xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision c8dbaa22)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 /*
42  * Allocate and initialise an xfs_inode.
43  */
44 struct xfs_inode *
45 xfs_inode_alloc(
46 	struct xfs_mount	*mp,
47 	xfs_ino_t		ino)
48 {
49 	struct xfs_inode	*ip;
50 
51 	/*
52 	 * if this didn't occur in transactions, we could use
53 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 	 * code up to do this anyway.
55 	 */
56 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 	if (!ip)
58 		return NULL;
59 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 		kmem_zone_free(xfs_inode_zone, ip);
61 		return NULL;
62 	}
63 
64 	/* VFS doesn't initialise i_mode! */
65 	VFS_I(ip)->i_mode = 0;
66 
67 	XFS_STATS_INC(mp, vn_active);
68 	ASSERT(atomic_read(&ip->i_pincount) == 0);
69 	ASSERT(!xfs_isiflocked(ip));
70 	ASSERT(ip->i_ino == 0);
71 
72 	/* initialise the xfs inode */
73 	ip->i_ino = ino;
74 	ip->i_mount = mp;
75 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
76 	ip->i_afp = NULL;
77 	ip->i_cowfp = NULL;
78 	ip->i_cnextents = 0;
79 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
80 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 	ip->i_flags = 0;
82 	ip->i_delayed_blks = 0;
83 	memset(&ip->i_d, 0, sizeof(ip->i_d));
84 
85 	return ip;
86 }
87 
88 STATIC void
89 xfs_inode_free_callback(
90 	struct rcu_head		*head)
91 {
92 	struct inode		*inode = container_of(head, struct inode, i_rcu);
93 	struct xfs_inode	*ip = XFS_I(inode);
94 
95 	switch (VFS_I(ip)->i_mode & S_IFMT) {
96 	case S_IFREG:
97 	case S_IFDIR:
98 	case S_IFLNK:
99 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
100 		break;
101 	}
102 
103 	if (ip->i_afp)
104 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
105 	if (ip->i_cowfp)
106 		xfs_idestroy_fork(ip, XFS_COW_FORK);
107 
108 	if (ip->i_itemp) {
109 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
110 		xfs_inode_item_destroy(ip);
111 		ip->i_itemp = NULL;
112 	}
113 
114 	kmem_zone_free(xfs_inode_zone, ip);
115 }
116 
117 static void
118 __xfs_inode_free(
119 	struct xfs_inode	*ip)
120 {
121 	/* asserts to verify all state is correct here */
122 	ASSERT(atomic_read(&ip->i_pincount) == 0);
123 	XFS_STATS_DEC(ip->i_mount, vn_active);
124 
125 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126 }
127 
128 void
129 xfs_inode_free(
130 	struct xfs_inode	*ip)
131 {
132 	ASSERT(!xfs_isiflocked(ip));
133 
134 	/*
135 	 * Because we use RCU freeing we need to ensure the inode always
136 	 * appears to be reclaimed with an invalid inode number when in the
137 	 * free state. The ip->i_flags_lock provides the barrier against lookup
138 	 * races.
139 	 */
140 	spin_lock(&ip->i_flags_lock);
141 	ip->i_flags = XFS_IRECLAIM;
142 	ip->i_ino = 0;
143 	spin_unlock(&ip->i_flags_lock);
144 
145 	__xfs_inode_free(ip);
146 }
147 
148 /*
149  * Queue a new inode reclaim pass if there are reclaimable inodes and there
150  * isn't a reclaim pass already in progress. By default it runs every 5s based
151  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
152  * tunable, but that can be done if this method proves to be ineffective or too
153  * aggressive.
154  */
155 static void
156 xfs_reclaim_work_queue(
157 	struct xfs_mount        *mp)
158 {
159 
160 	rcu_read_lock();
161 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
162 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
163 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
164 	}
165 	rcu_read_unlock();
166 }
167 
168 /*
169  * This is a fast pass over the inode cache to try to get reclaim moving on as
170  * many inodes as possible in a short period of time. It kicks itself every few
171  * seconds, as well as being kicked by the inode cache shrinker when memory
172  * goes low. It scans as quickly as possible avoiding locked inodes or those
173  * already being flushed, and once done schedules a future pass.
174  */
175 void
176 xfs_reclaim_worker(
177 	struct work_struct *work)
178 {
179 	struct xfs_mount *mp = container_of(to_delayed_work(work),
180 					struct xfs_mount, m_reclaim_work);
181 
182 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
183 	xfs_reclaim_work_queue(mp);
184 }
185 
186 static void
187 xfs_perag_set_reclaim_tag(
188 	struct xfs_perag	*pag)
189 {
190 	struct xfs_mount	*mp = pag->pag_mount;
191 
192 	lockdep_assert_held(&pag->pag_ici_lock);
193 	if (pag->pag_ici_reclaimable++)
194 		return;
195 
196 	/* propagate the reclaim tag up into the perag radix tree */
197 	spin_lock(&mp->m_perag_lock);
198 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
199 			   XFS_ICI_RECLAIM_TAG);
200 	spin_unlock(&mp->m_perag_lock);
201 
202 	/* schedule periodic background inode reclaim */
203 	xfs_reclaim_work_queue(mp);
204 
205 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
206 }
207 
208 static void
209 xfs_perag_clear_reclaim_tag(
210 	struct xfs_perag	*pag)
211 {
212 	struct xfs_mount	*mp = pag->pag_mount;
213 
214 	lockdep_assert_held(&pag->pag_ici_lock);
215 	if (--pag->pag_ici_reclaimable)
216 		return;
217 
218 	/* clear the reclaim tag from the perag radix tree */
219 	spin_lock(&mp->m_perag_lock);
220 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
221 			     XFS_ICI_RECLAIM_TAG);
222 	spin_unlock(&mp->m_perag_lock);
223 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
224 }
225 
226 
227 /*
228  * We set the inode flag atomically with the radix tree tag.
229  * Once we get tag lookups on the radix tree, this inode flag
230  * can go away.
231  */
232 void
233 xfs_inode_set_reclaim_tag(
234 	struct xfs_inode	*ip)
235 {
236 	struct xfs_mount	*mp = ip->i_mount;
237 	struct xfs_perag	*pag;
238 
239 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
240 	spin_lock(&pag->pag_ici_lock);
241 	spin_lock(&ip->i_flags_lock);
242 
243 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
244 			   XFS_ICI_RECLAIM_TAG);
245 	xfs_perag_set_reclaim_tag(pag);
246 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
247 
248 	spin_unlock(&ip->i_flags_lock);
249 	spin_unlock(&pag->pag_ici_lock);
250 	xfs_perag_put(pag);
251 }
252 
253 STATIC void
254 xfs_inode_clear_reclaim_tag(
255 	struct xfs_perag	*pag,
256 	xfs_ino_t		ino)
257 {
258 	radix_tree_tag_clear(&pag->pag_ici_root,
259 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
260 			     XFS_ICI_RECLAIM_TAG);
261 	xfs_perag_clear_reclaim_tag(pag);
262 }
263 
264 static void
265 xfs_inew_wait(
266 	struct xfs_inode	*ip)
267 {
268 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
269 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
270 
271 	do {
272 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
273 		if (!xfs_iflags_test(ip, XFS_INEW))
274 			break;
275 		schedule();
276 	} while (true);
277 	finish_wait(wq, &wait.wq_entry);
278 }
279 
280 /*
281  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
282  * part of the structure. This is made more complex by the fact we store
283  * information about the on-disk values in the VFS inode and so we can't just
284  * overwrite the values unconditionally. Hence we save the parameters we
285  * need to retain across reinitialisation, and rewrite them into the VFS inode
286  * after reinitialisation even if it fails.
287  */
288 static int
289 xfs_reinit_inode(
290 	struct xfs_mount	*mp,
291 	struct inode		*inode)
292 {
293 	int		error;
294 	uint32_t	nlink = inode->i_nlink;
295 	uint32_t	generation = inode->i_generation;
296 	uint64_t	version = inode->i_version;
297 	umode_t		mode = inode->i_mode;
298 
299 	error = inode_init_always(mp->m_super, inode);
300 
301 	set_nlink(inode, nlink);
302 	inode->i_generation = generation;
303 	inode->i_version = version;
304 	inode->i_mode = mode;
305 	return error;
306 }
307 
308 /*
309  * Check the validity of the inode we just found it the cache
310  */
311 static int
312 xfs_iget_cache_hit(
313 	struct xfs_perag	*pag,
314 	struct xfs_inode	*ip,
315 	xfs_ino_t		ino,
316 	int			flags,
317 	int			lock_flags) __releases(RCU)
318 {
319 	struct inode		*inode = VFS_I(ip);
320 	struct xfs_mount	*mp = ip->i_mount;
321 	int			error;
322 
323 	/*
324 	 * check for re-use of an inode within an RCU grace period due to the
325 	 * radix tree nodes not being updated yet. We monitor for this by
326 	 * setting the inode number to zero before freeing the inode structure.
327 	 * If the inode has been reallocated and set up, then the inode number
328 	 * will not match, so check for that, too.
329 	 */
330 	spin_lock(&ip->i_flags_lock);
331 	if (ip->i_ino != ino) {
332 		trace_xfs_iget_skip(ip);
333 		XFS_STATS_INC(mp, xs_ig_frecycle);
334 		error = -EAGAIN;
335 		goto out_error;
336 	}
337 
338 
339 	/*
340 	 * If we are racing with another cache hit that is currently
341 	 * instantiating this inode or currently recycling it out of
342 	 * reclaimabe state, wait for the initialisation to complete
343 	 * before continuing.
344 	 *
345 	 * XXX(hch): eventually we should do something equivalent to
346 	 *	     wait_on_inode to wait for these flags to be cleared
347 	 *	     instead of polling for it.
348 	 */
349 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
350 		trace_xfs_iget_skip(ip);
351 		XFS_STATS_INC(mp, xs_ig_frecycle);
352 		error = -EAGAIN;
353 		goto out_error;
354 	}
355 
356 	/*
357 	 * If lookup is racing with unlink return an error immediately.
358 	 */
359 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
360 		error = -ENOENT;
361 		goto out_error;
362 	}
363 
364 	/*
365 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
366 	 * Need to carefully get it back into useable state.
367 	 */
368 	if (ip->i_flags & XFS_IRECLAIMABLE) {
369 		trace_xfs_iget_reclaim(ip);
370 
371 		if (flags & XFS_IGET_INCORE) {
372 			error = -EAGAIN;
373 			goto out_error;
374 		}
375 
376 		/*
377 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
378 		 * from stomping over us while we recycle the inode.  We can't
379 		 * clear the radix tree reclaimable tag yet as it requires
380 		 * pag_ici_lock to be held exclusive.
381 		 */
382 		ip->i_flags |= XFS_IRECLAIM;
383 
384 		spin_unlock(&ip->i_flags_lock);
385 		rcu_read_unlock();
386 
387 		error = xfs_reinit_inode(mp, inode);
388 		if (error) {
389 			bool wake;
390 			/*
391 			 * Re-initializing the inode failed, and we are in deep
392 			 * trouble.  Try to re-add it to the reclaim list.
393 			 */
394 			rcu_read_lock();
395 			spin_lock(&ip->i_flags_lock);
396 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
397 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
398 			if (wake)
399 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
400 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
401 			trace_xfs_iget_reclaim_fail(ip);
402 			goto out_error;
403 		}
404 
405 		spin_lock(&pag->pag_ici_lock);
406 		spin_lock(&ip->i_flags_lock);
407 
408 		/*
409 		 * Clear the per-lifetime state in the inode as we are now
410 		 * effectively a new inode and need to return to the initial
411 		 * state before reuse occurs.
412 		 */
413 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
414 		ip->i_flags |= XFS_INEW;
415 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
416 		inode->i_state = I_NEW;
417 
418 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
419 		init_rwsem(&inode->i_rwsem);
420 
421 		spin_unlock(&ip->i_flags_lock);
422 		spin_unlock(&pag->pag_ici_lock);
423 	} else {
424 		/* If the VFS inode is being torn down, pause and try again. */
425 		if (!igrab(inode)) {
426 			trace_xfs_iget_skip(ip);
427 			error = -EAGAIN;
428 			goto out_error;
429 		}
430 
431 		/* We've got a live one. */
432 		spin_unlock(&ip->i_flags_lock);
433 		rcu_read_unlock();
434 		trace_xfs_iget_hit(ip);
435 	}
436 
437 	if (lock_flags != 0)
438 		xfs_ilock(ip, lock_flags);
439 
440 	if (!(flags & XFS_IGET_INCORE))
441 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
442 	XFS_STATS_INC(mp, xs_ig_found);
443 
444 	return 0;
445 
446 out_error:
447 	spin_unlock(&ip->i_flags_lock);
448 	rcu_read_unlock();
449 	return error;
450 }
451 
452 
453 static int
454 xfs_iget_cache_miss(
455 	struct xfs_mount	*mp,
456 	struct xfs_perag	*pag,
457 	xfs_trans_t		*tp,
458 	xfs_ino_t		ino,
459 	struct xfs_inode	**ipp,
460 	int			flags,
461 	int			lock_flags)
462 {
463 	struct xfs_inode	*ip;
464 	int			error;
465 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
466 	int			iflags;
467 
468 	ip = xfs_inode_alloc(mp, ino);
469 	if (!ip)
470 		return -ENOMEM;
471 
472 	error = xfs_iread(mp, tp, ip, flags);
473 	if (error)
474 		goto out_destroy;
475 
476 	trace_xfs_iget_miss(ip);
477 
478 	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
479 		error = -ENOENT;
480 		goto out_destroy;
481 	}
482 
483 	/*
484 	 * Preload the radix tree so we can insert safely under the
485 	 * write spinlock. Note that we cannot sleep inside the preload
486 	 * region. Since we can be called from transaction context, don't
487 	 * recurse into the file system.
488 	 */
489 	if (radix_tree_preload(GFP_NOFS)) {
490 		error = -EAGAIN;
491 		goto out_destroy;
492 	}
493 
494 	/*
495 	 * Because the inode hasn't been added to the radix-tree yet it can't
496 	 * be found by another thread, so we can do the non-sleeping lock here.
497 	 */
498 	if (lock_flags) {
499 		if (!xfs_ilock_nowait(ip, lock_flags))
500 			BUG();
501 	}
502 
503 	/*
504 	 * These values must be set before inserting the inode into the radix
505 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
506 	 * RCU locking mechanism) can find it and that lookup must see that this
507 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
508 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
509 	 * memory barrier that ensures this detection works correctly at lookup
510 	 * time.
511 	 */
512 	iflags = XFS_INEW;
513 	if (flags & XFS_IGET_DONTCACHE)
514 		iflags |= XFS_IDONTCACHE;
515 	ip->i_udquot = NULL;
516 	ip->i_gdquot = NULL;
517 	ip->i_pdquot = NULL;
518 	xfs_iflags_set(ip, iflags);
519 
520 	/* insert the new inode */
521 	spin_lock(&pag->pag_ici_lock);
522 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
523 	if (unlikely(error)) {
524 		WARN_ON(error != -EEXIST);
525 		XFS_STATS_INC(mp, xs_ig_dup);
526 		error = -EAGAIN;
527 		goto out_preload_end;
528 	}
529 	spin_unlock(&pag->pag_ici_lock);
530 	radix_tree_preload_end();
531 
532 	*ipp = ip;
533 	return 0;
534 
535 out_preload_end:
536 	spin_unlock(&pag->pag_ici_lock);
537 	radix_tree_preload_end();
538 	if (lock_flags)
539 		xfs_iunlock(ip, lock_flags);
540 out_destroy:
541 	__destroy_inode(VFS_I(ip));
542 	xfs_inode_free(ip);
543 	return error;
544 }
545 
546 /*
547  * Look up an inode by number in the given file system.
548  * The inode is looked up in the cache held in each AG.
549  * If the inode is found in the cache, initialise the vfs inode
550  * if necessary.
551  *
552  * If it is not in core, read it in from the file system's device,
553  * add it to the cache and initialise the vfs inode.
554  *
555  * The inode is locked according to the value of the lock_flags parameter.
556  * This flag parameter indicates how and if the inode's IO lock and inode lock
557  * should be taken.
558  *
559  * mp -- the mount point structure for the current file system.  It points
560  *       to the inode hash table.
561  * tp -- a pointer to the current transaction if there is one.  This is
562  *       simply passed through to the xfs_iread() call.
563  * ino -- the number of the inode desired.  This is the unique identifier
564  *        within the file system for the inode being requested.
565  * lock_flags -- flags indicating how to lock the inode.  See the comment
566  *		 for xfs_ilock() for a list of valid values.
567  */
568 int
569 xfs_iget(
570 	xfs_mount_t	*mp,
571 	xfs_trans_t	*tp,
572 	xfs_ino_t	ino,
573 	uint		flags,
574 	uint		lock_flags,
575 	xfs_inode_t	**ipp)
576 {
577 	xfs_inode_t	*ip;
578 	int		error;
579 	xfs_perag_t	*pag;
580 	xfs_agino_t	agino;
581 
582 	/*
583 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
584 	 * doesn't get freed while it's being referenced during a
585 	 * radix tree traversal here.  It assumes this function
586 	 * aqcuires only the ILOCK (and therefore it has no need to
587 	 * involve the IOLOCK in this synchronization).
588 	 */
589 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
590 
591 	/* reject inode numbers outside existing AGs */
592 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
593 		return -EINVAL;
594 
595 	XFS_STATS_INC(mp, xs_ig_attempts);
596 
597 	/* get the perag structure and ensure that it's inode capable */
598 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
599 	agino = XFS_INO_TO_AGINO(mp, ino);
600 
601 again:
602 	error = 0;
603 	rcu_read_lock();
604 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
605 
606 	if (ip) {
607 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
608 		if (error)
609 			goto out_error_or_again;
610 	} else {
611 		rcu_read_unlock();
612 		if (flags & XFS_IGET_INCORE) {
613 			error = -ENOENT;
614 			goto out_error_or_again;
615 		}
616 		XFS_STATS_INC(mp, xs_ig_missed);
617 
618 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
619 							flags, lock_flags);
620 		if (error)
621 			goto out_error_or_again;
622 	}
623 	xfs_perag_put(pag);
624 
625 	*ipp = ip;
626 
627 	/*
628 	 * If we have a real type for an on-disk inode, we can setup the inode
629 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
630 	 */
631 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
632 		xfs_setup_existing_inode(ip);
633 	return 0;
634 
635 out_error_or_again:
636 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
637 		delay(1);
638 		goto again;
639 	}
640 	xfs_perag_put(pag);
641 	return error;
642 }
643 
644 /*
645  * "Is this a cached inode that's also allocated?"
646  *
647  * Look up an inode by number in the given file system.  If the inode is
648  * in cache and isn't in purgatory, return 1 if the inode is allocated
649  * and 0 if it is not.  For all other cases (not in cache, being torn
650  * down, etc.), return a negative error code.
651  *
652  * The caller has to prevent inode allocation and freeing activity,
653  * presumably by locking the AGI buffer.   This is to ensure that an
654  * inode cannot transition from allocated to freed until the caller is
655  * ready to allow that.  If the inode is in an intermediate state (new,
656  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
657  * inode is not in the cache, -ENOENT will be returned.  The caller must
658  * deal with these scenarios appropriately.
659  *
660  * This is a specialized use case for the online scrubber; if you're
661  * reading this, you probably want xfs_iget.
662  */
663 int
664 xfs_icache_inode_is_allocated(
665 	struct xfs_mount	*mp,
666 	struct xfs_trans	*tp,
667 	xfs_ino_t		ino,
668 	bool			*inuse)
669 {
670 	struct xfs_inode	*ip;
671 	int			error;
672 
673 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
674 	if (error)
675 		return error;
676 
677 	*inuse = !!(VFS_I(ip)->i_mode);
678 	IRELE(ip);
679 	return 0;
680 }
681 
682 /*
683  * The inode lookup is done in batches to keep the amount of lock traffic and
684  * radix tree lookups to a minimum. The batch size is a trade off between
685  * lookup reduction and stack usage. This is in the reclaim path, so we can't
686  * be too greedy.
687  */
688 #define XFS_LOOKUP_BATCH	32
689 
690 STATIC int
691 xfs_inode_ag_walk_grab(
692 	struct xfs_inode	*ip,
693 	int			flags)
694 {
695 	struct inode		*inode = VFS_I(ip);
696 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
697 
698 	ASSERT(rcu_read_lock_held());
699 
700 	/*
701 	 * check for stale RCU freed inode
702 	 *
703 	 * If the inode has been reallocated, it doesn't matter if it's not in
704 	 * the AG we are walking - we are walking for writeback, so if it
705 	 * passes all the "valid inode" checks and is dirty, then we'll write
706 	 * it back anyway.  If it has been reallocated and still being
707 	 * initialised, the XFS_INEW check below will catch it.
708 	 */
709 	spin_lock(&ip->i_flags_lock);
710 	if (!ip->i_ino)
711 		goto out_unlock_noent;
712 
713 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
714 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
715 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
716 		goto out_unlock_noent;
717 	spin_unlock(&ip->i_flags_lock);
718 
719 	/* nothing to sync during shutdown */
720 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
721 		return -EFSCORRUPTED;
722 
723 	/* If we can't grab the inode, it must on it's way to reclaim. */
724 	if (!igrab(inode))
725 		return -ENOENT;
726 
727 	/* inode is valid */
728 	return 0;
729 
730 out_unlock_noent:
731 	spin_unlock(&ip->i_flags_lock);
732 	return -ENOENT;
733 }
734 
735 STATIC int
736 xfs_inode_ag_walk(
737 	struct xfs_mount	*mp,
738 	struct xfs_perag	*pag,
739 	int			(*execute)(struct xfs_inode *ip, int flags,
740 					   void *args),
741 	int			flags,
742 	void			*args,
743 	int			tag,
744 	int			iter_flags)
745 {
746 	uint32_t		first_index;
747 	int			last_error = 0;
748 	int			skipped;
749 	int			done;
750 	int			nr_found;
751 
752 restart:
753 	done = 0;
754 	skipped = 0;
755 	first_index = 0;
756 	nr_found = 0;
757 	do {
758 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
759 		int		error = 0;
760 		int		i;
761 
762 		rcu_read_lock();
763 
764 		if (tag == -1)
765 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
766 					(void **)batch, first_index,
767 					XFS_LOOKUP_BATCH);
768 		else
769 			nr_found = radix_tree_gang_lookup_tag(
770 					&pag->pag_ici_root,
771 					(void **) batch, first_index,
772 					XFS_LOOKUP_BATCH, tag);
773 
774 		if (!nr_found) {
775 			rcu_read_unlock();
776 			break;
777 		}
778 
779 		/*
780 		 * Grab the inodes before we drop the lock. if we found
781 		 * nothing, nr == 0 and the loop will be skipped.
782 		 */
783 		for (i = 0; i < nr_found; i++) {
784 			struct xfs_inode *ip = batch[i];
785 
786 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
787 				batch[i] = NULL;
788 
789 			/*
790 			 * Update the index for the next lookup. Catch
791 			 * overflows into the next AG range which can occur if
792 			 * we have inodes in the last block of the AG and we
793 			 * are currently pointing to the last inode.
794 			 *
795 			 * Because we may see inodes that are from the wrong AG
796 			 * due to RCU freeing and reallocation, only update the
797 			 * index if it lies in this AG. It was a race that lead
798 			 * us to see this inode, so another lookup from the
799 			 * same index will not find it again.
800 			 */
801 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
802 				continue;
803 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
804 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
805 				done = 1;
806 		}
807 
808 		/* unlock now we've grabbed the inodes. */
809 		rcu_read_unlock();
810 
811 		for (i = 0; i < nr_found; i++) {
812 			if (!batch[i])
813 				continue;
814 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
815 			    xfs_iflags_test(batch[i], XFS_INEW))
816 				xfs_inew_wait(batch[i]);
817 			error = execute(batch[i], flags, args);
818 			IRELE(batch[i]);
819 			if (error == -EAGAIN) {
820 				skipped++;
821 				continue;
822 			}
823 			if (error && last_error != -EFSCORRUPTED)
824 				last_error = error;
825 		}
826 
827 		/* bail out if the filesystem is corrupted.  */
828 		if (error == -EFSCORRUPTED)
829 			break;
830 
831 		cond_resched();
832 
833 	} while (nr_found && !done);
834 
835 	if (skipped) {
836 		delay(1);
837 		goto restart;
838 	}
839 	return last_error;
840 }
841 
842 /*
843  * Background scanning to trim post-EOF preallocated space. This is queued
844  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
845  */
846 void
847 xfs_queue_eofblocks(
848 	struct xfs_mount *mp)
849 {
850 	rcu_read_lock();
851 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
852 		queue_delayed_work(mp->m_eofblocks_workqueue,
853 				   &mp->m_eofblocks_work,
854 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
855 	rcu_read_unlock();
856 }
857 
858 void
859 xfs_eofblocks_worker(
860 	struct work_struct *work)
861 {
862 	struct xfs_mount *mp = container_of(to_delayed_work(work),
863 				struct xfs_mount, m_eofblocks_work);
864 	xfs_icache_free_eofblocks(mp, NULL);
865 	xfs_queue_eofblocks(mp);
866 }
867 
868 /*
869  * Background scanning to trim preallocated CoW space. This is queued
870  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
871  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
872  */
873 STATIC void
874 xfs_queue_cowblocks(
875 	struct xfs_mount *mp)
876 {
877 	rcu_read_lock();
878 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
879 		queue_delayed_work(mp->m_eofblocks_workqueue,
880 				   &mp->m_cowblocks_work,
881 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
882 	rcu_read_unlock();
883 }
884 
885 void
886 xfs_cowblocks_worker(
887 	struct work_struct *work)
888 {
889 	struct xfs_mount *mp = container_of(to_delayed_work(work),
890 				struct xfs_mount, m_cowblocks_work);
891 	xfs_icache_free_cowblocks(mp, NULL);
892 	xfs_queue_cowblocks(mp);
893 }
894 
895 int
896 xfs_inode_ag_iterator_flags(
897 	struct xfs_mount	*mp,
898 	int			(*execute)(struct xfs_inode *ip, int flags,
899 					   void *args),
900 	int			flags,
901 	void			*args,
902 	int			iter_flags)
903 {
904 	struct xfs_perag	*pag;
905 	int			error = 0;
906 	int			last_error = 0;
907 	xfs_agnumber_t		ag;
908 
909 	ag = 0;
910 	while ((pag = xfs_perag_get(mp, ag))) {
911 		ag = pag->pag_agno + 1;
912 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
913 					  iter_flags);
914 		xfs_perag_put(pag);
915 		if (error) {
916 			last_error = error;
917 			if (error == -EFSCORRUPTED)
918 				break;
919 		}
920 	}
921 	return last_error;
922 }
923 
924 int
925 xfs_inode_ag_iterator(
926 	struct xfs_mount	*mp,
927 	int			(*execute)(struct xfs_inode *ip, int flags,
928 					   void *args),
929 	int			flags,
930 	void			*args)
931 {
932 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
933 }
934 
935 int
936 xfs_inode_ag_iterator_tag(
937 	struct xfs_mount	*mp,
938 	int			(*execute)(struct xfs_inode *ip, int flags,
939 					   void *args),
940 	int			flags,
941 	void			*args,
942 	int			tag)
943 {
944 	struct xfs_perag	*pag;
945 	int			error = 0;
946 	int			last_error = 0;
947 	xfs_agnumber_t		ag;
948 
949 	ag = 0;
950 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
951 		ag = pag->pag_agno + 1;
952 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
953 					  0);
954 		xfs_perag_put(pag);
955 		if (error) {
956 			last_error = error;
957 			if (error == -EFSCORRUPTED)
958 				break;
959 		}
960 	}
961 	return last_error;
962 }
963 
964 /*
965  * Grab the inode for reclaim exclusively.
966  * Return 0 if we grabbed it, non-zero otherwise.
967  */
968 STATIC int
969 xfs_reclaim_inode_grab(
970 	struct xfs_inode	*ip,
971 	int			flags)
972 {
973 	ASSERT(rcu_read_lock_held());
974 
975 	/* quick check for stale RCU freed inode */
976 	if (!ip->i_ino)
977 		return 1;
978 
979 	/*
980 	 * If we are asked for non-blocking operation, do unlocked checks to
981 	 * see if the inode already is being flushed or in reclaim to avoid
982 	 * lock traffic.
983 	 */
984 	if ((flags & SYNC_TRYLOCK) &&
985 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
986 		return 1;
987 
988 	/*
989 	 * The radix tree lock here protects a thread in xfs_iget from racing
990 	 * with us starting reclaim on the inode.  Once we have the
991 	 * XFS_IRECLAIM flag set it will not touch us.
992 	 *
993 	 * Due to RCU lookup, we may find inodes that have been freed and only
994 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
995 	 * aren't candidates for reclaim at all, so we must check the
996 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
997 	 */
998 	spin_lock(&ip->i_flags_lock);
999 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1000 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1001 		/* not a reclaim candidate. */
1002 		spin_unlock(&ip->i_flags_lock);
1003 		return 1;
1004 	}
1005 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1006 	spin_unlock(&ip->i_flags_lock);
1007 	return 0;
1008 }
1009 
1010 /*
1011  * Inodes in different states need to be treated differently. The following
1012  * table lists the inode states and the reclaim actions necessary:
1013  *
1014  *	inode state	     iflush ret		required action
1015  *      ---------------      ----------         ---------------
1016  *	bad			-		reclaim
1017  *	shutdown		EIO		unpin and reclaim
1018  *	clean, unpinned		0		reclaim
1019  *	stale, unpinned		0		reclaim
1020  *	clean, pinned(*)	0		requeue
1021  *	stale, pinned		EAGAIN		requeue
1022  *	dirty, async		-		requeue
1023  *	dirty, sync		0		reclaim
1024  *
1025  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1026  * handled anyway given the order of checks implemented.
1027  *
1028  * Also, because we get the flush lock first, we know that any inode that has
1029  * been flushed delwri has had the flush completed by the time we check that
1030  * the inode is clean.
1031  *
1032  * Note that because the inode is flushed delayed write by AIL pushing, the
1033  * flush lock may already be held here and waiting on it can result in very
1034  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1035  * the caller should push the AIL first before trying to reclaim inodes to
1036  * minimise the amount of time spent waiting.  For background relaim, we only
1037  * bother to reclaim clean inodes anyway.
1038  *
1039  * Hence the order of actions after gaining the locks should be:
1040  *	bad		=> reclaim
1041  *	shutdown	=> unpin and reclaim
1042  *	pinned, async	=> requeue
1043  *	pinned, sync	=> unpin
1044  *	stale		=> reclaim
1045  *	clean		=> reclaim
1046  *	dirty, async	=> requeue
1047  *	dirty, sync	=> flush, wait and reclaim
1048  */
1049 STATIC int
1050 xfs_reclaim_inode(
1051 	struct xfs_inode	*ip,
1052 	struct xfs_perag	*pag,
1053 	int			sync_mode)
1054 {
1055 	struct xfs_buf		*bp = NULL;
1056 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1057 	int			error;
1058 
1059 restart:
1060 	error = 0;
1061 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1062 	if (!xfs_iflock_nowait(ip)) {
1063 		if (!(sync_mode & SYNC_WAIT))
1064 			goto out;
1065 		xfs_iflock(ip);
1066 	}
1067 
1068 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1069 		xfs_iunpin_wait(ip);
1070 		/* xfs_iflush_abort() drops the flush lock */
1071 		xfs_iflush_abort(ip, false);
1072 		goto reclaim;
1073 	}
1074 	if (xfs_ipincount(ip)) {
1075 		if (!(sync_mode & SYNC_WAIT))
1076 			goto out_ifunlock;
1077 		xfs_iunpin_wait(ip);
1078 	}
1079 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1080 		xfs_ifunlock(ip);
1081 		goto reclaim;
1082 	}
1083 
1084 	/*
1085 	 * Never flush out dirty data during non-blocking reclaim, as it would
1086 	 * just contend with AIL pushing trying to do the same job.
1087 	 */
1088 	if (!(sync_mode & SYNC_WAIT))
1089 		goto out_ifunlock;
1090 
1091 	/*
1092 	 * Now we have an inode that needs flushing.
1093 	 *
1094 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1095 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1096 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1097 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1098 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1099 	 *
1100 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1101 	 * cache to mark them stale, if we hit this case we don't actually want
1102 	 * to do IO here - we want the inode marked stale so we can simply
1103 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1104 	 * inode, back off and try again.  Hopefully the next pass through will
1105 	 * see the stale flag set on the inode.
1106 	 */
1107 	error = xfs_iflush(ip, &bp);
1108 	if (error == -EAGAIN) {
1109 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1110 		/* backoff longer than in xfs_ifree_cluster */
1111 		delay(2);
1112 		goto restart;
1113 	}
1114 
1115 	if (!error) {
1116 		error = xfs_bwrite(bp);
1117 		xfs_buf_relse(bp);
1118 	}
1119 
1120 reclaim:
1121 	ASSERT(!xfs_isiflocked(ip));
1122 
1123 	/*
1124 	 * Because we use RCU freeing we need to ensure the inode always appears
1125 	 * to be reclaimed with an invalid inode number when in the free state.
1126 	 * We do this as early as possible under the ILOCK so that
1127 	 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
1128 	 * By doing this, we guarantee that once xfs_iflush_cluster has locked
1129 	 * XFS_ILOCK that it will see either a valid, flushable inode that will
1130 	 * serialise correctly, or it will see a clean (and invalid) inode that
1131 	 * it can skip.
1132 	 */
1133 	spin_lock(&ip->i_flags_lock);
1134 	ip->i_flags = XFS_IRECLAIM;
1135 	ip->i_ino = 0;
1136 	spin_unlock(&ip->i_flags_lock);
1137 
1138 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1139 
1140 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1141 	/*
1142 	 * Remove the inode from the per-AG radix tree.
1143 	 *
1144 	 * Because radix_tree_delete won't complain even if the item was never
1145 	 * added to the tree assert that it's been there before to catch
1146 	 * problems with the inode life time early on.
1147 	 */
1148 	spin_lock(&pag->pag_ici_lock);
1149 	if (!radix_tree_delete(&pag->pag_ici_root,
1150 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1151 		ASSERT(0);
1152 	xfs_perag_clear_reclaim_tag(pag);
1153 	spin_unlock(&pag->pag_ici_lock);
1154 
1155 	/*
1156 	 * Here we do an (almost) spurious inode lock in order to coordinate
1157 	 * with inode cache radix tree lookups.  This is because the lookup
1158 	 * can reference the inodes in the cache without taking references.
1159 	 *
1160 	 * We make that OK here by ensuring that we wait until the inode is
1161 	 * unlocked after the lookup before we go ahead and free it.
1162 	 */
1163 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1164 	xfs_qm_dqdetach(ip);
1165 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1166 
1167 	__xfs_inode_free(ip);
1168 	return error;
1169 
1170 out_ifunlock:
1171 	xfs_ifunlock(ip);
1172 out:
1173 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1174 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1175 	/*
1176 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1177 	 * a short while. However, this just burns CPU time scanning the tree
1178 	 * waiting for IO to complete and the reclaim work never goes back to
1179 	 * the idle state. Instead, return 0 to let the next scheduled
1180 	 * background reclaim attempt to reclaim the inode again.
1181 	 */
1182 	return 0;
1183 }
1184 
1185 /*
1186  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1187  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1188  * then a shut down during filesystem unmount reclaim walk leak all the
1189  * unreclaimed inodes.
1190  */
1191 STATIC int
1192 xfs_reclaim_inodes_ag(
1193 	struct xfs_mount	*mp,
1194 	int			flags,
1195 	int			*nr_to_scan)
1196 {
1197 	struct xfs_perag	*pag;
1198 	int			error = 0;
1199 	int			last_error = 0;
1200 	xfs_agnumber_t		ag;
1201 	int			trylock = flags & SYNC_TRYLOCK;
1202 	int			skipped;
1203 
1204 restart:
1205 	ag = 0;
1206 	skipped = 0;
1207 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1208 		unsigned long	first_index = 0;
1209 		int		done = 0;
1210 		int		nr_found = 0;
1211 
1212 		ag = pag->pag_agno + 1;
1213 
1214 		if (trylock) {
1215 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1216 				skipped++;
1217 				xfs_perag_put(pag);
1218 				continue;
1219 			}
1220 			first_index = pag->pag_ici_reclaim_cursor;
1221 		} else
1222 			mutex_lock(&pag->pag_ici_reclaim_lock);
1223 
1224 		do {
1225 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1226 			int	i;
1227 
1228 			rcu_read_lock();
1229 			nr_found = radix_tree_gang_lookup_tag(
1230 					&pag->pag_ici_root,
1231 					(void **)batch, first_index,
1232 					XFS_LOOKUP_BATCH,
1233 					XFS_ICI_RECLAIM_TAG);
1234 			if (!nr_found) {
1235 				done = 1;
1236 				rcu_read_unlock();
1237 				break;
1238 			}
1239 
1240 			/*
1241 			 * Grab the inodes before we drop the lock. if we found
1242 			 * nothing, nr == 0 and the loop will be skipped.
1243 			 */
1244 			for (i = 0; i < nr_found; i++) {
1245 				struct xfs_inode *ip = batch[i];
1246 
1247 				if (done || xfs_reclaim_inode_grab(ip, flags))
1248 					batch[i] = NULL;
1249 
1250 				/*
1251 				 * Update the index for the next lookup. Catch
1252 				 * overflows into the next AG range which can
1253 				 * occur if we have inodes in the last block of
1254 				 * the AG and we are currently pointing to the
1255 				 * last inode.
1256 				 *
1257 				 * Because we may see inodes that are from the
1258 				 * wrong AG due to RCU freeing and
1259 				 * reallocation, only update the index if it
1260 				 * lies in this AG. It was a race that lead us
1261 				 * to see this inode, so another lookup from
1262 				 * the same index will not find it again.
1263 				 */
1264 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1265 								pag->pag_agno)
1266 					continue;
1267 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1268 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1269 					done = 1;
1270 			}
1271 
1272 			/* unlock now we've grabbed the inodes. */
1273 			rcu_read_unlock();
1274 
1275 			for (i = 0; i < nr_found; i++) {
1276 				if (!batch[i])
1277 					continue;
1278 				error = xfs_reclaim_inode(batch[i], pag, flags);
1279 				if (error && last_error != -EFSCORRUPTED)
1280 					last_error = error;
1281 			}
1282 
1283 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1284 
1285 			cond_resched();
1286 
1287 		} while (nr_found && !done && *nr_to_scan > 0);
1288 
1289 		if (trylock && !done)
1290 			pag->pag_ici_reclaim_cursor = first_index;
1291 		else
1292 			pag->pag_ici_reclaim_cursor = 0;
1293 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1294 		xfs_perag_put(pag);
1295 	}
1296 
1297 	/*
1298 	 * if we skipped any AG, and we still have scan count remaining, do
1299 	 * another pass this time using blocking reclaim semantics (i.e
1300 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1301 	 * ensure that when we get more reclaimers than AGs we block rather
1302 	 * than spin trying to execute reclaim.
1303 	 */
1304 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1305 		trylock = 0;
1306 		goto restart;
1307 	}
1308 	return last_error;
1309 }
1310 
1311 int
1312 xfs_reclaim_inodes(
1313 	xfs_mount_t	*mp,
1314 	int		mode)
1315 {
1316 	int		nr_to_scan = INT_MAX;
1317 
1318 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1319 }
1320 
1321 /*
1322  * Scan a certain number of inodes for reclaim.
1323  *
1324  * When called we make sure that there is a background (fast) inode reclaim in
1325  * progress, while we will throttle the speed of reclaim via doing synchronous
1326  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1327  * them to be cleaned, which we hope will not be very long due to the
1328  * background walker having already kicked the IO off on those dirty inodes.
1329  */
1330 long
1331 xfs_reclaim_inodes_nr(
1332 	struct xfs_mount	*mp,
1333 	int			nr_to_scan)
1334 {
1335 	/* kick background reclaimer and push the AIL */
1336 	xfs_reclaim_work_queue(mp);
1337 	xfs_ail_push_all(mp->m_ail);
1338 
1339 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1340 }
1341 
1342 /*
1343  * Return the number of reclaimable inodes in the filesystem for
1344  * the shrinker to determine how much to reclaim.
1345  */
1346 int
1347 xfs_reclaim_inodes_count(
1348 	struct xfs_mount	*mp)
1349 {
1350 	struct xfs_perag	*pag;
1351 	xfs_agnumber_t		ag = 0;
1352 	int			reclaimable = 0;
1353 
1354 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1355 		ag = pag->pag_agno + 1;
1356 		reclaimable += pag->pag_ici_reclaimable;
1357 		xfs_perag_put(pag);
1358 	}
1359 	return reclaimable;
1360 }
1361 
1362 STATIC int
1363 xfs_inode_match_id(
1364 	struct xfs_inode	*ip,
1365 	struct xfs_eofblocks	*eofb)
1366 {
1367 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1368 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1369 		return 0;
1370 
1371 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1372 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1373 		return 0;
1374 
1375 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1376 	    xfs_get_projid(ip) != eofb->eof_prid)
1377 		return 0;
1378 
1379 	return 1;
1380 }
1381 
1382 /*
1383  * A union-based inode filtering algorithm. Process the inode if any of the
1384  * criteria match. This is for global/internal scans only.
1385  */
1386 STATIC int
1387 xfs_inode_match_id_union(
1388 	struct xfs_inode	*ip,
1389 	struct xfs_eofblocks	*eofb)
1390 {
1391 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1392 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1393 		return 1;
1394 
1395 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1396 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1397 		return 1;
1398 
1399 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1400 	    xfs_get_projid(ip) == eofb->eof_prid)
1401 		return 1;
1402 
1403 	return 0;
1404 }
1405 
1406 STATIC int
1407 xfs_inode_free_eofblocks(
1408 	struct xfs_inode	*ip,
1409 	int			flags,
1410 	void			*args)
1411 {
1412 	int ret = 0;
1413 	struct xfs_eofblocks *eofb = args;
1414 	int match;
1415 
1416 	if (!xfs_can_free_eofblocks(ip, false)) {
1417 		/* inode could be preallocated or append-only */
1418 		trace_xfs_inode_free_eofblocks_invalid(ip);
1419 		xfs_inode_clear_eofblocks_tag(ip);
1420 		return 0;
1421 	}
1422 
1423 	/*
1424 	 * If the mapping is dirty the operation can block and wait for some
1425 	 * time. Unless we are waiting, skip it.
1426 	 */
1427 	if (!(flags & SYNC_WAIT) &&
1428 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1429 		return 0;
1430 
1431 	if (eofb) {
1432 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1433 			match = xfs_inode_match_id_union(ip, eofb);
1434 		else
1435 			match = xfs_inode_match_id(ip, eofb);
1436 		if (!match)
1437 			return 0;
1438 
1439 		/* skip the inode if the file size is too small */
1440 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1441 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1442 			return 0;
1443 	}
1444 
1445 	/*
1446 	 * If the caller is waiting, return -EAGAIN to keep the background
1447 	 * scanner moving and revisit the inode in a subsequent pass.
1448 	 */
1449 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1450 		if (flags & SYNC_WAIT)
1451 			ret = -EAGAIN;
1452 		return ret;
1453 	}
1454 	ret = xfs_free_eofblocks(ip);
1455 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1456 
1457 	return ret;
1458 }
1459 
1460 static int
1461 __xfs_icache_free_eofblocks(
1462 	struct xfs_mount	*mp,
1463 	struct xfs_eofblocks	*eofb,
1464 	int			(*execute)(struct xfs_inode *ip, int flags,
1465 					   void *args),
1466 	int			tag)
1467 {
1468 	int flags = SYNC_TRYLOCK;
1469 
1470 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1471 		flags = SYNC_WAIT;
1472 
1473 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1474 					 eofb, tag);
1475 }
1476 
1477 int
1478 xfs_icache_free_eofblocks(
1479 	struct xfs_mount	*mp,
1480 	struct xfs_eofblocks	*eofb)
1481 {
1482 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1483 			XFS_ICI_EOFBLOCKS_TAG);
1484 }
1485 
1486 /*
1487  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1488  * multiple quotas, we don't know exactly which quota caused an allocation
1489  * failure. We make a best effort by including each quota under low free space
1490  * conditions (less than 1% free space) in the scan.
1491  */
1492 static int
1493 __xfs_inode_free_quota_eofblocks(
1494 	struct xfs_inode	*ip,
1495 	int			(*execute)(struct xfs_mount *mp,
1496 					   struct xfs_eofblocks	*eofb))
1497 {
1498 	int scan = 0;
1499 	struct xfs_eofblocks eofb = {0};
1500 	struct xfs_dquot *dq;
1501 
1502 	/*
1503 	 * Run a sync scan to increase effectiveness and use the union filter to
1504 	 * cover all applicable quotas in a single scan.
1505 	 */
1506 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1507 
1508 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1509 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1510 		if (dq && xfs_dquot_lowsp(dq)) {
1511 			eofb.eof_uid = VFS_I(ip)->i_uid;
1512 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1513 			scan = 1;
1514 		}
1515 	}
1516 
1517 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1518 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1519 		if (dq && xfs_dquot_lowsp(dq)) {
1520 			eofb.eof_gid = VFS_I(ip)->i_gid;
1521 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1522 			scan = 1;
1523 		}
1524 	}
1525 
1526 	if (scan)
1527 		execute(ip->i_mount, &eofb);
1528 
1529 	return scan;
1530 }
1531 
1532 int
1533 xfs_inode_free_quota_eofblocks(
1534 	struct xfs_inode *ip)
1535 {
1536 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1537 }
1538 
1539 static void
1540 __xfs_inode_set_eofblocks_tag(
1541 	xfs_inode_t	*ip,
1542 	void		(*execute)(struct xfs_mount *mp),
1543 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1544 				  int error, unsigned long caller_ip),
1545 	int		tag)
1546 {
1547 	struct xfs_mount *mp = ip->i_mount;
1548 	struct xfs_perag *pag;
1549 	int tagged;
1550 
1551 	/*
1552 	 * Don't bother locking the AG and looking up in the radix trees
1553 	 * if we already know that we have the tag set.
1554 	 */
1555 	if (ip->i_flags & XFS_IEOFBLOCKS)
1556 		return;
1557 	spin_lock(&ip->i_flags_lock);
1558 	ip->i_flags |= XFS_IEOFBLOCKS;
1559 	spin_unlock(&ip->i_flags_lock);
1560 
1561 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1562 	spin_lock(&pag->pag_ici_lock);
1563 
1564 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1565 	radix_tree_tag_set(&pag->pag_ici_root,
1566 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1567 	if (!tagged) {
1568 		/* propagate the eofblocks tag up into the perag radix tree */
1569 		spin_lock(&ip->i_mount->m_perag_lock);
1570 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1571 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1572 				   tag);
1573 		spin_unlock(&ip->i_mount->m_perag_lock);
1574 
1575 		/* kick off background trimming */
1576 		execute(ip->i_mount);
1577 
1578 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1579 	}
1580 
1581 	spin_unlock(&pag->pag_ici_lock);
1582 	xfs_perag_put(pag);
1583 }
1584 
1585 void
1586 xfs_inode_set_eofblocks_tag(
1587 	xfs_inode_t	*ip)
1588 {
1589 	trace_xfs_inode_set_eofblocks_tag(ip);
1590 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1591 			trace_xfs_perag_set_eofblocks,
1592 			XFS_ICI_EOFBLOCKS_TAG);
1593 }
1594 
1595 static void
1596 __xfs_inode_clear_eofblocks_tag(
1597 	xfs_inode_t	*ip,
1598 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1599 				    int error, unsigned long caller_ip),
1600 	int		tag)
1601 {
1602 	struct xfs_mount *mp = ip->i_mount;
1603 	struct xfs_perag *pag;
1604 
1605 	spin_lock(&ip->i_flags_lock);
1606 	ip->i_flags &= ~XFS_IEOFBLOCKS;
1607 	spin_unlock(&ip->i_flags_lock);
1608 
1609 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1610 	spin_lock(&pag->pag_ici_lock);
1611 
1612 	radix_tree_tag_clear(&pag->pag_ici_root,
1613 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1614 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1615 		/* clear the eofblocks tag from the perag radix tree */
1616 		spin_lock(&ip->i_mount->m_perag_lock);
1617 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1618 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1619 				     tag);
1620 		spin_unlock(&ip->i_mount->m_perag_lock);
1621 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1622 	}
1623 
1624 	spin_unlock(&pag->pag_ici_lock);
1625 	xfs_perag_put(pag);
1626 }
1627 
1628 void
1629 xfs_inode_clear_eofblocks_tag(
1630 	xfs_inode_t	*ip)
1631 {
1632 	trace_xfs_inode_clear_eofblocks_tag(ip);
1633 	return __xfs_inode_clear_eofblocks_tag(ip,
1634 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1635 }
1636 
1637 /*
1638  * Automatic CoW Reservation Freeing
1639  *
1640  * These functions automatically garbage collect leftover CoW reservations
1641  * that were made on behalf of a cowextsize hint when we start to run out
1642  * of quota or when the reservations sit around for too long.  If the file
1643  * has dirty pages or is undergoing writeback, its CoW reservations will
1644  * be retained.
1645  *
1646  * The actual garbage collection piggybacks off the same code that runs
1647  * the speculative EOF preallocation garbage collector.
1648  */
1649 STATIC int
1650 xfs_inode_free_cowblocks(
1651 	struct xfs_inode	*ip,
1652 	int			flags,
1653 	void			*args)
1654 {
1655 	int ret;
1656 	struct xfs_eofblocks *eofb = args;
1657 	int match;
1658 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1659 
1660 	/*
1661 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1662 	 * possible the inode was fully unshared since it was originally tagged.
1663 	 */
1664 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1665 		trace_xfs_inode_free_cowblocks_invalid(ip);
1666 		xfs_inode_clear_cowblocks_tag(ip);
1667 		return 0;
1668 	}
1669 
1670 	/*
1671 	 * If the mapping is dirty or under writeback we cannot touch the
1672 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1673 	 */
1674 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1675 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1676 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1677 	    atomic_read(&VFS_I(ip)->i_dio_count))
1678 		return 0;
1679 
1680 	if (eofb) {
1681 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1682 			match = xfs_inode_match_id_union(ip, eofb);
1683 		else
1684 			match = xfs_inode_match_id(ip, eofb);
1685 		if (!match)
1686 			return 0;
1687 
1688 		/* skip the inode if the file size is too small */
1689 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1690 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1691 			return 0;
1692 	}
1693 
1694 	/* Free the CoW blocks */
1695 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1696 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1697 
1698 	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1699 
1700 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1701 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1702 
1703 	return ret;
1704 }
1705 
1706 int
1707 xfs_icache_free_cowblocks(
1708 	struct xfs_mount	*mp,
1709 	struct xfs_eofblocks	*eofb)
1710 {
1711 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1712 			XFS_ICI_COWBLOCKS_TAG);
1713 }
1714 
1715 int
1716 xfs_inode_free_quota_cowblocks(
1717 	struct xfs_inode *ip)
1718 {
1719 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1720 }
1721 
1722 void
1723 xfs_inode_set_cowblocks_tag(
1724 	xfs_inode_t	*ip)
1725 {
1726 	trace_xfs_inode_set_cowblocks_tag(ip);
1727 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1728 			trace_xfs_perag_set_cowblocks,
1729 			XFS_ICI_COWBLOCKS_TAG);
1730 }
1731 
1732 void
1733 xfs_inode_clear_cowblocks_tag(
1734 	xfs_inode_t	*ip)
1735 {
1736 	trace_xfs_inode_clear_cowblocks_tag(ip);
1737 	return __xfs_inode_clear_eofblocks_tag(ip,
1738 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1739 }
1740