xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25 #include "xfs_ialloc.h"
26 
27 #include <linux/iversion.h>
28 
29 /*
30  * Allocate and initialise an xfs_inode.
31  */
32 struct xfs_inode *
33 xfs_inode_alloc(
34 	struct xfs_mount	*mp,
35 	xfs_ino_t		ino)
36 {
37 	struct xfs_inode	*ip;
38 
39 	/*
40 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
41 	 * and return NULL here on ENOMEM.
42 	 */
43 	ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
44 
45 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
46 		kmem_cache_free(xfs_inode_zone, ip);
47 		return NULL;
48 	}
49 
50 	/* VFS doesn't initialise i_mode! */
51 	VFS_I(ip)->i_mode = 0;
52 
53 	XFS_STATS_INC(mp, vn_active);
54 	ASSERT(atomic_read(&ip->i_pincount) == 0);
55 	ASSERT(!xfs_isiflocked(ip));
56 	ASSERT(ip->i_ino == 0);
57 
58 	/* initialise the xfs inode */
59 	ip->i_ino = ino;
60 	ip->i_mount = mp;
61 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
62 	ip->i_afp = NULL;
63 	ip->i_cowfp = NULL;
64 	memset(&ip->i_df, 0, sizeof(ip->i_df));
65 	ip->i_flags = 0;
66 	ip->i_delayed_blks = 0;
67 	memset(&ip->i_d, 0, sizeof(ip->i_d));
68 	ip->i_sick = 0;
69 	ip->i_checked = 0;
70 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
71 	INIT_LIST_HEAD(&ip->i_ioend_list);
72 	spin_lock_init(&ip->i_ioend_lock);
73 
74 	return ip;
75 }
76 
77 STATIC void
78 xfs_inode_free_callback(
79 	struct rcu_head		*head)
80 {
81 	struct inode		*inode = container_of(head, struct inode, i_rcu);
82 	struct xfs_inode	*ip = XFS_I(inode);
83 
84 	switch (VFS_I(ip)->i_mode & S_IFMT) {
85 	case S_IFREG:
86 	case S_IFDIR:
87 	case S_IFLNK:
88 		xfs_idestroy_fork(&ip->i_df);
89 		break;
90 	}
91 
92 	if (ip->i_afp) {
93 		xfs_idestroy_fork(ip->i_afp);
94 		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
95 	}
96 	if (ip->i_cowfp) {
97 		xfs_idestroy_fork(ip->i_cowfp);
98 		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
99 	}
100 	if (ip->i_itemp) {
101 		ASSERT(!test_bit(XFS_LI_IN_AIL,
102 				 &ip->i_itemp->ili_item.li_flags));
103 		xfs_inode_item_destroy(ip);
104 		ip->i_itemp = NULL;
105 	}
106 
107 	kmem_cache_free(xfs_inode_zone, ip);
108 }
109 
110 static void
111 __xfs_inode_free(
112 	struct xfs_inode	*ip)
113 {
114 	/* asserts to verify all state is correct here */
115 	ASSERT(atomic_read(&ip->i_pincount) == 0);
116 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
117 	XFS_STATS_DEC(ip->i_mount, vn_active);
118 
119 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
120 }
121 
122 void
123 xfs_inode_free(
124 	struct xfs_inode	*ip)
125 {
126 	ASSERT(!xfs_isiflocked(ip));
127 
128 	/*
129 	 * Because we use RCU freeing we need to ensure the inode always
130 	 * appears to be reclaimed with an invalid inode number when in the
131 	 * free state. The ip->i_flags_lock provides the barrier against lookup
132 	 * races.
133 	 */
134 	spin_lock(&ip->i_flags_lock);
135 	ip->i_flags = XFS_IRECLAIM;
136 	ip->i_ino = 0;
137 	spin_unlock(&ip->i_flags_lock);
138 
139 	__xfs_inode_free(ip);
140 }
141 
142 /*
143  * Queue background inode reclaim work if there are reclaimable inodes and there
144  * isn't reclaim work already scheduled or in progress.
145  */
146 static void
147 xfs_reclaim_work_queue(
148 	struct xfs_mount        *mp)
149 {
150 
151 	rcu_read_lock();
152 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
153 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
154 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
155 	}
156 	rcu_read_unlock();
157 }
158 
159 static void
160 xfs_perag_set_reclaim_tag(
161 	struct xfs_perag	*pag)
162 {
163 	struct xfs_mount	*mp = pag->pag_mount;
164 
165 	lockdep_assert_held(&pag->pag_ici_lock);
166 	if (pag->pag_ici_reclaimable++)
167 		return;
168 
169 	/* propagate the reclaim tag up into the perag radix tree */
170 	spin_lock(&mp->m_perag_lock);
171 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
172 			   XFS_ICI_RECLAIM_TAG);
173 	spin_unlock(&mp->m_perag_lock);
174 
175 	/* schedule periodic background inode reclaim */
176 	xfs_reclaim_work_queue(mp);
177 
178 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
179 }
180 
181 static void
182 xfs_perag_clear_reclaim_tag(
183 	struct xfs_perag	*pag)
184 {
185 	struct xfs_mount	*mp = pag->pag_mount;
186 
187 	lockdep_assert_held(&pag->pag_ici_lock);
188 	if (--pag->pag_ici_reclaimable)
189 		return;
190 
191 	/* clear the reclaim tag from the perag radix tree */
192 	spin_lock(&mp->m_perag_lock);
193 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
194 			     XFS_ICI_RECLAIM_TAG);
195 	spin_unlock(&mp->m_perag_lock);
196 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
197 }
198 
199 
200 /*
201  * We set the inode flag atomically with the radix tree tag.
202  * Once we get tag lookups on the radix tree, this inode flag
203  * can go away.
204  */
205 void
206 xfs_inode_set_reclaim_tag(
207 	struct xfs_inode	*ip)
208 {
209 	struct xfs_mount	*mp = ip->i_mount;
210 	struct xfs_perag	*pag;
211 
212 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
213 	spin_lock(&pag->pag_ici_lock);
214 	spin_lock(&ip->i_flags_lock);
215 
216 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
217 			   XFS_ICI_RECLAIM_TAG);
218 	xfs_perag_set_reclaim_tag(pag);
219 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
220 
221 	spin_unlock(&ip->i_flags_lock);
222 	spin_unlock(&pag->pag_ici_lock);
223 	xfs_perag_put(pag);
224 }
225 
226 STATIC void
227 xfs_inode_clear_reclaim_tag(
228 	struct xfs_perag	*pag,
229 	xfs_ino_t		ino)
230 {
231 	radix_tree_tag_clear(&pag->pag_ici_root,
232 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
233 			     XFS_ICI_RECLAIM_TAG);
234 	xfs_perag_clear_reclaim_tag(pag);
235 }
236 
237 static void
238 xfs_inew_wait(
239 	struct xfs_inode	*ip)
240 {
241 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
242 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
243 
244 	do {
245 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
246 		if (!xfs_iflags_test(ip, XFS_INEW))
247 			break;
248 		schedule();
249 	} while (true);
250 	finish_wait(wq, &wait.wq_entry);
251 }
252 
253 /*
254  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
255  * part of the structure. This is made more complex by the fact we store
256  * information about the on-disk values in the VFS inode and so we can't just
257  * overwrite the values unconditionally. Hence we save the parameters we
258  * need to retain across reinitialisation, and rewrite them into the VFS inode
259  * after reinitialisation even if it fails.
260  */
261 static int
262 xfs_reinit_inode(
263 	struct xfs_mount	*mp,
264 	struct inode		*inode)
265 {
266 	int		error;
267 	uint32_t	nlink = inode->i_nlink;
268 	uint32_t	generation = inode->i_generation;
269 	uint64_t	version = inode_peek_iversion(inode);
270 	umode_t		mode = inode->i_mode;
271 	dev_t		dev = inode->i_rdev;
272 	kuid_t		uid = inode->i_uid;
273 	kgid_t		gid = inode->i_gid;
274 
275 	error = inode_init_always(mp->m_super, inode);
276 
277 	set_nlink(inode, nlink);
278 	inode->i_generation = generation;
279 	inode_set_iversion_queried(inode, version);
280 	inode->i_mode = mode;
281 	inode->i_rdev = dev;
282 	inode->i_uid = uid;
283 	inode->i_gid = gid;
284 	return error;
285 }
286 
287 /*
288  * If we are allocating a new inode, then check what was returned is
289  * actually a free, empty inode. If we are not allocating an inode,
290  * then check we didn't find a free inode.
291  *
292  * Returns:
293  *	0		if the inode free state matches the lookup context
294  *	-ENOENT		if the inode is free and we are not allocating
295  *	-EFSCORRUPTED	if there is any state mismatch at all
296  */
297 static int
298 xfs_iget_check_free_state(
299 	struct xfs_inode	*ip,
300 	int			flags)
301 {
302 	if (flags & XFS_IGET_CREATE) {
303 		/* should be a free inode */
304 		if (VFS_I(ip)->i_mode != 0) {
305 			xfs_warn(ip->i_mount,
306 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
307 				ip->i_ino, VFS_I(ip)->i_mode);
308 			return -EFSCORRUPTED;
309 		}
310 
311 		if (ip->i_d.di_nblocks != 0) {
312 			xfs_warn(ip->i_mount,
313 "Corruption detected! Free inode 0x%llx has blocks allocated!",
314 				ip->i_ino);
315 			return -EFSCORRUPTED;
316 		}
317 		return 0;
318 	}
319 
320 	/* should be an allocated inode */
321 	if (VFS_I(ip)->i_mode == 0)
322 		return -ENOENT;
323 
324 	return 0;
325 }
326 
327 /*
328  * Check the validity of the inode we just found it the cache
329  */
330 static int
331 xfs_iget_cache_hit(
332 	struct xfs_perag	*pag,
333 	struct xfs_inode	*ip,
334 	xfs_ino_t		ino,
335 	int			flags,
336 	int			lock_flags) __releases(RCU)
337 {
338 	struct inode		*inode = VFS_I(ip);
339 	struct xfs_mount	*mp = ip->i_mount;
340 	int			error;
341 
342 	/*
343 	 * check for re-use of an inode within an RCU grace period due to the
344 	 * radix tree nodes not being updated yet. We monitor for this by
345 	 * setting the inode number to zero before freeing the inode structure.
346 	 * If the inode has been reallocated and set up, then the inode number
347 	 * will not match, so check for that, too.
348 	 */
349 	spin_lock(&ip->i_flags_lock);
350 	if (ip->i_ino != ino) {
351 		trace_xfs_iget_skip(ip);
352 		XFS_STATS_INC(mp, xs_ig_frecycle);
353 		error = -EAGAIN;
354 		goto out_error;
355 	}
356 
357 
358 	/*
359 	 * If we are racing with another cache hit that is currently
360 	 * instantiating this inode or currently recycling it out of
361 	 * reclaimabe state, wait for the initialisation to complete
362 	 * before continuing.
363 	 *
364 	 * XXX(hch): eventually we should do something equivalent to
365 	 *	     wait_on_inode to wait for these flags to be cleared
366 	 *	     instead of polling for it.
367 	 */
368 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
369 		trace_xfs_iget_skip(ip);
370 		XFS_STATS_INC(mp, xs_ig_frecycle);
371 		error = -EAGAIN;
372 		goto out_error;
373 	}
374 
375 	/*
376 	 * Check the inode free state is valid. This also detects lookup
377 	 * racing with unlinks.
378 	 */
379 	error = xfs_iget_check_free_state(ip, flags);
380 	if (error)
381 		goto out_error;
382 
383 	/*
384 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
385 	 * Need to carefully get it back into useable state.
386 	 */
387 	if (ip->i_flags & XFS_IRECLAIMABLE) {
388 		trace_xfs_iget_reclaim(ip);
389 
390 		if (flags & XFS_IGET_INCORE) {
391 			error = -EAGAIN;
392 			goto out_error;
393 		}
394 
395 		/*
396 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
397 		 * from stomping over us while we recycle the inode.  We can't
398 		 * clear the radix tree reclaimable tag yet as it requires
399 		 * pag_ici_lock to be held exclusive.
400 		 */
401 		ip->i_flags |= XFS_IRECLAIM;
402 
403 		spin_unlock(&ip->i_flags_lock);
404 		rcu_read_unlock();
405 
406 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
407 		error = xfs_reinit_inode(mp, inode);
408 		if (error) {
409 			bool wake;
410 			/*
411 			 * Re-initializing the inode failed, and we are in deep
412 			 * trouble.  Try to re-add it to the reclaim list.
413 			 */
414 			rcu_read_lock();
415 			spin_lock(&ip->i_flags_lock);
416 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
417 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
418 			if (wake)
419 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
420 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
421 			trace_xfs_iget_reclaim_fail(ip);
422 			goto out_error;
423 		}
424 
425 		spin_lock(&pag->pag_ici_lock);
426 		spin_lock(&ip->i_flags_lock);
427 
428 		/*
429 		 * Clear the per-lifetime state in the inode as we are now
430 		 * effectively a new inode and need to return to the initial
431 		 * state before reuse occurs.
432 		 */
433 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
434 		ip->i_flags |= XFS_INEW;
435 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
436 		inode->i_state = I_NEW;
437 		ip->i_sick = 0;
438 		ip->i_checked = 0;
439 
440 		spin_unlock(&ip->i_flags_lock);
441 		spin_unlock(&pag->pag_ici_lock);
442 	} else {
443 		/* If the VFS inode is being torn down, pause and try again. */
444 		if (!igrab(inode)) {
445 			trace_xfs_iget_skip(ip);
446 			error = -EAGAIN;
447 			goto out_error;
448 		}
449 
450 		/* We've got a live one. */
451 		spin_unlock(&ip->i_flags_lock);
452 		rcu_read_unlock();
453 		trace_xfs_iget_hit(ip);
454 	}
455 
456 	if (lock_flags != 0)
457 		xfs_ilock(ip, lock_flags);
458 
459 	if (!(flags & XFS_IGET_INCORE))
460 		xfs_iflags_clear(ip, XFS_ISTALE);
461 	XFS_STATS_INC(mp, xs_ig_found);
462 
463 	return 0;
464 
465 out_error:
466 	spin_unlock(&ip->i_flags_lock);
467 	rcu_read_unlock();
468 	return error;
469 }
470 
471 
472 static int
473 xfs_iget_cache_miss(
474 	struct xfs_mount	*mp,
475 	struct xfs_perag	*pag,
476 	xfs_trans_t		*tp,
477 	xfs_ino_t		ino,
478 	struct xfs_inode	**ipp,
479 	int			flags,
480 	int			lock_flags)
481 {
482 	struct xfs_inode	*ip;
483 	int			error;
484 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
485 	int			iflags;
486 
487 	ip = xfs_inode_alloc(mp, ino);
488 	if (!ip)
489 		return -ENOMEM;
490 
491 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
492 	if (error)
493 		goto out_destroy;
494 
495 	/*
496 	 * For version 5 superblocks, if we are initialising a new inode and we
497 	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
498 	 * simply build the new inode core with a random generation number.
499 	 *
500 	 * For version 4 (and older) superblocks, log recovery is dependent on
501 	 * the di_flushiter field being initialised from the current on-disk
502 	 * value and hence we must also read the inode off disk even when
503 	 * initializing new inodes.
504 	 */
505 	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
506 	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
507 		VFS_I(ip)->i_generation = prandom_u32();
508 	} else {
509 		struct xfs_dinode	*dip;
510 		struct xfs_buf		*bp;
511 
512 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
513 		if (error)
514 			goto out_destroy;
515 
516 		error = xfs_inode_from_disk(ip, dip);
517 		if (!error)
518 			xfs_buf_set_ref(bp, XFS_INO_REF);
519 		xfs_trans_brelse(tp, bp);
520 
521 		if (error)
522 			goto out_destroy;
523 	}
524 
525 	trace_xfs_iget_miss(ip);
526 
527 	/*
528 	 * Check the inode free state is valid. This also detects lookup
529 	 * racing with unlinks.
530 	 */
531 	error = xfs_iget_check_free_state(ip, flags);
532 	if (error)
533 		goto out_destroy;
534 
535 	/*
536 	 * Preload the radix tree so we can insert safely under the
537 	 * write spinlock. Note that we cannot sleep inside the preload
538 	 * region. Since we can be called from transaction context, don't
539 	 * recurse into the file system.
540 	 */
541 	if (radix_tree_preload(GFP_NOFS)) {
542 		error = -EAGAIN;
543 		goto out_destroy;
544 	}
545 
546 	/*
547 	 * Because the inode hasn't been added to the radix-tree yet it can't
548 	 * be found by another thread, so we can do the non-sleeping lock here.
549 	 */
550 	if (lock_flags) {
551 		if (!xfs_ilock_nowait(ip, lock_flags))
552 			BUG();
553 	}
554 
555 	/*
556 	 * These values must be set before inserting the inode into the radix
557 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
558 	 * RCU locking mechanism) can find it and that lookup must see that this
559 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
560 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
561 	 * memory barrier that ensures this detection works correctly at lookup
562 	 * time.
563 	 */
564 	iflags = XFS_INEW;
565 	if (flags & XFS_IGET_DONTCACHE)
566 		d_mark_dontcache(VFS_I(ip));
567 	ip->i_udquot = NULL;
568 	ip->i_gdquot = NULL;
569 	ip->i_pdquot = NULL;
570 	xfs_iflags_set(ip, iflags);
571 
572 	/* insert the new inode */
573 	spin_lock(&pag->pag_ici_lock);
574 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
575 	if (unlikely(error)) {
576 		WARN_ON(error != -EEXIST);
577 		XFS_STATS_INC(mp, xs_ig_dup);
578 		error = -EAGAIN;
579 		goto out_preload_end;
580 	}
581 	spin_unlock(&pag->pag_ici_lock);
582 	radix_tree_preload_end();
583 
584 	*ipp = ip;
585 	return 0;
586 
587 out_preload_end:
588 	spin_unlock(&pag->pag_ici_lock);
589 	radix_tree_preload_end();
590 	if (lock_flags)
591 		xfs_iunlock(ip, lock_flags);
592 out_destroy:
593 	__destroy_inode(VFS_I(ip));
594 	xfs_inode_free(ip);
595 	return error;
596 }
597 
598 /*
599  * Look up an inode by number in the given file system.  The inode is looked up
600  * in the cache held in each AG.  If the inode is found in the cache, initialise
601  * the vfs inode if necessary.
602  *
603  * If it is not in core, read it in from the file system's device, add it to the
604  * cache and initialise the vfs inode.
605  *
606  * The inode is locked according to the value of the lock_flags parameter.
607  * Inode lookup is only done during metadata operations and not as part of the
608  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
609  */
610 int
611 xfs_iget(
612 	struct xfs_mount	*mp,
613 	struct xfs_trans	*tp,
614 	xfs_ino_t		ino,
615 	uint			flags,
616 	uint			lock_flags,
617 	struct xfs_inode	**ipp)
618 {
619 	struct xfs_inode	*ip;
620 	struct xfs_perag	*pag;
621 	xfs_agino_t		agino;
622 	int			error;
623 
624 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
625 
626 	/* reject inode numbers outside existing AGs */
627 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
628 		return -EINVAL;
629 
630 	XFS_STATS_INC(mp, xs_ig_attempts);
631 
632 	/* get the perag structure and ensure that it's inode capable */
633 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
634 	agino = XFS_INO_TO_AGINO(mp, ino);
635 
636 again:
637 	error = 0;
638 	rcu_read_lock();
639 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
640 
641 	if (ip) {
642 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
643 		if (error)
644 			goto out_error_or_again;
645 	} else {
646 		rcu_read_unlock();
647 		if (flags & XFS_IGET_INCORE) {
648 			error = -ENODATA;
649 			goto out_error_or_again;
650 		}
651 		XFS_STATS_INC(mp, xs_ig_missed);
652 
653 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
654 							flags, lock_flags);
655 		if (error)
656 			goto out_error_or_again;
657 	}
658 	xfs_perag_put(pag);
659 
660 	*ipp = ip;
661 
662 	/*
663 	 * If we have a real type for an on-disk inode, we can setup the inode
664 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
665 	 */
666 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
667 		xfs_setup_existing_inode(ip);
668 	return 0;
669 
670 out_error_or_again:
671 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
672 		delay(1);
673 		goto again;
674 	}
675 	xfs_perag_put(pag);
676 	return error;
677 }
678 
679 /*
680  * "Is this a cached inode that's also allocated?"
681  *
682  * Look up an inode by number in the given file system.  If the inode is
683  * in cache and isn't in purgatory, return 1 if the inode is allocated
684  * and 0 if it is not.  For all other cases (not in cache, being torn
685  * down, etc.), return a negative error code.
686  *
687  * The caller has to prevent inode allocation and freeing activity,
688  * presumably by locking the AGI buffer.   This is to ensure that an
689  * inode cannot transition from allocated to freed until the caller is
690  * ready to allow that.  If the inode is in an intermediate state (new,
691  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
692  * inode is not in the cache, -ENOENT will be returned.  The caller must
693  * deal with these scenarios appropriately.
694  *
695  * This is a specialized use case for the online scrubber; if you're
696  * reading this, you probably want xfs_iget.
697  */
698 int
699 xfs_icache_inode_is_allocated(
700 	struct xfs_mount	*mp,
701 	struct xfs_trans	*tp,
702 	xfs_ino_t		ino,
703 	bool			*inuse)
704 {
705 	struct xfs_inode	*ip;
706 	int			error;
707 
708 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
709 	if (error)
710 		return error;
711 
712 	*inuse = !!(VFS_I(ip)->i_mode);
713 	xfs_irele(ip);
714 	return 0;
715 }
716 
717 /*
718  * The inode lookup is done in batches to keep the amount of lock traffic and
719  * radix tree lookups to a minimum. The batch size is a trade off between
720  * lookup reduction and stack usage. This is in the reclaim path, so we can't
721  * be too greedy.
722  */
723 #define XFS_LOOKUP_BATCH	32
724 
725 /*
726  * Decide if the given @ip is eligible to be a part of the inode walk, and
727  * grab it if so.  Returns true if it's ready to go or false if we should just
728  * ignore it.
729  */
730 STATIC bool
731 xfs_inode_walk_ag_grab(
732 	struct xfs_inode	*ip,
733 	int			flags)
734 {
735 	struct inode		*inode = VFS_I(ip);
736 	bool			newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
737 
738 	ASSERT(rcu_read_lock_held());
739 
740 	/* Check for stale RCU freed inode */
741 	spin_lock(&ip->i_flags_lock);
742 	if (!ip->i_ino)
743 		goto out_unlock_noent;
744 
745 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
746 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
747 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
748 		goto out_unlock_noent;
749 	spin_unlock(&ip->i_flags_lock);
750 
751 	/* nothing to sync during shutdown */
752 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
753 		return false;
754 
755 	/* If we can't grab the inode, it must on it's way to reclaim. */
756 	if (!igrab(inode))
757 		return false;
758 
759 	/* inode is valid */
760 	return true;
761 
762 out_unlock_noent:
763 	spin_unlock(&ip->i_flags_lock);
764 	return false;
765 }
766 
767 /*
768  * For a given per-AG structure @pag, grab, @execute, and rele all incore
769  * inodes with the given radix tree @tag.
770  */
771 STATIC int
772 xfs_inode_walk_ag(
773 	struct xfs_perag	*pag,
774 	int			iter_flags,
775 	int			(*execute)(struct xfs_inode *ip, void *args),
776 	void			*args,
777 	int			tag)
778 {
779 	struct xfs_mount	*mp = pag->pag_mount;
780 	uint32_t		first_index;
781 	int			last_error = 0;
782 	int			skipped;
783 	bool			done;
784 	int			nr_found;
785 
786 restart:
787 	done = false;
788 	skipped = 0;
789 	first_index = 0;
790 	nr_found = 0;
791 	do {
792 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
793 		int		error = 0;
794 		int		i;
795 
796 		rcu_read_lock();
797 
798 		if (tag == XFS_ICI_NO_TAG)
799 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
800 					(void **)batch, first_index,
801 					XFS_LOOKUP_BATCH);
802 		else
803 			nr_found = radix_tree_gang_lookup_tag(
804 					&pag->pag_ici_root,
805 					(void **) batch, first_index,
806 					XFS_LOOKUP_BATCH, tag);
807 
808 		if (!nr_found) {
809 			rcu_read_unlock();
810 			break;
811 		}
812 
813 		/*
814 		 * Grab the inodes before we drop the lock. if we found
815 		 * nothing, nr == 0 and the loop will be skipped.
816 		 */
817 		for (i = 0; i < nr_found; i++) {
818 			struct xfs_inode *ip = batch[i];
819 
820 			if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
821 				batch[i] = NULL;
822 
823 			/*
824 			 * Update the index for the next lookup. Catch
825 			 * overflows into the next AG range which can occur if
826 			 * we have inodes in the last block of the AG and we
827 			 * are currently pointing to the last inode.
828 			 *
829 			 * Because we may see inodes that are from the wrong AG
830 			 * due to RCU freeing and reallocation, only update the
831 			 * index if it lies in this AG. It was a race that lead
832 			 * us to see this inode, so another lookup from the
833 			 * same index will not find it again.
834 			 */
835 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
836 				continue;
837 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
838 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
839 				done = true;
840 		}
841 
842 		/* unlock now we've grabbed the inodes. */
843 		rcu_read_unlock();
844 
845 		for (i = 0; i < nr_found; i++) {
846 			if (!batch[i])
847 				continue;
848 			if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
849 			    xfs_iflags_test(batch[i], XFS_INEW))
850 				xfs_inew_wait(batch[i]);
851 			error = execute(batch[i], args);
852 			xfs_irele(batch[i]);
853 			if (error == -EAGAIN) {
854 				skipped++;
855 				continue;
856 			}
857 			if (error && last_error != -EFSCORRUPTED)
858 				last_error = error;
859 		}
860 
861 		/* bail out if the filesystem is corrupted.  */
862 		if (error == -EFSCORRUPTED)
863 			break;
864 
865 		cond_resched();
866 
867 	} while (nr_found && !done);
868 
869 	if (skipped) {
870 		delay(1);
871 		goto restart;
872 	}
873 	return last_error;
874 }
875 
876 /* Fetch the next (possibly tagged) per-AG structure. */
877 static inline struct xfs_perag *
878 xfs_inode_walk_get_perag(
879 	struct xfs_mount	*mp,
880 	xfs_agnumber_t		agno,
881 	int			tag)
882 {
883 	if (tag == XFS_ICI_NO_TAG)
884 		return xfs_perag_get(mp, agno);
885 	return xfs_perag_get_tag(mp, agno, tag);
886 }
887 
888 /*
889  * Call the @execute function on all incore inodes matching the radix tree
890  * @tag.
891  */
892 int
893 xfs_inode_walk(
894 	struct xfs_mount	*mp,
895 	int			iter_flags,
896 	int			(*execute)(struct xfs_inode *ip, void *args),
897 	void			*args,
898 	int			tag)
899 {
900 	struct xfs_perag	*pag;
901 	int			error = 0;
902 	int			last_error = 0;
903 	xfs_agnumber_t		ag;
904 
905 	ag = 0;
906 	while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
907 		ag = pag->pag_agno + 1;
908 		error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
909 		xfs_perag_put(pag);
910 		if (error) {
911 			last_error = error;
912 			if (error == -EFSCORRUPTED)
913 				break;
914 		}
915 	}
916 	return last_error;
917 }
918 
919 /*
920  * Background scanning to trim post-EOF preallocated space. This is queued
921  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
922  */
923 void
924 xfs_queue_eofblocks(
925 	struct xfs_mount *mp)
926 {
927 	rcu_read_lock();
928 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
929 		queue_delayed_work(mp->m_eofblocks_workqueue,
930 				   &mp->m_eofblocks_work,
931 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
932 	rcu_read_unlock();
933 }
934 
935 void
936 xfs_eofblocks_worker(
937 	struct work_struct *work)
938 {
939 	struct xfs_mount *mp = container_of(to_delayed_work(work),
940 				struct xfs_mount, m_eofblocks_work);
941 
942 	if (!sb_start_write_trylock(mp->m_super))
943 		return;
944 	xfs_icache_free_eofblocks(mp, NULL);
945 	sb_end_write(mp->m_super);
946 
947 	xfs_queue_eofblocks(mp);
948 }
949 
950 /*
951  * Background scanning to trim preallocated CoW space. This is queued
952  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
953  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
954  */
955 void
956 xfs_queue_cowblocks(
957 	struct xfs_mount *mp)
958 {
959 	rcu_read_lock();
960 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
961 		queue_delayed_work(mp->m_eofblocks_workqueue,
962 				   &mp->m_cowblocks_work,
963 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
964 	rcu_read_unlock();
965 }
966 
967 void
968 xfs_cowblocks_worker(
969 	struct work_struct *work)
970 {
971 	struct xfs_mount *mp = container_of(to_delayed_work(work),
972 				struct xfs_mount, m_cowblocks_work);
973 
974 	if (!sb_start_write_trylock(mp->m_super))
975 		return;
976 	xfs_icache_free_cowblocks(mp, NULL);
977 	sb_end_write(mp->m_super);
978 
979 	xfs_queue_cowblocks(mp);
980 }
981 
982 /*
983  * Grab the inode for reclaim exclusively.
984  *
985  * We have found this inode via a lookup under RCU, so the inode may have
986  * already been freed, or it may be in the process of being recycled by
987  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
988  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
989  * will not be set. Hence we need to check for both these flag conditions to
990  * avoid inodes that are no longer reclaim candidates.
991  *
992  * Note: checking for other state flags here, under the i_flags_lock or not, is
993  * racy and should be avoided. Those races should be resolved only after we have
994  * ensured that we are able to reclaim this inode and the world can see that we
995  * are going to reclaim it.
996  *
997  * Return true if we grabbed it, false otherwise.
998  */
999 static bool
1000 xfs_reclaim_inode_grab(
1001 	struct xfs_inode	*ip)
1002 {
1003 	ASSERT(rcu_read_lock_held());
1004 
1005 	spin_lock(&ip->i_flags_lock);
1006 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1007 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1008 		/* not a reclaim candidate. */
1009 		spin_unlock(&ip->i_flags_lock);
1010 		return false;
1011 	}
1012 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1013 	spin_unlock(&ip->i_flags_lock);
1014 	return true;
1015 }
1016 
1017 /*
1018  * Inode reclaim is non-blocking, so the default action if progress cannot be
1019  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
1020  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
1021  * blocking anymore and hence we can wait for the inode to be able to reclaim
1022  * it.
1023  *
1024  * We do no IO here - if callers require inodes to be cleaned they must push the
1025  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
1026  * done in the background in a non-blocking manner, and enables memory reclaim
1027  * to make progress without blocking.
1028  */
1029 static void
1030 xfs_reclaim_inode(
1031 	struct xfs_inode	*ip,
1032 	struct xfs_perag	*pag)
1033 {
1034 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1035 
1036 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
1037 		goto out;
1038 	if (!xfs_iflock_nowait(ip))
1039 		goto out_iunlock;
1040 
1041 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1042 		xfs_iunpin_wait(ip);
1043 		/* xfs_iflush_abort() drops the flush lock */
1044 		xfs_iflush_abort(ip);
1045 		goto reclaim;
1046 	}
1047 	if (xfs_ipincount(ip))
1048 		goto out_ifunlock;
1049 	if (!xfs_inode_clean(ip))
1050 		goto out_ifunlock;
1051 
1052 	xfs_ifunlock(ip);
1053 reclaim:
1054 	ASSERT(!xfs_isiflocked(ip));
1055 
1056 	/*
1057 	 * Because we use RCU freeing we need to ensure the inode always appears
1058 	 * to be reclaimed with an invalid inode number when in the free state.
1059 	 * We do this as early as possible under the ILOCK so that
1060 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1061 	 * detect races with us here. By doing this, we guarantee that once
1062 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1063 	 * it will see either a valid inode that will serialise correctly, or it
1064 	 * will see an invalid inode that it can skip.
1065 	 */
1066 	spin_lock(&ip->i_flags_lock);
1067 	ip->i_flags = XFS_IRECLAIM;
1068 	ip->i_ino = 0;
1069 	spin_unlock(&ip->i_flags_lock);
1070 
1071 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1072 
1073 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1074 	/*
1075 	 * Remove the inode from the per-AG radix tree.
1076 	 *
1077 	 * Because radix_tree_delete won't complain even if the item was never
1078 	 * added to the tree assert that it's been there before to catch
1079 	 * problems with the inode life time early on.
1080 	 */
1081 	spin_lock(&pag->pag_ici_lock);
1082 	if (!radix_tree_delete(&pag->pag_ici_root,
1083 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1084 		ASSERT(0);
1085 	xfs_perag_clear_reclaim_tag(pag);
1086 	spin_unlock(&pag->pag_ici_lock);
1087 
1088 	/*
1089 	 * Here we do an (almost) spurious inode lock in order to coordinate
1090 	 * with inode cache radix tree lookups.  This is because the lookup
1091 	 * can reference the inodes in the cache without taking references.
1092 	 *
1093 	 * We make that OK here by ensuring that we wait until the inode is
1094 	 * unlocked after the lookup before we go ahead and free it.
1095 	 */
1096 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1097 	xfs_qm_dqdetach(ip);
1098 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1099 	ASSERT(xfs_inode_clean(ip));
1100 
1101 	__xfs_inode_free(ip);
1102 	return;
1103 
1104 out_ifunlock:
1105 	xfs_ifunlock(ip);
1106 out_iunlock:
1107 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1108 out:
1109 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1110 }
1111 
1112 /*
1113  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1114  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1115  * then a shut down during filesystem unmount reclaim walk leak all the
1116  * unreclaimed inodes.
1117  *
1118  * Returns non-zero if any AGs or inodes were skipped in the reclaim pass
1119  * so that callers that want to block until all dirty inodes are written back
1120  * and reclaimed can sanely loop.
1121  */
1122 static void
1123 xfs_reclaim_inodes_ag(
1124 	struct xfs_mount	*mp,
1125 	int			*nr_to_scan)
1126 {
1127 	struct xfs_perag	*pag;
1128 	xfs_agnumber_t		ag = 0;
1129 
1130 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1131 		unsigned long	first_index = 0;
1132 		int		done = 0;
1133 		int		nr_found = 0;
1134 
1135 		ag = pag->pag_agno + 1;
1136 
1137 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1138 		do {
1139 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1140 			int	i;
1141 
1142 			rcu_read_lock();
1143 			nr_found = radix_tree_gang_lookup_tag(
1144 					&pag->pag_ici_root,
1145 					(void **)batch, first_index,
1146 					XFS_LOOKUP_BATCH,
1147 					XFS_ICI_RECLAIM_TAG);
1148 			if (!nr_found) {
1149 				done = 1;
1150 				rcu_read_unlock();
1151 				break;
1152 			}
1153 
1154 			/*
1155 			 * Grab the inodes before we drop the lock. if we found
1156 			 * nothing, nr == 0 and the loop will be skipped.
1157 			 */
1158 			for (i = 0; i < nr_found; i++) {
1159 				struct xfs_inode *ip = batch[i];
1160 
1161 				if (done || !xfs_reclaim_inode_grab(ip))
1162 					batch[i] = NULL;
1163 
1164 				/*
1165 				 * Update the index for the next lookup. Catch
1166 				 * overflows into the next AG range which can
1167 				 * occur if we have inodes in the last block of
1168 				 * the AG and we are currently pointing to the
1169 				 * last inode.
1170 				 *
1171 				 * Because we may see inodes that are from the
1172 				 * wrong AG due to RCU freeing and
1173 				 * reallocation, only update the index if it
1174 				 * lies in this AG. It was a race that lead us
1175 				 * to see this inode, so another lookup from
1176 				 * the same index will not find it again.
1177 				 */
1178 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1179 								pag->pag_agno)
1180 					continue;
1181 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1182 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1183 					done = 1;
1184 			}
1185 
1186 			/* unlock now we've grabbed the inodes. */
1187 			rcu_read_unlock();
1188 
1189 			for (i = 0; i < nr_found; i++) {
1190 				if (batch[i])
1191 					xfs_reclaim_inode(batch[i], pag);
1192 			}
1193 
1194 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1195 			cond_resched();
1196 		} while (nr_found && !done && *nr_to_scan > 0);
1197 
1198 		if (done)
1199 			first_index = 0;
1200 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1201 		xfs_perag_put(pag);
1202 	}
1203 }
1204 
1205 void
1206 xfs_reclaim_inodes(
1207 	struct xfs_mount	*mp)
1208 {
1209 	int		nr_to_scan = INT_MAX;
1210 
1211 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1212 		xfs_ail_push_all_sync(mp->m_ail);
1213 		xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1214 	};
1215 }
1216 
1217 /*
1218  * The shrinker infrastructure determines how many inodes we should scan for
1219  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1220  * push the AIL here. We also want to proactively free up memory if we can to
1221  * minimise the amount of work memory reclaim has to do so we kick the
1222  * background reclaim if it isn't already scheduled.
1223  */
1224 long
1225 xfs_reclaim_inodes_nr(
1226 	struct xfs_mount	*mp,
1227 	int			nr_to_scan)
1228 {
1229 	/* kick background reclaimer and push the AIL */
1230 	xfs_reclaim_work_queue(mp);
1231 	xfs_ail_push_all(mp->m_ail);
1232 
1233 	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Return the number of reclaimable inodes in the filesystem for
1239  * the shrinker to determine how much to reclaim.
1240  */
1241 int
1242 xfs_reclaim_inodes_count(
1243 	struct xfs_mount	*mp)
1244 {
1245 	struct xfs_perag	*pag;
1246 	xfs_agnumber_t		ag = 0;
1247 	int			reclaimable = 0;
1248 
1249 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1250 		ag = pag->pag_agno + 1;
1251 		reclaimable += pag->pag_ici_reclaimable;
1252 		xfs_perag_put(pag);
1253 	}
1254 	return reclaimable;
1255 }
1256 
1257 STATIC bool
1258 xfs_inode_match_id(
1259 	struct xfs_inode	*ip,
1260 	struct xfs_eofblocks	*eofb)
1261 {
1262 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1263 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1264 		return false;
1265 
1266 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1267 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1268 		return false;
1269 
1270 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1271 	    ip->i_d.di_projid != eofb->eof_prid)
1272 		return false;
1273 
1274 	return true;
1275 }
1276 
1277 /*
1278  * A union-based inode filtering algorithm. Process the inode if any of the
1279  * criteria match. This is for global/internal scans only.
1280  */
1281 STATIC bool
1282 xfs_inode_match_id_union(
1283 	struct xfs_inode	*ip,
1284 	struct xfs_eofblocks	*eofb)
1285 {
1286 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1287 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1288 		return true;
1289 
1290 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1291 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1292 		return true;
1293 
1294 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1295 	    ip->i_d.di_projid == eofb->eof_prid)
1296 		return true;
1297 
1298 	return false;
1299 }
1300 
1301 /*
1302  * Is this inode @ip eligible for eof/cow block reclamation, given some
1303  * filtering parameters @eofb?  The inode is eligible if @eofb is null or
1304  * if the predicate functions match.
1305  */
1306 static bool
1307 xfs_inode_matches_eofb(
1308 	struct xfs_inode	*ip,
1309 	struct xfs_eofblocks	*eofb)
1310 {
1311 	bool			match;
1312 
1313 	if (!eofb)
1314 		return true;
1315 
1316 	if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1317 		match = xfs_inode_match_id_union(ip, eofb);
1318 	else
1319 		match = xfs_inode_match_id(ip, eofb);
1320 	if (!match)
1321 		return false;
1322 
1323 	/* skip the inode if the file size is too small */
1324 	if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
1325 	    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1326 		return false;
1327 
1328 	return true;
1329 }
1330 
1331 /*
1332  * This is a fast pass over the inode cache to try to get reclaim moving on as
1333  * many inodes as possible in a short period of time. It kicks itself every few
1334  * seconds, as well as being kicked by the inode cache shrinker when memory
1335  * goes low.
1336  */
1337 void
1338 xfs_reclaim_worker(
1339 	struct work_struct *work)
1340 {
1341 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1342 					struct xfs_mount, m_reclaim_work);
1343 	int		nr_to_scan = INT_MAX;
1344 
1345 	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1346 	xfs_reclaim_work_queue(mp);
1347 }
1348 
1349 STATIC int
1350 xfs_inode_free_eofblocks(
1351 	struct xfs_inode	*ip,
1352 	void			*args)
1353 {
1354 	struct xfs_eofblocks	*eofb = args;
1355 	bool			wait;
1356 	int			ret;
1357 
1358 	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1359 
1360 	if (!xfs_can_free_eofblocks(ip, false)) {
1361 		/* inode could be preallocated or append-only */
1362 		trace_xfs_inode_free_eofblocks_invalid(ip);
1363 		xfs_inode_clear_eofblocks_tag(ip);
1364 		return 0;
1365 	}
1366 
1367 	/*
1368 	 * If the mapping is dirty the operation can block and wait for some
1369 	 * time. Unless we are waiting, skip it.
1370 	 */
1371 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1372 		return 0;
1373 
1374 	if (!xfs_inode_matches_eofb(ip, eofb))
1375 		return 0;
1376 
1377 	/*
1378 	 * If the caller is waiting, return -EAGAIN to keep the background
1379 	 * scanner moving and revisit the inode in a subsequent pass.
1380 	 */
1381 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1382 		if (wait)
1383 			return -EAGAIN;
1384 		return 0;
1385 	}
1386 
1387 	ret = xfs_free_eofblocks(ip);
1388 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1389 
1390 	return ret;
1391 }
1392 
1393 int
1394 xfs_icache_free_eofblocks(
1395 	struct xfs_mount	*mp,
1396 	struct xfs_eofblocks	*eofb)
1397 {
1398 	return xfs_inode_walk(mp, 0, xfs_inode_free_eofblocks, eofb,
1399 			XFS_ICI_EOFBLOCKS_TAG);
1400 }
1401 
1402 /*
1403  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1404  * multiple quotas, we don't know exactly which quota caused an allocation
1405  * failure. We make a best effort by including each quota under low free space
1406  * conditions (less than 1% free space) in the scan.
1407  */
1408 static int
1409 __xfs_inode_free_quota_eofblocks(
1410 	struct xfs_inode	*ip,
1411 	int			(*execute)(struct xfs_mount *mp,
1412 					   struct xfs_eofblocks	*eofb))
1413 {
1414 	int scan = 0;
1415 	struct xfs_eofblocks eofb = {0};
1416 	struct xfs_dquot *dq;
1417 
1418 	/*
1419 	 * Run a sync scan to increase effectiveness and use the union filter to
1420 	 * cover all applicable quotas in a single scan.
1421 	 */
1422 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1423 
1424 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1425 		dq = xfs_inode_dquot(ip, XFS_DQTYPE_USER);
1426 		if (dq && xfs_dquot_lowsp(dq)) {
1427 			eofb.eof_uid = VFS_I(ip)->i_uid;
1428 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1429 			scan = 1;
1430 		}
1431 	}
1432 
1433 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1434 		dq = xfs_inode_dquot(ip, XFS_DQTYPE_GROUP);
1435 		if (dq && xfs_dquot_lowsp(dq)) {
1436 			eofb.eof_gid = VFS_I(ip)->i_gid;
1437 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1438 			scan = 1;
1439 		}
1440 	}
1441 
1442 	if (scan)
1443 		execute(ip->i_mount, &eofb);
1444 
1445 	return scan;
1446 }
1447 
1448 int
1449 xfs_inode_free_quota_eofblocks(
1450 	struct xfs_inode *ip)
1451 {
1452 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1453 }
1454 
1455 static inline unsigned long
1456 xfs_iflag_for_tag(
1457 	int		tag)
1458 {
1459 	switch (tag) {
1460 	case XFS_ICI_EOFBLOCKS_TAG:
1461 		return XFS_IEOFBLOCKS;
1462 	case XFS_ICI_COWBLOCKS_TAG:
1463 		return XFS_ICOWBLOCKS;
1464 	default:
1465 		ASSERT(0);
1466 		return 0;
1467 	}
1468 }
1469 
1470 static void
1471 __xfs_inode_set_blocks_tag(
1472 	xfs_inode_t	*ip,
1473 	void		(*execute)(struct xfs_mount *mp),
1474 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1475 				  int error, unsigned long caller_ip),
1476 	int		tag)
1477 {
1478 	struct xfs_mount *mp = ip->i_mount;
1479 	struct xfs_perag *pag;
1480 	int tagged;
1481 
1482 	/*
1483 	 * Don't bother locking the AG and looking up in the radix trees
1484 	 * if we already know that we have the tag set.
1485 	 */
1486 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1487 		return;
1488 	spin_lock(&ip->i_flags_lock);
1489 	ip->i_flags |= xfs_iflag_for_tag(tag);
1490 	spin_unlock(&ip->i_flags_lock);
1491 
1492 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1493 	spin_lock(&pag->pag_ici_lock);
1494 
1495 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1496 	radix_tree_tag_set(&pag->pag_ici_root,
1497 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1498 	if (!tagged) {
1499 		/* propagate the eofblocks tag up into the perag radix tree */
1500 		spin_lock(&ip->i_mount->m_perag_lock);
1501 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1502 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1503 				   tag);
1504 		spin_unlock(&ip->i_mount->m_perag_lock);
1505 
1506 		/* kick off background trimming */
1507 		execute(ip->i_mount);
1508 
1509 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1510 	}
1511 
1512 	spin_unlock(&pag->pag_ici_lock);
1513 	xfs_perag_put(pag);
1514 }
1515 
1516 void
1517 xfs_inode_set_eofblocks_tag(
1518 	xfs_inode_t	*ip)
1519 {
1520 	trace_xfs_inode_set_eofblocks_tag(ip);
1521 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1522 			trace_xfs_perag_set_eofblocks,
1523 			XFS_ICI_EOFBLOCKS_TAG);
1524 }
1525 
1526 static void
1527 __xfs_inode_clear_blocks_tag(
1528 	xfs_inode_t	*ip,
1529 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1530 				    int error, unsigned long caller_ip),
1531 	int		tag)
1532 {
1533 	struct xfs_mount *mp = ip->i_mount;
1534 	struct xfs_perag *pag;
1535 
1536 	spin_lock(&ip->i_flags_lock);
1537 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1538 	spin_unlock(&ip->i_flags_lock);
1539 
1540 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1541 	spin_lock(&pag->pag_ici_lock);
1542 
1543 	radix_tree_tag_clear(&pag->pag_ici_root,
1544 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1545 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1546 		/* clear the eofblocks tag from the perag radix tree */
1547 		spin_lock(&ip->i_mount->m_perag_lock);
1548 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1549 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1550 				     tag);
1551 		spin_unlock(&ip->i_mount->m_perag_lock);
1552 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1553 	}
1554 
1555 	spin_unlock(&pag->pag_ici_lock);
1556 	xfs_perag_put(pag);
1557 }
1558 
1559 void
1560 xfs_inode_clear_eofblocks_tag(
1561 	xfs_inode_t	*ip)
1562 {
1563 	trace_xfs_inode_clear_eofblocks_tag(ip);
1564 	return __xfs_inode_clear_blocks_tag(ip,
1565 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1566 }
1567 
1568 /*
1569  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1570  * then we can bail out quickly, but otherwise we must back off if the file
1571  * is undergoing some kind of write.
1572  */
1573 static bool
1574 xfs_prep_free_cowblocks(
1575 	struct xfs_inode	*ip)
1576 {
1577 	/*
1578 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1579 	 * possible the inode was fully unshared since it was originally tagged.
1580 	 */
1581 	if (!xfs_inode_has_cow_data(ip)) {
1582 		trace_xfs_inode_free_cowblocks_invalid(ip);
1583 		xfs_inode_clear_cowblocks_tag(ip);
1584 		return false;
1585 	}
1586 
1587 	/*
1588 	 * If the mapping is dirty or under writeback we cannot touch the
1589 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1590 	 */
1591 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1592 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1593 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1594 	    atomic_read(&VFS_I(ip)->i_dio_count))
1595 		return false;
1596 
1597 	return true;
1598 }
1599 
1600 /*
1601  * Automatic CoW Reservation Freeing
1602  *
1603  * These functions automatically garbage collect leftover CoW reservations
1604  * that were made on behalf of a cowextsize hint when we start to run out
1605  * of quota or when the reservations sit around for too long.  If the file
1606  * has dirty pages or is undergoing writeback, its CoW reservations will
1607  * be retained.
1608  *
1609  * The actual garbage collection piggybacks off the same code that runs
1610  * the speculative EOF preallocation garbage collector.
1611  */
1612 STATIC int
1613 xfs_inode_free_cowblocks(
1614 	struct xfs_inode	*ip,
1615 	void			*args)
1616 {
1617 	struct xfs_eofblocks	*eofb = args;
1618 	int			ret = 0;
1619 
1620 	if (!xfs_prep_free_cowblocks(ip))
1621 		return 0;
1622 
1623 	if (!xfs_inode_matches_eofb(ip, eofb))
1624 		return 0;
1625 
1626 	/* Free the CoW blocks */
1627 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1628 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1629 
1630 	/*
1631 	 * Check again, nobody else should be able to dirty blocks or change
1632 	 * the reflink iflag now that we have the first two locks held.
1633 	 */
1634 	if (xfs_prep_free_cowblocks(ip))
1635 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1636 
1637 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1638 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1639 
1640 	return ret;
1641 }
1642 
1643 int
1644 xfs_icache_free_cowblocks(
1645 	struct xfs_mount	*mp,
1646 	struct xfs_eofblocks	*eofb)
1647 {
1648 	return xfs_inode_walk(mp, 0, xfs_inode_free_cowblocks, eofb,
1649 			XFS_ICI_COWBLOCKS_TAG);
1650 }
1651 
1652 int
1653 xfs_inode_free_quota_cowblocks(
1654 	struct xfs_inode *ip)
1655 {
1656 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1657 }
1658 
1659 void
1660 xfs_inode_set_cowblocks_tag(
1661 	xfs_inode_t	*ip)
1662 {
1663 	trace_xfs_inode_set_cowblocks_tag(ip);
1664 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1665 			trace_xfs_perag_set_cowblocks,
1666 			XFS_ICI_COWBLOCKS_TAG);
1667 }
1668 
1669 void
1670 xfs_inode_clear_cowblocks_tag(
1671 	xfs_inode_t	*ip)
1672 {
1673 	trace_xfs_inode_clear_cowblocks_tag(ip);
1674 	return __xfs_inode_clear_blocks_tag(ip,
1675 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1676 }
1677 
1678 /* Disable post-EOF and CoW block auto-reclamation. */
1679 void
1680 xfs_stop_block_reaping(
1681 	struct xfs_mount	*mp)
1682 {
1683 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1684 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1685 }
1686 
1687 /* Enable post-EOF and CoW block auto-reclamation. */
1688 void
1689 xfs_start_block_reaping(
1690 	struct xfs_mount	*mp)
1691 {
1692 	xfs_queue_eofblocks(mp);
1693 	xfs_queue_cowblocks(mp);
1694 }
1695