xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision a86854d0)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/iversion.h>
41 
42 /*
43  * Allocate and initialise an xfs_inode.
44  */
45 struct xfs_inode *
46 xfs_inode_alloc(
47 	struct xfs_mount	*mp,
48 	xfs_ino_t		ino)
49 {
50 	struct xfs_inode	*ip;
51 
52 	/*
53 	 * if this didn't occur in transactions, we could use
54 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
55 	 * code up to do this anyway.
56 	 */
57 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
58 	if (!ip)
59 		return NULL;
60 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
61 		kmem_zone_free(xfs_inode_zone, ip);
62 		return NULL;
63 	}
64 
65 	/* VFS doesn't initialise i_mode! */
66 	VFS_I(ip)->i_mode = 0;
67 
68 	XFS_STATS_INC(mp, vn_active);
69 	ASSERT(atomic_read(&ip->i_pincount) == 0);
70 	ASSERT(!xfs_isiflocked(ip));
71 	ASSERT(ip->i_ino == 0);
72 
73 	/* initialise the xfs inode */
74 	ip->i_ino = ino;
75 	ip->i_mount = mp;
76 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 	ip->i_afp = NULL;
78 	ip->i_cowfp = NULL;
79 	ip->i_cnextents = 0;
80 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
81 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 	ip->i_flags = 0;
83 	ip->i_delayed_blks = 0;
84 	memset(&ip->i_d, 0, sizeof(ip->i_d));
85 
86 	return ip;
87 }
88 
89 STATIC void
90 xfs_inode_free_callback(
91 	struct rcu_head		*head)
92 {
93 	struct inode		*inode = container_of(head, struct inode, i_rcu);
94 	struct xfs_inode	*ip = XFS_I(inode);
95 
96 	switch (VFS_I(ip)->i_mode & S_IFMT) {
97 	case S_IFREG:
98 	case S_IFDIR:
99 	case S_IFLNK:
100 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 		break;
102 	}
103 
104 	if (ip->i_afp)
105 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
106 	if (ip->i_cowfp)
107 		xfs_idestroy_fork(ip, XFS_COW_FORK);
108 
109 	if (ip->i_itemp) {
110 		ASSERT(!test_bit(XFS_LI_IN_AIL,
111 				 &ip->i_itemp->ili_item.li_flags));
112 		xfs_inode_item_destroy(ip);
113 		ip->i_itemp = NULL;
114 	}
115 
116 	kmem_zone_free(xfs_inode_zone, ip);
117 }
118 
119 static void
120 __xfs_inode_free(
121 	struct xfs_inode	*ip)
122 {
123 	/* asserts to verify all state is correct here */
124 	ASSERT(atomic_read(&ip->i_pincount) == 0);
125 	XFS_STATS_DEC(ip->i_mount, vn_active);
126 
127 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
128 }
129 
130 void
131 xfs_inode_free(
132 	struct xfs_inode	*ip)
133 {
134 	ASSERT(!xfs_isiflocked(ip));
135 
136 	/*
137 	 * Because we use RCU freeing we need to ensure the inode always
138 	 * appears to be reclaimed with an invalid inode number when in the
139 	 * free state. The ip->i_flags_lock provides the barrier against lookup
140 	 * races.
141 	 */
142 	spin_lock(&ip->i_flags_lock);
143 	ip->i_flags = XFS_IRECLAIM;
144 	ip->i_ino = 0;
145 	spin_unlock(&ip->i_flags_lock);
146 
147 	__xfs_inode_free(ip);
148 }
149 
150 /*
151  * Queue a new inode reclaim pass if there are reclaimable inodes and there
152  * isn't a reclaim pass already in progress. By default it runs every 5s based
153  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
154  * tunable, but that can be done if this method proves to be ineffective or too
155  * aggressive.
156  */
157 static void
158 xfs_reclaim_work_queue(
159 	struct xfs_mount        *mp)
160 {
161 
162 	rcu_read_lock();
163 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
164 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
165 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
166 	}
167 	rcu_read_unlock();
168 }
169 
170 /*
171  * This is a fast pass over the inode cache to try to get reclaim moving on as
172  * many inodes as possible in a short period of time. It kicks itself every few
173  * seconds, as well as being kicked by the inode cache shrinker when memory
174  * goes low. It scans as quickly as possible avoiding locked inodes or those
175  * already being flushed, and once done schedules a future pass.
176  */
177 void
178 xfs_reclaim_worker(
179 	struct work_struct *work)
180 {
181 	struct xfs_mount *mp = container_of(to_delayed_work(work),
182 					struct xfs_mount, m_reclaim_work);
183 
184 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
185 	xfs_reclaim_work_queue(mp);
186 }
187 
188 static void
189 xfs_perag_set_reclaim_tag(
190 	struct xfs_perag	*pag)
191 {
192 	struct xfs_mount	*mp = pag->pag_mount;
193 
194 	lockdep_assert_held(&pag->pag_ici_lock);
195 	if (pag->pag_ici_reclaimable++)
196 		return;
197 
198 	/* propagate the reclaim tag up into the perag radix tree */
199 	spin_lock(&mp->m_perag_lock);
200 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
201 			   XFS_ICI_RECLAIM_TAG);
202 	spin_unlock(&mp->m_perag_lock);
203 
204 	/* schedule periodic background inode reclaim */
205 	xfs_reclaim_work_queue(mp);
206 
207 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
208 }
209 
210 static void
211 xfs_perag_clear_reclaim_tag(
212 	struct xfs_perag	*pag)
213 {
214 	struct xfs_mount	*mp = pag->pag_mount;
215 
216 	lockdep_assert_held(&pag->pag_ici_lock);
217 	if (--pag->pag_ici_reclaimable)
218 		return;
219 
220 	/* clear the reclaim tag from the perag radix tree */
221 	spin_lock(&mp->m_perag_lock);
222 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
223 			     XFS_ICI_RECLAIM_TAG);
224 	spin_unlock(&mp->m_perag_lock);
225 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
226 }
227 
228 
229 /*
230  * We set the inode flag atomically with the radix tree tag.
231  * Once we get tag lookups on the radix tree, this inode flag
232  * can go away.
233  */
234 void
235 xfs_inode_set_reclaim_tag(
236 	struct xfs_inode	*ip)
237 {
238 	struct xfs_mount	*mp = ip->i_mount;
239 	struct xfs_perag	*pag;
240 
241 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
242 	spin_lock(&pag->pag_ici_lock);
243 	spin_lock(&ip->i_flags_lock);
244 
245 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
246 			   XFS_ICI_RECLAIM_TAG);
247 	xfs_perag_set_reclaim_tag(pag);
248 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
249 
250 	spin_unlock(&ip->i_flags_lock);
251 	spin_unlock(&pag->pag_ici_lock);
252 	xfs_perag_put(pag);
253 }
254 
255 STATIC void
256 xfs_inode_clear_reclaim_tag(
257 	struct xfs_perag	*pag,
258 	xfs_ino_t		ino)
259 {
260 	radix_tree_tag_clear(&pag->pag_ici_root,
261 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
262 			     XFS_ICI_RECLAIM_TAG);
263 	xfs_perag_clear_reclaim_tag(pag);
264 }
265 
266 static void
267 xfs_inew_wait(
268 	struct xfs_inode	*ip)
269 {
270 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
271 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
272 
273 	do {
274 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
275 		if (!xfs_iflags_test(ip, XFS_INEW))
276 			break;
277 		schedule();
278 	} while (true);
279 	finish_wait(wq, &wait.wq_entry);
280 }
281 
282 /*
283  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
284  * part of the structure. This is made more complex by the fact we store
285  * information about the on-disk values in the VFS inode and so we can't just
286  * overwrite the values unconditionally. Hence we save the parameters we
287  * need to retain across reinitialisation, and rewrite them into the VFS inode
288  * after reinitialisation even if it fails.
289  */
290 static int
291 xfs_reinit_inode(
292 	struct xfs_mount	*mp,
293 	struct inode		*inode)
294 {
295 	int		error;
296 	uint32_t	nlink = inode->i_nlink;
297 	uint32_t	generation = inode->i_generation;
298 	uint64_t	version = inode_peek_iversion(inode);
299 	umode_t		mode = inode->i_mode;
300 	dev_t		dev = inode->i_rdev;
301 
302 	error = inode_init_always(mp->m_super, inode);
303 
304 	set_nlink(inode, nlink);
305 	inode->i_generation = generation;
306 	inode_set_iversion_queried(inode, version);
307 	inode->i_mode = mode;
308 	inode->i_rdev = dev;
309 	return error;
310 }
311 
312 /*
313  * If we are allocating a new inode, then check what was returned is
314  * actually a free, empty inode. If we are not allocating an inode,
315  * then check we didn't find a free inode.
316  *
317  * Returns:
318  *	0		if the inode free state matches the lookup context
319  *	-ENOENT		if the inode is free and we are not allocating
320  *	-EFSCORRUPTED	if there is any state mismatch at all
321  */
322 static int
323 xfs_iget_check_free_state(
324 	struct xfs_inode	*ip,
325 	int			flags)
326 {
327 	if (flags & XFS_IGET_CREATE) {
328 		/* should be a free inode */
329 		if (VFS_I(ip)->i_mode != 0) {
330 			xfs_warn(ip->i_mount,
331 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
332 				ip->i_ino, VFS_I(ip)->i_mode);
333 			return -EFSCORRUPTED;
334 		}
335 
336 		if (ip->i_d.di_nblocks != 0) {
337 			xfs_warn(ip->i_mount,
338 "Corruption detected! Free inode 0x%llx has blocks allocated!",
339 				ip->i_ino);
340 			return -EFSCORRUPTED;
341 		}
342 		return 0;
343 	}
344 
345 	/* should be an allocated inode */
346 	if (VFS_I(ip)->i_mode == 0)
347 		return -ENOENT;
348 
349 	return 0;
350 }
351 
352 /*
353  * Check the validity of the inode we just found it the cache
354  */
355 static int
356 xfs_iget_cache_hit(
357 	struct xfs_perag	*pag,
358 	struct xfs_inode	*ip,
359 	xfs_ino_t		ino,
360 	int			flags,
361 	int			lock_flags) __releases(RCU)
362 {
363 	struct inode		*inode = VFS_I(ip);
364 	struct xfs_mount	*mp = ip->i_mount;
365 	int			error;
366 
367 	/*
368 	 * check for re-use of an inode within an RCU grace period due to the
369 	 * radix tree nodes not being updated yet. We monitor for this by
370 	 * setting the inode number to zero before freeing the inode structure.
371 	 * If the inode has been reallocated and set up, then the inode number
372 	 * will not match, so check for that, too.
373 	 */
374 	spin_lock(&ip->i_flags_lock);
375 	if (ip->i_ino != ino) {
376 		trace_xfs_iget_skip(ip);
377 		XFS_STATS_INC(mp, xs_ig_frecycle);
378 		error = -EAGAIN;
379 		goto out_error;
380 	}
381 
382 
383 	/*
384 	 * If we are racing with another cache hit that is currently
385 	 * instantiating this inode or currently recycling it out of
386 	 * reclaimabe state, wait for the initialisation to complete
387 	 * before continuing.
388 	 *
389 	 * XXX(hch): eventually we should do something equivalent to
390 	 *	     wait_on_inode to wait for these flags to be cleared
391 	 *	     instead of polling for it.
392 	 */
393 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
394 		trace_xfs_iget_skip(ip);
395 		XFS_STATS_INC(mp, xs_ig_frecycle);
396 		error = -EAGAIN;
397 		goto out_error;
398 	}
399 
400 	/*
401 	 * Check the inode free state is valid. This also detects lookup
402 	 * racing with unlinks.
403 	 */
404 	error = xfs_iget_check_free_state(ip, flags);
405 	if (error)
406 		goto out_error;
407 
408 	/*
409 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
410 	 * Need to carefully get it back into useable state.
411 	 */
412 	if (ip->i_flags & XFS_IRECLAIMABLE) {
413 		trace_xfs_iget_reclaim(ip);
414 
415 		if (flags & XFS_IGET_INCORE) {
416 			error = -EAGAIN;
417 			goto out_error;
418 		}
419 
420 		/*
421 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
422 		 * from stomping over us while we recycle the inode.  We can't
423 		 * clear the radix tree reclaimable tag yet as it requires
424 		 * pag_ici_lock to be held exclusive.
425 		 */
426 		ip->i_flags |= XFS_IRECLAIM;
427 
428 		spin_unlock(&ip->i_flags_lock);
429 		rcu_read_unlock();
430 
431 		error = xfs_reinit_inode(mp, inode);
432 		if (error) {
433 			bool wake;
434 			/*
435 			 * Re-initializing the inode failed, and we are in deep
436 			 * trouble.  Try to re-add it to the reclaim list.
437 			 */
438 			rcu_read_lock();
439 			spin_lock(&ip->i_flags_lock);
440 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
441 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
442 			if (wake)
443 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
444 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
445 			trace_xfs_iget_reclaim_fail(ip);
446 			goto out_error;
447 		}
448 
449 		spin_lock(&pag->pag_ici_lock);
450 		spin_lock(&ip->i_flags_lock);
451 
452 		/*
453 		 * Clear the per-lifetime state in the inode as we are now
454 		 * effectively a new inode and need to return to the initial
455 		 * state before reuse occurs.
456 		 */
457 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
458 		ip->i_flags |= XFS_INEW;
459 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
460 		inode->i_state = I_NEW;
461 
462 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
463 		init_rwsem(&inode->i_rwsem);
464 
465 		spin_unlock(&ip->i_flags_lock);
466 		spin_unlock(&pag->pag_ici_lock);
467 	} else {
468 		/* If the VFS inode is being torn down, pause and try again. */
469 		if (!igrab(inode)) {
470 			trace_xfs_iget_skip(ip);
471 			error = -EAGAIN;
472 			goto out_error;
473 		}
474 
475 		/* We've got a live one. */
476 		spin_unlock(&ip->i_flags_lock);
477 		rcu_read_unlock();
478 		trace_xfs_iget_hit(ip);
479 	}
480 
481 	if (lock_flags != 0)
482 		xfs_ilock(ip, lock_flags);
483 
484 	if (!(flags & XFS_IGET_INCORE))
485 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
486 	XFS_STATS_INC(mp, xs_ig_found);
487 
488 	return 0;
489 
490 out_error:
491 	spin_unlock(&ip->i_flags_lock);
492 	rcu_read_unlock();
493 	return error;
494 }
495 
496 
497 static int
498 xfs_iget_cache_miss(
499 	struct xfs_mount	*mp,
500 	struct xfs_perag	*pag,
501 	xfs_trans_t		*tp,
502 	xfs_ino_t		ino,
503 	struct xfs_inode	**ipp,
504 	int			flags,
505 	int			lock_flags)
506 {
507 	struct xfs_inode	*ip;
508 	int			error;
509 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
510 	int			iflags;
511 
512 	ip = xfs_inode_alloc(mp, ino);
513 	if (!ip)
514 		return -ENOMEM;
515 
516 	error = xfs_iread(mp, tp, ip, flags);
517 	if (error)
518 		goto out_destroy;
519 
520 	if (!xfs_inode_verify_forks(ip)) {
521 		error = -EFSCORRUPTED;
522 		goto out_destroy;
523 	}
524 
525 	trace_xfs_iget_miss(ip);
526 
527 
528 	/*
529 	 * Check the inode free state is valid. This also detects lookup
530 	 * racing with unlinks.
531 	 */
532 	error = xfs_iget_check_free_state(ip, flags);
533 	if (error)
534 		goto out_destroy;
535 
536 	/*
537 	 * Preload the radix tree so we can insert safely under the
538 	 * write spinlock. Note that we cannot sleep inside the preload
539 	 * region. Since we can be called from transaction context, don't
540 	 * recurse into the file system.
541 	 */
542 	if (radix_tree_preload(GFP_NOFS)) {
543 		error = -EAGAIN;
544 		goto out_destroy;
545 	}
546 
547 	/*
548 	 * Because the inode hasn't been added to the radix-tree yet it can't
549 	 * be found by another thread, so we can do the non-sleeping lock here.
550 	 */
551 	if (lock_flags) {
552 		if (!xfs_ilock_nowait(ip, lock_flags))
553 			BUG();
554 	}
555 
556 	/*
557 	 * These values must be set before inserting the inode into the radix
558 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
559 	 * RCU locking mechanism) can find it and that lookup must see that this
560 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
561 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
562 	 * memory barrier that ensures this detection works correctly at lookup
563 	 * time.
564 	 */
565 	iflags = XFS_INEW;
566 	if (flags & XFS_IGET_DONTCACHE)
567 		iflags |= XFS_IDONTCACHE;
568 	ip->i_udquot = NULL;
569 	ip->i_gdquot = NULL;
570 	ip->i_pdquot = NULL;
571 	xfs_iflags_set(ip, iflags);
572 
573 	/* insert the new inode */
574 	spin_lock(&pag->pag_ici_lock);
575 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
576 	if (unlikely(error)) {
577 		WARN_ON(error != -EEXIST);
578 		XFS_STATS_INC(mp, xs_ig_dup);
579 		error = -EAGAIN;
580 		goto out_preload_end;
581 	}
582 	spin_unlock(&pag->pag_ici_lock);
583 	radix_tree_preload_end();
584 
585 	*ipp = ip;
586 	return 0;
587 
588 out_preload_end:
589 	spin_unlock(&pag->pag_ici_lock);
590 	radix_tree_preload_end();
591 	if (lock_flags)
592 		xfs_iunlock(ip, lock_flags);
593 out_destroy:
594 	__destroy_inode(VFS_I(ip));
595 	xfs_inode_free(ip);
596 	return error;
597 }
598 
599 /*
600  * Look up an inode by number in the given file system.
601  * The inode is looked up in the cache held in each AG.
602  * If the inode is found in the cache, initialise the vfs inode
603  * if necessary.
604  *
605  * If it is not in core, read it in from the file system's device,
606  * add it to the cache and initialise the vfs inode.
607  *
608  * The inode is locked according to the value of the lock_flags parameter.
609  * This flag parameter indicates how and if the inode's IO lock and inode lock
610  * should be taken.
611  *
612  * mp -- the mount point structure for the current file system.  It points
613  *       to the inode hash table.
614  * tp -- a pointer to the current transaction if there is one.  This is
615  *       simply passed through to the xfs_iread() call.
616  * ino -- the number of the inode desired.  This is the unique identifier
617  *        within the file system for the inode being requested.
618  * lock_flags -- flags indicating how to lock the inode.  See the comment
619  *		 for xfs_ilock() for a list of valid values.
620  */
621 int
622 xfs_iget(
623 	xfs_mount_t	*mp,
624 	xfs_trans_t	*tp,
625 	xfs_ino_t	ino,
626 	uint		flags,
627 	uint		lock_flags,
628 	xfs_inode_t	**ipp)
629 {
630 	xfs_inode_t	*ip;
631 	int		error;
632 	xfs_perag_t	*pag;
633 	xfs_agino_t	agino;
634 
635 	/*
636 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
637 	 * doesn't get freed while it's being referenced during a
638 	 * radix tree traversal here.  It assumes this function
639 	 * aqcuires only the ILOCK (and therefore it has no need to
640 	 * involve the IOLOCK in this synchronization).
641 	 */
642 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
643 
644 	/* reject inode numbers outside existing AGs */
645 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
646 		return -EINVAL;
647 
648 	XFS_STATS_INC(mp, xs_ig_attempts);
649 
650 	/* get the perag structure and ensure that it's inode capable */
651 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
652 	agino = XFS_INO_TO_AGINO(mp, ino);
653 
654 again:
655 	error = 0;
656 	rcu_read_lock();
657 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
658 
659 	if (ip) {
660 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
661 		if (error)
662 			goto out_error_or_again;
663 	} else {
664 		rcu_read_unlock();
665 		if (flags & XFS_IGET_INCORE) {
666 			error = -ENODATA;
667 			goto out_error_or_again;
668 		}
669 		XFS_STATS_INC(mp, xs_ig_missed);
670 
671 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
672 							flags, lock_flags);
673 		if (error)
674 			goto out_error_or_again;
675 	}
676 	xfs_perag_put(pag);
677 
678 	*ipp = ip;
679 
680 	/*
681 	 * If we have a real type for an on-disk inode, we can setup the inode
682 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
683 	 */
684 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
685 		xfs_setup_existing_inode(ip);
686 	return 0;
687 
688 out_error_or_again:
689 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
690 		delay(1);
691 		goto again;
692 	}
693 	xfs_perag_put(pag);
694 	return error;
695 }
696 
697 /*
698  * "Is this a cached inode that's also allocated?"
699  *
700  * Look up an inode by number in the given file system.  If the inode is
701  * in cache and isn't in purgatory, return 1 if the inode is allocated
702  * and 0 if it is not.  For all other cases (not in cache, being torn
703  * down, etc.), return a negative error code.
704  *
705  * The caller has to prevent inode allocation and freeing activity,
706  * presumably by locking the AGI buffer.   This is to ensure that an
707  * inode cannot transition from allocated to freed until the caller is
708  * ready to allow that.  If the inode is in an intermediate state (new,
709  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
710  * inode is not in the cache, -ENOENT will be returned.  The caller must
711  * deal with these scenarios appropriately.
712  *
713  * This is a specialized use case for the online scrubber; if you're
714  * reading this, you probably want xfs_iget.
715  */
716 int
717 xfs_icache_inode_is_allocated(
718 	struct xfs_mount	*mp,
719 	struct xfs_trans	*tp,
720 	xfs_ino_t		ino,
721 	bool			*inuse)
722 {
723 	struct xfs_inode	*ip;
724 	int			error;
725 
726 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
727 	if (error)
728 		return error;
729 
730 	*inuse = !!(VFS_I(ip)->i_mode);
731 	IRELE(ip);
732 	return 0;
733 }
734 
735 /*
736  * The inode lookup is done in batches to keep the amount of lock traffic and
737  * radix tree lookups to a minimum. The batch size is a trade off between
738  * lookup reduction and stack usage. This is in the reclaim path, so we can't
739  * be too greedy.
740  */
741 #define XFS_LOOKUP_BATCH	32
742 
743 STATIC int
744 xfs_inode_ag_walk_grab(
745 	struct xfs_inode	*ip,
746 	int			flags)
747 {
748 	struct inode		*inode = VFS_I(ip);
749 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
750 
751 	ASSERT(rcu_read_lock_held());
752 
753 	/*
754 	 * check for stale RCU freed inode
755 	 *
756 	 * If the inode has been reallocated, it doesn't matter if it's not in
757 	 * the AG we are walking - we are walking for writeback, so if it
758 	 * passes all the "valid inode" checks and is dirty, then we'll write
759 	 * it back anyway.  If it has been reallocated and still being
760 	 * initialised, the XFS_INEW check below will catch it.
761 	 */
762 	spin_lock(&ip->i_flags_lock);
763 	if (!ip->i_ino)
764 		goto out_unlock_noent;
765 
766 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
767 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
768 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
769 		goto out_unlock_noent;
770 	spin_unlock(&ip->i_flags_lock);
771 
772 	/* nothing to sync during shutdown */
773 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
774 		return -EFSCORRUPTED;
775 
776 	/* If we can't grab the inode, it must on it's way to reclaim. */
777 	if (!igrab(inode))
778 		return -ENOENT;
779 
780 	/* inode is valid */
781 	return 0;
782 
783 out_unlock_noent:
784 	spin_unlock(&ip->i_flags_lock);
785 	return -ENOENT;
786 }
787 
788 STATIC int
789 xfs_inode_ag_walk(
790 	struct xfs_mount	*mp,
791 	struct xfs_perag	*pag,
792 	int			(*execute)(struct xfs_inode *ip, int flags,
793 					   void *args),
794 	int			flags,
795 	void			*args,
796 	int			tag,
797 	int			iter_flags)
798 {
799 	uint32_t		first_index;
800 	int			last_error = 0;
801 	int			skipped;
802 	int			done;
803 	int			nr_found;
804 
805 restart:
806 	done = 0;
807 	skipped = 0;
808 	first_index = 0;
809 	nr_found = 0;
810 	do {
811 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
812 		int		error = 0;
813 		int		i;
814 
815 		rcu_read_lock();
816 
817 		if (tag == -1)
818 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
819 					(void **)batch, first_index,
820 					XFS_LOOKUP_BATCH);
821 		else
822 			nr_found = radix_tree_gang_lookup_tag(
823 					&pag->pag_ici_root,
824 					(void **) batch, first_index,
825 					XFS_LOOKUP_BATCH, tag);
826 
827 		if (!nr_found) {
828 			rcu_read_unlock();
829 			break;
830 		}
831 
832 		/*
833 		 * Grab the inodes before we drop the lock. if we found
834 		 * nothing, nr == 0 and the loop will be skipped.
835 		 */
836 		for (i = 0; i < nr_found; i++) {
837 			struct xfs_inode *ip = batch[i];
838 
839 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
840 				batch[i] = NULL;
841 
842 			/*
843 			 * Update the index for the next lookup. Catch
844 			 * overflows into the next AG range which can occur if
845 			 * we have inodes in the last block of the AG and we
846 			 * are currently pointing to the last inode.
847 			 *
848 			 * Because we may see inodes that are from the wrong AG
849 			 * due to RCU freeing and reallocation, only update the
850 			 * index if it lies in this AG. It was a race that lead
851 			 * us to see this inode, so another lookup from the
852 			 * same index will not find it again.
853 			 */
854 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
855 				continue;
856 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
857 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
858 				done = 1;
859 		}
860 
861 		/* unlock now we've grabbed the inodes. */
862 		rcu_read_unlock();
863 
864 		for (i = 0; i < nr_found; i++) {
865 			if (!batch[i])
866 				continue;
867 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
868 			    xfs_iflags_test(batch[i], XFS_INEW))
869 				xfs_inew_wait(batch[i]);
870 			error = execute(batch[i], flags, args);
871 			IRELE(batch[i]);
872 			if (error == -EAGAIN) {
873 				skipped++;
874 				continue;
875 			}
876 			if (error && last_error != -EFSCORRUPTED)
877 				last_error = error;
878 		}
879 
880 		/* bail out if the filesystem is corrupted.  */
881 		if (error == -EFSCORRUPTED)
882 			break;
883 
884 		cond_resched();
885 
886 	} while (nr_found && !done);
887 
888 	if (skipped) {
889 		delay(1);
890 		goto restart;
891 	}
892 	return last_error;
893 }
894 
895 /*
896  * Background scanning to trim post-EOF preallocated space. This is queued
897  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
898  */
899 void
900 xfs_queue_eofblocks(
901 	struct xfs_mount *mp)
902 {
903 	rcu_read_lock();
904 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
905 		queue_delayed_work(mp->m_eofblocks_workqueue,
906 				   &mp->m_eofblocks_work,
907 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
908 	rcu_read_unlock();
909 }
910 
911 void
912 xfs_eofblocks_worker(
913 	struct work_struct *work)
914 {
915 	struct xfs_mount *mp = container_of(to_delayed_work(work),
916 				struct xfs_mount, m_eofblocks_work);
917 	xfs_icache_free_eofblocks(mp, NULL);
918 	xfs_queue_eofblocks(mp);
919 }
920 
921 /*
922  * Background scanning to trim preallocated CoW space. This is queued
923  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
924  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
925  */
926 void
927 xfs_queue_cowblocks(
928 	struct xfs_mount *mp)
929 {
930 	rcu_read_lock();
931 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
932 		queue_delayed_work(mp->m_eofblocks_workqueue,
933 				   &mp->m_cowblocks_work,
934 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
935 	rcu_read_unlock();
936 }
937 
938 void
939 xfs_cowblocks_worker(
940 	struct work_struct *work)
941 {
942 	struct xfs_mount *mp = container_of(to_delayed_work(work),
943 				struct xfs_mount, m_cowblocks_work);
944 	xfs_icache_free_cowblocks(mp, NULL);
945 	xfs_queue_cowblocks(mp);
946 }
947 
948 int
949 xfs_inode_ag_iterator_flags(
950 	struct xfs_mount	*mp,
951 	int			(*execute)(struct xfs_inode *ip, int flags,
952 					   void *args),
953 	int			flags,
954 	void			*args,
955 	int			iter_flags)
956 {
957 	struct xfs_perag	*pag;
958 	int			error = 0;
959 	int			last_error = 0;
960 	xfs_agnumber_t		ag;
961 
962 	ag = 0;
963 	while ((pag = xfs_perag_get(mp, ag))) {
964 		ag = pag->pag_agno + 1;
965 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
966 					  iter_flags);
967 		xfs_perag_put(pag);
968 		if (error) {
969 			last_error = error;
970 			if (error == -EFSCORRUPTED)
971 				break;
972 		}
973 	}
974 	return last_error;
975 }
976 
977 int
978 xfs_inode_ag_iterator(
979 	struct xfs_mount	*mp,
980 	int			(*execute)(struct xfs_inode *ip, int flags,
981 					   void *args),
982 	int			flags,
983 	void			*args)
984 {
985 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
986 }
987 
988 int
989 xfs_inode_ag_iterator_tag(
990 	struct xfs_mount	*mp,
991 	int			(*execute)(struct xfs_inode *ip, int flags,
992 					   void *args),
993 	int			flags,
994 	void			*args,
995 	int			tag)
996 {
997 	struct xfs_perag	*pag;
998 	int			error = 0;
999 	int			last_error = 0;
1000 	xfs_agnumber_t		ag;
1001 
1002 	ag = 0;
1003 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
1004 		ag = pag->pag_agno + 1;
1005 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
1006 					  0);
1007 		xfs_perag_put(pag);
1008 		if (error) {
1009 			last_error = error;
1010 			if (error == -EFSCORRUPTED)
1011 				break;
1012 		}
1013 	}
1014 	return last_error;
1015 }
1016 
1017 /*
1018  * Grab the inode for reclaim exclusively.
1019  * Return 0 if we grabbed it, non-zero otherwise.
1020  */
1021 STATIC int
1022 xfs_reclaim_inode_grab(
1023 	struct xfs_inode	*ip,
1024 	int			flags)
1025 {
1026 	ASSERT(rcu_read_lock_held());
1027 
1028 	/* quick check for stale RCU freed inode */
1029 	if (!ip->i_ino)
1030 		return 1;
1031 
1032 	/*
1033 	 * If we are asked for non-blocking operation, do unlocked checks to
1034 	 * see if the inode already is being flushed or in reclaim to avoid
1035 	 * lock traffic.
1036 	 */
1037 	if ((flags & SYNC_TRYLOCK) &&
1038 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1039 		return 1;
1040 
1041 	/*
1042 	 * The radix tree lock here protects a thread in xfs_iget from racing
1043 	 * with us starting reclaim on the inode.  Once we have the
1044 	 * XFS_IRECLAIM flag set it will not touch us.
1045 	 *
1046 	 * Due to RCU lookup, we may find inodes that have been freed and only
1047 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1048 	 * aren't candidates for reclaim at all, so we must check the
1049 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1050 	 */
1051 	spin_lock(&ip->i_flags_lock);
1052 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1053 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1054 		/* not a reclaim candidate. */
1055 		spin_unlock(&ip->i_flags_lock);
1056 		return 1;
1057 	}
1058 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1059 	spin_unlock(&ip->i_flags_lock);
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Inodes in different states need to be treated differently. The following
1065  * table lists the inode states and the reclaim actions necessary:
1066  *
1067  *	inode state	     iflush ret		required action
1068  *      ---------------      ----------         ---------------
1069  *	bad			-		reclaim
1070  *	shutdown		EIO		unpin and reclaim
1071  *	clean, unpinned		0		reclaim
1072  *	stale, unpinned		0		reclaim
1073  *	clean, pinned(*)	0		requeue
1074  *	stale, pinned		EAGAIN		requeue
1075  *	dirty, async		-		requeue
1076  *	dirty, sync		0		reclaim
1077  *
1078  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1079  * handled anyway given the order of checks implemented.
1080  *
1081  * Also, because we get the flush lock first, we know that any inode that has
1082  * been flushed delwri has had the flush completed by the time we check that
1083  * the inode is clean.
1084  *
1085  * Note that because the inode is flushed delayed write by AIL pushing, the
1086  * flush lock may already be held here and waiting on it can result in very
1087  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1088  * the caller should push the AIL first before trying to reclaim inodes to
1089  * minimise the amount of time spent waiting.  For background relaim, we only
1090  * bother to reclaim clean inodes anyway.
1091  *
1092  * Hence the order of actions after gaining the locks should be:
1093  *	bad		=> reclaim
1094  *	shutdown	=> unpin and reclaim
1095  *	pinned, async	=> requeue
1096  *	pinned, sync	=> unpin
1097  *	stale		=> reclaim
1098  *	clean		=> reclaim
1099  *	dirty, async	=> requeue
1100  *	dirty, sync	=> flush, wait and reclaim
1101  */
1102 STATIC int
1103 xfs_reclaim_inode(
1104 	struct xfs_inode	*ip,
1105 	struct xfs_perag	*pag,
1106 	int			sync_mode)
1107 {
1108 	struct xfs_buf		*bp = NULL;
1109 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1110 	int			error;
1111 
1112 restart:
1113 	error = 0;
1114 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1115 	if (!xfs_iflock_nowait(ip)) {
1116 		if (!(sync_mode & SYNC_WAIT))
1117 			goto out;
1118 		xfs_iflock(ip);
1119 	}
1120 
1121 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1122 		xfs_iunpin_wait(ip);
1123 		/* xfs_iflush_abort() drops the flush lock */
1124 		xfs_iflush_abort(ip, false);
1125 		goto reclaim;
1126 	}
1127 	if (xfs_ipincount(ip)) {
1128 		if (!(sync_mode & SYNC_WAIT))
1129 			goto out_ifunlock;
1130 		xfs_iunpin_wait(ip);
1131 	}
1132 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1133 		xfs_ifunlock(ip);
1134 		goto reclaim;
1135 	}
1136 
1137 	/*
1138 	 * Never flush out dirty data during non-blocking reclaim, as it would
1139 	 * just contend with AIL pushing trying to do the same job.
1140 	 */
1141 	if (!(sync_mode & SYNC_WAIT))
1142 		goto out_ifunlock;
1143 
1144 	/*
1145 	 * Now we have an inode that needs flushing.
1146 	 *
1147 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1148 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1149 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1150 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1151 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1152 	 *
1153 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1154 	 * cache to mark them stale, if we hit this case we don't actually want
1155 	 * to do IO here - we want the inode marked stale so we can simply
1156 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1157 	 * inode, back off and try again.  Hopefully the next pass through will
1158 	 * see the stale flag set on the inode.
1159 	 */
1160 	error = xfs_iflush(ip, &bp);
1161 	if (error == -EAGAIN) {
1162 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1163 		/* backoff longer than in xfs_ifree_cluster */
1164 		delay(2);
1165 		goto restart;
1166 	}
1167 
1168 	if (!error) {
1169 		error = xfs_bwrite(bp);
1170 		xfs_buf_relse(bp);
1171 	}
1172 
1173 reclaim:
1174 	ASSERT(!xfs_isiflocked(ip));
1175 
1176 	/*
1177 	 * Because we use RCU freeing we need to ensure the inode always appears
1178 	 * to be reclaimed with an invalid inode number when in the free state.
1179 	 * We do this as early as possible under the ILOCK so that
1180 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1181 	 * detect races with us here. By doing this, we guarantee that once
1182 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1183 	 * it will see either a valid inode that will serialise correctly, or it
1184 	 * will see an invalid inode that it can skip.
1185 	 */
1186 	spin_lock(&ip->i_flags_lock);
1187 	ip->i_flags = XFS_IRECLAIM;
1188 	ip->i_ino = 0;
1189 	spin_unlock(&ip->i_flags_lock);
1190 
1191 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1192 
1193 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1194 	/*
1195 	 * Remove the inode from the per-AG radix tree.
1196 	 *
1197 	 * Because radix_tree_delete won't complain even if the item was never
1198 	 * added to the tree assert that it's been there before to catch
1199 	 * problems with the inode life time early on.
1200 	 */
1201 	spin_lock(&pag->pag_ici_lock);
1202 	if (!radix_tree_delete(&pag->pag_ici_root,
1203 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1204 		ASSERT(0);
1205 	xfs_perag_clear_reclaim_tag(pag);
1206 	spin_unlock(&pag->pag_ici_lock);
1207 
1208 	/*
1209 	 * Here we do an (almost) spurious inode lock in order to coordinate
1210 	 * with inode cache radix tree lookups.  This is because the lookup
1211 	 * can reference the inodes in the cache without taking references.
1212 	 *
1213 	 * We make that OK here by ensuring that we wait until the inode is
1214 	 * unlocked after the lookup before we go ahead and free it.
1215 	 */
1216 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1217 	xfs_qm_dqdetach(ip);
1218 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1219 
1220 	__xfs_inode_free(ip);
1221 	return error;
1222 
1223 out_ifunlock:
1224 	xfs_ifunlock(ip);
1225 out:
1226 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1227 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1228 	/*
1229 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1230 	 * a short while. However, this just burns CPU time scanning the tree
1231 	 * waiting for IO to complete and the reclaim work never goes back to
1232 	 * the idle state. Instead, return 0 to let the next scheduled
1233 	 * background reclaim attempt to reclaim the inode again.
1234 	 */
1235 	return 0;
1236 }
1237 
1238 /*
1239  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1240  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1241  * then a shut down during filesystem unmount reclaim walk leak all the
1242  * unreclaimed inodes.
1243  */
1244 STATIC int
1245 xfs_reclaim_inodes_ag(
1246 	struct xfs_mount	*mp,
1247 	int			flags,
1248 	int			*nr_to_scan)
1249 {
1250 	struct xfs_perag	*pag;
1251 	int			error = 0;
1252 	int			last_error = 0;
1253 	xfs_agnumber_t		ag;
1254 	int			trylock = flags & SYNC_TRYLOCK;
1255 	int			skipped;
1256 
1257 restart:
1258 	ag = 0;
1259 	skipped = 0;
1260 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1261 		unsigned long	first_index = 0;
1262 		int		done = 0;
1263 		int		nr_found = 0;
1264 
1265 		ag = pag->pag_agno + 1;
1266 
1267 		if (trylock) {
1268 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1269 				skipped++;
1270 				xfs_perag_put(pag);
1271 				continue;
1272 			}
1273 			first_index = pag->pag_ici_reclaim_cursor;
1274 		} else
1275 			mutex_lock(&pag->pag_ici_reclaim_lock);
1276 
1277 		do {
1278 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1279 			int	i;
1280 
1281 			rcu_read_lock();
1282 			nr_found = radix_tree_gang_lookup_tag(
1283 					&pag->pag_ici_root,
1284 					(void **)batch, first_index,
1285 					XFS_LOOKUP_BATCH,
1286 					XFS_ICI_RECLAIM_TAG);
1287 			if (!nr_found) {
1288 				done = 1;
1289 				rcu_read_unlock();
1290 				break;
1291 			}
1292 
1293 			/*
1294 			 * Grab the inodes before we drop the lock. if we found
1295 			 * nothing, nr == 0 and the loop will be skipped.
1296 			 */
1297 			for (i = 0; i < nr_found; i++) {
1298 				struct xfs_inode *ip = batch[i];
1299 
1300 				if (done || xfs_reclaim_inode_grab(ip, flags))
1301 					batch[i] = NULL;
1302 
1303 				/*
1304 				 * Update the index for the next lookup. Catch
1305 				 * overflows into the next AG range which can
1306 				 * occur if we have inodes in the last block of
1307 				 * the AG and we are currently pointing to the
1308 				 * last inode.
1309 				 *
1310 				 * Because we may see inodes that are from the
1311 				 * wrong AG due to RCU freeing and
1312 				 * reallocation, only update the index if it
1313 				 * lies in this AG. It was a race that lead us
1314 				 * to see this inode, so another lookup from
1315 				 * the same index will not find it again.
1316 				 */
1317 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1318 								pag->pag_agno)
1319 					continue;
1320 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1321 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1322 					done = 1;
1323 			}
1324 
1325 			/* unlock now we've grabbed the inodes. */
1326 			rcu_read_unlock();
1327 
1328 			for (i = 0; i < nr_found; i++) {
1329 				if (!batch[i])
1330 					continue;
1331 				error = xfs_reclaim_inode(batch[i], pag, flags);
1332 				if (error && last_error != -EFSCORRUPTED)
1333 					last_error = error;
1334 			}
1335 
1336 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1337 
1338 			cond_resched();
1339 
1340 		} while (nr_found && !done && *nr_to_scan > 0);
1341 
1342 		if (trylock && !done)
1343 			pag->pag_ici_reclaim_cursor = first_index;
1344 		else
1345 			pag->pag_ici_reclaim_cursor = 0;
1346 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1347 		xfs_perag_put(pag);
1348 	}
1349 
1350 	/*
1351 	 * if we skipped any AG, and we still have scan count remaining, do
1352 	 * another pass this time using blocking reclaim semantics (i.e
1353 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1354 	 * ensure that when we get more reclaimers than AGs we block rather
1355 	 * than spin trying to execute reclaim.
1356 	 */
1357 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1358 		trylock = 0;
1359 		goto restart;
1360 	}
1361 	return last_error;
1362 }
1363 
1364 int
1365 xfs_reclaim_inodes(
1366 	xfs_mount_t	*mp,
1367 	int		mode)
1368 {
1369 	int		nr_to_scan = INT_MAX;
1370 
1371 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1372 }
1373 
1374 /*
1375  * Scan a certain number of inodes for reclaim.
1376  *
1377  * When called we make sure that there is a background (fast) inode reclaim in
1378  * progress, while we will throttle the speed of reclaim via doing synchronous
1379  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1380  * them to be cleaned, which we hope will not be very long due to the
1381  * background walker having already kicked the IO off on those dirty inodes.
1382  */
1383 long
1384 xfs_reclaim_inodes_nr(
1385 	struct xfs_mount	*mp,
1386 	int			nr_to_scan)
1387 {
1388 	/* kick background reclaimer and push the AIL */
1389 	xfs_reclaim_work_queue(mp);
1390 	xfs_ail_push_all(mp->m_ail);
1391 
1392 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1393 }
1394 
1395 /*
1396  * Return the number of reclaimable inodes in the filesystem for
1397  * the shrinker to determine how much to reclaim.
1398  */
1399 int
1400 xfs_reclaim_inodes_count(
1401 	struct xfs_mount	*mp)
1402 {
1403 	struct xfs_perag	*pag;
1404 	xfs_agnumber_t		ag = 0;
1405 	int			reclaimable = 0;
1406 
1407 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1408 		ag = pag->pag_agno + 1;
1409 		reclaimable += pag->pag_ici_reclaimable;
1410 		xfs_perag_put(pag);
1411 	}
1412 	return reclaimable;
1413 }
1414 
1415 STATIC int
1416 xfs_inode_match_id(
1417 	struct xfs_inode	*ip,
1418 	struct xfs_eofblocks	*eofb)
1419 {
1420 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1421 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1422 		return 0;
1423 
1424 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1425 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1426 		return 0;
1427 
1428 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1429 	    xfs_get_projid(ip) != eofb->eof_prid)
1430 		return 0;
1431 
1432 	return 1;
1433 }
1434 
1435 /*
1436  * A union-based inode filtering algorithm. Process the inode if any of the
1437  * criteria match. This is for global/internal scans only.
1438  */
1439 STATIC int
1440 xfs_inode_match_id_union(
1441 	struct xfs_inode	*ip,
1442 	struct xfs_eofblocks	*eofb)
1443 {
1444 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1445 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1446 		return 1;
1447 
1448 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1449 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1450 		return 1;
1451 
1452 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1453 	    xfs_get_projid(ip) == eofb->eof_prid)
1454 		return 1;
1455 
1456 	return 0;
1457 }
1458 
1459 STATIC int
1460 xfs_inode_free_eofblocks(
1461 	struct xfs_inode	*ip,
1462 	int			flags,
1463 	void			*args)
1464 {
1465 	int ret = 0;
1466 	struct xfs_eofblocks *eofb = args;
1467 	int match;
1468 
1469 	if (!xfs_can_free_eofblocks(ip, false)) {
1470 		/* inode could be preallocated or append-only */
1471 		trace_xfs_inode_free_eofblocks_invalid(ip);
1472 		xfs_inode_clear_eofblocks_tag(ip);
1473 		return 0;
1474 	}
1475 
1476 	/*
1477 	 * If the mapping is dirty the operation can block and wait for some
1478 	 * time. Unless we are waiting, skip it.
1479 	 */
1480 	if (!(flags & SYNC_WAIT) &&
1481 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1482 		return 0;
1483 
1484 	if (eofb) {
1485 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1486 			match = xfs_inode_match_id_union(ip, eofb);
1487 		else
1488 			match = xfs_inode_match_id(ip, eofb);
1489 		if (!match)
1490 			return 0;
1491 
1492 		/* skip the inode if the file size is too small */
1493 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1494 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1495 			return 0;
1496 	}
1497 
1498 	/*
1499 	 * If the caller is waiting, return -EAGAIN to keep the background
1500 	 * scanner moving and revisit the inode in a subsequent pass.
1501 	 */
1502 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1503 		if (flags & SYNC_WAIT)
1504 			ret = -EAGAIN;
1505 		return ret;
1506 	}
1507 	ret = xfs_free_eofblocks(ip);
1508 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1509 
1510 	return ret;
1511 }
1512 
1513 static int
1514 __xfs_icache_free_eofblocks(
1515 	struct xfs_mount	*mp,
1516 	struct xfs_eofblocks	*eofb,
1517 	int			(*execute)(struct xfs_inode *ip, int flags,
1518 					   void *args),
1519 	int			tag)
1520 {
1521 	int flags = SYNC_TRYLOCK;
1522 
1523 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1524 		flags = SYNC_WAIT;
1525 
1526 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1527 					 eofb, tag);
1528 }
1529 
1530 int
1531 xfs_icache_free_eofblocks(
1532 	struct xfs_mount	*mp,
1533 	struct xfs_eofblocks	*eofb)
1534 {
1535 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1536 			XFS_ICI_EOFBLOCKS_TAG);
1537 }
1538 
1539 /*
1540  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1541  * multiple quotas, we don't know exactly which quota caused an allocation
1542  * failure. We make a best effort by including each quota under low free space
1543  * conditions (less than 1% free space) in the scan.
1544  */
1545 static int
1546 __xfs_inode_free_quota_eofblocks(
1547 	struct xfs_inode	*ip,
1548 	int			(*execute)(struct xfs_mount *mp,
1549 					   struct xfs_eofblocks	*eofb))
1550 {
1551 	int scan = 0;
1552 	struct xfs_eofblocks eofb = {0};
1553 	struct xfs_dquot *dq;
1554 
1555 	/*
1556 	 * Run a sync scan to increase effectiveness and use the union filter to
1557 	 * cover all applicable quotas in a single scan.
1558 	 */
1559 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1560 
1561 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1562 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1563 		if (dq && xfs_dquot_lowsp(dq)) {
1564 			eofb.eof_uid = VFS_I(ip)->i_uid;
1565 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1566 			scan = 1;
1567 		}
1568 	}
1569 
1570 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1571 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1572 		if (dq && xfs_dquot_lowsp(dq)) {
1573 			eofb.eof_gid = VFS_I(ip)->i_gid;
1574 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1575 			scan = 1;
1576 		}
1577 	}
1578 
1579 	if (scan)
1580 		execute(ip->i_mount, &eofb);
1581 
1582 	return scan;
1583 }
1584 
1585 int
1586 xfs_inode_free_quota_eofblocks(
1587 	struct xfs_inode *ip)
1588 {
1589 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1590 }
1591 
1592 static inline unsigned long
1593 xfs_iflag_for_tag(
1594 	int		tag)
1595 {
1596 	switch (tag) {
1597 	case XFS_ICI_EOFBLOCKS_TAG:
1598 		return XFS_IEOFBLOCKS;
1599 	case XFS_ICI_COWBLOCKS_TAG:
1600 		return XFS_ICOWBLOCKS;
1601 	default:
1602 		ASSERT(0);
1603 		return 0;
1604 	}
1605 }
1606 
1607 static void
1608 __xfs_inode_set_blocks_tag(
1609 	xfs_inode_t	*ip,
1610 	void		(*execute)(struct xfs_mount *mp),
1611 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1612 				  int error, unsigned long caller_ip),
1613 	int		tag)
1614 {
1615 	struct xfs_mount *mp = ip->i_mount;
1616 	struct xfs_perag *pag;
1617 	int tagged;
1618 
1619 	/*
1620 	 * Don't bother locking the AG and looking up in the radix trees
1621 	 * if we already know that we have the tag set.
1622 	 */
1623 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1624 		return;
1625 	spin_lock(&ip->i_flags_lock);
1626 	ip->i_flags |= xfs_iflag_for_tag(tag);
1627 	spin_unlock(&ip->i_flags_lock);
1628 
1629 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1630 	spin_lock(&pag->pag_ici_lock);
1631 
1632 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1633 	radix_tree_tag_set(&pag->pag_ici_root,
1634 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1635 	if (!tagged) {
1636 		/* propagate the eofblocks tag up into the perag radix tree */
1637 		spin_lock(&ip->i_mount->m_perag_lock);
1638 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1639 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1640 				   tag);
1641 		spin_unlock(&ip->i_mount->m_perag_lock);
1642 
1643 		/* kick off background trimming */
1644 		execute(ip->i_mount);
1645 
1646 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1647 	}
1648 
1649 	spin_unlock(&pag->pag_ici_lock);
1650 	xfs_perag_put(pag);
1651 }
1652 
1653 void
1654 xfs_inode_set_eofblocks_tag(
1655 	xfs_inode_t	*ip)
1656 {
1657 	trace_xfs_inode_set_eofblocks_tag(ip);
1658 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1659 			trace_xfs_perag_set_eofblocks,
1660 			XFS_ICI_EOFBLOCKS_TAG);
1661 }
1662 
1663 static void
1664 __xfs_inode_clear_blocks_tag(
1665 	xfs_inode_t	*ip,
1666 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1667 				    int error, unsigned long caller_ip),
1668 	int		tag)
1669 {
1670 	struct xfs_mount *mp = ip->i_mount;
1671 	struct xfs_perag *pag;
1672 
1673 	spin_lock(&ip->i_flags_lock);
1674 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1675 	spin_unlock(&ip->i_flags_lock);
1676 
1677 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1678 	spin_lock(&pag->pag_ici_lock);
1679 
1680 	radix_tree_tag_clear(&pag->pag_ici_root,
1681 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1682 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1683 		/* clear the eofblocks tag from the perag radix tree */
1684 		spin_lock(&ip->i_mount->m_perag_lock);
1685 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1686 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1687 				     tag);
1688 		spin_unlock(&ip->i_mount->m_perag_lock);
1689 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1690 	}
1691 
1692 	spin_unlock(&pag->pag_ici_lock);
1693 	xfs_perag_put(pag);
1694 }
1695 
1696 void
1697 xfs_inode_clear_eofblocks_tag(
1698 	xfs_inode_t	*ip)
1699 {
1700 	trace_xfs_inode_clear_eofblocks_tag(ip);
1701 	return __xfs_inode_clear_blocks_tag(ip,
1702 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1703 }
1704 
1705 /*
1706  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1707  * then we can bail out quickly, but otherwise we must back off if the file
1708  * is undergoing some kind of write.
1709  */
1710 static bool
1711 xfs_prep_free_cowblocks(
1712 	struct xfs_inode	*ip,
1713 	struct xfs_ifork	*ifp)
1714 {
1715 	/*
1716 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1717 	 * possible the inode was fully unshared since it was originally tagged.
1718 	 */
1719 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1720 		trace_xfs_inode_free_cowblocks_invalid(ip);
1721 		xfs_inode_clear_cowblocks_tag(ip);
1722 		return false;
1723 	}
1724 
1725 	/*
1726 	 * If the mapping is dirty or under writeback we cannot touch the
1727 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1728 	 */
1729 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1730 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1731 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1732 	    atomic_read(&VFS_I(ip)->i_dio_count))
1733 		return false;
1734 
1735 	return true;
1736 }
1737 
1738 /*
1739  * Automatic CoW Reservation Freeing
1740  *
1741  * These functions automatically garbage collect leftover CoW reservations
1742  * that were made on behalf of a cowextsize hint when we start to run out
1743  * of quota or when the reservations sit around for too long.  If the file
1744  * has dirty pages or is undergoing writeback, its CoW reservations will
1745  * be retained.
1746  *
1747  * The actual garbage collection piggybacks off the same code that runs
1748  * the speculative EOF preallocation garbage collector.
1749  */
1750 STATIC int
1751 xfs_inode_free_cowblocks(
1752 	struct xfs_inode	*ip,
1753 	int			flags,
1754 	void			*args)
1755 {
1756 	struct xfs_eofblocks	*eofb = args;
1757 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1758 	int			match;
1759 	int			ret = 0;
1760 
1761 	if (!xfs_prep_free_cowblocks(ip, ifp))
1762 		return 0;
1763 
1764 	if (eofb) {
1765 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1766 			match = xfs_inode_match_id_union(ip, eofb);
1767 		else
1768 			match = xfs_inode_match_id(ip, eofb);
1769 		if (!match)
1770 			return 0;
1771 
1772 		/* skip the inode if the file size is too small */
1773 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1774 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1775 			return 0;
1776 	}
1777 
1778 	/* Free the CoW blocks */
1779 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1780 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1781 
1782 	/*
1783 	 * Check again, nobody else should be able to dirty blocks or change
1784 	 * the reflink iflag now that we have the first two locks held.
1785 	 */
1786 	if (xfs_prep_free_cowblocks(ip, ifp))
1787 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1788 
1789 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1790 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1791 
1792 	return ret;
1793 }
1794 
1795 int
1796 xfs_icache_free_cowblocks(
1797 	struct xfs_mount	*mp,
1798 	struct xfs_eofblocks	*eofb)
1799 {
1800 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1801 			XFS_ICI_COWBLOCKS_TAG);
1802 }
1803 
1804 int
1805 xfs_inode_free_quota_cowblocks(
1806 	struct xfs_inode *ip)
1807 {
1808 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1809 }
1810 
1811 void
1812 xfs_inode_set_cowblocks_tag(
1813 	xfs_inode_t	*ip)
1814 {
1815 	trace_xfs_inode_set_cowblocks_tag(ip);
1816 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1817 			trace_xfs_perag_set_cowblocks,
1818 			XFS_ICI_COWBLOCKS_TAG);
1819 }
1820 
1821 void
1822 xfs_inode_clear_cowblocks_tag(
1823 	xfs_inode_t	*ip)
1824 {
1825 	trace_xfs_inode_clear_cowblocks_tag(ip);
1826 	return __xfs_inode_clear_blocks_tag(ip,
1827 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1828 }
1829 
1830 /* Disable post-EOF and CoW block auto-reclamation. */
1831 void
1832 xfs_icache_disable_reclaim(
1833 	struct xfs_mount	*mp)
1834 {
1835 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1836 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1837 }
1838 
1839 /* Enable post-EOF and CoW block auto-reclamation. */
1840 void
1841 xfs_icache_enable_reclaim(
1842 	struct xfs_mount	*mp)
1843 {
1844 	xfs_queue_eofblocks(mp);
1845 	xfs_queue_cowblocks(mp);
1846 }
1847