1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_error.h" 27 #include "xfs_trans.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_quota.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_dquot_item.h" 35 #include "xfs_dquot.h" 36 #include "xfs_reflink.h" 37 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 41 /* 42 * Allocate and initialise an xfs_inode. 43 */ 44 struct xfs_inode * 45 xfs_inode_alloc( 46 struct xfs_mount *mp, 47 xfs_ino_t ino) 48 { 49 struct xfs_inode *ip; 50 51 /* 52 * if this didn't occur in transactions, we could use 53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 54 * code up to do this anyway. 55 */ 56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 57 if (!ip) 58 return NULL; 59 if (inode_init_always(mp->m_super, VFS_I(ip))) { 60 kmem_zone_free(xfs_inode_zone, ip); 61 return NULL; 62 } 63 64 /* VFS doesn't initialise i_mode! */ 65 VFS_I(ip)->i_mode = 0; 66 67 XFS_STATS_INC(mp, vn_active); 68 ASSERT(atomic_read(&ip->i_pincount) == 0); 69 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 70 ASSERT(!xfs_isiflocked(ip)); 71 ASSERT(ip->i_ino == 0); 72 73 /* initialise the xfs inode */ 74 ip->i_ino = ino; 75 ip->i_mount = mp; 76 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 77 ip->i_afp = NULL; 78 ip->i_cowfp = NULL; 79 ip->i_cnextents = 0; 80 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 81 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 82 ip->i_flags = 0; 83 ip->i_delayed_blks = 0; 84 memset(&ip->i_d, 0, sizeof(ip->i_d)); 85 86 return ip; 87 } 88 89 STATIC void 90 xfs_inode_free_callback( 91 struct rcu_head *head) 92 { 93 struct inode *inode = container_of(head, struct inode, i_rcu); 94 struct xfs_inode *ip = XFS_I(inode); 95 96 switch (VFS_I(ip)->i_mode & S_IFMT) { 97 case S_IFREG: 98 case S_IFDIR: 99 case S_IFLNK: 100 xfs_idestroy_fork(ip, XFS_DATA_FORK); 101 break; 102 } 103 104 if (ip->i_afp) 105 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 106 if (ip->i_cowfp) 107 xfs_idestroy_fork(ip, XFS_COW_FORK); 108 109 if (ip->i_itemp) { 110 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 111 xfs_inode_item_destroy(ip); 112 ip->i_itemp = NULL; 113 } 114 115 kmem_zone_free(xfs_inode_zone, ip); 116 } 117 118 static void 119 __xfs_inode_free( 120 struct xfs_inode *ip) 121 { 122 /* asserts to verify all state is correct here */ 123 ASSERT(atomic_read(&ip->i_pincount) == 0); 124 XFS_STATS_DEC(ip->i_mount, vn_active); 125 126 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 127 } 128 129 void 130 xfs_inode_free( 131 struct xfs_inode *ip) 132 { 133 ASSERT(!xfs_isiflocked(ip)); 134 135 /* 136 * Because we use RCU freeing we need to ensure the inode always 137 * appears to be reclaimed with an invalid inode number when in the 138 * free state. The ip->i_flags_lock provides the barrier against lookup 139 * races. 140 */ 141 spin_lock(&ip->i_flags_lock); 142 ip->i_flags = XFS_IRECLAIM; 143 ip->i_ino = 0; 144 spin_unlock(&ip->i_flags_lock); 145 146 __xfs_inode_free(ip); 147 } 148 149 /* 150 * Queue a new inode reclaim pass if there are reclaimable inodes and there 151 * isn't a reclaim pass already in progress. By default it runs every 5s based 152 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 153 * tunable, but that can be done if this method proves to be ineffective or too 154 * aggressive. 155 */ 156 static void 157 xfs_reclaim_work_queue( 158 struct xfs_mount *mp) 159 { 160 161 rcu_read_lock(); 162 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 163 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 164 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 165 } 166 rcu_read_unlock(); 167 } 168 169 /* 170 * This is a fast pass over the inode cache to try to get reclaim moving on as 171 * many inodes as possible in a short period of time. It kicks itself every few 172 * seconds, as well as being kicked by the inode cache shrinker when memory 173 * goes low. It scans as quickly as possible avoiding locked inodes or those 174 * already being flushed, and once done schedules a future pass. 175 */ 176 void 177 xfs_reclaim_worker( 178 struct work_struct *work) 179 { 180 struct xfs_mount *mp = container_of(to_delayed_work(work), 181 struct xfs_mount, m_reclaim_work); 182 183 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 184 xfs_reclaim_work_queue(mp); 185 } 186 187 static void 188 xfs_perag_set_reclaim_tag( 189 struct xfs_perag *pag) 190 { 191 struct xfs_mount *mp = pag->pag_mount; 192 193 ASSERT(spin_is_locked(&pag->pag_ici_lock)); 194 if (pag->pag_ici_reclaimable++) 195 return; 196 197 /* propagate the reclaim tag up into the perag radix tree */ 198 spin_lock(&mp->m_perag_lock); 199 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 200 XFS_ICI_RECLAIM_TAG); 201 spin_unlock(&mp->m_perag_lock); 202 203 /* schedule periodic background inode reclaim */ 204 xfs_reclaim_work_queue(mp); 205 206 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 207 } 208 209 static void 210 xfs_perag_clear_reclaim_tag( 211 struct xfs_perag *pag) 212 { 213 struct xfs_mount *mp = pag->pag_mount; 214 215 ASSERT(spin_is_locked(&pag->pag_ici_lock)); 216 if (--pag->pag_ici_reclaimable) 217 return; 218 219 /* clear the reclaim tag from the perag radix tree */ 220 spin_lock(&mp->m_perag_lock); 221 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 222 XFS_ICI_RECLAIM_TAG); 223 spin_unlock(&mp->m_perag_lock); 224 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 225 } 226 227 228 /* 229 * We set the inode flag atomically with the radix tree tag. 230 * Once we get tag lookups on the radix tree, this inode flag 231 * can go away. 232 */ 233 void 234 xfs_inode_set_reclaim_tag( 235 struct xfs_inode *ip) 236 { 237 struct xfs_mount *mp = ip->i_mount; 238 struct xfs_perag *pag; 239 240 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 241 spin_lock(&pag->pag_ici_lock); 242 spin_lock(&ip->i_flags_lock); 243 244 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 245 XFS_ICI_RECLAIM_TAG); 246 xfs_perag_set_reclaim_tag(pag); 247 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 248 249 spin_unlock(&ip->i_flags_lock); 250 spin_unlock(&pag->pag_ici_lock); 251 xfs_perag_put(pag); 252 } 253 254 STATIC void 255 xfs_inode_clear_reclaim_tag( 256 struct xfs_perag *pag, 257 xfs_ino_t ino) 258 { 259 radix_tree_tag_clear(&pag->pag_ici_root, 260 XFS_INO_TO_AGINO(pag->pag_mount, ino), 261 XFS_ICI_RECLAIM_TAG); 262 xfs_perag_clear_reclaim_tag(pag); 263 } 264 265 /* 266 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 267 * part of the structure. This is made more complex by the fact we store 268 * information about the on-disk values in the VFS inode and so we can't just 269 * overwrite the values unconditionally. Hence we save the parameters we 270 * need to retain across reinitialisation, and rewrite them into the VFS inode 271 * after reinitialisation even if it fails. 272 */ 273 static int 274 xfs_reinit_inode( 275 struct xfs_mount *mp, 276 struct inode *inode) 277 { 278 int error; 279 uint32_t nlink = inode->i_nlink; 280 uint32_t generation = inode->i_generation; 281 uint64_t version = inode->i_version; 282 umode_t mode = inode->i_mode; 283 284 error = inode_init_always(mp->m_super, inode); 285 286 set_nlink(inode, nlink); 287 inode->i_generation = generation; 288 inode->i_version = version; 289 inode->i_mode = mode; 290 return error; 291 } 292 293 /* 294 * Check the validity of the inode we just found it the cache 295 */ 296 static int 297 xfs_iget_cache_hit( 298 struct xfs_perag *pag, 299 struct xfs_inode *ip, 300 xfs_ino_t ino, 301 int flags, 302 int lock_flags) __releases(RCU) 303 { 304 struct inode *inode = VFS_I(ip); 305 struct xfs_mount *mp = ip->i_mount; 306 int error; 307 308 /* 309 * check for re-use of an inode within an RCU grace period due to the 310 * radix tree nodes not being updated yet. We monitor for this by 311 * setting the inode number to zero before freeing the inode structure. 312 * If the inode has been reallocated and set up, then the inode number 313 * will not match, so check for that, too. 314 */ 315 spin_lock(&ip->i_flags_lock); 316 if (ip->i_ino != ino) { 317 trace_xfs_iget_skip(ip); 318 XFS_STATS_INC(mp, xs_ig_frecycle); 319 error = -EAGAIN; 320 goto out_error; 321 } 322 323 324 /* 325 * If we are racing with another cache hit that is currently 326 * instantiating this inode or currently recycling it out of 327 * reclaimabe state, wait for the initialisation to complete 328 * before continuing. 329 * 330 * XXX(hch): eventually we should do something equivalent to 331 * wait_on_inode to wait for these flags to be cleared 332 * instead of polling for it. 333 */ 334 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 335 trace_xfs_iget_skip(ip); 336 XFS_STATS_INC(mp, xs_ig_frecycle); 337 error = -EAGAIN; 338 goto out_error; 339 } 340 341 /* 342 * If lookup is racing with unlink return an error immediately. 343 */ 344 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) { 345 error = -ENOENT; 346 goto out_error; 347 } 348 349 /* 350 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 351 * Need to carefully get it back into useable state. 352 */ 353 if (ip->i_flags & XFS_IRECLAIMABLE) { 354 trace_xfs_iget_reclaim(ip); 355 356 /* 357 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 358 * from stomping over us while we recycle the inode. We can't 359 * clear the radix tree reclaimable tag yet as it requires 360 * pag_ici_lock to be held exclusive. 361 */ 362 ip->i_flags |= XFS_IRECLAIM; 363 364 spin_unlock(&ip->i_flags_lock); 365 rcu_read_unlock(); 366 367 error = xfs_reinit_inode(mp, inode); 368 if (error) { 369 /* 370 * Re-initializing the inode failed, and we are in deep 371 * trouble. Try to re-add it to the reclaim list. 372 */ 373 rcu_read_lock(); 374 spin_lock(&ip->i_flags_lock); 375 376 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 377 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 378 trace_xfs_iget_reclaim_fail(ip); 379 goto out_error; 380 } 381 382 spin_lock(&pag->pag_ici_lock); 383 spin_lock(&ip->i_flags_lock); 384 385 /* 386 * Clear the per-lifetime state in the inode as we are now 387 * effectively a new inode and need to return to the initial 388 * state before reuse occurs. 389 */ 390 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 391 ip->i_flags |= XFS_INEW; 392 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 393 inode->i_state = I_NEW; 394 395 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 396 init_rwsem(&inode->i_rwsem); 397 398 spin_unlock(&ip->i_flags_lock); 399 spin_unlock(&pag->pag_ici_lock); 400 } else { 401 /* If the VFS inode is being torn down, pause and try again. */ 402 if (!igrab(inode)) { 403 trace_xfs_iget_skip(ip); 404 error = -EAGAIN; 405 goto out_error; 406 } 407 408 /* We've got a live one. */ 409 spin_unlock(&ip->i_flags_lock); 410 rcu_read_unlock(); 411 trace_xfs_iget_hit(ip); 412 } 413 414 if (lock_flags != 0) 415 xfs_ilock(ip, lock_flags); 416 417 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 418 XFS_STATS_INC(mp, xs_ig_found); 419 420 return 0; 421 422 out_error: 423 spin_unlock(&ip->i_flags_lock); 424 rcu_read_unlock(); 425 return error; 426 } 427 428 429 static int 430 xfs_iget_cache_miss( 431 struct xfs_mount *mp, 432 struct xfs_perag *pag, 433 xfs_trans_t *tp, 434 xfs_ino_t ino, 435 struct xfs_inode **ipp, 436 int flags, 437 int lock_flags) 438 { 439 struct xfs_inode *ip; 440 int error; 441 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 442 int iflags; 443 444 ip = xfs_inode_alloc(mp, ino); 445 if (!ip) 446 return -ENOMEM; 447 448 error = xfs_iread(mp, tp, ip, flags); 449 if (error) 450 goto out_destroy; 451 452 trace_xfs_iget_miss(ip); 453 454 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) { 455 error = -ENOENT; 456 goto out_destroy; 457 } 458 459 /* 460 * Preload the radix tree so we can insert safely under the 461 * write spinlock. Note that we cannot sleep inside the preload 462 * region. Since we can be called from transaction context, don't 463 * recurse into the file system. 464 */ 465 if (radix_tree_preload(GFP_NOFS)) { 466 error = -EAGAIN; 467 goto out_destroy; 468 } 469 470 /* 471 * Because the inode hasn't been added to the radix-tree yet it can't 472 * be found by another thread, so we can do the non-sleeping lock here. 473 */ 474 if (lock_flags) { 475 if (!xfs_ilock_nowait(ip, lock_flags)) 476 BUG(); 477 } 478 479 /* 480 * These values must be set before inserting the inode into the radix 481 * tree as the moment it is inserted a concurrent lookup (allowed by the 482 * RCU locking mechanism) can find it and that lookup must see that this 483 * is an inode currently under construction (i.e. that XFS_INEW is set). 484 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 485 * memory barrier that ensures this detection works correctly at lookup 486 * time. 487 */ 488 iflags = XFS_INEW; 489 if (flags & XFS_IGET_DONTCACHE) 490 iflags |= XFS_IDONTCACHE; 491 ip->i_udquot = NULL; 492 ip->i_gdquot = NULL; 493 ip->i_pdquot = NULL; 494 xfs_iflags_set(ip, iflags); 495 496 /* insert the new inode */ 497 spin_lock(&pag->pag_ici_lock); 498 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 499 if (unlikely(error)) { 500 WARN_ON(error != -EEXIST); 501 XFS_STATS_INC(mp, xs_ig_dup); 502 error = -EAGAIN; 503 goto out_preload_end; 504 } 505 spin_unlock(&pag->pag_ici_lock); 506 radix_tree_preload_end(); 507 508 *ipp = ip; 509 return 0; 510 511 out_preload_end: 512 spin_unlock(&pag->pag_ici_lock); 513 radix_tree_preload_end(); 514 if (lock_flags) 515 xfs_iunlock(ip, lock_flags); 516 out_destroy: 517 __destroy_inode(VFS_I(ip)); 518 xfs_inode_free(ip); 519 return error; 520 } 521 522 /* 523 * Look up an inode by number in the given file system. 524 * The inode is looked up in the cache held in each AG. 525 * If the inode is found in the cache, initialise the vfs inode 526 * if necessary. 527 * 528 * If it is not in core, read it in from the file system's device, 529 * add it to the cache and initialise the vfs inode. 530 * 531 * The inode is locked according to the value of the lock_flags parameter. 532 * This flag parameter indicates how and if the inode's IO lock and inode lock 533 * should be taken. 534 * 535 * mp -- the mount point structure for the current file system. It points 536 * to the inode hash table. 537 * tp -- a pointer to the current transaction if there is one. This is 538 * simply passed through to the xfs_iread() call. 539 * ino -- the number of the inode desired. This is the unique identifier 540 * within the file system for the inode being requested. 541 * lock_flags -- flags indicating how to lock the inode. See the comment 542 * for xfs_ilock() for a list of valid values. 543 */ 544 int 545 xfs_iget( 546 xfs_mount_t *mp, 547 xfs_trans_t *tp, 548 xfs_ino_t ino, 549 uint flags, 550 uint lock_flags, 551 xfs_inode_t **ipp) 552 { 553 xfs_inode_t *ip; 554 int error; 555 xfs_perag_t *pag; 556 xfs_agino_t agino; 557 558 /* 559 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 560 * doesn't get freed while it's being referenced during a 561 * radix tree traversal here. It assumes this function 562 * aqcuires only the ILOCK (and therefore it has no need to 563 * involve the IOLOCK in this synchronization). 564 */ 565 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 566 567 /* reject inode numbers outside existing AGs */ 568 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 569 return -EINVAL; 570 571 XFS_STATS_INC(mp, xs_ig_attempts); 572 573 /* get the perag structure and ensure that it's inode capable */ 574 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 575 agino = XFS_INO_TO_AGINO(mp, ino); 576 577 again: 578 error = 0; 579 rcu_read_lock(); 580 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 581 582 if (ip) { 583 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 584 if (error) 585 goto out_error_or_again; 586 } else { 587 rcu_read_unlock(); 588 XFS_STATS_INC(mp, xs_ig_missed); 589 590 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 591 flags, lock_flags); 592 if (error) 593 goto out_error_or_again; 594 } 595 xfs_perag_put(pag); 596 597 *ipp = ip; 598 599 /* 600 * If we have a real type for an on-disk inode, we can setup the inode 601 * now. If it's a new inode being created, xfs_ialloc will handle it. 602 */ 603 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 604 xfs_setup_existing_inode(ip); 605 return 0; 606 607 out_error_or_again: 608 if (error == -EAGAIN) { 609 delay(1); 610 goto again; 611 } 612 xfs_perag_put(pag); 613 return error; 614 } 615 616 /* 617 * The inode lookup is done in batches to keep the amount of lock traffic and 618 * radix tree lookups to a minimum. The batch size is a trade off between 619 * lookup reduction and stack usage. This is in the reclaim path, so we can't 620 * be too greedy. 621 */ 622 #define XFS_LOOKUP_BATCH 32 623 624 STATIC int 625 xfs_inode_ag_walk_grab( 626 struct xfs_inode *ip) 627 { 628 struct inode *inode = VFS_I(ip); 629 630 ASSERT(rcu_read_lock_held()); 631 632 /* 633 * check for stale RCU freed inode 634 * 635 * If the inode has been reallocated, it doesn't matter if it's not in 636 * the AG we are walking - we are walking for writeback, so if it 637 * passes all the "valid inode" checks and is dirty, then we'll write 638 * it back anyway. If it has been reallocated and still being 639 * initialised, the XFS_INEW check below will catch it. 640 */ 641 spin_lock(&ip->i_flags_lock); 642 if (!ip->i_ino) 643 goto out_unlock_noent; 644 645 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 646 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 647 goto out_unlock_noent; 648 spin_unlock(&ip->i_flags_lock); 649 650 /* nothing to sync during shutdown */ 651 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 652 return -EFSCORRUPTED; 653 654 /* If we can't grab the inode, it must on it's way to reclaim. */ 655 if (!igrab(inode)) 656 return -ENOENT; 657 658 /* inode is valid */ 659 return 0; 660 661 out_unlock_noent: 662 spin_unlock(&ip->i_flags_lock); 663 return -ENOENT; 664 } 665 666 STATIC int 667 xfs_inode_ag_walk( 668 struct xfs_mount *mp, 669 struct xfs_perag *pag, 670 int (*execute)(struct xfs_inode *ip, int flags, 671 void *args), 672 int flags, 673 void *args, 674 int tag) 675 { 676 uint32_t first_index; 677 int last_error = 0; 678 int skipped; 679 int done; 680 int nr_found; 681 682 restart: 683 done = 0; 684 skipped = 0; 685 first_index = 0; 686 nr_found = 0; 687 do { 688 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 689 int error = 0; 690 int i; 691 692 rcu_read_lock(); 693 694 if (tag == -1) 695 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 696 (void **)batch, first_index, 697 XFS_LOOKUP_BATCH); 698 else 699 nr_found = radix_tree_gang_lookup_tag( 700 &pag->pag_ici_root, 701 (void **) batch, first_index, 702 XFS_LOOKUP_BATCH, tag); 703 704 if (!nr_found) { 705 rcu_read_unlock(); 706 break; 707 } 708 709 /* 710 * Grab the inodes before we drop the lock. if we found 711 * nothing, nr == 0 and the loop will be skipped. 712 */ 713 for (i = 0; i < nr_found; i++) { 714 struct xfs_inode *ip = batch[i]; 715 716 if (done || xfs_inode_ag_walk_grab(ip)) 717 batch[i] = NULL; 718 719 /* 720 * Update the index for the next lookup. Catch 721 * overflows into the next AG range which can occur if 722 * we have inodes in the last block of the AG and we 723 * are currently pointing to the last inode. 724 * 725 * Because we may see inodes that are from the wrong AG 726 * due to RCU freeing and reallocation, only update the 727 * index if it lies in this AG. It was a race that lead 728 * us to see this inode, so another lookup from the 729 * same index will not find it again. 730 */ 731 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 732 continue; 733 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 734 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 735 done = 1; 736 } 737 738 /* unlock now we've grabbed the inodes. */ 739 rcu_read_unlock(); 740 741 for (i = 0; i < nr_found; i++) { 742 if (!batch[i]) 743 continue; 744 error = execute(batch[i], flags, args); 745 IRELE(batch[i]); 746 if (error == -EAGAIN) { 747 skipped++; 748 continue; 749 } 750 if (error && last_error != -EFSCORRUPTED) 751 last_error = error; 752 } 753 754 /* bail out if the filesystem is corrupted. */ 755 if (error == -EFSCORRUPTED) 756 break; 757 758 cond_resched(); 759 760 } while (nr_found && !done); 761 762 if (skipped) { 763 delay(1); 764 goto restart; 765 } 766 return last_error; 767 } 768 769 /* 770 * Background scanning to trim post-EOF preallocated space. This is queued 771 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 772 */ 773 void 774 xfs_queue_eofblocks( 775 struct xfs_mount *mp) 776 { 777 rcu_read_lock(); 778 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 779 queue_delayed_work(mp->m_eofblocks_workqueue, 780 &mp->m_eofblocks_work, 781 msecs_to_jiffies(xfs_eofb_secs * 1000)); 782 rcu_read_unlock(); 783 } 784 785 void 786 xfs_eofblocks_worker( 787 struct work_struct *work) 788 { 789 struct xfs_mount *mp = container_of(to_delayed_work(work), 790 struct xfs_mount, m_eofblocks_work); 791 xfs_icache_free_eofblocks(mp, NULL); 792 xfs_queue_eofblocks(mp); 793 } 794 795 /* 796 * Background scanning to trim preallocated CoW space. This is queued 797 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). 798 * (We'll just piggyback on the post-EOF prealloc space workqueue.) 799 */ 800 STATIC void 801 xfs_queue_cowblocks( 802 struct xfs_mount *mp) 803 { 804 rcu_read_lock(); 805 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) 806 queue_delayed_work(mp->m_eofblocks_workqueue, 807 &mp->m_cowblocks_work, 808 msecs_to_jiffies(xfs_cowb_secs * 1000)); 809 rcu_read_unlock(); 810 } 811 812 void 813 xfs_cowblocks_worker( 814 struct work_struct *work) 815 { 816 struct xfs_mount *mp = container_of(to_delayed_work(work), 817 struct xfs_mount, m_cowblocks_work); 818 xfs_icache_free_cowblocks(mp, NULL); 819 xfs_queue_cowblocks(mp); 820 } 821 822 int 823 xfs_inode_ag_iterator( 824 struct xfs_mount *mp, 825 int (*execute)(struct xfs_inode *ip, int flags, 826 void *args), 827 int flags, 828 void *args) 829 { 830 struct xfs_perag *pag; 831 int error = 0; 832 int last_error = 0; 833 xfs_agnumber_t ag; 834 835 ag = 0; 836 while ((pag = xfs_perag_get(mp, ag))) { 837 ag = pag->pag_agno + 1; 838 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 839 xfs_perag_put(pag); 840 if (error) { 841 last_error = error; 842 if (error == -EFSCORRUPTED) 843 break; 844 } 845 } 846 return last_error; 847 } 848 849 int 850 xfs_inode_ag_iterator_tag( 851 struct xfs_mount *mp, 852 int (*execute)(struct xfs_inode *ip, int flags, 853 void *args), 854 int flags, 855 void *args, 856 int tag) 857 { 858 struct xfs_perag *pag; 859 int error = 0; 860 int last_error = 0; 861 xfs_agnumber_t ag; 862 863 ag = 0; 864 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 865 ag = pag->pag_agno + 1; 866 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 867 xfs_perag_put(pag); 868 if (error) { 869 last_error = error; 870 if (error == -EFSCORRUPTED) 871 break; 872 } 873 } 874 return last_error; 875 } 876 877 /* 878 * Grab the inode for reclaim exclusively. 879 * Return 0 if we grabbed it, non-zero otherwise. 880 */ 881 STATIC int 882 xfs_reclaim_inode_grab( 883 struct xfs_inode *ip, 884 int flags) 885 { 886 ASSERT(rcu_read_lock_held()); 887 888 /* quick check for stale RCU freed inode */ 889 if (!ip->i_ino) 890 return 1; 891 892 /* 893 * If we are asked for non-blocking operation, do unlocked checks to 894 * see if the inode already is being flushed or in reclaim to avoid 895 * lock traffic. 896 */ 897 if ((flags & SYNC_TRYLOCK) && 898 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 899 return 1; 900 901 /* 902 * The radix tree lock here protects a thread in xfs_iget from racing 903 * with us starting reclaim on the inode. Once we have the 904 * XFS_IRECLAIM flag set it will not touch us. 905 * 906 * Due to RCU lookup, we may find inodes that have been freed and only 907 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 908 * aren't candidates for reclaim at all, so we must check the 909 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 910 */ 911 spin_lock(&ip->i_flags_lock); 912 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 913 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 914 /* not a reclaim candidate. */ 915 spin_unlock(&ip->i_flags_lock); 916 return 1; 917 } 918 __xfs_iflags_set(ip, XFS_IRECLAIM); 919 spin_unlock(&ip->i_flags_lock); 920 return 0; 921 } 922 923 /* 924 * Inodes in different states need to be treated differently. The following 925 * table lists the inode states and the reclaim actions necessary: 926 * 927 * inode state iflush ret required action 928 * --------------- ---------- --------------- 929 * bad - reclaim 930 * shutdown EIO unpin and reclaim 931 * clean, unpinned 0 reclaim 932 * stale, unpinned 0 reclaim 933 * clean, pinned(*) 0 requeue 934 * stale, pinned EAGAIN requeue 935 * dirty, async - requeue 936 * dirty, sync 0 reclaim 937 * 938 * (*) dgc: I don't think the clean, pinned state is possible but it gets 939 * handled anyway given the order of checks implemented. 940 * 941 * Also, because we get the flush lock first, we know that any inode that has 942 * been flushed delwri has had the flush completed by the time we check that 943 * the inode is clean. 944 * 945 * Note that because the inode is flushed delayed write by AIL pushing, the 946 * flush lock may already be held here and waiting on it can result in very 947 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 948 * the caller should push the AIL first before trying to reclaim inodes to 949 * minimise the amount of time spent waiting. For background relaim, we only 950 * bother to reclaim clean inodes anyway. 951 * 952 * Hence the order of actions after gaining the locks should be: 953 * bad => reclaim 954 * shutdown => unpin and reclaim 955 * pinned, async => requeue 956 * pinned, sync => unpin 957 * stale => reclaim 958 * clean => reclaim 959 * dirty, async => requeue 960 * dirty, sync => flush, wait and reclaim 961 */ 962 STATIC int 963 xfs_reclaim_inode( 964 struct xfs_inode *ip, 965 struct xfs_perag *pag, 966 int sync_mode) 967 { 968 struct xfs_buf *bp = NULL; 969 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 970 int error; 971 972 restart: 973 error = 0; 974 xfs_ilock(ip, XFS_ILOCK_EXCL); 975 if (!xfs_iflock_nowait(ip)) { 976 if (!(sync_mode & SYNC_WAIT)) 977 goto out; 978 xfs_iflock(ip); 979 } 980 981 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 982 xfs_iunpin_wait(ip); 983 /* xfs_iflush_abort() drops the flush lock */ 984 xfs_iflush_abort(ip, false); 985 goto reclaim; 986 } 987 if (xfs_ipincount(ip)) { 988 if (!(sync_mode & SYNC_WAIT)) 989 goto out_ifunlock; 990 xfs_iunpin_wait(ip); 991 } 992 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { 993 xfs_ifunlock(ip); 994 goto reclaim; 995 } 996 997 /* 998 * Never flush out dirty data during non-blocking reclaim, as it would 999 * just contend with AIL pushing trying to do the same job. 1000 */ 1001 if (!(sync_mode & SYNC_WAIT)) 1002 goto out_ifunlock; 1003 1004 /* 1005 * Now we have an inode that needs flushing. 1006 * 1007 * Note that xfs_iflush will never block on the inode buffer lock, as 1008 * xfs_ifree_cluster() can lock the inode buffer before it locks the 1009 * ip->i_lock, and we are doing the exact opposite here. As a result, 1010 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 1011 * result in an ABBA deadlock with xfs_ifree_cluster(). 1012 * 1013 * As xfs_ifree_cluser() must gather all inodes that are active in the 1014 * cache to mark them stale, if we hit this case we don't actually want 1015 * to do IO here - we want the inode marked stale so we can simply 1016 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 1017 * inode, back off and try again. Hopefully the next pass through will 1018 * see the stale flag set on the inode. 1019 */ 1020 error = xfs_iflush(ip, &bp); 1021 if (error == -EAGAIN) { 1022 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1023 /* backoff longer than in xfs_ifree_cluster */ 1024 delay(2); 1025 goto restart; 1026 } 1027 1028 if (!error) { 1029 error = xfs_bwrite(bp); 1030 xfs_buf_relse(bp); 1031 } 1032 1033 reclaim: 1034 ASSERT(!xfs_isiflocked(ip)); 1035 1036 /* 1037 * Because we use RCU freeing we need to ensure the inode always appears 1038 * to be reclaimed with an invalid inode number when in the free state. 1039 * We do this as early as possible under the ILOCK so that 1040 * xfs_iflush_cluster() can be guaranteed to detect races with us here. 1041 * By doing this, we guarantee that once xfs_iflush_cluster has locked 1042 * XFS_ILOCK that it will see either a valid, flushable inode that will 1043 * serialise correctly, or it will see a clean (and invalid) inode that 1044 * it can skip. 1045 */ 1046 spin_lock(&ip->i_flags_lock); 1047 ip->i_flags = XFS_IRECLAIM; 1048 ip->i_ino = 0; 1049 spin_unlock(&ip->i_flags_lock); 1050 1051 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1052 1053 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1054 /* 1055 * Remove the inode from the per-AG radix tree. 1056 * 1057 * Because radix_tree_delete won't complain even if the item was never 1058 * added to the tree assert that it's been there before to catch 1059 * problems with the inode life time early on. 1060 */ 1061 spin_lock(&pag->pag_ici_lock); 1062 if (!radix_tree_delete(&pag->pag_ici_root, 1063 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1064 ASSERT(0); 1065 xfs_perag_clear_reclaim_tag(pag); 1066 spin_unlock(&pag->pag_ici_lock); 1067 1068 /* 1069 * Here we do an (almost) spurious inode lock in order to coordinate 1070 * with inode cache radix tree lookups. This is because the lookup 1071 * can reference the inodes in the cache without taking references. 1072 * 1073 * We make that OK here by ensuring that we wait until the inode is 1074 * unlocked after the lookup before we go ahead and free it. 1075 */ 1076 xfs_ilock(ip, XFS_ILOCK_EXCL); 1077 xfs_qm_dqdetach(ip); 1078 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1079 1080 __xfs_inode_free(ip); 1081 return error; 1082 1083 out_ifunlock: 1084 xfs_ifunlock(ip); 1085 out: 1086 xfs_iflags_clear(ip, XFS_IRECLAIM); 1087 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1088 /* 1089 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1090 * a short while. However, this just burns CPU time scanning the tree 1091 * waiting for IO to complete and the reclaim work never goes back to 1092 * the idle state. Instead, return 0 to let the next scheduled 1093 * background reclaim attempt to reclaim the inode again. 1094 */ 1095 return 0; 1096 } 1097 1098 /* 1099 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1100 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1101 * then a shut down during filesystem unmount reclaim walk leak all the 1102 * unreclaimed inodes. 1103 */ 1104 STATIC int 1105 xfs_reclaim_inodes_ag( 1106 struct xfs_mount *mp, 1107 int flags, 1108 int *nr_to_scan) 1109 { 1110 struct xfs_perag *pag; 1111 int error = 0; 1112 int last_error = 0; 1113 xfs_agnumber_t ag; 1114 int trylock = flags & SYNC_TRYLOCK; 1115 int skipped; 1116 1117 restart: 1118 ag = 0; 1119 skipped = 0; 1120 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1121 unsigned long first_index = 0; 1122 int done = 0; 1123 int nr_found = 0; 1124 1125 ag = pag->pag_agno + 1; 1126 1127 if (trylock) { 1128 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1129 skipped++; 1130 xfs_perag_put(pag); 1131 continue; 1132 } 1133 first_index = pag->pag_ici_reclaim_cursor; 1134 } else 1135 mutex_lock(&pag->pag_ici_reclaim_lock); 1136 1137 do { 1138 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1139 int i; 1140 1141 rcu_read_lock(); 1142 nr_found = radix_tree_gang_lookup_tag( 1143 &pag->pag_ici_root, 1144 (void **)batch, first_index, 1145 XFS_LOOKUP_BATCH, 1146 XFS_ICI_RECLAIM_TAG); 1147 if (!nr_found) { 1148 done = 1; 1149 rcu_read_unlock(); 1150 break; 1151 } 1152 1153 /* 1154 * Grab the inodes before we drop the lock. if we found 1155 * nothing, nr == 0 and the loop will be skipped. 1156 */ 1157 for (i = 0; i < nr_found; i++) { 1158 struct xfs_inode *ip = batch[i]; 1159 1160 if (done || xfs_reclaim_inode_grab(ip, flags)) 1161 batch[i] = NULL; 1162 1163 /* 1164 * Update the index for the next lookup. Catch 1165 * overflows into the next AG range which can 1166 * occur if we have inodes in the last block of 1167 * the AG and we are currently pointing to the 1168 * last inode. 1169 * 1170 * Because we may see inodes that are from the 1171 * wrong AG due to RCU freeing and 1172 * reallocation, only update the index if it 1173 * lies in this AG. It was a race that lead us 1174 * to see this inode, so another lookup from 1175 * the same index will not find it again. 1176 */ 1177 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1178 pag->pag_agno) 1179 continue; 1180 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1181 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1182 done = 1; 1183 } 1184 1185 /* unlock now we've grabbed the inodes. */ 1186 rcu_read_unlock(); 1187 1188 for (i = 0; i < nr_found; i++) { 1189 if (!batch[i]) 1190 continue; 1191 error = xfs_reclaim_inode(batch[i], pag, flags); 1192 if (error && last_error != -EFSCORRUPTED) 1193 last_error = error; 1194 } 1195 1196 *nr_to_scan -= XFS_LOOKUP_BATCH; 1197 1198 cond_resched(); 1199 1200 } while (nr_found && !done && *nr_to_scan > 0); 1201 1202 if (trylock && !done) 1203 pag->pag_ici_reclaim_cursor = first_index; 1204 else 1205 pag->pag_ici_reclaim_cursor = 0; 1206 mutex_unlock(&pag->pag_ici_reclaim_lock); 1207 xfs_perag_put(pag); 1208 } 1209 1210 /* 1211 * if we skipped any AG, and we still have scan count remaining, do 1212 * another pass this time using blocking reclaim semantics (i.e 1213 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1214 * ensure that when we get more reclaimers than AGs we block rather 1215 * than spin trying to execute reclaim. 1216 */ 1217 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1218 trylock = 0; 1219 goto restart; 1220 } 1221 return last_error; 1222 } 1223 1224 int 1225 xfs_reclaim_inodes( 1226 xfs_mount_t *mp, 1227 int mode) 1228 { 1229 int nr_to_scan = INT_MAX; 1230 1231 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1232 } 1233 1234 /* 1235 * Scan a certain number of inodes for reclaim. 1236 * 1237 * When called we make sure that there is a background (fast) inode reclaim in 1238 * progress, while we will throttle the speed of reclaim via doing synchronous 1239 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1240 * them to be cleaned, which we hope will not be very long due to the 1241 * background walker having already kicked the IO off on those dirty inodes. 1242 */ 1243 long 1244 xfs_reclaim_inodes_nr( 1245 struct xfs_mount *mp, 1246 int nr_to_scan) 1247 { 1248 /* kick background reclaimer and push the AIL */ 1249 xfs_reclaim_work_queue(mp); 1250 xfs_ail_push_all(mp->m_ail); 1251 1252 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1253 } 1254 1255 /* 1256 * Return the number of reclaimable inodes in the filesystem for 1257 * the shrinker to determine how much to reclaim. 1258 */ 1259 int 1260 xfs_reclaim_inodes_count( 1261 struct xfs_mount *mp) 1262 { 1263 struct xfs_perag *pag; 1264 xfs_agnumber_t ag = 0; 1265 int reclaimable = 0; 1266 1267 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1268 ag = pag->pag_agno + 1; 1269 reclaimable += pag->pag_ici_reclaimable; 1270 xfs_perag_put(pag); 1271 } 1272 return reclaimable; 1273 } 1274 1275 STATIC int 1276 xfs_inode_match_id( 1277 struct xfs_inode *ip, 1278 struct xfs_eofblocks *eofb) 1279 { 1280 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1281 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1282 return 0; 1283 1284 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1285 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1286 return 0; 1287 1288 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1289 xfs_get_projid(ip) != eofb->eof_prid) 1290 return 0; 1291 1292 return 1; 1293 } 1294 1295 /* 1296 * A union-based inode filtering algorithm. Process the inode if any of the 1297 * criteria match. This is for global/internal scans only. 1298 */ 1299 STATIC int 1300 xfs_inode_match_id_union( 1301 struct xfs_inode *ip, 1302 struct xfs_eofblocks *eofb) 1303 { 1304 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1305 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1306 return 1; 1307 1308 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1309 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1310 return 1; 1311 1312 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1313 xfs_get_projid(ip) == eofb->eof_prid) 1314 return 1; 1315 1316 return 0; 1317 } 1318 1319 STATIC int 1320 xfs_inode_free_eofblocks( 1321 struct xfs_inode *ip, 1322 int flags, 1323 void *args) 1324 { 1325 int ret; 1326 struct xfs_eofblocks *eofb = args; 1327 bool need_iolock = true; 1328 int match; 1329 1330 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0)); 1331 1332 if (!xfs_can_free_eofblocks(ip, false)) { 1333 /* inode could be preallocated or append-only */ 1334 trace_xfs_inode_free_eofblocks_invalid(ip); 1335 xfs_inode_clear_eofblocks_tag(ip); 1336 return 0; 1337 } 1338 1339 /* 1340 * If the mapping is dirty the operation can block and wait for some 1341 * time. Unless we are waiting, skip it. 1342 */ 1343 if (!(flags & SYNC_WAIT) && 1344 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1345 return 0; 1346 1347 if (eofb) { 1348 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1349 match = xfs_inode_match_id_union(ip, eofb); 1350 else 1351 match = xfs_inode_match_id(ip, eofb); 1352 if (!match) 1353 return 0; 1354 1355 /* skip the inode if the file size is too small */ 1356 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1357 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1358 return 0; 1359 1360 /* 1361 * A scan owner implies we already hold the iolock. Skip it in 1362 * xfs_free_eofblocks() to avoid deadlock. This also eliminates 1363 * the possibility of EAGAIN being returned. 1364 */ 1365 if (eofb->eof_scan_owner == ip->i_ino) 1366 need_iolock = false; 1367 } 1368 1369 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock); 1370 1371 /* don't revisit the inode if we're not waiting */ 1372 if (ret == -EAGAIN && !(flags & SYNC_WAIT)) 1373 ret = 0; 1374 1375 return ret; 1376 } 1377 1378 static int 1379 __xfs_icache_free_eofblocks( 1380 struct xfs_mount *mp, 1381 struct xfs_eofblocks *eofb, 1382 int (*execute)(struct xfs_inode *ip, int flags, 1383 void *args), 1384 int tag) 1385 { 1386 int flags = SYNC_TRYLOCK; 1387 1388 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1389 flags = SYNC_WAIT; 1390 1391 return xfs_inode_ag_iterator_tag(mp, execute, flags, 1392 eofb, tag); 1393 } 1394 1395 int 1396 xfs_icache_free_eofblocks( 1397 struct xfs_mount *mp, 1398 struct xfs_eofblocks *eofb) 1399 { 1400 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, 1401 XFS_ICI_EOFBLOCKS_TAG); 1402 } 1403 1404 /* 1405 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1406 * multiple quotas, we don't know exactly which quota caused an allocation 1407 * failure. We make a best effort by including each quota under low free space 1408 * conditions (less than 1% free space) in the scan. 1409 */ 1410 static int 1411 __xfs_inode_free_quota_eofblocks( 1412 struct xfs_inode *ip, 1413 int (*execute)(struct xfs_mount *mp, 1414 struct xfs_eofblocks *eofb)) 1415 { 1416 int scan = 0; 1417 struct xfs_eofblocks eofb = {0}; 1418 struct xfs_dquot *dq; 1419 1420 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1421 1422 /* 1423 * Set the scan owner to avoid a potential livelock. Otherwise, the scan 1424 * can repeatedly trylock on the inode we're currently processing. We 1425 * run a sync scan to increase effectiveness and use the union filter to 1426 * cover all applicable quotas in a single scan. 1427 */ 1428 eofb.eof_scan_owner = ip->i_ino; 1429 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1430 1431 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1432 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1433 if (dq && xfs_dquot_lowsp(dq)) { 1434 eofb.eof_uid = VFS_I(ip)->i_uid; 1435 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1436 scan = 1; 1437 } 1438 } 1439 1440 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1441 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1442 if (dq && xfs_dquot_lowsp(dq)) { 1443 eofb.eof_gid = VFS_I(ip)->i_gid; 1444 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1445 scan = 1; 1446 } 1447 } 1448 1449 if (scan) 1450 execute(ip->i_mount, &eofb); 1451 1452 return scan; 1453 } 1454 1455 int 1456 xfs_inode_free_quota_eofblocks( 1457 struct xfs_inode *ip) 1458 { 1459 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); 1460 } 1461 1462 static void 1463 __xfs_inode_set_eofblocks_tag( 1464 xfs_inode_t *ip, 1465 void (*execute)(struct xfs_mount *mp), 1466 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1467 int error, unsigned long caller_ip), 1468 int tag) 1469 { 1470 struct xfs_mount *mp = ip->i_mount; 1471 struct xfs_perag *pag; 1472 int tagged; 1473 1474 /* 1475 * Don't bother locking the AG and looking up in the radix trees 1476 * if we already know that we have the tag set. 1477 */ 1478 if (ip->i_flags & XFS_IEOFBLOCKS) 1479 return; 1480 spin_lock(&ip->i_flags_lock); 1481 ip->i_flags |= XFS_IEOFBLOCKS; 1482 spin_unlock(&ip->i_flags_lock); 1483 1484 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1485 spin_lock(&pag->pag_ici_lock); 1486 1487 tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 1488 radix_tree_tag_set(&pag->pag_ici_root, 1489 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1490 if (!tagged) { 1491 /* propagate the eofblocks tag up into the perag radix tree */ 1492 spin_lock(&ip->i_mount->m_perag_lock); 1493 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1494 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1495 tag); 1496 spin_unlock(&ip->i_mount->m_perag_lock); 1497 1498 /* kick off background trimming */ 1499 execute(ip->i_mount); 1500 1501 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1502 } 1503 1504 spin_unlock(&pag->pag_ici_lock); 1505 xfs_perag_put(pag); 1506 } 1507 1508 void 1509 xfs_inode_set_eofblocks_tag( 1510 xfs_inode_t *ip) 1511 { 1512 trace_xfs_inode_set_eofblocks_tag(ip); 1513 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks, 1514 trace_xfs_perag_set_eofblocks, 1515 XFS_ICI_EOFBLOCKS_TAG); 1516 } 1517 1518 static void 1519 __xfs_inode_clear_eofblocks_tag( 1520 xfs_inode_t *ip, 1521 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1522 int error, unsigned long caller_ip), 1523 int tag) 1524 { 1525 struct xfs_mount *mp = ip->i_mount; 1526 struct xfs_perag *pag; 1527 1528 spin_lock(&ip->i_flags_lock); 1529 ip->i_flags &= ~XFS_IEOFBLOCKS; 1530 spin_unlock(&ip->i_flags_lock); 1531 1532 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1533 spin_lock(&pag->pag_ici_lock); 1534 1535 radix_tree_tag_clear(&pag->pag_ici_root, 1536 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1537 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { 1538 /* clear the eofblocks tag from the perag radix tree */ 1539 spin_lock(&ip->i_mount->m_perag_lock); 1540 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1541 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1542 tag); 1543 spin_unlock(&ip->i_mount->m_perag_lock); 1544 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1545 } 1546 1547 spin_unlock(&pag->pag_ici_lock); 1548 xfs_perag_put(pag); 1549 } 1550 1551 void 1552 xfs_inode_clear_eofblocks_tag( 1553 xfs_inode_t *ip) 1554 { 1555 trace_xfs_inode_clear_eofblocks_tag(ip); 1556 return __xfs_inode_clear_eofblocks_tag(ip, 1557 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); 1558 } 1559 1560 /* 1561 * Automatic CoW Reservation Freeing 1562 * 1563 * These functions automatically garbage collect leftover CoW reservations 1564 * that were made on behalf of a cowextsize hint when we start to run out 1565 * of quota or when the reservations sit around for too long. If the file 1566 * has dirty pages or is undergoing writeback, its CoW reservations will 1567 * be retained. 1568 * 1569 * The actual garbage collection piggybacks off the same code that runs 1570 * the speculative EOF preallocation garbage collector. 1571 */ 1572 STATIC int 1573 xfs_inode_free_cowblocks( 1574 struct xfs_inode *ip, 1575 int flags, 1576 void *args) 1577 { 1578 int ret; 1579 struct xfs_eofblocks *eofb = args; 1580 bool need_iolock = true; 1581 int match; 1582 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1583 1584 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0)); 1585 1586 /* 1587 * Just clear the tag if we have an empty cow fork or none at all. It's 1588 * possible the inode was fully unshared since it was originally tagged. 1589 */ 1590 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) { 1591 trace_xfs_inode_free_cowblocks_invalid(ip); 1592 xfs_inode_clear_cowblocks_tag(ip); 1593 return 0; 1594 } 1595 1596 /* 1597 * If the mapping is dirty or under writeback we cannot touch the 1598 * CoW fork. Leave it alone if we're in the midst of a directio. 1599 */ 1600 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1601 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1602 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1603 atomic_read(&VFS_I(ip)->i_dio_count)) 1604 return 0; 1605 1606 if (eofb) { 1607 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1608 match = xfs_inode_match_id_union(ip, eofb); 1609 else 1610 match = xfs_inode_match_id(ip, eofb); 1611 if (!match) 1612 return 0; 1613 1614 /* skip the inode if the file size is too small */ 1615 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1616 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1617 return 0; 1618 1619 /* 1620 * A scan owner implies we already hold the iolock. Skip it in 1621 * xfs_free_eofblocks() to avoid deadlock. This also eliminates 1622 * the possibility of EAGAIN being returned. 1623 */ 1624 if (eofb->eof_scan_owner == ip->i_ino) 1625 need_iolock = false; 1626 } 1627 1628 /* Free the CoW blocks */ 1629 if (need_iolock) { 1630 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1631 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1632 } 1633 1634 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF); 1635 1636 if (need_iolock) { 1637 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1638 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1639 } 1640 1641 return ret; 1642 } 1643 1644 int 1645 xfs_icache_free_cowblocks( 1646 struct xfs_mount *mp, 1647 struct xfs_eofblocks *eofb) 1648 { 1649 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, 1650 XFS_ICI_COWBLOCKS_TAG); 1651 } 1652 1653 int 1654 xfs_inode_free_quota_cowblocks( 1655 struct xfs_inode *ip) 1656 { 1657 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); 1658 } 1659 1660 void 1661 xfs_inode_set_cowblocks_tag( 1662 xfs_inode_t *ip) 1663 { 1664 trace_xfs_inode_set_cowblocks_tag(ip); 1665 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks, 1666 trace_xfs_perag_set_cowblocks, 1667 XFS_ICI_COWBLOCKS_TAG); 1668 } 1669 1670 void 1671 xfs_inode_clear_cowblocks_tag( 1672 xfs_inode_t *ip) 1673 { 1674 trace_xfs_inode_clear_cowblocks_tag(ip); 1675 return __xfs_inode_clear_eofblocks_tag(ip, 1676 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); 1677 } 1678