xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision e3b9f1e8)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/iversion.h>
41 
42 /*
43  * Allocate and initialise an xfs_inode.
44  */
45 struct xfs_inode *
46 xfs_inode_alloc(
47 	struct xfs_mount	*mp,
48 	xfs_ino_t		ino)
49 {
50 	struct xfs_inode	*ip;
51 
52 	/*
53 	 * if this didn't occur in transactions, we could use
54 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
55 	 * code up to do this anyway.
56 	 */
57 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
58 	if (!ip)
59 		return NULL;
60 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
61 		kmem_zone_free(xfs_inode_zone, ip);
62 		return NULL;
63 	}
64 
65 	/* VFS doesn't initialise i_mode! */
66 	VFS_I(ip)->i_mode = 0;
67 
68 	XFS_STATS_INC(mp, vn_active);
69 	ASSERT(atomic_read(&ip->i_pincount) == 0);
70 	ASSERT(!xfs_isiflocked(ip));
71 	ASSERT(ip->i_ino == 0);
72 
73 	/* initialise the xfs inode */
74 	ip->i_ino = ino;
75 	ip->i_mount = mp;
76 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 	ip->i_afp = NULL;
78 	ip->i_cowfp = NULL;
79 	ip->i_cnextents = 0;
80 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
81 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 	ip->i_flags = 0;
83 	ip->i_delayed_blks = 0;
84 	memset(&ip->i_d, 0, sizeof(ip->i_d));
85 
86 	return ip;
87 }
88 
89 STATIC void
90 xfs_inode_free_callback(
91 	struct rcu_head		*head)
92 {
93 	struct inode		*inode = container_of(head, struct inode, i_rcu);
94 	struct xfs_inode	*ip = XFS_I(inode);
95 
96 	switch (VFS_I(ip)->i_mode & S_IFMT) {
97 	case S_IFREG:
98 	case S_IFDIR:
99 	case S_IFLNK:
100 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 		break;
102 	}
103 
104 	if (ip->i_afp)
105 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
106 	if (ip->i_cowfp)
107 		xfs_idestroy_fork(ip, XFS_COW_FORK);
108 
109 	if (ip->i_itemp) {
110 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
111 		xfs_inode_item_destroy(ip);
112 		ip->i_itemp = NULL;
113 	}
114 
115 	kmem_zone_free(xfs_inode_zone, ip);
116 }
117 
118 static void
119 __xfs_inode_free(
120 	struct xfs_inode	*ip)
121 {
122 	/* asserts to verify all state is correct here */
123 	ASSERT(atomic_read(&ip->i_pincount) == 0);
124 	XFS_STATS_DEC(ip->i_mount, vn_active);
125 
126 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
127 }
128 
129 void
130 xfs_inode_free(
131 	struct xfs_inode	*ip)
132 {
133 	ASSERT(!xfs_isiflocked(ip));
134 
135 	/*
136 	 * Because we use RCU freeing we need to ensure the inode always
137 	 * appears to be reclaimed with an invalid inode number when in the
138 	 * free state. The ip->i_flags_lock provides the barrier against lookup
139 	 * races.
140 	 */
141 	spin_lock(&ip->i_flags_lock);
142 	ip->i_flags = XFS_IRECLAIM;
143 	ip->i_ino = 0;
144 	spin_unlock(&ip->i_flags_lock);
145 
146 	__xfs_inode_free(ip);
147 }
148 
149 /*
150  * Queue a new inode reclaim pass if there are reclaimable inodes and there
151  * isn't a reclaim pass already in progress. By default it runs every 5s based
152  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153  * tunable, but that can be done if this method proves to be ineffective or too
154  * aggressive.
155  */
156 static void
157 xfs_reclaim_work_queue(
158 	struct xfs_mount        *mp)
159 {
160 
161 	rcu_read_lock();
162 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
163 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
164 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
165 	}
166 	rcu_read_unlock();
167 }
168 
169 /*
170  * This is a fast pass over the inode cache to try to get reclaim moving on as
171  * many inodes as possible in a short period of time. It kicks itself every few
172  * seconds, as well as being kicked by the inode cache shrinker when memory
173  * goes low. It scans as quickly as possible avoiding locked inodes or those
174  * already being flushed, and once done schedules a future pass.
175  */
176 void
177 xfs_reclaim_worker(
178 	struct work_struct *work)
179 {
180 	struct xfs_mount *mp = container_of(to_delayed_work(work),
181 					struct xfs_mount, m_reclaim_work);
182 
183 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
184 	xfs_reclaim_work_queue(mp);
185 }
186 
187 static void
188 xfs_perag_set_reclaim_tag(
189 	struct xfs_perag	*pag)
190 {
191 	struct xfs_mount	*mp = pag->pag_mount;
192 
193 	lockdep_assert_held(&pag->pag_ici_lock);
194 	if (pag->pag_ici_reclaimable++)
195 		return;
196 
197 	/* propagate the reclaim tag up into the perag radix tree */
198 	spin_lock(&mp->m_perag_lock);
199 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
200 			   XFS_ICI_RECLAIM_TAG);
201 	spin_unlock(&mp->m_perag_lock);
202 
203 	/* schedule periodic background inode reclaim */
204 	xfs_reclaim_work_queue(mp);
205 
206 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
207 }
208 
209 static void
210 xfs_perag_clear_reclaim_tag(
211 	struct xfs_perag	*pag)
212 {
213 	struct xfs_mount	*mp = pag->pag_mount;
214 
215 	lockdep_assert_held(&pag->pag_ici_lock);
216 	if (--pag->pag_ici_reclaimable)
217 		return;
218 
219 	/* clear the reclaim tag from the perag radix tree */
220 	spin_lock(&mp->m_perag_lock);
221 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
222 			     XFS_ICI_RECLAIM_TAG);
223 	spin_unlock(&mp->m_perag_lock);
224 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
225 }
226 
227 
228 /*
229  * We set the inode flag atomically with the radix tree tag.
230  * Once we get tag lookups on the radix tree, this inode flag
231  * can go away.
232  */
233 void
234 xfs_inode_set_reclaim_tag(
235 	struct xfs_inode	*ip)
236 {
237 	struct xfs_mount	*mp = ip->i_mount;
238 	struct xfs_perag	*pag;
239 
240 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
241 	spin_lock(&pag->pag_ici_lock);
242 	spin_lock(&ip->i_flags_lock);
243 
244 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
245 			   XFS_ICI_RECLAIM_TAG);
246 	xfs_perag_set_reclaim_tag(pag);
247 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
248 
249 	spin_unlock(&ip->i_flags_lock);
250 	spin_unlock(&pag->pag_ici_lock);
251 	xfs_perag_put(pag);
252 }
253 
254 STATIC void
255 xfs_inode_clear_reclaim_tag(
256 	struct xfs_perag	*pag,
257 	xfs_ino_t		ino)
258 {
259 	radix_tree_tag_clear(&pag->pag_ici_root,
260 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
261 			     XFS_ICI_RECLAIM_TAG);
262 	xfs_perag_clear_reclaim_tag(pag);
263 }
264 
265 static void
266 xfs_inew_wait(
267 	struct xfs_inode	*ip)
268 {
269 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
270 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
271 
272 	do {
273 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
274 		if (!xfs_iflags_test(ip, XFS_INEW))
275 			break;
276 		schedule();
277 	} while (true);
278 	finish_wait(wq, &wait.wq_entry);
279 }
280 
281 /*
282  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
283  * part of the structure. This is made more complex by the fact we store
284  * information about the on-disk values in the VFS inode and so we can't just
285  * overwrite the values unconditionally. Hence we save the parameters we
286  * need to retain across reinitialisation, and rewrite them into the VFS inode
287  * after reinitialisation even if it fails.
288  */
289 static int
290 xfs_reinit_inode(
291 	struct xfs_mount	*mp,
292 	struct inode		*inode)
293 {
294 	int		error;
295 	uint32_t	nlink = inode->i_nlink;
296 	uint32_t	generation = inode->i_generation;
297 	uint64_t	version = inode_peek_iversion(inode);
298 	umode_t		mode = inode->i_mode;
299 	dev_t		dev = inode->i_rdev;
300 
301 	error = inode_init_always(mp->m_super, inode);
302 
303 	set_nlink(inode, nlink);
304 	inode->i_generation = generation;
305 	inode_set_iversion_queried(inode, version);
306 	inode->i_mode = mode;
307 	inode->i_rdev = dev;
308 	return error;
309 }
310 
311 /*
312  * Check the validity of the inode we just found it the cache
313  */
314 static int
315 xfs_iget_cache_hit(
316 	struct xfs_perag	*pag,
317 	struct xfs_inode	*ip,
318 	xfs_ino_t		ino,
319 	int			flags,
320 	int			lock_flags) __releases(RCU)
321 {
322 	struct inode		*inode = VFS_I(ip);
323 	struct xfs_mount	*mp = ip->i_mount;
324 	int			error;
325 
326 	/*
327 	 * check for re-use of an inode within an RCU grace period due to the
328 	 * radix tree nodes not being updated yet. We monitor for this by
329 	 * setting the inode number to zero before freeing the inode structure.
330 	 * If the inode has been reallocated and set up, then the inode number
331 	 * will not match, so check for that, too.
332 	 */
333 	spin_lock(&ip->i_flags_lock);
334 	if (ip->i_ino != ino) {
335 		trace_xfs_iget_skip(ip);
336 		XFS_STATS_INC(mp, xs_ig_frecycle);
337 		error = -EAGAIN;
338 		goto out_error;
339 	}
340 
341 
342 	/*
343 	 * If we are racing with another cache hit that is currently
344 	 * instantiating this inode or currently recycling it out of
345 	 * reclaimabe state, wait for the initialisation to complete
346 	 * before continuing.
347 	 *
348 	 * XXX(hch): eventually we should do something equivalent to
349 	 *	     wait_on_inode to wait for these flags to be cleared
350 	 *	     instead of polling for it.
351 	 */
352 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
353 		trace_xfs_iget_skip(ip);
354 		XFS_STATS_INC(mp, xs_ig_frecycle);
355 		error = -EAGAIN;
356 		goto out_error;
357 	}
358 
359 	/*
360 	 * If lookup is racing with unlink return an error immediately.
361 	 */
362 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
363 		error = -ENOENT;
364 		goto out_error;
365 	}
366 
367 	/*
368 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
369 	 * Need to carefully get it back into useable state.
370 	 */
371 	if (ip->i_flags & XFS_IRECLAIMABLE) {
372 		trace_xfs_iget_reclaim(ip);
373 
374 		if (flags & XFS_IGET_INCORE) {
375 			error = -EAGAIN;
376 			goto out_error;
377 		}
378 
379 		/*
380 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
381 		 * from stomping over us while we recycle the inode.  We can't
382 		 * clear the radix tree reclaimable tag yet as it requires
383 		 * pag_ici_lock to be held exclusive.
384 		 */
385 		ip->i_flags |= XFS_IRECLAIM;
386 
387 		spin_unlock(&ip->i_flags_lock);
388 		rcu_read_unlock();
389 
390 		error = xfs_reinit_inode(mp, inode);
391 		if (error) {
392 			bool wake;
393 			/*
394 			 * Re-initializing the inode failed, and we are in deep
395 			 * trouble.  Try to re-add it to the reclaim list.
396 			 */
397 			rcu_read_lock();
398 			spin_lock(&ip->i_flags_lock);
399 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
400 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
401 			if (wake)
402 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
403 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
404 			trace_xfs_iget_reclaim_fail(ip);
405 			goto out_error;
406 		}
407 
408 		spin_lock(&pag->pag_ici_lock);
409 		spin_lock(&ip->i_flags_lock);
410 
411 		/*
412 		 * Clear the per-lifetime state in the inode as we are now
413 		 * effectively a new inode and need to return to the initial
414 		 * state before reuse occurs.
415 		 */
416 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
417 		ip->i_flags |= XFS_INEW;
418 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
419 		inode->i_state = I_NEW;
420 
421 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
422 		init_rwsem(&inode->i_rwsem);
423 
424 		spin_unlock(&ip->i_flags_lock);
425 		spin_unlock(&pag->pag_ici_lock);
426 	} else {
427 		/* If the VFS inode is being torn down, pause and try again. */
428 		if (!igrab(inode)) {
429 			trace_xfs_iget_skip(ip);
430 			error = -EAGAIN;
431 			goto out_error;
432 		}
433 
434 		/* We've got a live one. */
435 		spin_unlock(&ip->i_flags_lock);
436 		rcu_read_unlock();
437 		trace_xfs_iget_hit(ip);
438 	}
439 
440 	if (lock_flags != 0)
441 		xfs_ilock(ip, lock_flags);
442 
443 	if (!(flags & XFS_IGET_INCORE))
444 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
445 	XFS_STATS_INC(mp, xs_ig_found);
446 
447 	return 0;
448 
449 out_error:
450 	spin_unlock(&ip->i_flags_lock);
451 	rcu_read_unlock();
452 	return error;
453 }
454 
455 
456 static int
457 xfs_iget_cache_miss(
458 	struct xfs_mount	*mp,
459 	struct xfs_perag	*pag,
460 	xfs_trans_t		*tp,
461 	xfs_ino_t		ino,
462 	struct xfs_inode	**ipp,
463 	int			flags,
464 	int			lock_flags)
465 {
466 	struct xfs_inode	*ip;
467 	int			error;
468 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
469 	int			iflags;
470 
471 	ip = xfs_inode_alloc(mp, ino);
472 	if (!ip)
473 		return -ENOMEM;
474 
475 	error = xfs_iread(mp, tp, ip, flags);
476 	if (error)
477 		goto out_destroy;
478 
479 	if (!xfs_inode_verify_forks(ip)) {
480 		error = -EFSCORRUPTED;
481 		goto out_destroy;
482 	}
483 
484 	trace_xfs_iget_miss(ip);
485 
486 	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
487 		error = -ENOENT;
488 		goto out_destroy;
489 	}
490 
491 	/*
492 	 * Preload the radix tree so we can insert safely under the
493 	 * write spinlock. Note that we cannot sleep inside the preload
494 	 * region. Since we can be called from transaction context, don't
495 	 * recurse into the file system.
496 	 */
497 	if (radix_tree_preload(GFP_NOFS)) {
498 		error = -EAGAIN;
499 		goto out_destroy;
500 	}
501 
502 	/*
503 	 * Because the inode hasn't been added to the radix-tree yet it can't
504 	 * be found by another thread, so we can do the non-sleeping lock here.
505 	 */
506 	if (lock_flags) {
507 		if (!xfs_ilock_nowait(ip, lock_flags))
508 			BUG();
509 	}
510 
511 	/*
512 	 * These values must be set before inserting the inode into the radix
513 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
514 	 * RCU locking mechanism) can find it and that lookup must see that this
515 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
516 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
517 	 * memory barrier that ensures this detection works correctly at lookup
518 	 * time.
519 	 */
520 	iflags = XFS_INEW;
521 	if (flags & XFS_IGET_DONTCACHE)
522 		iflags |= XFS_IDONTCACHE;
523 	ip->i_udquot = NULL;
524 	ip->i_gdquot = NULL;
525 	ip->i_pdquot = NULL;
526 	xfs_iflags_set(ip, iflags);
527 
528 	/* insert the new inode */
529 	spin_lock(&pag->pag_ici_lock);
530 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
531 	if (unlikely(error)) {
532 		WARN_ON(error != -EEXIST);
533 		XFS_STATS_INC(mp, xs_ig_dup);
534 		error = -EAGAIN;
535 		goto out_preload_end;
536 	}
537 	spin_unlock(&pag->pag_ici_lock);
538 	radix_tree_preload_end();
539 
540 	*ipp = ip;
541 	return 0;
542 
543 out_preload_end:
544 	spin_unlock(&pag->pag_ici_lock);
545 	radix_tree_preload_end();
546 	if (lock_flags)
547 		xfs_iunlock(ip, lock_flags);
548 out_destroy:
549 	__destroy_inode(VFS_I(ip));
550 	xfs_inode_free(ip);
551 	return error;
552 }
553 
554 /*
555  * Look up an inode by number in the given file system.
556  * The inode is looked up in the cache held in each AG.
557  * If the inode is found in the cache, initialise the vfs inode
558  * if necessary.
559  *
560  * If it is not in core, read it in from the file system's device,
561  * add it to the cache and initialise the vfs inode.
562  *
563  * The inode is locked according to the value of the lock_flags parameter.
564  * This flag parameter indicates how and if the inode's IO lock and inode lock
565  * should be taken.
566  *
567  * mp -- the mount point structure for the current file system.  It points
568  *       to the inode hash table.
569  * tp -- a pointer to the current transaction if there is one.  This is
570  *       simply passed through to the xfs_iread() call.
571  * ino -- the number of the inode desired.  This is the unique identifier
572  *        within the file system for the inode being requested.
573  * lock_flags -- flags indicating how to lock the inode.  See the comment
574  *		 for xfs_ilock() for a list of valid values.
575  */
576 int
577 xfs_iget(
578 	xfs_mount_t	*mp,
579 	xfs_trans_t	*tp,
580 	xfs_ino_t	ino,
581 	uint		flags,
582 	uint		lock_flags,
583 	xfs_inode_t	**ipp)
584 {
585 	xfs_inode_t	*ip;
586 	int		error;
587 	xfs_perag_t	*pag;
588 	xfs_agino_t	agino;
589 
590 	/*
591 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
592 	 * doesn't get freed while it's being referenced during a
593 	 * radix tree traversal here.  It assumes this function
594 	 * aqcuires only the ILOCK (and therefore it has no need to
595 	 * involve the IOLOCK in this synchronization).
596 	 */
597 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
598 
599 	/* reject inode numbers outside existing AGs */
600 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
601 		return -EINVAL;
602 
603 	XFS_STATS_INC(mp, xs_ig_attempts);
604 
605 	/* get the perag structure and ensure that it's inode capable */
606 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
607 	agino = XFS_INO_TO_AGINO(mp, ino);
608 
609 again:
610 	error = 0;
611 	rcu_read_lock();
612 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
613 
614 	if (ip) {
615 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
616 		if (error)
617 			goto out_error_or_again;
618 	} else {
619 		rcu_read_unlock();
620 		if (flags & XFS_IGET_INCORE) {
621 			error = -ENODATA;
622 			goto out_error_or_again;
623 		}
624 		XFS_STATS_INC(mp, xs_ig_missed);
625 
626 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
627 							flags, lock_flags);
628 		if (error)
629 			goto out_error_or_again;
630 	}
631 	xfs_perag_put(pag);
632 
633 	*ipp = ip;
634 
635 	/*
636 	 * If we have a real type for an on-disk inode, we can setup the inode
637 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
638 	 */
639 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
640 		xfs_setup_existing_inode(ip);
641 	return 0;
642 
643 out_error_or_again:
644 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
645 		delay(1);
646 		goto again;
647 	}
648 	xfs_perag_put(pag);
649 	return error;
650 }
651 
652 /*
653  * "Is this a cached inode that's also allocated?"
654  *
655  * Look up an inode by number in the given file system.  If the inode is
656  * in cache and isn't in purgatory, return 1 if the inode is allocated
657  * and 0 if it is not.  For all other cases (not in cache, being torn
658  * down, etc.), return a negative error code.
659  *
660  * The caller has to prevent inode allocation and freeing activity,
661  * presumably by locking the AGI buffer.   This is to ensure that an
662  * inode cannot transition from allocated to freed until the caller is
663  * ready to allow that.  If the inode is in an intermediate state (new,
664  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
665  * inode is not in the cache, -ENOENT will be returned.  The caller must
666  * deal with these scenarios appropriately.
667  *
668  * This is a specialized use case for the online scrubber; if you're
669  * reading this, you probably want xfs_iget.
670  */
671 int
672 xfs_icache_inode_is_allocated(
673 	struct xfs_mount	*mp,
674 	struct xfs_trans	*tp,
675 	xfs_ino_t		ino,
676 	bool			*inuse)
677 {
678 	struct xfs_inode	*ip;
679 	int			error;
680 
681 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
682 	if (error)
683 		return error;
684 
685 	*inuse = !!(VFS_I(ip)->i_mode);
686 	IRELE(ip);
687 	return 0;
688 }
689 
690 /*
691  * The inode lookup is done in batches to keep the amount of lock traffic and
692  * radix tree lookups to a minimum. The batch size is a trade off between
693  * lookup reduction and stack usage. This is in the reclaim path, so we can't
694  * be too greedy.
695  */
696 #define XFS_LOOKUP_BATCH	32
697 
698 STATIC int
699 xfs_inode_ag_walk_grab(
700 	struct xfs_inode	*ip,
701 	int			flags)
702 {
703 	struct inode		*inode = VFS_I(ip);
704 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
705 
706 	ASSERT(rcu_read_lock_held());
707 
708 	/*
709 	 * check for stale RCU freed inode
710 	 *
711 	 * If the inode has been reallocated, it doesn't matter if it's not in
712 	 * the AG we are walking - we are walking for writeback, so if it
713 	 * passes all the "valid inode" checks and is dirty, then we'll write
714 	 * it back anyway.  If it has been reallocated and still being
715 	 * initialised, the XFS_INEW check below will catch it.
716 	 */
717 	spin_lock(&ip->i_flags_lock);
718 	if (!ip->i_ino)
719 		goto out_unlock_noent;
720 
721 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
722 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
723 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
724 		goto out_unlock_noent;
725 	spin_unlock(&ip->i_flags_lock);
726 
727 	/* nothing to sync during shutdown */
728 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
729 		return -EFSCORRUPTED;
730 
731 	/* If we can't grab the inode, it must on it's way to reclaim. */
732 	if (!igrab(inode))
733 		return -ENOENT;
734 
735 	/* inode is valid */
736 	return 0;
737 
738 out_unlock_noent:
739 	spin_unlock(&ip->i_flags_lock);
740 	return -ENOENT;
741 }
742 
743 STATIC int
744 xfs_inode_ag_walk(
745 	struct xfs_mount	*mp,
746 	struct xfs_perag	*pag,
747 	int			(*execute)(struct xfs_inode *ip, int flags,
748 					   void *args),
749 	int			flags,
750 	void			*args,
751 	int			tag,
752 	int			iter_flags)
753 {
754 	uint32_t		first_index;
755 	int			last_error = 0;
756 	int			skipped;
757 	int			done;
758 	int			nr_found;
759 
760 restart:
761 	done = 0;
762 	skipped = 0;
763 	first_index = 0;
764 	nr_found = 0;
765 	do {
766 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
767 		int		error = 0;
768 		int		i;
769 
770 		rcu_read_lock();
771 
772 		if (tag == -1)
773 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
774 					(void **)batch, first_index,
775 					XFS_LOOKUP_BATCH);
776 		else
777 			nr_found = radix_tree_gang_lookup_tag(
778 					&pag->pag_ici_root,
779 					(void **) batch, first_index,
780 					XFS_LOOKUP_BATCH, tag);
781 
782 		if (!nr_found) {
783 			rcu_read_unlock();
784 			break;
785 		}
786 
787 		/*
788 		 * Grab the inodes before we drop the lock. if we found
789 		 * nothing, nr == 0 and the loop will be skipped.
790 		 */
791 		for (i = 0; i < nr_found; i++) {
792 			struct xfs_inode *ip = batch[i];
793 
794 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
795 				batch[i] = NULL;
796 
797 			/*
798 			 * Update the index for the next lookup. Catch
799 			 * overflows into the next AG range which can occur if
800 			 * we have inodes in the last block of the AG and we
801 			 * are currently pointing to the last inode.
802 			 *
803 			 * Because we may see inodes that are from the wrong AG
804 			 * due to RCU freeing and reallocation, only update the
805 			 * index if it lies in this AG. It was a race that lead
806 			 * us to see this inode, so another lookup from the
807 			 * same index will not find it again.
808 			 */
809 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
810 				continue;
811 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
812 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
813 				done = 1;
814 		}
815 
816 		/* unlock now we've grabbed the inodes. */
817 		rcu_read_unlock();
818 
819 		for (i = 0; i < nr_found; i++) {
820 			if (!batch[i])
821 				continue;
822 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
823 			    xfs_iflags_test(batch[i], XFS_INEW))
824 				xfs_inew_wait(batch[i]);
825 			error = execute(batch[i], flags, args);
826 			IRELE(batch[i]);
827 			if (error == -EAGAIN) {
828 				skipped++;
829 				continue;
830 			}
831 			if (error && last_error != -EFSCORRUPTED)
832 				last_error = error;
833 		}
834 
835 		/* bail out if the filesystem is corrupted.  */
836 		if (error == -EFSCORRUPTED)
837 			break;
838 
839 		cond_resched();
840 
841 	} while (nr_found && !done);
842 
843 	if (skipped) {
844 		delay(1);
845 		goto restart;
846 	}
847 	return last_error;
848 }
849 
850 /*
851  * Background scanning to trim post-EOF preallocated space. This is queued
852  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
853  */
854 void
855 xfs_queue_eofblocks(
856 	struct xfs_mount *mp)
857 {
858 	rcu_read_lock();
859 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
860 		queue_delayed_work(mp->m_eofblocks_workqueue,
861 				   &mp->m_eofblocks_work,
862 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
863 	rcu_read_unlock();
864 }
865 
866 void
867 xfs_eofblocks_worker(
868 	struct work_struct *work)
869 {
870 	struct xfs_mount *mp = container_of(to_delayed_work(work),
871 				struct xfs_mount, m_eofblocks_work);
872 	xfs_icache_free_eofblocks(mp, NULL);
873 	xfs_queue_eofblocks(mp);
874 }
875 
876 /*
877  * Background scanning to trim preallocated CoW space. This is queued
878  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
879  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
880  */
881 void
882 xfs_queue_cowblocks(
883 	struct xfs_mount *mp)
884 {
885 	rcu_read_lock();
886 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
887 		queue_delayed_work(mp->m_eofblocks_workqueue,
888 				   &mp->m_cowblocks_work,
889 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
890 	rcu_read_unlock();
891 }
892 
893 void
894 xfs_cowblocks_worker(
895 	struct work_struct *work)
896 {
897 	struct xfs_mount *mp = container_of(to_delayed_work(work),
898 				struct xfs_mount, m_cowblocks_work);
899 	xfs_icache_free_cowblocks(mp, NULL);
900 	xfs_queue_cowblocks(mp);
901 }
902 
903 int
904 xfs_inode_ag_iterator_flags(
905 	struct xfs_mount	*mp,
906 	int			(*execute)(struct xfs_inode *ip, int flags,
907 					   void *args),
908 	int			flags,
909 	void			*args,
910 	int			iter_flags)
911 {
912 	struct xfs_perag	*pag;
913 	int			error = 0;
914 	int			last_error = 0;
915 	xfs_agnumber_t		ag;
916 
917 	ag = 0;
918 	while ((pag = xfs_perag_get(mp, ag))) {
919 		ag = pag->pag_agno + 1;
920 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
921 					  iter_flags);
922 		xfs_perag_put(pag);
923 		if (error) {
924 			last_error = error;
925 			if (error == -EFSCORRUPTED)
926 				break;
927 		}
928 	}
929 	return last_error;
930 }
931 
932 int
933 xfs_inode_ag_iterator(
934 	struct xfs_mount	*mp,
935 	int			(*execute)(struct xfs_inode *ip, int flags,
936 					   void *args),
937 	int			flags,
938 	void			*args)
939 {
940 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
941 }
942 
943 int
944 xfs_inode_ag_iterator_tag(
945 	struct xfs_mount	*mp,
946 	int			(*execute)(struct xfs_inode *ip, int flags,
947 					   void *args),
948 	int			flags,
949 	void			*args,
950 	int			tag)
951 {
952 	struct xfs_perag	*pag;
953 	int			error = 0;
954 	int			last_error = 0;
955 	xfs_agnumber_t		ag;
956 
957 	ag = 0;
958 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
959 		ag = pag->pag_agno + 1;
960 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
961 					  0);
962 		xfs_perag_put(pag);
963 		if (error) {
964 			last_error = error;
965 			if (error == -EFSCORRUPTED)
966 				break;
967 		}
968 	}
969 	return last_error;
970 }
971 
972 /*
973  * Grab the inode for reclaim exclusively.
974  * Return 0 if we grabbed it, non-zero otherwise.
975  */
976 STATIC int
977 xfs_reclaim_inode_grab(
978 	struct xfs_inode	*ip,
979 	int			flags)
980 {
981 	ASSERT(rcu_read_lock_held());
982 
983 	/* quick check for stale RCU freed inode */
984 	if (!ip->i_ino)
985 		return 1;
986 
987 	/*
988 	 * If we are asked for non-blocking operation, do unlocked checks to
989 	 * see if the inode already is being flushed or in reclaim to avoid
990 	 * lock traffic.
991 	 */
992 	if ((flags & SYNC_TRYLOCK) &&
993 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
994 		return 1;
995 
996 	/*
997 	 * The radix tree lock here protects a thread in xfs_iget from racing
998 	 * with us starting reclaim on the inode.  Once we have the
999 	 * XFS_IRECLAIM flag set it will not touch us.
1000 	 *
1001 	 * Due to RCU lookup, we may find inodes that have been freed and only
1002 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1003 	 * aren't candidates for reclaim at all, so we must check the
1004 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1005 	 */
1006 	spin_lock(&ip->i_flags_lock);
1007 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1008 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1009 		/* not a reclaim candidate. */
1010 		spin_unlock(&ip->i_flags_lock);
1011 		return 1;
1012 	}
1013 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1014 	spin_unlock(&ip->i_flags_lock);
1015 	return 0;
1016 }
1017 
1018 /*
1019  * Inodes in different states need to be treated differently. The following
1020  * table lists the inode states and the reclaim actions necessary:
1021  *
1022  *	inode state	     iflush ret		required action
1023  *      ---------------      ----------         ---------------
1024  *	bad			-		reclaim
1025  *	shutdown		EIO		unpin and reclaim
1026  *	clean, unpinned		0		reclaim
1027  *	stale, unpinned		0		reclaim
1028  *	clean, pinned(*)	0		requeue
1029  *	stale, pinned		EAGAIN		requeue
1030  *	dirty, async		-		requeue
1031  *	dirty, sync		0		reclaim
1032  *
1033  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1034  * handled anyway given the order of checks implemented.
1035  *
1036  * Also, because we get the flush lock first, we know that any inode that has
1037  * been flushed delwri has had the flush completed by the time we check that
1038  * the inode is clean.
1039  *
1040  * Note that because the inode is flushed delayed write by AIL pushing, the
1041  * flush lock may already be held here and waiting on it can result in very
1042  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1043  * the caller should push the AIL first before trying to reclaim inodes to
1044  * minimise the amount of time spent waiting.  For background relaim, we only
1045  * bother to reclaim clean inodes anyway.
1046  *
1047  * Hence the order of actions after gaining the locks should be:
1048  *	bad		=> reclaim
1049  *	shutdown	=> unpin and reclaim
1050  *	pinned, async	=> requeue
1051  *	pinned, sync	=> unpin
1052  *	stale		=> reclaim
1053  *	clean		=> reclaim
1054  *	dirty, async	=> requeue
1055  *	dirty, sync	=> flush, wait and reclaim
1056  */
1057 STATIC int
1058 xfs_reclaim_inode(
1059 	struct xfs_inode	*ip,
1060 	struct xfs_perag	*pag,
1061 	int			sync_mode)
1062 {
1063 	struct xfs_buf		*bp = NULL;
1064 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1065 	int			error;
1066 
1067 restart:
1068 	error = 0;
1069 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1070 	if (!xfs_iflock_nowait(ip)) {
1071 		if (!(sync_mode & SYNC_WAIT))
1072 			goto out;
1073 		xfs_iflock(ip);
1074 	}
1075 
1076 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1077 		xfs_iunpin_wait(ip);
1078 		/* xfs_iflush_abort() drops the flush lock */
1079 		xfs_iflush_abort(ip, false);
1080 		goto reclaim;
1081 	}
1082 	if (xfs_ipincount(ip)) {
1083 		if (!(sync_mode & SYNC_WAIT))
1084 			goto out_ifunlock;
1085 		xfs_iunpin_wait(ip);
1086 	}
1087 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1088 		xfs_ifunlock(ip);
1089 		goto reclaim;
1090 	}
1091 
1092 	/*
1093 	 * Never flush out dirty data during non-blocking reclaim, as it would
1094 	 * just contend with AIL pushing trying to do the same job.
1095 	 */
1096 	if (!(sync_mode & SYNC_WAIT))
1097 		goto out_ifunlock;
1098 
1099 	/*
1100 	 * Now we have an inode that needs flushing.
1101 	 *
1102 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1103 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1104 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1105 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1106 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1107 	 *
1108 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1109 	 * cache to mark them stale, if we hit this case we don't actually want
1110 	 * to do IO here - we want the inode marked stale so we can simply
1111 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1112 	 * inode, back off and try again.  Hopefully the next pass through will
1113 	 * see the stale flag set on the inode.
1114 	 */
1115 	error = xfs_iflush(ip, &bp);
1116 	if (error == -EAGAIN) {
1117 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1118 		/* backoff longer than in xfs_ifree_cluster */
1119 		delay(2);
1120 		goto restart;
1121 	}
1122 
1123 	if (!error) {
1124 		error = xfs_bwrite(bp);
1125 		xfs_buf_relse(bp);
1126 	}
1127 
1128 reclaim:
1129 	ASSERT(!xfs_isiflocked(ip));
1130 
1131 	/*
1132 	 * Because we use RCU freeing we need to ensure the inode always appears
1133 	 * to be reclaimed with an invalid inode number when in the free state.
1134 	 * We do this as early as possible under the ILOCK so that
1135 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1136 	 * detect races with us here. By doing this, we guarantee that once
1137 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1138 	 * it will see either a valid inode that will serialise correctly, or it
1139 	 * will see an invalid inode that it can skip.
1140 	 */
1141 	spin_lock(&ip->i_flags_lock);
1142 	ip->i_flags = XFS_IRECLAIM;
1143 	ip->i_ino = 0;
1144 	spin_unlock(&ip->i_flags_lock);
1145 
1146 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1147 
1148 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1149 	/*
1150 	 * Remove the inode from the per-AG radix tree.
1151 	 *
1152 	 * Because radix_tree_delete won't complain even if the item was never
1153 	 * added to the tree assert that it's been there before to catch
1154 	 * problems with the inode life time early on.
1155 	 */
1156 	spin_lock(&pag->pag_ici_lock);
1157 	if (!radix_tree_delete(&pag->pag_ici_root,
1158 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1159 		ASSERT(0);
1160 	xfs_perag_clear_reclaim_tag(pag);
1161 	spin_unlock(&pag->pag_ici_lock);
1162 
1163 	/*
1164 	 * Here we do an (almost) spurious inode lock in order to coordinate
1165 	 * with inode cache radix tree lookups.  This is because the lookup
1166 	 * can reference the inodes in the cache without taking references.
1167 	 *
1168 	 * We make that OK here by ensuring that we wait until the inode is
1169 	 * unlocked after the lookup before we go ahead and free it.
1170 	 */
1171 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1172 	xfs_qm_dqdetach(ip);
1173 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1174 
1175 	__xfs_inode_free(ip);
1176 	return error;
1177 
1178 out_ifunlock:
1179 	xfs_ifunlock(ip);
1180 out:
1181 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1182 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1183 	/*
1184 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1185 	 * a short while. However, this just burns CPU time scanning the tree
1186 	 * waiting for IO to complete and the reclaim work never goes back to
1187 	 * the idle state. Instead, return 0 to let the next scheduled
1188 	 * background reclaim attempt to reclaim the inode again.
1189 	 */
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1195  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1196  * then a shut down during filesystem unmount reclaim walk leak all the
1197  * unreclaimed inodes.
1198  */
1199 STATIC int
1200 xfs_reclaim_inodes_ag(
1201 	struct xfs_mount	*mp,
1202 	int			flags,
1203 	int			*nr_to_scan)
1204 {
1205 	struct xfs_perag	*pag;
1206 	int			error = 0;
1207 	int			last_error = 0;
1208 	xfs_agnumber_t		ag;
1209 	int			trylock = flags & SYNC_TRYLOCK;
1210 	int			skipped;
1211 
1212 restart:
1213 	ag = 0;
1214 	skipped = 0;
1215 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1216 		unsigned long	first_index = 0;
1217 		int		done = 0;
1218 		int		nr_found = 0;
1219 
1220 		ag = pag->pag_agno + 1;
1221 
1222 		if (trylock) {
1223 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1224 				skipped++;
1225 				xfs_perag_put(pag);
1226 				continue;
1227 			}
1228 			first_index = pag->pag_ici_reclaim_cursor;
1229 		} else
1230 			mutex_lock(&pag->pag_ici_reclaim_lock);
1231 
1232 		do {
1233 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1234 			int	i;
1235 
1236 			rcu_read_lock();
1237 			nr_found = radix_tree_gang_lookup_tag(
1238 					&pag->pag_ici_root,
1239 					(void **)batch, first_index,
1240 					XFS_LOOKUP_BATCH,
1241 					XFS_ICI_RECLAIM_TAG);
1242 			if (!nr_found) {
1243 				done = 1;
1244 				rcu_read_unlock();
1245 				break;
1246 			}
1247 
1248 			/*
1249 			 * Grab the inodes before we drop the lock. if we found
1250 			 * nothing, nr == 0 and the loop will be skipped.
1251 			 */
1252 			for (i = 0; i < nr_found; i++) {
1253 				struct xfs_inode *ip = batch[i];
1254 
1255 				if (done || xfs_reclaim_inode_grab(ip, flags))
1256 					batch[i] = NULL;
1257 
1258 				/*
1259 				 * Update the index for the next lookup. Catch
1260 				 * overflows into the next AG range which can
1261 				 * occur if we have inodes in the last block of
1262 				 * the AG and we are currently pointing to the
1263 				 * last inode.
1264 				 *
1265 				 * Because we may see inodes that are from the
1266 				 * wrong AG due to RCU freeing and
1267 				 * reallocation, only update the index if it
1268 				 * lies in this AG. It was a race that lead us
1269 				 * to see this inode, so another lookup from
1270 				 * the same index will not find it again.
1271 				 */
1272 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1273 								pag->pag_agno)
1274 					continue;
1275 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1276 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1277 					done = 1;
1278 			}
1279 
1280 			/* unlock now we've grabbed the inodes. */
1281 			rcu_read_unlock();
1282 
1283 			for (i = 0; i < nr_found; i++) {
1284 				if (!batch[i])
1285 					continue;
1286 				error = xfs_reclaim_inode(batch[i], pag, flags);
1287 				if (error && last_error != -EFSCORRUPTED)
1288 					last_error = error;
1289 			}
1290 
1291 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1292 
1293 			cond_resched();
1294 
1295 		} while (nr_found && !done && *nr_to_scan > 0);
1296 
1297 		if (trylock && !done)
1298 			pag->pag_ici_reclaim_cursor = first_index;
1299 		else
1300 			pag->pag_ici_reclaim_cursor = 0;
1301 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1302 		xfs_perag_put(pag);
1303 	}
1304 
1305 	/*
1306 	 * if we skipped any AG, and we still have scan count remaining, do
1307 	 * another pass this time using blocking reclaim semantics (i.e
1308 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1309 	 * ensure that when we get more reclaimers than AGs we block rather
1310 	 * than spin trying to execute reclaim.
1311 	 */
1312 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1313 		trylock = 0;
1314 		goto restart;
1315 	}
1316 	return last_error;
1317 }
1318 
1319 int
1320 xfs_reclaim_inodes(
1321 	xfs_mount_t	*mp,
1322 	int		mode)
1323 {
1324 	int		nr_to_scan = INT_MAX;
1325 
1326 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1327 }
1328 
1329 /*
1330  * Scan a certain number of inodes for reclaim.
1331  *
1332  * When called we make sure that there is a background (fast) inode reclaim in
1333  * progress, while we will throttle the speed of reclaim via doing synchronous
1334  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1335  * them to be cleaned, which we hope will not be very long due to the
1336  * background walker having already kicked the IO off on those dirty inodes.
1337  */
1338 long
1339 xfs_reclaim_inodes_nr(
1340 	struct xfs_mount	*mp,
1341 	int			nr_to_scan)
1342 {
1343 	/* kick background reclaimer and push the AIL */
1344 	xfs_reclaim_work_queue(mp);
1345 	xfs_ail_push_all(mp->m_ail);
1346 
1347 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1348 }
1349 
1350 /*
1351  * Return the number of reclaimable inodes in the filesystem for
1352  * the shrinker to determine how much to reclaim.
1353  */
1354 int
1355 xfs_reclaim_inodes_count(
1356 	struct xfs_mount	*mp)
1357 {
1358 	struct xfs_perag	*pag;
1359 	xfs_agnumber_t		ag = 0;
1360 	int			reclaimable = 0;
1361 
1362 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1363 		ag = pag->pag_agno + 1;
1364 		reclaimable += pag->pag_ici_reclaimable;
1365 		xfs_perag_put(pag);
1366 	}
1367 	return reclaimable;
1368 }
1369 
1370 STATIC int
1371 xfs_inode_match_id(
1372 	struct xfs_inode	*ip,
1373 	struct xfs_eofblocks	*eofb)
1374 {
1375 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1376 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1377 		return 0;
1378 
1379 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1380 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1381 		return 0;
1382 
1383 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1384 	    xfs_get_projid(ip) != eofb->eof_prid)
1385 		return 0;
1386 
1387 	return 1;
1388 }
1389 
1390 /*
1391  * A union-based inode filtering algorithm. Process the inode if any of the
1392  * criteria match. This is for global/internal scans only.
1393  */
1394 STATIC int
1395 xfs_inode_match_id_union(
1396 	struct xfs_inode	*ip,
1397 	struct xfs_eofblocks	*eofb)
1398 {
1399 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1400 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1401 		return 1;
1402 
1403 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1404 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1405 		return 1;
1406 
1407 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1408 	    xfs_get_projid(ip) == eofb->eof_prid)
1409 		return 1;
1410 
1411 	return 0;
1412 }
1413 
1414 STATIC int
1415 xfs_inode_free_eofblocks(
1416 	struct xfs_inode	*ip,
1417 	int			flags,
1418 	void			*args)
1419 {
1420 	int ret = 0;
1421 	struct xfs_eofblocks *eofb = args;
1422 	int match;
1423 
1424 	if (!xfs_can_free_eofblocks(ip, false)) {
1425 		/* inode could be preallocated or append-only */
1426 		trace_xfs_inode_free_eofblocks_invalid(ip);
1427 		xfs_inode_clear_eofblocks_tag(ip);
1428 		return 0;
1429 	}
1430 
1431 	/*
1432 	 * If the mapping is dirty the operation can block and wait for some
1433 	 * time. Unless we are waiting, skip it.
1434 	 */
1435 	if (!(flags & SYNC_WAIT) &&
1436 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1437 		return 0;
1438 
1439 	if (eofb) {
1440 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1441 			match = xfs_inode_match_id_union(ip, eofb);
1442 		else
1443 			match = xfs_inode_match_id(ip, eofb);
1444 		if (!match)
1445 			return 0;
1446 
1447 		/* skip the inode if the file size is too small */
1448 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1449 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1450 			return 0;
1451 	}
1452 
1453 	/*
1454 	 * If the caller is waiting, return -EAGAIN to keep the background
1455 	 * scanner moving and revisit the inode in a subsequent pass.
1456 	 */
1457 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1458 		if (flags & SYNC_WAIT)
1459 			ret = -EAGAIN;
1460 		return ret;
1461 	}
1462 	ret = xfs_free_eofblocks(ip);
1463 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1464 
1465 	return ret;
1466 }
1467 
1468 static int
1469 __xfs_icache_free_eofblocks(
1470 	struct xfs_mount	*mp,
1471 	struct xfs_eofblocks	*eofb,
1472 	int			(*execute)(struct xfs_inode *ip, int flags,
1473 					   void *args),
1474 	int			tag)
1475 {
1476 	int flags = SYNC_TRYLOCK;
1477 
1478 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1479 		flags = SYNC_WAIT;
1480 
1481 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1482 					 eofb, tag);
1483 }
1484 
1485 int
1486 xfs_icache_free_eofblocks(
1487 	struct xfs_mount	*mp,
1488 	struct xfs_eofblocks	*eofb)
1489 {
1490 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1491 			XFS_ICI_EOFBLOCKS_TAG);
1492 }
1493 
1494 /*
1495  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1496  * multiple quotas, we don't know exactly which quota caused an allocation
1497  * failure. We make a best effort by including each quota under low free space
1498  * conditions (less than 1% free space) in the scan.
1499  */
1500 static int
1501 __xfs_inode_free_quota_eofblocks(
1502 	struct xfs_inode	*ip,
1503 	int			(*execute)(struct xfs_mount *mp,
1504 					   struct xfs_eofblocks	*eofb))
1505 {
1506 	int scan = 0;
1507 	struct xfs_eofblocks eofb = {0};
1508 	struct xfs_dquot *dq;
1509 
1510 	/*
1511 	 * Run a sync scan to increase effectiveness and use the union filter to
1512 	 * cover all applicable quotas in a single scan.
1513 	 */
1514 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1515 
1516 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1517 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1518 		if (dq && xfs_dquot_lowsp(dq)) {
1519 			eofb.eof_uid = VFS_I(ip)->i_uid;
1520 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1521 			scan = 1;
1522 		}
1523 	}
1524 
1525 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1526 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1527 		if (dq && xfs_dquot_lowsp(dq)) {
1528 			eofb.eof_gid = VFS_I(ip)->i_gid;
1529 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1530 			scan = 1;
1531 		}
1532 	}
1533 
1534 	if (scan)
1535 		execute(ip->i_mount, &eofb);
1536 
1537 	return scan;
1538 }
1539 
1540 int
1541 xfs_inode_free_quota_eofblocks(
1542 	struct xfs_inode *ip)
1543 {
1544 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1545 }
1546 
1547 static inline unsigned long
1548 xfs_iflag_for_tag(
1549 	int		tag)
1550 {
1551 	switch (tag) {
1552 	case XFS_ICI_EOFBLOCKS_TAG:
1553 		return XFS_IEOFBLOCKS;
1554 	case XFS_ICI_COWBLOCKS_TAG:
1555 		return XFS_ICOWBLOCKS;
1556 	default:
1557 		ASSERT(0);
1558 		return 0;
1559 	}
1560 }
1561 
1562 static void
1563 __xfs_inode_set_blocks_tag(
1564 	xfs_inode_t	*ip,
1565 	void		(*execute)(struct xfs_mount *mp),
1566 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1567 				  int error, unsigned long caller_ip),
1568 	int		tag)
1569 {
1570 	struct xfs_mount *mp = ip->i_mount;
1571 	struct xfs_perag *pag;
1572 	int tagged;
1573 
1574 	/*
1575 	 * Don't bother locking the AG and looking up in the radix trees
1576 	 * if we already know that we have the tag set.
1577 	 */
1578 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1579 		return;
1580 	spin_lock(&ip->i_flags_lock);
1581 	ip->i_flags |= xfs_iflag_for_tag(tag);
1582 	spin_unlock(&ip->i_flags_lock);
1583 
1584 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1585 	spin_lock(&pag->pag_ici_lock);
1586 
1587 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1588 	radix_tree_tag_set(&pag->pag_ici_root,
1589 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1590 	if (!tagged) {
1591 		/* propagate the eofblocks tag up into the perag radix tree */
1592 		spin_lock(&ip->i_mount->m_perag_lock);
1593 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1594 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1595 				   tag);
1596 		spin_unlock(&ip->i_mount->m_perag_lock);
1597 
1598 		/* kick off background trimming */
1599 		execute(ip->i_mount);
1600 
1601 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1602 	}
1603 
1604 	spin_unlock(&pag->pag_ici_lock);
1605 	xfs_perag_put(pag);
1606 }
1607 
1608 void
1609 xfs_inode_set_eofblocks_tag(
1610 	xfs_inode_t	*ip)
1611 {
1612 	trace_xfs_inode_set_eofblocks_tag(ip);
1613 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1614 			trace_xfs_perag_set_eofblocks,
1615 			XFS_ICI_EOFBLOCKS_TAG);
1616 }
1617 
1618 static void
1619 __xfs_inode_clear_blocks_tag(
1620 	xfs_inode_t	*ip,
1621 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1622 				    int error, unsigned long caller_ip),
1623 	int		tag)
1624 {
1625 	struct xfs_mount *mp = ip->i_mount;
1626 	struct xfs_perag *pag;
1627 
1628 	spin_lock(&ip->i_flags_lock);
1629 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1630 	spin_unlock(&ip->i_flags_lock);
1631 
1632 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1633 	spin_lock(&pag->pag_ici_lock);
1634 
1635 	radix_tree_tag_clear(&pag->pag_ici_root,
1636 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1637 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1638 		/* clear the eofblocks tag from the perag radix tree */
1639 		spin_lock(&ip->i_mount->m_perag_lock);
1640 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1641 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1642 				     tag);
1643 		spin_unlock(&ip->i_mount->m_perag_lock);
1644 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1645 	}
1646 
1647 	spin_unlock(&pag->pag_ici_lock);
1648 	xfs_perag_put(pag);
1649 }
1650 
1651 void
1652 xfs_inode_clear_eofblocks_tag(
1653 	xfs_inode_t	*ip)
1654 {
1655 	trace_xfs_inode_clear_eofblocks_tag(ip);
1656 	return __xfs_inode_clear_blocks_tag(ip,
1657 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1658 }
1659 
1660 /*
1661  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1662  * then we can bail out quickly, but otherwise we must back off if the file
1663  * is undergoing some kind of write.
1664  */
1665 static bool
1666 xfs_prep_free_cowblocks(
1667 	struct xfs_inode	*ip,
1668 	struct xfs_ifork	*ifp)
1669 {
1670 	/*
1671 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1672 	 * possible the inode was fully unshared since it was originally tagged.
1673 	 */
1674 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1675 		trace_xfs_inode_free_cowblocks_invalid(ip);
1676 		xfs_inode_clear_cowblocks_tag(ip);
1677 		return false;
1678 	}
1679 
1680 	/*
1681 	 * If the mapping is dirty or under writeback we cannot touch the
1682 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1683 	 */
1684 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1685 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1686 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1687 	    atomic_read(&VFS_I(ip)->i_dio_count))
1688 		return false;
1689 
1690 	return true;
1691 }
1692 
1693 /*
1694  * Automatic CoW Reservation Freeing
1695  *
1696  * These functions automatically garbage collect leftover CoW reservations
1697  * that were made on behalf of a cowextsize hint when we start to run out
1698  * of quota or when the reservations sit around for too long.  If the file
1699  * has dirty pages or is undergoing writeback, its CoW reservations will
1700  * be retained.
1701  *
1702  * The actual garbage collection piggybacks off the same code that runs
1703  * the speculative EOF preallocation garbage collector.
1704  */
1705 STATIC int
1706 xfs_inode_free_cowblocks(
1707 	struct xfs_inode	*ip,
1708 	int			flags,
1709 	void			*args)
1710 {
1711 	struct xfs_eofblocks	*eofb = args;
1712 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1713 	int			match;
1714 	int			ret = 0;
1715 
1716 	if (!xfs_prep_free_cowblocks(ip, ifp))
1717 		return 0;
1718 
1719 	if (eofb) {
1720 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1721 			match = xfs_inode_match_id_union(ip, eofb);
1722 		else
1723 			match = xfs_inode_match_id(ip, eofb);
1724 		if (!match)
1725 			return 0;
1726 
1727 		/* skip the inode if the file size is too small */
1728 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1729 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1730 			return 0;
1731 	}
1732 
1733 	/* Free the CoW blocks */
1734 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1735 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1736 
1737 	/*
1738 	 * Check again, nobody else should be able to dirty blocks or change
1739 	 * the reflink iflag now that we have the first two locks held.
1740 	 */
1741 	if (xfs_prep_free_cowblocks(ip, ifp))
1742 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1743 
1744 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1745 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1746 
1747 	return ret;
1748 }
1749 
1750 int
1751 xfs_icache_free_cowblocks(
1752 	struct xfs_mount	*mp,
1753 	struct xfs_eofblocks	*eofb)
1754 {
1755 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1756 			XFS_ICI_COWBLOCKS_TAG);
1757 }
1758 
1759 int
1760 xfs_inode_free_quota_cowblocks(
1761 	struct xfs_inode *ip)
1762 {
1763 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1764 }
1765 
1766 void
1767 xfs_inode_set_cowblocks_tag(
1768 	xfs_inode_t	*ip)
1769 {
1770 	trace_xfs_inode_set_cowblocks_tag(ip);
1771 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1772 			trace_xfs_perag_set_cowblocks,
1773 			XFS_ICI_COWBLOCKS_TAG);
1774 }
1775 
1776 void
1777 xfs_inode_clear_cowblocks_tag(
1778 	xfs_inode_t	*ip)
1779 {
1780 	trace_xfs_inode_clear_cowblocks_tag(ip);
1781 	return __xfs_inode_clear_blocks_tag(ip,
1782 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1783 }
1784