xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision e044e3e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 
27 #include <linux/iversion.h>
28 
29 /* Radix tree tags for incore inode tree. */
30 
31 /* inode is to be reclaimed */
32 #define XFS_ICI_RECLAIM_TAG	0
33 /* Inode has speculative preallocations (posteof or cow) to clean. */
34 #define XFS_ICI_BLOCKGC_TAG	1
35 
36 /*
37  * The goal for walking incore inodes.  These can correspond with incore inode
38  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
39  */
40 enum xfs_icwalk_goal {
41 	/* Goals directly associated with tagged inodes. */
42 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
43 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
44 };
45 
46 static int xfs_icwalk(struct xfs_mount *mp,
47 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
48 static int xfs_icwalk_ag(struct xfs_perag *pag,
49 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 
51 /*
52  * Private inode cache walk flags for struct xfs_icwalk.  Must not
53  * coincide with XFS_ICWALK_FLAGS_VALID.
54  */
55 
56 /* Stop scanning after icw_scan_limit inodes. */
57 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
58 
59 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
60 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
61 
62 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
63 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
64 					 XFS_ICWALK_FLAG_UNION)
65 
66 /*
67  * Allocate and initialise an xfs_inode.
68  */
69 struct xfs_inode *
70 xfs_inode_alloc(
71 	struct xfs_mount	*mp,
72 	xfs_ino_t		ino)
73 {
74 	struct xfs_inode	*ip;
75 
76 	/*
77 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
78 	 * and return NULL here on ENOMEM.
79 	 */
80 	ip = kmem_cache_alloc(xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
81 
82 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
83 		kmem_cache_free(xfs_inode_cache, ip);
84 		return NULL;
85 	}
86 
87 	/* VFS doesn't initialise i_mode or i_state! */
88 	VFS_I(ip)->i_mode = 0;
89 	VFS_I(ip)->i_state = 0;
90 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
91 
92 	XFS_STATS_INC(mp, vn_active);
93 	ASSERT(atomic_read(&ip->i_pincount) == 0);
94 	ASSERT(ip->i_ino == 0);
95 
96 	/* initialise the xfs inode */
97 	ip->i_ino = ino;
98 	ip->i_mount = mp;
99 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
100 	ip->i_afp = NULL;
101 	ip->i_cowfp = NULL;
102 	memset(&ip->i_df, 0, sizeof(ip->i_df));
103 	ip->i_flags = 0;
104 	ip->i_delayed_blks = 0;
105 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
106 	ip->i_nblocks = 0;
107 	ip->i_forkoff = 0;
108 	ip->i_sick = 0;
109 	ip->i_checked = 0;
110 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
111 	INIT_LIST_HEAD(&ip->i_ioend_list);
112 	spin_lock_init(&ip->i_ioend_lock);
113 
114 	return ip;
115 }
116 
117 STATIC void
118 xfs_inode_free_callback(
119 	struct rcu_head		*head)
120 {
121 	struct inode		*inode = container_of(head, struct inode, i_rcu);
122 	struct xfs_inode	*ip = XFS_I(inode);
123 
124 	switch (VFS_I(ip)->i_mode & S_IFMT) {
125 	case S_IFREG:
126 	case S_IFDIR:
127 	case S_IFLNK:
128 		xfs_idestroy_fork(&ip->i_df);
129 		break;
130 	}
131 
132 	if (ip->i_afp) {
133 		xfs_idestroy_fork(ip->i_afp);
134 		kmem_cache_free(xfs_ifork_cache, ip->i_afp);
135 	}
136 	if (ip->i_cowfp) {
137 		xfs_idestroy_fork(ip->i_cowfp);
138 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
139 	}
140 	if (ip->i_itemp) {
141 		ASSERT(!test_bit(XFS_LI_IN_AIL,
142 				 &ip->i_itemp->ili_item.li_flags));
143 		xfs_inode_item_destroy(ip);
144 		ip->i_itemp = NULL;
145 	}
146 
147 	kmem_cache_free(xfs_inode_cache, ip);
148 }
149 
150 static void
151 __xfs_inode_free(
152 	struct xfs_inode	*ip)
153 {
154 	/* asserts to verify all state is correct here */
155 	ASSERT(atomic_read(&ip->i_pincount) == 0);
156 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
157 	XFS_STATS_DEC(ip->i_mount, vn_active);
158 
159 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
160 }
161 
162 void
163 xfs_inode_free(
164 	struct xfs_inode	*ip)
165 {
166 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
167 
168 	/*
169 	 * Because we use RCU freeing we need to ensure the inode always
170 	 * appears to be reclaimed with an invalid inode number when in the
171 	 * free state. The ip->i_flags_lock provides the barrier against lookup
172 	 * races.
173 	 */
174 	spin_lock(&ip->i_flags_lock);
175 	ip->i_flags = XFS_IRECLAIM;
176 	ip->i_ino = 0;
177 	spin_unlock(&ip->i_flags_lock);
178 
179 	__xfs_inode_free(ip);
180 }
181 
182 /*
183  * Queue background inode reclaim work if there are reclaimable inodes and there
184  * isn't reclaim work already scheduled or in progress.
185  */
186 static void
187 xfs_reclaim_work_queue(
188 	struct xfs_mount        *mp)
189 {
190 
191 	rcu_read_lock();
192 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
193 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
194 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
195 	}
196 	rcu_read_unlock();
197 }
198 
199 /*
200  * Background scanning to trim preallocated space. This is queued based on the
201  * 'speculative_prealloc_lifetime' tunable (5m by default).
202  */
203 static inline void
204 xfs_blockgc_queue(
205 	struct xfs_perag	*pag)
206 {
207 	struct xfs_mount	*mp = pag->pag_mount;
208 
209 	if (!xfs_is_blockgc_enabled(mp))
210 		return;
211 
212 	rcu_read_lock();
213 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
214 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
215 				   &pag->pag_blockgc_work,
216 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
217 	rcu_read_unlock();
218 }
219 
220 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
221 static void
222 xfs_perag_set_inode_tag(
223 	struct xfs_perag	*pag,
224 	xfs_agino_t		agino,
225 	unsigned int		tag)
226 {
227 	struct xfs_mount	*mp = pag->pag_mount;
228 	bool			was_tagged;
229 
230 	lockdep_assert_held(&pag->pag_ici_lock);
231 
232 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
233 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
234 
235 	if (tag == XFS_ICI_RECLAIM_TAG)
236 		pag->pag_ici_reclaimable++;
237 
238 	if (was_tagged)
239 		return;
240 
241 	/* propagate the tag up into the perag radix tree */
242 	spin_lock(&mp->m_perag_lock);
243 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
244 	spin_unlock(&mp->m_perag_lock);
245 
246 	/* start background work */
247 	switch (tag) {
248 	case XFS_ICI_RECLAIM_TAG:
249 		xfs_reclaim_work_queue(mp);
250 		break;
251 	case XFS_ICI_BLOCKGC_TAG:
252 		xfs_blockgc_queue(pag);
253 		break;
254 	}
255 
256 	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
257 }
258 
259 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
260 static void
261 xfs_perag_clear_inode_tag(
262 	struct xfs_perag	*pag,
263 	xfs_agino_t		agino,
264 	unsigned int		tag)
265 {
266 	struct xfs_mount	*mp = pag->pag_mount;
267 
268 	lockdep_assert_held(&pag->pag_ici_lock);
269 
270 	/*
271 	 * Reclaim can signal (with a null agino) that it cleared its own tag
272 	 * by removing the inode from the radix tree.
273 	 */
274 	if (agino != NULLAGINO)
275 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
276 	else
277 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
278 
279 	if (tag == XFS_ICI_RECLAIM_TAG)
280 		pag->pag_ici_reclaimable--;
281 
282 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
283 		return;
284 
285 	/* clear the tag from the perag radix tree */
286 	spin_lock(&mp->m_perag_lock);
287 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
288 	spin_unlock(&mp->m_perag_lock);
289 
290 	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
291 }
292 
293 /*
294  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
295  * part of the structure. This is made more complex by the fact we store
296  * information about the on-disk values in the VFS inode and so we can't just
297  * overwrite the values unconditionally. Hence we save the parameters we
298  * need to retain across reinitialisation, and rewrite them into the VFS inode
299  * after reinitialisation even if it fails.
300  */
301 static int
302 xfs_reinit_inode(
303 	struct xfs_mount	*mp,
304 	struct inode		*inode)
305 {
306 	int			error;
307 	uint32_t		nlink = inode->i_nlink;
308 	uint32_t		generation = inode->i_generation;
309 	uint64_t		version = inode_peek_iversion(inode);
310 	umode_t			mode = inode->i_mode;
311 	dev_t			dev = inode->i_rdev;
312 	kuid_t			uid = inode->i_uid;
313 	kgid_t			gid = inode->i_gid;
314 
315 	error = inode_init_always(mp->m_super, inode);
316 
317 	set_nlink(inode, nlink);
318 	inode->i_generation = generation;
319 	inode_set_iversion_queried(inode, version);
320 	inode->i_mode = mode;
321 	inode->i_rdev = dev;
322 	inode->i_uid = uid;
323 	inode->i_gid = gid;
324 	mapping_set_large_folios(inode->i_mapping);
325 	return error;
326 }
327 
328 /*
329  * Carefully nudge an inode whose VFS state has been torn down back into a
330  * usable state.  Drops the i_flags_lock and the rcu read lock.
331  */
332 static int
333 xfs_iget_recycle(
334 	struct xfs_perag	*pag,
335 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
336 {
337 	struct xfs_mount	*mp = ip->i_mount;
338 	struct inode		*inode = VFS_I(ip);
339 	int			error;
340 
341 	trace_xfs_iget_recycle(ip);
342 
343 	/*
344 	 * We need to make it look like the inode is being reclaimed to prevent
345 	 * the actual reclaim workers from stomping over us while we recycle
346 	 * the inode.  We can't clear the radix tree tag yet as it requires
347 	 * pag_ici_lock to be held exclusive.
348 	 */
349 	ip->i_flags |= XFS_IRECLAIM;
350 
351 	spin_unlock(&ip->i_flags_lock);
352 	rcu_read_unlock();
353 
354 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
355 	error = xfs_reinit_inode(mp, inode);
356 	if (error) {
357 		/*
358 		 * Re-initializing the inode failed, and we are in deep
359 		 * trouble.  Try to re-add it to the reclaim list.
360 		 */
361 		rcu_read_lock();
362 		spin_lock(&ip->i_flags_lock);
363 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
364 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
365 		spin_unlock(&ip->i_flags_lock);
366 		rcu_read_unlock();
367 
368 		trace_xfs_iget_recycle_fail(ip);
369 		return error;
370 	}
371 
372 	spin_lock(&pag->pag_ici_lock);
373 	spin_lock(&ip->i_flags_lock);
374 
375 	/*
376 	 * Clear the per-lifetime state in the inode as we are now effectively
377 	 * a new inode and need to return to the initial state before reuse
378 	 * occurs.
379 	 */
380 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
381 	ip->i_flags |= XFS_INEW;
382 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
383 			XFS_ICI_RECLAIM_TAG);
384 	inode->i_state = I_NEW;
385 	spin_unlock(&ip->i_flags_lock);
386 	spin_unlock(&pag->pag_ici_lock);
387 
388 	return 0;
389 }
390 
391 /*
392  * If we are allocating a new inode, then check what was returned is
393  * actually a free, empty inode. If we are not allocating an inode,
394  * then check we didn't find a free inode.
395  *
396  * Returns:
397  *	0		if the inode free state matches the lookup context
398  *	-ENOENT		if the inode is free and we are not allocating
399  *	-EFSCORRUPTED	if there is any state mismatch at all
400  */
401 static int
402 xfs_iget_check_free_state(
403 	struct xfs_inode	*ip,
404 	int			flags)
405 {
406 	if (flags & XFS_IGET_CREATE) {
407 		/* should be a free inode */
408 		if (VFS_I(ip)->i_mode != 0) {
409 			xfs_warn(ip->i_mount,
410 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
411 				ip->i_ino, VFS_I(ip)->i_mode);
412 			return -EFSCORRUPTED;
413 		}
414 
415 		if (ip->i_nblocks != 0) {
416 			xfs_warn(ip->i_mount,
417 "Corruption detected! Free inode 0x%llx has blocks allocated!",
418 				ip->i_ino);
419 			return -EFSCORRUPTED;
420 		}
421 		return 0;
422 	}
423 
424 	/* should be an allocated inode */
425 	if (VFS_I(ip)->i_mode == 0)
426 		return -ENOENT;
427 
428 	return 0;
429 }
430 
431 /* Make all pending inactivation work start immediately. */
432 static void
433 xfs_inodegc_queue_all(
434 	struct xfs_mount	*mp)
435 {
436 	struct xfs_inodegc	*gc;
437 	int			cpu;
438 
439 	for_each_online_cpu(cpu) {
440 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
441 		if (!llist_empty(&gc->list))
442 			queue_work_on(cpu, mp->m_inodegc_wq, &gc->work);
443 	}
444 }
445 
446 /*
447  * Check the validity of the inode we just found it the cache
448  */
449 static int
450 xfs_iget_cache_hit(
451 	struct xfs_perag	*pag,
452 	struct xfs_inode	*ip,
453 	xfs_ino_t		ino,
454 	int			flags,
455 	int			lock_flags) __releases(RCU)
456 {
457 	struct inode		*inode = VFS_I(ip);
458 	struct xfs_mount	*mp = ip->i_mount;
459 	int			error;
460 
461 	/*
462 	 * check for re-use of an inode within an RCU grace period due to the
463 	 * radix tree nodes not being updated yet. We monitor for this by
464 	 * setting the inode number to zero before freeing the inode structure.
465 	 * If the inode has been reallocated and set up, then the inode number
466 	 * will not match, so check for that, too.
467 	 */
468 	spin_lock(&ip->i_flags_lock);
469 	if (ip->i_ino != ino)
470 		goto out_skip;
471 
472 	/*
473 	 * If we are racing with another cache hit that is currently
474 	 * instantiating this inode or currently recycling it out of
475 	 * reclaimable state, wait for the initialisation to complete
476 	 * before continuing.
477 	 *
478 	 * If we're racing with the inactivation worker we also want to wait.
479 	 * If we're creating a new file, it's possible that the worker
480 	 * previously marked the inode as free on disk but hasn't finished
481 	 * updating the incore state yet.  The AGI buffer will be dirty and
482 	 * locked to the icreate transaction, so a synchronous push of the
483 	 * inodegc workers would result in deadlock.  For a regular iget, the
484 	 * worker is running already, so we might as well wait.
485 	 *
486 	 * XXX(hch): eventually we should do something equivalent to
487 	 *	     wait_on_inode to wait for these flags to be cleared
488 	 *	     instead of polling for it.
489 	 */
490 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
491 		goto out_skip;
492 
493 	if (ip->i_flags & XFS_NEED_INACTIVE) {
494 		/* Unlinked inodes cannot be re-grabbed. */
495 		if (VFS_I(ip)->i_nlink == 0) {
496 			error = -ENOENT;
497 			goto out_error;
498 		}
499 		goto out_inodegc_flush;
500 	}
501 
502 	/*
503 	 * Check the inode free state is valid. This also detects lookup
504 	 * racing with unlinks.
505 	 */
506 	error = xfs_iget_check_free_state(ip, flags);
507 	if (error)
508 		goto out_error;
509 
510 	/* Skip inodes that have no vfs state. */
511 	if ((flags & XFS_IGET_INCORE) &&
512 	    (ip->i_flags & XFS_IRECLAIMABLE))
513 		goto out_skip;
514 
515 	/* The inode fits the selection criteria; process it. */
516 	if (ip->i_flags & XFS_IRECLAIMABLE) {
517 		/* Drops i_flags_lock and RCU read lock. */
518 		error = xfs_iget_recycle(pag, ip);
519 		if (error)
520 			return error;
521 	} else {
522 		/* If the VFS inode is being torn down, pause and try again. */
523 		if (!igrab(inode))
524 			goto out_skip;
525 
526 		/* We've got a live one. */
527 		spin_unlock(&ip->i_flags_lock);
528 		rcu_read_unlock();
529 		trace_xfs_iget_hit(ip);
530 	}
531 
532 	if (lock_flags != 0)
533 		xfs_ilock(ip, lock_flags);
534 
535 	if (!(flags & XFS_IGET_INCORE))
536 		xfs_iflags_clear(ip, XFS_ISTALE);
537 	XFS_STATS_INC(mp, xs_ig_found);
538 
539 	return 0;
540 
541 out_skip:
542 	trace_xfs_iget_skip(ip);
543 	XFS_STATS_INC(mp, xs_ig_frecycle);
544 	error = -EAGAIN;
545 out_error:
546 	spin_unlock(&ip->i_flags_lock);
547 	rcu_read_unlock();
548 	return error;
549 
550 out_inodegc_flush:
551 	spin_unlock(&ip->i_flags_lock);
552 	rcu_read_unlock();
553 	/*
554 	 * Do not wait for the workers, because the caller could hold an AGI
555 	 * buffer lock.  We're just going to sleep in a loop anyway.
556 	 */
557 	if (xfs_is_inodegc_enabled(mp))
558 		xfs_inodegc_queue_all(mp);
559 	return -EAGAIN;
560 }
561 
562 static int
563 xfs_iget_cache_miss(
564 	struct xfs_mount	*mp,
565 	struct xfs_perag	*pag,
566 	xfs_trans_t		*tp,
567 	xfs_ino_t		ino,
568 	struct xfs_inode	**ipp,
569 	int			flags,
570 	int			lock_flags)
571 {
572 	struct xfs_inode	*ip;
573 	int			error;
574 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
575 	int			iflags;
576 
577 	ip = xfs_inode_alloc(mp, ino);
578 	if (!ip)
579 		return -ENOMEM;
580 
581 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
582 	if (error)
583 		goto out_destroy;
584 
585 	/*
586 	 * For version 5 superblocks, if we are initialising a new inode and we
587 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
588 	 * simply build the new inode core with a random generation number.
589 	 *
590 	 * For version 4 (and older) superblocks, log recovery is dependent on
591 	 * the i_flushiter field being initialised from the current on-disk
592 	 * value and hence we must also read the inode off disk even when
593 	 * initializing new inodes.
594 	 */
595 	if (xfs_has_v3inodes(mp) &&
596 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
597 		VFS_I(ip)->i_generation = prandom_u32();
598 	} else {
599 		struct xfs_buf		*bp;
600 
601 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
602 		if (error)
603 			goto out_destroy;
604 
605 		error = xfs_inode_from_disk(ip,
606 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
607 		if (!error)
608 			xfs_buf_set_ref(bp, XFS_INO_REF);
609 		xfs_trans_brelse(tp, bp);
610 
611 		if (error)
612 			goto out_destroy;
613 	}
614 
615 	trace_xfs_iget_miss(ip);
616 
617 	/*
618 	 * Check the inode free state is valid. This also detects lookup
619 	 * racing with unlinks.
620 	 */
621 	error = xfs_iget_check_free_state(ip, flags);
622 	if (error)
623 		goto out_destroy;
624 
625 	/*
626 	 * Preload the radix tree so we can insert safely under the
627 	 * write spinlock. Note that we cannot sleep inside the preload
628 	 * region. Since we can be called from transaction context, don't
629 	 * recurse into the file system.
630 	 */
631 	if (radix_tree_preload(GFP_NOFS)) {
632 		error = -EAGAIN;
633 		goto out_destroy;
634 	}
635 
636 	/*
637 	 * Because the inode hasn't been added to the radix-tree yet it can't
638 	 * be found by another thread, so we can do the non-sleeping lock here.
639 	 */
640 	if (lock_flags) {
641 		if (!xfs_ilock_nowait(ip, lock_flags))
642 			BUG();
643 	}
644 
645 	/*
646 	 * These values must be set before inserting the inode into the radix
647 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
648 	 * RCU locking mechanism) can find it and that lookup must see that this
649 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
650 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
651 	 * memory barrier that ensures this detection works correctly at lookup
652 	 * time.
653 	 */
654 	iflags = XFS_INEW;
655 	if (flags & XFS_IGET_DONTCACHE)
656 		d_mark_dontcache(VFS_I(ip));
657 	ip->i_udquot = NULL;
658 	ip->i_gdquot = NULL;
659 	ip->i_pdquot = NULL;
660 	xfs_iflags_set(ip, iflags);
661 
662 	/* insert the new inode */
663 	spin_lock(&pag->pag_ici_lock);
664 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
665 	if (unlikely(error)) {
666 		WARN_ON(error != -EEXIST);
667 		XFS_STATS_INC(mp, xs_ig_dup);
668 		error = -EAGAIN;
669 		goto out_preload_end;
670 	}
671 	spin_unlock(&pag->pag_ici_lock);
672 	radix_tree_preload_end();
673 
674 	*ipp = ip;
675 	return 0;
676 
677 out_preload_end:
678 	spin_unlock(&pag->pag_ici_lock);
679 	radix_tree_preload_end();
680 	if (lock_flags)
681 		xfs_iunlock(ip, lock_flags);
682 out_destroy:
683 	__destroy_inode(VFS_I(ip));
684 	xfs_inode_free(ip);
685 	return error;
686 }
687 
688 /*
689  * Look up an inode by number in the given file system.  The inode is looked up
690  * in the cache held in each AG.  If the inode is found in the cache, initialise
691  * the vfs inode if necessary.
692  *
693  * If it is not in core, read it in from the file system's device, add it to the
694  * cache and initialise the vfs inode.
695  *
696  * The inode is locked according to the value of the lock_flags parameter.
697  * Inode lookup is only done during metadata operations and not as part of the
698  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
699  */
700 int
701 xfs_iget(
702 	struct xfs_mount	*mp,
703 	struct xfs_trans	*tp,
704 	xfs_ino_t		ino,
705 	uint			flags,
706 	uint			lock_flags,
707 	struct xfs_inode	**ipp)
708 {
709 	struct xfs_inode	*ip;
710 	struct xfs_perag	*pag;
711 	xfs_agino_t		agino;
712 	int			error;
713 
714 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
715 
716 	/* reject inode numbers outside existing AGs */
717 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
718 		return -EINVAL;
719 
720 	XFS_STATS_INC(mp, xs_ig_attempts);
721 
722 	/* get the perag structure and ensure that it's inode capable */
723 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
724 	agino = XFS_INO_TO_AGINO(mp, ino);
725 
726 again:
727 	error = 0;
728 	rcu_read_lock();
729 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
730 
731 	if (ip) {
732 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
733 		if (error)
734 			goto out_error_or_again;
735 	} else {
736 		rcu_read_unlock();
737 		if (flags & XFS_IGET_INCORE) {
738 			error = -ENODATA;
739 			goto out_error_or_again;
740 		}
741 		XFS_STATS_INC(mp, xs_ig_missed);
742 
743 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
744 							flags, lock_flags);
745 		if (error)
746 			goto out_error_or_again;
747 	}
748 	xfs_perag_put(pag);
749 
750 	*ipp = ip;
751 
752 	/*
753 	 * If we have a real type for an on-disk inode, we can setup the inode
754 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
755 	 * handle it.
756 	 */
757 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
758 		xfs_setup_existing_inode(ip);
759 	return 0;
760 
761 out_error_or_again:
762 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
763 		delay(1);
764 		goto again;
765 	}
766 	xfs_perag_put(pag);
767 	return error;
768 }
769 
770 /*
771  * "Is this a cached inode that's also allocated?"
772  *
773  * Look up an inode by number in the given file system.  If the inode is
774  * in cache and isn't in purgatory, return 1 if the inode is allocated
775  * and 0 if it is not.  For all other cases (not in cache, being torn
776  * down, etc.), return a negative error code.
777  *
778  * The caller has to prevent inode allocation and freeing activity,
779  * presumably by locking the AGI buffer.   This is to ensure that an
780  * inode cannot transition from allocated to freed until the caller is
781  * ready to allow that.  If the inode is in an intermediate state (new,
782  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
783  * inode is not in the cache, -ENOENT will be returned.  The caller must
784  * deal with these scenarios appropriately.
785  *
786  * This is a specialized use case for the online scrubber; if you're
787  * reading this, you probably want xfs_iget.
788  */
789 int
790 xfs_icache_inode_is_allocated(
791 	struct xfs_mount	*mp,
792 	struct xfs_trans	*tp,
793 	xfs_ino_t		ino,
794 	bool			*inuse)
795 {
796 	struct xfs_inode	*ip;
797 	int			error;
798 
799 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
800 	if (error)
801 		return error;
802 
803 	*inuse = !!(VFS_I(ip)->i_mode);
804 	xfs_irele(ip);
805 	return 0;
806 }
807 
808 /*
809  * Grab the inode for reclaim exclusively.
810  *
811  * We have found this inode via a lookup under RCU, so the inode may have
812  * already been freed, or it may be in the process of being recycled by
813  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
814  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
815  * will not be set. Hence we need to check for both these flag conditions to
816  * avoid inodes that are no longer reclaim candidates.
817  *
818  * Note: checking for other state flags here, under the i_flags_lock or not, is
819  * racy and should be avoided. Those races should be resolved only after we have
820  * ensured that we are able to reclaim this inode and the world can see that we
821  * are going to reclaim it.
822  *
823  * Return true if we grabbed it, false otherwise.
824  */
825 static bool
826 xfs_reclaim_igrab(
827 	struct xfs_inode	*ip,
828 	struct xfs_icwalk	*icw)
829 {
830 	ASSERT(rcu_read_lock_held());
831 
832 	spin_lock(&ip->i_flags_lock);
833 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
834 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
835 		/* not a reclaim candidate. */
836 		spin_unlock(&ip->i_flags_lock);
837 		return false;
838 	}
839 
840 	/* Don't reclaim a sick inode unless the caller asked for it. */
841 	if (ip->i_sick &&
842 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
843 		spin_unlock(&ip->i_flags_lock);
844 		return false;
845 	}
846 
847 	__xfs_iflags_set(ip, XFS_IRECLAIM);
848 	spin_unlock(&ip->i_flags_lock);
849 	return true;
850 }
851 
852 /*
853  * Inode reclaim is non-blocking, so the default action if progress cannot be
854  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
855  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
856  * blocking anymore and hence we can wait for the inode to be able to reclaim
857  * it.
858  *
859  * We do no IO here - if callers require inodes to be cleaned they must push the
860  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
861  * done in the background in a non-blocking manner, and enables memory reclaim
862  * to make progress without blocking.
863  */
864 static void
865 xfs_reclaim_inode(
866 	struct xfs_inode	*ip,
867 	struct xfs_perag	*pag)
868 {
869 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
870 
871 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
872 		goto out;
873 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
874 		goto out_iunlock;
875 
876 	if (xfs_is_shutdown(ip->i_mount)) {
877 		xfs_iunpin_wait(ip);
878 		xfs_iflush_abort(ip);
879 		goto reclaim;
880 	}
881 	if (xfs_ipincount(ip))
882 		goto out_clear_flush;
883 	if (!xfs_inode_clean(ip))
884 		goto out_clear_flush;
885 
886 	xfs_iflags_clear(ip, XFS_IFLUSHING);
887 reclaim:
888 	trace_xfs_inode_reclaiming(ip);
889 
890 	/*
891 	 * Because we use RCU freeing we need to ensure the inode always appears
892 	 * to be reclaimed with an invalid inode number when in the free state.
893 	 * We do this as early as possible under the ILOCK so that
894 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
895 	 * detect races with us here. By doing this, we guarantee that once
896 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
897 	 * it will see either a valid inode that will serialise correctly, or it
898 	 * will see an invalid inode that it can skip.
899 	 */
900 	spin_lock(&ip->i_flags_lock);
901 	ip->i_flags = XFS_IRECLAIM;
902 	ip->i_ino = 0;
903 	ip->i_sick = 0;
904 	ip->i_checked = 0;
905 	spin_unlock(&ip->i_flags_lock);
906 
907 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
908 
909 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
910 	/*
911 	 * Remove the inode from the per-AG radix tree.
912 	 *
913 	 * Because radix_tree_delete won't complain even if the item was never
914 	 * added to the tree assert that it's been there before to catch
915 	 * problems with the inode life time early on.
916 	 */
917 	spin_lock(&pag->pag_ici_lock);
918 	if (!radix_tree_delete(&pag->pag_ici_root,
919 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
920 		ASSERT(0);
921 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
922 	spin_unlock(&pag->pag_ici_lock);
923 
924 	/*
925 	 * Here we do an (almost) spurious inode lock in order to coordinate
926 	 * with inode cache radix tree lookups.  This is because the lookup
927 	 * can reference the inodes in the cache without taking references.
928 	 *
929 	 * We make that OK here by ensuring that we wait until the inode is
930 	 * unlocked after the lookup before we go ahead and free it.
931 	 */
932 	xfs_ilock(ip, XFS_ILOCK_EXCL);
933 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
934 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
935 	ASSERT(xfs_inode_clean(ip));
936 
937 	__xfs_inode_free(ip);
938 	return;
939 
940 out_clear_flush:
941 	xfs_iflags_clear(ip, XFS_IFLUSHING);
942 out_iunlock:
943 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
944 out:
945 	xfs_iflags_clear(ip, XFS_IRECLAIM);
946 }
947 
948 /* Reclaim sick inodes if we're unmounting or the fs went down. */
949 static inline bool
950 xfs_want_reclaim_sick(
951 	struct xfs_mount	*mp)
952 {
953 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
954 	       xfs_is_shutdown(mp);
955 }
956 
957 void
958 xfs_reclaim_inodes(
959 	struct xfs_mount	*mp)
960 {
961 	struct xfs_icwalk	icw = {
962 		.icw_flags	= 0,
963 	};
964 
965 	if (xfs_want_reclaim_sick(mp))
966 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
967 
968 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
969 		xfs_ail_push_all_sync(mp->m_ail);
970 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
971 	}
972 }
973 
974 /*
975  * The shrinker infrastructure determines how many inodes we should scan for
976  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
977  * push the AIL here. We also want to proactively free up memory if we can to
978  * minimise the amount of work memory reclaim has to do so we kick the
979  * background reclaim if it isn't already scheduled.
980  */
981 long
982 xfs_reclaim_inodes_nr(
983 	struct xfs_mount	*mp,
984 	unsigned long		nr_to_scan)
985 {
986 	struct xfs_icwalk	icw = {
987 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
988 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
989 	};
990 
991 	if (xfs_want_reclaim_sick(mp))
992 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
993 
994 	/* kick background reclaimer and push the AIL */
995 	xfs_reclaim_work_queue(mp);
996 	xfs_ail_push_all(mp->m_ail);
997 
998 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
999 	return 0;
1000 }
1001 
1002 /*
1003  * Return the number of reclaimable inodes in the filesystem for
1004  * the shrinker to determine how much to reclaim.
1005  */
1006 long
1007 xfs_reclaim_inodes_count(
1008 	struct xfs_mount	*mp)
1009 {
1010 	struct xfs_perag	*pag;
1011 	xfs_agnumber_t		ag = 0;
1012 	long			reclaimable = 0;
1013 
1014 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1015 		ag = pag->pag_agno + 1;
1016 		reclaimable += pag->pag_ici_reclaimable;
1017 		xfs_perag_put(pag);
1018 	}
1019 	return reclaimable;
1020 }
1021 
1022 STATIC bool
1023 xfs_icwalk_match_id(
1024 	struct xfs_inode	*ip,
1025 	struct xfs_icwalk	*icw)
1026 {
1027 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1028 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1029 		return false;
1030 
1031 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1032 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1033 		return false;
1034 
1035 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1036 	    ip->i_projid != icw->icw_prid)
1037 		return false;
1038 
1039 	return true;
1040 }
1041 
1042 /*
1043  * A union-based inode filtering algorithm. Process the inode if any of the
1044  * criteria match. This is for global/internal scans only.
1045  */
1046 STATIC bool
1047 xfs_icwalk_match_id_union(
1048 	struct xfs_inode	*ip,
1049 	struct xfs_icwalk	*icw)
1050 {
1051 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1052 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1053 		return true;
1054 
1055 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1056 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1057 		return true;
1058 
1059 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1060 	    ip->i_projid == icw->icw_prid)
1061 		return true;
1062 
1063 	return false;
1064 }
1065 
1066 /*
1067  * Is this inode @ip eligible for eof/cow block reclamation, given some
1068  * filtering parameters @icw?  The inode is eligible if @icw is null or
1069  * if the predicate functions match.
1070  */
1071 static bool
1072 xfs_icwalk_match(
1073 	struct xfs_inode	*ip,
1074 	struct xfs_icwalk	*icw)
1075 {
1076 	bool			match;
1077 
1078 	if (!icw)
1079 		return true;
1080 
1081 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1082 		match = xfs_icwalk_match_id_union(ip, icw);
1083 	else
1084 		match = xfs_icwalk_match_id(ip, icw);
1085 	if (!match)
1086 		return false;
1087 
1088 	/* skip the inode if the file size is too small */
1089 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1090 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1091 		return false;
1092 
1093 	return true;
1094 }
1095 
1096 /*
1097  * This is a fast pass over the inode cache to try to get reclaim moving on as
1098  * many inodes as possible in a short period of time. It kicks itself every few
1099  * seconds, as well as being kicked by the inode cache shrinker when memory
1100  * goes low.
1101  */
1102 void
1103 xfs_reclaim_worker(
1104 	struct work_struct *work)
1105 {
1106 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1107 					struct xfs_mount, m_reclaim_work);
1108 
1109 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1110 	xfs_reclaim_work_queue(mp);
1111 }
1112 
1113 STATIC int
1114 xfs_inode_free_eofblocks(
1115 	struct xfs_inode	*ip,
1116 	struct xfs_icwalk	*icw,
1117 	unsigned int		*lockflags)
1118 {
1119 	bool			wait;
1120 
1121 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1122 
1123 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1124 		return 0;
1125 
1126 	/*
1127 	 * If the mapping is dirty the operation can block and wait for some
1128 	 * time. Unless we are waiting, skip it.
1129 	 */
1130 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1131 		return 0;
1132 
1133 	if (!xfs_icwalk_match(ip, icw))
1134 		return 0;
1135 
1136 	/*
1137 	 * If the caller is waiting, return -EAGAIN to keep the background
1138 	 * scanner moving and revisit the inode in a subsequent pass.
1139 	 */
1140 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1141 		if (wait)
1142 			return -EAGAIN;
1143 		return 0;
1144 	}
1145 	*lockflags |= XFS_IOLOCK_EXCL;
1146 
1147 	if (xfs_can_free_eofblocks(ip, false))
1148 		return xfs_free_eofblocks(ip);
1149 
1150 	/* inode could be preallocated or append-only */
1151 	trace_xfs_inode_free_eofblocks_invalid(ip);
1152 	xfs_inode_clear_eofblocks_tag(ip);
1153 	return 0;
1154 }
1155 
1156 static void
1157 xfs_blockgc_set_iflag(
1158 	struct xfs_inode	*ip,
1159 	unsigned long		iflag)
1160 {
1161 	struct xfs_mount	*mp = ip->i_mount;
1162 	struct xfs_perag	*pag;
1163 
1164 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1165 
1166 	/*
1167 	 * Don't bother locking the AG and looking up in the radix trees
1168 	 * if we already know that we have the tag set.
1169 	 */
1170 	if (ip->i_flags & iflag)
1171 		return;
1172 	spin_lock(&ip->i_flags_lock);
1173 	ip->i_flags |= iflag;
1174 	spin_unlock(&ip->i_flags_lock);
1175 
1176 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1177 	spin_lock(&pag->pag_ici_lock);
1178 
1179 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1180 			XFS_ICI_BLOCKGC_TAG);
1181 
1182 	spin_unlock(&pag->pag_ici_lock);
1183 	xfs_perag_put(pag);
1184 }
1185 
1186 void
1187 xfs_inode_set_eofblocks_tag(
1188 	xfs_inode_t	*ip)
1189 {
1190 	trace_xfs_inode_set_eofblocks_tag(ip);
1191 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1192 }
1193 
1194 static void
1195 xfs_blockgc_clear_iflag(
1196 	struct xfs_inode	*ip,
1197 	unsigned long		iflag)
1198 {
1199 	struct xfs_mount	*mp = ip->i_mount;
1200 	struct xfs_perag	*pag;
1201 	bool			clear_tag;
1202 
1203 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1204 
1205 	spin_lock(&ip->i_flags_lock);
1206 	ip->i_flags &= ~iflag;
1207 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1208 	spin_unlock(&ip->i_flags_lock);
1209 
1210 	if (!clear_tag)
1211 		return;
1212 
1213 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1214 	spin_lock(&pag->pag_ici_lock);
1215 
1216 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1217 			XFS_ICI_BLOCKGC_TAG);
1218 
1219 	spin_unlock(&pag->pag_ici_lock);
1220 	xfs_perag_put(pag);
1221 }
1222 
1223 void
1224 xfs_inode_clear_eofblocks_tag(
1225 	xfs_inode_t	*ip)
1226 {
1227 	trace_xfs_inode_clear_eofblocks_tag(ip);
1228 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1229 }
1230 
1231 /*
1232  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1233  * then we can bail out quickly, but otherwise we must back off if the file
1234  * is undergoing some kind of write.
1235  */
1236 static bool
1237 xfs_prep_free_cowblocks(
1238 	struct xfs_inode	*ip)
1239 {
1240 	/*
1241 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1242 	 * possible the inode was fully unshared since it was originally tagged.
1243 	 */
1244 	if (!xfs_inode_has_cow_data(ip)) {
1245 		trace_xfs_inode_free_cowblocks_invalid(ip);
1246 		xfs_inode_clear_cowblocks_tag(ip);
1247 		return false;
1248 	}
1249 
1250 	/*
1251 	 * If the mapping is dirty or under writeback we cannot touch the
1252 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1253 	 */
1254 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1255 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1256 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1257 	    atomic_read(&VFS_I(ip)->i_dio_count))
1258 		return false;
1259 
1260 	return true;
1261 }
1262 
1263 /*
1264  * Automatic CoW Reservation Freeing
1265  *
1266  * These functions automatically garbage collect leftover CoW reservations
1267  * that were made on behalf of a cowextsize hint when we start to run out
1268  * of quota or when the reservations sit around for too long.  If the file
1269  * has dirty pages or is undergoing writeback, its CoW reservations will
1270  * be retained.
1271  *
1272  * The actual garbage collection piggybacks off the same code that runs
1273  * the speculative EOF preallocation garbage collector.
1274  */
1275 STATIC int
1276 xfs_inode_free_cowblocks(
1277 	struct xfs_inode	*ip,
1278 	struct xfs_icwalk	*icw,
1279 	unsigned int		*lockflags)
1280 {
1281 	bool			wait;
1282 	int			ret = 0;
1283 
1284 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1285 
1286 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1287 		return 0;
1288 
1289 	if (!xfs_prep_free_cowblocks(ip))
1290 		return 0;
1291 
1292 	if (!xfs_icwalk_match(ip, icw))
1293 		return 0;
1294 
1295 	/*
1296 	 * If the caller is waiting, return -EAGAIN to keep the background
1297 	 * scanner moving and revisit the inode in a subsequent pass.
1298 	 */
1299 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1300 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1301 		if (wait)
1302 			return -EAGAIN;
1303 		return 0;
1304 	}
1305 	*lockflags |= XFS_IOLOCK_EXCL;
1306 
1307 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1308 		if (wait)
1309 			return -EAGAIN;
1310 		return 0;
1311 	}
1312 	*lockflags |= XFS_MMAPLOCK_EXCL;
1313 
1314 	/*
1315 	 * Check again, nobody else should be able to dirty blocks or change
1316 	 * the reflink iflag now that we have the first two locks held.
1317 	 */
1318 	if (xfs_prep_free_cowblocks(ip))
1319 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1320 	return ret;
1321 }
1322 
1323 void
1324 xfs_inode_set_cowblocks_tag(
1325 	xfs_inode_t	*ip)
1326 {
1327 	trace_xfs_inode_set_cowblocks_tag(ip);
1328 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1329 }
1330 
1331 void
1332 xfs_inode_clear_cowblocks_tag(
1333 	xfs_inode_t	*ip)
1334 {
1335 	trace_xfs_inode_clear_cowblocks_tag(ip);
1336 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1337 }
1338 
1339 /* Disable post-EOF and CoW block auto-reclamation. */
1340 void
1341 xfs_blockgc_stop(
1342 	struct xfs_mount	*mp)
1343 {
1344 	struct xfs_perag	*pag;
1345 	xfs_agnumber_t		agno;
1346 
1347 	if (!xfs_clear_blockgc_enabled(mp))
1348 		return;
1349 
1350 	for_each_perag(mp, agno, pag)
1351 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1352 	trace_xfs_blockgc_stop(mp, __return_address);
1353 }
1354 
1355 /* Enable post-EOF and CoW block auto-reclamation. */
1356 void
1357 xfs_blockgc_start(
1358 	struct xfs_mount	*mp)
1359 {
1360 	struct xfs_perag	*pag;
1361 	xfs_agnumber_t		agno;
1362 
1363 	if (xfs_set_blockgc_enabled(mp))
1364 		return;
1365 
1366 	trace_xfs_blockgc_start(mp, __return_address);
1367 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1368 		xfs_blockgc_queue(pag);
1369 }
1370 
1371 /* Don't try to run block gc on an inode that's in any of these states. */
1372 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1373 					 XFS_NEED_INACTIVE | \
1374 					 XFS_INACTIVATING | \
1375 					 XFS_IRECLAIMABLE | \
1376 					 XFS_IRECLAIM)
1377 /*
1378  * Decide if the given @ip is eligible for garbage collection of speculative
1379  * preallocations, and grab it if so.  Returns true if it's ready to go or
1380  * false if we should just ignore it.
1381  */
1382 static bool
1383 xfs_blockgc_igrab(
1384 	struct xfs_inode	*ip)
1385 {
1386 	struct inode		*inode = VFS_I(ip);
1387 
1388 	ASSERT(rcu_read_lock_held());
1389 
1390 	/* Check for stale RCU freed inode */
1391 	spin_lock(&ip->i_flags_lock);
1392 	if (!ip->i_ino)
1393 		goto out_unlock_noent;
1394 
1395 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1396 		goto out_unlock_noent;
1397 	spin_unlock(&ip->i_flags_lock);
1398 
1399 	/* nothing to sync during shutdown */
1400 	if (xfs_is_shutdown(ip->i_mount))
1401 		return false;
1402 
1403 	/* If we can't grab the inode, it must on it's way to reclaim. */
1404 	if (!igrab(inode))
1405 		return false;
1406 
1407 	/* inode is valid */
1408 	return true;
1409 
1410 out_unlock_noent:
1411 	spin_unlock(&ip->i_flags_lock);
1412 	return false;
1413 }
1414 
1415 /* Scan one incore inode for block preallocations that we can remove. */
1416 static int
1417 xfs_blockgc_scan_inode(
1418 	struct xfs_inode	*ip,
1419 	struct xfs_icwalk	*icw)
1420 {
1421 	unsigned int		lockflags = 0;
1422 	int			error;
1423 
1424 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1425 	if (error)
1426 		goto unlock;
1427 
1428 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1429 unlock:
1430 	if (lockflags)
1431 		xfs_iunlock(ip, lockflags);
1432 	xfs_irele(ip);
1433 	return error;
1434 }
1435 
1436 /* Background worker that trims preallocated space. */
1437 void
1438 xfs_blockgc_worker(
1439 	struct work_struct	*work)
1440 {
1441 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1442 					struct xfs_perag, pag_blockgc_work);
1443 	struct xfs_mount	*mp = pag->pag_mount;
1444 	int			error;
1445 
1446 	trace_xfs_blockgc_worker(mp, __return_address);
1447 
1448 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1449 	if (error)
1450 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1451 				pag->pag_agno, error);
1452 	xfs_blockgc_queue(pag);
1453 }
1454 
1455 /*
1456  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1457  * and cowblocks.
1458  */
1459 int
1460 xfs_blockgc_free_space(
1461 	struct xfs_mount	*mp,
1462 	struct xfs_icwalk	*icw)
1463 {
1464 	int			error;
1465 
1466 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1467 
1468 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1469 	if (error)
1470 		return error;
1471 
1472 	xfs_inodegc_flush(mp);
1473 	return 0;
1474 }
1475 
1476 /*
1477  * Reclaim all the free space that we can by scheduling the background blockgc
1478  * and inodegc workers immediately and waiting for them all to clear.
1479  */
1480 void
1481 xfs_blockgc_flush_all(
1482 	struct xfs_mount	*mp)
1483 {
1484 	struct xfs_perag	*pag;
1485 	xfs_agnumber_t		agno;
1486 
1487 	trace_xfs_blockgc_flush_all(mp, __return_address);
1488 
1489 	/*
1490 	 * For each blockgc worker, move its queue time up to now.  If it
1491 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1492 	 * left.
1493 	 */
1494 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1495 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1496 				&pag->pag_blockgc_work, 0);
1497 
1498 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1499 		flush_delayed_work(&pag->pag_blockgc_work);
1500 
1501 	xfs_inodegc_flush(mp);
1502 }
1503 
1504 /*
1505  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1506  * quota caused an allocation failure, so we make a best effort by including
1507  * each quota under low free space conditions (less than 1% free space) in the
1508  * scan.
1509  *
1510  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1511  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1512  * MMAPLOCK.
1513  */
1514 int
1515 xfs_blockgc_free_dquots(
1516 	struct xfs_mount	*mp,
1517 	struct xfs_dquot	*udqp,
1518 	struct xfs_dquot	*gdqp,
1519 	struct xfs_dquot	*pdqp,
1520 	unsigned int		iwalk_flags)
1521 {
1522 	struct xfs_icwalk	icw = {0};
1523 	bool			do_work = false;
1524 
1525 	if (!udqp && !gdqp && !pdqp)
1526 		return 0;
1527 
1528 	/*
1529 	 * Run a scan to free blocks using the union filter to cover all
1530 	 * applicable quotas in a single scan.
1531 	 */
1532 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1533 
1534 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1535 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1536 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1537 		do_work = true;
1538 	}
1539 
1540 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1541 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1542 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1543 		do_work = true;
1544 	}
1545 
1546 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1547 		icw.icw_prid = pdqp->q_id;
1548 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1549 		do_work = true;
1550 	}
1551 
1552 	if (!do_work)
1553 		return 0;
1554 
1555 	return xfs_blockgc_free_space(mp, &icw);
1556 }
1557 
1558 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1559 int
1560 xfs_blockgc_free_quota(
1561 	struct xfs_inode	*ip,
1562 	unsigned int		iwalk_flags)
1563 {
1564 	return xfs_blockgc_free_dquots(ip->i_mount,
1565 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1566 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1567 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1568 }
1569 
1570 /* XFS Inode Cache Walking Code */
1571 
1572 /*
1573  * The inode lookup is done in batches to keep the amount of lock traffic and
1574  * radix tree lookups to a minimum. The batch size is a trade off between
1575  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1576  * be too greedy.
1577  */
1578 #define XFS_LOOKUP_BATCH	32
1579 
1580 
1581 /*
1582  * Decide if we want to grab this inode in anticipation of doing work towards
1583  * the goal.
1584  */
1585 static inline bool
1586 xfs_icwalk_igrab(
1587 	enum xfs_icwalk_goal	goal,
1588 	struct xfs_inode	*ip,
1589 	struct xfs_icwalk	*icw)
1590 {
1591 	switch (goal) {
1592 	case XFS_ICWALK_BLOCKGC:
1593 		return xfs_blockgc_igrab(ip);
1594 	case XFS_ICWALK_RECLAIM:
1595 		return xfs_reclaim_igrab(ip, icw);
1596 	default:
1597 		return false;
1598 	}
1599 }
1600 
1601 /*
1602  * Process an inode.  Each processing function must handle any state changes
1603  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1604  */
1605 static inline int
1606 xfs_icwalk_process_inode(
1607 	enum xfs_icwalk_goal	goal,
1608 	struct xfs_inode	*ip,
1609 	struct xfs_perag	*pag,
1610 	struct xfs_icwalk	*icw)
1611 {
1612 	int			error = 0;
1613 
1614 	switch (goal) {
1615 	case XFS_ICWALK_BLOCKGC:
1616 		error = xfs_blockgc_scan_inode(ip, icw);
1617 		break;
1618 	case XFS_ICWALK_RECLAIM:
1619 		xfs_reclaim_inode(ip, pag);
1620 		break;
1621 	}
1622 	return error;
1623 }
1624 
1625 /*
1626  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1627  * process them in some manner.
1628  */
1629 static int
1630 xfs_icwalk_ag(
1631 	struct xfs_perag	*pag,
1632 	enum xfs_icwalk_goal	goal,
1633 	struct xfs_icwalk	*icw)
1634 {
1635 	struct xfs_mount	*mp = pag->pag_mount;
1636 	uint32_t		first_index;
1637 	int			last_error = 0;
1638 	int			skipped;
1639 	bool			done;
1640 	int			nr_found;
1641 
1642 restart:
1643 	done = false;
1644 	skipped = 0;
1645 	if (goal == XFS_ICWALK_RECLAIM)
1646 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1647 	else
1648 		first_index = 0;
1649 	nr_found = 0;
1650 	do {
1651 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1652 		int		error = 0;
1653 		int		i;
1654 
1655 		rcu_read_lock();
1656 
1657 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1658 				(void **) batch, first_index,
1659 				XFS_LOOKUP_BATCH, goal);
1660 		if (!nr_found) {
1661 			done = true;
1662 			rcu_read_unlock();
1663 			break;
1664 		}
1665 
1666 		/*
1667 		 * Grab the inodes before we drop the lock. if we found
1668 		 * nothing, nr == 0 and the loop will be skipped.
1669 		 */
1670 		for (i = 0; i < nr_found; i++) {
1671 			struct xfs_inode *ip = batch[i];
1672 
1673 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1674 				batch[i] = NULL;
1675 
1676 			/*
1677 			 * Update the index for the next lookup. Catch
1678 			 * overflows into the next AG range which can occur if
1679 			 * we have inodes in the last block of the AG and we
1680 			 * are currently pointing to the last inode.
1681 			 *
1682 			 * Because we may see inodes that are from the wrong AG
1683 			 * due to RCU freeing and reallocation, only update the
1684 			 * index if it lies in this AG. It was a race that lead
1685 			 * us to see this inode, so another lookup from the
1686 			 * same index will not find it again.
1687 			 */
1688 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1689 				continue;
1690 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1691 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1692 				done = true;
1693 		}
1694 
1695 		/* unlock now we've grabbed the inodes. */
1696 		rcu_read_unlock();
1697 
1698 		for (i = 0; i < nr_found; i++) {
1699 			if (!batch[i])
1700 				continue;
1701 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1702 					icw);
1703 			if (error == -EAGAIN) {
1704 				skipped++;
1705 				continue;
1706 			}
1707 			if (error && last_error != -EFSCORRUPTED)
1708 				last_error = error;
1709 		}
1710 
1711 		/* bail out if the filesystem is corrupted.  */
1712 		if (error == -EFSCORRUPTED)
1713 			break;
1714 
1715 		cond_resched();
1716 
1717 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1718 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1719 			if (icw->icw_scan_limit <= 0)
1720 				break;
1721 		}
1722 	} while (nr_found && !done);
1723 
1724 	if (goal == XFS_ICWALK_RECLAIM) {
1725 		if (done)
1726 			first_index = 0;
1727 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1728 	}
1729 
1730 	if (skipped) {
1731 		delay(1);
1732 		goto restart;
1733 	}
1734 	return last_error;
1735 }
1736 
1737 /* Walk all incore inodes to achieve a given goal. */
1738 static int
1739 xfs_icwalk(
1740 	struct xfs_mount	*mp,
1741 	enum xfs_icwalk_goal	goal,
1742 	struct xfs_icwalk	*icw)
1743 {
1744 	struct xfs_perag	*pag;
1745 	int			error = 0;
1746 	int			last_error = 0;
1747 	xfs_agnumber_t		agno;
1748 
1749 	for_each_perag_tag(mp, agno, pag, goal) {
1750 		error = xfs_icwalk_ag(pag, goal, icw);
1751 		if (error) {
1752 			last_error = error;
1753 			if (error == -EFSCORRUPTED) {
1754 				xfs_perag_put(pag);
1755 				break;
1756 			}
1757 		}
1758 	}
1759 	return last_error;
1760 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1761 }
1762 
1763 #ifdef DEBUG
1764 static void
1765 xfs_check_delalloc(
1766 	struct xfs_inode	*ip,
1767 	int			whichfork)
1768 {
1769 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
1770 	struct xfs_bmbt_irec	got;
1771 	struct xfs_iext_cursor	icur;
1772 
1773 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1774 		return;
1775 	do {
1776 		if (isnullstartblock(got.br_startblock)) {
1777 			xfs_warn(ip->i_mount,
1778 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1779 				ip->i_ino,
1780 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1781 				got.br_startoff, got.br_blockcount);
1782 		}
1783 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1784 }
1785 #else
1786 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1787 #endif
1788 
1789 /* Schedule the inode for reclaim. */
1790 static void
1791 xfs_inodegc_set_reclaimable(
1792 	struct xfs_inode	*ip)
1793 {
1794 	struct xfs_mount	*mp = ip->i_mount;
1795 	struct xfs_perag	*pag;
1796 
1797 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1798 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1799 		xfs_check_delalloc(ip, XFS_COW_FORK);
1800 		ASSERT(0);
1801 	}
1802 
1803 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1804 	spin_lock(&pag->pag_ici_lock);
1805 	spin_lock(&ip->i_flags_lock);
1806 
1807 	trace_xfs_inode_set_reclaimable(ip);
1808 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1809 	ip->i_flags |= XFS_IRECLAIMABLE;
1810 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1811 			XFS_ICI_RECLAIM_TAG);
1812 
1813 	spin_unlock(&ip->i_flags_lock);
1814 	spin_unlock(&pag->pag_ici_lock);
1815 	xfs_perag_put(pag);
1816 }
1817 
1818 /*
1819  * Free all speculative preallocations and possibly even the inode itself.
1820  * This is the last chance to make changes to an otherwise unreferenced file
1821  * before incore reclamation happens.
1822  */
1823 static void
1824 xfs_inodegc_inactivate(
1825 	struct xfs_inode	*ip)
1826 {
1827 	trace_xfs_inode_inactivating(ip);
1828 	xfs_inactive(ip);
1829 	xfs_inodegc_set_reclaimable(ip);
1830 }
1831 
1832 void
1833 xfs_inodegc_worker(
1834 	struct work_struct	*work)
1835 {
1836 	struct xfs_inodegc	*gc = container_of(work, struct xfs_inodegc,
1837 							work);
1838 	struct llist_node	*node = llist_del_all(&gc->list);
1839 	struct xfs_inode	*ip, *n;
1840 
1841 	WRITE_ONCE(gc->items, 0);
1842 
1843 	if (!node)
1844 		return;
1845 
1846 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1847 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1848 
1849 	WRITE_ONCE(gc->shrinker_hits, 0);
1850 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1851 		xfs_iflags_set(ip, XFS_INACTIVATING);
1852 		xfs_inodegc_inactivate(ip);
1853 	}
1854 }
1855 
1856 /*
1857  * Force all currently queued inode inactivation work to run immediately and
1858  * wait for the work to finish.
1859  */
1860 void
1861 xfs_inodegc_flush(
1862 	struct xfs_mount	*mp)
1863 {
1864 	if (!xfs_is_inodegc_enabled(mp))
1865 		return;
1866 
1867 	trace_xfs_inodegc_flush(mp, __return_address);
1868 
1869 	xfs_inodegc_queue_all(mp);
1870 	flush_workqueue(mp->m_inodegc_wq);
1871 }
1872 
1873 /*
1874  * Flush all the pending work and then disable the inode inactivation background
1875  * workers and wait for them to stop.
1876  */
1877 void
1878 xfs_inodegc_stop(
1879 	struct xfs_mount	*mp)
1880 {
1881 	if (!xfs_clear_inodegc_enabled(mp))
1882 		return;
1883 
1884 	xfs_inodegc_queue_all(mp);
1885 	drain_workqueue(mp->m_inodegc_wq);
1886 
1887 	trace_xfs_inodegc_stop(mp, __return_address);
1888 }
1889 
1890 /*
1891  * Enable the inode inactivation background workers and schedule deferred inode
1892  * inactivation work if there is any.
1893  */
1894 void
1895 xfs_inodegc_start(
1896 	struct xfs_mount	*mp)
1897 {
1898 	if (xfs_set_inodegc_enabled(mp))
1899 		return;
1900 
1901 	trace_xfs_inodegc_start(mp, __return_address);
1902 	xfs_inodegc_queue_all(mp);
1903 }
1904 
1905 #ifdef CONFIG_XFS_RT
1906 static inline bool
1907 xfs_inodegc_want_queue_rt_file(
1908 	struct xfs_inode	*ip)
1909 {
1910 	struct xfs_mount	*mp = ip->i_mount;
1911 	uint64_t		freertx;
1912 
1913 	if (!XFS_IS_REALTIME_INODE(ip))
1914 		return false;
1915 
1916 	freertx = READ_ONCE(mp->m_sb.sb_frextents);
1917 	return freertx < mp->m_low_rtexts[XFS_LOWSP_5_PCNT];
1918 }
1919 #else
1920 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1921 #endif /* CONFIG_XFS_RT */
1922 
1923 /*
1924  * Schedule the inactivation worker when:
1925  *
1926  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1927  *  - There is less than 5% free space left.
1928  *  - Any of the quotas for this inode are near an enforcement limit.
1929  */
1930 static inline bool
1931 xfs_inodegc_want_queue_work(
1932 	struct xfs_inode	*ip,
1933 	unsigned int		items)
1934 {
1935 	struct xfs_mount	*mp = ip->i_mount;
1936 
1937 	if (items > mp->m_ino_geo.inodes_per_cluster)
1938 		return true;
1939 
1940 	if (__percpu_counter_compare(&mp->m_fdblocks,
1941 				mp->m_low_space[XFS_LOWSP_5_PCNT],
1942 				XFS_FDBLOCKS_BATCH) < 0)
1943 		return true;
1944 
1945 	if (xfs_inodegc_want_queue_rt_file(ip))
1946 		return true;
1947 
1948 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1949 		return true;
1950 
1951 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1952 		return true;
1953 
1954 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
1955 		return true;
1956 
1957 	return false;
1958 }
1959 
1960 /*
1961  * Upper bound on the number of inodes in each AG that can be queued for
1962  * inactivation at any given time, to avoid monopolizing the workqueue.
1963  */
1964 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
1965 
1966 /*
1967  * Make the frontend wait for inactivations when:
1968  *
1969  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
1970  *  - The queue depth exceeds the maximum allowable percpu backlog.
1971  *
1972  * Note: If the current thread is running a transaction, we don't ever want to
1973  * wait for other transactions because that could introduce a deadlock.
1974  */
1975 static inline bool
1976 xfs_inodegc_want_flush_work(
1977 	struct xfs_inode	*ip,
1978 	unsigned int		items,
1979 	unsigned int		shrinker_hits)
1980 {
1981 	if (current->journal_info)
1982 		return false;
1983 
1984 	if (shrinker_hits > 0)
1985 		return true;
1986 
1987 	if (items > XFS_INODEGC_MAX_BACKLOG)
1988 		return true;
1989 
1990 	return false;
1991 }
1992 
1993 /*
1994  * Queue a background inactivation worker if there are inodes that need to be
1995  * inactivated and higher level xfs code hasn't disabled the background
1996  * workers.
1997  */
1998 static void
1999 xfs_inodegc_queue(
2000 	struct xfs_inode	*ip)
2001 {
2002 	struct xfs_mount	*mp = ip->i_mount;
2003 	struct xfs_inodegc	*gc;
2004 	int			items;
2005 	unsigned int		shrinker_hits;
2006 
2007 	trace_xfs_inode_set_need_inactive(ip);
2008 	spin_lock(&ip->i_flags_lock);
2009 	ip->i_flags |= XFS_NEED_INACTIVE;
2010 	spin_unlock(&ip->i_flags_lock);
2011 
2012 	gc = get_cpu_ptr(mp->m_inodegc);
2013 	llist_add(&ip->i_gclist, &gc->list);
2014 	items = READ_ONCE(gc->items);
2015 	WRITE_ONCE(gc->items, items + 1);
2016 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2017 	put_cpu_ptr(gc);
2018 
2019 	if (!xfs_is_inodegc_enabled(mp))
2020 		return;
2021 
2022 	if (xfs_inodegc_want_queue_work(ip, items)) {
2023 		trace_xfs_inodegc_queue(mp, __return_address);
2024 		queue_work(mp->m_inodegc_wq, &gc->work);
2025 	}
2026 
2027 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2028 		trace_xfs_inodegc_throttle(mp, __return_address);
2029 		flush_work(&gc->work);
2030 	}
2031 }
2032 
2033 /*
2034  * Fold the dead CPU inodegc queue into the current CPUs queue.
2035  */
2036 void
2037 xfs_inodegc_cpu_dead(
2038 	struct xfs_mount	*mp,
2039 	unsigned int		dead_cpu)
2040 {
2041 	struct xfs_inodegc	*dead_gc, *gc;
2042 	struct llist_node	*first, *last;
2043 	unsigned int		count = 0;
2044 
2045 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2046 	cancel_work_sync(&dead_gc->work);
2047 
2048 	if (llist_empty(&dead_gc->list))
2049 		return;
2050 
2051 	first = dead_gc->list.first;
2052 	last = first;
2053 	while (last->next) {
2054 		last = last->next;
2055 		count++;
2056 	}
2057 	dead_gc->list.first = NULL;
2058 	dead_gc->items = 0;
2059 
2060 	/* Add pending work to current CPU */
2061 	gc = get_cpu_ptr(mp->m_inodegc);
2062 	llist_add_batch(first, last, &gc->list);
2063 	count += READ_ONCE(gc->items);
2064 	WRITE_ONCE(gc->items, count);
2065 	put_cpu_ptr(gc);
2066 
2067 	if (xfs_is_inodegc_enabled(mp)) {
2068 		trace_xfs_inodegc_queue(mp, __return_address);
2069 		queue_work(mp->m_inodegc_wq, &gc->work);
2070 	}
2071 }
2072 
2073 /*
2074  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2075  * lookups on the radix tree, this inode flag can go away.
2076  *
2077  * We always use background reclaim here because even if the inode is clean, it
2078  * still may be under IO and hence we have wait for IO completion to occur
2079  * before we can reclaim the inode. The background reclaim path handles this
2080  * more efficiently than we can here, so simply let background reclaim tear down
2081  * all inodes.
2082  */
2083 void
2084 xfs_inode_mark_reclaimable(
2085 	struct xfs_inode	*ip)
2086 {
2087 	struct xfs_mount	*mp = ip->i_mount;
2088 	bool			need_inactive;
2089 
2090 	XFS_STATS_INC(mp, vn_reclaim);
2091 
2092 	/*
2093 	 * We should never get here with any of the reclaim flags already set.
2094 	 */
2095 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2096 
2097 	need_inactive = xfs_inode_needs_inactive(ip);
2098 	if (need_inactive) {
2099 		xfs_inodegc_queue(ip);
2100 		return;
2101 	}
2102 
2103 	/* Going straight to reclaim, so drop the dquots. */
2104 	xfs_qm_dqdetach(ip);
2105 	xfs_inodegc_set_reclaimable(ip);
2106 }
2107 
2108 /*
2109  * Register a phony shrinker so that we can run background inodegc sooner when
2110  * there's memory pressure.  Inactivation does not itself free any memory but
2111  * it does make inodes reclaimable, which eventually frees memory.
2112  *
2113  * The count function, seek value, and batch value are crafted to trigger the
2114  * scan function during the second round of scanning.  Hopefully this means
2115  * that we reclaimed enough memory that initiating metadata transactions won't
2116  * make things worse.
2117  */
2118 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2119 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2120 
2121 static unsigned long
2122 xfs_inodegc_shrinker_count(
2123 	struct shrinker		*shrink,
2124 	struct shrink_control	*sc)
2125 {
2126 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2127 						   m_inodegc_shrinker);
2128 	struct xfs_inodegc	*gc;
2129 	int			cpu;
2130 
2131 	if (!xfs_is_inodegc_enabled(mp))
2132 		return 0;
2133 
2134 	for_each_online_cpu(cpu) {
2135 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2136 		if (!llist_empty(&gc->list))
2137 			return XFS_INODEGC_SHRINKER_COUNT;
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 static unsigned long
2144 xfs_inodegc_shrinker_scan(
2145 	struct shrinker		*shrink,
2146 	struct shrink_control	*sc)
2147 {
2148 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2149 						   m_inodegc_shrinker);
2150 	struct xfs_inodegc	*gc;
2151 	int			cpu;
2152 	bool			no_items = true;
2153 
2154 	if (!xfs_is_inodegc_enabled(mp))
2155 		return SHRINK_STOP;
2156 
2157 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2158 
2159 	for_each_online_cpu(cpu) {
2160 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2161 		if (!llist_empty(&gc->list)) {
2162 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2163 
2164 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2165 			queue_work_on(cpu, mp->m_inodegc_wq, &gc->work);
2166 			no_items = false;
2167 		}
2168 	}
2169 
2170 	/*
2171 	 * If there are no inodes to inactivate, we don't want the shrinker
2172 	 * to think there's deferred work to call us back about.
2173 	 */
2174 	if (no_items)
2175 		return LONG_MAX;
2176 
2177 	return SHRINK_STOP;
2178 }
2179 
2180 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2181 int
2182 xfs_inodegc_register_shrinker(
2183 	struct xfs_mount	*mp)
2184 {
2185 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2186 
2187 	shrink->count_objects = xfs_inodegc_shrinker_count;
2188 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2189 	shrink->seeks = 0;
2190 	shrink->flags = SHRINKER_NONSLAB;
2191 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2192 
2193 	return register_shrinker(shrink);
2194 }
2195