xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25 #include "xfs_ialloc.h"
26 
27 #include <linux/iversion.h>
28 
29 /*
30  * Allocate and initialise an xfs_inode.
31  */
32 struct xfs_inode *
33 xfs_inode_alloc(
34 	struct xfs_mount	*mp,
35 	xfs_ino_t		ino)
36 {
37 	struct xfs_inode	*ip;
38 
39 	/*
40 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
41 	 * and return NULL here on ENOMEM.
42 	 */
43 	ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
44 
45 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
46 		kmem_cache_free(xfs_inode_zone, ip);
47 		return NULL;
48 	}
49 
50 	/* VFS doesn't initialise i_mode! */
51 	VFS_I(ip)->i_mode = 0;
52 
53 	XFS_STATS_INC(mp, vn_active);
54 	ASSERT(atomic_read(&ip->i_pincount) == 0);
55 	ASSERT(ip->i_ino == 0);
56 
57 	/* initialise the xfs inode */
58 	ip->i_ino = ino;
59 	ip->i_mount = mp;
60 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
61 	ip->i_afp = NULL;
62 	ip->i_cowfp = NULL;
63 	memset(&ip->i_df, 0, sizeof(ip->i_df));
64 	ip->i_flags = 0;
65 	ip->i_delayed_blks = 0;
66 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
67 	ip->i_nblocks = 0;
68 	ip->i_forkoff = 0;
69 	ip->i_sick = 0;
70 	ip->i_checked = 0;
71 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
72 	INIT_LIST_HEAD(&ip->i_ioend_list);
73 	spin_lock_init(&ip->i_ioend_lock);
74 
75 	return ip;
76 }
77 
78 STATIC void
79 xfs_inode_free_callback(
80 	struct rcu_head		*head)
81 {
82 	struct inode		*inode = container_of(head, struct inode, i_rcu);
83 	struct xfs_inode	*ip = XFS_I(inode);
84 
85 	switch (VFS_I(ip)->i_mode & S_IFMT) {
86 	case S_IFREG:
87 	case S_IFDIR:
88 	case S_IFLNK:
89 		xfs_idestroy_fork(&ip->i_df);
90 		break;
91 	}
92 
93 	if (ip->i_afp) {
94 		xfs_idestroy_fork(ip->i_afp);
95 		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
96 	}
97 	if (ip->i_cowfp) {
98 		xfs_idestroy_fork(ip->i_cowfp);
99 		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
100 	}
101 	if (ip->i_itemp) {
102 		ASSERT(!test_bit(XFS_LI_IN_AIL,
103 				 &ip->i_itemp->ili_item.li_flags));
104 		xfs_inode_item_destroy(ip);
105 		ip->i_itemp = NULL;
106 	}
107 
108 	kmem_cache_free(xfs_inode_zone, ip);
109 }
110 
111 static void
112 __xfs_inode_free(
113 	struct xfs_inode	*ip)
114 {
115 	/* asserts to verify all state is correct here */
116 	ASSERT(atomic_read(&ip->i_pincount) == 0);
117 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
118 	XFS_STATS_DEC(ip->i_mount, vn_active);
119 
120 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
121 }
122 
123 void
124 xfs_inode_free(
125 	struct xfs_inode	*ip)
126 {
127 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
128 
129 	/*
130 	 * Because we use RCU freeing we need to ensure the inode always
131 	 * appears to be reclaimed with an invalid inode number when in the
132 	 * free state. The ip->i_flags_lock provides the barrier against lookup
133 	 * races.
134 	 */
135 	spin_lock(&ip->i_flags_lock);
136 	ip->i_flags = XFS_IRECLAIM;
137 	ip->i_ino = 0;
138 	spin_unlock(&ip->i_flags_lock);
139 
140 	__xfs_inode_free(ip);
141 }
142 
143 /*
144  * Queue background inode reclaim work if there are reclaimable inodes and there
145  * isn't reclaim work already scheduled or in progress.
146  */
147 static void
148 xfs_reclaim_work_queue(
149 	struct xfs_mount        *mp)
150 {
151 
152 	rcu_read_lock();
153 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
154 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
155 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
156 	}
157 	rcu_read_unlock();
158 }
159 
160 static void
161 xfs_perag_set_reclaim_tag(
162 	struct xfs_perag	*pag)
163 {
164 	struct xfs_mount	*mp = pag->pag_mount;
165 
166 	lockdep_assert_held(&pag->pag_ici_lock);
167 	if (pag->pag_ici_reclaimable++)
168 		return;
169 
170 	/* propagate the reclaim tag up into the perag radix tree */
171 	spin_lock(&mp->m_perag_lock);
172 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
173 			   XFS_ICI_RECLAIM_TAG);
174 	spin_unlock(&mp->m_perag_lock);
175 
176 	/* schedule periodic background inode reclaim */
177 	xfs_reclaim_work_queue(mp);
178 
179 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
180 }
181 
182 static void
183 xfs_perag_clear_reclaim_tag(
184 	struct xfs_perag	*pag)
185 {
186 	struct xfs_mount	*mp = pag->pag_mount;
187 
188 	lockdep_assert_held(&pag->pag_ici_lock);
189 	if (--pag->pag_ici_reclaimable)
190 		return;
191 
192 	/* clear the reclaim tag from the perag radix tree */
193 	spin_lock(&mp->m_perag_lock);
194 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
195 			     XFS_ICI_RECLAIM_TAG);
196 	spin_unlock(&mp->m_perag_lock);
197 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
198 }
199 
200 
201 /*
202  * We set the inode flag atomically with the radix tree tag.
203  * Once we get tag lookups on the radix tree, this inode flag
204  * can go away.
205  */
206 void
207 xfs_inode_set_reclaim_tag(
208 	struct xfs_inode	*ip)
209 {
210 	struct xfs_mount	*mp = ip->i_mount;
211 	struct xfs_perag	*pag;
212 
213 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
214 	spin_lock(&pag->pag_ici_lock);
215 	spin_lock(&ip->i_flags_lock);
216 
217 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
218 			   XFS_ICI_RECLAIM_TAG);
219 	xfs_perag_set_reclaim_tag(pag);
220 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
221 
222 	spin_unlock(&ip->i_flags_lock);
223 	spin_unlock(&pag->pag_ici_lock);
224 	xfs_perag_put(pag);
225 }
226 
227 STATIC void
228 xfs_inode_clear_reclaim_tag(
229 	struct xfs_perag	*pag,
230 	xfs_ino_t		ino)
231 {
232 	radix_tree_tag_clear(&pag->pag_ici_root,
233 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
234 			     XFS_ICI_RECLAIM_TAG);
235 	xfs_perag_clear_reclaim_tag(pag);
236 }
237 
238 static void
239 xfs_inew_wait(
240 	struct xfs_inode	*ip)
241 {
242 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
243 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
244 
245 	do {
246 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
247 		if (!xfs_iflags_test(ip, XFS_INEW))
248 			break;
249 		schedule();
250 	} while (true);
251 	finish_wait(wq, &wait.wq_entry);
252 }
253 
254 /*
255  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
256  * part of the structure. This is made more complex by the fact we store
257  * information about the on-disk values in the VFS inode and so we can't just
258  * overwrite the values unconditionally. Hence we save the parameters we
259  * need to retain across reinitialisation, and rewrite them into the VFS inode
260  * after reinitialisation even if it fails.
261  */
262 static int
263 xfs_reinit_inode(
264 	struct xfs_mount	*mp,
265 	struct inode		*inode)
266 {
267 	int		error;
268 	uint32_t	nlink = inode->i_nlink;
269 	uint32_t	generation = inode->i_generation;
270 	uint64_t	version = inode_peek_iversion(inode);
271 	umode_t		mode = inode->i_mode;
272 	dev_t		dev = inode->i_rdev;
273 	kuid_t		uid = inode->i_uid;
274 	kgid_t		gid = inode->i_gid;
275 
276 	error = inode_init_always(mp->m_super, inode);
277 
278 	set_nlink(inode, nlink);
279 	inode->i_generation = generation;
280 	inode_set_iversion_queried(inode, version);
281 	inode->i_mode = mode;
282 	inode->i_rdev = dev;
283 	inode->i_uid = uid;
284 	inode->i_gid = gid;
285 	return error;
286 }
287 
288 /*
289  * If we are allocating a new inode, then check what was returned is
290  * actually a free, empty inode. If we are not allocating an inode,
291  * then check we didn't find a free inode.
292  *
293  * Returns:
294  *	0		if the inode free state matches the lookup context
295  *	-ENOENT		if the inode is free and we are not allocating
296  *	-EFSCORRUPTED	if there is any state mismatch at all
297  */
298 static int
299 xfs_iget_check_free_state(
300 	struct xfs_inode	*ip,
301 	int			flags)
302 {
303 	if (flags & XFS_IGET_CREATE) {
304 		/* should be a free inode */
305 		if (VFS_I(ip)->i_mode != 0) {
306 			xfs_warn(ip->i_mount,
307 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
308 				ip->i_ino, VFS_I(ip)->i_mode);
309 			return -EFSCORRUPTED;
310 		}
311 
312 		if (ip->i_nblocks != 0) {
313 			xfs_warn(ip->i_mount,
314 "Corruption detected! Free inode 0x%llx has blocks allocated!",
315 				ip->i_ino);
316 			return -EFSCORRUPTED;
317 		}
318 		return 0;
319 	}
320 
321 	/* should be an allocated inode */
322 	if (VFS_I(ip)->i_mode == 0)
323 		return -ENOENT;
324 
325 	return 0;
326 }
327 
328 /*
329  * Check the validity of the inode we just found it the cache
330  */
331 static int
332 xfs_iget_cache_hit(
333 	struct xfs_perag	*pag,
334 	struct xfs_inode	*ip,
335 	xfs_ino_t		ino,
336 	int			flags,
337 	int			lock_flags) __releases(RCU)
338 {
339 	struct inode		*inode = VFS_I(ip);
340 	struct xfs_mount	*mp = ip->i_mount;
341 	int			error;
342 
343 	/*
344 	 * check for re-use of an inode within an RCU grace period due to the
345 	 * radix tree nodes not being updated yet. We monitor for this by
346 	 * setting the inode number to zero before freeing the inode structure.
347 	 * If the inode has been reallocated and set up, then the inode number
348 	 * will not match, so check for that, too.
349 	 */
350 	spin_lock(&ip->i_flags_lock);
351 	if (ip->i_ino != ino) {
352 		trace_xfs_iget_skip(ip);
353 		XFS_STATS_INC(mp, xs_ig_frecycle);
354 		error = -EAGAIN;
355 		goto out_error;
356 	}
357 
358 
359 	/*
360 	 * If we are racing with another cache hit that is currently
361 	 * instantiating this inode or currently recycling it out of
362 	 * reclaimabe state, wait for the initialisation to complete
363 	 * before continuing.
364 	 *
365 	 * XXX(hch): eventually we should do something equivalent to
366 	 *	     wait_on_inode to wait for these flags to be cleared
367 	 *	     instead of polling for it.
368 	 */
369 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
370 		trace_xfs_iget_skip(ip);
371 		XFS_STATS_INC(mp, xs_ig_frecycle);
372 		error = -EAGAIN;
373 		goto out_error;
374 	}
375 
376 	/*
377 	 * Check the inode free state is valid. This also detects lookup
378 	 * racing with unlinks.
379 	 */
380 	error = xfs_iget_check_free_state(ip, flags);
381 	if (error)
382 		goto out_error;
383 
384 	/*
385 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
386 	 * Need to carefully get it back into useable state.
387 	 */
388 	if (ip->i_flags & XFS_IRECLAIMABLE) {
389 		trace_xfs_iget_reclaim(ip);
390 
391 		if (flags & XFS_IGET_INCORE) {
392 			error = -EAGAIN;
393 			goto out_error;
394 		}
395 
396 		/*
397 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
398 		 * from stomping over us while we recycle the inode.  We can't
399 		 * clear the radix tree reclaimable tag yet as it requires
400 		 * pag_ici_lock to be held exclusive.
401 		 */
402 		ip->i_flags |= XFS_IRECLAIM;
403 
404 		spin_unlock(&ip->i_flags_lock);
405 		rcu_read_unlock();
406 
407 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
408 		error = xfs_reinit_inode(mp, inode);
409 		if (error) {
410 			bool wake;
411 			/*
412 			 * Re-initializing the inode failed, and we are in deep
413 			 * trouble.  Try to re-add it to the reclaim list.
414 			 */
415 			rcu_read_lock();
416 			spin_lock(&ip->i_flags_lock);
417 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
418 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
419 			if (wake)
420 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
421 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
422 			trace_xfs_iget_reclaim_fail(ip);
423 			goto out_error;
424 		}
425 
426 		spin_lock(&pag->pag_ici_lock);
427 		spin_lock(&ip->i_flags_lock);
428 
429 		/*
430 		 * Clear the per-lifetime state in the inode as we are now
431 		 * effectively a new inode and need to return to the initial
432 		 * state before reuse occurs.
433 		 */
434 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
435 		ip->i_flags |= XFS_INEW;
436 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
437 		inode->i_state = I_NEW;
438 		ip->i_sick = 0;
439 		ip->i_checked = 0;
440 
441 		spin_unlock(&ip->i_flags_lock);
442 		spin_unlock(&pag->pag_ici_lock);
443 	} else {
444 		/* If the VFS inode is being torn down, pause and try again. */
445 		if (!igrab(inode)) {
446 			trace_xfs_iget_skip(ip);
447 			error = -EAGAIN;
448 			goto out_error;
449 		}
450 
451 		/* We've got a live one. */
452 		spin_unlock(&ip->i_flags_lock);
453 		rcu_read_unlock();
454 		trace_xfs_iget_hit(ip);
455 	}
456 
457 	if (lock_flags != 0)
458 		xfs_ilock(ip, lock_flags);
459 
460 	if (!(flags & XFS_IGET_INCORE))
461 		xfs_iflags_clear(ip, XFS_ISTALE);
462 	XFS_STATS_INC(mp, xs_ig_found);
463 
464 	return 0;
465 
466 out_error:
467 	spin_unlock(&ip->i_flags_lock);
468 	rcu_read_unlock();
469 	return error;
470 }
471 
472 
473 static int
474 xfs_iget_cache_miss(
475 	struct xfs_mount	*mp,
476 	struct xfs_perag	*pag,
477 	xfs_trans_t		*tp,
478 	xfs_ino_t		ino,
479 	struct xfs_inode	**ipp,
480 	int			flags,
481 	int			lock_flags)
482 {
483 	struct xfs_inode	*ip;
484 	int			error;
485 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
486 	int			iflags;
487 
488 	ip = xfs_inode_alloc(mp, ino);
489 	if (!ip)
490 		return -ENOMEM;
491 
492 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
493 	if (error)
494 		goto out_destroy;
495 
496 	/*
497 	 * For version 5 superblocks, if we are initialising a new inode and we
498 	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
499 	 * simply build the new inode core with a random generation number.
500 	 *
501 	 * For version 4 (and older) superblocks, log recovery is dependent on
502 	 * the i_flushiter field being initialised from the current on-disk
503 	 * value and hence we must also read the inode off disk even when
504 	 * initializing new inodes.
505 	 */
506 	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
507 	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
508 		VFS_I(ip)->i_generation = prandom_u32();
509 	} else {
510 		struct xfs_buf		*bp;
511 
512 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
513 		if (error)
514 			goto out_destroy;
515 
516 		error = xfs_inode_from_disk(ip,
517 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
518 		if (!error)
519 			xfs_buf_set_ref(bp, XFS_INO_REF);
520 		xfs_trans_brelse(tp, bp);
521 
522 		if (error)
523 			goto out_destroy;
524 	}
525 
526 	trace_xfs_iget_miss(ip);
527 
528 	/*
529 	 * Check the inode free state is valid. This also detects lookup
530 	 * racing with unlinks.
531 	 */
532 	error = xfs_iget_check_free_state(ip, flags);
533 	if (error)
534 		goto out_destroy;
535 
536 	/*
537 	 * Preload the radix tree so we can insert safely under the
538 	 * write spinlock. Note that we cannot sleep inside the preload
539 	 * region. Since we can be called from transaction context, don't
540 	 * recurse into the file system.
541 	 */
542 	if (radix_tree_preload(GFP_NOFS)) {
543 		error = -EAGAIN;
544 		goto out_destroy;
545 	}
546 
547 	/*
548 	 * Because the inode hasn't been added to the radix-tree yet it can't
549 	 * be found by another thread, so we can do the non-sleeping lock here.
550 	 */
551 	if (lock_flags) {
552 		if (!xfs_ilock_nowait(ip, lock_flags))
553 			BUG();
554 	}
555 
556 	/*
557 	 * These values must be set before inserting the inode into the radix
558 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
559 	 * RCU locking mechanism) can find it and that lookup must see that this
560 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
561 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
562 	 * memory barrier that ensures this detection works correctly at lookup
563 	 * time.
564 	 */
565 	iflags = XFS_INEW;
566 	if (flags & XFS_IGET_DONTCACHE)
567 		d_mark_dontcache(VFS_I(ip));
568 	ip->i_udquot = NULL;
569 	ip->i_gdquot = NULL;
570 	ip->i_pdquot = NULL;
571 	xfs_iflags_set(ip, iflags);
572 
573 	/* insert the new inode */
574 	spin_lock(&pag->pag_ici_lock);
575 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
576 	if (unlikely(error)) {
577 		WARN_ON(error != -EEXIST);
578 		XFS_STATS_INC(mp, xs_ig_dup);
579 		error = -EAGAIN;
580 		goto out_preload_end;
581 	}
582 	spin_unlock(&pag->pag_ici_lock);
583 	radix_tree_preload_end();
584 
585 	*ipp = ip;
586 	return 0;
587 
588 out_preload_end:
589 	spin_unlock(&pag->pag_ici_lock);
590 	radix_tree_preload_end();
591 	if (lock_flags)
592 		xfs_iunlock(ip, lock_flags);
593 out_destroy:
594 	__destroy_inode(VFS_I(ip));
595 	xfs_inode_free(ip);
596 	return error;
597 }
598 
599 /*
600  * Look up an inode by number in the given file system.  The inode is looked up
601  * in the cache held in each AG.  If the inode is found in the cache, initialise
602  * the vfs inode if necessary.
603  *
604  * If it is not in core, read it in from the file system's device, add it to the
605  * cache and initialise the vfs inode.
606  *
607  * The inode is locked according to the value of the lock_flags parameter.
608  * Inode lookup is only done during metadata operations and not as part of the
609  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
610  */
611 int
612 xfs_iget(
613 	struct xfs_mount	*mp,
614 	struct xfs_trans	*tp,
615 	xfs_ino_t		ino,
616 	uint			flags,
617 	uint			lock_flags,
618 	struct xfs_inode	**ipp)
619 {
620 	struct xfs_inode	*ip;
621 	struct xfs_perag	*pag;
622 	xfs_agino_t		agino;
623 	int			error;
624 
625 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
626 
627 	/* reject inode numbers outside existing AGs */
628 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
629 		return -EINVAL;
630 
631 	XFS_STATS_INC(mp, xs_ig_attempts);
632 
633 	/* get the perag structure and ensure that it's inode capable */
634 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
635 	agino = XFS_INO_TO_AGINO(mp, ino);
636 
637 again:
638 	error = 0;
639 	rcu_read_lock();
640 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
641 
642 	if (ip) {
643 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
644 		if (error)
645 			goto out_error_or_again;
646 	} else {
647 		rcu_read_unlock();
648 		if (flags & XFS_IGET_INCORE) {
649 			error = -ENODATA;
650 			goto out_error_or_again;
651 		}
652 		XFS_STATS_INC(mp, xs_ig_missed);
653 
654 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
655 							flags, lock_flags);
656 		if (error)
657 			goto out_error_or_again;
658 	}
659 	xfs_perag_put(pag);
660 
661 	*ipp = ip;
662 
663 	/*
664 	 * If we have a real type for an on-disk inode, we can setup the inode
665 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
666 	 */
667 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
668 		xfs_setup_existing_inode(ip);
669 	return 0;
670 
671 out_error_or_again:
672 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
673 		delay(1);
674 		goto again;
675 	}
676 	xfs_perag_put(pag);
677 	return error;
678 }
679 
680 /*
681  * "Is this a cached inode that's also allocated?"
682  *
683  * Look up an inode by number in the given file system.  If the inode is
684  * in cache and isn't in purgatory, return 1 if the inode is allocated
685  * and 0 if it is not.  For all other cases (not in cache, being torn
686  * down, etc.), return a negative error code.
687  *
688  * The caller has to prevent inode allocation and freeing activity,
689  * presumably by locking the AGI buffer.   This is to ensure that an
690  * inode cannot transition from allocated to freed until the caller is
691  * ready to allow that.  If the inode is in an intermediate state (new,
692  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
693  * inode is not in the cache, -ENOENT will be returned.  The caller must
694  * deal with these scenarios appropriately.
695  *
696  * This is a specialized use case for the online scrubber; if you're
697  * reading this, you probably want xfs_iget.
698  */
699 int
700 xfs_icache_inode_is_allocated(
701 	struct xfs_mount	*mp,
702 	struct xfs_trans	*tp,
703 	xfs_ino_t		ino,
704 	bool			*inuse)
705 {
706 	struct xfs_inode	*ip;
707 	int			error;
708 
709 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
710 	if (error)
711 		return error;
712 
713 	*inuse = !!(VFS_I(ip)->i_mode);
714 	xfs_irele(ip);
715 	return 0;
716 }
717 
718 /*
719  * The inode lookup is done in batches to keep the amount of lock traffic and
720  * radix tree lookups to a minimum. The batch size is a trade off between
721  * lookup reduction and stack usage. This is in the reclaim path, so we can't
722  * be too greedy.
723  */
724 #define XFS_LOOKUP_BATCH	32
725 
726 /*
727  * Decide if the given @ip is eligible to be a part of the inode walk, and
728  * grab it if so.  Returns true if it's ready to go or false if we should just
729  * ignore it.
730  */
731 STATIC bool
732 xfs_inode_walk_ag_grab(
733 	struct xfs_inode	*ip,
734 	int			flags)
735 {
736 	struct inode		*inode = VFS_I(ip);
737 	bool			newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
738 
739 	ASSERT(rcu_read_lock_held());
740 
741 	/* Check for stale RCU freed inode */
742 	spin_lock(&ip->i_flags_lock);
743 	if (!ip->i_ino)
744 		goto out_unlock_noent;
745 
746 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
747 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
748 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
749 		goto out_unlock_noent;
750 	spin_unlock(&ip->i_flags_lock);
751 
752 	/* nothing to sync during shutdown */
753 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
754 		return false;
755 
756 	/* If we can't grab the inode, it must on it's way to reclaim. */
757 	if (!igrab(inode))
758 		return false;
759 
760 	/* inode is valid */
761 	return true;
762 
763 out_unlock_noent:
764 	spin_unlock(&ip->i_flags_lock);
765 	return false;
766 }
767 
768 /*
769  * For a given per-AG structure @pag, grab, @execute, and rele all incore
770  * inodes with the given radix tree @tag.
771  */
772 STATIC int
773 xfs_inode_walk_ag(
774 	struct xfs_perag	*pag,
775 	int			iter_flags,
776 	int			(*execute)(struct xfs_inode *ip, void *args),
777 	void			*args,
778 	int			tag)
779 {
780 	struct xfs_mount	*mp = pag->pag_mount;
781 	uint32_t		first_index;
782 	int			last_error = 0;
783 	int			skipped;
784 	bool			done;
785 	int			nr_found;
786 
787 restart:
788 	done = false;
789 	skipped = 0;
790 	first_index = 0;
791 	nr_found = 0;
792 	do {
793 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
794 		int		error = 0;
795 		int		i;
796 
797 		rcu_read_lock();
798 
799 		if (tag == XFS_ICI_NO_TAG)
800 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
801 					(void **)batch, first_index,
802 					XFS_LOOKUP_BATCH);
803 		else
804 			nr_found = radix_tree_gang_lookup_tag(
805 					&pag->pag_ici_root,
806 					(void **) batch, first_index,
807 					XFS_LOOKUP_BATCH, tag);
808 
809 		if (!nr_found) {
810 			rcu_read_unlock();
811 			break;
812 		}
813 
814 		/*
815 		 * Grab the inodes before we drop the lock. if we found
816 		 * nothing, nr == 0 and the loop will be skipped.
817 		 */
818 		for (i = 0; i < nr_found; i++) {
819 			struct xfs_inode *ip = batch[i];
820 
821 			if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
822 				batch[i] = NULL;
823 
824 			/*
825 			 * Update the index for the next lookup. Catch
826 			 * overflows into the next AG range which can occur if
827 			 * we have inodes in the last block of the AG and we
828 			 * are currently pointing to the last inode.
829 			 *
830 			 * Because we may see inodes that are from the wrong AG
831 			 * due to RCU freeing and reallocation, only update the
832 			 * index if it lies in this AG. It was a race that lead
833 			 * us to see this inode, so another lookup from the
834 			 * same index will not find it again.
835 			 */
836 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
837 				continue;
838 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
839 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
840 				done = true;
841 		}
842 
843 		/* unlock now we've grabbed the inodes. */
844 		rcu_read_unlock();
845 
846 		for (i = 0; i < nr_found; i++) {
847 			if (!batch[i])
848 				continue;
849 			if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
850 			    xfs_iflags_test(batch[i], XFS_INEW))
851 				xfs_inew_wait(batch[i]);
852 			error = execute(batch[i], args);
853 			xfs_irele(batch[i]);
854 			if (error == -EAGAIN) {
855 				skipped++;
856 				continue;
857 			}
858 			if (error && last_error != -EFSCORRUPTED)
859 				last_error = error;
860 		}
861 
862 		/* bail out if the filesystem is corrupted.  */
863 		if (error == -EFSCORRUPTED)
864 			break;
865 
866 		cond_resched();
867 
868 	} while (nr_found && !done);
869 
870 	if (skipped) {
871 		delay(1);
872 		goto restart;
873 	}
874 	return last_error;
875 }
876 
877 /* Fetch the next (possibly tagged) per-AG structure. */
878 static inline struct xfs_perag *
879 xfs_inode_walk_get_perag(
880 	struct xfs_mount	*mp,
881 	xfs_agnumber_t		agno,
882 	int			tag)
883 {
884 	if (tag == XFS_ICI_NO_TAG)
885 		return xfs_perag_get(mp, agno);
886 	return xfs_perag_get_tag(mp, agno, tag);
887 }
888 
889 /*
890  * Call the @execute function on all incore inodes matching the radix tree
891  * @tag.
892  */
893 int
894 xfs_inode_walk(
895 	struct xfs_mount	*mp,
896 	int			iter_flags,
897 	int			(*execute)(struct xfs_inode *ip, void *args),
898 	void			*args,
899 	int			tag)
900 {
901 	struct xfs_perag	*pag;
902 	int			error = 0;
903 	int			last_error = 0;
904 	xfs_agnumber_t		ag;
905 
906 	ag = 0;
907 	while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
908 		ag = pag->pag_agno + 1;
909 		error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
910 		xfs_perag_put(pag);
911 		if (error) {
912 			last_error = error;
913 			if (error == -EFSCORRUPTED)
914 				break;
915 		}
916 	}
917 	return last_error;
918 }
919 
920 /*
921  * Grab the inode for reclaim exclusively.
922  *
923  * We have found this inode via a lookup under RCU, so the inode may have
924  * already been freed, or it may be in the process of being recycled by
925  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
926  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
927  * will not be set. Hence we need to check for both these flag conditions to
928  * avoid inodes that are no longer reclaim candidates.
929  *
930  * Note: checking for other state flags here, under the i_flags_lock or not, is
931  * racy and should be avoided. Those races should be resolved only after we have
932  * ensured that we are able to reclaim this inode and the world can see that we
933  * are going to reclaim it.
934  *
935  * Return true if we grabbed it, false otherwise.
936  */
937 static bool
938 xfs_reclaim_inode_grab(
939 	struct xfs_inode	*ip)
940 {
941 	ASSERT(rcu_read_lock_held());
942 
943 	spin_lock(&ip->i_flags_lock);
944 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
945 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
946 		/* not a reclaim candidate. */
947 		spin_unlock(&ip->i_flags_lock);
948 		return false;
949 	}
950 	__xfs_iflags_set(ip, XFS_IRECLAIM);
951 	spin_unlock(&ip->i_flags_lock);
952 	return true;
953 }
954 
955 /*
956  * Inode reclaim is non-blocking, so the default action if progress cannot be
957  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
958  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
959  * blocking anymore and hence we can wait for the inode to be able to reclaim
960  * it.
961  *
962  * We do no IO here - if callers require inodes to be cleaned they must push the
963  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
964  * done in the background in a non-blocking manner, and enables memory reclaim
965  * to make progress without blocking.
966  */
967 static void
968 xfs_reclaim_inode(
969 	struct xfs_inode	*ip,
970 	struct xfs_perag	*pag)
971 {
972 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
973 
974 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
975 		goto out;
976 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
977 		goto out_iunlock;
978 
979 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
980 		xfs_iunpin_wait(ip);
981 		xfs_iflush_abort(ip);
982 		goto reclaim;
983 	}
984 	if (xfs_ipincount(ip))
985 		goto out_clear_flush;
986 	if (!xfs_inode_clean(ip))
987 		goto out_clear_flush;
988 
989 	xfs_iflags_clear(ip, XFS_IFLUSHING);
990 reclaim:
991 
992 	/*
993 	 * Because we use RCU freeing we need to ensure the inode always appears
994 	 * to be reclaimed with an invalid inode number when in the free state.
995 	 * We do this as early as possible under the ILOCK so that
996 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
997 	 * detect races with us here. By doing this, we guarantee that once
998 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
999 	 * it will see either a valid inode that will serialise correctly, or it
1000 	 * will see an invalid inode that it can skip.
1001 	 */
1002 	spin_lock(&ip->i_flags_lock);
1003 	ip->i_flags = XFS_IRECLAIM;
1004 	ip->i_ino = 0;
1005 	spin_unlock(&ip->i_flags_lock);
1006 
1007 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1008 
1009 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1010 	/*
1011 	 * Remove the inode from the per-AG radix tree.
1012 	 *
1013 	 * Because radix_tree_delete won't complain even if the item was never
1014 	 * added to the tree assert that it's been there before to catch
1015 	 * problems with the inode life time early on.
1016 	 */
1017 	spin_lock(&pag->pag_ici_lock);
1018 	if (!radix_tree_delete(&pag->pag_ici_root,
1019 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1020 		ASSERT(0);
1021 	xfs_perag_clear_reclaim_tag(pag);
1022 	spin_unlock(&pag->pag_ici_lock);
1023 
1024 	/*
1025 	 * Here we do an (almost) spurious inode lock in order to coordinate
1026 	 * with inode cache radix tree lookups.  This is because the lookup
1027 	 * can reference the inodes in the cache without taking references.
1028 	 *
1029 	 * We make that OK here by ensuring that we wait until the inode is
1030 	 * unlocked after the lookup before we go ahead and free it.
1031 	 */
1032 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1033 	xfs_qm_dqdetach(ip);
1034 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1035 	ASSERT(xfs_inode_clean(ip));
1036 
1037 	__xfs_inode_free(ip);
1038 	return;
1039 
1040 out_clear_flush:
1041 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1042 out_iunlock:
1043 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1044 out:
1045 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1046 }
1047 
1048 /*
1049  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1050  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1051  * then a shut down during filesystem unmount reclaim walk leak all the
1052  * unreclaimed inodes.
1053  *
1054  * Returns non-zero if any AGs or inodes were skipped in the reclaim pass
1055  * so that callers that want to block until all dirty inodes are written back
1056  * and reclaimed can sanely loop.
1057  */
1058 static void
1059 xfs_reclaim_inodes_ag(
1060 	struct xfs_mount	*mp,
1061 	int			*nr_to_scan)
1062 {
1063 	struct xfs_perag	*pag;
1064 	xfs_agnumber_t		ag = 0;
1065 
1066 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1067 		unsigned long	first_index = 0;
1068 		int		done = 0;
1069 		int		nr_found = 0;
1070 
1071 		ag = pag->pag_agno + 1;
1072 
1073 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1074 		do {
1075 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1076 			int	i;
1077 
1078 			rcu_read_lock();
1079 			nr_found = radix_tree_gang_lookup_tag(
1080 					&pag->pag_ici_root,
1081 					(void **)batch, first_index,
1082 					XFS_LOOKUP_BATCH,
1083 					XFS_ICI_RECLAIM_TAG);
1084 			if (!nr_found) {
1085 				done = 1;
1086 				rcu_read_unlock();
1087 				break;
1088 			}
1089 
1090 			/*
1091 			 * Grab the inodes before we drop the lock. if we found
1092 			 * nothing, nr == 0 and the loop will be skipped.
1093 			 */
1094 			for (i = 0; i < nr_found; i++) {
1095 				struct xfs_inode *ip = batch[i];
1096 
1097 				if (done || !xfs_reclaim_inode_grab(ip))
1098 					batch[i] = NULL;
1099 
1100 				/*
1101 				 * Update the index for the next lookup. Catch
1102 				 * overflows into the next AG range which can
1103 				 * occur if we have inodes in the last block of
1104 				 * the AG and we are currently pointing to the
1105 				 * last inode.
1106 				 *
1107 				 * Because we may see inodes that are from the
1108 				 * wrong AG due to RCU freeing and
1109 				 * reallocation, only update the index if it
1110 				 * lies in this AG. It was a race that lead us
1111 				 * to see this inode, so another lookup from
1112 				 * the same index will not find it again.
1113 				 */
1114 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1115 								pag->pag_agno)
1116 					continue;
1117 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1118 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1119 					done = 1;
1120 			}
1121 
1122 			/* unlock now we've grabbed the inodes. */
1123 			rcu_read_unlock();
1124 
1125 			for (i = 0; i < nr_found; i++) {
1126 				if (batch[i])
1127 					xfs_reclaim_inode(batch[i], pag);
1128 			}
1129 
1130 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1131 			cond_resched();
1132 		} while (nr_found && !done && *nr_to_scan > 0);
1133 
1134 		if (done)
1135 			first_index = 0;
1136 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1137 		xfs_perag_put(pag);
1138 	}
1139 }
1140 
1141 void
1142 xfs_reclaim_inodes(
1143 	struct xfs_mount	*mp)
1144 {
1145 	int		nr_to_scan = INT_MAX;
1146 
1147 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1148 		xfs_ail_push_all_sync(mp->m_ail);
1149 		xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1150 	}
1151 }
1152 
1153 /*
1154  * The shrinker infrastructure determines how many inodes we should scan for
1155  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1156  * push the AIL here. We also want to proactively free up memory if we can to
1157  * minimise the amount of work memory reclaim has to do so we kick the
1158  * background reclaim if it isn't already scheduled.
1159  */
1160 long
1161 xfs_reclaim_inodes_nr(
1162 	struct xfs_mount	*mp,
1163 	int			nr_to_scan)
1164 {
1165 	/* kick background reclaimer and push the AIL */
1166 	xfs_reclaim_work_queue(mp);
1167 	xfs_ail_push_all(mp->m_ail);
1168 
1169 	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1170 	return 0;
1171 }
1172 
1173 /*
1174  * Return the number of reclaimable inodes in the filesystem for
1175  * the shrinker to determine how much to reclaim.
1176  */
1177 int
1178 xfs_reclaim_inodes_count(
1179 	struct xfs_mount	*mp)
1180 {
1181 	struct xfs_perag	*pag;
1182 	xfs_agnumber_t		ag = 0;
1183 	int			reclaimable = 0;
1184 
1185 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1186 		ag = pag->pag_agno + 1;
1187 		reclaimable += pag->pag_ici_reclaimable;
1188 		xfs_perag_put(pag);
1189 	}
1190 	return reclaimable;
1191 }
1192 
1193 STATIC bool
1194 xfs_inode_match_id(
1195 	struct xfs_inode	*ip,
1196 	struct xfs_eofblocks	*eofb)
1197 {
1198 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1199 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1200 		return false;
1201 
1202 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1203 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1204 		return false;
1205 
1206 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1207 	    ip->i_projid != eofb->eof_prid)
1208 		return false;
1209 
1210 	return true;
1211 }
1212 
1213 /*
1214  * A union-based inode filtering algorithm. Process the inode if any of the
1215  * criteria match. This is for global/internal scans only.
1216  */
1217 STATIC bool
1218 xfs_inode_match_id_union(
1219 	struct xfs_inode	*ip,
1220 	struct xfs_eofblocks	*eofb)
1221 {
1222 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1223 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1224 		return true;
1225 
1226 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1227 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1228 		return true;
1229 
1230 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1231 	    ip->i_projid == eofb->eof_prid)
1232 		return true;
1233 
1234 	return false;
1235 }
1236 
1237 /*
1238  * Is this inode @ip eligible for eof/cow block reclamation, given some
1239  * filtering parameters @eofb?  The inode is eligible if @eofb is null or
1240  * if the predicate functions match.
1241  */
1242 static bool
1243 xfs_inode_matches_eofb(
1244 	struct xfs_inode	*ip,
1245 	struct xfs_eofblocks	*eofb)
1246 {
1247 	bool			match;
1248 
1249 	if (!eofb)
1250 		return true;
1251 
1252 	if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1253 		match = xfs_inode_match_id_union(ip, eofb);
1254 	else
1255 		match = xfs_inode_match_id(ip, eofb);
1256 	if (!match)
1257 		return false;
1258 
1259 	/* skip the inode if the file size is too small */
1260 	if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
1261 	    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1262 		return false;
1263 
1264 	return true;
1265 }
1266 
1267 /*
1268  * This is a fast pass over the inode cache to try to get reclaim moving on as
1269  * many inodes as possible in a short period of time. It kicks itself every few
1270  * seconds, as well as being kicked by the inode cache shrinker when memory
1271  * goes low.
1272  */
1273 void
1274 xfs_reclaim_worker(
1275 	struct work_struct *work)
1276 {
1277 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1278 					struct xfs_mount, m_reclaim_work);
1279 	int		nr_to_scan = INT_MAX;
1280 
1281 	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1282 	xfs_reclaim_work_queue(mp);
1283 }
1284 
1285 STATIC int
1286 xfs_inode_free_eofblocks(
1287 	struct xfs_inode	*ip,
1288 	void			*args,
1289 	unsigned int		*lockflags)
1290 {
1291 	struct xfs_eofblocks	*eofb = args;
1292 	bool			wait;
1293 
1294 	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1295 
1296 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1297 		return 0;
1298 
1299 	/*
1300 	 * If the mapping is dirty the operation can block and wait for some
1301 	 * time. Unless we are waiting, skip it.
1302 	 */
1303 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1304 		return 0;
1305 
1306 	if (!xfs_inode_matches_eofb(ip, eofb))
1307 		return 0;
1308 
1309 	/*
1310 	 * If the caller is waiting, return -EAGAIN to keep the background
1311 	 * scanner moving and revisit the inode in a subsequent pass.
1312 	 */
1313 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1314 		if (wait)
1315 			return -EAGAIN;
1316 		return 0;
1317 	}
1318 	*lockflags |= XFS_IOLOCK_EXCL;
1319 
1320 	if (xfs_can_free_eofblocks(ip, false))
1321 		return xfs_free_eofblocks(ip);
1322 
1323 	/* inode could be preallocated or append-only */
1324 	trace_xfs_inode_free_eofblocks_invalid(ip);
1325 	xfs_inode_clear_eofblocks_tag(ip);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Background scanning to trim preallocated space. This is queued based on the
1331  * 'speculative_prealloc_lifetime' tunable (5m by default).
1332  */
1333 static inline void
1334 xfs_blockgc_queue(
1335 	struct xfs_perag	*pag)
1336 {
1337 	rcu_read_lock();
1338 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
1339 		queue_delayed_work(pag->pag_mount->m_gc_workqueue,
1340 				   &pag->pag_blockgc_work,
1341 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
1342 	rcu_read_unlock();
1343 }
1344 
1345 static void
1346 xfs_blockgc_set_iflag(
1347 	struct xfs_inode	*ip,
1348 	unsigned long		iflag)
1349 {
1350 	struct xfs_mount	*mp = ip->i_mount;
1351 	struct xfs_perag	*pag;
1352 	int			tagged;
1353 
1354 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1355 
1356 	/*
1357 	 * Don't bother locking the AG and looking up in the radix trees
1358 	 * if we already know that we have the tag set.
1359 	 */
1360 	if (ip->i_flags & iflag)
1361 		return;
1362 	spin_lock(&ip->i_flags_lock);
1363 	ip->i_flags |= iflag;
1364 	spin_unlock(&ip->i_flags_lock);
1365 
1366 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1367 	spin_lock(&pag->pag_ici_lock);
1368 
1369 	tagged = radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG);
1370 	radix_tree_tag_set(&pag->pag_ici_root,
1371 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1372 			   XFS_ICI_BLOCKGC_TAG);
1373 	if (!tagged) {
1374 		/* propagate the blockgc tag up into the perag radix tree */
1375 		spin_lock(&ip->i_mount->m_perag_lock);
1376 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1377 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1378 				   XFS_ICI_BLOCKGC_TAG);
1379 		spin_unlock(&ip->i_mount->m_perag_lock);
1380 
1381 		/* kick off background trimming */
1382 		xfs_blockgc_queue(pag);
1383 
1384 		trace_xfs_perag_set_blockgc(ip->i_mount, pag->pag_agno, -1,
1385 				_RET_IP_);
1386 	}
1387 
1388 	spin_unlock(&pag->pag_ici_lock);
1389 	xfs_perag_put(pag);
1390 }
1391 
1392 void
1393 xfs_inode_set_eofblocks_tag(
1394 	xfs_inode_t	*ip)
1395 {
1396 	trace_xfs_inode_set_eofblocks_tag(ip);
1397 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1398 }
1399 
1400 static void
1401 xfs_blockgc_clear_iflag(
1402 	struct xfs_inode	*ip,
1403 	unsigned long		iflag)
1404 {
1405 	struct xfs_mount	*mp = ip->i_mount;
1406 	struct xfs_perag	*pag;
1407 	bool			clear_tag;
1408 
1409 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1410 
1411 	spin_lock(&ip->i_flags_lock);
1412 	ip->i_flags &= ~iflag;
1413 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1414 	spin_unlock(&ip->i_flags_lock);
1415 
1416 	if (!clear_tag)
1417 		return;
1418 
1419 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1420 	spin_lock(&pag->pag_ici_lock);
1421 
1422 	radix_tree_tag_clear(&pag->pag_ici_root,
1423 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1424 			     XFS_ICI_BLOCKGC_TAG);
1425 	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) {
1426 		/* clear the blockgc tag from the perag radix tree */
1427 		spin_lock(&ip->i_mount->m_perag_lock);
1428 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1429 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1430 				     XFS_ICI_BLOCKGC_TAG);
1431 		spin_unlock(&ip->i_mount->m_perag_lock);
1432 		trace_xfs_perag_clear_blockgc(ip->i_mount, pag->pag_agno, -1,
1433 				_RET_IP_);
1434 	}
1435 
1436 	spin_unlock(&pag->pag_ici_lock);
1437 	xfs_perag_put(pag);
1438 }
1439 
1440 void
1441 xfs_inode_clear_eofblocks_tag(
1442 	xfs_inode_t	*ip)
1443 {
1444 	trace_xfs_inode_clear_eofblocks_tag(ip);
1445 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1446 }
1447 
1448 /*
1449  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1450  * then we can bail out quickly, but otherwise we must back off if the file
1451  * is undergoing some kind of write.
1452  */
1453 static bool
1454 xfs_prep_free_cowblocks(
1455 	struct xfs_inode	*ip)
1456 {
1457 	/*
1458 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1459 	 * possible the inode was fully unshared since it was originally tagged.
1460 	 */
1461 	if (!xfs_inode_has_cow_data(ip)) {
1462 		trace_xfs_inode_free_cowblocks_invalid(ip);
1463 		xfs_inode_clear_cowblocks_tag(ip);
1464 		return false;
1465 	}
1466 
1467 	/*
1468 	 * If the mapping is dirty or under writeback we cannot touch the
1469 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1470 	 */
1471 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1472 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1473 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1474 	    atomic_read(&VFS_I(ip)->i_dio_count))
1475 		return false;
1476 
1477 	return true;
1478 }
1479 
1480 /*
1481  * Automatic CoW Reservation Freeing
1482  *
1483  * These functions automatically garbage collect leftover CoW reservations
1484  * that were made on behalf of a cowextsize hint when we start to run out
1485  * of quota or when the reservations sit around for too long.  If the file
1486  * has dirty pages or is undergoing writeback, its CoW reservations will
1487  * be retained.
1488  *
1489  * The actual garbage collection piggybacks off the same code that runs
1490  * the speculative EOF preallocation garbage collector.
1491  */
1492 STATIC int
1493 xfs_inode_free_cowblocks(
1494 	struct xfs_inode	*ip,
1495 	void			*args,
1496 	unsigned int		*lockflags)
1497 {
1498 	struct xfs_eofblocks	*eofb = args;
1499 	bool			wait;
1500 	int			ret = 0;
1501 
1502 	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1503 
1504 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1505 		return 0;
1506 
1507 	if (!xfs_prep_free_cowblocks(ip))
1508 		return 0;
1509 
1510 	if (!xfs_inode_matches_eofb(ip, eofb))
1511 		return 0;
1512 
1513 	/*
1514 	 * If the caller is waiting, return -EAGAIN to keep the background
1515 	 * scanner moving and revisit the inode in a subsequent pass.
1516 	 */
1517 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1518 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1519 		if (wait)
1520 			return -EAGAIN;
1521 		return 0;
1522 	}
1523 	*lockflags |= XFS_IOLOCK_EXCL;
1524 
1525 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1526 		if (wait)
1527 			return -EAGAIN;
1528 		return 0;
1529 	}
1530 	*lockflags |= XFS_MMAPLOCK_EXCL;
1531 
1532 	/*
1533 	 * Check again, nobody else should be able to dirty blocks or change
1534 	 * the reflink iflag now that we have the first two locks held.
1535 	 */
1536 	if (xfs_prep_free_cowblocks(ip))
1537 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1538 	return ret;
1539 }
1540 
1541 void
1542 xfs_inode_set_cowblocks_tag(
1543 	xfs_inode_t	*ip)
1544 {
1545 	trace_xfs_inode_set_cowblocks_tag(ip);
1546 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1547 }
1548 
1549 void
1550 xfs_inode_clear_cowblocks_tag(
1551 	xfs_inode_t	*ip)
1552 {
1553 	trace_xfs_inode_clear_cowblocks_tag(ip);
1554 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1555 }
1556 
1557 #define for_each_perag_tag(mp, next_agno, pag, tag) \
1558 	for ((next_agno) = 0, (pag) = xfs_perag_get_tag((mp), 0, (tag)); \
1559 		(pag) != NULL; \
1560 		(next_agno) = (pag)->pag_agno + 1, \
1561 		xfs_perag_put(pag), \
1562 		(pag) = xfs_perag_get_tag((mp), (next_agno), (tag)))
1563 
1564 
1565 /* Disable post-EOF and CoW block auto-reclamation. */
1566 void
1567 xfs_blockgc_stop(
1568 	struct xfs_mount	*mp)
1569 {
1570 	struct xfs_perag	*pag;
1571 	xfs_agnumber_t		agno;
1572 
1573 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1574 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1575 }
1576 
1577 /* Enable post-EOF and CoW block auto-reclamation. */
1578 void
1579 xfs_blockgc_start(
1580 	struct xfs_mount	*mp)
1581 {
1582 	struct xfs_perag	*pag;
1583 	xfs_agnumber_t		agno;
1584 
1585 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1586 		xfs_blockgc_queue(pag);
1587 }
1588 
1589 /* Scan one incore inode for block preallocations that we can remove. */
1590 static int
1591 xfs_blockgc_scan_inode(
1592 	struct xfs_inode	*ip,
1593 	void			*args)
1594 {
1595 	unsigned int		lockflags = 0;
1596 	int			error;
1597 
1598 	error = xfs_inode_free_eofblocks(ip, args, &lockflags);
1599 	if (error)
1600 		goto unlock;
1601 
1602 	error = xfs_inode_free_cowblocks(ip, args, &lockflags);
1603 unlock:
1604 	if (lockflags)
1605 		xfs_iunlock(ip, lockflags);
1606 	return error;
1607 }
1608 
1609 /* Background worker that trims preallocated space. */
1610 void
1611 xfs_blockgc_worker(
1612 	struct work_struct	*work)
1613 {
1614 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1615 					struct xfs_perag, pag_blockgc_work);
1616 	struct xfs_mount	*mp = pag->pag_mount;
1617 	int			error;
1618 
1619 	if (!sb_start_write_trylock(mp->m_super))
1620 		return;
1621 	error = xfs_inode_walk_ag(pag, 0, xfs_blockgc_scan_inode, NULL,
1622 			XFS_ICI_BLOCKGC_TAG);
1623 	if (error)
1624 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1625 				pag->pag_agno, error);
1626 	sb_end_write(mp->m_super);
1627 	xfs_blockgc_queue(pag);
1628 }
1629 
1630 /*
1631  * Try to free space in the filesystem by purging eofblocks and cowblocks.
1632  */
1633 int
1634 xfs_blockgc_free_space(
1635 	struct xfs_mount	*mp,
1636 	struct xfs_eofblocks	*eofb)
1637 {
1638 	trace_xfs_blockgc_free_space(mp, eofb, _RET_IP_);
1639 
1640 	return xfs_inode_walk(mp, 0, xfs_blockgc_scan_inode, eofb,
1641 			XFS_ICI_BLOCKGC_TAG);
1642 }
1643 
1644 /*
1645  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1646  * quota caused an allocation failure, so we make a best effort by including
1647  * each quota under low free space conditions (less than 1% free space) in the
1648  * scan.
1649  *
1650  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1651  * (XFS_EOF_FLAGS_SYNC), the caller also must not hold any inode's IOLOCK or
1652  * MMAPLOCK.
1653  */
1654 int
1655 xfs_blockgc_free_dquots(
1656 	struct xfs_mount	*mp,
1657 	struct xfs_dquot	*udqp,
1658 	struct xfs_dquot	*gdqp,
1659 	struct xfs_dquot	*pdqp,
1660 	unsigned int		eof_flags)
1661 {
1662 	struct xfs_eofblocks	eofb = {0};
1663 	bool			do_work = false;
1664 
1665 	if (!udqp && !gdqp && !pdqp)
1666 		return 0;
1667 
1668 	/*
1669 	 * Run a scan to free blocks using the union filter to cover all
1670 	 * applicable quotas in a single scan.
1671 	 */
1672 	eofb.eof_flags = XFS_EOF_FLAGS_UNION | eof_flags;
1673 
1674 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1675 		eofb.eof_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1676 		eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1677 		do_work = true;
1678 	}
1679 
1680 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1681 		eofb.eof_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1682 		eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1683 		do_work = true;
1684 	}
1685 
1686 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1687 		eofb.eof_prid = pdqp->q_id;
1688 		eofb.eof_flags |= XFS_EOF_FLAGS_PRID;
1689 		do_work = true;
1690 	}
1691 
1692 	if (!do_work)
1693 		return 0;
1694 
1695 	return xfs_blockgc_free_space(mp, &eofb);
1696 }
1697 
1698 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1699 int
1700 xfs_blockgc_free_quota(
1701 	struct xfs_inode	*ip,
1702 	unsigned int		eof_flags)
1703 {
1704 	return xfs_blockgc_free_dquots(ip->i_mount,
1705 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1706 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1707 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), eof_flags);
1708 }
1709