xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/iversion.h>
41 
42 /*
43  * Allocate and initialise an xfs_inode.
44  */
45 struct xfs_inode *
46 xfs_inode_alloc(
47 	struct xfs_mount	*mp,
48 	xfs_ino_t		ino)
49 {
50 	struct xfs_inode	*ip;
51 
52 	/*
53 	 * if this didn't occur in transactions, we could use
54 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
55 	 * code up to do this anyway.
56 	 */
57 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
58 	if (!ip)
59 		return NULL;
60 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
61 		kmem_zone_free(xfs_inode_zone, ip);
62 		return NULL;
63 	}
64 
65 	/* VFS doesn't initialise i_mode! */
66 	VFS_I(ip)->i_mode = 0;
67 
68 	XFS_STATS_INC(mp, vn_active);
69 	ASSERT(atomic_read(&ip->i_pincount) == 0);
70 	ASSERT(!xfs_isiflocked(ip));
71 	ASSERT(ip->i_ino == 0);
72 
73 	/* initialise the xfs inode */
74 	ip->i_ino = ino;
75 	ip->i_mount = mp;
76 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 	ip->i_afp = NULL;
78 	ip->i_cowfp = NULL;
79 	ip->i_cnextents = 0;
80 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
81 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 	ip->i_flags = 0;
83 	ip->i_delayed_blks = 0;
84 	memset(&ip->i_d, 0, sizeof(ip->i_d));
85 
86 	return ip;
87 }
88 
89 STATIC void
90 xfs_inode_free_callback(
91 	struct rcu_head		*head)
92 {
93 	struct inode		*inode = container_of(head, struct inode, i_rcu);
94 	struct xfs_inode	*ip = XFS_I(inode);
95 
96 	switch (VFS_I(ip)->i_mode & S_IFMT) {
97 	case S_IFREG:
98 	case S_IFDIR:
99 	case S_IFLNK:
100 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 		break;
102 	}
103 
104 	if (ip->i_afp)
105 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
106 	if (ip->i_cowfp)
107 		xfs_idestroy_fork(ip, XFS_COW_FORK);
108 
109 	if (ip->i_itemp) {
110 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
111 		xfs_inode_item_destroy(ip);
112 		ip->i_itemp = NULL;
113 	}
114 
115 	kmem_zone_free(xfs_inode_zone, ip);
116 }
117 
118 static void
119 __xfs_inode_free(
120 	struct xfs_inode	*ip)
121 {
122 	/* asserts to verify all state is correct here */
123 	ASSERT(atomic_read(&ip->i_pincount) == 0);
124 	XFS_STATS_DEC(ip->i_mount, vn_active);
125 
126 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
127 }
128 
129 void
130 xfs_inode_free(
131 	struct xfs_inode	*ip)
132 {
133 	ASSERT(!xfs_isiflocked(ip));
134 
135 	/*
136 	 * Because we use RCU freeing we need to ensure the inode always
137 	 * appears to be reclaimed with an invalid inode number when in the
138 	 * free state. The ip->i_flags_lock provides the barrier against lookup
139 	 * races.
140 	 */
141 	spin_lock(&ip->i_flags_lock);
142 	ip->i_flags = XFS_IRECLAIM;
143 	ip->i_ino = 0;
144 	spin_unlock(&ip->i_flags_lock);
145 
146 	__xfs_inode_free(ip);
147 }
148 
149 /*
150  * Queue a new inode reclaim pass if there are reclaimable inodes and there
151  * isn't a reclaim pass already in progress. By default it runs every 5s based
152  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153  * tunable, but that can be done if this method proves to be ineffective or too
154  * aggressive.
155  */
156 static void
157 xfs_reclaim_work_queue(
158 	struct xfs_mount        *mp)
159 {
160 
161 	rcu_read_lock();
162 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
163 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
164 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
165 	}
166 	rcu_read_unlock();
167 }
168 
169 /*
170  * This is a fast pass over the inode cache to try to get reclaim moving on as
171  * many inodes as possible in a short period of time. It kicks itself every few
172  * seconds, as well as being kicked by the inode cache shrinker when memory
173  * goes low. It scans as quickly as possible avoiding locked inodes or those
174  * already being flushed, and once done schedules a future pass.
175  */
176 void
177 xfs_reclaim_worker(
178 	struct work_struct *work)
179 {
180 	struct xfs_mount *mp = container_of(to_delayed_work(work),
181 					struct xfs_mount, m_reclaim_work);
182 
183 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
184 	xfs_reclaim_work_queue(mp);
185 }
186 
187 static void
188 xfs_perag_set_reclaim_tag(
189 	struct xfs_perag	*pag)
190 {
191 	struct xfs_mount	*mp = pag->pag_mount;
192 
193 	lockdep_assert_held(&pag->pag_ici_lock);
194 	if (pag->pag_ici_reclaimable++)
195 		return;
196 
197 	/* propagate the reclaim tag up into the perag radix tree */
198 	spin_lock(&mp->m_perag_lock);
199 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
200 			   XFS_ICI_RECLAIM_TAG);
201 	spin_unlock(&mp->m_perag_lock);
202 
203 	/* schedule periodic background inode reclaim */
204 	xfs_reclaim_work_queue(mp);
205 
206 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
207 }
208 
209 static void
210 xfs_perag_clear_reclaim_tag(
211 	struct xfs_perag	*pag)
212 {
213 	struct xfs_mount	*mp = pag->pag_mount;
214 
215 	lockdep_assert_held(&pag->pag_ici_lock);
216 	if (--pag->pag_ici_reclaimable)
217 		return;
218 
219 	/* clear the reclaim tag from the perag radix tree */
220 	spin_lock(&mp->m_perag_lock);
221 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
222 			     XFS_ICI_RECLAIM_TAG);
223 	spin_unlock(&mp->m_perag_lock);
224 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
225 }
226 
227 
228 /*
229  * We set the inode flag atomically with the radix tree tag.
230  * Once we get tag lookups on the radix tree, this inode flag
231  * can go away.
232  */
233 void
234 xfs_inode_set_reclaim_tag(
235 	struct xfs_inode	*ip)
236 {
237 	struct xfs_mount	*mp = ip->i_mount;
238 	struct xfs_perag	*pag;
239 
240 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
241 	spin_lock(&pag->pag_ici_lock);
242 	spin_lock(&ip->i_flags_lock);
243 
244 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
245 			   XFS_ICI_RECLAIM_TAG);
246 	xfs_perag_set_reclaim_tag(pag);
247 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
248 
249 	spin_unlock(&ip->i_flags_lock);
250 	spin_unlock(&pag->pag_ici_lock);
251 	xfs_perag_put(pag);
252 }
253 
254 STATIC void
255 xfs_inode_clear_reclaim_tag(
256 	struct xfs_perag	*pag,
257 	xfs_ino_t		ino)
258 {
259 	radix_tree_tag_clear(&pag->pag_ici_root,
260 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
261 			     XFS_ICI_RECLAIM_TAG);
262 	xfs_perag_clear_reclaim_tag(pag);
263 }
264 
265 static void
266 xfs_inew_wait(
267 	struct xfs_inode	*ip)
268 {
269 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
270 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
271 
272 	do {
273 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
274 		if (!xfs_iflags_test(ip, XFS_INEW))
275 			break;
276 		schedule();
277 	} while (true);
278 	finish_wait(wq, &wait.wq_entry);
279 }
280 
281 /*
282  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
283  * part of the structure. This is made more complex by the fact we store
284  * information about the on-disk values in the VFS inode and so we can't just
285  * overwrite the values unconditionally. Hence we save the parameters we
286  * need to retain across reinitialisation, and rewrite them into the VFS inode
287  * after reinitialisation even if it fails.
288  */
289 static int
290 xfs_reinit_inode(
291 	struct xfs_mount	*mp,
292 	struct inode		*inode)
293 {
294 	int		error;
295 	uint32_t	nlink = inode->i_nlink;
296 	uint32_t	generation = inode->i_generation;
297 	uint64_t	version = inode_peek_iversion(inode);
298 	umode_t		mode = inode->i_mode;
299 	dev_t		dev = inode->i_rdev;
300 
301 	error = inode_init_always(mp->m_super, inode);
302 
303 	set_nlink(inode, nlink);
304 	inode->i_generation = generation;
305 	inode_set_iversion_queried(inode, version);
306 	inode->i_mode = mode;
307 	inode->i_rdev = dev;
308 	return error;
309 }
310 
311 /*
312  * Check the validity of the inode we just found it the cache
313  */
314 static int
315 xfs_iget_cache_hit(
316 	struct xfs_perag	*pag,
317 	struct xfs_inode	*ip,
318 	xfs_ino_t		ino,
319 	int			flags,
320 	int			lock_flags) __releases(RCU)
321 {
322 	struct inode		*inode = VFS_I(ip);
323 	struct xfs_mount	*mp = ip->i_mount;
324 	int			error;
325 
326 	/*
327 	 * check for re-use of an inode within an RCU grace period due to the
328 	 * radix tree nodes not being updated yet. We monitor for this by
329 	 * setting the inode number to zero before freeing the inode structure.
330 	 * If the inode has been reallocated and set up, then the inode number
331 	 * will not match, so check for that, too.
332 	 */
333 	spin_lock(&ip->i_flags_lock);
334 	if (ip->i_ino != ino) {
335 		trace_xfs_iget_skip(ip);
336 		XFS_STATS_INC(mp, xs_ig_frecycle);
337 		error = -EAGAIN;
338 		goto out_error;
339 	}
340 
341 
342 	/*
343 	 * If we are racing with another cache hit that is currently
344 	 * instantiating this inode or currently recycling it out of
345 	 * reclaimabe state, wait for the initialisation to complete
346 	 * before continuing.
347 	 *
348 	 * XXX(hch): eventually we should do something equivalent to
349 	 *	     wait_on_inode to wait for these flags to be cleared
350 	 *	     instead of polling for it.
351 	 */
352 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
353 		trace_xfs_iget_skip(ip);
354 		XFS_STATS_INC(mp, xs_ig_frecycle);
355 		error = -EAGAIN;
356 		goto out_error;
357 	}
358 
359 	/*
360 	 * If lookup is racing with unlink return an error immediately.
361 	 */
362 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
363 		error = -ENOENT;
364 		goto out_error;
365 	}
366 
367 	/*
368 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
369 	 * Need to carefully get it back into useable state.
370 	 */
371 	if (ip->i_flags & XFS_IRECLAIMABLE) {
372 		trace_xfs_iget_reclaim(ip);
373 
374 		if (flags & XFS_IGET_INCORE) {
375 			error = -EAGAIN;
376 			goto out_error;
377 		}
378 
379 		/*
380 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
381 		 * from stomping over us while we recycle the inode.  We can't
382 		 * clear the radix tree reclaimable tag yet as it requires
383 		 * pag_ici_lock to be held exclusive.
384 		 */
385 		ip->i_flags |= XFS_IRECLAIM;
386 
387 		spin_unlock(&ip->i_flags_lock);
388 		rcu_read_unlock();
389 
390 		error = xfs_reinit_inode(mp, inode);
391 		if (error) {
392 			bool wake;
393 			/*
394 			 * Re-initializing the inode failed, and we are in deep
395 			 * trouble.  Try to re-add it to the reclaim list.
396 			 */
397 			rcu_read_lock();
398 			spin_lock(&ip->i_flags_lock);
399 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
400 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
401 			if (wake)
402 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
403 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
404 			trace_xfs_iget_reclaim_fail(ip);
405 			goto out_error;
406 		}
407 
408 		spin_lock(&pag->pag_ici_lock);
409 		spin_lock(&ip->i_flags_lock);
410 
411 		/*
412 		 * Clear the per-lifetime state in the inode as we are now
413 		 * effectively a new inode and need to return to the initial
414 		 * state before reuse occurs.
415 		 */
416 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
417 		ip->i_flags |= XFS_INEW;
418 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
419 		inode->i_state = I_NEW;
420 
421 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
422 		init_rwsem(&inode->i_rwsem);
423 
424 		spin_unlock(&ip->i_flags_lock);
425 		spin_unlock(&pag->pag_ici_lock);
426 	} else {
427 		/* If the VFS inode is being torn down, pause and try again. */
428 		if (!igrab(inode)) {
429 			trace_xfs_iget_skip(ip);
430 			error = -EAGAIN;
431 			goto out_error;
432 		}
433 
434 		/* We've got a live one. */
435 		spin_unlock(&ip->i_flags_lock);
436 		rcu_read_unlock();
437 		trace_xfs_iget_hit(ip);
438 	}
439 
440 	if (lock_flags != 0)
441 		xfs_ilock(ip, lock_flags);
442 
443 	if (!(flags & XFS_IGET_INCORE))
444 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
445 	XFS_STATS_INC(mp, xs_ig_found);
446 
447 	return 0;
448 
449 out_error:
450 	spin_unlock(&ip->i_flags_lock);
451 	rcu_read_unlock();
452 	return error;
453 }
454 
455 
456 static int
457 xfs_iget_cache_miss(
458 	struct xfs_mount	*mp,
459 	struct xfs_perag	*pag,
460 	xfs_trans_t		*tp,
461 	xfs_ino_t		ino,
462 	struct xfs_inode	**ipp,
463 	int			flags,
464 	int			lock_flags)
465 {
466 	struct xfs_inode	*ip;
467 	int			error;
468 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
469 	int			iflags;
470 
471 	ip = xfs_inode_alloc(mp, ino);
472 	if (!ip)
473 		return -ENOMEM;
474 
475 	error = xfs_iread(mp, tp, ip, flags);
476 	if (error)
477 		goto out_destroy;
478 
479 	if (!xfs_inode_verify_forks(ip)) {
480 		error = -EFSCORRUPTED;
481 		goto out_destroy;
482 	}
483 
484 	trace_xfs_iget_miss(ip);
485 
486 
487 	/*
488 	 * If we are allocating a new inode, then check what was returned is
489 	 * actually a free, empty inode. If we are not allocating an inode,
490 	 * the check we didn't find a free inode.
491 	 */
492 	if (flags & XFS_IGET_CREATE) {
493 		if (VFS_I(ip)->i_mode != 0) {
494 			xfs_warn(mp,
495 "Corruption detected! Free inode 0x%llx not marked free on disk",
496 				ino);
497 			error = -EFSCORRUPTED;
498 			goto out_destroy;
499 		}
500 		if (ip->i_d.di_nblocks != 0) {
501 			xfs_warn(mp,
502 "Corruption detected! Free inode 0x%llx has blocks allocated!",
503 				ino);
504 			error = -EFSCORRUPTED;
505 			goto out_destroy;
506 		}
507 	} else if (VFS_I(ip)->i_mode == 0) {
508 		error = -ENOENT;
509 		goto out_destroy;
510 	}
511 
512 	/*
513 	 * Preload the radix tree so we can insert safely under the
514 	 * write spinlock. Note that we cannot sleep inside the preload
515 	 * region. Since we can be called from transaction context, don't
516 	 * recurse into the file system.
517 	 */
518 	if (radix_tree_preload(GFP_NOFS)) {
519 		error = -EAGAIN;
520 		goto out_destroy;
521 	}
522 
523 	/*
524 	 * Because the inode hasn't been added to the radix-tree yet it can't
525 	 * be found by another thread, so we can do the non-sleeping lock here.
526 	 */
527 	if (lock_flags) {
528 		if (!xfs_ilock_nowait(ip, lock_flags))
529 			BUG();
530 	}
531 
532 	/*
533 	 * These values must be set before inserting the inode into the radix
534 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
535 	 * RCU locking mechanism) can find it and that lookup must see that this
536 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
537 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
538 	 * memory barrier that ensures this detection works correctly at lookup
539 	 * time.
540 	 */
541 	iflags = XFS_INEW;
542 	if (flags & XFS_IGET_DONTCACHE)
543 		iflags |= XFS_IDONTCACHE;
544 	ip->i_udquot = NULL;
545 	ip->i_gdquot = NULL;
546 	ip->i_pdquot = NULL;
547 	xfs_iflags_set(ip, iflags);
548 
549 	/* insert the new inode */
550 	spin_lock(&pag->pag_ici_lock);
551 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
552 	if (unlikely(error)) {
553 		WARN_ON(error != -EEXIST);
554 		XFS_STATS_INC(mp, xs_ig_dup);
555 		error = -EAGAIN;
556 		goto out_preload_end;
557 	}
558 	spin_unlock(&pag->pag_ici_lock);
559 	radix_tree_preload_end();
560 
561 	*ipp = ip;
562 	return 0;
563 
564 out_preload_end:
565 	spin_unlock(&pag->pag_ici_lock);
566 	radix_tree_preload_end();
567 	if (lock_flags)
568 		xfs_iunlock(ip, lock_flags);
569 out_destroy:
570 	__destroy_inode(VFS_I(ip));
571 	xfs_inode_free(ip);
572 	return error;
573 }
574 
575 /*
576  * Look up an inode by number in the given file system.
577  * The inode is looked up in the cache held in each AG.
578  * If the inode is found in the cache, initialise the vfs inode
579  * if necessary.
580  *
581  * If it is not in core, read it in from the file system's device,
582  * add it to the cache and initialise the vfs inode.
583  *
584  * The inode is locked according to the value of the lock_flags parameter.
585  * This flag parameter indicates how and if the inode's IO lock and inode lock
586  * should be taken.
587  *
588  * mp -- the mount point structure for the current file system.  It points
589  *       to the inode hash table.
590  * tp -- a pointer to the current transaction if there is one.  This is
591  *       simply passed through to the xfs_iread() call.
592  * ino -- the number of the inode desired.  This is the unique identifier
593  *        within the file system for the inode being requested.
594  * lock_flags -- flags indicating how to lock the inode.  See the comment
595  *		 for xfs_ilock() for a list of valid values.
596  */
597 int
598 xfs_iget(
599 	xfs_mount_t	*mp,
600 	xfs_trans_t	*tp,
601 	xfs_ino_t	ino,
602 	uint		flags,
603 	uint		lock_flags,
604 	xfs_inode_t	**ipp)
605 {
606 	xfs_inode_t	*ip;
607 	int		error;
608 	xfs_perag_t	*pag;
609 	xfs_agino_t	agino;
610 
611 	/*
612 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
613 	 * doesn't get freed while it's being referenced during a
614 	 * radix tree traversal here.  It assumes this function
615 	 * aqcuires only the ILOCK (and therefore it has no need to
616 	 * involve the IOLOCK in this synchronization).
617 	 */
618 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
619 
620 	/* reject inode numbers outside existing AGs */
621 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
622 		return -EINVAL;
623 
624 	XFS_STATS_INC(mp, xs_ig_attempts);
625 
626 	/* get the perag structure and ensure that it's inode capable */
627 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
628 	agino = XFS_INO_TO_AGINO(mp, ino);
629 
630 again:
631 	error = 0;
632 	rcu_read_lock();
633 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
634 
635 	if (ip) {
636 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
637 		if (error)
638 			goto out_error_or_again;
639 	} else {
640 		rcu_read_unlock();
641 		if (flags & XFS_IGET_INCORE) {
642 			error = -ENODATA;
643 			goto out_error_or_again;
644 		}
645 		XFS_STATS_INC(mp, xs_ig_missed);
646 
647 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
648 							flags, lock_flags);
649 		if (error)
650 			goto out_error_or_again;
651 	}
652 	xfs_perag_put(pag);
653 
654 	*ipp = ip;
655 
656 	/*
657 	 * If we have a real type for an on-disk inode, we can setup the inode
658 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
659 	 */
660 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
661 		xfs_setup_existing_inode(ip);
662 	return 0;
663 
664 out_error_or_again:
665 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
666 		delay(1);
667 		goto again;
668 	}
669 	xfs_perag_put(pag);
670 	return error;
671 }
672 
673 /*
674  * "Is this a cached inode that's also allocated?"
675  *
676  * Look up an inode by number in the given file system.  If the inode is
677  * in cache and isn't in purgatory, return 1 if the inode is allocated
678  * and 0 if it is not.  For all other cases (not in cache, being torn
679  * down, etc.), return a negative error code.
680  *
681  * The caller has to prevent inode allocation and freeing activity,
682  * presumably by locking the AGI buffer.   This is to ensure that an
683  * inode cannot transition from allocated to freed until the caller is
684  * ready to allow that.  If the inode is in an intermediate state (new,
685  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
686  * inode is not in the cache, -ENOENT will be returned.  The caller must
687  * deal with these scenarios appropriately.
688  *
689  * This is a specialized use case for the online scrubber; if you're
690  * reading this, you probably want xfs_iget.
691  */
692 int
693 xfs_icache_inode_is_allocated(
694 	struct xfs_mount	*mp,
695 	struct xfs_trans	*tp,
696 	xfs_ino_t		ino,
697 	bool			*inuse)
698 {
699 	struct xfs_inode	*ip;
700 	int			error;
701 
702 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
703 	if (error)
704 		return error;
705 
706 	*inuse = !!(VFS_I(ip)->i_mode);
707 	IRELE(ip);
708 	return 0;
709 }
710 
711 /*
712  * The inode lookup is done in batches to keep the amount of lock traffic and
713  * radix tree lookups to a minimum. The batch size is a trade off between
714  * lookup reduction and stack usage. This is in the reclaim path, so we can't
715  * be too greedy.
716  */
717 #define XFS_LOOKUP_BATCH	32
718 
719 STATIC int
720 xfs_inode_ag_walk_grab(
721 	struct xfs_inode	*ip,
722 	int			flags)
723 {
724 	struct inode		*inode = VFS_I(ip);
725 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
726 
727 	ASSERT(rcu_read_lock_held());
728 
729 	/*
730 	 * check for stale RCU freed inode
731 	 *
732 	 * If the inode has been reallocated, it doesn't matter if it's not in
733 	 * the AG we are walking - we are walking for writeback, so if it
734 	 * passes all the "valid inode" checks and is dirty, then we'll write
735 	 * it back anyway.  If it has been reallocated and still being
736 	 * initialised, the XFS_INEW check below will catch it.
737 	 */
738 	spin_lock(&ip->i_flags_lock);
739 	if (!ip->i_ino)
740 		goto out_unlock_noent;
741 
742 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
743 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
744 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
745 		goto out_unlock_noent;
746 	spin_unlock(&ip->i_flags_lock);
747 
748 	/* nothing to sync during shutdown */
749 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
750 		return -EFSCORRUPTED;
751 
752 	/* If we can't grab the inode, it must on it's way to reclaim. */
753 	if (!igrab(inode))
754 		return -ENOENT;
755 
756 	/* inode is valid */
757 	return 0;
758 
759 out_unlock_noent:
760 	spin_unlock(&ip->i_flags_lock);
761 	return -ENOENT;
762 }
763 
764 STATIC int
765 xfs_inode_ag_walk(
766 	struct xfs_mount	*mp,
767 	struct xfs_perag	*pag,
768 	int			(*execute)(struct xfs_inode *ip, int flags,
769 					   void *args),
770 	int			flags,
771 	void			*args,
772 	int			tag,
773 	int			iter_flags)
774 {
775 	uint32_t		first_index;
776 	int			last_error = 0;
777 	int			skipped;
778 	int			done;
779 	int			nr_found;
780 
781 restart:
782 	done = 0;
783 	skipped = 0;
784 	first_index = 0;
785 	nr_found = 0;
786 	do {
787 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
788 		int		error = 0;
789 		int		i;
790 
791 		rcu_read_lock();
792 
793 		if (tag == -1)
794 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
795 					(void **)batch, first_index,
796 					XFS_LOOKUP_BATCH);
797 		else
798 			nr_found = radix_tree_gang_lookup_tag(
799 					&pag->pag_ici_root,
800 					(void **) batch, first_index,
801 					XFS_LOOKUP_BATCH, tag);
802 
803 		if (!nr_found) {
804 			rcu_read_unlock();
805 			break;
806 		}
807 
808 		/*
809 		 * Grab the inodes before we drop the lock. if we found
810 		 * nothing, nr == 0 and the loop will be skipped.
811 		 */
812 		for (i = 0; i < nr_found; i++) {
813 			struct xfs_inode *ip = batch[i];
814 
815 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
816 				batch[i] = NULL;
817 
818 			/*
819 			 * Update the index for the next lookup. Catch
820 			 * overflows into the next AG range which can occur if
821 			 * we have inodes in the last block of the AG and we
822 			 * are currently pointing to the last inode.
823 			 *
824 			 * Because we may see inodes that are from the wrong AG
825 			 * due to RCU freeing and reallocation, only update the
826 			 * index if it lies in this AG. It was a race that lead
827 			 * us to see this inode, so another lookup from the
828 			 * same index will not find it again.
829 			 */
830 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
831 				continue;
832 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
833 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
834 				done = 1;
835 		}
836 
837 		/* unlock now we've grabbed the inodes. */
838 		rcu_read_unlock();
839 
840 		for (i = 0; i < nr_found; i++) {
841 			if (!batch[i])
842 				continue;
843 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
844 			    xfs_iflags_test(batch[i], XFS_INEW))
845 				xfs_inew_wait(batch[i]);
846 			error = execute(batch[i], flags, args);
847 			IRELE(batch[i]);
848 			if (error == -EAGAIN) {
849 				skipped++;
850 				continue;
851 			}
852 			if (error && last_error != -EFSCORRUPTED)
853 				last_error = error;
854 		}
855 
856 		/* bail out if the filesystem is corrupted.  */
857 		if (error == -EFSCORRUPTED)
858 			break;
859 
860 		cond_resched();
861 
862 	} while (nr_found && !done);
863 
864 	if (skipped) {
865 		delay(1);
866 		goto restart;
867 	}
868 	return last_error;
869 }
870 
871 /*
872  * Background scanning to trim post-EOF preallocated space. This is queued
873  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
874  */
875 void
876 xfs_queue_eofblocks(
877 	struct xfs_mount *mp)
878 {
879 	rcu_read_lock();
880 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
881 		queue_delayed_work(mp->m_eofblocks_workqueue,
882 				   &mp->m_eofblocks_work,
883 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
884 	rcu_read_unlock();
885 }
886 
887 void
888 xfs_eofblocks_worker(
889 	struct work_struct *work)
890 {
891 	struct xfs_mount *mp = container_of(to_delayed_work(work),
892 				struct xfs_mount, m_eofblocks_work);
893 	xfs_icache_free_eofblocks(mp, NULL);
894 	xfs_queue_eofblocks(mp);
895 }
896 
897 /*
898  * Background scanning to trim preallocated CoW space. This is queued
899  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
900  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
901  */
902 void
903 xfs_queue_cowblocks(
904 	struct xfs_mount *mp)
905 {
906 	rcu_read_lock();
907 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
908 		queue_delayed_work(mp->m_eofblocks_workqueue,
909 				   &mp->m_cowblocks_work,
910 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
911 	rcu_read_unlock();
912 }
913 
914 void
915 xfs_cowblocks_worker(
916 	struct work_struct *work)
917 {
918 	struct xfs_mount *mp = container_of(to_delayed_work(work),
919 				struct xfs_mount, m_cowblocks_work);
920 	xfs_icache_free_cowblocks(mp, NULL);
921 	xfs_queue_cowblocks(mp);
922 }
923 
924 int
925 xfs_inode_ag_iterator_flags(
926 	struct xfs_mount	*mp,
927 	int			(*execute)(struct xfs_inode *ip, int flags,
928 					   void *args),
929 	int			flags,
930 	void			*args,
931 	int			iter_flags)
932 {
933 	struct xfs_perag	*pag;
934 	int			error = 0;
935 	int			last_error = 0;
936 	xfs_agnumber_t		ag;
937 
938 	ag = 0;
939 	while ((pag = xfs_perag_get(mp, ag))) {
940 		ag = pag->pag_agno + 1;
941 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
942 					  iter_flags);
943 		xfs_perag_put(pag);
944 		if (error) {
945 			last_error = error;
946 			if (error == -EFSCORRUPTED)
947 				break;
948 		}
949 	}
950 	return last_error;
951 }
952 
953 int
954 xfs_inode_ag_iterator(
955 	struct xfs_mount	*mp,
956 	int			(*execute)(struct xfs_inode *ip, int flags,
957 					   void *args),
958 	int			flags,
959 	void			*args)
960 {
961 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
962 }
963 
964 int
965 xfs_inode_ag_iterator_tag(
966 	struct xfs_mount	*mp,
967 	int			(*execute)(struct xfs_inode *ip, int flags,
968 					   void *args),
969 	int			flags,
970 	void			*args,
971 	int			tag)
972 {
973 	struct xfs_perag	*pag;
974 	int			error = 0;
975 	int			last_error = 0;
976 	xfs_agnumber_t		ag;
977 
978 	ag = 0;
979 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
980 		ag = pag->pag_agno + 1;
981 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
982 					  0);
983 		xfs_perag_put(pag);
984 		if (error) {
985 			last_error = error;
986 			if (error == -EFSCORRUPTED)
987 				break;
988 		}
989 	}
990 	return last_error;
991 }
992 
993 /*
994  * Grab the inode for reclaim exclusively.
995  * Return 0 if we grabbed it, non-zero otherwise.
996  */
997 STATIC int
998 xfs_reclaim_inode_grab(
999 	struct xfs_inode	*ip,
1000 	int			flags)
1001 {
1002 	ASSERT(rcu_read_lock_held());
1003 
1004 	/* quick check for stale RCU freed inode */
1005 	if (!ip->i_ino)
1006 		return 1;
1007 
1008 	/*
1009 	 * If we are asked for non-blocking operation, do unlocked checks to
1010 	 * see if the inode already is being flushed or in reclaim to avoid
1011 	 * lock traffic.
1012 	 */
1013 	if ((flags & SYNC_TRYLOCK) &&
1014 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1015 		return 1;
1016 
1017 	/*
1018 	 * The radix tree lock here protects a thread in xfs_iget from racing
1019 	 * with us starting reclaim on the inode.  Once we have the
1020 	 * XFS_IRECLAIM flag set it will not touch us.
1021 	 *
1022 	 * Due to RCU lookup, we may find inodes that have been freed and only
1023 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1024 	 * aren't candidates for reclaim at all, so we must check the
1025 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1026 	 */
1027 	spin_lock(&ip->i_flags_lock);
1028 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1029 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1030 		/* not a reclaim candidate. */
1031 		spin_unlock(&ip->i_flags_lock);
1032 		return 1;
1033 	}
1034 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1035 	spin_unlock(&ip->i_flags_lock);
1036 	return 0;
1037 }
1038 
1039 /*
1040  * Inodes in different states need to be treated differently. The following
1041  * table lists the inode states and the reclaim actions necessary:
1042  *
1043  *	inode state	     iflush ret		required action
1044  *      ---------------      ----------         ---------------
1045  *	bad			-		reclaim
1046  *	shutdown		EIO		unpin and reclaim
1047  *	clean, unpinned		0		reclaim
1048  *	stale, unpinned		0		reclaim
1049  *	clean, pinned(*)	0		requeue
1050  *	stale, pinned		EAGAIN		requeue
1051  *	dirty, async		-		requeue
1052  *	dirty, sync		0		reclaim
1053  *
1054  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1055  * handled anyway given the order of checks implemented.
1056  *
1057  * Also, because we get the flush lock first, we know that any inode that has
1058  * been flushed delwri has had the flush completed by the time we check that
1059  * the inode is clean.
1060  *
1061  * Note that because the inode is flushed delayed write by AIL pushing, the
1062  * flush lock may already be held here and waiting on it can result in very
1063  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1064  * the caller should push the AIL first before trying to reclaim inodes to
1065  * minimise the amount of time spent waiting.  For background relaim, we only
1066  * bother to reclaim clean inodes anyway.
1067  *
1068  * Hence the order of actions after gaining the locks should be:
1069  *	bad		=> reclaim
1070  *	shutdown	=> unpin and reclaim
1071  *	pinned, async	=> requeue
1072  *	pinned, sync	=> unpin
1073  *	stale		=> reclaim
1074  *	clean		=> reclaim
1075  *	dirty, async	=> requeue
1076  *	dirty, sync	=> flush, wait and reclaim
1077  */
1078 STATIC int
1079 xfs_reclaim_inode(
1080 	struct xfs_inode	*ip,
1081 	struct xfs_perag	*pag,
1082 	int			sync_mode)
1083 {
1084 	struct xfs_buf		*bp = NULL;
1085 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1086 	int			error;
1087 
1088 restart:
1089 	error = 0;
1090 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1091 	if (!xfs_iflock_nowait(ip)) {
1092 		if (!(sync_mode & SYNC_WAIT))
1093 			goto out;
1094 		xfs_iflock(ip);
1095 	}
1096 
1097 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1098 		xfs_iunpin_wait(ip);
1099 		/* xfs_iflush_abort() drops the flush lock */
1100 		xfs_iflush_abort(ip, false);
1101 		goto reclaim;
1102 	}
1103 	if (xfs_ipincount(ip)) {
1104 		if (!(sync_mode & SYNC_WAIT))
1105 			goto out_ifunlock;
1106 		xfs_iunpin_wait(ip);
1107 	}
1108 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1109 		xfs_ifunlock(ip);
1110 		goto reclaim;
1111 	}
1112 
1113 	/*
1114 	 * Never flush out dirty data during non-blocking reclaim, as it would
1115 	 * just contend with AIL pushing trying to do the same job.
1116 	 */
1117 	if (!(sync_mode & SYNC_WAIT))
1118 		goto out_ifunlock;
1119 
1120 	/*
1121 	 * Now we have an inode that needs flushing.
1122 	 *
1123 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1124 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1125 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1126 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1127 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1128 	 *
1129 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1130 	 * cache to mark them stale, if we hit this case we don't actually want
1131 	 * to do IO here - we want the inode marked stale so we can simply
1132 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1133 	 * inode, back off and try again.  Hopefully the next pass through will
1134 	 * see the stale flag set on the inode.
1135 	 */
1136 	error = xfs_iflush(ip, &bp);
1137 	if (error == -EAGAIN) {
1138 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1139 		/* backoff longer than in xfs_ifree_cluster */
1140 		delay(2);
1141 		goto restart;
1142 	}
1143 
1144 	if (!error) {
1145 		error = xfs_bwrite(bp);
1146 		xfs_buf_relse(bp);
1147 	}
1148 
1149 reclaim:
1150 	ASSERT(!xfs_isiflocked(ip));
1151 
1152 	/*
1153 	 * Because we use RCU freeing we need to ensure the inode always appears
1154 	 * to be reclaimed with an invalid inode number when in the free state.
1155 	 * We do this as early as possible under the ILOCK so that
1156 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1157 	 * detect races with us here. By doing this, we guarantee that once
1158 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1159 	 * it will see either a valid inode that will serialise correctly, or it
1160 	 * will see an invalid inode that it can skip.
1161 	 */
1162 	spin_lock(&ip->i_flags_lock);
1163 	ip->i_flags = XFS_IRECLAIM;
1164 	ip->i_ino = 0;
1165 	spin_unlock(&ip->i_flags_lock);
1166 
1167 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1168 
1169 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1170 	/*
1171 	 * Remove the inode from the per-AG radix tree.
1172 	 *
1173 	 * Because radix_tree_delete won't complain even if the item was never
1174 	 * added to the tree assert that it's been there before to catch
1175 	 * problems with the inode life time early on.
1176 	 */
1177 	spin_lock(&pag->pag_ici_lock);
1178 	if (!radix_tree_delete(&pag->pag_ici_root,
1179 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1180 		ASSERT(0);
1181 	xfs_perag_clear_reclaim_tag(pag);
1182 	spin_unlock(&pag->pag_ici_lock);
1183 
1184 	/*
1185 	 * Here we do an (almost) spurious inode lock in order to coordinate
1186 	 * with inode cache radix tree lookups.  This is because the lookup
1187 	 * can reference the inodes in the cache without taking references.
1188 	 *
1189 	 * We make that OK here by ensuring that we wait until the inode is
1190 	 * unlocked after the lookup before we go ahead and free it.
1191 	 */
1192 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1193 	xfs_qm_dqdetach(ip);
1194 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1195 
1196 	__xfs_inode_free(ip);
1197 	return error;
1198 
1199 out_ifunlock:
1200 	xfs_ifunlock(ip);
1201 out:
1202 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1203 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1204 	/*
1205 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1206 	 * a short while. However, this just burns CPU time scanning the tree
1207 	 * waiting for IO to complete and the reclaim work never goes back to
1208 	 * the idle state. Instead, return 0 to let the next scheduled
1209 	 * background reclaim attempt to reclaim the inode again.
1210 	 */
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1216  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1217  * then a shut down during filesystem unmount reclaim walk leak all the
1218  * unreclaimed inodes.
1219  */
1220 STATIC int
1221 xfs_reclaim_inodes_ag(
1222 	struct xfs_mount	*mp,
1223 	int			flags,
1224 	int			*nr_to_scan)
1225 {
1226 	struct xfs_perag	*pag;
1227 	int			error = 0;
1228 	int			last_error = 0;
1229 	xfs_agnumber_t		ag;
1230 	int			trylock = flags & SYNC_TRYLOCK;
1231 	int			skipped;
1232 
1233 restart:
1234 	ag = 0;
1235 	skipped = 0;
1236 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1237 		unsigned long	first_index = 0;
1238 		int		done = 0;
1239 		int		nr_found = 0;
1240 
1241 		ag = pag->pag_agno + 1;
1242 
1243 		if (trylock) {
1244 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1245 				skipped++;
1246 				xfs_perag_put(pag);
1247 				continue;
1248 			}
1249 			first_index = pag->pag_ici_reclaim_cursor;
1250 		} else
1251 			mutex_lock(&pag->pag_ici_reclaim_lock);
1252 
1253 		do {
1254 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1255 			int	i;
1256 
1257 			rcu_read_lock();
1258 			nr_found = radix_tree_gang_lookup_tag(
1259 					&pag->pag_ici_root,
1260 					(void **)batch, first_index,
1261 					XFS_LOOKUP_BATCH,
1262 					XFS_ICI_RECLAIM_TAG);
1263 			if (!nr_found) {
1264 				done = 1;
1265 				rcu_read_unlock();
1266 				break;
1267 			}
1268 
1269 			/*
1270 			 * Grab the inodes before we drop the lock. if we found
1271 			 * nothing, nr == 0 and the loop will be skipped.
1272 			 */
1273 			for (i = 0; i < nr_found; i++) {
1274 				struct xfs_inode *ip = batch[i];
1275 
1276 				if (done || xfs_reclaim_inode_grab(ip, flags))
1277 					batch[i] = NULL;
1278 
1279 				/*
1280 				 * Update the index for the next lookup. Catch
1281 				 * overflows into the next AG range which can
1282 				 * occur if we have inodes in the last block of
1283 				 * the AG and we are currently pointing to the
1284 				 * last inode.
1285 				 *
1286 				 * Because we may see inodes that are from the
1287 				 * wrong AG due to RCU freeing and
1288 				 * reallocation, only update the index if it
1289 				 * lies in this AG. It was a race that lead us
1290 				 * to see this inode, so another lookup from
1291 				 * the same index will not find it again.
1292 				 */
1293 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1294 								pag->pag_agno)
1295 					continue;
1296 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1297 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1298 					done = 1;
1299 			}
1300 
1301 			/* unlock now we've grabbed the inodes. */
1302 			rcu_read_unlock();
1303 
1304 			for (i = 0; i < nr_found; i++) {
1305 				if (!batch[i])
1306 					continue;
1307 				error = xfs_reclaim_inode(batch[i], pag, flags);
1308 				if (error && last_error != -EFSCORRUPTED)
1309 					last_error = error;
1310 			}
1311 
1312 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1313 
1314 			cond_resched();
1315 
1316 		} while (nr_found && !done && *nr_to_scan > 0);
1317 
1318 		if (trylock && !done)
1319 			pag->pag_ici_reclaim_cursor = first_index;
1320 		else
1321 			pag->pag_ici_reclaim_cursor = 0;
1322 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1323 		xfs_perag_put(pag);
1324 	}
1325 
1326 	/*
1327 	 * if we skipped any AG, and we still have scan count remaining, do
1328 	 * another pass this time using blocking reclaim semantics (i.e
1329 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1330 	 * ensure that when we get more reclaimers than AGs we block rather
1331 	 * than spin trying to execute reclaim.
1332 	 */
1333 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1334 		trylock = 0;
1335 		goto restart;
1336 	}
1337 	return last_error;
1338 }
1339 
1340 int
1341 xfs_reclaim_inodes(
1342 	xfs_mount_t	*mp,
1343 	int		mode)
1344 {
1345 	int		nr_to_scan = INT_MAX;
1346 
1347 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1348 }
1349 
1350 /*
1351  * Scan a certain number of inodes for reclaim.
1352  *
1353  * When called we make sure that there is a background (fast) inode reclaim in
1354  * progress, while we will throttle the speed of reclaim via doing synchronous
1355  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1356  * them to be cleaned, which we hope will not be very long due to the
1357  * background walker having already kicked the IO off on those dirty inodes.
1358  */
1359 long
1360 xfs_reclaim_inodes_nr(
1361 	struct xfs_mount	*mp,
1362 	int			nr_to_scan)
1363 {
1364 	/* kick background reclaimer and push the AIL */
1365 	xfs_reclaim_work_queue(mp);
1366 	xfs_ail_push_all(mp->m_ail);
1367 
1368 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1369 }
1370 
1371 /*
1372  * Return the number of reclaimable inodes in the filesystem for
1373  * the shrinker to determine how much to reclaim.
1374  */
1375 int
1376 xfs_reclaim_inodes_count(
1377 	struct xfs_mount	*mp)
1378 {
1379 	struct xfs_perag	*pag;
1380 	xfs_agnumber_t		ag = 0;
1381 	int			reclaimable = 0;
1382 
1383 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1384 		ag = pag->pag_agno + 1;
1385 		reclaimable += pag->pag_ici_reclaimable;
1386 		xfs_perag_put(pag);
1387 	}
1388 	return reclaimable;
1389 }
1390 
1391 STATIC int
1392 xfs_inode_match_id(
1393 	struct xfs_inode	*ip,
1394 	struct xfs_eofblocks	*eofb)
1395 {
1396 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1397 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1398 		return 0;
1399 
1400 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1401 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1402 		return 0;
1403 
1404 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1405 	    xfs_get_projid(ip) != eofb->eof_prid)
1406 		return 0;
1407 
1408 	return 1;
1409 }
1410 
1411 /*
1412  * A union-based inode filtering algorithm. Process the inode if any of the
1413  * criteria match. This is for global/internal scans only.
1414  */
1415 STATIC int
1416 xfs_inode_match_id_union(
1417 	struct xfs_inode	*ip,
1418 	struct xfs_eofblocks	*eofb)
1419 {
1420 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1421 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1422 		return 1;
1423 
1424 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1425 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1426 		return 1;
1427 
1428 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1429 	    xfs_get_projid(ip) == eofb->eof_prid)
1430 		return 1;
1431 
1432 	return 0;
1433 }
1434 
1435 STATIC int
1436 xfs_inode_free_eofblocks(
1437 	struct xfs_inode	*ip,
1438 	int			flags,
1439 	void			*args)
1440 {
1441 	int ret = 0;
1442 	struct xfs_eofblocks *eofb = args;
1443 	int match;
1444 
1445 	if (!xfs_can_free_eofblocks(ip, false)) {
1446 		/* inode could be preallocated or append-only */
1447 		trace_xfs_inode_free_eofblocks_invalid(ip);
1448 		xfs_inode_clear_eofblocks_tag(ip);
1449 		return 0;
1450 	}
1451 
1452 	/*
1453 	 * If the mapping is dirty the operation can block and wait for some
1454 	 * time. Unless we are waiting, skip it.
1455 	 */
1456 	if (!(flags & SYNC_WAIT) &&
1457 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1458 		return 0;
1459 
1460 	if (eofb) {
1461 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1462 			match = xfs_inode_match_id_union(ip, eofb);
1463 		else
1464 			match = xfs_inode_match_id(ip, eofb);
1465 		if (!match)
1466 			return 0;
1467 
1468 		/* skip the inode if the file size is too small */
1469 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1470 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1471 			return 0;
1472 	}
1473 
1474 	/*
1475 	 * If the caller is waiting, return -EAGAIN to keep the background
1476 	 * scanner moving and revisit the inode in a subsequent pass.
1477 	 */
1478 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1479 		if (flags & SYNC_WAIT)
1480 			ret = -EAGAIN;
1481 		return ret;
1482 	}
1483 	ret = xfs_free_eofblocks(ip);
1484 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1485 
1486 	return ret;
1487 }
1488 
1489 static int
1490 __xfs_icache_free_eofblocks(
1491 	struct xfs_mount	*mp,
1492 	struct xfs_eofblocks	*eofb,
1493 	int			(*execute)(struct xfs_inode *ip, int flags,
1494 					   void *args),
1495 	int			tag)
1496 {
1497 	int flags = SYNC_TRYLOCK;
1498 
1499 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1500 		flags = SYNC_WAIT;
1501 
1502 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1503 					 eofb, tag);
1504 }
1505 
1506 int
1507 xfs_icache_free_eofblocks(
1508 	struct xfs_mount	*mp,
1509 	struct xfs_eofblocks	*eofb)
1510 {
1511 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1512 			XFS_ICI_EOFBLOCKS_TAG);
1513 }
1514 
1515 /*
1516  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1517  * multiple quotas, we don't know exactly which quota caused an allocation
1518  * failure. We make a best effort by including each quota under low free space
1519  * conditions (less than 1% free space) in the scan.
1520  */
1521 static int
1522 __xfs_inode_free_quota_eofblocks(
1523 	struct xfs_inode	*ip,
1524 	int			(*execute)(struct xfs_mount *mp,
1525 					   struct xfs_eofblocks	*eofb))
1526 {
1527 	int scan = 0;
1528 	struct xfs_eofblocks eofb = {0};
1529 	struct xfs_dquot *dq;
1530 
1531 	/*
1532 	 * Run a sync scan to increase effectiveness and use the union filter to
1533 	 * cover all applicable quotas in a single scan.
1534 	 */
1535 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1536 
1537 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1538 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1539 		if (dq && xfs_dquot_lowsp(dq)) {
1540 			eofb.eof_uid = VFS_I(ip)->i_uid;
1541 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1542 			scan = 1;
1543 		}
1544 	}
1545 
1546 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1547 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1548 		if (dq && xfs_dquot_lowsp(dq)) {
1549 			eofb.eof_gid = VFS_I(ip)->i_gid;
1550 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1551 			scan = 1;
1552 		}
1553 	}
1554 
1555 	if (scan)
1556 		execute(ip->i_mount, &eofb);
1557 
1558 	return scan;
1559 }
1560 
1561 int
1562 xfs_inode_free_quota_eofblocks(
1563 	struct xfs_inode *ip)
1564 {
1565 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1566 }
1567 
1568 static inline unsigned long
1569 xfs_iflag_for_tag(
1570 	int		tag)
1571 {
1572 	switch (tag) {
1573 	case XFS_ICI_EOFBLOCKS_TAG:
1574 		return XFS_IEOFBLOCKS;
1575 	case XFS_ICI_COWBLOCKS_TAG:
1576 		return XFS_ICOWBLOCKS;
1577 	default:
1578 		ASSERT(0);
1579 		return 0;
1580 	}
1581 }
1582 
1583 static void
1584 __xfs_inode_set_blocks_tag(
1585 	xfs_inode_t	*ip,
1586 	void		(*execute)(struct xfs_mount *mp),
1587 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1588 				  int error, unsigned long caller_ip),
1589 	int		tag)
1590 {
1591 	struct xfs_mount *mp = ip->i_mount;
1592 	struct xfs_perag *pag;
1593 	int tagged;
1594 
1595 	/*
1596 	 * Don't bother locking the AG and looking up in the radix trees
1597 	 * if we already know that we have the tag set.
1598 	 */
1599 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1600 		return;
1601 	spin_lock(&ip->i_flags_lock);
1602 	ip->i_flags |= xfs_iflag_for_tag(tag);
1603 	spin_unlock(&ip->i_flags_lock);
1604 
1605 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1606 	spin_lock(&pag->pag_ici_lock);
1607 
1608 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1609 	radix_tree_tag_set(&pag->pag_ici_root,
1610 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1611 	if (!tagged) {
1612 		/* propagate the eofblocks tag up into the perag radix tree */
1613 		spin_lock(&ip->i_mount->m_perag_lock);
1614 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1615 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1616 				   tag);
1617 		spin_unlock(&ip->i_mount->m_perag_lock);
1618 
1619 		/* kick off background trimming */
1620 		execute(ip->i_mount);
1621 
1622 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1623 	}
1624 
1625 	spin_unlock(&pag->pag_ici_lock);
1626 	xfs_perag_put(pag);
1627 }
1628 
1629 void
1630 xfs_inode_set_eofblocks_tag(
1631 	xfs_inode_t	*ip)
1632 {
1633 	trace_xfs_inode_set_eofblocks_tag(ip);
1634 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1635 			trace_xfs_perag_set_eofblocks,
1636 			XFS_ICI_EOFBLOCKS_TAG);
1637 }
1638 
1639 static void
1640 __xfs_inode_clear_blocks_tag(
1641 	xfs_inode_t	*ip,
1642 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1643 				    int error, unsigned long caller_ip),
1644 	int		tag)
1645 {
1646 	struct xfs_mount *mp = ip->i_mount;
1647 	struct xfs_perag *pag;
1648 
1649 	spin_lock(&ip->i_flags_lock);
1650 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1651 	spin_unlock(&ip->i_flags_lock);
1652 
1653 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1654 	spin_lock(&pag->pag_ici_lock);
1655 
1656 	radix_tree_tag_clear(&pag->pag_ici_root,
1657 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1658 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1659 		/* clear the eofblocks tag from the perag radix tree */
1660 		spin_lock(&ip->i_mount->m_perag_lock);
1661 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1662 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1663 				     tag);
1664 		spin_unlock(&ip->i_mount->m_perag_lock);
1665 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1666 	}
1667 
1668 	spin_unlock(&pag->pag_ici_lock);
1669 	xfs_perag_put(pag);
1670 }
1671 
1672 void
1673 xfs_inode_clear_eofblocks_tag(
1674 	xfs_inode_t	*ip)
1675 {
1676 	trace_xfs_inode_clear_eofblocks_tag(ip);
1677 	return __xfs_inode_clear_blocks_tag(ip,
1678 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1679 }
1680 
1681 /*
1682  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1683  * then we can bail out quickly, but otherwise we must back off if the file
1684  * is undergoing some kind of write.
1685  */
1686 static bool
1687 xfs_prep_free_cowblocks(
1688 	struct xfs_inode	*ip,
1689 	struct xfs_ifork	*ifp)
1690 {
1691 	/*
1692 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1693 	 * possible the inode was fully unshared since it was originally tagged.
1694 	 */
1695 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1696 		trace_xfs_inode_free_cowblocks_invalid(ip);
1697 		xfs_inode_clear_cowblocks_tag(ip);
1698 		return false;
1699 	}
1700 
1701 	/*
1702 	 * If the mapping is dirty or under writeback we cannot touch the
1703 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1704 	 */
1705 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1706 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1707 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1708 	    atomic_read(&VFS_I(ip)->i_dio_count))
1709 		return false;
1710 
1711 	return true;
1712 }
1713 
1714 /*
1715  * Automatic CoW Reservation Freeing
1716  *
1717  * These functions automatically garbage collect leftover CoW reservations
1718  * that were made on behalf of a cowextsize hint when we start to run out
1719  * of quota or when the reservations sit around for too long.  If the file
1720  * has dirty pages or is undergoing writeback, its CoW reservations will
1721  * be retained.
1722  *
1723  * The actual garbage collection piggybacks off the same code that runs
1724  * the speculative EOF preallocation garbage collector.
1725  */
1726 STATIC int
1727 xfs_inode_free_cowblocks(
1728 	struct xfs_inode	*ip,
1729 	int			flags,
1730 	void			*args)
1731 {
1732 	struct xfs_eofblocks	*eofb = args;
1733 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1734 	int			match;
1735 	int			ret = 0;
1736 
1737 	if (!xfs_prep_free_cowblocks(ip, ifp))
1738 		return 0;
1739 
1740 	if (eofb) {
1741 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1742 			match = xfs_inode_match_id_union(ip, eofb);
1743 		else
1744 			match = xfs_inode_match_id(ip, eofb);
1745 		if (!match)
1746 			return 0;
1747 
1748 		/* skip the inode if the file size is too small */
1749 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1750 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1751 			return 0;
1752 	}
1753 
1754 	/* Free the CoW blocks */
1755 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1756 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1757 
1758 	/*
1759 	 * Check again, nobody else should be able to dirty blocks or change
1760 	 * the reflink iflag now that we have the first two locks held.
1761 	 */
1762 	if (xfs_prep_free_cowblocks(ip, ifp))
1763 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1764 
1765 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1766 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1767 
1768 	return ret;
1769 }
1770 
1771 int
1772 xfs_icache_free_cowblocks(
1773 	struct xfs_mount	*mp,
1774 	struct xfs_eofblocks	*eofb)
1775 {
1776 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1777 			XFS_ICI_COWBLOCKS_TAG);
1778 }
1779 
1780 int
1781 xfs_inode_free_quota_cowblocks(
1782 	struct xfs_inode *ip)
1783 {
1784 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1785 }
1786 
1787 void
1788 xfs_inode_set_cowblocks_tag(
1789 	xfs_inode_t	*ip)
1790 {
1791 	trace_xfs_inode_set_cowblocks_tag(ip);
1792 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1793 			trace_xfs_perag_set_cowblocks,
1794 			XFS_ICI_COWBLOCKS_TAG);
1795 }
1796 
1797 void
1798 xfs_inode_clear_cowblocks_tag(
1799 	xfs_inode_t	*ip)
1800 {
1801 	trace_xfs_inode_clear_cowblocks_tag(ip);
1802 	return __xfs_inode_clear_blocks_tag(ip,
1803 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1804 }
1805