420 rcu_read_unlock(); 421 422 error = xfs_reinit_inode(mp, inode); 423 if (error) { 424 bool wake; 425 /* 426 * Re-initializing the inode failed, and we are in deep 427 * trouble. Try to re-add it to the reclaim list. 428 */ 429 rcu_read_lock(); 430 spin_lock(&ip->i_flags_lock); 431 wake = !!__xfs_iflags_test(ip, XFS_INEW); 432 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 433 if (wake) 434 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 435 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 436 trace_xfs_iget_reclaim_fail(ip); 437 goto out_error; 438 } 439 440 spin_lock(&pag->pag_ici_lock); 441 spin_lock(&ip->i_flags_lock); 442 443 /* 444 * Clear the per-lifetime state in the inode as we are now 445 * effectively a new inode and need to return to the initial 446 * state before reuse occurs. 447 */ 448 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 449 ip->i_flags |= XFS_INEW; 450 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 451 inode->i_state = I_NEW; 452 ip->i_sick = 0; 453 ip->i_checked = 0; 454 455 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 456 init_rwsem(&inode->i_rwsem); 457 458 spin_unlock(&ip->i_flags_lock); 459 spin_unlock(&pag->pag_ici_lock); 460 } else { 461 /* If the VFS inode is being torn down, pause and try again. */ 462 if (!igrab(inode)) { 463 trace_xfs_iget_skip(ip); 464 error = -EAGAIN; 465 goto out_error; 466 } 467 468 /* We've got a live one. */ 469 spin_unlock(&ip->i_flags_lock); 470 rcu_read_unlock(); 471 trace_xfs_iget_hit(ip); 472 } 473 474 if (lock_flags != 0) 475 xfs_ilock(ip, lock_flags); 476 477 if (!(flags & XFS_IGET_INCORE)) 478 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 479 XFS_STATS_INC(mp, xs_ig_found); 480 481 return 0; 482 483 out_error: 484 spin_unlock(&ip->i_flags_lock); 485 rcu_read_unlock(); 486 return error; 487 } 488 489 490 static int 491 xfs_iget_cache_miss( 492 struct xfs_mount *mp, 493 struct xfs_perag *pag, 494 xfs_trans_t *tp, 495 xfs_ino_t ino, 496 struct xfs_inode **ipp, 497 int flags, 498 int lock_flags) 499 { 500 struct xfs_inode *ip; 501 int error; 502 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 503 int iflags; 504 505 ip = xfs_inode_alloc(mp, ino); 506 if (!ip) 507 return -ENOMEM; 508 509 error = xfs_iread(mp, tp, ip, flags); 510 if (error) 511 goto out_destroy; 512 513 if (!xfs_inode_verify_forks(ip)) { 514 error = -EFSCORRUPTED; 515 goto out_destroy; 516 } 517 518 trace_xfs_iget_miss(ip); 519 520 521 /* 522 * Check the inode free state is valid. This also detects lookup 523 * racing with unlinks. 524 */ 525 error = xfs_iget_check_free_state(ip, flags); 526 if (error) 527 goto out_destroy; 528 529 /* 530 * Preload the radix tree so we can insert safely under the 531 * write spinlock. Note that we cannot sleep inside the preload 532 * region. Since we can be called from transaction context, don't 533 * recurse into the file system. 534 */ 535 if (radix_tree_preload(GFP_NOFS)) { 536 error = -EAGAIN; 537 goto out_destroy; 538 } 539 540 /* 541 * Because the inode hasn't been added to the radix-tree yet it can't 542 * be found by another thread, so we can do the non-sleeping lock here. 543 */ 544 if (lock_flags) { 545 if (!xfs_ilock_nowait(ip, lock_flags)) 546 BUG(); 547 } 548 549 /* 550 * These values must be set before inserting the inode into the radix 551 * tree as the moment it is inserted a concurrent lookup (allowed by the 552 * RCU locking mechanism) can find it and that lookup must see that this 553 * is an inode currently under construction (i.e. that XFS_INEW is set). 554 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 555 * memory barrier that ensures this detection works correctly at lookup 556 * time. 557 */ 558 iflags = XFS_INEW; 559 if (flags & XFS_IGET_DONTCACHE) 560 iflags |= XFS_IDONTCACHE; 561 ip->i_udquot = NULL; 562 ip->i_gdquot = NULL; 563 ip->i_pdquot = NULL; 564 xfs_iflags_set(ip, iflags); 565 566 /* insert the new inode */ 567 spin_lock(&pag->pag_ici_lock); 568 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 569 if (unlikely(error)) { 570 WARN_ON(error != -EEXIST); 571 XFS_STATS_INC(mp, xs_ig_dup); 572 error = -EAGAIN; 573 goto out_preload_end; 574 } 575 spin_unlock(&pag->pag_ici_lock); 576 radix_tree_preload_end(); 577 578 *ipp = ip; 579 return 0; 580 581 out_preload_end: 582 spin_unlock(&pag->pag_ici_lock); 583 radix_tree_preload_end(); 584 if (lock_flags) 585 xfs_iunlock(ip, lock_flags); 586 out_destroy: 587 __destroy_inode(VFS_I(ip)); 588 xfs_inode_free(ip); 589 return error; 590 } 591 592 /* 593 * Look up an inode by number in the given file system. 594 * The inode is looked up in the cache held in each AG. 595 * If the inode is found in the cache, initialise the vfs inode 596 * if necessary. 597 * 598 * If it is not in core, read it in from the file system's device, 599 * add it to the cache and initialise the vfs inode. 600 * 601 * The inode is locked according to the value of the lock_flags parameter. 602 * This flag parameter indicates how and if the inode's IO lock and inode lock 603 * should be taken. 604 * 605 * mp -- the mount point structure for the current file system. It points 606 * to the inode hash table. 607 * tp -- a pointer to the current transaction if there is one. This is 608 * simply passed through to the xfs_iread() call. 609 * ino -- the number of the inode desired. This is the unique identifier 610 * within the file system for the inode being requested. 611 * lock_flags -- flags indicating how to lock the inode. See the comment 612 * for xfs_ilock() for a list of valid values. 613 */ 614 int 615 xfs_iget( 616 xfs_mount_t *mp, 617 xfs_trans_t *tp, 618 xfs_ino_t ino, 619 uint flags, 620 uint lock_flags, 621 xfs_inode_t **ipp) 622 { 623 xfs_inode_t *ip; 624 int error; 625 xfs_perag_t *pag; 626 xfs_agino_t agino; 627 628 /* 629 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 630 * doesn't get freed while it's being referenced during a 631 * radix tree traversal here. It assumes this function 632 * aqcuires only the ILOCK (and therefore it has no need to 633 * involve the IOLOCK in this synchronization). 634 */ 635 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 636 637 /* reject inode numbers outside existing AGs */ 638 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 639 return -EINVAL; 640 641 XFS_STATS_INC(mp, xs_ig_attempts); 642 643 /* get the perag structure and ensure that it's inode capable */ 644 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 645 agino = XFS_INO_TO_AGINO(mp, ino); 646 647 again: 648 error = 0; 649 rcu_read_lock(); 650 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 651 652 if (ip) { 653 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 654 if (error) 655 goto out_error_or_again; 656 } else { 657 rcu_read_unlock(); 658 if (flags & XFS_IGET_INCORE) { 659 error = -ENODATA; 660 goto out_error_or_again; 661 } 662 XFS_STATS_INC(mp, xs_ig_missed); 663 664 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 665 flags, lock_flags); 666 if (error) 667 goto out_error_or_again; 668 } 669 xfs_perag_put(pag); 670 671 *ipp = ip; 672 673 /* 674 * If we have a real type for an on-disk inode, we can setup the inode 675 * now. If it's a new inode being created, xfs_ialloc will handle it. 676 */ 677 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 678 xfs_setup_existing_inode(ip); 679 return 0; 680 681 out_error_or_again: 682 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 683 delay(1); 684 goto again; 685 } 686 xfs_perag_put(pag); 687 return error; 688 } 689 690 /* 691 * "Is this a cached inode that's also allocated?" 692 * 693 * Look up an inode by number in the given file system. If the inode is 694 * in cache and isn't in purgatory, return 1 if the inode is allocated 695 * and 0 if it is not. For all other cases (not in cache, being torn 696 * down, etc.), return a negative error code. 697 * 698 * The caller has to prevent inode allocation and freeing activity, 699 * presumably by locking the AGI buffer. This is to ensure that an 700 * inode cannot transition from allocated to freed until the caller is 701 * ready to allow that. If the inode is in an intermediate state (new, 702 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 703 * inode is not in the cache, -ENOENT will be returned. The caller must 704 * deal with these scenarios appropriately. 705 * 706 * This is a specialized use case for the online scrubber; if you're 707 * reading this, you probably want xfs_iget. 708 */ 709 int 710 xfs_icache_inode_is_allocated( 711 struct xfs_mount *mp, 712 struct xfs_trans *tp, 713 xfs_ino_t ino, 714 bool *inuse) 715 { 716 struct xfs_inode *ip; 717 int error; 718 719 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 720 if (error) 721 return error; 722 723 *inuse = !!(VFS_I(ip)->i_mode); 724 xfs_irele(ip); 725 return 0; 726 } 727 728 /* 729 * The inode lookup is done in batches to keep the amount of lock traffic and 730 * radix tree lookups to a minimum. The batch size is a trade off between 731 * lookup reduction and stack usage. This is in the reclaim path, so we can't 732 * be too greedy. 733 */ 734 #define XFS_LOOKUP_BATCH 32 735 736 STATIC int 737 xfs_inode_ag_walk_grab( 738 struct xfs_inode *ip, 739 int flags) 740 { 741 struct inode *inode = VFS_I(ip); 742 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT); 743 744 ASSERT(rcu_read_lock_held()); 745 746 /* 747 * check for stale RCU freed inode 748 * 749 * If the inode has been reallocated, it doesn't matter if it's not in 750 * the AG we are walking - we are walking for writeback, so if it 751 * passes all the "valid inode" checks and is dirty, then we'll write 752 * it back anyway. If it has been reallocated and still being 753 * initialised, the XFS_INEW check below will catch it. 754 */ 755 spin_lock(&ip->i_flags_lock); 756 if (!ip->i_ino) 757 goto out_unlock_noent; 758 759 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 760 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || 761 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) 762 goto out_unlock_noent; 763 spin_unlock(&ip->i_flags_lock); 764 765 /* nothing to sync during shutdown */ 766 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 767 return -EFSCORRUPTED; 768 769 /* If we can't grab the inode, it must on it's way to reclaim. */ 770 if (!igrab(inode)) 771 return -ENOENT; 772 773 /* inode is valid */ 774 return 0; 775 776 out_unlock_noent: 777 spin_unlock(&ip->i_flags_lock); 778 return -ENOENT; 779 } 780 781 STATIC int 782 xfs_inode_ag_walk( 783 struct xfs_mount *mp, 784 struct xfs_perag *pag, 785 int (*execute)(struct xfs_inode *ip, int flags, 786 void *args), 787 int flags, 788 void *args, 789 int tag, 790 int iter_flags) 791 { 792 uint32_t first_index; 793 int last_error = 0; 794 int skipped; 795 int done; 796 int nr_found; 797 798 restart: 799 done = 0; 800 skipped = 0; 801 first_index = 0; 802 nr_found = 0; 803 do { 804 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 805 int error = 0; 806 int i; 807 808 rcu_read_lock(); 809 810 if (tag == -1) 811 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 812 (void **)batch, first_index, 813 XFS_LOOKUP_BATCH); 814 else 815 nr_found = radix_tree_gang_lookup_tag( 816 &pag->pag_ici_root, 817 (void **) batch, first_index, 818 XFS_LOOKUP_BATCH, tag); 819 820 if (!nr_found) { 821 rcu_read_unlock(); 822 break; 823 } 824 825 /* 826 * Grab the inodes before we drop the lock. if we found 827 * nothing, nr == 0 and the loop will be skipped. 828 */ 829 for (i = 0; i < nr_found; i++) { 830 struct xfs_inode *ip = batch[i]; 831 832 if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) 833 batch[i] = NULL; 834 835 /* 836 * Update the index for the next lookup. Catch 837 * overflows into the next AG range which can occur if 838 * we have inodes in the last block of the AG and we 839 * are currently pointing to the last inode. 840 * 841 * Because we may see inodes that are from the wrong AG 842 * due to RCU freeing and reallocation, only update the 843 * index if it lies in this AG. It was a race that lead 844 * us to see this inode, so another lookup from the 845 * same index will not find it again. 846 */ 847 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 848 continue; 849 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 850 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 851 done = 1; 852 } 853 854 /* unlock now we've grabbed the inodes. */ 855 rcu_read_unlock(); 856 857 for (i = 0; i < nr_found; i++) { 858 if (!batch[i]) 859 continue; 860 if ((iter_flags & XFS_AGITER_INEW_WAIT) && 861 xfs_iflags_test(batch[i], XFS_INEW)) 862 xfs_inew_wait(batch[i]); 863 error = execute(batch[i], flags, args); 864 xfs_irele(batch[i]); 865 if (error == -EAGAIN) { 866 skipped++; 867 continue; 868 } 869 if (error && last_error != -EFSCORRUPTED) 870 last_error = error; 871 } 872 873 /* bail out if the filesystem is corrupted. */ 874 if (error == -EFSCORRUPTED) 875 break; 876 877 cond_resched(); 878 879 } while (nr_found && !done); 880 881 if (skipped) { 882 delay(1); 883 goto restart; 884 } 885 return last_error; 886 } 887 888 /* 889 * Background scanning to trim post-EOF preallocated space. This is queued 890 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 891 */ 892 void 893 xfs_queue_eofblocks( 894 struct xfs_mount *mp) 895 { 896 rcu_read_lock(); 897 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 898 queue_delayed_work(mp->m_eofblocks_workqueue, 899 &mp->m_eofblocks_work, 900 msecs_to_jiffies(xfs_eofb_secs * 1000)); 901 rcu_read_unlock(); 902 } 903 904 void 905 xfs_eofblocks_worker( 906 struct work_struct *work) 907 { 908 struct xfs_mount *mp = container_of(to_delayed_work(work), 909 struct xfs_mount, m_eofblocks_work); 910 xfs_icache_free_eofblocks(mp, NULL); 911 xfs_queue_eofblocks(mp); 912 } 913 914 /* 915 * Background scanning to trim preallocated CoW space. This is queued 916 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). 917 * (We'll just piggyback on the post-EOF prealloc space workqueue.) 918 */ 919 void 920 xfs_queue_cowblocks( 921 struct xfs_mount *mp) 922 { 923 rcu_read_lock(); 924 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) 925 queue_delayed_work(mp->m_eofblocks_workqueue, 926 &mp->m_cowblocks_work, 927 msecs_to_jiffies(xfs_cowb_secs * 1000)); 928 rcu_read_unlock(); 929 } 930 931 void 932 xfs_cowblocks_worker( 933 struct work_struct *work) 934 { 935 struct xfs_mount *mp = container_of(to_delayed_work(work), 936 struct xfs_mount, m_cowblocks_work); 937 xfs_icache_free_cowblocks(mp, NULL); 938 xfs_queue_cowblocks(mp); 939 } 940 941 int 942 xfs_inode_ag_iterator_flags( 943 struct xfs_mount *mp, 944 int (*execute)(struct xfs_inode *ip, int flags, 945 void *args), 946 int flags, 947 void *args, 948 int iter_flags) 949 { 950 struct xfs_perag *pag; 951 int error = 0; 952 int last_error = 0; 953 xfs_agnumber_t ag; 954 955 ag = 0; 956 while ((pag = xfs_perag_get(mp, ag))) { 957 ag = pag->pag_agno + 1; 958 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, 959 iter_flags); 960 xfs_perag_put(pag); 961 if (error) { 962 last_error = error; 963 if (error == -EFSCORRUPTED) 964 break; 965 } 966 } 967 return last_error; 968 } 969 970 int 971 xfs_inode_ag_iterator( 972 struct xfs_mount *mp, 973 int (*execute)(struct xfs_inode *ip, int flags, 974 void *args), 975 int flags, 976 void *args) 977 { 978 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); 979 } 980 981 int 982 xfs_inode_ag_iterator_tag( 983 struct xfs_mount *mp, 984 int (*execute)(struct xfs_inode *ip, int flags, 985 void *args), 986 int flags, 987 void *args, 988 int tag) 989 { 990 struct xfs_perag *pag; 991 int error = 0; 992 int last_error = 0; 993 xfs_agnumber_t ag; 994 995 ag = 0; 996 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 997 ag = pag->pag_agno + 1; 998 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, 999 0); 1000 xfs_perag_put(pag); 1001 if (error) { 1002 last_error = error; 1003 if (error == -EFSCORRUPTED) 1004 break; 1005 } 1006 } 1007 return last_error; 1008 } 1009 1010 /* 1011 * Grab the inode for reclaim exclusively. 1012 * Return 0 if we grabbed it, non-zero otherwise. 1013 */ 1014 STATIC int 1015 xfs_reclaim_inode_grab( 1016 struct xfs_inode *ip, 1017 int flags) 1018 { 1019 ASSERT(rcu_read_lock_held()); 1020 1021 /* quick check for stale RCU freed inode */ 1022 if (!ip->i_ino) 1023 return 1; 1024 1025 /* 1026 * If we are asked for non-blocking operation, do unlocked checks to 1027 * see if the inode already is being flushed or in reclaim to avoid 1028 * lock traffic. 1029 */ 1030 if ((flags & SYNC_TRYLOCK) && 1031 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 1032 return 1; 1033 1034 /* 1035 * The radix tree lock here protects a thread in xfs_iget from racing 1036 * with us starting reclaim on the inode. Once we have the 1037 * XFS_IRECLAIM flag set it will not touch us. 1038 * 1039 * Due to RCU lookup, we may find inodes that have been freed and only 1040 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 1041 * aren't candidates for reclaim at all, so we must check the 1042 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 1043 */ 1044 spin_lock(&ip->i_flags_lock); 1045 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 1046 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 1047 /* not a reclaim candidate. */ 1048 spin_unlock(&ip->i_flags_lock); 1049 return 1; 1050 } 1051 __xfs_iflags_set(ip, XFS_IRECLAIM); 1052 spin_unlock(&ip->i_flags_lock); 1053 return 0; 1054 } 1055 1056 /* 1057 * Inodes in different states need to be treated differently. The following 1058 * table lists the inode states and the reclaim actions necessary: 1059 * 1060 * inode state iflush ret required action 1061 * --------------- ---------- --------------- 1062 * bad - reclaim 1063 * shutdown EIO unpin and reclaim 1064 * clean, unpinned 0 reclaim 1065 * stale, unpinned 0 reclaim 1066 * clean, pinned(*) 0 requeue 1067 * stale, pinned EAGAIN requeue 1068 * dirty, async - requeue 1069 * dirty, sync 0 reclaim 1070 * 1071 * (*) dgc: I don't think the clean, pinned state is possible but it gets 1072 * handled anyway given the order of checks implemented. 1073 * 1074 * Also, because we get the flush lock first, we know that any inode that has 1075 * been flushed delwri has had the flush completed by the time we check that 1076 * the inode is clean. 1077 * 1078 * Note that because the inode is flushed delayed write by AIL pushing, the 1079 * flush lock may already be held here and waiting on it can result in very 1080 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 1081 * the caller should push the AIL first before trying to reclaim inodes to 1082 * minimise the amount of time spent waiting. For background relaim, we only 1083 * bother to reclaim clean inodes anyway. 1084 * 1085 * Hence the order of actions after gaining the locks should be: 1086 * bad => reclaim 1087 * shutdown => unpin and reclaim 1088 * pinned, async => requeue 1089 * pinned, sync => unpin 1090 * stale => reclaim 1091 * clean => reclaim 1092 * dirty, async => requeue 1093 * dirty, sync => flush, wait and reclaim 1094 */ 1095 STATIC int 1096 xfs_reclaim_inode( 1097 struct xfs_inode *ip, 1098 struct xfs_perag *pag, 1099 int sync_mode) 1100 { 1101 struct xfs_buf *bp = NULL; 1102 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 1103 int error; 1104 1105 restart: 1106 error = 0; 1107 xfs_ilock(ip, XFS_ILOCK_EXCL); 1108 if (!xfs_iflock_nowait(ip)) { 1109 if (!(sync_mode & SYNC_WAIT)) 1110 goto out; 1111 xfs_iflock(ip); 1112 } 1113 1114 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1115 xfs_iunpin_wait(ip); 1116 /* xfs_iflush_abort() drops the flush lock */ 1117 xfs_iflush_abort(ip, false); 1118 goto reclaim; 1119 } 1120 if (xfs_ipincount(ip)) { 1121 if (!(sync_mode & SYNC_WAIT)) 1122 goto out_ifunlock; 1123 xfs_iunpin_wait(ip); 1124 } 1125 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { 1126 xfs_ifunlock(ip); 1127 goto reclaim; 1128 } 1129 1130 /* 1131 * Never flush out dirty data during non-blocking reclaim, as it would 1132 * just contend with AIL pushing trying to do the same job. 1133 */ 1134 if (!(sync_mode & SYNC_WAIT)) 1135 goto out_ifunlock; 1136 1137 /* 1138 * Now we have an inode that needs flushing. 1139 * 1140 * Note that xfs_iflush will never block on the inode buffer lock, as 1141 * xfs_ifree_cluster() can lock the inode buffer before it locks the 1142 * ip->i_lock, and we are doing the exact opposite here. As a result, 1143 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 1144 * result in an ABBA deadlock with xfs_ifree_cluster(). 1145 * 1146 * As xfs_ifree_cluser() must gather all inodes that are active in the 1147 * cache to mark them stale, if we hit this case we don't actually want 1148 * to do IO here - we want the inode marked stale so we can simply 1149 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 1150 * inode, back off and try again. Hopefully the next pass through will 1151 * see the stale flag set on the inode. 1152 */ 1153 error = xfs_iflush(ip, &bp); 1154 if (error == -EAGAIN) { 1155 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1156 /* backoff longer than in xfs_ifree_cluster */ 1157 delay(2); 1158 goto restart; 1159 } 1160 1161 if (!error) { 1162 error = xfs_bwrite(bp); 1163 xfs_buf_relse(bp); 1164 } 1165 1166 reclaim: 1167 ASSERT(!xfs_isiflocked(ip)); 1168 1169 /* 1170 * Because we use RCU freeing we need to ensure the inode always appears 1171 * to be reclaimed with an invalid inode number when in the free state. 1172 * We do this as early as possible under the ILOCK so that 1173 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 1174 * detect races with us here. By doing this, we guarantee that once 1175 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 1176 * it will see either a valid inode that will serialise correctly, or it 1177 * will see an invalid inode that it can skip. 1178 */ 1179 spin_lock(&ip->i_flags_lock); 1180 ip->i_flags = XFS_IRECLAIM; 1181 ip->i_ino = 0; 1182 spin_unlock(&ip->i_flags_lock); 1183 1184 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1185 1186 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1187 /* 1188 * Remove the inode from the per-AG radix tree. 1189 * 1190 * Because radix_tree_delete won't complain even if the item was never 1191 * added to the tree assert that it's been there before to catch 1192 * problems with the inode life time early on. 1193 */ 1194 spin_lock(&pag->pag_ici_lock); 1195 if (!radix_tree_delete(&pag->pag_ici_root, 1196 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1197 ASSERT(0); 1198 xfs_perag_clear_reclaim_tag(pag); 1199 spin_unlock(&pag->pag_ici_lock); 1200 1201 /* 1202 * Here we do an (almost) spurious inode lock in order to coordinate 1203 * with inode cache radix tree lookups. This is because the lookup 1204 * can reference the inodes in the cache without taking references. 1205 * 1206 * We make that OK here by ensuring that we wait until the inode is 1207 * unlocked after the lookup before we go ahead and free it. 1208 */ 1209 xfs_ilock(ip, XFS_ILOCK_EXCL); 1210 xfs_qm_dqdetach(ip); 1211 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1212 1213 __xfs_inode_free(ip); 1214 return error; 1215 1216 out_ifunlock: 1217 xfs_ifunlock(ip); 1218 out: 1219 xfs_iflags_clear(ip, XFS_IRECLAIM); 1220 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1221 /* 1222 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1223 * a short while. However, this just burns CPU time scanning the tree 1224 * waiting for IO to complete and the reclaim work never goes back to 1225 * the idle state. Instead, return 0 to let the next scheduled 1226 * background reclaim attempt to reclaim the inode again. 1227 */ 1228 return 0; 1229 } 1230 1231 /* 1232 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1233 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1234 * then a shut down during filesystem unmount reclaim walk leak all the 1235 * unreclaimed inodes. 1236 */ 1237 STATIC int 1238 xfs_reclaim_inodes_ag( 1239 struct xfs_mount *mp, 1240 int flags, 1241 int *nr_to_scan) 1242 { 1243 struct xfs_perag *pag; 1244 int error = 0; 1245 int last_error = 0; 1246 xfs_agnumber_t ag; 1247 int trylock = flags & SYNC_TRYLOCK; 1248 int skipped; 1249 1250 restart: 1251 ag = 0; 1252 skipped = 0; 1253 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1254 unsigned long first_index = 0; 1255 int done = 0; 1256 int nr_found = 0; 1257 1258 ag = pag->pag_agno + 1; 1259 1260 if (trylock) { 1261 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1262 skipped++; 1263 xfs_perag_put(pag); 1264 continue; 1265 } 1266 first_index = pag->pag_ici_reclaim_cursor; 1267 } else 1268 mutex_lock(&pag->pag_ici_reclaim_lock); 1269 1270 do { 1271 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1272 int i; 1273 1274 rcu_read_lock(); 1275 nr_found = radix_tree_gang_lookup_tag( 1276 &pag->pag_ici_root, 1277 (void **)batch, first_index, 1278 XFS_LOOKUP_BATCH, 1279 XFS_ICI_RECLAIM_TAG); 1280 if (!nr_found) { 1281 done = 1; 1282 rcu_read_unlock(); 1283 break; 1284 } 1285 1286 /* 1287 * Grab the inodes before we drop the lock. if we found 1288 * nothing, nr == 0 and the loop will be skipped. 1289 */ 1290 for (i = 0; i < nr_found; i++) { 1291 struct xfs_inode *ip = batch[i]; 1292 1293 if (done || xfs_reclaim_inode_grab(ip, flags)) 1294 batch[i] = NULL; 1295 1296 /* 1297 * Update the index for the next lookup. Catch 1298 * overflows into the next AG range which can 1299 * occur if we have inodes in the last block of 1300 * the AG and we are currently pointing to the 1301 * last inode. 1302 * 1303 * Because we may see inodes that are from the 1304 * wrong AG due to RCU freeing and 1305 * reallocation, only update the index if it 1306 * lies in this AG. It was a race that lead us 1307 * to see this inode, so another lookup from 1308 * the same index will not find it again. 1309 */ 1310 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1311 pag->pag_agno) 1312 continue; 1313 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1314 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1315 done = 1; 1316 } 1317 1318 /* unlock now we've grabbed the inodes. */ 1319 rcu_read_unlock(); 1320 1321 for (i = 0; i < nr_found; i++) { 1322 if (!batch[i]) 1323 continue; 1324 error = xfs_reclaim_inode(batch[i], pag, flags); 1325 if (error && last_error != -EFSCORRUPTED) 1326 last_error = error; 1327 } 1328 1329 *nr_to_scan -= XFS_LOOKUP_BATCH; 1330 1331 cond_resched(); 1332 1333 } while (nr_found && !done && *nr_to_scan > 0); 1334 1335 if (trylock && !done) 1336 pag->pag_ici_reclaim_cursor = first_index; 1337 else 1338 pag->pag_ici_reclaim_cursor = 0; 1339 mutex_unlock(&pag->pag_ici_reclaim_lock); 1340 xfs_perag_put(pag); 1341 } 1342 1343 /* 1344 * if we skipped any AG, and we still have scan count remaining, do 1345 * another pass this time using blocking reclaim semantics (i.e 1346 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1347 * ensure that when we get more reclaimers than AGs we block rather 1348 * than spin trying to execute reclaim. 1349 */ 1350 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1351 trylock = 0; 1352 goto restart; 1353 } 1354 return last_error; 1355 } 1356 1357 int 1358 xfs_reclaim_inodes( 1359 xfs_mount_t *mp, 1360 int mode) 1361 { 1362 int nr_to_scan = INT_MAX; 1363 1364 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1365 } 1366 1367 /* 1368 * Scan a certain number of inodes for reclaim. 1369 * 1370 * When called we make sure that there is a background (fast) inode reclaim in 1371 * progress, while we will throttle the speed of reclaim via doing synchronous 1372 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1373 * them to be cleaned, which we hope will not be very long due to the 1374 * background walker having already kicked the IO off on those dirty inodes. 1375 */ 1376 long 1377 xfs_reclaim_inodes_nr( 1378 struct xfs_mount *mp, 1379 int nr_to_scan) 1380 { 1381 /* kick background reclaimer and push the AIL */ 1382 xfs_reclaim_work_queue(mp); 1383 xfs_ail_push_all(mp->m_ail); 1384 1385 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1386 } 1387 1388 /* 1389 * Return the number of reclaimable inodes in the filesystem for 1390 * the shrinker to determine how much to reclaim. 1391 */ 1392 int 1393 xfs_reclaim_inodes_count( 1394 struct xfs_mount *mp) 1395 { 1396 struct xfs_perag *pag; 1397 xfs_agnumber_t ag = 0; 1398 int reclaimable = 0; 1399 1400 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1401 ag = pag->pag_agno + 1; 1402 reclaimable += pag->pag_ici_reclaimable; 1403 xfs_perag_put(pag); 1404 } 1405 return reclaimable; 1406 } 1407 1408 STATIC int 1409 xfs_inode_match_id( 1410 struct xfs_inode *ip, 1411 struct xfs_eofblocks *eofb) 1412 { 1413 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1414 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1415 return 0; 1416 1417 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1418 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1419 return 0; 1420 1421 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1422 ip->i_d.di_projid != eofb->eof_prid) 1423 return 0; 1424 1425 return 1; 1426 } 1427 1428 /* 1429 * A union-based inode filtering algorithm. Process the inode if any of the 1430 * criteria match. This is for global/internal scans only. 1431 */ 1432 STATIC int 1433 xfs_inode_match_id_union( 1434 struct xfs_inode *ip, 1435 struct xfs_eofblocks *eofb) 1436 { 1437 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1438 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1439 return 1; 1440 1441 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1442 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1443 return 1; 1444 1445 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1446 ip->i_d.di_projid == eofb->eof_prid) 1447 return 1; 1448 1449 return 0; 1450 } 1451 1452 STATIC int 1453 xfs_inode_free_eofblocks( 1454 struct xfs_inode *ip, 1455 int flags, 1456 void *args) 1457 { 1458 int ret = 0; 1459 struct xfs_eofblocks *eofb = args; 1460 int match; 1461 1462 if (!xfs_can_free_eofblocks(ip, false)) { 1463 /* inode could be preallocated or append-only */ 1464 trace_xfs_inode_free_eofblocks_invalid(ip); 1465 xfs_inode_clear_eofblocks_tag(ip); 1466 return 0; 1467 } 1468 1469 /* 1470 * If the mapping is dirty the operation can block and wait for some 1471 * time. Unless we are waiting, skip it. 1472 */ 1473 if (!(flags & SYNC_WAIT) && 1474 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1475 return 0; 1476 1477 if (eofb) { 1478 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1479 match = xfs_inode_match_id_union(ip, eofb); 1480 else 1481 match = xfs_inode_match_id(ip, eofb); 1482 if (!match) 1483 return 0; 1484 1485 /* skip the inode if the file size is too small */ 1486 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1487 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1488 return 0; 1489 } 1490 1491 /* 1492 * If the caller is waiting, return -EAGAIN to keep the background 1493 * scanner moving and revisit the inode in a subsequent pass. 1494 */ 1495 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1496 if (flags & SYNC_WAIT) 1497 ret = -EAGAIN; 1498 return ret; 1499 } 1500 ret = xfs_free_eofblocks(ip); 1501 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1502 1503 return ret; 1504 } 1505 1506 static int 1507 __xfs_icache_free_eofblocks( 1508 struct xfs_mount *mp, 1509 struct xfs_eofblocks *eofb, 1510 int (*execute)(struct xfs_inode *ip, int flags, 1511 void *args), 1512 int tag) 1513 { 1514 int flags = SYNC_TRYLOCK; 1515 1516 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1517 flags = SYNC_WAIT; 1518 1519 return xfs_inode_ag_iterator_tag(mp, execute, flags, 1520 eofb, tag); 1521 } 1522 1523 int 1524 xfs_icache_free_eofblocks( 1525 struct xfs_mount *mp, 1526 struct xfs_eofblocks *eofb) 1527 { 1528 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, 1529 XFS_ICI_EOFBLOCKS_TAG); 1530 } 1531 1532 /* 1533 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1534 * multiple quotas, we don't know exactly which quota caused an allocation 1535 * failure. We make a best effort by including each quota under low free space 1536 * conditions (less than 1% free space) in the scan. 1537 */ 1538 static int 1539 __xfs_inode_free_quota_eofblocks( 1540 struct xfs_inode *ip, 1541 int (*execute)(struct xfs_mount *mp, 1542 struct xfs_eofblocks *eofb)) 1543 { 1544 int scan = 0; 1545 struct xfs_eofblocks eofb = {0}; 1546 struct xfs_dquot *dq; 1547 1548 /* 1549 * Run a sync scan to increase effectiveness and use the union filter to 1550 * cover all applicable quotas in a single scan. 1551 */ 1552 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1553 1554 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1555 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1556 if (dq && xfs_dquot_lowsp(dq)) { 1557 eofb.eof_uid = VFS_I(ip)->i_uid; 1558 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1559 scan = 1; 1560 } 1561 } 1562 1563 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1564 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1565 if (dq && xfs_dquot_lowsp(dq)) { 1566 eofb.eof_gid = VFS_I(ip)->i_gid; 1567 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1568 scan = 1; 1569 } 1570 } 1571 1572 if (scan) 1573 execute(ip->i_mount, &eofb); 1574 1575 return scan; 1576 } 1577 1578 int 1579 xfs_inode_free_quota_eofblocks( 1580 struct xfs_inode *ip) 1581 { 1582 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); 1583 } 1584 1585 static inline unsigned long 1586 xfs_iflag_for_tag( 1587 int tag) 1588 { 1589 switch (tag) { 1590 case XFS_ICI_EOFBLOCKS_TAG: 1591 return XFS_IEOFBLOCKS; 1592 case XFS_ICI_COWBLOCKS_TAG: 1593 return XFS_ICOWBLOCKS; 1594 default: 1595 ASSERT(0); 1596 return 0; 1597 } 1598 } 1599 1600 static void 1601 __xfs_inode_set_blocks_tag( 1602 xfs_inode_t *ip, 1603 void (*execute)(struct xfs_mount *mp), 1604 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1605 int error, unsigned long caller_ip), 1606 int tag) 1607 { 1608 struct xfs_mount *mp = ip->i_mount; 1609 struct xfs_perag *pag; 1610 int tagged; 1611 1612 /* 1613 * Don't bother locking the AG and looking up in the radix trees 1614 * if we already know that we have the tag set. 1615 */ 1616 if (ip->i_flags & xfs_iflag_for_tag(tag)) 1617 return; 1618 spin_lock(&ip->i_flags_lock); 1619 ip->i_flags |= xfs_iflag_for_tag(tag); 1620 spin_unlock(&ip->i_flags_lock); 1621 1622 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1623 spin_lock(&pag->pag_ici_lock); 1624 1625 tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 1626 radix_tree_tag_set(&pag->pag_ici_root, 1627 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1628 if (!tagged) { 1629 /* propagate the eofblocks tag up into the perag radix tree */ 1630 spin_lock(&ip->i_mount->m_perag_lock); 1631 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1632 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1633 tag); 1634 spin_unlock(&ip->i_mount->m_perag_lock); 1635 1636 /* kick off background trimming */ 1637 execute(ip->i_mount); 1638 1639 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1640 } 1641 1642 spin_unlock(&pag->pag_ici_lock); 1643 xfs_perag_put(pag); 1644 } 1645 1646 void 1647 xfs_inode_set_eofblocks_tag( 1648 xfs_inode_t *ip) 1649 { 1650 trace_xfs_inode_set_eofblocks_tag(ip); 1651 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, 1652 trace_xfs_perag_set_eofblocks, 1653 XFS_ICI_EOFBLOCKS_TAG); 1654 } 1655 1656 static void 1657 __xfs_inode_clear_blocks_tag( 1658 xfs_inode_t *ip, 1659 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1660 int error, unsigned long caller_ip), 1661 int tag) 1662 { 1663 struct xfs_mount *mp = ip->i_mount; 1664 struct xfs_perag *pag; 1665 1666 spin_lock(&ip->i_flags_lock); 1667 ip->i_flags &= ~xfs_iflag_for_tag(tag); 1668 spin_unlock(&ip->i_flags_lock); 1669 1670 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1671 spin_lock(&pag->pag_ici_lock); 1672 1673 radix_tree_tag_clear(&pag->pag_ici_root, 1674 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1675 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { 1676 /* clear the eofblocks tag from the perag radix tree */ 1677 spin_lock(&ip->i_mount->m_perag_lock); 1678 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1679 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1680 tag); 1681 spin_unlock(&ip->i_mount->m_perag_lock); 1682 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1683 } 1684 1685 spin_unlock(&pag->pag_ici_lock); 1686 xfs_perag_put(pag); 1687 } 1688 1689 void 1690 xfs_inode_clear_eofblocks_tag( 1691 xfs_inode_t *ip) 1692 { 1693 trace_xfs_inode_clear_eofblocks_tag(ip); 1694 return __xfs_inode_clear_blocks_tag(ip, 1695 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); 1696 } 1697 1698 /* 1699 * Set ourselves up to free CoW blocks from this file. If it's already clean 1700 * then we can bail out quickly, but otherwise we must back off if the file 1701 * is undergoing some kind of write. 1702 */ 1703 static bool 1704 xfs_prep_free_cowblocks( 1705 struct xfs_inode *ip) 1706 { 1707 /* 1708 * Just clear the tag if we have an empty cow fork or none at all. It's 1709 * possible the inode was fully unshared since it was originally tagged. 1710 */ 1711 if (!xfs_inode_has_cow_data(ip)) { 1712 trace_xfs_inode_free_cowblocks_invalid(ip); 1713 xfs_inode_clear_cowblocks_tag(ip); 1714 return false; 1715 } 1716 1717 /* 1718 * If the mapping is dirty or under writeback we cannot touch the 1719 * CoW fork. Leave it alone if we're in the midst of a directio. 1720 */ 1721 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1722 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1723 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1724 atomic_read(&VFS_I(ip)->i_dio_count)) 1725 return false; 1726 1727 return true; 1728 } 1729 1730 /* 1731 * Automatic CoW Reservation Freeing 1732 * 1733 * These functions automatically garbage collect leftover CoW reservations 1734 * that were made on behalf of a cowextsize hint when we start to run out 1735 * of quota or when the reservations sit around for too long. If the file 1736 * has dirty pages or is undergoing writeback, its CoW reservations will 1737 * be retained. 1738 * 1739 * The actual garbage collection piggybacks off the same code that runs 1740 * the speculative EOF preallocation garbage collector. 1741 */ 1742 STATIC int 1743 xfs_inode_free_cowblocks( 1744 struct xfs_inode *ip, 1745 int flags, 1746 void *args) 1747 { 1748 struct xfs_eofblocks *eofb = args; 1749 int match; 1750 int ret = 0; 1751 1752 if (!xfs_prep_free_cowblocks(ip)) 1753 return 0; 1754 1755 if (eofb) { 1756 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1757 match = xfs_inode_match_id_union(ip, eofb); 1758 else 1759 match = xfs_inode_match_id(ip, eofb); 1760 if (!match) 1761 return 0; 1762 1763 /* skip the inode if the file size is too small */ 1764 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1765 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1766 return 0; 1767 } 1768 1769 /* Free the CoW blocks */ 1770 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1771 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1772 1773 /* 1774 * Check again, nobody else should be able to dirty blocks or change 1775 * the reflink iflag now that we have the first two locks held. 1776 */ 1777 if (xfs_prep_free_cowblocks(ip)) 1778 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1779 1780 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1781 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1782 1783 return ret; 1784 } 1785 1786 int 1787 xfs_icache_free_cowblocks( 1788 struct xfs_mount *mp, 1789 struct xfs_eofblocks *eofb) 1790 { 1791 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, 1792 XFS_ICI_COWBLOCKS_TAG); 1793 } 1794 1795 int 1796 xfs_inode_free_quota_cowblocks( 1797 struct xfs_inode *ip) 1798 { 1799 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); 1800 } 1801 1802 void 1803 xfs_inode_set_cowblocks_tag( 1804 xfs_inode_t *ip) 1805 { 1806 trace_xfs_inode_set_cowblocks_tag(ip); 1807 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, 1808 trace_xfs_perag_set_cowblocks, 1809 XFS_ICI_COWBLOCKS_TAG); 1810 } 1811 1812 void 1813 xfs_inode_clear_cowblocks_tag( 1814 xfs_inode_t *ip) 1815 { 1816 trace_xfs_inode_clear_cowblocks_tag(ip); 1817 return __xfs_inode_clear_blocks_tag(ip, 1818 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); 1819 } 1820 1821 /* Disable post-EOF and CoW block auto-reclamation. */ 1822 void 1823 xfs_stop_block_reaping( 1824 struct xfs_mount *mp) 1825 { 1826 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1827 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1828 } 1829 1830 /* Enable post-EOF and CoW block auto-reclamation. */ 1831 void 1832 xfs_start_block_reaping( 1833 struct xfs_mount *mp) 1834 { 1835 xfs_queue_eofblocks(mp); 1836 xfs_queue_cowblocks(mp); 1837 } 1838