1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_error.h" 27 #include "xfs_trans.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_quota.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_dquot_item.h" 35 #include "xfs_dquot.h" 36 #include "xfs_reflink.h" 37 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 41 /* 42 * Allocate and initialise an xfs_inode. 43 */ 44 struct xfs_inode * 45 xfs_inode_alloc( 46 struct xfs_mount *mp, 47 xfs_ino_t ino) 48 { 49 struct xfs_inode *ip; 50 51 /* 52 * if this didn't occur in transactions, we could use 53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 54 * code up to do this anyway. 55 */ 56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 57 if (!ip) 58 return NULL; 59 if (inode_init_always(mp->m_super, VFS_I(ip))) { 60 kmem_zone_free(xfs_inode_zone, ip); 61 return NULL; 62 } 63 64 /* VFS doesn't initialise i_mode! */ 65 VFS_I(ip)->i_mode = 0; 66 67 XFS_STATS_INC(mp, vn_active); 68 ASSERT(atomic_read(&ip->i_pincount) == 0); 69 ASSERT(!xfs_isiflocked(ip)); 70 ASSERT(ip->i_ino == 0); 71 72 /* initialise the xfs inode */ 73 ip->i_ino = ino; 74 ip->i_mount = mp; 75 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 76 ip->i_afp = NULL; 77 ip->i_cowfp = NULL; 78 ip->i_cnextents = 0; 79 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 80 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 81 ip->i_flags = 0; 82 ip->i_delayed_blks = 0; 83 memset(&ip->i_d, 0, sizeof(ip->i_d)); 84 85 return ip; 86 } 87 88 STATIC void 89 xfs_inode_free_callback( 90 struct rcu_head *head) 91 { 92 struct inode *inode = container_of(head, struct inode, i_rcu); 93 struct xfs_inode *ip = XFS_I(inode); 94 95 switch (VFS_I(ip)->i_mode & S_IFMT) { 96 case S_IFREG: 97 case S_IFDIR: 98 case S_IFLNK: 99 xfs_idestroy_fork(ip, XFS_DATA_FORK); 100 break; 101 } 102 103 if (ip->i_afp) 104 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 105 if (ip->i_cowfp) 106 xfs_idestroy_fork(ip, XFS_COW_FORK); 107 108 if (ip->i_itemp) { 109 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 110 xfs_inode_item_destroy(ip); 111 ip->i_itemp = NULL; 112 } 113 114 kmem_zone_free(xfs_inode_zone, ip); 115 } 116 117 static void 118 __xfs_inode_free( 119 struct xfs_inode *ip) 120 { 121 /* asserts to verify all state is correct here */ 122 ASSERT(atomic_read(&ip->i_pincount) == 0); 123 XFS_STATS_DEC(ip->i_mount, vn_active); 124 125 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 126 } 127 128 void 129 xfs_inode_free( 130 struct xfs_inode *ip) 131 { 132 ASSERT(!xfs_isiflocked(ip)); 133 134 /* 135 * Because we use RCU freeing we need to ensure the inode always 136 * appears to be reclaimed with an invalid inode number when in the 137 * free state. The ip->i_flags_lock provides the barrier against lookup 138 * races. 139 */ 140 spin_lock(&ip->i_flags_lock); 141 ip->i_flags = XFS_IRECLAIM; 142 ip->i_ino = 0; 143 spin_unlock(&ip->i_flags_lock); 144 145 __xfs_inode_free(ip); 146 } 147 148 /* 149 * Queue a new inode reclaim pass if there are reclaimable inodes and there 150 * isn't a reclaim pass already in progress. By default it runs every 5s based 151 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 152 * tunable, but that can be done if this method proves to be ineffective or too 153 * aggressive. 154 */ 155 static void 156 xfs_reclaim_work_queue( 157 struct xfs_mount *mp) 158 { 159 160 rcu_read_lock(); 161 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 162 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 163 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 164 } 165 rcu_read_unlock(); 166 } 167 168 /* 169 * This is a fast pass over the inode cache to try to get reclaim moving on as 170 * many inodes as possible in a short period of time. It kicks itself every few 171 * seconds, as well as being kicked by the inode cache shrinker when memory 172 * goes low. It scans as quickly as possible avoiding locked inodes or those 173 * already being flushed, and once done schedules a future pass. 174 */ 175 void 176 xfs_reclaim_worker( 177 struct work_struct *work) 178 { 179 struct xfs_mount *mp = container_of(to_delayed_work(work), 180 struct xfs_mount, m_reclaim_work); 181 182 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 183 xfs_reclaim_work_queue(mp); 184 } 185 186 static void 187 xfs_perag_set_reclaim_tag( 188 struct xfs_perag *pag) 189 { 190 struct xfs_mount *mp = pag->pag_mount; 191 192 lockdep_assert_held(&pag->pag_ici_lock); 193 if (pag->pag_ici_reclaimable++) 194 return; 195 196 /* propagate the reclaim tag up into the perag radix tree */ 197 spin_lock(&mp->m_perag_lock); 198 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 199 XFS_ICI_RECLAIM_TAG); 200 spin_unlock(&mp->m_perag_lock); 201 202 /* schedule periodic background inode reclaim */ 203 xfs_reclaim_work_queue(mp); 204 205 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 206 } 207 208 static void 209 xfs_perag_clear_reclaim_tag( 210 struct xfs_perag *pag) 211 { 212 struct xfs_mount *mp = pag->pag_mount; 213 214 lockdep_assert_held(&pag->pag_ici_lock); 215 if (--pag->pag_ici_reclaimable) 216 return; 217 218 /* clear the reclaim tag from the perag radix tree */ 219 spin_lock(&mp->m_perag_lock); 220 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 221 XFS_ICI_RECLAIM_TAG); 222 spin_unlock(&mp->m_perag_lock); 223 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 224 } 225 226 227 /* 228 * We set the inode flag atomically with the radix tree tag. 229 * Once we get tag lookups on the radix tree, this inode flag 230 * can go away. 231 */ 232 void 233 xfs_inode_set_reclaim_tag( 234 struct xfs_inode *ip) 235 { 236 struct xfs_mount *mp = ip->i_mount; 237 struct xfs_perag *pag; 238 239 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 240 spin_lock(&pag->pag_ici_lock); 241 spin_lock(&ip->i_flags_lock); 242 243 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 244 XFS_ICI_RECLAIM_TAG); 245 xfs_perag_set_reclaim_tag(pag); 246 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 247 248 spin_unlock(&ip->i_flags_lock); 249 spin_unlock(&pag->pag_ici_lock); 250 xfs_perag_put(pag); 251 } 252 253 STATIC void 254 xfs_inode_clear_reclaim_tag( 255 struct xfs_perag *pag, 256 xfs_ino_t ino) 257 { 258 radix_tree_tag_clear(&pag->pag_ici_root, 259 XFS_INO_TO_AGINO(pag->pag_mount, ino), 260 XFS_ICI_RECLAIM_TAG); 261 xfs_perag_clear_reclaim_tag(pag); 262 } 263 264 static void 265 xfs_inew_wait( 266 struct xfs_inode *ip) 267 { 268 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 269 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 270 271 do { 272 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 273 if (!xfs_iflags_test(ip, XFS_INEW)) 274 break; 275 schedule(); 276 } while (true); 277 finish_wait(wq, &wait.wait); 278 } 279 280 /* 281 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 282 * part of the structure. This is made more complex by the fact we store 283 * information about the on-disk values in the VFS inode and so we can't just 284 * overwrite the values unconditionally. Hence we save the parameters we 285 * need to retain across reinitialisation, and rewrite them into the VFS inode 286 * after reinitialisation even if it fails. 287 */ 288 static int 289 xfs_reinit_inode( 290 struct xfs_mount *mp, 291 struct inode *inode) 292 { 293 int error; 294 uint32_t nlink = inode->i_nlink; 295 uint32_t generation = inode->i_generation; 296 uint64_t version = inode->i_version; 297 umode_t mode = inode->i_mode; 298 299 error = inode_init_always(mp->m_super, inode); 300 301 set_nlink(inode, nlink); 302 inode->i_generation = generation; 303 inode->i_version = version; 304 inode->i_mode = mode; 305 return error; 306 } 307 308 /* 309 * Check the validity of the inode we just found it the cache 310 */ 311 static int 312 xfs_iget_cache_hit( 313 struct xfs_perag *pag, 314 struct xfs_inode *ip, 315 xfs_ino_t ino, 316 int flags, 317 int lock_flags) __releases(RCU) 318 { 319 struct inode *inode = VFS_I(ip); 320 struct xfs_mount *mp = ip->i_mount; 321 int error; 322 323 /* 324 * check for re-use of an inode within an RCU grace period due to the 325 * radix tree nodes not being updated yet. We monitor for this by 326 * setting the inode number to zero before freeing the inode structure. 327 * If the inode has been reallocated and set up, then the inode number 328 * will not match, so check for that, too. 329 */ 330 spin_lock(&ip->i_flags_lock); 331 if (ip->i_ino != ino) { 332 trace_xfs_iget_skip(ip); 333 XFS_STATS_INC(mp, xs_ig_frecycle); 334 error = -EAGAIN; 335 goto out_error; 336 } 337 338 339 /* 340 * If we are racing with another cache hit that is currently 341 * instantiating this inode or currently recycling it out of 342 * reclaimabe state, wait for the initialisation to complete 343 * before continuing. 344 * 345 * XXX(hch): eventually we should do something equivalent to 346 * wait_on_inode to wait for these flags to be cleared 347 * instead of polling for it. 348 */ 349 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 350 trace_xfs_iget_skip(ip); 351 XFS_STATS_INC(mp, xs_ig_frecycle); 352 error = -EAGAIN; 353 goto out_error; 354 } 355 356 /* 357 * If lookup is racing with unlink return an error immediately. 358 */ 359 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) { 360 error = -ENOENT; 361 goto out_error; 362 } 363 364 /* 365 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 366 * Need to carefully get it back into useable state. 367 */ 368 if (ip->i_flags & XFS_IRECLAIMABLE) { 369 trace_xfs_iget_reclaim(ip); 370 371 /* 372 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 373 * from stomping over us while we recycle the inode. We can't 374 * clear the radix tree reclaimable tag yet as it requires 375 * pag_ici_lock to be held exclusive. 376 */ 377 ip->i_flags |= XFS_IRECLAIM; 378 379 spin_unlock(&ip->i_flags_lock); 380 rcu_read_unlock(); 381 382 error = xfs_reinit_inode(mp, inode); 383 if (error) { 384 bool wake; 385 /* 386 * Re-initializing the inode failed, and we are in deep 387 * trouble. Try to re-add it to the reclaim list. 388 */ 389 rcu_read_lock(); 390 spin_lock(&ip->i_flags_lock); 391 wake = !!__xfs_iflags_test(ip, XFS_INEW); 392 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 393 if (wake) 394 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 395 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 396 trace_xfs_iget_reclaim_fail(ip); 397 goto out_error; 398 } 399 400 spin_lock(&pag->pag_ici_lock); 401 spin_lock(&ip->i_flags_lock); 402 403 /* 404 * Clear the per-lifetime state in the inode as we are now 405 * effectively a new inode and need to return to the initial 406 * state before reuse occurs. 407 */ 408 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 409 ip->i_flags |= XFS_INEW; 410 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 411 inode->i_state = I_NEW; 412 413 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 414 init_rwsem(&inode->i_rwsem); 415 416 spin_unlock(&ip->i_flags_lock); 417 spin_unlock(&pag->pag_ici_lock); 418 } else { 419 /* If the VFS inode is being torn down, pause and try again. */ 420 if (!igrab(inode)) { 421 trace_xfs_iget_skip(ip); 422 error = -EAGAIN; 423 goto out_error; 424 } 425 426 /* We've got a live one. */ 427 spin_unlock(&ip->i_flags_lock); 428 rcu_read_unlock(); 429 trace_xfs_iget_hit(ip); 430 } 431 432 if (lock_flags != 0) 433 xfs_ilock(ip, lock_flags); 434 435 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 436 XFS_STATS_INC(mp, xs_ig_found); 437 438 return 0; 439 440 out_error: 441 spin_unlock(&ip->i_flags_lock); 442 rcu_read_unlock(); 443 return error; 444 } 445 446 447 static int 448 xfs_iget_cache_miss( 449 struct xfs_mount *mp, 450 struct xfs_perag *pag, 451 xfs_trans_t *tp, 452 xfs_ino_t ino, 453 struct xfs_inode **ipp, 454 int flags, 455 int lock_flags) 456 { 457 struct xfs_inode *ip; 458 int error; 459 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 460 int iflags; 461 462 ip = xfs_inode_alloc(mp, ino); 463 if (!ip) 464 return -ENOMEM; 465 466 error = xfs_iread(mp, tp, ip, flags); 467 if (error) 468 goto out_destroy; 469 470 trace_xfs_iget_miss(ip); 471 472 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) { 473 error = -ENOENT; 474 goto out_destroy; 475 } 476 477 /* 478 * Preload the radix tree so we can insert safely under the 479 * write spinlock. Note that we cannot sleep inside the preload 480 * region. Since we can be called from transaction context, don't 481 * recurse into the file system. 482 */ 483 if (radix_tree_preload(GFP_NOFS)) { 484 error = -EAGAIN; 485 goto out_destroy; 486 } 487 488 /* 489 * Because the inode hasn't been added to the radix-tree yet it can't 490 * be found by another thread, so we can do the non-sleeping lock here. 491 */ 492 if (lock_flags) { 493 if (!xfs_ilock_nowait(ip, lock_flags)) 494 BUG(); 495 } 496 497 /* 498 * These values must be set before inserting the inode into the radix 499 * tree as the moment it is inserted a concurrent lookup (allowed by the 500 * RCU locking mechanism) can find it and that lookup must see that this 501 * is an inode currently under construction (i.e. that XFS_INEW is set). 502 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 503 * memory barrier that ensures this detection works correctly at lookup 504 * time. 505 */ 506 iflags = XFS_INEW; 507 if (flags & XFS_IGET_DONTCACHE) 508 iflags |= XFS_IDONTCACHE; 509 ip->i_udquot = NULL; 510 ip->i_gdquot = NULL; 511 ip->i_pdquot = NULL; 512 xfs_iflags_set(ip, iflags); 513 514 /* insert the new inode */ 515 spin_lock(&pag->pag_ici_lock); 516 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 517 if (unlikely(error)) { 518 WARN_ON(error != -EEXIST); 519 XFS_STATS_INC(mp, xs_ig_dup); 520 error = -EAGAIN; 521 goto out_preload_end; 522 } 523 spin_unlock(&pag->pag_ici_lock); 524 radix_tree_preload_end(); 525 526 *ipp = ip; 527 return 0; 528 529 out_preload_end: 530 spin_unlock(&pag->pag_ici_lock); 531 radix_tree_preload_end(); 532 if (lock_flags) 533 xfs_iunlock(ip, lock_flags); 534 out_destroy: 535 __destroy_inode(VFS_I(ip)); 536 xfs_inode_free(ip); 537 return error; 538 } 539 540 /* 541 * Look up an inode by number in the given file system. 542 * The inode is looked up in the cache held in each AG. 543 * If the inode is found in the cache, initialise the vfs inode 544 * if necessary. 545 * 546 * If it is not in core, read it in from the file system's device, 547 * add it to the cache and initialise the vfs inode. 548 * 549 * The inode is locked according to the value of the lock_flags parameter. 550 * This flag parameter indicates how and if the inode's IO lock and inode lock 551 * should be taken. 552 * 553 * mp -- the mount point structure for the current file system. It points 554 * to the inode hash table. 555 * tp -- a pointer to the current transaction if there is one. This is 556 * simply passed through to the xfs_iread() call. 557 * ino -- the number of the inode desired. This is the unique identifier 558 * within the file system for the inode being requested. 559 * lock_flags -- flags indicating how to lock the inode. See the comment 560 * for xfs_ilock() for a list of valid values. 561 */ 562 int 563 xfs_iget( 564 xfs_mount_t *mp, 565 xfs_trans_t *tp, 566 xfs_ino_t ino, 567 uint flags, 568 uint lock_flags, 569 xfs_inode_t **ipp) 570 { 571 xfs_inode_t *ip; 572 int error; 573 xfs_perag_t *pag; 574 xfs_agino_t agino; 575 576 /* 577 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 578 * doesn't get freed while it's being referenced during a 579 * radix tree traversal here. It assumes this function 580 * aqcuires only the ILOCK (and therefore it has no need to 581 * involve the IOLOCK in this synchronization). 582 */ 583 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 584 585 /* reject inode numbers outside existing AGs */ 586 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 587 return -EINVAL; 588 589 XFS_STATS_INC(mp, xs_ig_attempts); 590 591 /* get the perag structure and ensure that it's inode capable */ 592 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 593 agino = XFS_INO_TO_AGINO(mp, ino); 594 595 again: 596 error = 0; 597 rcu_read_lock(); 598 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 599 600 if (ip) { 601 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 602 if (error) 603 goto out_error_or_again; 604 } else { 605 rcu_read_unlock(); 606 XFS_STATS_INC(mp, xs_ig_missed); 607 608 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 609 flags, lock_flags); 610 if (error) 611 goto out_error_or_again; 612 } 613 xfs_perag_put(pag); 614 615 *ipp = ip; 616 617 /* 618 * If we have a real type for an on-disk inode, we can setup the inode 619 * now. If it's a new inode being created, xfs_ialloc will handle it. 620 */ 621 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 622 xfs_setup_existing_inode(ip); 623 return 0; 624 625 out_error_or_again: 626 if (error == -EAGAIN) { 627 delay(1); 628 goto again; 629 } 630 xfs_perag_put(pag); 631 return error; 632 } 633 634 /* 635 * The inode lookup is done in batches to keep the amount of lock traffic and 636 * radix tree lookups to a minimum. The batch size is a trade off between 637 * lookup reduction and stack usage. This is in the reclaim path, so we can't 638 * be too greedy. 639 */ 640 #define XFS_LOOKUP_BATCH 32 641 642 STATIC int 643 xfs_inode_ag_walk_grab( 644 struct xfs_inode *ip, 645 int flags) 646 { 647 struct inode *inode = VFS_I(ip); 648 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT); 649 650 ASSERT(rcu_read_lock_held()); 651 652 /* 653 * check for stale RCU freed inode 654 * 655 * If the inode has been reallocated, it doesn't matter if it's not in 656 * the AG we are walking - we are walking for writeback, so if it 657 * passes all the "valid inode" checks and is dirty, then we'll write 658 * it back anyway. If it has been reallocated and still being 659 * initialised, the XFS_INEW check below will catch it. 660 */ 661 spin_lock(&ip->i_flags_lock); 662 if (!ip->i_ino) 663 goto out_unlock_noent; 664 665 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 666 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || 667 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) 668 goto out_unlock_noent; 669 spin_unlock(&ip->i_flags_lock); 670 671 /* nothing to sync during shutdown */ 672 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 673 return -EFSCORRUPTED; 674 675 /* If we can't grab the inode, it must on it's way to reclaim. */ 676 if (!igrab(inode)) 677 return -ENOENT; 678 679 /* inode is valid */ 680 return 0; 681 682 out_unlock_noent: 683 spin_unlock(&ip->i_flags_lock); 684 return -ENOENT; 685 } 686 687 STATIC int 688 xfs_inode_ag_walk( 689 struct xfs_mount *mp, 690 struct xfs_perag *pag, 691 int (*execute)(struct xfs_inode *ip, int flags, 692 void *args), 693 int flags, 694 void *args, 695 int tag, 696 int iter_flags) 697 { 698 uint32_t first_index; 699 int last_error = 0; 700 int skipped; 701 int done; 702 int nr_found; 703 704 restart: 705 done = 0; 706 skipped = 0; 707 first_index = 0; 708 nr_found = 0; 709 do { 710 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 711 int error = 0; 712 int i; 713 714 rcu_read_lock(); 715 716 if (tag == -1) 717 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 718 (void **)batch, first_index, 719 XFS_LOOKUP_BATCH); 720 else 721 nr_found = radix_tree_gang_lookup_tag( 722 &pag->pag_ici_root, 723 (void **) batch, first_index, 724 XFS_LOOKUP_BATCH, tag); 725 726 if (!nr_found) { 727 rcu_read_unlock(); 728 break; 729 } 730 731 /* 732 * Grab the inodes before we drop the lock. if we found 733 * nothing, nr == 0 and the loop will be skipped. 734 */ 735 for (i = 0; i < nr_found; i++) { 736 struct xfs_inode *ip = batch[i]; 737 738 if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) 739 batch[i] = NULL; 740 741 /* 742 * Update the index for the next lookup. Catch 743 * overflows into the next AG range which can occur if 744 * we have inodes in the last block of the AG and we 745 * are currently pointing to the last inode. 746 * 747 * Because we may see inodes that are from the wrong AG 748 * due to RCU freeing and reallocation, only update the 749 * index if it lies in this AG. It was a race that lead 750 * us to see this inode, so another lookup from the 751 * same index will not find it again. 752 */ 753 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 754 continue; 755 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 756 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 757 done = 1; 758 } 759 760 /* unlock now we've grabbed the inodes. */ 761 rcu_read_unlock(); 762 763 for (i = 0; i < nr_found; i++) { 764 if (!batch[i]) 765 continue; 766 if ((iter_flags & XFS_AGITER_INEW_WAIT) && 767 xfs_iflags_test(batch[i], XFS_INEW)) 768 xfs_inew_wait(batch[i]); 769 error = execute(batch[i], flags, args); 770 IRELE(batch[i]); 771 if (error == -EAGAIN) { 772 skipped++; 773 continue; 774 } 775 if (error && last_error != -EFSCORRUPTED) 776 last_error = error; 777 } 778 779 /* bail out if the filesystem is corrupted. */ 780 if (error == -EFSCORRUPTED) 781 break; 782 783 cond_resched(); 784 785 } while (nr_found && !done); 786 787 if (skipped) { 788 delay(1); 789 goto restart; 790 } 791 return last_error; 792 } 793 794 /* 795 * Background scanning to trim post-EOF preallocated space. This is queued 796 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 797 */ 798 void 799 xfs_queue_eofblocks( 800 struct xfs_mount *mp) 801 { 802 rcu_read_lock(); 803 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 804 queue_delayed_work(mp->m_eofblocks_workqueue, 805 &mp->m_eofblocks_work, 806 msecs_to_jiffies(xfs_eofb_secs * 1000)); 807 rcu_read_unlock(); 808 } 809 810 void 811 xfs_eofblocks_worker( 812 struct work_struct *work) 813 { 814 struct xfs_mount *mp = container_of(to_delayed_work(work), 815 struct xfs_mount, m_eofblocks_work); 816 xfs_icache_free_eofblocks(mp, NULL); 817 xfs_queue_eofblocks(mp); 818 } 819 820 /* 821 * Background scanning to trim preallocated CoW space. This is queued 822 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). 823 * (We'll just piggyback on the post-EOF prealloc space workqueue.) 824 */ 825 STATIC void 826 xfs_queue_cowblocks( 827 struct xfs_mount *mp) 828 { 829 rcu_read_lock(); 830 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) 831 queue_delayed_work(mp->m_eofblocks_workqueue, 832 &mp->m_cowblocks_work, 833 msecs_to_jiffies(xfs_cowb_secs * 1000)); 834 rcu_read_unlock(); 835 } 836 837 void 838 xfs_cowblocks_worker( 839 struct work_struct *work) 840 { 841 struct xfs_mount *mp = container_of(to_delayed_work(work), 842 struct xfs_mount, m_cowblocks_work); 843 xfs_icache_free_cowblocks(mp, NULL); 844 xfs_queue_cowblocks(mp); 845 } 846 847 int 848 xfs_inode_ag_iterator_flags( 849 struct xfs_mount *mp, 850 int (*execute)(struct xfs_inode *ip, int flags, 851 void *args), 852 int flags, 853 void *args, 854 int iter_flags) 855 { 856 struct xfs_perag *pag; 857 int error = 0; 858 int last_error = 0; 859 xfs_agnumber_t ag; 860 861 ag = 0; 862 while ((pag = xfs_perag_get(mp, ag))) { 863 ag = pag->pag_agno + 1; 864 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, 865 iter_flags); 866 xfs_perag_put(pag); 867 if (error) { 868 last_error = error; 869 if (error == -EFSCORRUPTED) 870 break; 871 } 872 } 873 return last_error; 874 } 875 876 int 877 xfs_inode_ag_iterator( 878 struct xfs_mount *mp, 879 int (*execute)(struct xfs_inode *ip, int flags, 880 void *args), 881 int flags, 882 void *args) 883 { 884 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); 885 } 886 887 int 888 xfs_inode_ag_iterator_tag( 889 struct xfs_mount *mp, 890 int (*execute)(struct xfs_inode *ip, int flags, 891 void *args), 892 int flags, 893 void *args, 894 int tag) 895 { 896 struct xfs_perag *pag; 897 int error = 0; 898 int last_error = 0; 899 xfs_agnumber_t ag; 900 901 ag = 0; 902 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 903 ag = pag->pag_agno + 1; 904 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, 905 0); 906 xfs_perag_put(pag); 907 if (error) { 908 last_error = error; 909 if (error == -EFSCORRUPTED) 910 break; 911 } 912 } 913 return last_error; 914 } 915 916 /* 917 * Grab the inode for reclaim exclusively. 918 * Return 0 if we grabbed it, non-zero otherwise. 919 */ 920 STATIC int 921 xfs_reclaim_inode_grab( 922 struct xfs_inode *ip, 923 int flags) 924 { 925 ASSERT(rcu_read_lock_held()); 926 927 /* quick check for stale RCU freed inode */ 928 if (!ip->i_ino) 929 return 1; 930 931 /* 932 * If we are asked for non-blocking operation, do unlocked checks to 933 * see if the inode already is being flushed or in reclaim to avoid 934 * lock traffic. 935 */ 936 if ((flags & SYNC_TRYLOCK) && 937 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 938 return 1; 939 940 /* 941 * The radix tree lock here protects a thread in xfs_iget from racing 942 * with us starting reclaim on the inode. Once we have the 943 * XFS_IRECLAIM flag set it will not touch us. 944 * 945 * Due to RCU lookup, we may find inodes that have been freed and only 946 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 947 * aren't candidates for reclaim at all, so we must check the 948 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 949 */ 950 spin_lock(&ip->i_flags_lock); 951 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 952 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 953 /* not a reclaim candidate. */ 954 spin_unlock(&ip->i_flags_lock); 955 return 1; 956 } 957 __xfs_iflags_set(ip, XFS_IRECLAIM); 958 spin_unlock(&ip->i_flags_lock); 959 return 0; 960 } 961 962 /* 963 * Inodes in different states need to be treated differently. The following 964 * table lists the inode states and the reclaim actions necessary: 965 * 966 * inode state iflush ret required action 967 * --------------- ---------- --------------- 968 * bad - reclaim 969 * shutdown EIO unpin and reclaim 970 * clean, unpinned 0 reclaim 971 * stale, unpinned 0 reclaim 972 * clean, pinned(*) 0 requeue 973 * stale, pinned EAGAIN requeue 974 * dirty, async - requeue 975 * dirty, sync 0 reclaim 976 * 977 * (*) dgc: I don't think the clean, pinned state is possible but it gets 978 * handled anyway given the order of checks implemented. 979 * 980 * Also, because we get the flush lock first, we know that any inode that has 981 * been flushed delwri has had the flush completed by the time we check that 982 * the inode is clean. 983 * 984 * Note that because the inode is flushed delayed write by AIL pushing, the 985 * flush lock may already be held here and waiting on it can result in very 986 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 987 * the caller should push the AIL first before trying to reclaim inodes to 988 * minimise the amount of time spent waiting. For background relaim, we only 989 * bother to reclaim clean inodes anyway. 990 * 991 * Hence the order of actions after gaining the locks should be: 992 * bad => reclaim 993 * shutdown => unpin and reclaim 994 * pinned, async => requeue 995 * pinned, sync => unpin 996 * stale => reclaim 997 * clean => reclaim 998 * dirty, async => requeue 999 * dirty, sync => flush, wait and reclaim 1000 */ 1001 STATIC int 1002 xfs_reclaim_inode( 1003 struct xfs_inode *ip, 1004 struct xfs_perag *pag, 1005 int sync_mode) 1006 { 1007 struct xfs_buf *bp = NULL; 1008 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 1009 int error; 1010 1011 restart: 1012 error = 0; 1013 xfs_ilock(ip, XFS_ILOCK_EXCL); 1014 if (!xfs_iflock_nowait(ip)) { 1015 if (!(sync_mode & SYNC_WAIT)) 1016 goto out; 1017 xfs_iflock(ip); 1018 } 1019 1020 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1021 xfs_iunpin_wait(ip); 1022 /* xfs_iflush_abort() drops the flush lock */ 1023 xfs_iflush_abort(ip, false); 1024 goto reclaim; 1025 } 1026 if (xfs_ipincount(ip)) { 1027 if (!(sync_mode & SYNC_WAIT)) 1028 goto out_ifunlock; 1029 xfs_iunpin_wait(ip); 1030 } 1031 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { 1032 xfs_ifunlock(ip); 1033 goto reclaim; 1034 } 1035 1036 /* 1037 * Never flush out dirty data during non-blocking reclaim, as it would 1038 * just contend with AIL pushing trying to do the same job. 1039 */ 1040 if (!(sync_mode & SYNC_WAIT)) 1041 goto out_ifunlock; 1042 1043 /* 1044 * Now we have an inode that needs flushing. 1045 * 1046 * Note that xfs_iflush will never block on the inode buffer lock, as 1047 * xfs_ifree_cluster() can lock the inode buffer before it locks the 1048 * ip->i_lock, and we are doing the exact opposite here. As a result, 1049 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 1050 * result in an ABBA deadlock with xfs_ifree_cluster(). 1051 * 1052 * As xfs_ifree_cluser() must gather all inodes that are active in the 1053 * cache to mark them stale, if we hit this case we don't actually want 1054 * to do IO here - we want the inode marked stale so we can simply 1055 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 1056 * inode, back off and try again. Hopefully the next pass through will 1057 * see the stale flag set on the inode. 1058 */ 1059 error = xfs_iflush(ip, &bp); 1060 if (error == -EAGAIN) { 1061 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1062 /* backoff longer than in xfs_ifree_cluster */ 1063 delay(2); 1064 goto restart; 1065 } 1066 1067 if (!error) { 1068 error = xfs_bwrite(bp); 1069 xfs_buf_relse(bp); 1070 } 1071 1072 reclaim: 1073 ASSERT(!xfs_isiflocked(ip)); 1074 1075 /* 1076 * Because we use RCU freeing we need to ensure the inode always appears 1077 * to be reclaimed with an invalid inode number when in the free state. 1078 * We do this as early as possible under the ILOCK so that 1079 * xfs_iflush_cluster() can be guaranteed to detect races with us here. 1080 * By doing this, we guarantee that once xfs_iflush_cluster has locked 1081 * XFS_ILOCK that it will see either a valid, flushable inode that will 1082 * serialise correctly, or it will see a clean (and invalid) inode that 1083 * it can skip. 1084 */ 1085 spin_lock(&ip->i_flags_lock); 1086 ip->i_flags = XFS_IRECLAIM; 1087 ip->i_ino = 0; 1088 spin_unlock(&ip->i_flags_lock); 1089 1090 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1091 1092 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1093 /* 1094 * Remove the inode from the per-AG radix tree. 1095 * 1096 * Because radix_tree_delete won't complain even if the item was never 1097 * added to the tree assert that it's been there before to catch 1098 * problems with the inode life time early on. 1099 */ 1100 spin_lock(&pag->pag_ici_lock); 1101 if (!radix_tree_delete(&pag->pag_ici_root, 1102 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1103 ASSERT(0); 1104 xfs_perag_clear_reclaim_tag(pag); 1105 spin_unlock(&pag->pag_ici_lock); 1106 1107 /* 1108 * Here we do an (almost) spurious inode lock in order to coordinate 1109 * with inode cache radix tree lookups. This is because the lookup 1110 * can reference the inodes in the cache without taking references. 1111 * 1112 * We make that OK here by ensuring that we wait until the inode is 1113 * unlocked after the lookup before we go ahead and free it. 1114 */ 1115 xfs_ilock(ip, XFS_ILOCK_EXCL); 1116 xfs_qm_dqdetach(ip); 1117 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1118 1119 __xfs_inode_free(ip); 1120 return error; 1121 1122 out_ifunlock: 1123 xfs_ifunlock(ip); 1124 out: 1125 xfs_iflags_clear(ip, XFS_IRECLAIM); 1126 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1127 /* 1128 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1129 * a short while. However, this just burns CPU time scanning the tree 1130 * waiting for IO to complete and the reclaim work never goes back to 1131 * the idle state. Instead, return 0 to let the next scheduled 1132 * background reclaim attempt to reclaim the inode again. 1133 */ 1134 return 0; 1135 } 1136 1137 /* 1138 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1139 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1140 * then a shut down during filesystem unmount reclaim walk leak all the 1141 * unreclaimed inodes. 1142 */ 1143 STATIC int 1144 xfs_reclaim_inodes_ag( 1145 struct xfs_mount *mp, 1146 int flags, 1147 int *nr_to_scan) 1148 { 1149 struct xfs_perag *pag; 1150 int error = 0; 1151 int last_error = 0; 1152 xfs_agnumber_t ag; 1153 int trylock = flags & SYNC_TRYLOCK; 1154 int skipped; 1155 1156 restart: 1157 ag = 0; 1158 skipped = 0; 1159 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1160 unsigned long first_index = 0; 1161 int done = 0; 1162 int nr_found = 0; 1163 1164 ag = pag->pag_agno + 1; 1165 1166 if (trylock) { 1167 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1168 skipped++; 1169 xfs_perag_put(pag); 1170 continue; 1171 } 1172 first_index = pag->pag_ici_reclaim_cursor; 1173 } else 1174 mutex_lock(&pag->pag_ici_reclaim_lock); 1175 1176 do { 1177 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1178 int i; 1179 1180 rcu_read_lock(); 1181 nr_found = radix_tree_gang_lookup_tag( 1182 &pag->pag_ici_root, 1183 (void **)batch, first_index, 1184 XFS_LOOKUP_BATCH, 1185 XFS_ICI_RECLAIM_TAG); 1186 if (!nr_found) { 1187 done = 1; 1188 rcu_read_unlock(); 1189 break; 1190 } 1191 1192 /* 1193 * Grab the inodes before we drop the lock. if we found 1194 * nothing, nr == 0 and the loop will be skipped. 1195 */ 1196 for (i = 0; i < nr_found; i++) { 1197 struct xfs_inode *ip = batch[i]; 1198 1199 if (done || xfs_reclaim_inode_grab(ip, flags)) 1200 batch[i] = NULL; 1201 1202 /* 1203 * Update the index for the next lookup. Catch 1204 * overflows into the next AG range which can 1205 * occur if we have inodes in the last block of 1206 * the AG and we are currently pointing to the 1207 * last inode. 1208 * 1209 * Because we may see inodes that are from the 1210 * wrong AG due to RCU freeing and 1211 * reallocation, only update the index if it 1212 * lies in this AG. It was a race that lead us 1213 * to see this inode, so another lookup from 1214 * the same index will not find it again. 1215 */ 1216 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1217 pag->pag_agno) 1218 continue; 1219 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1220 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1221 done = 1; 1222 } 1223 1224 /* unlock now we've grabbed the inodes. */ 1225 rcu_read_unlock(); 1226 1227 for (i = 0; i < nr_found; i++) { 1228 if (!batch[i]) 1229 continue; 1230 error = xfs_reclaim_inode(batch[i], pag, flags); 1231 if (error && last_error != -EFSCORRUPTED) 1232 last_error = error; 1233 } 1234 1235 *nr_to_scan -= XFS_LOOKUP_BATCH; 1236 1237 cond_resched(); 1238 1239 } while (nr_found && !done && *nr_to_scan > 0); 1240 1241 if (trylock && !done) 1242 pag->pag_ici_reclaim_cursor = first_index; 1243 else 1244 pag->pag_ici_reclaim_cursor = 0; 1245 mutex_unlock(&pag->pag_ici_reclaim_lock); 1246 xfs_perag_put(pag); 1247 } 1248 1249 /* 1250 * if we skipped any AG, and we still have scan count remaining, do 1251 * another pass this time using blocking reclaim semantics (i.e 1252 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1253 * ensure that when we get more reclaimers than AGs we block rather 1254 * than spin trying to execute reclaim. 1255 */ 1256 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1257 trylock = 0; 1258 goto restart; 1259 } 1260 return last_error; 1261 } 1262 1263 int 1264 xfs_reclaim_inodes( 1265 xfs_mount_t *mp, 1266 int mode) 1267 { 1268 int nr_to_scan = INT_MAX; 1269 1270 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1271 } 1272 1273 /* 1274 * Scan a certain number of inodes for reclaim. 1275 * 1276 * When called we make sure that there is a background (fast) inode reclaim in 1277 * progress, while we will throttle the speed of reclaim via doing synchronous 1278 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1279 * them to be cleaned, which we hope will not be very long due to the 1280 * background walker having already kicked the IO off on those dirty inodes. 1281 */ 1282 long 1283 xfs_reclaim_inodes_nr( 1284 struct xfs_mount *mp, 1285 int nr_to_scan) 1286 { 1287 /* kick background reclaimer and push the AIL */ 1288 xfs_reclaim_work_queue(mp); 1289 xfs_ail_push_all(mp->m_ail); 1290 1291 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1292 } 1293 1294 /* 1295 * Return the number of reclaimable inodes in the filesystem for 1296 * the shrinker to determine how much to reclaim. 1297 */ 1298 int 1299 xfs_reclaim_inodes_count( 1300 struct xfs_mount *mp) 1301 { 1302 struct xfs_perag *pag; 1303 xfs_agnumber_t ag = 0; 1304 int reclaimable = 0; 1305 1306 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1307 ag = pag->pag_agno + 1; 1308 reclaimable += pag->pag_ici_reclaimable; 1309 xfs_perag_put(pag); 1310 } 1311 return reclaimable; 1312 } 1313 1314 STATIC int 1315 xfs_inode_match_id( 1316 struct xfs_inode *ip, 1317 struct xfs_eofblocks *eofb) 1318 { 1319 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1320 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1321 return 0; 1322 1323 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1324 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1325 return 0; 1326 1327 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1328 xfs_get_projid(ip) != eofb->eof_prid) 1329 return 0; 1330 1331 return 1; 1332 } 1333 1334 /* 1335 * A union-based inode filtering algorithm. Process the inode if any of the 1336 * criteria match. This is for global/internal scans only. 1337 */ 1338 STATIC int 1339 xfs_inode_match_id_union( 1340 struct xfs_inode *ip, 1341 struct xfs_eofblocks *eofb) 1342 { 1343 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1344 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1345 return 1; 1346 1347 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1348 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1349 return 1; 1350 1351 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1352 xfs_get_projid(ip) == eofb->eof_prid) 1353 return 1; 1354 1355 return 0; 1356 } 1357 1358 STATIC int 1359 xfs_inode_free_eofblocks( 1360 struct xfs_inode *ip, 1361 int flags, 1362 void *args) 1363 { 1364 int ret = 0; 1365 struct xfs_eofblocks *eofb = args; 1366 int match; 1367 1368 if (!xfs_can_free_eofblocks(ip, false)) { 1369 /* inode could be preallocated or append-only */ 1370 trace_xfs_inode_free_eofblocks_invalid(ip); 1371 xfs_inode_clear_eofblocks_tag(ip); 1372 return 0; 1373 } 1374 1375 /* 1376 * If the mapping is dirty the operation can block and wait for some 1377 * time. Unless we are waiting, skip it. 1378 */ 1379 if (!(flags & SYNC_WAIT) && 1380 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1381 return 0; 1382 1383 if (eofb) { 1384 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1385 match = xfs_inode_match_id_union(ip, eofb); 1386 else 1387 match = xfs_inode_match_id(ip, eofb); 1388 if (!match) 1389 return 0; 1390 1391 /* skip the inode if the file size is too small */ 1392 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1393 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1394 return 0; 1395 } 1396 1397 /* 1398 * If the caller is waiting, return -EAGAIN to keep the background 1399 * scanner moving and revisit the inode in a subsequent pass. 1400 */ 1401 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1402 if (flags & SYNC_WAIT) 1403 ret = -EAGAIN; 1404 return ret; 1405 } 1406 ret = xfs_free_eofblocks(ip); 1407 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1408 1409 return ret; 1410 } 1411 1412 static int 1413 __xfs_icache_free_eofblocks( 1414 struct xfs_mount *mp, 1415 struct xfs_eofblocks *eofb, 1416 int (*execute)(struct xfs_inode *ip, int flags, 1417 void *args), 1418 int tag) 1419 { 1420 int flags = SYNC_TRYLOCK; 1421 1422 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1423 flags = SYNC_WAIT; 1424 1425 return xfs_inode_ag_iterator_tag(mp, execute, flags, 1426 eofb, tag); 1427 } 1428 1429 int 1430 xfs_icache_free_eofblocks( 1431 struct xfs_mount *mp, 1432 struct xfs_eofblocks *eofb) 1433 { 1434 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, 1435 XFS_ICI_EOFBLOCKS_TAG); 1436 } 1437 1438 /* 1439 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1440 * multiple quotas, we don't know exactly which quota caused an allocation 1441 * failure. We make a best effort by including each quota under low free space 1442 * conditions (less than 1% free space) in the scan. 1443 */ 1444 static int 1445 __xfs_inode_free_quota_eofblocks( 1446 struct xfs_inode *ip, 1447 int (*execute)(struct xfs_mount *mp, 1448 struct xfs_eofblocks *eofb)) 1449 { 1450 int scan = 0; 1451 struct xfs_eofblocks eofb = {0}; 1452 struct xfs_dquot *dq; 1453 1454 /* 1455 * Run a sync scan to increase effectiveness and use the union filter to 1456 * cover all applicable quotas in a single scan. 1457 */ 1458 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1459 1460 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1461 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1462 if (dq && xfs_dquot_lowsp(dq)) { 1463 eofb.eof_uid = VFS_I(ip)->i_uid; 1464 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1465 scan = 1; 1466 } 1467 } 1468 1469 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1470 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1471 if (dq && xfs_dquot_lowsp(dq)) { 1472 eofb.eof_gid = VFS_I(ip)->i_gid; 1473 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1474 scan = 1; 1475 } 1476 } 1477 1478 if (scan) 1479 execute(ip->i_mount, &eofb); 1480 1481 return scan; 1482 } 1483 1484 int 1485 xfs_inode_free_quota_eofblocks( 1486 struct xfs_inode *ip) 1487 { 1488 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); 1489 } 1490 1491 static void 1492 __xfs_inode_set_eofblocks_tag( 1493 xfs_inode_t *ip, 1494 void (*execute)(struct xfs_mount *mp), 1495 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1496 int error, unsigned long caller_ip), 1497 int tag) 1498 { 1499 struct xfs_mount *mp = ip->i_mount; 1500 struct xfs_perag *pag; 1501 int tagged; 1502 1503 /* 1504 * Don't bother locking the AG and looking up in the radix trees 1505 * if we already know that we have the tag set. 1506 */ 1507 if (ip->i_flags & XFS_IEOFBLOCKS) 1508 return; 1509 spin_lock(&ip->i_flags_lock); 1510 ip->i_flags |= XFS_IEOFBLOCKS; 1511 spin_unlock(&ip->i_flags_lock); 1512 1513 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1514 spin_lock(&pag->pag_ici_lock); 1515 1516 tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 1517 radix_tree_tag_set(&pag->pag_ici_root, 1518 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1519 if (!tagged) { 1520 /* propagate the eofblocks tag up into the perag radix tree */ 1521 spin_lock(&ip->i_mount->m_perag_lock); 1522 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1523 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1524 tag); 1525 spin_unlock(&ip->i_mount->m_perag_lock); 1526 1527 /* kick off background trimming */ 1528 execute(ip->i_mount); 1529 1530 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1531 } 1532 1533 spin_unlock(&pag->pag_ici_lock); 1534 xfs_perag_put(pag); 1535 } 1536 1537 void 1538 xfs_inode_set_eofblocks_tag( 1539 xfs_inode_t *ip) 1540 { 1541 trace_xfs_inode_set_eofblocks_tag(ip); 1542 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks, 1543 trace_xfs_perag_set_eofblocks, 1544 XFS_ICI_EOFBLOCKS_TAG); 1545 } 1546 1547 static void 1548 __xfs_inode_clear_eofblocks_tag( 1549 xfs_inode_t *ip, 1550 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1551 int error, unsigned long caller_ip), 1552 int tag) 1553 { 1554 struct xfs_mount *mp = ip->i_mount; 1555 struct xfs_perag *pag; 1556 1557 spin_lock(&ip->i_flags_lock); 1558 ip->i_flags &= ~XFS_IEOFBLOCKS; 1559 spin_unlock(&ip->i_flags_lock); 1560 1561 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1562 spin_lock(&pag->pag_ici_lock); 1563 1564 radix_tree_tag_clear(&pag->pag_ici_root, 1565 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1566 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { 1567 /* clear the eofblocks tag from the perag radix tree */ 1568 spin_lock(&ip->i_mount->m_perag_lock); 1569 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1570 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1571 tag); 1572 spin_unlock(&ip->i_mount->m_perag_lock); 1573 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1574 } 1575 1576 spin_unlock(&pag->pag_ici_lock); 1577 xfs_perag_put(pag); 1578 } 1579 1580 void 1581 xfs_inode_clear_eofblocks_tag( 1582 xfs_inode_t *ip) 1583 { 1584 trace_xfs_inode_clear_eofblocks_tag(ip); 1585 return __xfs_inode_clear_eofblocks_tag(ip, 1586 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); 1587 } 1588 1589 /* 1590 * Automatic CoW Reservation Freeing 1591 * 1592 * These functions automatically garbage collect leftover CoW reservations 1593 * that were made on behalf of a cowextsize hint when we start to run out 1594 * of quota or when the reservations sit around for too long. If the file 1595 * has dirty pages or is undergoing writeback, its CoW reservations will 1596 * be retained. 1597 * 1598 * The actual garbage collection piggybacks off the same code that runs 1599 * the speculative EOF preallocation garbage collector. 1600 */ 1601 STATIC int 1602 xfs_inode_free_cowblocks( 1603 struct xfs_inode *ip, 1604 int flags, 1605 void *args) 1606 { 1607 int ret; 1608 struct xfs_eofblocks *eofb = args; 1609 int match; 1610 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1611 1612 /* 1613 * Just clear the tag if we have an empty cow fork or none at all. It's 1614 * possible the inode was fully unshared since it was originally tagged. 1615 */ 1616 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) { 1617 trace_xfs_inode_free_cowblocks_invalid(ip); 1618 xfs_inode_clear_cowblocks_tag(ip); 1619 return 0; 1620 } 1621 1622 /* 1623 * If the mapping is dirty or under writeback we cannot touch the 1624 * CoW fork. Leave it alone if we're in the midst of a directio. 1625 */ 1626 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1627 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1628 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1629 atomic_read(&VFS_I(ip)->i_dio_count)) 1630 return 0; 1631 1632 if (eofb) { 1633 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1634 match = xfs_inode_match_id_union(ip, eofb); 1635 else 1636 match = xfs_inode_match_id(ip, eofb); 1637 if (!match) 1638 return 0; 1639 1640 /* skip the inode if the file size is too small */ 1641 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1642 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1643 return 0; 1644 } 1645 1646 /* Free the CoW blocks */ 1647 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1648 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1649 1650 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1651 1652 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1653 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1654 1655 return ret; 1656 } 1657 1658 int 1659 xfs_icache_free_cowblocks( 1660 struct xfs_mount *mp, 1661 struct xfs_eofblocks *eofb) 1662 { 1663 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, 1664 XFS_ICI_COWBLOCKS_TAG); 1665 } 1666 1667 int 1668 xfs_inode_free_quota_cowblocks( 1669 struct xfs_inode *ip) 1670 { 1671 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); 1672 } 1673 1674 void 1675 xfs_inode_set_cowblocks_tag( 1676 xfs_inode_t *ip) 1677 { 1678 trace_xfs_inode_set_cowblocks_tag(ip); 1679 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks, 1680 trace_xfs_perag_set_cowblocks, 1681 XFS_ICI_COWBLOCKS_TAG); 1682 } 1683 1684 void 1685 xfs_inode_clear_cowblocks_tag( 1686 xfs_inode_t *ip) 1687 { 1688 trace_xfs_inode_clear_cowblocks_tag(ip); 1689 return __xfs_inode_clear_eofblocks_tag(ip, 1690 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); 1691 } 1692