xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision a2cce7a9)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
39 
40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41 				struct xfs_perag *pag, struct xfs_inode *ip);
42 
43 /*
44  * Allocate and initialise an xfs_inode.
45  */
46 struct xfs_inode *
47 xfs_inode_alloc(
48 	struct xfs_mount	*mp,
49 	xfs_ino_t		ino)
50 {
51 	struct xfs_inode	*ip;
52 
53 	/*
54 	 * if this didn't occur in transactions, we could use
55 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 	 * code up to do this anyway.
57 	 */
58 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 	if (!ip)
60 		return NULL;
61 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
62 		kmem_zone_free(xfs_inode_zone, ip);
63 		return NULL;
64 	}
65 
66 	XFS_STATS_INC(vn_active);
67 	ASSERT(atomic_read(&ip->i_pincount) == 0);
68 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
69 	ASSERT(!xfs_isiflocked(ip));
70 	ASSERT(ip->i_ino == 0);
71 
72 	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
73 
74 	/* initialise the xfs inode */
75 	ip->i_ino = ino;
76 	ip->i_mount = mp;
77 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
78 	ip->i_afp = NULL;
79 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
80 	ip->i_flags = 0;
81 	ip->i_delayed_blks = 0;
82 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
83 
84 	return ip;
85 }
86 
87 STATIC void
88 xfs_inode_free_callback(
89 	struct rcu_head		*head)
90 {
91 	struct inode		*inode = container_of(head, struct inode, i_rcu);
92 	struct xfs_inode	*ip = XFS_I(inode);
93 
94 	kmem_zone_free(xfs_inode_zone, ip);
95 }
96 
97 void
98 xfs_inode_free(
99 	struct xfs_inode	*ip)
100 {
101 	switch (ip->i_d.di_mode & S_IFMT) {
102 	case S_IFREG:
103 	case S_IFDIR:
104 	case S_IFLNK:
105 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
106 		break;
107 	}
108 
109 	if (ip->i_afp)
110 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
111 
112 	if (ip->i_itemp) {
113 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
114 		xfs_inode_item_destroy(ip);
115 		ip->i_itemp = NULL;
116 	}
117 
118 	/*
119 	 * Because we use RCU freeing we need to ensure the inode always
120 	 * appears to be reclaimed with an invalid inode number when in the
121 	 * free state. The ip->i_flags_lock provides the barrier against lookup
122 	 * races.
123 	 */
124 	spin_lock(&ip->i_flags_lock);
125 	ip->i_flags = XFS_IRECLAIM;
126 	ip->i_ino = 0;
127 	spin_unlock(&ip->i_flags_lock);
128 
129 	/* asserts to verify all state is correct here */
130 	ASSERT(atomic_read(&ip->i_pincount) == 0);
131 	ASSERT(!xfs_isiflocked(ip));
132 	XFS_STATS_DEC(vn_active);
133 
134 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
135 }
136 
137 /*
138  * Check the validity of the inode we just found it the cache
139  */
140 static int
141 xfs_iget_cache_hit(
142 	struct xfs_perag	*pag,
143 	struct xfs_inode	*ip,
144 	xfs_ino_t		ino,
145 	int			flags,
146 	int			lock_flags) __releases(RCU)
147 {
148 	struct inode		*inode = VFS_I(ip);
149 	struct xfs_mount	*mp = ip->i_mount;
150 	int			error;
151 
152 	/*
153 	 * check for re-use of an inode within an RCU grace period due to the
154 	 * radix tree nodes not being updated yet. We monitor for this by
155 	 * setting the inode number to zero before freeing the inode structure.
156 	 * If the inode has been reallocated and set up, then the inode number
157 	 * will not match, so check for that, too.
158 	 */
159 	spin_lock(&ip->i_flags_lock);
160 	if (ip->i_ino != ino) {
161 		trace_xfs_iget_skip(ip);
162 		XFS_STATS_INC(xs_ig_frecycle);
163 		error = -EAGAIN;
164 		goto out_error;
165 	}
166 
167 
168 	/*
169 	 * If we are racing with another cache hit that is currently
170 	 * instantiating this inode or currently recycling it out of
171 	 * reclaimabe state, wait for the initialisation to complete
172 	 * before continuing.
173 	 *
174 	 * XXX(hch): eventually we should do something equivalent to
175 	 *	     wait_on_inode to wait for these flags to be cleared
176 	 *	     instead of polling for it.
177 	 */
178 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
179 		trace_xfs_iget_skip(ip);
180 		XFS_STATS_INC(xs_ig_frecycle);
181 		error = -EAGAIN;
182 		goto out_error;
183 	}
184 
185 	/*
186 	 * If lookup is racing with unlink return an error immediately.
187 	 */
188 	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
189 		error = -ENOENT;
190 		goto out_error;
191 	}
192 
193 	/*
194 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
195 	 * Need to carefully get it back into useable state.
196 	 */
197 	if (ip->i_flags & XFS_IRECLAIMABLE) {
198 		trace_xfs_iget_reclaim(ip);
199 
200 		/*
201 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
202 		 * from stomping over us while we recycle the inode.  We can't
203 		 * clear the radix tree reclaimable tag yet as it requires
204 		 * pag_ici_lock to be held exclusive.
205 		 */
206 		ip->i_flags |= XFS_IRECLAIM;
207 
208 		spin_unlock(&ip->i_flags_lock);
209 		rcu_read_unlock();
210 
211 		error = inode_init_always(mp->m_super, inode);
212 		if (error) {
213 			/*
214 			 * Re-initializing the inode failed, and we are in deep
215 			 * trouble.  Try to re-add it to the reclaim list.
216 			 */
217 			rcu_read_lock();
218 			spin_lock(&ip->i_flags_lock);
219 
220 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
221 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
222 			trace_xfs_iget_reclaim_fail(ip);
223 			goto out_error;
224 		}
225 
226 		spin_lock(&pag->pag_ici_lock);
227 		spin_lock(&ip->i_flags_lock);
228 
229 		/*
230 		 * Clear the per-lifetime state in the inode as we are now
231 		 * effectively a new inode and need to return to the initial
232 		 * state before reuse occurs.
233 		 */
234 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
235 		ip->i_flags |= XFS_INEW;
236 		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
237 		inode->i_state = I_NEW;
238 
239 		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
240 		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
241 
242 		spin_unlock(&ip->i_flags_lock);
243 		spin_unlock(&pag->pag_ici_lock);
244 	} else {
245 		/* If the VFS inode is being torn down, pause and try again. */
246 		if (!igrab(inode)) {
247 			trace_xfs_iget_skip(ip);
248 			error = -EAGAIN;
249 			goto out_error;
250 		}
251 
252 		/* We've got a live one. */
253 		spin_unlock(&ip->i_flags_lock);
254 		rcu_read_unlock();
255 		trace_xfs_iget_hit(ip);
256 	}
257 
258 	if (lock_flags != 0)
259 		xfs_ilock(ip, lock_flags);
260 
261 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
262 	XFS_STATS_INC(xs_ig_found);
263 
264 	return 0;
265 
266 out_error:
267 	spin_unlock(&ip->i_flags_lock);
268 	rcu_read_unlock();
269 	return error;
270 }
271 
272 
273 static int
274 xfs_iget_cache_miss(
275 	struct xfs_mount	*mp,
276 	struct xfs_perag	*pag,
277 	xfs_trans_t		*tp,
278 	xfs_ino_t		ino,
279 	struct xfs_inode	**ipp,
280 	int			flags,
281 	int			lock_flags)
282 {
283 	struct xfs_inode	*ip;
284 	int			error;
285 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
286 	int			iflags;
287 
288 	ip = xfs_inode_alloc(mp, ino);
289 	if (!ip)
290 		return -ENOMEM;
291 
292 	error = xfs_iread(mp, tp, ip, flags);
293 	if (error)
294 		goto out_destroy;
295 
296 	trace_xfs_iget_miss(ip);
297 
298 	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
299 		error = -ENOENT;
300 		goto out_destroy;
301 	}
302 
303 	/*
304 	 * Preload the radix tree so we can insert safely under the
305 	 * write spinlock. Note that we cannot sleep inside the preload
306 	 * region. Since we can be called from transaction context, don't
307 	 * recurse into the file system.
308 	 */
309 	if (radix_tree_preload(GFP_NOFS)) {
310 		error = -EAGAIN;
311 		goto out_destroy;
312 	}
313 
314 	/*
315 	 * Because the inode hasn't been added to the radix-tree yet it can't
316 	 * be found by another thread, so we can do the non-sleeping lock here.
317 	 */
318 	if (lock_flags) {
319 		if (!xfs_ilock_nowait(ip, lock_flags))
320 			BUG();
321 	}
322 
323 	/*
324 	 * These values must be set before inserting the inode into the radix
325 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
326 	 * RCU locking mechanism) can find it and that lookup must see that this
327 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
328 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
329 	 * memory barrier that ensures this detection works correctly at lookup
330 	 * time.
331 	 */
332 	iflags = XFS_INEW;
333 	if (flags & XFS_IGET_DONTCACHE)
334 		iflags |= XFS_IDONTCACHE;
335 	ip->i_udquot = NULL;
336 	ip->i_gdquot = NULL;
337 	ip->i_pdquot = NULL;
338 	xfs_iflags_set(ip, iflags);
339 
340 	/* insert the new inode */
341 	spin_lock(&pag->pag_ici_lock);
342 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
343 	if (unlikely(error)) {
344 		WARN_ON(error != -EEXIST);
345 		XFS_STATS_INC(xs_ig_dup);
346 		error = -EAGAIN;
347 		goto out_preload_end;
348 	}
349 	spin_unlock(&pag->pag_ici_lock);
350 	radix_tree_preload_end();
351 
352 	*ipp = ip;
353 	return 0;
354 
355 out_preload_end:
356 	spin_unlock(&pag->pag_ici_lock);
357 	radix_tree_preload_end();
358 	if (lock_flags)
359 		xfs_iunlock(ip, lock_flags);
360 out_destroy:
361 	__destroy_inode(VFS_I(ip));
362 	xfs_inode_free(ip);
363 	return error;
364 }
365 
366 /*
367  * Look up an inode by number in the given file system.
368  * The inode is looked up in the cache held in each AG.
369  * If the inode is found in the cache, initialise the vfs inode
370  * if necessary.
371  *
372  * If it is not in core, read it in from the file system's device,
373  * add it to the cache and initialise the vfs inode.
374  *
375  * The inode is locked according to the value of the lock_flags parameter.
376  * This flag parameter indicates how and if the inode's IO lock and inode lock
377  * should be taken.
378  *
379  * mp -- the mount point structure for the current file system.  It points
380  *       to the inode hash table.
381  * tp -- a pointer to the current transaction if there is one.  This is
382  *       simply passed through to the xfs_iread() call.
383  * ino -- the number of the inode desired.  This is the unique identifier
384  *        within the file system for the inode being requested.
385  * lock_flags -- flags indicating how to lock the inode.  See the comment
386  *		 for xfs_ilock() for a list of valid values.
387  */
388 int
389 xfs_iget(
390 	xfs_mount_t	*mp,
391 	xfs_trans_t	*tp,
392 	xfs_ino_t	ino,
393 	uint		flags,
394 	uint		lock_flags,
395 	xfs_inode_t	**ipp)
396 {
397 	xfs_inode_t	*ip;
398 	int		error;
399 	xfs_perag_t	*pag;
400 	xfs_agino_t	agino;
401 
402 	/*
403 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
404 	 * doesn't get freed while it's being referenced during a
405 	 * radix tree traversal here.  It assumes this function
406 	 * aqcuires only the ILOCK (and therefore it has no need to
407 	 * involve the IOLOCK in this synchronization).
408 	 */
409 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
410 
411 	/* reject inode numbers outside existing AGs */
412 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
413 		return -EINVAL;
414 
415 	XFS_STATS_INC(xs_ig_attempts);
416 
417 	/* get the perag structure and ensure that it's inode capable */
418 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
419 	agino = XFS_INO_TO_AGINO(mp, ino);
420 
421 again:
422 	error = 0;
423 	rcu_read_lock();
424 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
425 
426 	if (ip) {
427 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
428 		if (error)
429 			goto out_error_or_again;
430 	} else {
431 		rcu_read_unlock();
432 		XFS_STATS_INC(xs_ig_missed);
433 
434 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
435 							flags, lock_flags);
436 		if (error)
437 			goto out_error_or_again;
438 	}
439 	xfs_perag_put(pag);
440 
441 	*ipp = ip;
442 
443 	/*
444 	 * If we have a real type for an on-disk inode, we can setup the inode
445 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
446 	 */
447 	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
448 		xfs_setup_existing_inode(ip);
449 	return 0;
450 
451 out_error_or_again:
452 	if (error == -EAGAIN) {
453 		delay(1);
454 		goto again;
455 	}
456 	xfs_perag_put(pag);
457 	return error;
458 }
459 
460 /*
461  * The inode lookup is done in batches to keep the amount of lock traffic and
462  * radix tree lookups to a minimum. The batch size is a trade off between
463  * lookup reduction and stack usage. This is in the reclaim path, so we can't
464  * be too greedy.
465  */
466 #define XFS_LOOKUP_BATCH	32
467 
468 STATIC int
469 xfs_inode_ag_walk_grab(
470 	struct xfs_inode	*ip)
471 {
472 	struct inode		*inode = VFS_I(ip);
473 
474 	ASSERT(rcu_read_lock_held());
475 
476 	/*
477 	 * check for stale RCU freed inode
478 	 *
479 	 * If the inode has been reallocated, it doesn't matter if it's not in
480 	 * the AG we are walking - we are walking for writeback, so if it
481 	 * passes all the "valid inode" checks and is dirty, then we'll write
482 	 * it back anyway.  If it has been reallocated and still being
483 	 * initialised, the XFS_INEW check below will catch it.
484 	 */
485 	spin_lock(&ip->i_flags_lock);
486 	if (!ip->i_ino)
487 		goto out_unlock_noent;
488 
489 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
490 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
491 		goto out_unlock_noent;
492 	spin_unlock(&ip->i_flags_lock);
493 
494 	/* nothing to sync during shutdown */
495 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
496 		return -EFSCORRUPTED;
497 
498 	/* If we can't grab the inode, it must on it's way to reclaim. */
499 	if (!igrab(inode))
500 		return -ENOENT;
501 
502 	/* inode is valid */
503 	return 0;
504 
505 out_unlock_noent:
506 	spin_unlock(&ip->i_flags_lock);
507 	return -ENOENT;
508 }
509 
510 STATIC int
511 xfs_inode_ag_walk(
512 	struct xfs_mount	*mp,
513 	struct xfs_perag	*pag,
514 	int			(*execute)(struct xfs_inode *ip, int flags,
515 					   void *args),
516 	int			flags,
517 	void			*args,
518 	int			tag)
519 {
520 	uint32_t		first_index;
521 	int			last_error = 0;
522 	int			skipped;
523 	int			done;
524 	int			nr_found;
525 
526 restart:
527 	done = 0;
528 	skipped = 0;
529 	first_index = 0;
530 	nr_found = 0;
531 	do {
532 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
533 		int		error = 0;
534 		int		i;
535 
536 		rcu_read_lock();
537 
538 		if (tag == -1)
539 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
540 					(void **)batch, first_index,
541 					XFS_LOOKUP_BATCH);
542 		else
543 			nr_found = radix_tree_gang_lookup_tag(
544 					&pag->pag_ici_root,
545 					(void **) batch, first_index,
546 					XFS_LOOKUP_BATCH, tag);
547 
548 		if (!nr_found) {
549 			rcu_read_unlock();
550 			break;
551 		}
552 
553 		/*
554 		 * Grab the inodes before we drop the lock. if we found
555 		 * nothing, nr == 0 and the loop will be skipped.
556 		 */
557 		for (i = 0; i < nr_found; i++) {
558 			struct xfs_inode *ip = batch[i];
559 
560 			if (done || xfs_inode_ag_walk_grab(ip))
561 				batch[i] = NULL;
562 
563 			/*
564 			 * Update the index for the next lookup. Catch
565 			 * overflows into the next AG range which can occur if
566 			 * we have inodes in the last block of the AG and we
567 			 * are currently pointing to the last inode.
568 			 *
569 			 * Because we may see inodes that are from the wrong AG
570 			 * due to RCU freeing and reallocation, only update the
571 			 * index if it lies in this AG. It was a race that lead
572 			 * us to see this inode, so another lookup from the
573 			 * same index will not find it again.
574 			 */
575 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
576 				continue;
577 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
578 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
579 				done = 1;
580 		}
581 
582 		/* unlock now we've grabbed the inodes. */
583 		rcu_read_unlock();
584 
585 		for (i = 0; i < nr_found; i++) {
586 			if (!batch[i])
587 				continue;
588 			error = execute(batch[i], flags, args);
589 			IRELE(batch[i]);
590 			if (error == -EAGAIN) {
591 				skipped++;
592 				continue;
593 			}
594 			if (error && last_error != -EFSCORRUPTED)
595 				last_error = error;
596 		}
597 
598 		/* bail out if the filesystem is corrupted.  */
599 		if (error == -EFSCORRUPTED)
600 			break;
601 
602 		cond_resched();
603 
604 	} while (nr_found && !done);
605 
606 	if (skipped) {
607 		delay(1);
608 		goto restart;
609 	}
610 	return last_error;
611 }
612 
613 /*
614  * Background scanning to trim post-EOF preallocated space. This is queued
615  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
616  */
617 STATIC void
618 xfs_queue_eofblocks(
619 	struct xfs_mount *mp)
620 {
621 	rcu_read_lock();
622 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
623 		queue_delayed_work(mp->m_eofblocks_workqueue,
624 				   &mp->m_eofblocks_work,
625 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
626 	rcu_read_unlock();
627 }
628 
629 void
630 xfs_eofblocks_worker(
631 	struct work_struct *work)
632 {
633 	struct xfs_mount *mp = container_of(to_delayed_work(work),
634 				struct xfs_mount, m_eofblocks_work);
635 	xfs_icache_free_eofblocks(mp, NULL);
636 	xfs_queue_eofblocks(mp);
637 }
638 
639 int
640 xfs_inode_ag_iterator(
641 	struct xfs_mount	*mp,
642 	int			(*execute)(struct xfs_inode *ip, int flags,
643 					   void *args),
644 	int			flags,
645 	void			*args)
646 {
647 	struct xfs_perag	*pag;
648 	int			error = 0;
649 	int			last_error = 0;
650 	xfs_agnumber_t		ag;
651 
652 	ag = 0;
653 	while ((pag = xfs_perag_get(mp, ag))) {
654 		ag = pag->pag_agno + 1;
655 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
656 		xfs_perag_put(pag);
657 		if (error) {
658 			last_error = error;
659 			if (error == -EFSCORRUPTED)
660 				break;
661 		}
662 	}
663 	return last_error;
664 }
665 
666 int
667 xfs_inode_ag_iterator_tag(
668 	struct xfs_mount	*mp,
669 	int			(*execute)(struct xfs_inode *ip, int flags,
670 					   void *args),
671 	int			flags,
672 	void			*args,
673 	int			tag)
674 {
675 	struct xfs_perag	*pag;
676 	int			error = 0;
677 	int			last_error = 0;
678 	xfs_agnumber_t		ag;
679 
680 	ag = 0;
681 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
682 		ag = pag->pag_agno + 1;
683 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
684 		xfs_perag_put(pag);
685 		if (error) {
686 			last_error = error;
687 			if (error == -EFSCORRUPTED)
688 				break;
689 		}
690 	}
691 	return last_error;
692 }
693 
694 /*
695  * Queue a new inode reclaim pass if there are reclaimable inodes and there
696  * isn't a reclaim pass already in progress. By default it runs every 5s based
697  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
698  * tunable, but that can be done if this method proves to be ineffective or too
699  * aggressive.
700  */
701 static void
702 xfs_reclaim_work_queue(
703 	struct xfs_mount        *mp)
704 {
705 
706 	rcu_read_lock();
707 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
708 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
709 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
710 	}
711 	rcu_read_unlock();
712 }
713 
714 /*
715  * This is a fast pass over the inode cache to try to get reclaim moving on as
716  * many inodes as possible in a short period of time. It kicks itself every few
717  * seconds, as well as being kicked by the inode cache shrinker when memory
718  * goes low. It scans as quickly as possible avoiding locked inodes or those
719  * already being flushed, and once done schedules a future pass.
720  */
721 void
722 xfs_reclaim_worker(
723 	struct work_struct *work)
724 {
725 	struct xfs_mount *mp = container_of(to_delayed_work(work),
726 					struct xfs_mount, m_reclaim_work);
727 
728 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
729 	xfs_reclaim_work_queue(mp);
730 }
731 
732 static void
733 __xfs_inode_set_reclaim_tag(
734 	struct xfs_perag	*pag,
735 	struct xfs_inode	*ip)
736 {
737 	radix_tree_tag_set(&pag->pag_ici_root,
738 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
739 			   XFS_ICI_RECLAIM_TAG);
740 
741 	if (!pag->pag_ici_reclaimable) {
742 		/* propagate the reclaim tag up into the perag radix tree */
743 		spin_lock(&ip->i_mount->m_perag_lock);
744 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
745 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
746 				XFS_ICI_RECLAIM_TAG);
747 		spin_unlock(&ip->i_mount->m_perag_lock);
748 
749 		/* schedule periodic background inode reclaim */
750 		xfs_reclaim_work_queue(ip->i_mount);
751 
752 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
753 							-1, _RET_IP_);
754 	}
755 	pag->pag_ici_reclaimable++;
756 }
757 
758 /*
759  * We set the inode flag atomically with the radix tree tag.
760  * Once we get tag lookups on the radix tree, this inode flag
761  * can go away.
762  */
763 void
764 xfs_inode_set_reclaim_tag(
765 	xfs_inode_t	*ip)
766 {
767 	struct xfs_mount *mp = ip->i_mount;
768 	struct xfs_perag *pag;
769 
770 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
771 	spin_lock(&pag->pag_ici_lock);
772 	spin_lock(&ip->i_flags_lock);
773 	__xfs_inode_set_reclaim_tag(pag, ip);
774 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
775 	spin_unlock(&ip->i_flags_lock);
776 	spin_unlock(&pag->pag_ici_lock);
777 	xfs_perag_put(pag);
778 }
779 
780 STATIC void
781 __xfs_inode_clear_reclaim(
782 	xfs_perag_t	*pag,
783 	xfs_inode_t	*ip)
784 {
785 	pag->pag_ici_reclaimable--;
786 	if (!pag->pag_ici_reclaimable) {
787 		/* clear the reclaim tag from the perag radix tree */
788 		spin_lock(&ip->i_mount->m_perag_lock);
789 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
790 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
791 				XFS_ICI_RECLAIM_TAG);
792 		spin_unlock(&ip->i_mount->m_perag_lock);
793 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
794 							-1, _RET_IP_);
795 	}
796 }
797 
798 STATIC void
799 __xfs_inode_clear_reclaim_tag(
800 	xfs_mount_t	*mp,
801 	xfs_perag_t	*pag,
802 	xfs_inode_t	*ip)
803 {
804 	radix_tree_tag_clear(&pag->pag_ici_root,
805 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
806 	__xfs_inode_clear_reclaim(pag, ip);
807 }
808 
809 /*
810  * Grab the inode for reclaim exclusively.
811  * Return 0 if we grabbed it, non-zero otherwise.
812  */
813 STATIC int
814 xfs_reclaim_inode_grab(
815 	struct xfs_inode	*ip,
816 	int			flags)
817 {
818 	ASSERT(rcu_read_lock_held());
819 
820 	/* quick check for stale RCU freed inode */
821 	if (!ip->i_ino)
822 		return 1;
823 
824 	/*
825 	 * If we are asked for non-blocking operation, do unlocked checks to
826 	 * see if the inode already is being flushed or in reclaim to avoid
827 	 * lock traffic.
828 	 */
829 	if ((flags & SYNC_TRYLOCK) &&
830 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
831 		return 1;
832 
833 	/*
834 	 * The radix tree lock here protects a thread in xfs_iget from racing
835 	 * with us starting reclaim on the inode.  Once we have the
836 	 * XFS_IRECLAIM flag set it will not touch us.
837 	 *
838 	 * Due to RCU lookup, we may find inodes that have been freed and only
839 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
840 	 * aren't candidates for reclaim at all, so we must check the
841 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
842 	 */
843 	spin_lock(&ip->i_flags_lock);
844 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
845 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
846 		/* not a reclaim candidate. */
847 		spin_unlock(&ip->i_flags_lock);
848 		return 1;
849 	}
850 	__xfs_iflags_set(ip, XFS_IRECLAIM);
851 	spin_unlock(&ip->i_flags_lock);
852 	return 0;
853 }
854 
855 /*
856  * Inodes in different states need to be treated differently. The following
857  * table lists the inode states and the reclaim actions necessary:
858  *
859  *	inode state	     iflush ret		required action
860  *      ---------------      ----------         ---------------
861  *	bad			-		reclaim
862  *	shutdown		EIO		unpin and reclaim
863  *	clean, unpinned		0		reclaim
864  *	stale, unpinned		0		reclaim
865  *	clean, pinned(*)	0		requeue
866  *	stale, pinned		EAGAIN		requeue
867  *	dirty, async		-		requeue
868  *	dirty, sync		0		reclaim
869  *
870  * (*) dgc: I don't think the clean, pinned state is possible but it gets
871  * handled anyway given the order of checks implemented.
872  *
873  * Also, because we get the flush lock first, we know that any inode that has
874  * been flushed delwri has had the flush completed by the time we check that
875  * the inode is clean.
876  *
877  * Note that because the inode is flushed delayed write by AIL pushing, the
878  * flush lock may already be held here and waiting on it can result in very
879  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
880  * the caller should push the AIL first before trying to reclaim inodes to
881  * minimise the amount of time spent waiting.  For background relaim, we only
882  * bother to reclaim clean inodes anyway.
883  *
884  * Hence the order of actions after gaining the locks should be:
885  *	bad		=> reclaim
886  *	shutdown	=> unpin and reclaim
887  *	pinned, async	=> requeue
888  *	pinned, sync	=> unpin
889  *	stale		=> reclaim
890  *	clean		=> reclaim
891  *	dirty, async	=> requeue
892  *	dirty, sync	=> flush, wait and reclaim
893  */
894 STATIC int
895 xfs_reclaim_inode(
896 	struct xfs_inode	*ip,
897 	struct xfs_perag	*pag,
898 	int			sync_mode)
899 {
900 	struct xfs_buf		*bp = NULL;
901 	int			error;
902 
903 restart:
904 	error = 0;
905 	xfs_ilock(ip, XFS_ILOCK_EXCL);
906 	if (!xfs_iflock_nowait(ip)) {
907 		if (!(sync_mode & SYNC_WAIT))
908 			goto out;
909 		xfs_iflock(ip);
910 	}
911 
912 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
913 		xfs_iunpin_wait(ip);
914 		xfs_iflush_abort(ip, false);
915 		goto reclaim;
916 	}
917 	if (xfs_ipincount(ip)) {
918 		if (!(sync_mode & SYNC_WAIT))
919 			goto out_ifunlock;
920 		xfs_iunpin_wait(ip);
921 	}
922 	if (xfs_iflags_test(ip, XFS_ISTALE))
923 		goto reclaim;
924 	if (xfs_inode_clean(ip))
925 		goto reclaim;
926 
927 	/*
928 	 * Never flush out dirty data during non-blocking reclaim, as it would
929 	 * just contend with AIL pushing trying to do the same job.
930 	 */
931 	if (!(sync_mode & SYNC_WAIT))
932 		goto out_ifunlock;
933 
934 	/*
935 	 * Now we have an inode that needs flushing.
936 	 *
937 	 * Note that xfs_iflush will never block on the inode buffer lock, as
938 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
939 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
940 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
941 	 * result in an ABBA deadlock with xfs_ifree_cluster().
942 	 *
943 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
944 	 * cache to mark them stale, if we hit this case we don't actually want
945 	 * to do IO here - we want the inode marked stale so we can simply
946 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
947 	 * inode, back off and try again.  Hopefully the next pass through will
948 	 * see the stale flag set on the inode.
949 	 */
950 	error = xfs_iflush(ip, &bp);
951 	if (error == -EAGAIN) {
952 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
953 		/* backoff longer than in xfs_ifree_cluster */
954 		delay(2);
955 		goto restart;
956 	}
957 
958 	if (!error) {
959 		error = xfs_bwrite(bp);
960 		xfs_buf_relse(bp);
961 	}
962 
963 	xfs_iflock(ip);
964 reclaim:
965 	xfs_ifunlock(ip);
966 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
967 
968 	XFS_STATS_INC(xs_ig_reclaims);
969 	/*
970 	 * Remove the inode from the per-AG radix tree.
971 	 *
972 	 * Because radix_tree_delete won't complain even if the item was never
973 	 * added to the tree assert that it's been there before to catch
974 	 * problems with the inode life time early on.
975 	 */
976 	spin_lock(&pag->pag_ici_lock);
977 	if (!radix_tree_delete(&pag->pag_ici_root,
978 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
979 		ASSERT(0);
980 	__xfs_inode_clear_reclaim(pag, ip);
981 	spin_unlock(&pag->pag_ici_lock);
982 
983 	/*
984 	 * Here we do an (almost) spurious inode lock in order to coordinate
985 	 * with inode cache radix tree lookups.  This is because the lookup
986 	 * can reference the inodes in the cache without taking references.
987 	 *
988 	 * We make that OK here by ensuring that we wait until the inode is
989 	 * unlocked after the lookup before we go ahead and free it.
990 	 */
991 	xfs_ilock(ip, XFS_ILOCK_EXCL);
992 	xfs_qm_dqdetach(ip);
993 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
994 
995 	xfs_inode_free(ip);
996 	return error;
997 
998 out_ifunlock:
999 	xfs_ifunlock(ip);
1000 out:
1001 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1002 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1003 	/*
1004 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1005 	 * a short while. However, this just burns CPU time scanning the tree
1006 	 * waiting for IO to complete and the reclaim work never goes back to
1007 	 * the idle state. Instead, return 0 to let the next scheduled
1008 	 * background reclaim attempt to reclaim the inode again.
1009 	 */
1010 	return 0;
1011 }
1012 
1013 /*
1014  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1015  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1016  * then a shut down during filesystem unmount reclaim walk leak all the
1017  * unreclaimed inodes.
1018  */
1019 STATIC int
1020 xfs_reclaim_inodes_ag(
1021 	struct xfs_mount	*mp,
1022 	int			flags,
1023 	int			*nr_to_scan)
1024 {
1025 	struct xfs_perag	*pag;
1026 	int			error = 0;
1027 	int			last_error = 0;
1028 	xfs_agnumber_t		ag;
1029 	int			trylock = flags & SYNC_TRYLOCK;
1030 	int			skipped;
1031 
1032 restart:
1033 	ag = 0;
1034 	skipped = 0;
1035 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1036 		unsigned long	first_index = 0;
1037 		int		done = 0;
1038 		int		nr_found = 0;
1039 
1040 		ag = pag->pag_agno + 1;
1041 
1042 		if (trylock) {
1043 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1044 				skipped++;
1045 				xfs_perag_put(pag);
1046 				continue;
1047 			}
1048 			first_index = pag->pag_ici_reclaim_cursor;
1049 		} else
1050 			mutex_lock(&pag->pag_ici_reclaim_lock);
1051 
1052 		do {
1053 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1054 			int	i;
1055 
1056 			rcu_read_lock();
1057 			nr_found = radix_tree_gang_lookup_tag(
1058 					&pag->pag_ici_root,
1059 					(void **)batch, first_index,
1060 					XFS_LOOKUP_BATCH,
1061 					XFS_ICI_RECLAIM_TAG);
1062 			if (!nr_found) {
1063 				done = 1;
1064 				rcu_read_unlock();
1065 				break;
1066 			}
1067 
1068 			/*
1069 			 * Grab the inodes before we drop the lock. if we found
1070 			 * nothing, nr == 0 and the loop will be skipped.
1071 			 */
1072 			for (i = 0; i < nr_found; i++) {
1073 				struct xfs_inode *ip = batch[i];
1074 
1075 				if (done || xfs_reclaim_inode_grab(ip, flags))
1076 					batch[i] = NULL;
1077 
1078 				/*
1079 				 * Update the index for the next lookup. Catch
1080 				 * overflows into the next AG range which can
1081 				 * occur if we have inodes in the last block of
1082 				 * the AG and we are currently pointing to the
1083 				 * last inode.
1084 				 *
1085 				 * Because we may see inodes that are from the
1086 				 * wrong AG due to RCU freeing and
1087 				 * reallocation, only update the index if it
1088 				 * lies in this AG. It was a race that lead us
1089 				 * to see this inode, so another lookup from
1090 				 * the same index will not find it again.
1091 				 */
1092 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1093 								pag->pag_agno)
1094 					continue;
1095 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1096 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1097 					done = 1;
1098 			}
1099 
1100 			/* unlock now we've grabbed the inodes. */
1101 			rcu_read_unlock();
1102 
1103 			for (i = 0; i < nr_found; i++) {
1104 				if (!batch[i])
1105 					continue;
1106 				error = xfs_reclaim_inode(batch[i], pag, flags);
1107 				if (error && last_error != -EFSCORRUPTED)
1108 					last_error = error;
1109 			}
1110 
1111 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1112 
1113 			cond_resched();
1114 
1115 		} while (nr_found && !done && *nr_to_scan > 0);
1116 
1117 		if (trylock && !done)
1118 			pag->pag_ici_reclaim_cursor = first_index;
1119 		else
1120 			pag->pag_ici_reclaim_cursor = 0;
1121 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1122 		xfs_perag_put(pag);
1123 	}
1124 
1125 	/*
1126 	 * if we skipped any AG, and we still have scan count remaining, do
1127 	 * another pass this time using blocking reclaim semantics (i.e
1128 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1129 	 * ensure that when we get more reclaimers than AGs we block rather
1130 	 * than spin trying to execute reclaim.
1131 	 */
1132 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1133 		trylock = 0;
1134 		goto restart;
1135 	}
1136 	return last_error;
1137 }
1138 
1139 int
1140 xfs_reclaim_inodes(
1141 	xfs_mount_t	*mp,
1142 	int		mode)
1143 {
1144 	int		nr_to_scan = INT_MAX;
1145 
1146 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1147 }
1148 
1149 /*
1150  * Scan a certain number of inodes for reclaim.
1151  *
1152  * When called we make sure that there is a background (fast) inode reclaim in
1153  * progress, while we will throttle the speed of reclaim via doing synchronous
1154  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1155  * them to be cleaned, which we hope will not be very long due to the
1156  * background walker having already kicked the IO off on those dirty inodes.
1157  */
1158 long
1159 xfs_reclaim_inodes_nr(
1160 	struct xfs_mount	*mp,
1161 	int			nr_to_scan)
1162 {
1163 	/* kick background reclaimer and push the AIL */
1164 	xfs_reclaim_work_queue(mp);
1165 	xfs_ail_push_all(mp->m_ail);
1166 
1167 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1168 }
1169 
1170 /*
1171  * Return the number of reclaimable inodes in the filesystem for
1172  * the shrinker to determine how much to reclaim.
1173  */
1174 int
1175 xfs_reclaim_inodes_count(
1176 	struct xfs_mount	*mp)
1177 {
1178 	struct xfs_perag	*pag;
1179 	xfs_agnumber_t		ag = 0;
1180 	int			reclaimable = 0;
1181 
1182 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1183 		ag = pag->pag_agno + 1;
1184 		reclaimable += pag->pag_ici_reclaimable;
1185 		xfs_perag_put(pag);
1186 	}
1187 	return reclaimable;
1188 }
1189 
1190 STATIC int
1191 xfs_inode_match_id(
1192 	struct xfs_inode	*ip,
1193 	struct xfs_eofblocks	*eofb)
1194 {
1195 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1196 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1197 		return 0;
1198 
1199 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1200 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1201 		return 0;
1202 
1203 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1204 	    xfs_get_projid(ip) != eofb->eof_prid)
1205 		return 0;
1206 
1207 	return 1;
1208 }
1209 
1210 /*
1211  * A union-based inode filtering algorithm. Process the inode if any of the
1212  * criteria match. This is for global/internal scans only.
1213  */
1214 STATIC int
1215 xfs_inode_match_id_union(
1216 	struct xfs_inode	*ip,
1217 	struct xfs_eofblocks	*eofb)
1218 {
1219 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1220 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1221 		return 1;
1222 
1223 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1224 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1225 		return 1;
1226 
1227 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1228 	    xfs_get_projid(ip) == eofb->eof_prid)
1229 		return 1;
1230 
1231 	return 0;
1232 }
1233 
1234 STATIC int
1235 xfs_inode_free_eofblocks(
1236 	struct xfs_inode	*ip,
1237 	int			flags,
1238 	void			*args)
1239 {
1240 	int ret;
1241 	struct xfs_eofblocks *eofb = args;
1242 	bool need_iolock = true;
1243 	int match;
1244 
1245 	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1246 
1247 	if (!xfs_can_free_eofblocks(ip, false)) {
1248 		/* inode could be preallocated or append-only */
1249 		trace_xfs_inode_free_eofblocks_invalid(ip);
1250 		xfs_inode_clear_eofblocks_tag(ip);
1251 		return 0;
1252 	}
1253 
1254 	/*
1255 	 * If the mapping is dirty the operation can block and wait for some
1256 	 * time. Unless we are waiting, skip it.
1257 	 */
1258 	if (!(flags & SYNC_WAIT) &&
1259 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1260 		return 0;
1261 
1262 	if (eofb) {
1263 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1264 			match = xfs_inode_match_id_union(ip, eofb);
1265 		else
1266 			match = xfs_inode_match_id(ip, eofb);
1267 		if (!match)
1268 			return 0;
1269 
1270 		/* skip the inode if the file size is too small */
1271 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1272 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1273 			return 0;
1274 
1275 		/*
1276 		 * A scan owner implies we already hold the iolock. Skip it in
1277 		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1278 		 * the possibility of EAGAIN being returned.
1279 		 */
1280 		if (eofb->eof_scan_owner == ip->i_ino)
1281 			need_iolock = false;
1282 	}
1283 
1284 	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1285 
1286 	/* don't revisit the inode if we're not waiting */
1287 	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1288 		ret = 0;
1289 
1290 	return ret;
1291 }
1292 
1293 int
1294 xfs_icache_free_eofblocks(
1295 	struct xfs_mount	*mp,
1296 	struct xfs_eofblocks	*eofb)
1297 {
1298 	int flags = SYNC_TRYLOCK;
1299 
1300 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1301 		flags = SYNC_WAIT;
1302 
1303 	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1304 					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1305 }
1306 
1307 /*
1308  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1309  * multiple quotas, we don't know exactly which quota caused an allocation
1310  * failure. We make a best effort by including each quota under low free space
1311  * conditions (less than 1% free space) in the scan.
1312  */
1313 int
1314 xfs_inode_free_quota_eofblocks(
1315 	struct xfs_inode *ip)
1316 {
1317 	int scan = 0;
1318 	struct xfs_eofblocks eofb = {0};
1319 	struct xfs_dquot *dq;
1320 
1321 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1322 
1323 	/*
1324 	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1325 	 * can repeatedly trylock on the inode we're currently processing. We
1326 	 * run a sync scan to increase effectiveness and use the union filter to
1327 	 * cover all applicable quotas in a single scan.
1328 	 */
1329 	eofb.eof_scan_owner = ip->i_ino;
1330 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1331 
1332 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1333 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1334 		if (dq && xfs_dquot_lowsp(dq)) {
1335 			eofb.eof_uid = VFS_I(ip)->i_uid;
1336 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1337 			scan = 1;
1338 		}
1339 	}
1340 
1341 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1342 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1343 		if (dq && xfs_dquot_lowsp(dq)) {
1344 			eofb.eof_gid = VFS_I(ip)->i_gid;
1345 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1346 			scan = 1;
1347 		}
1348 	}
1349 
1350 	if (scan)
1351 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1352 
1353 	return scan;
1354 }
1355 
1356 void
1357 xfs_inode_set_eofblocks_tag(
1358 	xfs_inode_t	*ip)
1359 {
1360 	struct xfs_mount *mp = ip->i_mount;
1361 	struct xfs_perag *pag;
1362 	int tagged;
1363 
1364 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1365 	spin_lock(&pag->pag_ici_lock);
1366 	trace_xfs_inode_set_eofblocks_tag(ip);
1367 
1368 	tagged = radix_tree_tagged(&pag->pag_ici_root,
1369 				   XFS_ICI_EOFBLOCKS_TAG);
1370 	radix_tree_tag_set(&pag->pag_ici_root,
1371 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1372 			   XFS_ICI_EOFBLOCKS_TAG);
1373 	if (!tagged) {
1374 		/* propagate the eofblocks tag up into the perag radix tree */
1375 		spin_lock(&ip->i_mount->m_perag_lock);
1376 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1377 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1378 				   XFS_ICI_EOFBLOCKS_TAG);
1379 		spin_unlock(&ip->i_mount->m_perag_lock);
1380 
1381 		/* kick off background trimming */
1382 		xfs_queue_eofblocks(ip->i_mount);
1383 
1384 		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1385 					      -1, _RET_IP_);
1386 	}
1387 
1388 	spin_unlock(&pag->pag_ici_lock);
1389 	xfs_perag_put(pag);
1390 }
1391 
1392 void
1393 xfs_inode_clear_eofblocks_tag(
1394 	xfs_inode_t	*ip)
1395 {
1396 	struct xfs_mount *mp = ip->i_mount;
1397 	struct xfs_perag *pag;
1398 
1399 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1400 	spin_lock(&pag->pag_ici_lock);
1401 	trace_xfs_inode_clear_eofblocks_tag(ip);
1402 
1403 	radix_tree_tag_clear(&pag->pag_ici_root,
1404 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1405 			     XFS_ICI_EOFBLOCKS_TAG);
1406 	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1407 		/* clear the eofblocks tag from the perag radix tree */
1408 		spin_lock(&ip->i_mount->m_perag_lock);
1409 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1410 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1411 				     XFS_ICI_EOFBLOCKS_TAG);
1412 		spin_unlock(&ip->i_mount->m_perag_lock);
1413 		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1414 					       -1, _RET_IP_);
1415 	}
1416 
1417 	spin_unlock(&pag->pag_ici_lock);
1418 	xfs_perag_put(pag);
1419 }
1420 
1421