xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision efe4a1ac)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 /*
42  * Allocate and initialise an xfs_inode.
43  */
44 struct xfs_inode *
45 xfs_inode_alloc(
46 	struct xfs_mount	*mp,
47 	xfs_ino_t		ino)
48 {
49 	struct xfs_inode	*ip;
50 
51 	/*
52 	 * if this didn't occur in transactions, we could use
53 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 	 * code up to do this anyway.
55 	 */
56 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 	if (!ip)
58 		return NULL;
59 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 		kmem_zone_free(xfs_inode_zone, ip);
61 		return NULL;
62 	}
63 
64 	/* VFS doesn't initialise i_mode! */
65 	VFS_I(ip)->i_mode = 0;
66 
67 	XFS_STATS_INC(mp, vn_active);
68 	ASSERT(atomic_read(&ip->i_pincount) == 0);
69 	ASSERT(!xfs_isiflocked(ip));
70 	ASSERT(ip->i_ino == 0);
71 
72 	/* initialise the xfs inode */
73 	ip->i_ino = ino;
74 	ip->i_mount = mp;
75 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
76 	ip->i_afp = NULL;
77 	ip->i_cowfp = NULL;
78 	ip->i_cnextents = 0;
79 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
80 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 	ip->i_flags = 0;
82 	ip->i_delayed_blks = 0;
83 	memset(&ip->i_d, 0, sizeof(ip->i_d));
84 
85 	return ip;
86 }
87 
88 STATIC void
89 xfs_inode_free_callback(
90 	struct rcu_head		*head)
91 {
92 	struct inode		*inode = container_of(head, struct inode, i_rcu);
93 	struct xfs_inode	*ip = XFS_I(inode);
94 
95 	switch (VFS_I(ip)->i_mode & S_IFMT) {
96 	case S_IFREG:
97 	case S_IFDIR:
98 	case S_IFLNK:
99 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
100 		break;
101 	}
102 
103 	if (ip->i_afp)
104 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
105 	if (ip->i_cowfp)
106 		xfs_idestroy_fork(ip, XFS_COW_FORK);
107 
108 	if (ip->i_itemp) {
109 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
110 		xfs_inode_item_destroy(ip);
111 		ip->i_itemp = NULL;
112 	}
113 
114 	kmem_zone_free(xfs_inode_zone, ip);
115 }
116 
117 static void
118 __xfs_inode_free(
119 	struct xfs_inode	*ip)
120 {
121 	/* asserts to verify all state is correct here */
122 	ASSERT(atomic_read(&ip->i_pincount) == 0);
123 	XFS_STATS_DEC(ip->i_mount, vn_active);
124 
125 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126 }
127 
128 void
129 xfs_inode_free(
130 	struct xfs_inode	*ip)
131 {
132 	ASSERT(!xfs_isiflocked(ip));
133 
134 	/*
135 	 * Because we use RCU freeing we need to ensure the inode always
136 	 * appears to be reclaimed with an invalid inode number when in the
137 	 * free state. The ip->i_flags_lock provides the barrier against lookup
138 	 * races.
139 	 */
140 	spin_lock(&ip->i_flags_lock);
141 	ip->i_flags = XFS_IRECLAIM;
142 	ip->i_ino = 0;
143 	spin_unlock(&ip->i_flags_lock);
144 
145 	__xfs_inode_free(ip);
146 }
147 
148 /*
149  * Queue a new inode reclaim pass if there are reclaimable inodes and there
150  * isn't a reclaim pass already in progress. By default it runs every 5s based
151  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
152  * tunable, but that can be done if this method proves to be ineffective or too
153  * aggressive.
154  */
155 static void
156 xfs_reclaim_work_queue(
157 	struct xfs_mount        *mp)
158 {
159 
160 	rcu_read_lock();
161 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
162 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
163 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
164 	}
165 	rcu_read_unlock();
166 }
167 
168 /*
169  * This is a fast pass over the inode cache to try to get reclaim moving on as
170  * many inodes as possible in a short period of time. It kicks itself every few
171  * seconds, as well as being kicked by the inode cache shrinker when memory
172  * goes low. It scans as quickly as possible avoiding locked inodes or those
173  * already being flushed, and once done schedules a future pass.
174  */
175 void
176 xfs_reclaim_worker(
177 	struct work_struct *work)
178 {
179 	struct xfs_mount *mp = container_of(to_delayed_work(work),
180 					struct xfs_mount, m_reclaim_work);
181 
182 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
183 	xfs_reclaim_work_queue(mp);
184 }
185 
186 static void
187 xfs_perag_set_reclaim_tag(
188 	struct xfs_perag	*pag)
189 {
190 	struct xfs_mount	*mp = pag->pag_mount;
191 
192 	lockdep_assert_held(&pag->pag_ici_lock);
193 	if (pag->pag_ici_reclaimable++)
194 		return;
195 
196 	/* propagate the reclaim tag up into the perag radix tree */
197 	spin_lock(&mp->m_perag_lock);
198 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
199 			   XFS_ICI_RECLAIM_TAG);
200 	spin_unlock(&mp->m_perag_lock);
201 
202 	/* schedule periodic background inode reclaim */
203 	xfs_reclaim_work_queue(mp);
204 
205 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
206 }
207 
208 static void
209 xfs_perag_clear_reclaim_tag(
210 	struct xfs_perag	*pag)
211 {
212 	struct xfs_mount	*mp = pag->pag_mount;
213 
214 	lockdep_assert_held(&pag->pag_ici_lock);
215 	if (--pag->pag_ici_reclaimable)
216 		return;
217 
218 	/* clear the reclaim tag from the perag radix tree */
219 	spin_lock(&mp->m_perag_lock);
220 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
221 			     XFS_ICI_RECLAIM_TAG);
222 	spin_unlock(&mp->m_perag_lock);
223 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
224 }
225 
226 
227 /*
228  * We set the inode flag atomically with the radix tree tag.
229  * Once we get tag lookups on the radix tree, this inode flag
230  * can go away.
231  */
232 void
233 xfs_inode_set_reclaim_tag(
234 	struct xfs_inode	*ip)
235 {
236 	struct xfs_mount	*mp = ip->i_mount;
237 	struct xfs_perag	*pag;
238 
239 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
240 	spin_lock(&pag->pag_ici_lock);
241 	spin_lock(&ip->i_flags_lock);
242 
243 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
244 			   XFS_ICI_RECLAIM_TAG);
245 	xfs_perag_set_reclaim_tag(pag);
246 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
247 
248 	spin_unlock(&ip->i_flags_lock);
249 	spin_unlock(&pag->pag_ici_lock);
250 	xfs_perag_put(pag);
251 }
252 
253 STATIC void
254 xfs_inode_clear_reclaim_tag(
255 	struct xfs_perag	*pag,
256 	xfs_ino_t		ino)
257 {
258 	radix_tree_tag_clear(&pag->pag_ici_root,
259 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
260 			     XFS_ICI_RECLAIM_TAG);
261 	xfs_perag_clear_reclaim_tag(pag);
262 }
263 
264 static void
265 xfs_inew_wait(
266 	struct xfs_inode	*ip)
267 {
268 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
269 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
270 
271 	do {
272 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
273 		if (!xfs_iflags_test(ip, XFS_INEW))
274 			break;
275 		schedule();
276 	} while (true);
277 	finish_wait(wq, &wait.wait);
278 }
279 
280 /*
281  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
282  * part of the structure. This is made more complex by the fact we store
283  * information about the on-disk values in the VFS inode and so we can't just
284  * overwrite the values unconditionally. Hence we save the parameters we
285  * need to retain across reinitialisation, and rewrite them into the VFS inode
286  * after reinitialisation even if it fails.
287  */
288 static int
289 xfs_reinit_inode(
290 	struct xfs_mount	*mp,
291 	struct inode		*inode)
292 {
293 	int		error;
294 	uint32_t	nlink = inode->i_nlink;
295 	uint32_t	generation = inode->i_generation;
296 	uint64_t	version = inode->i_version;
297 	umode_t		mode = inode->i_mode;
298 
299 	error = inode_init_always(mp->m_super, inode);
300 
301 	set_nlink(inode, nlink);
302 	inode->i_generation = generation;
303 	inode->i_version = version;
304 	inode->i_mode = mode;
305 	return error;
306 }
307 
308 /*
309  * Check the validity of the inode we just found it the cache
310  */
311 static int
312 xfs_iget_cache_hit(
313 	struct xfs_perag	*pag,
314 	struct xfs_inode	*ip,
315 	xfs_ino_t		ino,
316 	int			flags,
317 	int			lock_flags) __releases(RCU)
318 {
319 	struct inode		*inode = VFS_I(ip);
320 	struct xfs_mount	*mp = ip->i_mount;
321 	int			error;
322 
323 	/*
324 	 * check for re-use of an inode within an RCU grace period due to the
325 	 * radix tree nodes not being updated yet. We monitor for this by
326 	 * setting the inode number to zero before freeing the inode structure.
327 	 * If the inode has been reallocated and set up, then the inode number
328 	 * will not match, so check for that, too.
329 	 */
330 	spin_lock(&ip->i_flags_lock);
331 	if (ip->i_ino != ino) {
332 		trace_xfs_iget_skip(ip);
333 		XFS_STATS_INC(mp, xs_ig_frecycle);
334 		error = -EAGAIN;
335 		goto out_error;
336 	}
337 
338 
339 	/*
340 	 * If we are racing with another cache hit that is currently
341 	 * instantiating this inode or currently recycling it out of
342 	 * reclaimabe state, wait for the initialisation to complete
343 	 * before continuing.
344 	 *
345 	 * XXX(hch): eventually we should do something equivalent to
346 	 *	     wait_on_inode to wait for these flags to be cleared
347 	 *	     instead of polling for it.
348 	 */
349 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
350 		trace_xfs_iget_skip(ip);
351 		XFS_STATS_INC(mp, xs_ig_frecycle);
352 		error = -EAGAIN;
353 		goto out_error;
354 	}
355 
356 	/*
357 	 * If lookup is racing with unlink return an error immediately.
358 	 */
359 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
360 		error = -ENOENT;
361 		goto out_error;
362 	}
363 
364 	/*
365 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
366 	 * Need to carefully get it back into useable state.
367 	 */
368 	if (ip->i_flags & XFS_IRECLAIMABLE) {
369 		trace_xfs_iget_reclaim(ip);
370 
371 		/*
372 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
373 		 * from stomping over us while we recycle the inode.  We can't
374 		 * clear the radix tree reclaimable tag yet as it requires
375 		 * pag_ici_lock to be held exclusive.
376 		 */
377 		ip->i_flags |= XFS_IRECLAIM;
378 
379 		spin_unlock(&ip->i_flags_lock);
380 		rcu_read_unlock();
381 
382 		error = xfs_reinit_inode(mp, inode);
383 		if (error) {
384 			bool wake;
385 			/*
386 			 * Re-initializing the inode failed, and we are in deep
387 			 * trouble.  Try to re-add it to the reclaim list.
388 			 */
389 			rcu_read_lock();
390 			spin_lock(&ip->i_flags_lock);
391 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
392 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
393 			if (wake)
394 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
395 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
396 			trace_xfs_iget_reclaim_fail(ip);
397 			goto out_error;
398 		}
399 
400 		spin_lock(&pag->pag_ici_lock);
401 		spin_lock(&ip->i_flags_lock);
402 
403 		/*
404 		 * Clear the per-lifetime state in the inode as we are now
405 		 * effectively a new inode and need to return to the initial
406 		 * state before reuse occurs.
407 		 */
408 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
409 		ip->i_flags |= XFS_INEW;
410 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
411 		inode->i_state = I_NEW;
412 
413 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
414 		init_rwsem(&inode->i_rwsem);
415 
416 		spin_unlock(&ip->i_flags_lock);
417 		spin_unlock(&pag->pag_ici_lock);
418 	} else {
419 		/* If the VFS inode is being torn down, pause and try again. */
420 		if (!igrab(inode)) {
421 			trace_xfs_iget_skip(ip);
422 			error = -EAGAIN;
423 			goto out_error;
424 		}
425 
426 		/* We've got a live one. */
427 		spin_unlock(&ip->i_flags_lock);
428 		rcu_read_unlock();
429 		trace_xfs_iget_hit(ip);
430 	}
431 
432 	if (lock_flags != 0)
433 		xfs_ilock(ip, lock_flags);
434 
435 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
436 	XFS_STATS_INC(mp, xs_ig_found);
437 
438 	return 0;
439 
440 out_error:
441 	spin_unlock(&ip->i_flags_lock);
442 	rcu_read_unlock();
443 	return error;
444 }
445 
446 
447 static int
448 xfs_iget_cache_miss(
449 	struct xfs_mount	*mp,
450 	struct xfs_perag	*pag,
451 	xfs_trans_t		*tp,
452 	xfs_ino_t		ino,
453 	struct xfs_inode	**ipp,
454 	int			flags,
455 	int			lock_flags)
456 {
457 	struct xfs_inode	*ip;
458 	int			error;
459 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
460 	int			iflags;
461 
462 	ip = xfs_inode_alloc(mp, ino);
463 	if (!ip)
464 		return -ENOMEM;
465 
466 	error = xfs_iread(mp, tp, ip, flags);
467 	if (error)
468 		goto out_destroy;
469 
470 	trace_xfs_iget_miss(ip);
471 
472 	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
473 		error = -ENOENT;
474 		goto out_destroy;
475 	}
476 
477 	/*
478 	 * Preload the radix tree so we can insert safely under the
479 	 * write spinlock. Note that we cannot sleep inside the preload
480 	 * region. Since we can be called from transaction context, don't
481 	 * recurse into the file system.
482 	 */
483 	if (radix_tree_preload(GFP_NOFS)) {
484 		error = -EAGAIN;
485 		goto out_destroy;
486 	}
487 
488 	/*
489 	 * Because the inode hasn't been added to the radix-tree yet it can't
490 	 * be found by another thread, so we can do the non-sleeping lock here.
491 	 */
492 	if (lock_flags) {
493 		if (!xfs_ilock_nowait(ip, lock_flags))
494 			BUG();
495 	}
496 
497 	/*
498 	 * These values must be set before inserting the inode into the radix
499 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
500 	 * RCU locking mechanism) can find it and that lookup must see that this
501 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
502 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
503 	 * memory barrier that ensures this detection works correctly at lookup
504 	 * time.
505 	 */
506 	iflags = XFS_INEW;
507 	if (flags & XFS_IGET_DONTCACHE)
508 		iflags |= XFS_IDONTCACHE;
509 	ip->i_udquot = NULL;
510 	ip->i_gdquot = NULL;
511 	ip->i_pdquot = NULL;
512 	xfs_iflags_set(ip, iflags);
513 
514 	/* insert the new inode */
515 	spin_lock(&pag->pag_ici_lock);
516 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
517 	if (unlikely(error)) {
518 		WARN_ON(error != -EEXIST);
519 		XFS_STATS_INC(mp, xs_ig_dup);
520 		error = -EAGAIN;
521 		goto out_preload_end;
522 	}
523 	spin_unlock(&pag->pag_ici_lock);
524 	radix_tree_preload_end();
525 
526 	*ipp = ip;
527 	return 0;
528 
529 out_preload_end:
530 	spin_unlock(&pag->pag_ici_lock);
531 	radix_tree_preload_end();
532 	if (lock_flags)
533 		xfs_iunlock(ip, lock_flags);
534 out_destroy:
535 	__destroy_inode(VFS_I(ip));
536 	xfs_inode_free(ip);
537 	return error;
538 }
539 
540 /*
541  * Look up an inode by number in the given file system.
542  * The inode is looked up in the cache held in each AG.
543  * If the inode is found in the cache, initialise the vfs inode
544  * if necessary.
545  *
546  * If it is not in core, read it in from the file system's device,
547  * add it to the cache and initialise the vfs inode.
548  *
549  * The inode is locked according to the value of the lock_flags parameter.
550  * This flag parameter indicates how and if the inode's IO lock and inode lock
551  * should be taken.
552  *
553  * mp -- the mount point structure for the current file system.  It points
554  *       to the inode hash table.
555  * tp -- a pointer to the current transaction if there is one.  This is
556  *       simply passed through to the xfs_iread() call.
557  * ino -- the number of the inode desired.  This is the unique identifier
558  *        within the file system for the inode being requested.
559  * lock_flags -- flags indicating how to lock the inode.  See the comment
560  *		 for xfs_ilock() for a list of valid values.
561  */
562 int
563 xfs_iget(
564 	xfs_mount_t	*mp,
565 	xfs_trans_t	*tp,
566 	xfs_ino_t	ino,
567 	uint		flags,
568 	uint		lock_flags,
569 	xfs_inode_t	**ipp)
570 {
571 	xfs_inode_t	*ip;
572 	int		error;
573 	xfs_perag_t	*pag;
574 	xfs_agino_t	agino;
575 
576 	/*
577 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
578 	 * doesn't get freed while it's being referenced during a
579 	 * radix tree traversal here.  It assumes this function
580 	 * aqcuires only the ILOCK (and therefore it has no need to
581 	 * involve the IOLOCK in this synchronization).
582 	 */
583 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
584 
585 	/* reject inode numbers outside existing AGs */
586 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
587 		return -EINVAL;
588 
589 	XFS_STATS_INC(mp, xs_ig_attempts);
590 
591 	/* get the perag structure and ensure that it's inode capable */
592 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
593 	agino = XFS_INO_TO_AGINO(mp, ino);
594 
595 again:
596 	error = 0;
597 	rcu_read_lock();
598 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
599 
600 	if (ip) {
601 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
602 		if (error)
603 			goto out_error_or_again;
604 	} else {
605 		rcu_read_unlock();
606 		XFS_STATS_INC(mp, xs_ig_missed);
607 
608 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
609 							flags, lock_flags);
610 		if (error)
611 			goto out_error_or_again;
612 	}
613 	xfs_perag_put(pag);
614 
615 	*ipp = ip;
616 
617 	/*
618 	 * If we have a real type for an on-disk inode, we can setup the inode
619 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
620 	 */
621 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
622 		xfs_setup_existing_inode(ip);
623 	return 0;
624 
625 out_error_or_again:
626 	if (error == -EAGAIN) {
627 		delay(1);
628 		goto again;
629 	}
630 	xfs_perag_put(pag);
631 	return error;
632 }
633 
634 /*
635  * The inode lookup is done in batches to keep the amount of lock traffic and
636  * radix tree lookups to a minimum. The batch size is a trade off between
637  * lookup reduction and stack usage. This is in the reclaim path, so we can't
638  * be too greedy.
639  */
640 #define XFS_LOOKUP_BATCH	32
641 
642 STATIC int
643 xfs_inode_ag_walk_grab(
644 	struct xfs_inode	*ip,
645 	int			flags)
646 {
647 	struct inode		*inode = VFS_I(ip);
648 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
649 
650 	ASSERT(rcu_read_lock_held());
651 
652 	/*
653 	 * check for stale RCU freed inode
654 	 *
655 	 * If the inode has been reallocated, it doesn't matter if it's not in
656 	 * the AG we are walking - we are walking for writeback, so if it
657 	 * passes all the "valid inode" checks and is dirty, then we'll write
658 	 * it back anyway.  If it has been reallocated and still being
659 	 * initialised, the XFS_INEW check below will catch it.
660 	 */
661 	spin_lock(&ip->i_flags_lock);
662 	if (!ip->i_ino)
663 		goto out_unlock_noent;
664 
665 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
666 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
667 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
668 		goto out_unlock_noent;
669 	spin_unlock(&ip->i_flags_lock);
670 
671 	/* nothing to sync during shutdown */
672 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
673 		return -EFSCORRUPTED;
674 
675 	/* If we can't grab the inode, it must on it's way to reclaim. */
676 	if (!igrab(inode))
677 		return -ENOENT;
678 
679 	/* inode is valid */
680 	return 0;
681 
682 out_unlock_noent:
683 	spin_unlock(&ip->i_flags_lock);
684 	return -ENOENT;
685 }
686 
687 STATIC int
688 xfs_inode_ag_walk(
689 	struct xfs_mount	*mp,
690 	struct xfs_perag	*pag,
691 	int			(*execute)(struct xfs_inode *ip, int flags,
692 					   void *args),
693 	int			flags,
694 	void			*args,
695 	int			tag,
696 	int			iter_flags)
697 {
698 	uint32_t		first_index;
699 	int			last_error = 0;
700 	int			skipped;
701 	int			done;
702 	int			nr_found;
703 
704 restart:
705 	done = 0;
706 	skipped = 0;
707 	first_index = 0;
708 	nr_found = 0;
709 	do {
710 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
711 		int		error = 0;
712 		int		i;
713 
714 		rcu_read_lock();
715 
716 		if (tag == -1)
717 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
718 					(void **)batch, first_index,
719 					XFS_LOOKUP_BATCH);
720 		else
721 			nr_found = radix_tree_gang_lookup_tag(
722 					&pag->pag_ici_root,
723 					(void **) batch, first_index,
724 					XFS_LOOKUP_BATCH, tag);
725 
726 		if (!nr_found) {
727 			rcu_read_unlock();
728 			break;
729 		}
730 
731 		/*
732 		 * Grab the inodes before we drop the lock. if we found
733 		 * nothing, nr == 0 and the loop will be skipped.
734 		 */
735 		for (i = 0; i < nr_found; i++) {
736 			struct xfs_inode *ip = batch[i];
737 
738 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
739 				batch[i] = NULL;
740 
741 			/*
742 			 * Update the index for the next lookup. Catch
743 			 * overflows into the next AG range which can occur if
744 			 * we have inodes in the last block of the AG and we
745 			 * are currently pointing to the last inode.
746 			 *
747 			 * Because we may see inodes that are from the wrong AG
748 			 * due to RCU freeing and reallocation, only update the
749 			 * index if it lies in this AG. It was a race that lead
750 			 * us to see this inode, so another lookup from the
751 			 * same index will not find it again.
752 			 */
753 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
754 				continue;
755 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
756 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
757 				done = 1;
758 		}
759 
760 		/* unlock now we've grabbed the inodes. */
761 		rcu_read_unlock();
762 
763 		for (i = 0; i < nr_found; i++) {
764 			if (!batch[i])
765 				continue;
766 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
767 			    xfs_iflags_test(batch[i], XFS_INEW))
768 				xfs_inew_wait(batch[i]);
769 			error = execute(batch[i], flags, args);
770 			IRELE(batch[i]);
771 			if (error == -EAGAIN) {
772 				skipped++;
773 				continue;
774 			}
775 			if (error && last_error != -EFSCORRUPTED)
776 				last_error = error;
777 		}
778 
779 		/* bail out if the filesystem is corrupted.  */
780 		if (error == -EFSCORRUPTED)
781 			break;
782 
783 		cond_resched();
784 
785 	} while (nr_found && !done);
786 
787 	if (skipped) {
788 		delay(1);
789 		goto restart;
790 	}
791 	return last_error;
792 }
793 
794 /*
795  * Background scanning to trim post-EOF preallocated space. This is queued
796  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
797  */
798 void
799 xfs_queue_eofblocks(
800 	struct xfs_mount *mp)
801 {
802 	rcu_read_lock();
803 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
804 		queue_delayed_work(mp->m_eofblocks_workqueue,
805 				   &mp->m_eofblocks_work,
806 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
807 	rcu_read_unlock();
808 }
809 
810 void
811 xfs_eofblocks_worker(
812 	struct work_struct *work)
813 {
814 	struct xfs_mount *mp = container_of(to_delayed_work(work),
815 				struct xfs_mount, m_eofblocks_work);
816 	xfs_icache_free_eofblocks(mp, NULL);
817 	xfs_queue_eofblocks(mp);
818 }
819 
820 /*
821  * Background scanning to trim preallocated CoW space. This is queued
822  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
823  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
824  */
825 STATIC void
826 xfs_queue_cowblocks(
827 	struct xfs_mount *mp)
828 {
829 	rcu_read_lock();
830 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
831 		queue_delayed_work(mp->m_eofblocks_workqueue,
832 				   &mp->m_cowblocks_work,
833 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
834 	rcu_read_unlock();
835 }
836 
837 void
838 xfs_cowblocks_worker(
839 	struct work_struct *work)
840 {
841 	struct xfs_mount *mp = container_of(to_delayed_work(work),
842 				struct xfs_mount, m_cowblocks_work);
843 	xfs_icache_free_cowblocks(mp, NULL);
844 	xfs_queue_cowblocks(mp);
845 }
846 
847 int
848 xfs_inode_ag_iterator_flags(
849 	struct xfs_mount	*mp,
850 	int			(*execute)(struct xfs_inode *ip, int flags,
851 					   void *args),
852 	int			flags,
853 	void			*args,
854 	int			iter_flags)
855 {
856 	struct xfs_perag	*pag;
857 	int			error = 0;
858 	int			last_error = 0;
859 	xfs_agnumber_t		ag;
860 
861 	ag = 0;
862 	while ((pag = xfs_perag_get(mp, ag))) {
863 		ag = pag->pag_agno + 1;
864 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
865 					  iter_flags);
866 		xfs_perag_put(pag);
867 		if (error) {
868 			last_error = error;
869 			if (error == -EFSCORRUPTED)
870 				break;
871 		}
872 	}
873 	return last_error;
874 }
875 
876 int
877 xfs_inode_ag_iterator(
878 	struct xfs_mount	*mp,
879 	int			(*execute)(struct xfs_inode *ip, int flags,
880 					   void *args),
881 	int			flags,
882 	void			*args)
883 {
884 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
885 }
886 
887 int
888 xfs_inode_ag_iterator_tag(
889 	struct xfs_mount	*mp,
890 	int			(*execute)(struct xfs_inode *ip, int flags,
891 					   void *args),
892 	int			flags,
893 	void			*args,
894 	int			tag)
895 {
896 	struct xfs_perag	*pag;
897 	int			error = 0;
898 	int			last_error = 0;
899 	xfs_agnumber_t		ag;
900 
901 	ag = 0;
902 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
903 		ag = pag->pag_agno + 1;
904 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
905 					  0);
906 		xfs_perag_put(pag);
907 		if (error) {
908 			last_error = error;
909 			if (error == -EFSCORRUPTED)
910 				break;
911 		}
912 	}
913 	return last_error;
914 }
915 
916 /*
917  * Grab the inode for reclaim exclusively.
918  * Return 0 if we grabbed it, non-zero otherwise.
919  */
920 STATIC int
921 xfs_reclaim_inode_grab(
922 	struct xfs_inode	*ip,
923 	int			flags)
924 {
925 	ASSERT(rcu_read_lock_held());
926 
927 	/* quick check for stale RCU freed inode */
928 	if (!ip->i_ino)
929 		return 1;
930 
931 	/*
932 	 * If we are asked for non-blocking operation, do unlocked checks to
933 	 * see if the inode already is being flushed or in reclaim to avoid
934 	 * lock traffic.
935 	 */
936 	if ((flags & SYNC_TRYLOCK) &&
937 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
938 		return 1;
939 
940 	/*
941 	 * The radix tree lock here protects a thread in xfs_iget from racing
942 	 * with us starting reclaim on the inode.  Once we have the
943 	 * XFS_IRECLAIM flag set it will not touch us.
944 	 *
945 	 * Due to RCU lookup, we may find inodes that have been freed and only
946 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
947 	 * aren't candidates for reclaim at all, so we must check the
948 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
949 	 */
950 	spin_lock(&ip->i_flags_lock);
951 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
952 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
953 		/* not a reclaim candidate. */
954 		spin_unlock(&ip->i_flags_lock);
955 		return 1;
956 	}
957 	__xfs_iflags_set(ip, XFS_IRECLAIM);
958 	spin_unlock(&ip->i_flags_lock);
959 	return 0;
960 }
961 
962 /*
963  * Inodes in different states need to be treated differently. The following
964  * table lists the inode states and the reclaim actions necessary:
965  *
966  *	inode state	     iflush ret		required action
967  *      ---------------      ----------         ---------------
968  *	bad			-		reclaim
969  *	shutdown		EIO		unpin and reclaim
970  *	clean, unpinned		0		reclaim
971  *	stale, unpinned		0		reclaim
972  *	clean, pinned(*)	0		requeue
973  *	stale, pinned		EAGAIN		requeue
974  *	dirty, async		-		requeue
975  *	dirty, sync		0		reclaim
976  *
977  * (*) dgc: I don't think the clean, pinned state is possible but it gets
978  * handled anyway given the order of checks implemented.
979  *
980  * Also, because we get the flush lock first, we know that any inode that has
981  * been flushed delwri has had the flush completed by the time we check that
982  * the inode is clean.
983  *
984  * Note that because the inode is flushed delayed write by AIL pushing, the
985  * flush lock may already be held here and waiting on it can result in very
986  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
987  * the caller should push the AIL first before trying to reclaim inodes to
988  * minimise the amount of time spent waiting.  For background relaim, we only
989  * bother to reclaim clean inodes anyway.
990  *
991  * Hence the order of actions after gaining the locks should be:
992  *	bad		=> reclaim
993  *	shutdown	=> unpin and reclaim
994  *	pinned, async	=> requeue
995  *	pinned, sync	=> unpin
996  *	stale		=> reclaim
997  *	clean		=> reclaim
998  *	dirty, async	=> requeue
999  *	dirty, sync	=> flush, wait and reclaim
1000  */
1001 STATIC int
1002 xfs_reclaim_inode(
1003 	struct xfs_inode	*ip,
1004 	struct xfs_perag	*pag,
1005 	int			sync_mode)
1006 {
1007 	struct xfs_buf		*bp = NULL;
1008 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1009 	int			error;
1010 
1011 restart:
1012 	error = 0;
1013 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1014 	if (!xfs_iflock_nowait(ip)) {
1015 		if (!(sync_mode & SYNC_WAIT))
1016 			goto out;
1017 		xfs_iflock(ip);
1018 	}
1019 
1020 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1021 		xfs_iunpin_wait(ip);
1022 		/* xfs_iflush_abort() drops the flush lock */
1023 		xfs_iflush_abort(ip, false);
1024 		goto reclaim;
1025 	}
1026 	if (xfs_ipincount(ip)) {
1027 		if (!(sync_mode & SYNC_WAIT))
1028 			goto out_ifunlock;
1029 		xfs_iunpin_wait(ip);
1030 	}
1031 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1032 		xfs_ifunlock(ip);
1033 		goto reclaim;
1034 	}
1035 
1036 	/*
1037 	 * Never flush out dirty data during non-blocking reclaim, as it would
1038 	 * just contend with AIL pushing trying to do the same job.
1039 	 */
1040 	if (!(sync_mode & SYNC_WAIT))
1041 		goto out_ifunlock;
1042 
1043 	/*
1044 	 * Now we have an inode that needs flushing.
1045 	 *
1046 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1047 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1048 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1049 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1050 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1051 	 *
1052 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1053 	 * cache to mark them stale, if we hit this case we don't actually want
1054 	 * to do IO here - we want the inode marked stale so we can simply
1055 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1056 	 * inode, back off and try again.  Hopefully the next pass through will
1057 	 * see the stale flag set on the inode.
1058 	 */
1059 	error = xfs_iflush(ip, &bp);
1060 	if (error == -EAGAIN) {
1061 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1062 		/* backoff longer than in xfs_ifree_cluster */
1063 		delay(2);
1064 		goto restart;
1065 	}
1066 
1067 	if (!error) {
1068 		error = xfs_bwrite(bp);
1069 		xfs_buf_relse(bp);
1070 	}
1071 
1072 reclaim:
1073 	ASSERT(!xfs_isiflocked(ip));
1074 
1075 	/*
1076 	 * Because we use RCU freeing we need to ensure the inode always appears
1077 	 * to be reclaimed with an invalid inode number when in the free state.
1078 	 * We do this as early as possible under the ILOCK so that
1079 	 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
1080 	 * By doing this, we guarantee that once xfs_iflush_cluster has locked
1081 	 * XFS_ILOCK that it will see either a valid, flushable inode that will
1082 	 * serialise correctly, or it will see a clean (and invalid) inode that
1083 	 * it can skip.
1084 	 */
1085 	spin_lock(&ip->i_flags_lock);
1086 	ip->i_flags = XFS_IRECLAIM;
1087 	ip->i_ino = 0;
1088 	spin_unlock(&ip->i_flags_lock);
1089 
1090 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1091 
1092 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1093 	/*
1094 	 * Remove the inode from the per-AG radix tree.
1095 	 *
1096 	 * Because radix_tree_delete won't complain even if the item was never
1097 	 * added to the tree assert that it's been there before to catch
1098 	 * problems with the inode life time early on.
1099 	 */
1100 	spin_lock(&pag->pag_ici_lock);
1101 	if (!radix_tree_delete(&pag->pag_ici_root,
1102 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1103 		ASSERT(0);
1104 	xfs_perag_clear_reclaim_tag(pag);
1105 	spin_unlock(&pag->pag_ici_lock);
1106 
1107 	/*
1108 	 * Here we do an (almost) spurious inode lock in order to coordinate
1109 	 * with inode cache radix tree lookups.  This is because the lookup
1110 	 * can reference the inodes in the cache without taking references.
1111 	 *
1112 	 * We make that OK here by ensuring that we wait until the inode is
1113 	 * unlocked after the lookup before we go ahead and free it.
1114 	 */
1115 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1116 	xfs_qm_dqdetach(ip);
1117 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1118 
1119 	__xfs_inode_free(ip);
1120 	return error;
1121 
1122 out_ifunlock:
1123 	xfs_ifunlock(ip);
1124 out:
1125 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1126 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1127 	/*
1128 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1129 	 * a short while. However, this just burns CPU time scanning the tree
1130 	 * waiting for IO to complete and the reclaim work never goes back to
1131 	 * the idle state. Instead, return 0 to let the next scheduled
1132 	 * background reclaim attempt to reclaim the inode again.
1133 	 */
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1139  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1140  * then a shut down during filesystem unmount reclaim walk leak all the
1141  * unreclaimed inodes.
1142  */
1143 STATIC int
1144 xfs_reclaim_inodes_ag(
1145 	struct xfs_mount	*mp,
1146 	int			flags,
1147 	int			*nr_to_scan)
1148 {
1149 	struct xfs_perag	*pag;
1150 	int			error = 0;
1151 	int			last_error = 0;
1152 	xfs_agnumber_t		ag;
1153 	int			trylock = flags & SYNC_TRYLOCK;
1154 	int			skipped;
1155 
1156 restart:
1157 	ag = 0;
1158 	skipped = 0;
1159 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1160 		unsigned long	first_index = 0;
1161 		int		done = 0;
1162 		int		nr_found = 0;
1163 
1164 		ag = pag->pag_agno + 1;
1165 
1166 		if (trylock) {
1167 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1168 				skipped++;
1169 				xfs_perag_put(pag);
1170 				continue;
1171 			}
1172 			first_index = pag->pag_ici_reclaim_cursor;
1173 		} else
1174 			mutex_lock(&pag->pag_ici_reclaim_lock);
1175 
1176 		do {
1177 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1178 			int	i;
1179 
1180 			rcu_read_lock();
1181 			nr_found = radix_tree_gang_lookup_tag(
1182 					&pag->pag_ici_root,
1183 					(void **)batch, first_index,
1184 					XFS_LOOKUP_BATCH,
1185 					XFS_ICI_RECLAIM_TAG);
1186 			if (!nr_found) {
1187 				done = 1;
1188 				rcu_read_unlock();
1189 				break;
1190 			}
1191 
1192 			/*
1193 			 * Grab the inodes before we drop the lock. if we found
1194 			 * nothing, nr == 0 and the loop will be skipped.
1195 			 */
1196 			for (i = 0; i < nr_found; i++) {
1197 				struct xfs_inode *ip = batch[i];
1198 
1199 				if (done || xfs_reclaim_inode_grab(ip, flags))
1200 					batch[i] = NULL;
1201 
1202 				/*
1203 				 * Update the index for the next lookup. Catch
1204 				 * overflows into the next AG range which can
1205 				 * occur if we have inodes in the last block of
1206 				 * the AG and we are currently pointing to the
1207 				 * last inode.
1208 				 *
1209 				 * Because we may see inodes that are from the
1210 				 * wrong AG due to RCU freeing and
1211 				 * reallocation, only update the index if it
1212 				 * lies in this AG. It was a race that lead us
1213 				 * to see this inode, so another lookup from
1214 				 * the same index will not find it again.
1215 				 */
1216 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1217 								pag->pag_agno)
1218 					continue;
1219 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1220 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1221 					done = 1;
1222 			}
1223 
1224 			/* unlock now we've grabbed the inodes. */
1225 			rcu_read_unlock();
1226 
1227 			for (i = 0; i < nr_found; i++) {
1228 				if (!batch[i])
1229 					continue;
1230 				error = xfs_reclaim_inode(batch[i], pag, flags);
1231 				if (error && last_error != -EFSCORRUPTED)
1232 					last_error = error;
1233 			}
1234 
1235 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1236 
1237 			cond_resched();
1238 
1239 		} while (nr_found && !done && *nr_to_scan > 0);
1240 
1241 		if (trylock && !done)
1242 			pag->pag_ici_reclaim_cursor = first_index;
1243 		else
1244 			pag->pag_ici_reclaim_cursor = 0;
1245 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1246 		xfs_perag_put(pag);
1247 	}
1248 
1249 	/*
1250 	 * if we skipped any AG, and we still have scan count remaining, do
1251 	 * another pass this time using blocking reclaim semantics (i.e
1252 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1253 	 * ensure that when we get more reclaimers than AGs we block rather
1254 	 * than spin trying to execute reclaim.
1255 	 */
1256 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1257 		trylock = 0;
1258 		goto restart;
1259 	}
1260 	return last_error;
1261 }
1262 
1263 int
1264 xfs_reclaim_inodes(
1265 	xfs_mount_t	*mp,
1266 	int		mode)
1267 {
1268 	int		nr_to_scan = INT_MAX;
1269 
1270 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1271 }
1272 
1273 /*
1274  * Scan a certain number of inodes for reclaim.
1275  *
1276  * When called we make sure that there is a background (fast) inode reclaim in
1277  * progress, while we will throttle the speed of reclaim via doing synchronous
1278  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1279  * them to be cleaned, which we hope will not be very long due to the
1280  * background walker having already kicked the IO off on those dirty inodes.
1281  */
1282 long
1283 xfs_reclaim_inodes_nr(
1284 	struct xfs_mount	*mp,
1285 	int			nr_to_scan)
1286 {
1287 	/* kick background reclaimer and push the AIL */
1288 	xfs_reclaim_work_queue(mp);
1289 	xfs_ail_push_all(mp->m_ail);
1290 
1291 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1292 }
1293 
1294 /*
1295  * Return the number of reclaimable inodes in the filesystem for
1296  * the shrinker to determine how much to reclaim.
1297  */
1298 int
1299 xfs_reclaim_inodes_count(
1300 	struct xfs_mount	*mp)
1301 {
1302 	struct xfs_perag	*pag;
1303 	xfs_agnumber_t		ag = 0;
1304 	int			reclaimable = 0;
1305 
1306 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1307 		ag = pag->pag_agno + 1;
1308 		reclaimable += pag->pag_ici_reclaimable;
1309 		xfs_perag_put(pag);
1310 	}
1311 	return reclaimable;
1312 }
1313 
1314 STATIC int
1315 xfs_inode_match_id(
1316 	struct xfs_inode	*ip,
1317 	struct xfs_eofblocks	*eofb)
1318 {
1319 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1320 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1321 		return 0;
1322 
1323 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1324 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1325 		return 0;
1326 
1327 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1328 	    xfs_get_projid(ip) != eofb->eof_prid)
1329 		return 0;
1330 
1331 	return 1;
1332 }
1333 
1334 /*
1335  * A union-based inode filtering algorithm. Process the inode if any of the
1336  * criteria match. This is for global/internal scans only.
1337  */
1338 STATIC int
1339 xfs_inode_match_id_union(
1340 	struct xfs_inode	*ip,
1341 	struct xfs_eofblocks	*eofb)
1342 {
1343 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1344 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1345 		return 1;
1346 
1347 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1348 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1349 		return 1;
1350 
1351 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1352 	    xfs_get_projid(ip) == eofb->eof_prid)
1353 		return 1;
1354 
1355 	return 0;
1356 }
1357 
1358 STATIC int
1359 xfs_inode_free_eofblocks(
1360 	struct xfs_inode	*ip,
1361 	int			flags,
1362 	void			*args)
1363 {
1364 	int ret = 0;
1365 	struct xfs_eofblocks *eofb = args;
1366 	int match;
1367 
1368 	if (!xfs_can_free_eofblocks(ip, false)) {
1369 		/* inode could be preallocated or append-only */
1370 		trace_xfs_inode_free_eofblocks_invalid(ip);
1371 		xfs_inode_clear_eofblocks_tag(ip);
1372 		return 0;
1373 	}
1374 
1375 	/*
1376 	 * If the mapping is dirty the operation can block and wait for some
1377 	 * time. Unless we are waiting, skip it.
1378 	 */
1379 	if (!(flags & SYNC_WAIT) &&
1380 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1381 		return 0;
1382 
1383 	if (eofb) {
1384 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1385 			match = xfs_inode_match_id_union(ip, eofb);
1386 		else
1387 			match = xfs_inode_match_id(ip, eofb);
1388 		if (!match)
1389 			return 0;
1390 
1391 		/* skip the inode if the file size is too small */
1392 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1393 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1394 			return 0;
1395 	}
1396 
1397 	/*
1398 	 * If the caller is waiting, return -EAGAIN to keep the background
1399 	 * scanner moving and revisit the inode in a subsequent pass.
1400 	 */
1401 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1402 		if (flags & SYNC_WAIT)
1403 			ret = -EAGAIN;
1404 		return ret;
1405 	}
1406 	ret = xfs_free_eofblocks(ip);
1407 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1408 
1409 	return ret;
1410 }
1411 
1412 static int
1413 __xfs_icache_free_eofblocks(
1414 	struct xfs_mount	*mp,
1415 	struct xfs_eofblocks	*eofb,
1416 	int			(*execute)(struct xfs_inode *ip, int flags,
1417 					   void *args),
1418 	int			tag)
1419 {
1420 	int flags = SYNC_TRYLOCK;
1421 
1422 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1423 		flags = SYNC_WAIT;
1424 
1425 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1426 					 eofb, tag);
1427 }
1428 
1429 int
1430 xfs_icache_free_eofblocks(
1431 	struct xfs_mount	*mp,
1432 	struct xfs_eofblocks	*eofb)
1433 {
1434 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1435 			XFS_ICI_EOFBLOCKS_TAG);
1436 }
1437 
1438 /*
1439  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1440  * multiple quotas, we don't know exactly which quota caused an allocation
1441  * failure. We make a best effort by including each quota under low free space
1442  * conditions (less than 1% free space) in the scan.
1443  */
1444 static int
1445 __xfs_inode_free_quota_eofblocks(
1446 	struct xfs_inode	*ip,
1447 	int			(*execute)(struct xfs_mount *mp,
1448 					   struct xfs_eofblocks	*eofb))
1449 {
1450 	int scan = 0;
1451 	struct xfs_eofblocks eofb = {0};
1452 	struct xfs_dquot *dq;
1453 
1454 	/*
1455 	 * Run a sync scan to increase effectiveness and use the union filter to
1456 	 * cover all applicable quotas in a single scan.
1457 	 */
1458 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1459 
1460 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1461 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1462 		if (dq && xfs_dquot_lowsp(dq)) {
1463 			eofb.eof_uid = VFS_I(ip)->i_uid;
1464 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1465 			scan = 1;
1466 		}
1467 	}
1468 
1469 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1470 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1471 		if (dq && xfs_dquot_lowsp(dq)) {
1472 			eofb.eof_gid = VFS_I(ip)->i_gid;
1473 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1474 			scan = 1;
1475 		}
1476 	}
1477 
1478 	if (scan)
1479 		execute(ip->i_mount, &eofb);
1480 
1481 	return scan;
1482 }
1483 
1484 int
1485 xfs_inode_free_quota_eofblocks(
1486 	struct xfs_inode *ip)
1487 {
1488 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1489 }
1490 
1491 static void
1492 __xfs_inode_set_eofblocks_tag(
1493 	xfs_inode_t	*ip,
1494 	void		(*execute)(struct xfs_mount *mp),
1495 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1496 				  int error, unsigned long caller_ip),
1497 	int		tag)
1498 {
1499 	struct xfs_mount *mp = ip->i_mount;
1500 	struct xfs_perag *pag;
1501 	int tagged;
1502 
1503 	/*
1504 	 * Don't bother locking the AG and looking up in the radix trees
1505 	 * if we already know that we have the tag set.
1506 	 */
1507 	if (ip->i_flags & XFS_IEOFBLOCKS)
1508 		return;
1509 	spin_lock(&ip->i_flags_lock);
1510 	ip->i_flags |= XFS_IEOFBLOCKS;
1511 	spin_unlock(&ip->i_flags_lock);
1512 
1513 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1514 	spin_lock(&pag->pag_ici_lock);
1515 
1516 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1517 	radix_tree_tag_set(&pag->pag_ici_root,
1518 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1519 	if (!tagged) {
1520 		/* propagate the eofblocks tag up into the perag radix tree */
1521 		spin_lock(&ip->i_mount->m_perag_lock);
1522 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1523 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1524 				   tag);
1525 		spin_unlock(&ip->i_mount->m_perag_lock);
1526 
1527 		/* kick off background trimming */
1528 		execute(ip->i_mount);
1529 
1530 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1531 	}
1532 
1533 	spin_unlock(&pag->pag_ici_lock);
1534 	xfs_perag_put(pag);
1535 }
1536 
1537 void
1538 xfs_inode_set_eofblocks_tag(
1539 	xfs_inode_t	*ip)
1540 {
1541 	trace_xfs_inode_set_eofblocks_tag(ip);
1542 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1543 			trace_xfs_perag_set_eofblocks,
1544 			XFS_ICI_EOFBLOCKS_TAG);
1545 }
1546 
1547 static void
1548 __xfs_inode_clear_eofblocks_tag(
1549 	xfs_inode_t	*ip,
1550 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1551 				    int error, unsigned long caller_ip),
1552 	int		tag)
1553 {
1554 	struct xfs_mount *mp = ip->i_mount;
1555 	struct xfs_perag *pag;
1556 
1557 	spin_lock(&ip->i_flags_lock);
1558 	ip->i_flags &= ~XFS_IEOFBLOCKS;
1559 	spin_unlock(&ip->i_flags_lock);
1560 
1561 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1562 	spin_lock(&pag->pag_ici_lock);
1563 
1564 	radix_tree_tag_clear(&pag->pag_ici_root,
1565 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1566 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1567 		/* clear the eofblocks tag from the perag radix tree */
1568 		spin_lock(&ip->i_mount->m_perag_lock);
1569 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1570 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1571 				     tag);
1572 		spin_unlock(&ip->i_mount->m_perag_lock);
1573 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1574 	}
1575 
1576 	spin_unlock(&pag->pag_ici_lock);
1577 	xfs_perag_put(pag);
1578 }
1579 
1580 void
1581 xfs_inode_clear_eofblocks_tag(
1582 	xfs_inode_t	*ip)
1583 {
1584 	trace_xfs_inode_clear_eofblocks_tag(ip);
1585 	return __xfs_inode_clear_eofblocks_tag(ip,
1586 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1587 }
1588 
1589 /*
1590  * Automatic CoW Reservation Freeing
1591  *
1592  * These functions automatically garbage collect leftover CoW reservations
1593  * that were made on behalf of a cowextsize hint when we start to run out
1594  * of quota or when the reservations sit around for too long.  If the file
1595  * has dirty pages or is undergoing writeback, its CoW reservations will
1596  * be retained.
1597  *
1598  * The actual garbage collection piggybacks off the same code that runs
1599  * the speculative EOF preallocation garbage collector.
1600  */
1601 STATIC int
1602 xfs_inode_free_cowblocks(
1603 	struct xfs_inode	*ip,
1604 	int			flags,
1605 	void			*args)
1606 {
1607 	int ret;
1608 	struct xfs_eofblocks *eofb = args;
1609 	int match;
1610 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1611 
1612 	/*
1613 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1614 	 * possible the inode was fully unshared since it was originally tagged.
1615 	 */
1616 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1617 		trace_xfs_inode_free_cowblocks_invalid(ip);
1618 		xfs_inode_clear_cowblocks_tag(ip);
1619 		return 0;
1620 	}
1621 
1622 	/*
1623 	 * If the mapping is dirty or under writeback we cannot touch the
1624 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1625 	 */
1626 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1627 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1628 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1629 	    atomic_read(&VFS_I(ip)->i_dio_count))
1630 		return 0;
1631 
1632 	if (eofb) {
1633 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1634 			match = xfs_inode_match_id_union(ip, eofb);
1635 		else
1636 			match = xfs_inode_match_id(ip, eofb);
1637 		if (!match)
1638 			return 0;
1639 
1640 		/* skip the inode if the file size is too small */
1641 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1642 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1643 			return 0;
1644 	}
1645 
1646 	/* Free the CoW blocks */
1647 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1648 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1649 
1650 	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1651 
1652 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1653 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1654 
1655 	return ret;
1656 }
1657 
1658 int
1659 xfs_icache_free_cowblocks(
1660 	struct xfs_mount	*mp,
1661 	struct xfs_eofblocks	*eofb)
1662 {
1663 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1664 			XFS_ICI_COWBLOCKS_TAG);
1665 }
1666 
1667 int
1668 xfs_inode_free_quota_cowblocks(
1669 	struct xfs_inode *ip)
1670 {
1671 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1672 }
1673 
1674 void
1675 xfs_inode_set_cowblocks_tag(
1676 	xfs_inode_t	*ip)
1677 {
1678 	trace_xfs_inode_set_cowblocks_tag(ip);
1679 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1680 			trace_xfs_perag_set_cowblocks,
1681 			XFS_ICI_COWBLOCKS_TAG);
1682 }
1683 
1684 void
1685 xfs_inode_clear_cowblocks_tag(
1686 	xfs_inode_t	*ip)
1687 {
1688 	trace_xfs_inode_clear_cowblocks_tag(ip);
1689 	return __xfs_inode_clear_eofblocks_tag(ip,
1690 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1691 }
1692