xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 
28 #include <linux/iversion.h>
29 
30 /* Radix tree tags for incore inode tree. */
31 
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG	0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG	1
36 
37 /*
38  * The goal for walking incore inodes.  These can correspond with incore inode
39  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
40  */
41 enum xfs_icwalk_goal {
42 	/* Goals directly associated with tagged inodes. */
43 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
44 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
45 };
46 
47 static int xfs_icwalk(struct xfs_mount *mp,
48 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51 
52 /*
53  * Private inode cache walk flags for struct xfs_icwalk.  Must not
54  * coincide with XFS_ICWALK_FLAGS_VALID.
55  */
56 
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
59 
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
61 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
62 
63 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 					 XFS_ICWALK_FLAG_UNION)
66 
67 /*
68  * Allocate and initialise an xfs_inode.
69  */
70 struct xfs_inode *
71 xfs_inode_alloc(
72 	struct xfs_mount	*mp,
73 	xfs_ino_t		ino)
74 {
75 	struct xfs_inode	*ip;
76 
77 	/*
78 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 	 * and return NULL here on ENOMEM.
80 	 */
81 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82 
83 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 		kmem_cache_free(xfs_inode_cache, ip);
85 		return NULL;
86 	}
87 
88 	/* VFS doesn't initialise i_mode or i_state! */
89 	VFS_I(ip)->i_mode = 0;
90 	VFS_I(ip)->i_state = 0;
91 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92 
93 	XFS_STATS_INC(mp, vn_active);
94 	ASSERT(atomic_read(&ip->i_pincount) == 0);
95 	ASSERT(ip->i_ino == 0);
96 
97 	/* initialise the xfs inode */
98 	ip->i_ino = ino;
99 	ip->i_mount = mp;
100 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 	ip->i_cowfp = NULL;
102 	memset(&ip->i_af, 0, sizeof(ip->i_af));
103 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 	memset(&ip->i_df, 0, sizeof(ip->i_df));
105 	ip->i_flags = 0;
106 	ip->i_delayed_blks = 0;
107 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 	ip->i_nblocks = 0;
109 	ip->i_forkoff = 0;
110 	ip->i_sick = 0;
111 	ip->i_checked = 0;
112 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 	INIT_LIST_HEAD(&ip->i_ioend_list);
114 	spin_lock_init(&ip->i_ioend_lock);
115 	ip->i_next_unlinked = NULLAGINO;
116 	ip->i_prev_unlinked = NULLAGINO;
117 
118 	return ip;
119 }
120 
121 STATIC void
122 xfs_inode_free_callback(
123 	struct rcu_head		*head)
124 {
125 	struct inode		*inode = container_of(head, struct inode, i_rcu);
126 	struct xfs_inode	*ip = XFS_I(inode);
127 
128 	switch (VFS_I(ip)->i_mode & S_IFMT) {
129 	case S_IFREG:
130 	case S_IFDIR:
131 	case S_IFLNK:
132 		xfs_idestroy_fork(&ip->i_df);
133 		break;
134 	}
135 
136 	xfs_ifork_zap_attr(ip);
137 
138 	if (ip->i_cowfp) {
139 		xfs_idestroy_fork(ip->i_cowfp);
140 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 	}
142 	if (ip->i_itemp) {
143 		ASSERT(!test_bit(XFS_LI_IN_AIL,
144 				 &ip->i_itemp->ili_item.li_flags));
145 		xfs_inode_item_destroy(ip);
146 		ip->i_itemp = NULL;
147 	}
148 
149 	kmem_cache_free(xfs_inode_cache, ip);
150 }
151 
152 static void
153 __xfs_inode_free(
154 	struct xfs_inode	*ip)
155 {
156 	/* asserts to verify all state is correct here */
157 	ASSERT(atomic_read(&ip->i_pincount) == 0);
158 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 	XFS_STATS_DEC(ip->i_mount, vn_active);
160 
161 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163 
164 void
165 xfs_inode_free(
166 	struct xfs_inode	*ip)
167 {
168 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169 
170 	/*
171 	 * Because we use RCU freeing we need to ensure the inode always
172 	 * appears to be reclaimed with an invalid inode number when in the
173 	 * free state. The ip->i_flags_lock provides the barrier against lookup
174 	 * races.
175 	 */
176 	spin_lock(&ip->i_flags_lock);
177 	ip->i_flags = XFS_IRECLAIM;
178 	ip->i_ino = 0;
179 	spin_unlock(&ip->i_flags_lock);
180 
181 	__xfs_inode_free(ip);
182 }
183 
184 /*
185  * Queue background inode reclaim work if there are reclaimable inodes and there
186  * isn't reclaim work already scheduled or in progress.
187  */
188 static void
189 xfs_reclaim_work_queue(
190 	struct xfs_mount        *mp)
191 {
192 
193 	rcu_read_lock();
194 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 	}
198 	rcu_read_unlock();
199 }
200 
201 /*
202  * Background scanning to trim preallocated space. This is queued based on the
203  * 'speculative_prealloc_lifetime' tunable (5m by default).
204  */
205 static inline void
206 xfs_blockgc_queue(
207 	struct xfs_perag	*pag)
208 {
209 	struct xfs_mount	*mp = pag->pag_mount;
210 
211 	if (!xfs_is_blockgc_enabled(mp))
212 		return;
213 
214 	rcu_read_lock();
215 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 				   &pag->pag_blockgc_work,
218 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 	rcu_read_unlock();
220 }
221 
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
224 xfs_perag_set_inode_tag(
225 	struct xfs_perag	*pag,
226 	xfs_agino_t		agino,
227 	unsigned int		tag)
228 {
229 	struct xfs_mount	*mp = pag->pag_mount;
230 	bool			was_tagged;
231 
232 	lockdep_assert_held(&pag->pag_ici_lock);
233 
234 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236 
237 	if (tag == XFS_ICI_RECLAIM_TAG)
238 		pag->pag_ici_reclaimable++;
239 
240 	if (was_tagged)
241 		return;
242 
243 	/* propagate the tag up into the perag radix tree */
244 	spin_lock(&mp->m_perag_lock);
245 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 	spin_unlock(&mp->m_perag_lock);
247 
248 	/* start background work */
249 	switch (tag) {
250 	case XFS_ICI_RECLAIM_TAG:
251 		xfs_reclaim_work_queue(mp);
252 		break;
253 	case XFS_ICI_BLOCKGC_TAG:
254 		xfs_blockgc_queue(pag);
255 		break;
256 	}
257 
258 	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
259 }
260 
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
263 xfs_perag_clear_inode_tag(
264 	struct xfs_perag	*pag,
265 	xfs_agino_t		agino,
266 	unsigned int		tag)
267 {
268 	struct xfs_mount	*mp = pag->pag_mount;
269 
270 	lockdep_assert_held(&pag->pag_ici_lock);
271 
272 	/*
273 	 * Reclaim can signal (with a null agino) that it cleared its own tag
274 	 * by removing the inode from the radix tree.
275 	 */
276 	if (agino != NULLAGINO)
277 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 	else
279 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280 
281 	if (tag == XFS_ICI_RECLAIM_TAG)
282 		pag->pag_ici_reclaimable--;
283 
284 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 		return;
286 
287 	/* clear the tag from the perag radix tree */
288 	spin_lock(&mp->m_perag_lock);
289 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 	spin_unlock(&mp->m_perag_lock);
291 
292 	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
293 }
294 
295 /*
296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297  * part of the structure. This is made more complex by the fact we store
298  * information about the on-disk values in the VFS inode and so we can't just
299  * overwrite the values unconditionally. Hence we save the parameters we
300  * need to retain across reinitialisation, and rewrite them into the VFS inode
301  * after reinitialisation even if it fails.
302  */
303 static int
304 xfs_reinit_inode(
305 	struct xfs_mount	*mp,
306 	struct inode		*inode)
307 {
308 	int			error;
309 	uint32_t		nlink = inode->i_nlink;
310 	uint32_t		generation = inode->i_generation;
311 	uint64_t		version = inode_peek_iversion(inode);
312 	umode_t			mode = inode->i_mode;
313 	dev_t			dev = inode->i_rdev;
314 	kuid_t			uid = inode->i_uid;
315 	kgid_t			gid = inode->i_gid;
316 
317 	error = inode_init_always(mp->m_super, inode);
318 
319 	set_nlink(inode, nlink);
320 	inode->i_generation = generation;
321 	inode_set_iversion_queried(inode, version);
322 	inode->i_mode = mode;
323 	inode->i_rdev = dev;
324 	inode->i_uid = uid;
325 	inode->i_gid = gid;
326 	mapping_set_large_folios(inode->i_mapping);
327 	return error;
328 }
329 
330 /*
331  * Carefully nudge an inode whose VFS state has been torn down back into a
332  * usable state.  Drops the i_flags_lock and the rcu read lock.
333  */
334 static int
335 xfs_iget_recycle(
336 	struct xfs_perag	*pag,
337 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
338 {
339 	struct xfs_mount	*mp = ip->i_mount;
340 	struct inode		*inode = VFS_I(ip);
341 	int			error;
342 
343 	trace_xfs_iget_recycle(ip);
344 
345 	/*
346 	 * We need to make it look like the inode is being reclaimed to prevent
347 	 * the actual reclaim workers from stomping over us while we recycle
348 	 * the inode.  We can't clear the radix tree tag yet as it requires
349 	 * pag_ici_lock to be held exclusive.
350 	 */
351 	ip->i_flags |= XFS_IRECLAIM;
352 
353 	spin_unlock(&ip->i_flags_lock);
354 	rcu_read_unlock();
355 
356 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
357 	error = xfs_reinit_inode(mp, inode);
358 	if (error) {
359 		/*
360 		 * Re-initializing the inode failed, and we are in deep
361 		 * trouble.  Try to re-add it to the reclaim list.
362 		 */
363 		rcu_read_lock();
364 		spin_lock(&ip->i_flags_lock);
365 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
366 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
367 		spin_unlock(&ip->i_flags_lock);
368 		rcu_read_unlock();
369 
370 		trace_xfs_iget_recycle_fail(ip);
371 		return error;
372 	}
373 
374 	spin_lock(&pag->pag_ici_lock);
375 	spin_lock(&ip->i_flags_lock);
376 
377 	/*
378 	 * Clear the per-lifetime state in the inode as we are now effectively
379 	 * a new inode and need to return to the initial state before reuse
380 	 * occurs.
381 	 */
382 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
383 	ip->i_flags |= XFS_INEW;
384 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
385 			XFS_ICI_RECLAIM_TAG);
386 	inode->i_state = I_NEW;
387 	spin_unlock(&ip->i_flags_lock);
388 	spin_unlock(&pag->pag_ici_lock);
389 
390 	return 0;
391 }
392 
393 /*
394  * If we are allocating a new inode, then check what was returned is
395  * actually a free, empty inode. If we are not allocating an inode,
396  * then check we didn't find a free inode.
397  *
398  * Returns:
399  *	0		if the inode free state matches the lookup context
400  *	-ENOENT		if the inode is free and we are not allocating
401  *	-EFSCORRUPTED	if there is any state mismatch at all
402  */
403 static int
404 xfs_iget_check_free_state(
405 	struct xfs_inode	*ip,
406 	int			flags)
407 {
408 	if (flags & XFS_IGET_CREATE) {
409 		/* should be a free inode */
410 		if (VFS_I(ip)->i_mode != 0) {
411 			xfs_warn(ip->i_mount,
412 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
413 				ip->i_ino, VFS_I(ip)->i_mode);
414 			return -EFSCORRUPTED;
415 		}
416 
417 		if (ip->i_nblocks != 0) {
418 			xfs_warn(ip->i_mount,
419 "Corruption detected! Free inode 0x%llx has blocks allocated!",
420 				ip->i_ino);
421 			return -EFSCORRUPTED;
422 		}
423 		return 0;
424 	}
425 
426 	/* should be an allocated inode */
427 	if (VFS_I(ip)->i_mode == 0)
428 		return -ENOENT;
429 
430 	return 0;
431 }
432 
433 /* Make all pending inactivation work start immediately. */
434 static void
435 xfs_inodegc_queue_all(
436 	struct xfs_mount	*mp)
437 {
438 	struct xfs_inodegc	*gc;
439 	int			cpu;
440 
441 	for_each_online_cpu(cpu) {
442 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
443 		if (!llist_empty(&gc->list))
444 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
445 	}
446 }
447 
448 /*
449  * Check the validity of the inode we just found it the cache
450  */
451 static int
452 xfs_iget_cache_hit(
453 	struct xfs_perag	*pag,
454 	struct xfs_inode	*ip,
455 	xfs_ino_t		ino,
456 	int			flags,
457 	int			lock_flags) __releases(RCU)
458 {
459 	struct inode		*inode = VFS_I(ip);
460 	struct xfs_mount	*mp = ip->i_mount;
461 	int			error;
462 
463 	/*
464 	 * check for re-use of an inode within an RCU grace period due to the
465 	 * radix tree nodes not being updated yet. We monitor for this by
466 	 * setting the inode number to zero before freeing the inode structure.
467 	 * If the inode has been reallocated and set up, then the inode number
468 	 * will not match, so check for that, too.
469 	 */
470 	spin_lock(&ip->i_flags_lock);
471 	if (ip->i_ino != ino)
472 		goto out_skip;
473 
474 	/*
475 	 * If we are racing with another cache hit that is currently
476 	 * instantiating this inode or currently recycling it out of
477 	 * reclaimable state, wait for the initialisation to complete
478 	 * before continuing.
479 	 *
480 	 * If we're racing with the inactivation worker we also want to wait.
481 	 * If we're creating a new file, it's possible that the worker
482 	 * previously marked the inode as free on disk but hasn't finished
483 	 * updating the incore state yet.  The AGI buffer will be dirty and
484 	 * locked to the icreate transaction, so a synchronous push of the
485 	 * inodegc workers would result in deadlock.  For a regular iget, the
486 	 * worker is running already, so we might as well wait.
487 	 *
488 	 * XXX(hch): eventually we should do something equivalent to
489 	 *	     wait_on_inode to wait for these flags to be cleared
490 	 *	     instead of polling for it.
491 	 */
492 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
493 		goto out_skip;
494 
495 	if (ip->i_flags & XFS_NEED_INACTIVE) {
496 		/* Unlinked inodes cannot be re-grabbed. */
497 		if (VFS_I(ip)->i_nlink == 0) {
498 			error = -ENOENT;
499 			goto out_error;
500 		}
501 		goto out_inodegc_flush;
502 	}
503 
504 	/*
505 	 * Check the inode free state is valid. This also detects lookup
506 	 * racing with unlinks.
507 	 */
508 	error = xfs_iget_check_free_state(ip, flags);
509 	if (error)
510 		goto out_error;
511 
512 	/* Skip inodes that have no vfs state. */
513 	if ((flags & XFS_IGET_INCORE) &&
514 	    (ip->i_flags & XFS_IRECLAIMABLE))
515 		goto out_skip;
516 
517 	/* The inode fits the selection criteria; process it. */
518 	if (ip->i_flags & XFS_IRECLAIMABLE) {
519 		/* Drops i_flags_lock and RCU read lock. */
520 		error = xfs_iget_recycle(pag, ip);
521 		if (error)
522 			return error;
523 	} else {
524 		/* If the VFS inode is being torn down, pause and try again. */
525 		if (!igrab(inode))
526 			goto out_skip;
527 
528 		/* We've got a live one. */
529 		spin_unlock(&ip->i_flags_lock);
530 		rcu_read_unlock();
531 		trace_xfs_iget_hit(ip);
532 	}
533 
534 	if (lock_flags != 0)
535 		xfs_ilock(ip, lock_flags);
536 
537 	if (!(flags & XFS_IGET_INCORE))
538 		xfs_iflags_clear(ip, XFS_ISTALE);
539 	XFS_STATS_INC(mp, xs_ig_found);
540 
541 	return 0;
542 
543 out_skip:
544 	trace_xfs_iget_skip(ip);
545 	XFS_STATS_INC(mp, xs_ig_frecycle);
546 	error = -EAGAIN;
547 out_error:
548 	spin_unlock(&ip->i_flags_lock);
549 	rcu_read_unlock();
550 	return error;
551 
552 out_inodegc_flush:
553 	spin_unlock(&ip->i_flags_lock);
554 	rcu_read_unlock();
555 	/*
556 	 * Do not wait for the workers, because the caller could hold an AGI
557 	 * buffer lock.  We're just going to sleep in a loop anyway.
558 	 */
559 	if (xfs_is_inodegc_enabled(mp))
560 		xfs_inodegc_queue_all(mp);
561 	return -EAGAIN;
562 }
563 
564 static int
565 xfs_iget_cache_miss(
566 	struct xfs_mount	*mp,
567 	struct xfs_perag	*pag,
568 	xfs_trans_t		*tp,
569 	xfs_ino_t		ino,
570 	struct xfs_inode	**ipp,
571 	int			flags,
572 	int			lock_flags)
573 {
574 	struct xfs_inode	*ip;
575 	int			error;
576 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
577 	int			iflags;
578 
579 	ip = xfs_inode_alloc(mp, ino);
580 	if (!ip)
581 		return -ENOMEM;
582 
583 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
584 	if (error)
585 		goto out_destroy;
586 
587 	/*
588 	 * For version 5 superblocks, if we are initialising a new inode and we
589 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
590 	 * simply build the new inode core with a random generation number.
591 	 *
592 	 * For version 4 (and older) superblocks, log recovery is dependent on
593 	 * the i_flushiter field being initialised from the current on-disk
594 	 * value and hence we must also read the inode off disk even when
595 	 * initializing new inodes.
596 	 */
597 	if (xfs_has_v3inodes(mp) &&
598 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
599 		VFS_I(ip)->i_generation = get_random_u32();
600 	} else {
601 		struct xfs_buf		*bp;
602 
603 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
604 		if (error)
605 			goto out_destroy;
606 
607 		error = xfs_inode_from_disk(ip,
608 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
609 		if (!error)
610 			xfs_buf_set_ref(bp, XFS_INO_REF);
611 		xfs_trans_brelse(tp, bp);
612 
613 		if (error)
614 			goto out_destroy;
615 	}
616 
617 	trace_xfs_iget_miss(ip);
618 
619 	/*
620 	 * Check the inode free state is valid. This also detects lookup
621 	 * racing with unlinks.
622 	 */
623 	error = xfs_iget_check_free_state(ip, flags);
624 	if (error)
625 		goto out_destroy;
626 
627 	/*
628 	 * Preload the radix tree so we can insert safely under the
629 	 * write spinlock. Note that we cannot sleep inside the preload
630 	 * region. Since we can be called from transaction context, don't
631 	 * recurse into the file system.
632 	 */
633 	if (radix_tree_preload(GFP_NOFS)) {
634 		error = -EAGAIN;
635 		goto out_destroy;
636 	}
637 
638 	/*
639 	 * Because the inode hasn't been added to the radix-tree yet it can't
640 	 * be found by another thread, so we can do the non-sleeping lock here.
641 	 */
642 	if (lock_flags) {
643 		if (!xfs_ilock_nowait(ip, lock_flags))
644 			BUG();
645 	}
646 
647 	/*
648 	 * These values must be set before inserting the inode into the radix
649 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
650 	 * RCU locking mechanism) can find it and that lookup must see that this
651 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
652 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
653 	 * memory barrier that ensures this detection works correctly at lookup
654 	 * time.
655 	 */
656 	iflags = XFS_INEW;
657 	if (flags & XFS_IGET_DONTCACHE)
658 		d_mark_dontcache(VFS_I(ip));
659 	ip->i_udquot = NULL;
660 	ip->i_gdquot = NULL;
661 	ip->i_pdquot = NULL;
662 	xfs_iflags_set(ip, iflags);
663 
664 	/* insert the new inode */
665 	spin_lock(&pag->pag_ici_lock);
666 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
667 	if (unlikely(error)) {
668 		WARN_ON(error != -EEXIST);
669 		XFS_STATS_INC(mp, xs_ig_dup);
670 		error = -EAGAIN;
671 		goto out_preload_end;
672 	}
673 	spin_unlock(&pag->pag_ici_lock);
674 	radix_tree_preload_end();
675 
676 	*ipp = ip;
677 	return 0;
678 
679 out_preload_end:
680 	spin_unlock(&pag->pag_ici_lock);
681 	radix_tree_preload_end();
682 	if (lock_flags)
683 		xfs_iunlock(ip, lock_flags);
684 out_destroy:
685 	__destroy_inode(VFS_I(ip));
686 	xfs_inode_free(ip);
687 	return error;
688 }
689 
690 /*
691  * Look up an inode by number in the given file system.  The inode is looked up
692  * in the cache held in each AG.  If the inode is found in the cache, initialise
693  * the vfs inode if necessary.
694  *
695  * If it is not in core, read it in from the file system's device, add it to the
696  * cache and initialise the vfs inode.
697  *
698  * The inode is locked according to the value of the lock_flags parameter.
699  * Inode lookup is only done during metadata operations and not as part of the
700  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
701  */
702 int
703 xfs_iget(
704 	struct xfs_mount	*mp,
705 	struct xfs_trans	*tp,
706 	xfs_ino_t		ino,
707 	uint			flags,
708 	uint			lock_flags,
709 	struct xfs_inode	**ipp)
710 {
711 	struct xfs_inode	*ip;
712 	struct xfs_perag	*pag;
713 	xfs_agino_t		agino;
714 	int			error;
715 
716 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
717 
718 	/* reject inode numbers outside existing AGs */
719 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
720 		return -EINVAL;
721 
722 	XFS_STATS_INC(mp, xs_ig_attempts);
723 
724 	/* get the perag structure and ensure that it's inode capable */
725 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
726 	agino = XFS_INO_TO_AGINO(mp, ino);
727 
728 again:
729 	error = 0;
730 	rcu_read_lock();
731 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
732 
733 	if (ip) {
734 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
735 		if (error)
736 			goto out_error_or_again;
737 	} else {
738 		rcu_read_unlock();
739 		if (flags & XFS_IGET_INCORE) {
740 			error = -ENODATA;
741 			goto out_error_or_again;
742 		}
743 		XFS_STATS_INC(mp, xs_ig_missed);
744 
745 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
746 							flags, lock_flags);
747 		if (error)
748 			goto out_error_or_again;
749 	}
750 	xfs_perag_put(pag);
751 
752 	*ipp = ip;
753 
754 	/*
755 	 * If we have a real type for an on-disk inode, we can setup the inode
756 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
757 	 * handle it.
758 	 */
759 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
760 		xfs_setup_existing_inode(ip);
761 	return 0;
762 
763 out_error_or_again:
764 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
765 		delay(1);
766 		goto again;
767 	}
768 	xfs_perag_put(pag);
769 	return error;
770 }
771 
772 /*
773  * "Is this a cached inode that's also allocated?"
774  *
775  * Look up an inode by number in the given file system.  If the inode is
776  * in cache and isn't in purgatory, return 1 if the inode is allocated
777  * and 0 if it is not.  For all other cases (not in cache, being torn
778  * down, etc.), return a negative error code.
779  *
780  * The caller has to prevent inode allocation and freeing activity,
781  * presumably by locking the AGI buffer.   This is to ensure that an
782  * inode cannot transition from allocated to freed until the caller is
783  * ready to allow that.  If the inode is in an intermediate state (new,
784  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
785  * inode is not in the cache, -ENOENT will be returned.  The caller must
786  * deal with these scenarios appropriately.
787  *
788  * This is a specialized use case for the online scrubber; if you're
789  * reading this, you probably want xfs_iget.
790  */
791 int
792 xfs_icache_inode_is_allocated(
793 	struct xfs_mount	*mp,
794 	struct xfs_trans	*tp,
795 	xfs_ino_t		ino,
796 	bool			*inuse)
797 {
798 	struct xfs_inode	*ip;
799 	int			error;
800 
801 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
802 	if (error)
803 		return error;
804 
805 	*inuse = !!(VFS_I(ip)->i_mode);
806 	xfs_irele(ip);
807 	return 0;
808 }
809 
810 /*
811  * Grab the inode for reclaim exclusively.
812  *
813  * We have found this inode via a lookup under RCU, so the inode may have
814  * already been freed, or it may be in the process of being recycled by
815  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
816  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
817  * will not be set. Hence we need to check for both these flag conditions to
818  * avoid inodes that are no longer reclaim candidates.
819  *
820  * Note: checking for other state flags here, under the i_flags_lock or not, is
821  * racy and should be avoided. Those races should be resolved only after we have
822  * ensured that we are able to reclaim this inode and the world can see that we
823  * are going to reclaim it.
824  *
825  * Return true if we grabbed it, false otherwise.
826  */
827 static bool
828 xfs_reclaim_igrab(
829 	struct xfs_inode	*ip,
830 	struct xfs_icwalk	*icw)
831 {
832 	ASSERT(rcu_read_lock_held());
833 
834 	spin_lock(&ip->i_flags_lock);
835 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
836 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
837 		/* not a reclaim candidate. */
838 		spin_unlock(&ip->i_flags_lock);
839 		return false;
840 	}
841 
842 	/* Don't reclaim a sick inode unless the caller asked for it. */
843 	if (ip->i_sick &&
844 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
845 		spin_unlock(&ip->i_flags_lock);
846 		return false;
847 	}
848 
849 	__xfs_iflags_set(ip, XFS_IRECLAIM);
850 	spin_unlock(&ip->i_flags_lock);
851 	return true;
852 }
853 
854 /*
855  * Inode reclaim is non-blocking, so the default action if progress cannot be
856  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
857  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
858  * blocking anymore and hence we can wait for the inode to be able to reclaim
859  * it.
860  *
861  * We do no IO here - if callers require inodes to be cleaned they must push the
862  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
863  * done in the background in a non-blocking manner, and enables memory reclaim
864  * to make progress without blocking.
865  */
866 static void
867 xfs_reclaim_inode(
868 	struct xfs_inode	*ip,
869 	struct xfs_perag	*pag)
870 {
871 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
872 
873 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
874 		goto out;
875 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
876 		goto out_iunlock;
877 
878 	/*
879 	 * Check for log shutdown because aborting the inode can move the log
880 	 * tail and corrupt in memory state. This is fine if the log is shut
881 	 * down, but if the log is still active and only the mount is shut down
882 	 * then the in-memory log tail movement caused by the abort can be
883 	 * incorrectly propagated to disk.
884 	 */
885 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
886 		xfs_iunpin_wait(ip);
887 		xfs_iflush_shutdown_abort(ip);
888 		goto reclaim;
889 	}
890 	if (xfs_ipincount(ip))
891 		goto out_clear_flush;
892 	if (!xfs_inode_clean(ip))
893 		goto out_clear_flush;
894 
895 	xfs_iflags_clear(ip, XFS_IFLUSHING);
896 reclaim:
897 	trace_xfs_inode_reclaiming(ip);
898 
899 	/*
900 	 * Because we use RCU freeing we need to ensure the inode always appears
901 	 * to be reclaimed with an invalid inode number when in the free state.
902 	 * We do this as early as possible under the ILOCK so that
903 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
904 	 * detect races with us here. By doing this, we guarantee that once
905 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
906 	 * it will see either a valid inode that will serialise correctly, or it
907 	 * will see an invalid inode that it can skip.
908 	 */
909 	spin_lock(&ip->i_flags_lock);
910 	ip->i_flags = XFS_IRECLAIM;
911 	ip->i_ino = 0;
912 	ip->i_sick = 0;
913 	ip->i_checked = 0;
914 	spin_unlock(&ip->i_flags_lock);
915 
916 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
917 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
918 
919 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
920 	/*
921 	 * Remove the inode from the per-AG radix tree.
922 	 *
923 	 * Because radix_tree_delete won't complain even if the item was never
924 	 * added to the tree assert that it's been there before to catch
925 	 * problems with the inode life time early on.
926 	 */
927 	spin_lock(&pag->pag_ici_lock);
928 	if (!radix_tree_delete(&pag->pag_ici_root,
929 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
930 		ASSERT(0);
931 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
932 	spin_unlock(&pag->pag_ici_lock);
933 
934 	/*
935 	 * Here we do an (almost) spurious inode lock in order to coordinate
936 	 * with inode cache radix tree lookups.  This is because the lookup
937 	 * can reference the inodes in the cache without taking references.
938 	 *
939 	 * We make that OK here by ensuring that we wait until the inode is
940 	 * unlocked after the lookup before we go ahead and free it.
941 	 */
942 	xfs_ilock(ip, XFS_ILOCK_EXCL);
943 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
944 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
945 	ASSERT(xfs_inode_clean(ip));
946 
947 	__xfs_inode_free(ip);
948 	return;
949 
950 out_clear_flush:
951 	xfs_iflags_clear(ip, XFS_IFLUSHING);
952 out_iunlock:
953 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
954 out:
955 	xfs_iflags_clear(ip, XFS_IRECLAIM);
956 }
957 
958 /* Reclaim sick inodes if we're unmounting or the fs went down. */
959 static inline bool
960 xfs_want_reclaim_sick(
961 	struct xfs_mount	*mp)
962 {
963 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
964 	       xfs_is_shutdown(mp);
965 }
966 
967 void
968 xfs_reclaim_inodes(
969 	struct xfs_mount	*mp)
970 {
971 	struct xfs_icwalk	icw = {
972 		.icw_flags	= 0,
973 	};
974 
975 	if (xfs_want_reclaim_sick(mp))
976 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
977 
978 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
979 		xfs_ail_push_all_sync(mp->m_ail);
980 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
981 	}
982 }
983 
984 /*
985  * The shrinker infrastructure determines how many inodes we should scan for
986  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
987  * push the AIL here. We also want to proactively free up memory if we can to
988  * minimise the amount of work memory reclaim has to do so we kick the
989  * background reclaim if it isn't already scheduled.
990  */
991 long
992 xfs_reclaim_inodes_nr(
993 	struct xfs_mount	*mp,
994 	unsigned long		nr_to_scan)
995 {
996 	struct xfs_icwalk	icw = {
997 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
998 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
999 	};
1000 
1001 	if (xfs_want_reclaim_sick(mp))
1002 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1003 
1004 	/* kick background reclaimer and push the AIL */
1005 	xfs_reclaim_work_queue(mp);
1006 	xfs_ail_push_all(mp->m_ail);
1007 
1008 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1009 	return 0;
1010 }
1011 
1012 /*
1013  * Return the number of reclaimable inodes in the filesystem for
1014  * the shrinker to determine how much to reclaim.
1015  */
1016 long
1017 xfs_reclaim_inodes_count(
1018 	struct xfs_mount	*mp)
1019 {
1020 	struct xfs_perag	*pag;
1021 	xfs_agnumber_t		ag = 0;
1022 	long			reclaimable = 0;
1023 
1024 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1025 		ag = pag->pag_agno + 1;
1026 		reclaimable += pag->pag_ici_reclaimable;
1027 		xfs_perag_put(pag);
1028 	}
1029 	return reclaimable;
1030 }
1031 
1032 STATIC bool
1033 xfs_icwalk_match_id(
1034 	struct xfs_inode	*ip,
1035 	struct xfs_icwalk	*icw)
1036 {
1037 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1038 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1039 		return false;
1040 
1041 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1042 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1043 		return false;
1044 
1045 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1046 	    ip->i_projid != icw->icw_prid)
1047 		return false;
1048 
1049 	return true;
1050 }
1051 
1052 /*
1053  * A union-based inode filtering algorithm. Process the inode if any of the
1054  * criteria match. This is for global/internal scans only.
1055  */
1056 STATIC bool
1057 xfs_icwalk_match_id_union(
1058 	struct xfs_inode	*ip,
1059 	struct xfs_icwalk	*icw)
1060 {
1061 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1062 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1063 		return true;
1064 
1065 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1066 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1067 		return true;
1068 
1069 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1070 	    ip->i_projid == icw->icw_prid)
1071 		return true;
1072 
1073 	return false;
1074 }
1075 
1076 /*
1077  * Is this inode @ip eligible for eof/cow block reclamation, given some
1078  * filtering parameters @icw?  The inode is eligible if @icw is null or
1079  * if the predicate functions match.
1080  */
1081 static bool
1082 xfs_icwalk_match(
1083 	struct xfs_inode	*ip,
1084 	struct xfs_icwalk	*icw)
1085 {
1086 	bool			match;
1087 
1088 	if (!icw)
1089 		return true;
1090 
1091 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1092 		match = xfs_icwalk_match_id_union(ip, icw);
1093 	else
1094 		match = xfs_icwalk_match_id(ip, icw);
1095 	if (!match)
1096 		return false;
1097 
1098 	/* skip the inode if the file size is too small */
1099 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1100 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1101 		return false;
1102 
1103 	return true;
1104 }
1105 
1106 /*
1107  * This is a fast pass over the inode cache to try to get reclaim moving on as
1108  * many inodes as possible in a short period of time. It kicks itself every few
1109  * seconds, as well as being kicked by the inode cache shrinker when memory
1110  * goes low.
1111  */
1112 void
1113 xfs_reclaim_worker(
1114 	struct work_struct *work)
1115 {
1116 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1117 					struct xfs_mount, m_reclaim_work);
1118 
1119 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1120 	xfs_reclaim_work_queue(mp);
1121 }
1122 
1123 STATIC int
1124 xfs_inode_free_eofblocks(
1125 	struct xfs_inode	*ip,
1126 	struct xfs_icwalk	*icw,
1127 	unsigned int		*lockflags)
1128 {
1129 	bool			wait;
1130 
1131 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1132 
1133 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1134 		return 0;
1135 
1136 	/*
1137 	 * If the mapping is dirty the operation can block and wait for some
1138 	 * time. Unless we are waiting, skip it.
1139 	 */
1140 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1141 		return 0;
1142 
1143 	if (!xfs_icwalk_match(ip, icw))
1144 		return 0;
1145 
1146 	/*
1147 	 * If the caller is waiting, return -EAGAIN to keep the background
1148 	 * scanner moving and revisit the inode in a subsequent pass.
1149 	 */
1150 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1151 		if (wait)
1152 			return -EAGAIN;
1153 		return 0;
1154 	}
1155 	*lockflags |= XFS_IOLOCK_EXCL;
1156 
1157 	if (xfs_can_free_eofblocks(ip, false))
1158 		return xfs_free_eofblocks(ip);
1159 
1160 	/* inode could be preallocated or append-only */
1161 	trace_xfs_inode_free_eofblocks_invalid(ip);
1162 	xfs_inode_clear_eofblocks_tag(ip);
1163 	return 0;
1164 }
1165 
1166 static void
1167 xfs_blockgc_set_iflag(
1168 	struct xfs_inode	*ip,
1169 	unsigned long		iflag)
1170 {
1171 	struct xfs_mount	*mp = ip->i_mount;
1172 	struct xfs_perag	*pag;
1173 
1174 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1175 
1176 	/*
1177 	 * Don't bother locking the AG and looking up in the radix trees
1178 	 * if we already know that we have the tag set.
1179 	 */
1180 	if (ip->i_flags & iflag)
1181 		return;
1182 	spin_lock(&ip->i_flags_lock);
1183 	ip->i_flags |= iflag;
1184 	spin_unlock(&ip->i_flags_lock);
1185 
1186 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1187 	spin_lock(&pag->pag_ici_lock);
1188 
1189 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1190 			XFS_ICI_BLOCKGC_TAG);
1191 
1192 	spin_unlock(&pag->pag_ici_lock);
1193 	xfs_perag_put(pag);
1194 }
1195 
1196 void
1197 xfs_inode_set_eofblocks_tag(
1198 	xfs_inode_t	*ip)
1199 {
1200 	trace_xfs_inode_set_eofblocks_tag(ip);
1201 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1202 }
1203 
1204 static void
1205 xfs_blockgc_clear_iflag(
1206 	struct xfs_inode	*ip,
1207 	unsigned long		iflag)
1208 {
1209 	struct xfs_mount	*mp = ip->i_mount;
1210 	struct xfs_perag	*pag;
1211 	bool			clear_tag;
1212 
1213 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1214 
1215 	spin_lock(&ip->i_flags_lock);
1216 	ip->i_flags &= ~iflag;
1217 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1218 	spin_unlock(&ip->i_flags_lock);
1219 
1220 	if (!clear_tag)
1221 		return;
1222 
1223 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1224 	spin_lock(&pag->pag_ici_lock);
1225 
1226 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1227 			XFS_ICI_BLOCKGC_TAG);
1228 
1229 	spin_unlock(&pag->pag_ici_lock);
1230 	xfs_perag_put(pag);
1231 }
1232 
1233 void
1234 xfs_inode_clear_eofblocks_tag(
1235 	xfs_inode_t	*ip)
1236 {
1237 	trace_xfs_inode_clear_eofblocks_tag(ip);
1238 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1239 }
1240 
1241 /*
1242  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1243  * then we can bail out quickly, but otherwise we must back off if the file
1244  * is undergoing some kind of write.
1245  */
1246 static bool
1247 xfs_prep_free_cowblocks(
1248 	struct xfs_inode	*ip)
1249 {
1250 	/*
1251 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1252 	 * possible the inode was fully unshared since it was originally tagged.
1253 	 */
1254 	if (!xfs_inode_has_cow_data(ip)) {
1255 		trace_xfs_inode_free_cowblocks_invalid(ip);
1256 		xfs_inode_clear_cowblocks_tag(ip);
1257 		return false;
1258 	}
1259 
1260 	/*
1261 	 * If the mapping is dirty or under writeback we cannot touch the
1262 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1263 	 */
1264 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1265 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1266 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1267 	    atomic_read(&VFS_I(ip)->i_dio_count))
1268 		return false;
1269 
1270 	return true;
1271 }
1272 
1273 /*
1274  * Automatic CoW Reservation Freeing
1275  *
1276  * These functions automatically garbage collect leftover CoW reservations
1277  * that were made on behalf of a cowextsize hint when we start to run out
1278  * of quota or when the reservations sit around for too long.  If the file
1279  * has dirty pages or is undergoing writeback, its CoW reservations will
1280  * be retained.
1281  *
1282  * The actual garbage collection piggybacks off the same code that runs
1283  * the speculative EOF preallocation garbage collector.
1284  */
1285 STATIC int
1286 xfs_inode_free_cowblocks(
1287 	struct xfs_inode	*ip,
1288 	struct xfs_icwalk	*icw,
1289 	unsigned int		*lockflags)
1290 {
1291 	bool			wait;
1292 	int			ret = 0;
1293 
1294 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1295 
1296 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1297 		return 0;
1298 
1299 	if (!xfs_prep_free_cowblocks(ip))
1300 		return 0;
1301 
1302 	if (!xfs_icwalk_match(ip, icw))
1303 		return 0;
1304 
1305 	/*
1306 	 * If the caller is waiting, return -EAGAIN to keep the background
1307 	 * scanner moving and revisit the inode in a subsequent pass.
1308 	 */
1309 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1310 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1311 		if (wait)
1312 			return -EAGAIN;
1313 		return 0;
1314 	}
1315 	*lockflags |= XFS_IOLOCK_EXCL;
1316 
1317 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1318 		if (wait)
1319 			return -EAGAIN;
1320 		return 0;
1321 	}
1322 	*lockflags |= XFS_MMAPLOCK_EXCL;
1323 
1324 	/*
1325 	 * Check again, nobody else should be able to dirty blocks or change
1326 	 * the reflink iflag now that we have the first two locks held.
1327 	 */
1328 	if (xfs_prep_free_cowblocks(ip))
1329 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1330 	return ret;
1331 }
1332 
1333 void
1334 xfs_inode_set_cowblocks_tag(
1335 	xfs_inode_t	*ip)
1336 {
1337 	trace_xfs_inode_set_cowblocks_tag(ip);
1338 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1339 }
1340 
1341 void
1342 xfs_inode_clear_cowblocks_tag(
1343 	xfs_inode_t	*ip)
1344 {
1345 	trace_xfs_inode_clear_cowblocks_tag(ip);
1346 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1347 }
1348 
1349 /* Disable post-EOF and CoW block auto-reclamation. */
1350 void
1351 xfs_blockgc_stop(
1352 	struct xfs_mount	*mp)
1353 {
1354 	struct xfs_perag	*pag;
1355 	xfs_agnumber_t		agno;
1356 
1357 	if (!xfs_clear_blockgc_enabled(mp))
1358 		return;
1359 
1360 	for_each_perag(mp, agno, pag)
1361 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1362 	trace_xfs_blockgc_stop(mp, __return_address);
1363 }
1364 
1365 /* Enable post-EOF and CoW block auto-reclamation. */
1366 void
1367 xfs_blockgc_start(
1368 	struct xfs_mount	*mp)
1369 {
1370 	struct xfs_perag	*pag;
1371 	xfs_agnumber_t		agno;
1372 
1373 	if (xfs_set_blockgc_enabled(mp))
1374 		return;
1375 
1376 	trace_xfs_blockgc_start(mp, __return_address);
1377 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1378 		xfs_blockgc_queue(pag);
1379 }
1380 
1381 /* Don't try to run block gc on an inode that's in any of these states. */
1382 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1383 					 XFS_NEED_INACTIVE | \
1384 					 XFS_INACTIVATING | \
1385 					 XFS_IRECLAIMABLE | \
1386 					 XFS_IRECLAIM)
1387 /*
1388  * Decide if the given @ip is eligible for garbage collection of speculative
1389  * preallocations, and grab it if so.  Returns true if it's ready to go or
1390  * false if we should just ignore it.
1391  */
1392 static bool
1393 xfs_blockgc_igrab(
1394 	struct xfs_inode	*ip)
1395 {
1396 	struct inode		*inode = VFS_I(ip);
1397 
1398 	ASSERT(rcu_read_lock_held());
1399 
1400 	/* Check for stale RCU freed inode */
1401 	spin_lock(&ip->i_flags_lock);
1402 	if (!ip->i_ino)
1403 		goto out_unlock_noent;
1404 
1405 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1406 		goto out_unlock_noent;
1407 	spin_unlock(&ip->i_flags_lock);
1408 
1409 	/* nothing to sync during shutdown */
1410 	if (xfs_is_shutdown(ip->i_mount))
1411 		return false;
1412 
1413 	/* If we can't grab the inode, it must on it's way to reclaim. */
1414 	if (!igrab(inode))
1415 		return false;
1416 
1417 	/* inode is valid */
1418 	return true;
1419 
1420 out_unlock_noent:
1421 	spin_unlock(&ip->i_flags_lock);
1422 	return false;
1423 }
1424 
1425 /* Scan one incore inode for block preallocations that we can remove. */
1426 static int
1427 xfs_blockgc_scan_inode(
1428 	struct xfs_inode	*ip,
1429 	struct xfs_icwalk	*icw)
1430 {
1431 	unsigned int		lockflags = 0;
1432 	int			error;
1433 
1434 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1435 	if (error)
1436 		goto unlock;
1437 
1438 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1439 unlock:
1440 	if (lockflags)
1441 		xfs_iunlock(ip, lockflags);
1442 	xfs_irele(ip);
1443 	return error;
1444 }
1445 
1446 /* Background worker that trims preallocated space. */
1447 void
1448 xfs_blockgc_worker(
1449 	struct work_struct	*work)
1450 {
1451 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1452 					struct xfs_perag, pag_blockgc_work);
1453 	struct xfs_mount	*mp = pag->pag_mount;
1454 	int			error;
1455 
1456 	trace_xfs_blockgc_worker(mp, __return_address);
1457 
1458 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1459 	if (error)
1460 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1461 				pag->pag_agno, error);
1462 	xfs_blockgc_queue(pag);
1463 }
1464 
1465 /*
1466  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1467  * and cowblocks.
1468  */
1469 int
1470 xfs_blockgc_free_space(
1471 	struct xfs_mount	*mp,
1472 	struct xfs_icwalk	*icw)
1473 {
1474 	int			error;
1475 
1476 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1477 
1478 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1479 	if (error)
1480 		return error;
1481 
1482 	xfs_inodegc_flush(mp);
1483 	return 0;
1484 }
1485 
1486 /*
1487  * Reclaim all the free space that we can by scheduling the background blockgc
1488  * and inodegc workers immediately and waiting for them all to clear.
1489  */
1490 void
1491 xfs_blockgc_flush_all(
1492 	struct xfs_mount	*mp)
1493 {
1494 	struct xfs_perag	*pag;
1495 	xfs_agnumber_t		agno;
1496 
1497 	trace_xfs_blockgc_flush_all(mp, __return_address);
1498 
1499 	/*
1500 	 * For each blockgc worker, move its queue time up to now.  If it
1501 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1502 	 * left.
1503 	 */
1504 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1505 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1506 				&pag->pag_blockgc_work, 0);
1507 
1508 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1509 		flush_delayed_work(&pag->pag_blockgc_work);
1510 
1511 	xfs_inodegc_flush(mp);
1512 }
1513 
1514 /*
1515  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1516  * quota caused an allocation failure, so we make a best effort by including
1517  * each quota under low free space conditions (less than 1% free space) in the
1518  * scan.
1519  *
1520  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1521  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1522  * MMAPLOCK.
1523  */
1524 int
1525 xfs_blockgc_free_dquots(
1526 	struct xfs_mount	*mp,
1527 	struct xfs_dquot	*udqp,
1528 	struct xfs_dquot	*gdqp,
1529 	struct xfs_dquot	*pdqp,
1530 	unsigned int		iwalk_flags)
1531 {
1532 	struct xfs_icwalk	icw = {0};
1533 	bool			do_work = false;
1534 
1535 	if (!udqp && !gdqp && !pdqp)
1536 		return 0;
1537 
1538 	/*
1539 	 * Run a scan to free blocks using the union filter to cover all
1540 	 * applicable quotas in a single scan.
1541 	 */
1542 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1543 
1544 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1545 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1546 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1547 		do_work = true;
1548 	}
1549 
1550 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1551 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1552 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1553 		do_work = true;
1554 	}
1555 
1556 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1557 		icw.icw_prid = pdqp->q_id;
1558 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1559 		do_work = true;
1560 	}
1561 
1562 	if (!do_work)
1563 		return 0;
1564 
1565 	return xfs_blockgc_free_space(mp, &icw);
1566 }
1567 
1568 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1569 int
1570 xfs_blockgc_free_quota(
1571 	struct xfs_inode	*ip,
1572 	unsigned int		iwalk_flags)
1573 {
1574 	return xfs_blockgc_free_dquots(ip->i_mount,
1575 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1576 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1577 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1578 }
1579 
1580 /* XFS Inode Cache Walking Code */
1581 
1582 /*
1583  * The inode lookup is done in batches to keep the amount of lock traffic and
1584  * radix tree lookups to a minimum. The batch size is a trade off between
1585  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1586  * be too greedy.
1587  */
1588 #define XFS_LOOKUP_BATCH	32
1589 
1590 
1591 /*
1592  * Decide if we want to grab this inode in anticipation of doing work towards
1593  * the goal.
1594  */
1595 static inline bool
1596 xfs_icwalk_igrab(
1597 	enum xfs_icwalk_goal	goal,
1598 	struct xfs_inode	*ip,
1599 	struct xfs_icwalk	*icw)
1600 {
1601 	switch (goal) {
1602 	case XFS_ICWALK_BLOCKGC:
1603 		return xfs_blockgc_igrab(ip);
1604 	case XFS_ICWALK_RECLAIM:
1605 		return xfs_reclaim_igrab(ip, icw);
1606 	default:
1607 		return false;
1608 	}
1609 }
1610 
1611 /*
1612  * Process an inode.  Each processing function must handle any state changes
1613  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1614  */
1615 static inline int
1616 xfs_icwalk_process_inode(
1617 	enum xfs_icwalk_goal	goal,
1618 	struct xfs_inode	*ip,
1619 	struct xfs_perag	*pag,
1620 	struct xfs_icwalk	*icw)
1621 {
1622 	int			error = 0;
1623 
1624 	switch (goal) {
1625 	case XFS_ICWALK_BLOCKGC:
1626 		error = xfs_blockgc_scan_inode(ip, icw);
1627 		break;
1628 	case XFS_ICWALK_RECLAIM:
1629 		xfs_reclaim_inode(ip, pag);
1630 		break;
1631 	}
1632 	return error;
1633 }
1634 
1635 /*
1636  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1637  * process them in some manner.
1638  */
1639 static int
1640 xfs_icwalk_ag(
1641 	struct xfs_perag	*pag,
1642 	enum xfs_icwalk_goal	goal,
1643 	struct xfs_icwalk	*icw)
1644 {
1645 	struct xfs_mount	*mp = pag->pag_mount;
1646 	uint32_t		first_index;
1647 	int			last_error = 0;
1648 	int			skipped;
1649 	bool			done;
1650 	int			nr_found;
1651 
1652 restart:
1653 	done = false;
1654 	skipped = 0;
1655 	if (goal == XFS_ICWALK_RECLAIM)
1656 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1657 	else
1658 		first_index = 0;
1659 	nr_found = 0;
1660 	do {
1661 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1662 		int		error = 0;
1663 		int		i;
1664 
1665 		rcu_read_lock();
1666 
1667 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1668 				(void **) batch, first_index,
1669 				XFS_LOOKUP_BATCH, goal);
1670 		if (!nr_found) {
1671 			done = true;
1672 			rcu_read_unlock();
1673 			break;
1674 		}
1675 
1676 		/*
1677 		 * Grab the inodes before we drop the lock. if we found
1678 		 * nothing, nr == 0 and the loop will be skipped.
1679 		 */
1680 		for (i = 0; i < nr_found; i++) {
1681 			struct xfs_inode *ip = batch[i];
1682 
1683 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1684 				batch[i] = NULL;
1685 
1686 			/*
1687 			 * Update the index for the next lookup. Catch
1688 			 * overflows into the next AG range which can occur if
1689 			 * we have inodes in the last block of the AG and we
1690 			 * are currently pointing to the last inode.
1691 			 *
1692 			 * Because we may see inodes that are from the wrong AG
1693 			 * due to RCU freeing and reallocation, only update the
1694 			 * index if it lies in this AG. It was a race that lead
1695 			 * us to see this inode, so another lookup from the
1696 			 * same index will not find it again.
1697 			 */
1698 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1699 				continue;
1700 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1701 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1702 				done = true;
1703 		}
1704 
1705 		/* unlock now we've grabbed the inodes. */
1706 		rcu_read_unlock();
1707 
1708 		for (i = 0; i < nr_found; i++) {
1709 			if (!batch[i])
1710 				continue;
1711 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1712 					icw);
1713 			if (error == -EAGAIN) {
1714 				skipped++;
1715 				continue;
1716 			}
1717 			if (error && last_error != -EFSCORRUPTED)
1718 				last_error = error;
1719 		}
1720 
1721 		/* bail out if the filesystem is corrupted.  */
1722 		if (error == -EFSCORRUPTED)
1723 			break;
1724 
1725 		cond_resched();
1726 
1727 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1728 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1729 			if (icw->icw_scan_limit <= 0)
1730 				break;
1731 		}
1732 	} while (nr_found && !done);
1733 
1734 	if (goal == XFS_ICWALK_RECLAIM) {
1735 		if (done)
1736 			first_index = 0;
1737 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1738 	}
1739 
1740 	if (skipped) {
1741 		delay(1);
1742 		goto restart;
1743 	}
1744 	return last_error;
1745 }
1746 
1747 /* Walk all incore inodes to achieve a given goal. */
1748 static int
1749 xfs_icwalk(
1750 	struct xfs_mount	*mp,
1751 	enum xfs_icwalk_goal	goal,
1752 	struct xfs_icwalk	*icw)
1753 {
1754 	struct xfs_perag	*pag;
1755 	int			error = 0;
1756 	int			last_error = 0;
1757 	xfs_agnumber_t		agno;
1758 
1759 	for_each_perag_tag(mp, agno, pag, goal) {
1760 		error = xfs_icwalk_ag(pag, goal, icw);
1761 		if (error) {
1762 			last_error = error;
1763 			if (error == -EFSCORRUPTED) {
1764 				xfs_perag_put(pag);
1765 				break;
1766 			}
1767 		}
1768 	}
1769 	return last_error;
1770 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1771 }
1772 
1773 #ifdef DEBUG
1774 static void
1775 xfs_check_delalloc(
1776 	struct xfs_inode	*ip,
1777 	int			whichfork)
1778 {
1779 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1780 	struct xfs_bmbt_irec	got;
1781 	struct xfs_iext_cursor	icur;
1782 
1783 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1784 		return;
1785 	do {
1786 		if (isnullstartblock(got.br_startblock)) {
1787 			xfs_warn(ip->i_mount,
1788 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1789 				ip->i_ino,
1790 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1791 				got.br_startoff, got.br_blockcount);
1792 		}
1793 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1794 }
1795 #else
1796 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1797 #endif
1798 
1799 /* Schedule the inode for reclaim. */
1800 static void
1801 xfs_inodegc_set_reclaimable(
1802 	struct xfs_inode	*ip)
1803 {
1804 	struct xfs_mount	*mp = ip->i_mount;
1805 	struct xfs_perag	*pag;
1806 
1807 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1808 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1809 		xfs_check_delalloc(ip, XFS_COW_FORK);
1810 		ASSERT(0);
1811 	}
1812 
1813 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1814 	spin_lock(&pag->pag_ici_lock);
1815 	spin_lock(&ip->i_flags_lock);
1816 
1817 	trace_xfs_inode_set_reclaimable(ip);
1818 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1819 	ip->i_flags |= XFS_IRECLAIMABLE;
1820 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1821 			XFS_ICI_RECLAIM_TAG);
1822 
1823 	spin_unlock(&ip->i_flags_lock);
1824 	spin_unlock(&pag->pag_ici_lock);
1825 	xfs_perag_put(pag);
1826 }
1827 
1828 /*
1829  * Free all speculative preallocations and possibly even the inode itself.
1830  * This is the last chance to make changes to an otherwise unreferenced file
1831  * before incore reclamation happens.
1832  */
1833 static void
1834 xfs_inodegc_inactivate(
1835 	struct xfs_inode	*ip)
1836 {
1837 	trace_xfs_inode_inactivating(ip);
1838 	xfs_inactive(ip);
1839 	xfs_inodegc_set_reclaimable(ip);
1840 }
1841 
1842 void
1843 xfs_inodegc_worker(
1844 	struct work_struct	*work)
1845 {
1846 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1847 						struct xfs_inodegc, work);
1848 	struct llist_node	*node = llist_del_all(&gc->list);
1849 	struct xfs_inode	*ip, *n;
1850 
1851 	WRITE_ONCE(gc->items, 0);
1852 
1853 	if (!node)
1854 		return;
1855 
1856 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1857 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1858 
1859 	WRITE_ONCE(gc->shrinker_hits, 0);
1860 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1861 		xfs_iflags_set(ip, XFS_INACTIVATING);
1862 		xfs_inodegc_inactivate(ip);
1863 	}
1864 }
1865 
1866 /*
1867  * Expedite all pending inodegc work to run immediately. This does not wait for
1868  * completion of the work.
1869  */
1870 void
1871 xfs_inodegc_push(
1872 	struct xfs_mount	*mp)
1873 {
1874 	if (!xfs_is_inodegc_enabled(mp))
1875 		return;
1876 	trace_xfs_inodegc_push(mp, __return_address);
1877 	xfs_inodegc_queue_all(mp);
1878 }
1879 
1880 /*
1881  * Force all currently queued inode inactivation work to run immediately and
1882  * wait for the work to finish.
1883  */
1884 void
1885 xfs_inodegc_flush(
1886 	struct xfs_mount	*mp)
1887 {
1888 	xfs_inodegc_push(mp);
1889 	trace_xfs_inodegc_flush(mp, __return_address);
1890 	flush_workqueue(mp->m_inodegc_wq);
1891 }
1892 
1893 /*
1894  * Flush all the pending work and then disable the inode inactivation background
1895  * workers and wait for them to stop.
1896  */
1897 void
1898 xfs_inodegc_stop(
1899 	struct xfs_mount	*mp)
1900 {
1901 	if (!xfs_clear_inodegc_enabled(mp))
1902 		return;
1903 
1904 	xfs_inodegc_queue_all(mp);
1905 	drain_workqueue(mp->m_inodegc_wq);
1906 
1907 	trace_xfs_inodegc_stop(mp, __return_address);
1908 }
1909 
1910 /*
1911  * Enable the inode inactivation background workers and schedule deferred inode
1912  * inactivation work if there is any.
1913  */
1914 void
1915 xfs_inodegc_start(
1916 	struct xfs_mount	*mp)
1917 {
1918 	if (xfs_set_inodegc_enabled(mp))
1919 		return;
1920 
1921 	trace_xfs_inodegc_start(mp, __return_address);
1922 	xfs_inodegc_queue_all(mp);
1923 }
1924 
1925 #ifdef CONFIG_XFS_RT
1926 static inline bool
1927 xfs_inodegc_want_queue_rt_file(
1928 	struct xfs_inode	*ip)
1929 {
1930 	struct xfs_mount	*mp = ip->i_mount;
1931 
1932 	if (!XFS_IS_REALTIME_INODE(ip))
1933 		return false;
1934 
1935 	if (__percpu_counter_compare(&mp->m_frextents,
1936 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1937 				XFS_FDBLOCKS_BATCH) < 0)
1938 		return true;
1939 
1940 	return false;
1941 }
1942 #else
1943 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1944 #endif /* CONFIG_XFS_RT */
1945 
1946 /*
1947  * Schedule the inactivation worker when:
1948  *
1949  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1950  *  - There is less than 5% free space left.
1951  *  - Any of the quotas for this inode are near an enforcement limit.
1952  */
1953 static inline bool
1954 xfs_inodegc_want_queue_work(
1955 	struct xfs_inode	*ip,
1956 	unsigned int		items)
1957 {
1958 	struct xfs_mount	*mp = ip->i_mount;
1959 
1960 	if (items > mp->m_ino_geo.inodes_per_cluster)
1961 		return true;
1962 
1963 	if (__percpu_counter_compare(&mp->m_fdblocks,
1964 				mp->m_low_space[XFS_LOWSP_5_PCNT],
1965 				XFS_FDBLOCKS_BATCH) < 0)
1966 		return true;
1967 
1968 	if (xfs_inodegc_want_queue_rt_file(ip))
1969 		return true;
1970 
1971 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1972 		return true;
1973 
1974 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1975 		return true;
1976 
1977 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
1978 		return true;
1979 
1980 	return false;
1981 }
1982 
1983 /*
1984  * Upper bound on the number of inodes in each AG that can be queued for
1985  * inactivation at any given time, to avoid monopolizing the workqueue.
1986  */
1987 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
1988 
1989 /*
1990  * Make the frontend wait for inactivations when:
1991  *
1992  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
1993  *  - The queue depth exceeds the maximum allowable percpu backlog.
1994  *
1995  * Note: If the current thread is running a transaction, we don't ever want to
1996  * wait for other transactions because that could introduce a deadlock.
1997  */
1998 static inline bool
1999 xfs_inodegc_want_flush_work(
2000 	struct xfs_inode	*ip,
2001 	unsigned int		items,
2002 	unsigned int		shrinker_hits)
2003 {
2004 	if (current->journal_info)
2005 		return false;
2006 
2007 	if (shrinker_hits > 0)
2008 		return true;
2009 
2010 	if (items > XFS_INODEGC_MAX_BACKLOG)
2011 		return true;
2012 
2013 	return false;
2014 }
2015 
2016 /*
2017  * Queue a background inactivation worker if there are inodes that need to be
2018  * inactivated and higher level xfs code hasn't disabled the background
2019  * workers.
2020  */
2021 static void
2022 xfs_inodegc_queue(
2023 	struct xfs_inode	*ip)
2024 {
2025 	struct xfs_mount	*mp = ip->i_mount;
2026 	struct xfs_inodegc	*gc;
2027 	int			items;
2028 	unsigned int		shrinker_hits;
2029 	unsigned long		queue_delay = 1;
2030 
2031 	trace_xfs_inode_set_need_inactive(ip);
2032 	spin_lock(&ip->i_flags_lock);
2033 	ip->i_flags |= XFS_NEED_INACTIVE;
2034 	spin_unlock(&ip->i_flags_lock);
2035 
2036 	gc = get_cpu_ptr(mp->m_inodegc);
2037 	llist_add(&ip->i_gclist, &gc->list);
2038 	items = READ_ONCE(gc->items);
2039 	WRITE_ONCE(gc->items, items + 1);
2040 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2041 
2042 	/*
2043 	 * We queue the work while holding the current CPU so that the work
2044 	 * is scheduled to run on this CPU.
2045 	 */
2046 	if (!xfs_is_inodegc_enabled(mp)) {
2047 		put_cpu_ptr(gc);
2048 		return;
2049 	}
2050 
2051 	if (xfs_inodegc_want_queue_work(ip, items))
2052 		queue_delay = 0;
2053 
2054 	trace_xfs_inodegc_queue(mp, __return_address);
2055 	mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay);
2056 	put_cpu_ptr(gc);
2057 
2058 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2059 		trace_xfs_inodegc_throttle(mp, __return_address);
2060 		flush_delayed_work(&gc->work);
2061 	}
2062 }
2063 
2064 /*
2065  * Fold the dead CPU inodegc queue into the current CPUs queue.
2066  */
2067 void
2068 xfs_inodegc_cpu_dead(
2069 	struct xfs_mount	*mp,
2070 	unsigned int		dead_cpu)
2071 {
2072 	struct xfs_inodegc	*dead_gc, *gc;
2073 	struct llist_node	*first, *last;
2074 	unsigned int		count = 0;
2075 
2076 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2077 	cancel_delayed_work_sync(&dead_gc->work);
2078 
2079 	if (llist_empty(&dead_gc->list))
2080 		return;
2081 
2082 	first = dead_gc->list.first;
2083 	last = first;
2084 	while (last->next) {
2085 		last = last->next;
2086 		count++;
2087 	}
2088 	dead_gc->list.first = NULL;
2089 	dead_gc->items = 0;
2090 
2091 	/* Add pending work to current CPU */
2092 	gc = get_cpu_ptr(mp->m_inodegc);
2093 	llist_add_batch(first, last, &gc->list);
2094 	count += READ_ONCE(gc->items);
2095 	WRITE_ONCE(gc->items, count);
2096 
2097 	if (xfs_is_inodegc_enabled(mp)) {
2098 		trace_xfs_inodegc_queue(mp, __return_address);
2099 		mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0);
2100 	}
2101 	put_cpu_ptr(gc);
2102 }
2103 
2104 /*
2105  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2106  * lookups on the radix tree, this inode flag can go away.
2107  *
2108  * We always use background reclaim here because even if the inode is clean, it
2109  * still may be under IO and hence we have wait for IO completion to occur
2110  * before we can reclaim the inode. The background reclaim path handles this
2111  * more efficiently than we can here, so simply let background reclaim tear down
2112  * all inodes.
2113  */
2114 void
2115 xfs_inode_mark_reclaimable(
2116 	struct xfs_inode	*ip)
2117 {
2118 	struct xfs_mount	*mp = ip->i_mount;
2119 	bool			need_inactive;
2120 
2121 	XFS_STATS_INC(mp, vn_reclaim);
2122 
2123 	/*
2124 	 * We should never get here with any of the reclaim flags already set.
2125 	 */
2126 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2127 
2128 	need_inactive = xfs_inode_needs_inactive(ip);
2129 	if (need_inactive) {
2130 		xfs_inodegc_queue(ip);
2131 		return;
2132 	}
2133 
2134 	/* Going straight to reclaim, so drop the dquots. */
2135 	xfs_qm_dqdetach(ip);
2136 	xfs_inodegc_set_reclaimable(ip);
2137 }
2138 
2139 /*
2140  * Register a phony shrinker so that we can run background inodegc sooner when
2141  * there's memory pressure.  Inactivation does not itself free any memory but
2142  * it does make inodes reclaimable, which eventually frees memory.
2143  *
2144  * The count function, seek value, and batch value are crafted to trigger the
2145  * scan function during the second round of scanning.  Hopefully this means
2146  * that we reclaimed enough memory that initiating metadata transactions won't
2147  * make things worse.
2148  */
2149 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2150 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2151 
2152 static unsigned long
2153 xfs_inodegc_shrinker_count(
2154 	struct shrinker		*shrink,
2155 	struct shrink_control	*sc)
2156 {
2157 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2158 						   m_inodegc_shrinker);
2159 	struct xfs_inodegc	*gc;
2160 	int			cpu;
2161 
2162 	if (!xfs_is_inodegc_enabled(mp))
2163 		return 0;
2164 
2165 	for_each_online_cpu(cpu) {
2166 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2167 		if (!llist_empty(&gc->list))
2168 			return XFS_INODEGC_SHRINKER_COUNT;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static unsigned long
2175 xfs_inodegc_shrinker_scan(
2176 	struct shrinker		*shrink,
2177 	struct shrink_control	*sc)
2178 {
2179 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2180 						   m_inodegc_shrinker);
2181 	struct xfs_inodegc	*gc;
2182 	int			cpu;
2183 	bool			no_items = true;
2184 
2185 	if (!xfs_is_inodegc_enabled(mp))
2186 		return SHRINK_STOP;
2187 
2188 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2189 
2190 	for_each_online_cpu(cpu) {
2191 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2192 		if (!llist_empty(&gc->list)) {
2193 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2194 
2195 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2196 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2197 			no_items = false;
2198 		}
2199 	}
2200 
2201 	/*
2202 	 * If there are no inodes to inactivate, we don't want the shrinker
2203 	 * to think there's deferred work to call us back about.
2204 	 */
2205 	if (no_items)
2206 		return LONG_MAX;
2207 
2208 	return SHRINK_STOP;
2209 }
2210 
2211 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2212 int
2213 xfs_inodegc_register_shrinker(
2214 	struct xfs_mount	*mp)
2215 {
2216 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2217 
2218 	shrink->count_objects = xfs_inodegc_shrinker_count;
2219 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2220 	shrink->seeks = 0;
2221 	shrink->flags = SHRINKER_NONSLAB;
2222 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2223 
2224 	return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2225 }
2226