1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_inum.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_error.h" 29 #include "xfs_trans.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_quota.h" 33 #include "xfs_trace.h" 34 #include "xfs_icache.h" 35 #include "xfs_bmap_util.h" 36 37 #include <linux/kthread.h> 38 #include <linux/freezer.h> 39 40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 41 struct xfs_perag *pag, struct xfs_inode *ip); 42 43 /* 44 * Allocate and initialise an xfs_inode. 45 */ 46 struct xfs_inode * 47 xfs_inode_alloc( 48 struct xfs_mount *mp, 49 xfs_ino_t ino) 50 { 51 struct xfs_inode *ip; 52 53 /* 54 * if this didn't occur in transactions, we could use 55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 56 * code up to do this anyway. 57 */ 58 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 59 if (!ip) 60 return NULL; 61 if (inode_init_always(mp->m_super, VFS_I(ip))) { 62 kmem_zone_free(xfs_inode_zone, ip); 63 return NULL; 64 } 65 66 ASSERT(atomic_read(&ip->i_pincount) == 0); 67 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 68 ASSERT(!xfs_isiflocked(ip)); 69 ASSERT(ip->i_ino == 0); 70 71 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 72 73 /* initialise the xfs inode */ 74 ip->i_ino = ino; 75 ip->i_mount = mp; 76 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 77 ip->i_afp = NULL; 78 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 79 ip->i_flags = 0; 80 ip->i_delayed_blks = 0; 81 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 82 83 return ip; 84 } 85 86 STATIC void 87 xfs_inode_free_callback( 88 struct rcu_head *head) 89 { 90 struct inode *inode = container_of(head, struct inode, i_rcu); 91 struct xfs_inode *ip = XFS_I(inode); 92 93 kmem_zone_free(xfs_inode_zone, ip); 94 } 95 96 void 97 xfs_inode_free( 98 struct xfs_inode *ip) 99 { 100 switch (ip->i_d.di_mode & S_IFMT) { 101 case S_IFREG: 102 case S_IFDIR: 103 case S_IFLNK: 104 xfs_idestroy_fork(ip, XFS_DATA_FORK); 105 break; 106 } 107 108 if (ip->i_afp) 109 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 110 111 if (ip->i_itemp) { 112 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 113 xfs_inode_item_destroy(ip); 114 ip->i_itemp = NULL; 115 } 116 117 /* 118 * Because we use RCU freeing we need to ensure the inode always 119 * appears to be reclaimed with an invalid inode number when in the 120 * free state. The ip->i_flags_lock provides the barrier against lookup 121 * races. 122 */ 123 spin_lock(&ip->i_flags_lock); 124 ip->i_flags = XFS_IRECLAIM; 125 ip->i_ino = 0; 126 spin_unlock(&ip->i_flags_lock); 127 128 /* asserts to verify all state is correct here */ 129 ASSERT(atomic_read(&ip->i_pincount) == 0); 130 ASSERT(!xfs_isiflocked(ip)); 131 132 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 133 } 134 135 /* 136 * Check the validity of the inode we just found it the cache 137 */ 138 static int 139 xfs_iget_cache_hit( 140 struct xfs_perag *pag, 141 struct xfs_inode *ip, 142 xfs_ino_t ino, 143 int flags, 144 int lock_flags) __releases(RCU) 145 { 146 struct inode *inode = VFS_I(ip); 147 struct xfs_mount *mp = ip->i_mount; 148 int error; 149 150 /* 151 * check for re-use of an inode within an RCU grace period due to the 152 * radix tree nodes not being updated yet. We monitor for this by 153 * setting the inode number to zero before freeing the inode structure. 154 * If the inode has been reallocated and set up, then the inode number 155 * will not match, so check for that, too. 156 */ 157 spin_lock(&ip->i_flags_lock); 158 if (ip->i_ino != ino) { 159 trace_xfs_iget_skip(ip); 160 XFS_STATS_INC(xs_ig_frecycle); 161 error = EAGAIN; 162 goto out_error; 163 } 164 165 166 /* 167 * If we are racing with another cache hit that is currently 168 * instantiating this inode or currently recycling it out of 169 * reclaimabe state, wait for the initialisation to complete 170 * before continuing. 171 * 172 * XXX(hch): eventually we should do something equivalent to 173 * wait_on_inode to wait for these flags to be cleared 174 * instead of polling for it. 175 */ 176 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 177 trace_xfs_iget_skip(ip); 178 XFS_STATS_INC(xs_ig_frecycle); 179 error = EAGAIN; 180 goto out_error; 181 } 182 183 /* 184 * If lookup is racing with unlink return an error immediately. 185 */ 186 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 187 error = ENOENT; 188 goto out_error; 189 } 190 191 /* 192 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 193 * Need to carefully get it back into useable state. 194 */ 195 if (ip->i_flags & XFS_IRECLAIMABLE) { 196 trace_xfs_iget_reclaim(ip); 197 198 /* 199 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 200 * from stomping over us while we recycle the inode. We can't 201 * clear the radix tree reclaimable tag yet as it requires 202 * pag_ici_lock to be held exclusive. 203 */ 204 ip->i_flags |= XFS_IRECLAIM; 205 206 spin_unlock(&ip->i_flags_lock); 207 rcu_read_unlock(); 208 209 error = -inode_init_always(mp->m_super, inode); 210 if (error) { 211 /* 212 * Re-initializing the inode failed, and we are in deep 213 * trouble. Try to re-add it to the reclaim list. 214 */ 215 rcu_read_lock(); 216 spin_lock(&ip->i_flags_lock); 217 218 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 219 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 220 trace_xfs_iget_reclaim_fail(ip); 221 goto out_error; 222 } 223 224 spin_lock(&pag->pag_ici_lock); 225 spin_lock(&ip->i_flags_lock); 226 227 /* 228 * Clear the per-lifetime state in the inode as we are now 229 * effectively a new inode and need to return to the initial 230 * state before reuse occurs. 231 */ 232 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 233 ip->i_flags |= XFS_INEW; 234 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 235 inode->i_state = I_NEW; 236 237 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 238 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 239 240 spin_unlock(&ip->i_flags_lock); 241 spin_unlock(&pag->pag_ici_lock); 242 } else { 243 /* If the VFS inode is being torn down, pause and try again. */ 244 if (!igrab(inode)) { 245 trace_xfs_iget_skip(ip); 246 error = EAGAIN; 247 goto out_error; 248 } 249 250 /* We've got a live one. */ 251 spin_unlock(&ip->i_flags_lock); 252 rcu_read_unlock(); 253 trace_xfs_iget_hit(ip); 254 } 255 256 if (lock_flags != 0) 257 xfs_ilock(ip, lock_flags); 258 259 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 260 XFS_STATS_INC(xs_ig_found); 261 262 return 0; 263 264 out_error: 265 spin_unlock(&ip->i_flags_lock); 266 rcu_read_unlock(); 267 return error; 268 } 269 270 271 static int 272 xfs_iget_cache_miss( 273 struct xfs_mount *mp, 274 struct xfs_perag *pag, 275 xfs_trans_t *tp, 276 xfs_ino_t ino, 277 struct xfs_inode **ipp, 278 int flags, 279 int lock_flags) 280 { 281 struct xfs_inode *ip; 282 int error; 283 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 284 int iflags; 285 286 ip = xfs_inode_alloc(mp, ino); 287 if (!ip) 288 return ENOMEM; 289 290 error = xfs_iread(mp, tp, ip, flags); 291 if (error) 292 goto out_destroy; 293 294 trace_xfs_iget_miss(ip); 295 296 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 297 error = ENOENT; 298 goto out_destroy; 299 } 300 301 /* 302 * Preload the radix tree so we can insert safely under the 303 * write spinlock. Note that we cannot sleep inside the preload 304 * region. Since we can be called from transaction context, don't 305 * recurse into the file system. 306 */ 307 if (radix_tree_preload(GFP_NOFS)) { 308 error = EAGAIN; 309 goto out_destroy; 310 } 311 312 /* 313 * Because the inode hasn't been added to the radix-tree yet it can't 314 * be found by another thread, so we can do the non-sleeping lock here. 315 */ 316 if (lock_flags) { 317 if (!xfs_ilock_nowait(ip, lock_flags)) 318 BUG(); 319 } 320 321 /* 322 * These values must be set before inserting the inode into the radix 323 * tree as the moment it is inserted a concurrent lookup (allowed by the 324 * RCU locking mechanism) can find it and that lookup must see that this 325 * is an inode currently under construction (i.e. that XFS_INEW is set). 326 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 327 * memory barrier that ensures this detection works correctly at lookup 328 * time. 329 */ 330 iflags = XFS_INEW; 331 if (flags & XFS_IGET_DONTCACHE) 332 iflags |= XFS_IDONTCACHE; 333 ip->i_udquot = NULL; 334 ip->i_gdquot = NULL; 335 ip->i_pdquot = NULL; 336 xfs_iflags_set(ip, iflags); 337 338 /* insert the new inode */ 339 spin_lock(&pag->pag_ici_lock); 340 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 341 if (unlikely(error)) { 342 WARN_ON(error != -EEXIST); 343 XFS_STATS_INC(xs_ig_dup); 344 error = EAGAIN; 345 goto out_preload_end; 346 } 347 spin_unlock(&pag->pag_ici_lock); 348 radix_tree_preload_end(); 349 350 *ipp = ip; 351 return 0; 352 353 out_preload_end: 354 spin_unlock(&pag->pag_ici_lock); 355 radix_tree_preload_end(); 356 if (lock_flags) 357 xfs_iunlock(ip, lock_flags); 358 out_destroy: 359 __destroy_inode(VFS_I(ip)); 360 xfs_inode_free(ip); 361 return error; 362 } 363 364 /* 365 * Look up an inode by number in the given file system. 366 * The inode is looked up in the cache held in each AG. 367 * If the inode is found in the cache, initialise the vfs inode 368 * if necessary. 369 * 370 * If it is not in core, read it in from the file system's device, 371 * add it to the cache and initialise the vfs inode. 372 * 373 * The inode is locked according to the value of the lock_flags parameter. 374 * This flag parameter indicates how and if the inode's IO lock and inode lock 375 * should be taken. 376 * 377 * mp -- the mount point structure for the current file system. It points 378 * to the inode hash table. 379 * tp -- a pointer to the current transaction if there is one. This is 380 * simply passed through to the xfs_iread() call. 381 * ino -- the number of the inode desired. This is the unique identifier 382 * within the file system for the inode being requested. 383 * lock_flags -- flags indicating how to lock the inode. See the comment 384 * for xfs_ilock() for a list of valid values. 385 */ 386 int 387 xfs_iget( 388 xfs_mount_t *mp, 389 xfs_trans_t *tp, 390 xfs_ino_t ino, 391 uint flags, 392 uint lock_flags, 393 xfs_inode_t **ipp) 394 { 395 xfs_inode_t *ip; 396 int error; 397 xfs_perag_t *pag; 398 xfs_agino_t agino; 399 400 /* 401 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 402 * doesn't get freed while it's being referenced during a 403 * radix tree traversal here. It assumes this function 404 * aqcuires only the ILOCK (and therefore it has no need to 405 * involve the IOLOCK in this synchronization). 406 */ 407 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 408 409 /* reject inode numbers outside existing AGs */ 410 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 411 return EINVAL; 412 413 /* get the perag structure and ensure that it's inode capable */ 414 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 415 agino = XFS_INO_TO_AGINO(mp, ino); 416 417 again: 418 error = 0; 419 rcu_read_lock(); 420 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 421 422 if (ip) { 423 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 424 if (error) 425 goto out_error_or_again; 426 } else { 427 rcu_read_unlock(); 428 XFS_STATS_INC(xs_ig_missed); 429 430 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 431 flags, lock_flags); 432 if (error) 433 goto out_error_or_again; 434 } 435 xfs_perag_put(pag); 436 437 *ipp = ip; 438 439 /* 440 * If we have a real type for an on-disk inode, we can set ops(&unlock) 441 * now. If it's a new inode being created, xfs_ialloc will handle it. 442 */ 443 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 444 xfs_setup_inode(ip); 445 return 0; 446 447 out_error_or_again: 448 if (error == EAGAIN) { 449 delay(1); 450 goto again; 451 } 452 xfs_perag_put(pag); 453 return error; 454 } 455 456 /* 457 * The inode lookup is done in batches to keep the amount of lock traffic and 458 * radix tree lookups to a minimum. The batch size is a trade off between 459 * lookup reduction and stack usage. This is in the reclaim path, so we can't 460 * be too greedy. 461 */ 462 #define XFS_LOOKUP_BATCH 32 463 464 STATIC int 465 xfs_inode_ag_walk_grab( 466 struct xfs_inode *ip) 467 { 468 struct inode *inode = VFS_I(ip); 469 470 ASSERT(rcu_read_lock_held()); 471 472 /* 473 * check for stale RCU freed inode 474 * 475 * If the inode has been reallocated, it doesn't matter if it's not in 476 * the AG we are walking - we are walking for writeback, so if it 477 * passes all the "valid inode" checks and is dirty, then we'll write 478 * it back anyway. If it has been reallocated and still being 479 * initialised, the XFS_INEW check below will catch it. 480 */ 481 spin_lock(&ip->i_flags_lock); 482 if (!ip->i_ino) 483 goto out_unlock_noent; 484 485 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 486 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 487 goto out_unlock_noent; 488 spin_unlock(&ip->i_flags_lock); 489 490 /* nothing to sync during shutdown */ 491 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 492 return EFSCORRUPTED; 493 494 /* If we can't grab the inode, it must on it's way to reclaim. */ 495 if (!igrab(inode)) 496 return ENOENT; 497 498 /* inode is valid */ 499 return 0; 500 501 out_unlock_noent: 502 spin_unlock(&ip->i_flags_lock); 503 return ENOENT; 504 } 505 506 STATIC int 507 xfs_inode_ag_walk( 508 struct xfs_mount *mp, 509 struct xfs_perag *pag, 510 int (*execute)(struct xfs_inode *ip, int flags, 511 void *args), 512 int flags, 513 void *args, 514 int tag) 515 { 516 uint32_t first_index; 517 int last_error = 0; 518 int skipped; 519 int done; 520 int nr_found; 521 522 restart: 523 done = 0; 524 skipped = 0; 525 first_index = 0; 526 nr_found = 0; 527 do { 528 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 529 int error = 0; 530 int i; 531 532 rcu_read_lock(); 533 534 if (tag == -1) 535 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 536 (void **)batch, first_index, 537 XFS_LOOKUP_BATCH); 538 else 539 nr_found = radix_tree_gang_lookup_tag( 540 &pag->pag_ici_root, 541 (void **) batch, first_index, 542 XFS_LOOKUP_BATCH, tag); 543 544 if (!nr_found) { 545 rcu_read_unlock(); 546 break; 547 } 548 549 /* 550 * Grab the inodes before we drop the lock. if we found 551 * nothing, nr == 0 and the loop will be skipped. 552 */ 553 for (i = 0; i < nr_found; i++) { 554 struct xfs_inode *ip = batch[i]; 555 556 if (done || xfs_inode_ag_walk_grab(ip)) 557 batch[i] = NULL; 558 559 /* 560 * Update the index for the next lookup. Catch 561 * overflows into the next AG range which can occur if 562 * we have inodes in the last block of the AG and we 563 * are currently pointing to the last inode. 564 * 565 * Because we may see inodes that are from the wrong AG 566 * due to RCU freeing and reallocation, only update the 567 * index if it lies in this AG. It was a race that lead 568 * us to see this inode, so another lookup from the 569 * same index will not find it again. 570 */ 571 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 572 continue; 573 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 574 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 575 done = 1; 576 } 577 578 /* unlock now we've grabbed the inodes. */ 579 rcu_read_unlock(); 580 581 for (i = 0; i < nr_found; i++) { 582 if (!batch[i]) 583 continue; 584 error = execute(batch[i], flags, args); 585 IRELE(batch[i]); 586 if (error == EAGAIN) { 587 skipped++; 588 continue; 589 } 590 if (error && last_error != EFSCORRUPTED) 591 last_error = error; 592 } 593 594 /* bail out if the filesystem is corrupted. */ 595 if (error == EFSCORRUPTED) 596 break; 597 598 cond_resched(); 599 600 } while (nr_found && !done); 601 602 if (skipped) { 603 delay(1); 604 goto restart; 605 } 606 return last_error; 607 } 608 609 /* 610 * Background scanning to trim post-EOF preallocated space. This is queued 611 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 612 */ 613 STATIC void 614 xfs_queue_eofblocks( 615 struct xfs_mount *mp) 616 { 617 rcu_read_lock(); 618 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 619 queue_delayed_work(mp->m_eofblocks_workqueue, 620 &mp->m_eofblocks_work, 621 msecs_to_jiffies(xfs_eofb_secs * 1000)); 622 rcu_read_unlock(); 623 } 624 625 void 626 xfs_eofblocks_worker( 627 struct work_struct *work) 628 { 629 struct xfs_mount *mp = container_of(to_delayed_work(work), 630 struct xfs_mount, m_eofblocks_work); 631 xfs_icache_free_eofblocks(mp, NULL); 632 xfs_queue_eofblocks(mp); 633 } 634 635 int 636 xfs_inode_ag_iterator( 637 struct xfs_mount *mp, 638 int (*execute)(struct xfs_inode *ip, int flags, 639 void *args), 640 int flags, 641 void *args) 642 { 643 struct xfs_perag *pag; 644 int error = 0; 645 int last_error = 0; 646 xfs_agnumber_t ag; 647 648 ag = 0; 649 while ((pag = xfs_perag_get(mp, ag))) { 650 ag = pag->pag_agno + 1; 651 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 652 xfs_perag_put(pag); 653 if (error) { 654 last_error = error; 655 if (error == EFSCORRUPTED) 656 break; 657 } 658 } 659 return XFS_ERROR(last_error); 660 } 661 662 int 663 xfs_inode_ag_iterator_tag( 664 struct xfs_mount *mp, 665 int (*execute)(struct xfs_inode *ip, int flags, 666 void *args), 667 int flags, 668 void *args, 669 int tag) 670 { 671 struct xfs_perag *pag; 672 int error = 0; 673 int last_error = 0; 674 xfs_agnumber_t ag; 675 676 ag = 0; 677 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 678 ag = pag->pag_agno + 1; 679 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 680 xfs_perag_put(pag); 681 if (error) { 682 last_error = error; 683 if (error == EFSCORRUPTED) 684 break; 685 } 686 } 687 return XFS_ERROR(last_error); 688 } 689 690 /* 691 * Queue a new inode reclaim pass if there are reclaimable inodes and there 692 * isn't a reclaim pass already in progress. By default it runs every 5s based 693 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 694 * tunable, but that can be done if this method proves to be ineffective or too 695 * aggressive. 696 */ 697 static void 698 xfs_reclaim_work_queue( 699 struct xfs_mount *mp) 700 { 701 702 rcu_read_lock(); 703 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 704 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 705 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 706 } 707 rcu_read_unlock(); 708 } 709 710 /* 711 * This is a fast pass over the inode cache to try to get reclaim moving on as 712 * many inodes as possible in a short period of time. It kicks itself every few 713 * seconds, as well as being kicked by the inode cache shrinker when memory 714 * goes low. It scans as quickly as possible avoiding locked inodes or those 715 * already being flushed, and once done schedules a future pass. 716 */ 717 void 718 xfs_reclaim_worker( 719 struct work_struct *work) 720 { 721 struct xfs_mount *mp = container_of(to_delayed_work(work), 722 struct xfs_mount, m_reclaim_work); 723 724 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 725 xfs_reclaim_work_queue(mp); 726 } 727 728 static void 729 __xfs_inode_set_reclaim_tag( 730 struct xfs_perag *pag, 731 struct xfs_inode *ip) 732 { 733 radix_tree_tag_set(&pag->pag_ici_root, 734 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 735 XFS_ICI_RECLAIM_TAG); 736 737 if (!pag->pag_ici_reclaimable) { 738 /* propagate the reclaim tag up into the perag radix tree */ 739 spin_lock(&ip->i_mount->m_perag_lock); 740 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 741 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 742 XFS_ICI_RECLAIM_TAG); 743 spin_unlock(&ip->i_mount->m_perag_lock); 744 745 /* schedule periodic background inode reclaim */ 746 xfs_reclaim_work_queue(ip->i_mount); 747 748 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 749 -1, _RET_IP_); 750 } 751 pag->pag_ici_reclaimable++; 752 } 753 754 /* 755 * We set the inode flag atomically with the radix tree tag. 756 * Once we get tag lookups on the radix tree, this inode flag 757 * can go away. 758 */ 759 void 760 xfs_inode_set_reclaim_tag( 761 xfs_inode_t *ip) 762 { 763 struct xfs_mount *mp = ip->i_mount; 764 struct xfs_perag *pag; 765 766 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 767 spin_lock(&pag->pag_ici_lock); 768 spin_lock(&ip->i_flags_lock); 769 __xfs_inode_set_reclaim_tag(pag, ip); 770 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 771 spin_unlock(&ip->i_flags_lock); 772 spin_unlock(&pag->pag_ici_lock); 773 xfs_perag_put(pag); 774 } 775 776 STATIC void 777 __xfs_inode_clear_reclaim( 778 xfs_perag_t *pag, 779 xfs_inode_t *ip) 780 { 781 pag->pag_ici_reclaimable--; 782 if (!pag->pag_ici_reclaimable) { 783 /* clear the reclaim tag from the perag radix tree */ 784 spin_lock(&ip->i_mount->m_perag_lock); 785 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 786 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 787 XFS_ICI_RECLAIM_TAG); 788 spin_unlock(&ip->i_mount->m_perag_lock); 789 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 790 -1, _RET_IP_); 791 } 792 } 793 794 STATIC void 795 __xfs_inode_clear_reclaim_tag( 796 xfs_mount_t *mp, 797 xfs_perag_t *pag, 798 xfs_inode_t *ip) 799 { 800 radix_tree_tag_clear(&pag->pag_ici_root, 801 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 802 __xfs_inode_clear_reclaim(pag, ip); 803 } 804 805 /* 806 * Grab the inode for reclaim exclusively. 807 * Return 0 if we grabbed it, non-zero otherwise. 808 */ 809 STATIC int 810 xfs_reclaim_inode_grab( 811 struct xfs_inode *ip, 812 int flags) 813 { 814 ASSERT(rcu_read_lock_held()); 815 816 /* quick check for stale RCU freed inode */ 817 if (!ip->i_ino) 818 return 1; 819 820 /* 821 * If we are asked for non-blocking operation, do unlocked checks to 822 * see if the inode already is being flushed or in reclaim to avoid 823 * lock traffic. 824 */ 825 if ((flags & SYNC_TRYLOCK) && 826 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 827 return 1; 828 829 /* 830 * The radix tree lock here protects a thread in xfs_iget from racing 831 * with us starting reclaim on the inode. Once we have the 832 * XFS_IRECLAIM flag set it will not touch us. 833 * 834 * Due to RCU lookup, we may find inodes that have been freed and only 835 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 836 * aren't candidates for reclaim at all, so we must check the 837 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 838 */ 839 spin_lock(&ip->i_flags_lock); 840 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 841 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 842 /* not a reclaim candidate. */ 843 spin_unlock(&ip->i_flags_lock); 844 return 1; 845 } 846 __xfs_iflags_set(ip, XFS_IRECLAIM); 847 spin_unlock(&ip->i_flags_lock); 848 return 0; 849 } 850 851 /* 852 * Inodes in different states need to be treated differently. The following 853 * table lists the inode states and the reclaim actions necessary: 854 * 855 * inode state iflush ret required action 856 * --------------- ---------- --------------- 857 * bad - reclaim 858 * shutdown EIO unpin and reclaim 859 * clean, unpinned 0 reclaim 860 * stale, unpinned 0 reclaim 861 * clean, pinned(*) 0 requeue 862 * stale, pinned EAGAIN requeue 863 * dirty, async - requeue 864 * dirty, sync 0 reclaim 865 * 866 * (*) dgc: I don't think the clean, pinned state is possible but it gets 867 * handled anyway given the order of checks implemented. 868 * 869 * Also, because we get the flush lock first, we know that any inode that has 870 * been flushed delwri has had the flush completed by the time we check that 871 * the inode is clean. 872 * 873 * Note that because the inode is flushed delayed write by AIL pushing, the 874 * flush lock may already be held here and waiting on it can result in very 875 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 876 * the caller should push the AIL first before trying to reclaim inodes to 877 * minimise the amount of time spent waiting. For background relaim, we only 878 * bother to reclaim clean inodes anyway. 879 * 880 * Hence the order of actions after gaining the locks should be: 881 * bad => reclaim 882 * shutdown => unpin and reclaim 883 * pinned, async => requeue 884 * pinned, sync => unpin 885 * stale => reclaim 886 * clean => reclaim 887 * dirty, async => requeue 888 * dirty, sync => flush, wait and reclaim 889 */ 890 STATIC int 891 xfs_reclaim_inode( 892 struct xfs_inode *ip, 893 struct xfs_perag *pag, 894 int sync_mode) 895 { 896 struct xfs_buf *bp = NULL; 897 int error; 898 899 restart: 900 error = 0; 901 xfs_ilock(ip, XFS_ILOCK_EXCL); 902 if (!xfs_iflock_nowait(ip)) { 903 if (!(sync_mode & SYNC_WAIT)) 904 goto out; 905 xfs_iflock(ip); 906 } 907 908 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 909 xfs_iunpin_wait(ip); 910 xfs_iflush_abort(ip, false); 911 goto reclaim; 912 } 913 if (xfs_ipincount(ip)) { 914 if (!(sync_mode & SYNC_WAIT)) 915 goto out_ifunlock; 916 xfs_iunpin_wait(ip); 917 } 918 if (xfs_iflags_test(ip, XFS_ISTALE)) 919 goto reclaim; 920 if (xfs_inode_clean(ip)) 921 goto reclaim; 922 923 /* 924 * Never flush out dirty data during non-blocking reclaim, as it would 925 * just contend with AIL pushing trying to do the same job. 926 */ 927 if (!(sync_mode & SYNC_WAIT)) 928 goto out_ifunlock; 929 930 /* 931 * Now we have an inode that needs flushing. 932 * 933 * Note that xfs_iflush will never block on the inode buffer lock, as 934 * xfs_ifree_cluster() can lock the inode buffer before it locks the 935 * ip->i_lock, and we are doing the exact opposite here. As a result, 936 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 937 * result in an ABBA deadlock with xfs_ifree_cluster(). 938 * 939 * As xfs_ifree_cluser() must gather all inodes that are active in the 940 * cache to mark them stale, if we hit this case we don't actually want 941 * to do IO here - we want the inode marked stale so we can simply 942 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 943 * inode, back off and try again. Hopefully the next pass through will 944 * see the stale flag set on the inode. 945 */ 946 error = xfs_iflush(ip, &bp); 947 if (error == EAGAIN) { 948 xfs_iunlock(ip, XFS_ILOCK_EXCL); 949 /* backoff longer than in xfs_ifree_cluster */ 950 delay(2); 951 goto restart; 952 } 953 954 if (!error) { 955 error = xfs_bwrite(bp); 956 xfs_buf_relse(bp); 957 } 958 959 xfs_iflock(ip); 960 reclaim: 961 xfs_ifunlock(ip); 962 xfs_iunlock(ip, XFS_ILOCK_EXCL); 963 964 XFS_STATS_INC(xs_ig_reclaims); 965 /* 966 * Remove the inode from the per-AG radix tree. 967 * 968 * Because radix_tree_delete won't complain even if the item was never 969 * added to the tree assert that it's been there before to catch 970 * problems with the inode life time early on. 971 */ 972 spin_lock(&pag->pag_ici_lock); 973 if (!radix_tree_delete(&pag->pag_ici_root, 974 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 975 ASSERT(0); 976 __xfs_inode_clear_reclaim(pag, ip); 977 spin_unlock(&pag->pag_ici_lock); 978 979 /* 980 * Here we do an (almost) spurious inode lock in order to coordinate 981 * with inode cache radix tree lookups. This is because the lookup 982 * can reference the inodes in the cache without taking references. 983 * 984 * We make that OK here by ensuring that we wait until the inode is 985 * unlocked after the lookup before we go ahead and free it. 986 */ 987 xfs_ilock(ip, XFS_ILOCK_EXCL); 988 xfs_qm_dqdetach(ip); 989 xfs_iunlock(ip, XFS_ILOCK_EXCL); 990 991 xfs_inode_free(ip); 992 return error; 993 994 out_ifunlock: 995 xfs_ifunlock(ip); 996 out: 997 xfs_iflags_clear(ip, XFS_IRECLAIM); 998 xfs_iunlock(ip, XFS_ILOCK_EXCL); 999 /* 1000 * We could return EAGAIN here to make reclaim rescan the inode tree in 1001 * a short while. However, this just burns CPU time scanning the tree 1002 * waiting for IO to complete and the reclaim work never goes back to 1003 * the idle state. Instead, return 0 to let the next scheduled 1004 * background reclaim attempt to reclaim the inode again. 1005 */ 1006 return 0; 1007 } 1008 1009 /* 1010 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1011 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1012 * then a shut down during filesystem unmount reclaim walk leak all the 1013 * unreclaimed inodes. 1014 */ 1015 STATIC int 1016 xfs_reclaim_inodes_ag( 1017 struct xfs_mount *mp, 1018 int flags, 1019 int *nr_to_scan) 1020 { 1021 struct xfs_perag *pag; 1022 int error = 0; 1023 int last_error = 0; 1024 xfs_agnumber_t ag; 1025 int trylock = flags & SYNC_TRYLOCK; 1026 int skipped; 1027 1028 restart: 1029 ag = 0; 1030 skipped = 0; 1031 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1032 unsigned long first_index = 0; 1033 int done = 0; 1034 int nr_found = 0; 1035 1036 ag = pag->pag_agno + 1; 1037 1038 if (trylock) { 1039 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1040 skipped++; 1041 xfs_perag_put(pag); 1042 continue; 1043 } 1044 first_index = pag->pag_ici_reclaim_cursor; 1045 } else 1046 mutex_lock(&pag->pag_ici_reclaim_lock); 1047 1048 do { 1049 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1050 int i; 1051 1052 rcu_read_lock(); 1053 nr_found = radix_tree_gang_lookup_tag( 1054 &pag->pag_ici_root, 1055 (void **)batch, first_index, 1056 XFS_LOOKUP_BATCH, 1057 XFS_ICI_RECLAIM_TAG); 1058 if (!nr_found) { 1059 done = 1; 1060 rcu_read_unlock(); 1061 break; 1062 } 1063 1064 /* 1065 * Grab the inodes before we drop the lock. if we found 1066 * nothing, nr == 0 and the loop will be skipped. 1067 */ 1068 for (i = 0; i < nr_found; i++) { 1069 struct xfs_inode *ip = batch[i]; 1070 1071 if (done || xfs_reclaim_inode_grab(ip, flags)) 1072 batch[i] = NULL; 1073 1074 /* 1075 * Update the index for the next lookup. Catch 1076 * overflows into the next AG range which can 1077 * occur if we have inodes in the last block of 1078 * the AG and we are currently pointing to the 1079 * last inode. 1080 * 1081 * Because we may see inodes that are from the 1082 * wrong AG due to RCU freeing and 1083 * reallocation, only update the index if it 1084 * lies in this AG. It was a race that lead us 1085 * to see this inode, so another lookup from 1086 * the same index will not find it again. 1087 */ 1088 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1089 pag->pag_agno) 1090 continue; 1091 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1092 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1093 done = 1; 1094 } 1095 1096 /* unlock now we've grabbed the inodes. */ 1097 rcu_read_unlock(); 1098 1099 for (i = 0; i < nr_found; i++) { 1100 if (!batch[i]) 1101 continue; 1102 error = xfs_reclaim_inode(batch[i], pag, flags); 1103 if (error && last_error != EFSCORRUPTED) 1104 last_error = error; 1105 } 1106 1107 *nr_to_scan -= XFS_LOOKUP_BATCH; 1108 1109 cond_resched(); 1110 1111 } while (nr_found && !done && *nr_to_scan > 0); 1112 1113 if (trylock && !done) 1114 pag->pag_ici_reclaim_cursor = first_index; 1115 else 1116 pag->pag_ici_reclaim_cursor = 0; 1117 mutex_unlock(&pag->pag_ici_reclaim_lock); 1118 xfs_perag_put(pag); 1119 } 1120 1121 /* 1122 * if we skipped any AG, and we still have scan count remaining, do 1123 * another pass this time using blocking reclaim semantics (i.e 1124 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1125 * ensure that when we get more reclaimers than AGs we block rather 1126 * than spin trying to execute reclaim. 1127 */ 1128 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1129 trylock = 0; 1130 goto restart; 1131 } 1132 return XFS_ERROR(last_error); 1133 } 1134 1135 int 1136 xfs_reclaim_inodes( 1137 xfs_mount_t *mp, 1138 int mode) 1139 { 1140 int nr_to_scan = INT_MAX; 1141 1142 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1143 } 1144 1145 /* 1146 * Scan a certain number of inodes for reclaim. 1147 * 1148 * When called we make sure that there is a background (fast) inode reclaim in 1149 * progress, while we will throttle the speed of reclaim via doing synchronous 1150 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1151 * them to be cleaned, which we hope will not be very long due to the 1152 * background walker having already kicked the IO off on those dirty inodes. 1153 */ 1154 long 1155 xfs_reclaim_inodes_nr( 1156 struct xfs_mount *mp, 1157 int nr_to_scan) 1158 { 1159 /* kick background reclaimer and push the AIL */ 1160 xfs_reclaim_work_queue(mp); 1161 xfs_ail_push_all(mp->m_ail); 1162 1163 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1164 } 1165 1166 /* 1167 * Return the number of reclaimable inodes in the filesystem for 1168 * the shrinker to determine how much to reclaim. 1169 */ 1170 int 1171 xfs_reclaim_inodes_count( 1172 struct xfs_mount *mp) 1173 { 1174 struct xfs_perag *pag; 1175 xfs_agnumber_t ag = 0; 1176 int reclaimable = 0; 1177 1178 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1179 ag = pag->pag_agno + 1; 1180 reclaimable += pag->pag_ici_reclaimable; 1181 xfs_perag_put(pag); 1182 } 1183 return reclaimable; 1184 } 1185 1186 STATIC int 1187 xfs_inode_match_id( 1188 struct xfs_inode *ip, 1189 struct xfs_eofblocks *eofb) 1190 { 1191 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1192 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1193 return 0; 1194 1195 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1196 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1197 return 0; 1198 1199 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1200 xfs_get_projid(ip) != eofb->eof_prid) 1201 return 0; 1202 1203 return 1; 1204 } 1205 1206 STATIC int 1207 xfs_inode_free_eofblocks( 1208 struct xfs_inode *ip, 1209 int flags, 1210 void *args) 1211 { 1212 int ret; 1213 struct xfs_eofblocks *eofb = args; 1214 1215 if (!xfs_can_free_eofblocks(ip, false)) { 1216 /* inode could be preallocated or append-only */ 1217 trace_xfs_inode_free_eofblocks_invalid(ip); 1218 xfs_inode_clear_eofblocks_tag(ip); 1219 return 0; 1220 } 1221 1222 /* 1223 * If the mapping is dirty the operation can block and wait for some 1224 * time. Unless we are waiting, skip it. 1225 */ 1226 if (!(flags & SYNC_WAIT) && 1227 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1228 return 0; 1229 1230 if (eofb) { 1231 if (!xfs_inode_match_id(ip, eofb)) 1232 return 0; 1233 1234 /* skip the inode if the file size is too small */ 1235 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1236 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1237 return 0; 1238 } 1239 1240 ret = xfs_free_eofblocks(ip->i_mount, ip, true); 1241 1242 /* don't revisit the inode if we're not waiting */ 1243 if (ret == EAGAIN && !(flags & SYNC_WAIT)) 1244 ret = 0; 1245 1246 return ret; 1247 } 1248 1249 int 1250 xfs_icache_free_eofblocks( 1251 struct xfs_mount *mp, 1252 struct xfs_eofblocks *eofb) 1253 { 1254 int flags = SYNC_TRYLOCK; 1255 1256 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1257 flags = SYNC_WAIT; 1258 1259 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, 1260 eofb, XFS_ICI_EOFBLOCKS_TAG); 1261 } 1262 1263 void 1264 xfs_inode_set_eofblocks_tag( 1265 xfs_inode_t *ip) 1266 { 1267 struct xfs_mount *mp = ip->i_mount; 1268 struct xfs_perag *pag; 1269 int tagged; 1270 1271 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1272 spin_lock(&pag->pag_ici_lock); 1273 trace_xfs_inode_set_eofblocks_tag(ip); 1274 1275 tagged = radix_tree_tagged(&pag->pag_ici_root, 1276 XFS_ICI_EOFBLOCKS_TAG); 1277 radix_tree_tag_set(&pag->pag_ici_root, 1278 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1279 XFS_ICI_EOFBLOCKS_TAG); 1280 if (!tagged) { 1281 /* propagate the eofblocks tag up into the perag radix tree */ 1282 spin_lock(&ip->i_mount->m_perag_lock); 1283 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1284 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1285 XFS_ICI_EOFBLOCKS_TAG); 1286 spin_unlock(&ip->i_mount->m_perag_lock); 1287 1288 /* kick off background trimming */ 1289 xfs_queue_eofblocks(ip->i_mount); 1290 1291 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, 1292 -1, _RET_IP_); 1293 } 1294 1295 spin_unlock(&pag->pag_ici_lock); 1296 xfs_perag_put(pag); 1297 } 1298 1299 void 1300 xfs_inode_clear_eofblocks_tag( 1301 xfs_inode_t *ip) 1302 { 1303 struct xfs_mount *mp = ip->i_mount; 1304 struct xfs_perag *pag; 1305 1306 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1307 spin_lock(&pag->pag_ici_lock); 1308 trace_xfs_inode_clear_eofblocks_tag(ip); 1309 1310 radix_tree_tag_clear(&pag->pag_ici_root, 1311 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1312 XFS_ICI_EOFBLOCKS_TAG); 1313 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { 1314 /* clear the eofblocks tag from the perag radix tree */ 1315 spin_lock(&ip->i_mount->m_perag_lock); 1316 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1317 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1318 XFS_ICI_EOFBLOCKS_TAG); 1319 spin_unlock(&ip->i_mount->m_perag_lock); 1320 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, 1321 -1, _RET_IP_); 1322 } 1323 1324 spin_unlock(&pag->pag_ici_lock); 1325 xfs_perag_put(pag); 1326 } 1327 1328