xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25 #include "xfs_ialloc.h"
26 
27 #include <linux/iversion.h>
28 
29 /*
30  * Allocate and initialise an xfs_inode.
31  */
32 struct xfs_inode *
33 xfs_inode_alloc(
34 	struct xfs_mount	*mp,
35 	xfs_ino_t		ino)
36 {
37 	struct xfs_inode	*ip;
38 
39 	/*
40 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
41 	 * and return NULL here on ENOMEM.
42 	 */
43 	ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
44 
45 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
46 		kmem_cache_free(xfs_inode_zone, ip);
47 		return NULL;
48 	}
49 
50 	/* VFS doesn't initialise i_mode! */
51 	VFS_I(ip)->i_mode = 0;
52 
53 	XFS_STATS_INC(mp, vn_active);
54 	ASSERT(atomic_read(&ip->i_pincount) == 0);
55 	ASSERT(ip->i_ino == 0);
56 
57 	/* initialise the xfs inode */
58 	ip->i_ino = ino;
59 	ip->i_mount = mp;
60 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
61 	ip->i_afp = NULL;
62 	ip->i_cowfp = NULL;
63 	memset(&ip->i_df, 0, sizeof(ip->i_df));
64 	ip->i_flags = 0;
65 	ip->i_delayed_blks = 0;
66 	memset(&ip->i_d, 0, sizeof(ip->i_d));
67 	ip->i_sick = 0;
68 	ip->i_checked = 0;
69 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
70 	INIT_LIST_HEAD(&ip->i_ioend_list);
71 	spin_lock_init(&ip->i_ioend_lock);
72 
73 	return ip;
74 }
75 
76 STATIC void
77 xfs_inode_free_callback(
78 	struct rcu_head		*head)
79 {
80 	struct inode		*inode = container_of(head, struct inode, i_rcu);
81 	struct xfs_inode	*ip = XFS_I(inode);
82 
83 	switch (VFS_I(ip)->i_mode & S_IFMT) {
84 	case S_IFREG:
85 	case S_IFDIR:
86 	case S_IFLNK:
87 		xfs_idestroy_fork(&ip->i_df);
88 		break;
89 	}
90 
91 	if (ip->i_afp) {
92 		xfs_idestroy_fork(ip->i_afp);
93 		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
94 	}
95 	if (ip->i_cowfp) {
96 		xfs_idestroy_fork(ip->i_cowfp);
97 		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
98 	}
99 	if (ip->i_itemp) {
100 		ASSERT(!test_bit(XFS_LI_IN_AIL,
101 				 &ip->i_itemp->ili_item.li_flags));
102 		xfs_inode_item_destroy(ip);
103 		ip->i_itemp = NULL;
104 	}
105 
106 	kmem_cache_free(xfs_inode_zone, ip);
107 }
108 
109 static void
110 __xfs_inode_free(
111 	struct xfs_inode	*ip)
112 {
113 	/* asserts to verify all state is correct here */
114 	ASSERT(atomic_read(&ip->i_pincount) == 0);
115 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
116 	XFS_STATS_DEC(ip->i_mount, vn_active);
117 
118 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
119 }
120 
121 void
122 xfs_inode_free(
123 	struct xfs_inode	*ip)
124 {
125 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
126 
127 	/*
128 	 * Because we use RCU freeing we need to ensure the inode always
129 	 * appears to be reclaimed with an invalid inode number when in the
130 	 * free state. The ip->i_flags_lock provides the barrier against lookup
131 	 * races.
132 	 */
133 	spin_lock(&ip->i_flags_lock);
134 	ip->i_flags = XFS_IRECLAIM;
135 	ip->i_ino = 0;
136 	spin_unlock(&ip->i_flags_lock);
137 
138 	__xfs_inode_free(ip);
139 }
140 
141 /*
142  * Queue background inode reclaim work if there are reclaimable inodes and there
143  * isn't reclaim work already scheduled or in progress.
144  */
145 static void
146 xfs_reclaim_work_queue(
147 	struct xfs_mount        *mp)
148 {
149 
150 	rcu_read_lock();
151 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
152 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
153 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
154 	}
155 	rcu_read_unlock();
156 }
157 
158 static void
159 xfs_perag_set_reclaim_tag(
160 	struct xfs_perag	*pag)
161 {
162 	struct xfs_mount	*mp = pag->pag_mount;
163 
164 	lockdep_assert_held(&pag->pag_ici_lock);
165 	if (pag->pag_ici_reclaimable++)
166 		return;
167 
168 	/* propagate the reclaim tag up into the perag radix tree */
169 	spin_lock(&mp->m_perag_lock);
170 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
171 			   XFS_ICI_RECLAIM_TAG);
172 	spin_unlock(&mp->m_perag_lock);
173 
174 	/* schedule periodic background inode reclaim */
175 	xfs_reclaim_work_queue(mp);
176 
177 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
178 }
179 
180 static void
181 xfs_perag_clear_reclaim_tag(
182 	struct xfs_perag	*pag)
183 {
184 	struct xfs_mount	*mp = pag->pag_mount;
185 
186 	lockdep_assert_held(&pag->pag_ici_lock);
187 	if (--pag->pag_ici_reclaimable)
188 		return;
189 
190 	/* clear the reclaim tag from the perag radix tree */
191 	spin_lock(&mp->m_perag_lock);
192 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
193 			     XFS_ICI_RECLAIM_TAG);
194 	spin_unlock(&mp->m_perag_lock);
195 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
196 }
197 
198 
199 /*
200  * We set the inode flag atomically with the radix tree tag.
201  * Once we get tag lookups on the radix tree, this inode flag
202  * can go away.
203  */
204 void
205 xfs_inode_set_reclaim_tag(
206 	struct xfs_inode	*ip)
207 {
208 	struct xfs_mount	*mp = ip->i_mount;
209 	struct xfs_perag	*pag;
210 
211 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
212 	spin_lock(&pag->pag_ici_lock);
213 	spin_lock(&ip->i_flags_lock);
214 
215 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
216 			   XFS_ICI_RECLAIM_TAG);
217 	xfs_perag_set_reclaim_tag(pag);
218 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
219 
220 	spin_unlock(&ip->i_flags_lock);
221 	spin_unlock(&pag->pag_ici_lock);
222 	xfs_perag_put(pag);
223 }
224 
225 STATIC void
226 xfs_inode_clear_reclaim_tag(
227 	struct xfs_perag	*pag,
228 	xfs_ino_t		ino)
229 {
230 	radix_tree_tag_clear(&pag->pag_ici_root,
231 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
232 			     XFS_ICI_RECLAIM_TAG);
233 	xfs_perag_clear_reclaim_tag(pag);
234 }
235 
236 static void
237 xfs_inew_wait(
238 	struct xfs_inode	*ip)
239 {
240 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
241 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
242 
243 	do {
244 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
245 		if (!xfs_iflags_test(ip, XFS_INEW))
246 			break;
247 		schedule();
248 	} while (true);
249 	finish_wait(wq, &wait.wq_entry);
250 }
251 
252 /*
253  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
254  * part of the structure. This is made more complex by the fact we store
255  * information about the on-disk values in the VFS inode and so we can't just
256  * overwrite the values unconditionally. Hence we save the parameters we
257  * need to retain across reinitialisation, and rewrite them into the VFS inode
258  * after reinitialisation even if it fails.
259  */
260 static int
261 xfs_reinit_inode(
262 	struct xfs_mount	*mp,
263 	struct inode		*inode)
264 {
265 	int		error;
266 	uint32_t	nlink = inode->i_nlink;
267 	uint32_t	generation = inode->i_generation;
268 	uint64_t	version = inode_peek_iversion(inode);
269 	umode_t		mode = inode->i_mode;
270 	dev_t		dev = inode->i_rdev;
271 	kuid_t		uid = inode->i_uid;
272 	kgid_t		gid = inode->i_gid;
273 
274 	error = inode_init_always(mp->m_super, inode);
275 
276 	set_nlink(inode, nlink);
277 	inode->i_generation = generation;
278 	inode_set_iversion_queried(inode, version);
279 	inode->i_mode = mode;
280 	inode->i_rdev = dev;
281 	inode->i_uid = uid;
282 	inode->i_gid = gid;
283 	return error;
284 }
285 
286 /*
287  * If we are allocating a new inode, then check what was returned is
288  * actually a free, empty inode. If we are not allocating an inode,
289  * then check we didn't find a free inode.
290  *
291  * Returns:
292  *	0		if the inode free state matches the lookup context
293  *	-ENOENT		if the inode is free and we are not allocating
294  *	-EFSCORRUPTED	if there is any state mismatch at all
295  */
296 static int
297 xfs_iget_check_free_state(
298 	struct xfs_inode	*ip,
299 	int			flags)
300 {
301 	if (flags & XFS_IGET_CREATE) {
302 		/* should be a free inode */
303 		if (VFS_I(ip)->i_mode != 0) {
304 			xfs_warn(ip->i_mount,
305 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
306 				ip->i_ino, VFS_I(ip)->i_mode);
307 			return -EFSCORRUPTED;
308 		}
309 
310 		if (ip->i_d.di_nblocks != 0) {
311 			xfs_warn(ip->i_mount,
312 "Corruption detected! Free inode 0x%llx has blocks allocated!",
313 				ip->i_ino);
314 			return -EFSCORRUPTED;
315 		}
316 		return 0;
317 	}
318 
319 	/* should be an allocated inode */
320 	if (VFS_I(ip)->i_mode == 0)
321 		return -ENOENT;
322 
323 	return 0;
324 }
325 
326 /*
327  * Check the validity of the inode we just found it the cache
328  */
329 static int
330 xfs_iget_cache_hit(
331 	struct xfs_perag	*pag,
332 	struct xfs_inode	*ip,
333 	xfs_ino_t		ino,
334 	int			flags,
335 	int			lock_flags) __releases(RCU)
336 {
337 	struct inode		*inode = VFS_I(ip);
338 	struct xfs_mount	*mp = ip->i_mount;
339 	int			error;
340 
341 	/*
342 	 * check for re-use of an inode within an RCU grace period due to the
343 	 * radix tree nodes not being updated yet. We monitor for this by
344 	 * setting the inode number to zero before freeing the inode structure.
345 	 * If the inode has been reallocated and set up, then the inode number
346 	 * will not match, so check for that, too.
347 	 */
348 	spin_lock(&ip->i_flags_lock);
349 	if (ip->i_ino != ino) {
350 		trace_xfs_iget_skip(ip);
351 		XFS_STATS_INC(mp, xs_ig_frecycle);
352 		error = -EAGAIN;
353 		goto out_error;
354 	}
355 
356 
357 	/*
358 	 * If we are racing with another cache hit that is currently
359 	 * instantiating this inode or currently recycling it out of
360 	 * reclaimabe state, wait for the initialisation to complete
361 	 * before continuing.
362 	 *
363 	 * XXX(hch): eventually we should do something equivalent to
364 	 *	     wait_on_inode to wait for these flags to be cleared
365 	 *	     instead of polling for it.
366 	 */
367 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
368 		trace_xfs_iget_skip(ip);
369 		XFS_STATS_INC(mp, xs_ig_frecycle);
370 		error = -EAGAIN;
371 		goto out_error;
372 	}
373 
374 	/*
375 	 * Check the inode free state is valid. This also detects lookup
376 	 * racing with unlinks.
377 	 */
378 	error = xfs_iget_check_free_state(ip, flags);
379 	if (error)
380 		goto out_error;
381 
382 	/*
383 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
384 	 * Need to carefully get it back into useable state.
385 	 */
386 	if (ip->i_flags & XFS_IRECLAIMABLE) {
387 		trace_xfs_iget_reclaim(ip);
388 
389 		if (flags & XFS_IGET_INCORE) {
390 			error = -EAGAIN;
391 			goto out_error;
392 		}
393 
394 		/*
395 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
396 		 * from stomping over us while we recycle the inode.  We can't
397 		 * clear the radix tree reclaimable tag yet as it requires
398 		 * pag_ici_lock to be held exclusive.
399 		 */
400 		ip->i_flags |= XFS_IRECLAIM;
401 
402 		spin_unlock(&ip->i_flags_lock);
403 		rcu_read_unlock();
404 
405 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
406 		error = xfs_reinit_inode(mp, inode);
407 		if (error) {
408 			bool wake;
409 			/*
410 			 * Re-initializing the inode failed, and we are in deep
411 			 * trouble.  Try to re-add it to the reclaim list.
412 			 */
413 			rcu_read_lock();
414 			spin_lock(&ip->i_flags_lock);
415 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
416 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
417 			if (wake)
418 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
419 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
420 			trace_xfs_iget_reclaim_fail(ip);
421 			goto out_error;
422 		}
423 
424 		spin_lock(&pag->pag_ici_lock);
425 		spin_lock(&ip->i_flags_lock);
426 
427 		/*
428 		 * Clear the per-lifetime state in the inode as we are now
429 		 * effectively a new inode and need to return to the initial
430 		 * state before reuse occurs.
431 		 */
432 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
433 		ip->i_flags |= XFS_INEW;
434 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
435 		inode->i_state = I_NEW;
436 		ip->i_sick = 0;
437 		ip->i_checked = 0;
438 
439 		spin_unlock(&ip->i_flags_lock);
440 		spin_unlock(&pag->pag_ici_lock);
441 	} else {
442 		/* If the VFS inode is being torn down, pause and try again. */
443 		if (!igrab(inode)) {
444 			trace_xfs_iget_skip(ip);
445 			error = -EAGAIN;
446 			goto out_error;
447 		}
448 
449 		/* We've got a live one. */
450 		spin_unlock(&ip->i_flags_lock);
451 		rcu_read_unlock();
452 		trace_xfs_iget_hit(ip);
453 	}
454 
455 	if (lock_flags != 0)
456 		xfs_ilock(ip, lock_flags);
457 
458 	if (!(flags & XFS_IGET_INCORE))
459 		xfs_iflags_clear(ip, XFS_ISTALE);
460 	XFS_STATS_INC(mp, xs_ig_found);
461 
462 	return 0;
463 
464 out_error:
465 	spin_unlock(&ip->i_flags_lock);
466 	rcu_read_unlock();
467 	return error;
468 }
469 
470 
471 static int
472 xfs_iget_cache_miss(
473 	struct xfs_mount	*mp,
474 	struct xfs_perag	*pag,
475 	xfs_trans_t		*tp,
476 	xfs_ino_t		ino,
477 	struct xfs_inode	**ipp,
478 	int			flags,
479 	int			lock_flags)
480 {
481 	struct xfs_inode	*ip;
482 	int			error;
483 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
484 	int			iflags;
485 
486 	ip = xfs_inode_alloc(mp, ino);
487 	if (!ip)
488 		return -ENOMEM;
489 
490 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
491 	if (error)
492 		goto out_destroy;
493 
494 	/*
495 	 * For version 5 superblocks, if we are initialising a new inode and we
496 	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
497 	 * simply build the new inode core with a random generation number.
498 	 *
499 	 * For version 4 (and older) superblocks, log recovery is dependent on
500 	 * the di_flushiter field being initialised from the current on-disk
501 	 * value and hence we must also read the inode off disk even when
502 	 * initializing new inodes.
503 	 */
504 	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
505 	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
506 		VFS_I(ip)->i_generation = prandom_u32();
507 	} else {
508 		struct xfs_dinode	*dip;
509 		struct xfs_buf		*bp;
510 
511 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
512 		if (error)
513 			goto out_destroy;
514 
515 		error = xfs_inode_from_disk(ip, dip);
516 		if (!error)
517 			xfs_buf_set_ref(bp, XFS_INO_REF);
518 		xfs_trans_brelse(tp, bp);
519 
520 		if (error)
521 			goto out_destroy;
522 	}
523 
524 	trace_xfs_iget_miss(ip);
525 
526 	/*
527 	 * Check the inode free state is valid. This also detects lookup
528 	 * racing with unlinks.
529 	 */
530 	error = xfs_iget_check_free_state(ip, flags);
531 	if (error)
532 		goto out_destroy;
533 
534 	/*
535 	 * Preload the radix tree so we can insert safely under the
536 	 * write spinlock. Note that we cannot sleep inside the preload
537 	 * region. Since we can be called from transaction context, don't
538 	 * recurse into the file system.
539 	 */
540 	if (radix_tree_preload(GFP_NOFS)) {
541 		error = -EAGAIN;
542 		goto out_destroy;
543 	}
544 
545 	/*
546 	 * Because the inode hasn't been added to the radix-tree yet it can't
547 	 * be found by another thread, so we can do the non-sleeping lock here.
548 	 */
549 	if (lock_flags) {
550 		if (!xfs_ilock_nowait(ip, lock_flags))
551 			BUG();
552 	}
553 
554 	/*
555 	 * These values must be set before inserting the inode into the radix
556 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
557 	 * RCU locking mechanism) can find it and that lookup must see that this
558 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
559 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
560 	 * memory barrier that ensures this detection works correctly at lookup
561 	 * time.
562 	 */
563 	iflags = XFS_INEW;
564 	if (flags & XFS_IGET_DONTCACHE)
565 		d_mark_dontcache(VFS_I(ip));
566 	ip->i_udquot = NULL;
567 	ip->i_gdquot = NULL;
568 	ip->i_pdquot = NULL;
569 	xfs_iflags_set(ip, iflags);
570 
571 	/* insert the new inode */
572 	spin_lock(&pag->pag_ici_lock);
573 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
574 	if (unlikely(error)) {
575 		WARN_ON(error != -EEXIST);
576 		XFS_STATS_INC(mp, xs_ig_dup);
577 		error = -EAGAIN;
578 		goto out_preload_end;
579 	}
580 	spin_unlock(&pag->pag_ici_lock);
581 	radix_tree_preload_end();
582 
583 	*ipp = ip;
584 	return 0;
585 
586 out_preload_end:
587 	spin_unlock(&pag->pag_ici_lock);
588 	radix_tree_preload_end();
589 	if (lock_flags)
590 		xfs_iunlock(ip, lock_flags);
591 out_destroy:
592 	__destroy_inode(VFS_I(ip));
593 	xfs_inode_free(ip);
594 	return error;
595 }
596 
597 /*
598  * Look up an inode by number in the given file system.  The inode is looked up
599  * in the cache held in each AG.  If the inode is found in the cache, initialise
600  * the vfs inode if necessary.
601  *
602  * If it is not in core, read it in from the file system's device, add it to the
603  * cache and initialise the vfs inode.
604  *
605  * The inode is locked according to the value of the lock_flags parameter.
606  * Inode lookup is only done during metadata operations and not as part of the
607  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
608  */
609 int
610 xfs_iget(
611 	struct xfs_mount	*mp,
612 	struct xfs_trans	*tp,
613 	xfs_ino_t		ino,
614 	uint			flags,
615 	uint			lock_flags,
616 	struct xfs_inode	**ipp)
617 {
618 	struct xfs_inode	*ip;
619 	struct xfs_perag	*pag;
620 	xfs_agino_t		agino;
621 	int			error;
622 
623 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
624 
625 	/* reject inode numbers outside existing AGs */
626 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
627 		return -EINVAL;
628 
629 	XFS_STATS_INC(mp, xs_ig_attempts);
630 
631 	/* get the perag structure and ensure that it's inode capable */
632 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
633 	agino = XFS_INO_TO_AGINO(mp, ino);
634 
635 again:
636 	error = 0;
637 	rcu_read_lock();
638 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
639 
640 	if (ip) {
641 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
642 		if (error)
643 			goto out_error_or_again;
644 	} else {
645 		rcu_read_unlock();
646 		if (flags & XFS_IGET_INCORE) {
647 			error = -ENODATA;
648 			goto out_error_or_again;
649 		}
650 		XFS_STATS_INC(mp, xs_ig_missed);
651 
652 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
653 							flags, lock_flags);
654 		if (error)
655 			goto out_error_or_again;
656 	}
657 	xfs_perag_put(pag);
658 
659 	*ipp = ip;
660 
661 	/*
662 	 * If we have a real type for an on-disk inode, we can setup the inode
663 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
664 	 */
665 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
666 		xfs_setup_existing_inode(ip);
667 	return 0;
668 
669 out_error_or_again:
670 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
671 		delay(1);
672 		goto again;
673 	}
674 	xfs_perag_put(pag);
675 	return error;
676 }
677 
678 /*
679  * "Is this a cached inode that's also allocated?"
680  *
681  * Look up an inode by number in the given file system.  If the inode is
682  * in cache and isn't in purgatory, return 1 if the inode is allocated
683  * and 0 if it is not.  For all other cases (not in cache, being torn
684  * down, etc.), return a negative error code.
685  *
686  * The caller has to prevent inode allocation and freeing activity,
687  * presumably by locking the AGI buffer.   This is to ensure that an
688  * inode cannot transition from allocated to freed until the caller is
689  * ready to allow that.  If the inode is in an intermediate state (new,
690  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
691  * inode is not in the cache, -ENOENT will be returned.  The caller must
692  * deal with these scenarios appropriately.
693  *
694  * This is a specialized use case for the online scrubber; if you're
695  * reading this, you probably want xfs_iget.
696  */
697 int
698 xfs_icache_inode_is_allocated(
699 	struct xfs_mount	*mp,
700 	struct xfs_trans	*tp,
701 	xfs_ino_t		ino,
702 	bool			*inuse)
703 {
704 	struct xfs_inode	*ip;
705 	int			error;
706 
707 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
708 	if (error)
709 		return error;
710 
711 	*inuse = !!(VFS_I(ip)->i_mode);
712 	xfs_irele(ip);
713 	return 0;
714 }
715 
716 /*
717  * The inode lookup is done in batches to keep the amount of lock traffic and
718  * radix tree lookups to a minimum. The batch size is a trade off between
719  * lookup reduction and stack usage. This is in the reclaim path, so we can't
720  * be too greedy.
721  */
722 #define XFS_LOOKUP_BATCH	32
723 
724 /*
725  * Decide if the given @ip is eligible to be a part of the inode walk, and
726  * grab it if so.  Returns true if it's ready to go or false if we should just
727  * ignore it.
728  */
729 STATIC bool
730 xfs_inode_walk_ag_grab(
731 	struct xfs_inode	*ip,
732 	int			flags)
733 {
734 	struct inode		*inode = VFS_I(ip);
735 	bool			newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
736 
737 	ASSERT(rcu_read_lock_held());
738 
739 	/* Check for stale RCU freed inode */
740 	spin_lock(&ip->i_flags_lock);
741 	if (!ip->i_ino)
742 		goto out_unlock_noent;
743 
744 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
745 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
746 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
747 		goto out_unlock_noent;
748 	spin_unlock(&ip->i_flags_lock);
749 
750 	/* nothing to sync during shutdown */
751 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
752 		return false;
753 
754 	/* If we can't grab the inode, it must on it's way to reclaim. */
755 	if (!igrab(inode))
756 		return false;
757 
758 	/* inode is valid */
759 	return true;
760 
761 out_unlock_noent:
762 	spin_unlock(&ip->i_flags_lock);
763 	return false;
764 }
765 
766 /*
767  * For a given per-AG structure @pag, grab, @execute, and rele all incore
768  * inodes with the given radix tree @tag.
769  */
770 STATIC int
771 xfs_inode_walk_ag(
772 	struct xfs_perag	*pag,
773 	int			iter_flags,
774 	int			(*execute)(struct xfs_inode *ip, void *args),
775 	void			*args,
776 	int			tag)
777 {
778 	struct xfs_mount	*mp = pag->pag_mount;
779 	uint32_t		first_index;
780 	int			last_error = 0;
781 	int			skipped;
782 	bool			done;
783 	int			nr_found;
784 
785 restart:
786 	done = false;
787 	skipped = 0;
788 	first_index = 0;
789 	nr_found = 0;
790 	do {
791 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
792 		int		error = 0;
793 		int		i;
794 
795 		rcu_read_lock();
796 
797 		if (tag == XFS_ICI_NO_TAG)
798 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
799 					(void **)batch, first_index,
800 					XFS_LOOKUP_BATCH);
801 		else
802 			nr_found = radix_tree_gang_lookup_tag(
803 					&pag->pag_ici_root,
804 					(void **) batch, first_index,
805 					XFS_LOOKUP_BATCH, tag);
806 
807 		if (!nr_found) {
808 			rcu_read_unlock();
809 			break;
810 		}
811 
812 		/*
813 		 * Grab the inodes before we drop the lock. if we found
814 		 * nothing, nr == 0 and the loop will be skipped.
815 		 */
816 		for (i = 0; i < nr_found; i++) {
817 			struct xfs_inode *ip = batch[i];
818 
819 			if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
820 				batch[i] = NULL;
821 
822 			/*
823 			 * Update the index for the next lookup. Catch
824 			 * overflows into the next AG range which can occur if
825 			 * we have inodes in the last block of the AG and we
826 			 * are currently pointing to the last inode.
827 			 *
828 			 * Because we may see inodes that are from the wrong AG
829 			 * due to RCU freeing and reallocation, only update the
830 			 * index if it lies in this AG. It was a race that lead
831 			 * us to see this inode, so another lookup from the
832 			 * same index will not find it again.
833 			 */
834 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
835 				continue;
836 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
837 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
838 				done = true;
839 		}
840 
841 		/* unlock now we've grabbed the inodes. */
842 		rcu_read_unlock();
843 
844 		for (i = 0; i < nr_found; i++) {
845 			if (!batch[i])
846 				continue;
847 			if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
848 			    xfs_iflags_test(batch[i], XFS_INEW))
849 				xfs_inew_wait(batch[i]);
850 			error = execute(batch[i], args);
851 			xfs_irele(batch[i]);
852 			if (error == -EAGAIN) {
853 				skipped++;
854 				continue;
855 			}
856 			if (error && last_error != -EFSCORRUPTED)
857 				last_error = error;
858 		}
859 
860 		/* bail out if the filesystem is corrupted.  */
861 		if (error == -EFSCORRUPTED)
862 			break;
863 
864 		cond_resched();
865 
866 	} while (nr_found && !done);
867 
868 	if (skipped) {
869 		delay(1);
870 		goto restart;
871 	}
872 	return last_error;
873 }
874 
875 /* Fetch the next (possibly tagged) per-AG structure. */
876 static inline struct xfs_perag *
877 xfs_inode_walk_get_perag(
878 	struct xfs_mount	*mp,
879 	xfs_agnumber_t		agno,
880 	int			tag)
881 {
882 	if (tag == XFS_ICI_NO_TAG)
883 		return xfs_perag_get(mp, agno);
884 	return xfs_perag_get_tag(mp, agno, tag);
885 }
886 
887 /*
888  * Call the @execute function on all incore inodes matching the radix tree
889  * @tag.
890  */
891 int
892 xfs_inode_walk(
893 	struct xfs_mount	*mp,
894 	int			iter_flags,
895 	int			(*execute)(struct xfs_inode *ip, void *args),
896 	void			*args,
897 	int			tag)
898 {
899 	struct xfs_perag	*pag;
900 	int			error = 0;
901 	int			last_error = 0;
902 	xfs_agnumber_t		ag;
903 
904 	ag = 0;
905 	while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
906 		ag = pag->pag_agno + 1;
907 		error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
908 		xfs_perag_put(pag);
909 		if (error) {
910 			last_error = error;
911 			if (error == -EFSCORRUPTED)
912 				break;
913 		}
914 	}
915 	return last_error;
916 }
917 
918 /*
919  * Background scanning to trim post-EOF preallocated space. This is queued
920  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
921  */
922 void
923 xfs_queue_eofblocks(
924 	struct xfs_mount *mp)
925 {
926 	rcu_read_lock();
927 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
928 		queue_delayed_work(mp->m_eofblocks_workqueue,
929 				   &mp->m_eofblocks_work,
930 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
931 	rcu_read_unlock();
932 }
933 
934 void
935 xfs_eofblocks_worker(
936 	struct work_struct *work)
937 {
938 	struct xfs_mount *mp = container_of(to_delayed_work(work),
939 				struct xfs_mount, m_eofblocks_work);
940 
941 	if (!sb_start_write_trylock(mp->m_super))
942 		return;
943 	xfs_icache_free_eofblocks(mp, NULL);
944 	sb_end_write(mp->m_super);
945 
946 	xfs_queue_eofblocks(mp);
947 }
948 
949 /*
950  * Background scanning to trim preallocated CoW space. This is queued
951  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
952  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
953  */
954 void
955 xfs_queue_cowblocks(
956 	struct xfs_mount *mp)
957 {
958 	rcu_read_lock();
959 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
960 		queue_delayed_work(mp->m_eofblocks_workqueue,
961 				   &mp->m_cowblocks_work,
962 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
963 	rcu_read_unlock();
964 }
965 
966 void
967 xfs_cowblocks_worker(
968 	struct work_struct *work)
969 {
970 	struct xfs_mount *mp = container_of(to_delayed_work(work),
971 				struct xfs_mount, m_cowblocks_work);
972 
973 	if (!sb_start_write_trylock(mp->m_super))
974 		return;
975 	xfs_icache_free_cowblocks(mp, NULL);
976 	sb_end_write(mp->m_super);
977 
978 	xfs_queue_cowblocks(mp);
979 }
980 
981 /*
982  * Grab the inode for reclaim exclusively.
983  *
984  * We have found this inode via a lookup under RCU, so the inode may have
985  * already been freed, or it may be in the process of being recycled by
986  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
987  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
988  * will not be set. Hence we need to check for both these flag conditions to
989  * avoid inodes that are no longer reclaim candidates.
990  *
991  * Note: checking for other state flags here, under the i_flags_lock or not, is
992  * racy and should be avoided. Those races should be resolved only after we have
993  * ensured that we are able to reclaim this inode and the world can see that we
994  * are going to reclaim it.
995  *
996  * Return true if we grabbed it, false otherwise.
997  */
998 static bool
999 xfs_reclaim_inode_grab(
1000 	struct xfs_inode	*ip)
1001 {
1002 	ASSERT(rcu_read_lock_held());
1003 
1004 	spin_lock(&ip->i_flags_lock);
1005 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1006 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1007 		/* not a reclaim candidate. */
1008 		spin_unlock(&ip->i_flags_lock);
1009 		return false;
1010 	}
1011 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1012 	spin_unlock(&ip->i_flags_lock);
1013 	return true;
1014 }
1015 
1016 /*
1017  * Inode reclaim is non-blocking, so the default action if progress cannot be
1018  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
1019  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
1020  * blocking anymore and hence we can wait for the inode to be able to reclaim
1021  * it.
1022  *
1023  * We do no IO here - if callers require inodes to be cleaned they must push the
1024  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
1025  * done in the background in a non-blocking manner, and enables memory reclaim
1026  * to make progress without blocking.
1027  */
1028 static void
1029 xfs_reclaim_inode(
1030 	struct xfs_inode	*ip,
1031 	struct xfs_perag	*pag)
1032 {
1033 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1034 
1035 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
1036 		goto out;
1037 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
1038 		goto out_iunlock;
1039 
1040 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1041 		xfs_iunpin_wait(ip);
1042 		xfs_iflush_abort(ip);
1043 		goto reclaim;
1044 	}
1045 	if (xfs_ipincount(ip))
1046 		goto out_clear_flush;
1047 	if (!xfs_inode_clean(ip))
1048 		goto out_clear_flush;
1049 
1050 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1051 reclaim:
1052 
1053 	/*
1054 	 * Because we use RCU freeing we need to ensure the inode always appears
1055 	 * to be reclaimed with an invalid inode number when in the free state.
1056 	 * We do this as early as possible under the ILOCK so that
1057 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1058 	 * detect races with us here. By doing this, we guarantee that once
1059 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1060 	 * it will see either a valid inode that will serialise correctly, or it
1061 	 * will see an invalid inode that it can skip.
1062 	 */
1063 	spin_lock(&ip->i_flags_lock);
1064 	ip->i_flags = XFS_IRECLAIM;
1065 	ip->i_ino = 0;
1066 	spin_unlock(&ip->i_flags_lock);
1067 
1068 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1069 
1070 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1071 	/*
1072 	 * Remove the inode from the per-AG radix tree.
1073 	 *
1074 	 * Because radix_tree_delete won't complain even if the item was never
1075 	 * added to the tree assert that it's been there before to catch
1076 	 * problems with the inode life time early on.
1077 	 */
1078 	spin_lock(&pag->pag_ici_lock);
1079 	if (!radix_tree_delete(&pag->pag_ici_root,
1080 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1081 		ASSERT(0);
1082 	xfs_perag_clear_reclaim_tag(pag);
1083 	spin_unlock(&pag->pag_ici_lock);
1084 
1085 	/*
1086 	 * Here we do an (almost) spurious inode lock in order to coordinate
1087 	 * with inode cache radix tree lookups.  This is because the lookup
1088 	 * can reference the inodes in the cache without taking references.
1089 	 *
1090 	 * We make that OK here by ensuring that we wait until the inode is
1091 	 * unlocked after the lookup before we go ahead and free it.
1092 	 */
1093 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1094 	xfs_qm_dqdetach(ip);
1095 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1096 	ASSERT(xfs_inode_clean(ip));
1097 
1098 	__xfs_inode_free(ip);
1099 	return;
1100 
1101 out_clear_flush:
1102 	xfs_iflags_clear(ip, XFS_IFLUSHING);
1103 out_iunlock:
1104 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1105 out:
1106 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1107 }
1108 
1109 /*
1110  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1111  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1112  * then a shut down during filesystem unmount reclaim walk leak all the
1113  * unreclaimed inodes.
1114  *
1115  * Returns non-zero if any AGs or inodes were skipped in the reclaim pass
1116  * so that callers that want to block until all dirty inodes are written back
1117  * and reclaimed can sanely loop.
1118  */
1119 static void
1120 xfs_reclaim_inodes_ag(
1121 	struct xfs_mount	*mp,
1122 	int			*nr_to_scan)
1123 {
1124 	struct xfs_perag	*pag;
1125 	xfs_agnumber_t		ag = 0;
1126 
1127 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1128 		unsigned long	first_index = 0;
1129 		int		done = 0;
1130 		int		nr_found = 0;
1131 
1132 		ag = pag->pag_agno + 1;
1133 
1134 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1135 		do {
1136 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1137 			int	i;
1138 
1139 			rcu_read_lock();
1140 			nr_found = radix_tree_gang_lookup_tag(
1141 					&pag->pag_ici_root,
1142 					(void **)batch, first_index,
1143 					XFS_LOOKUP_BATCH,
1144 					XFS_ICI_RECLAIM_TAG);
1145 			if (!nr_found) {
1146 				done = 1;
1147 				rcu_read_unlock();
1148 				break;
1149 			}
1150 
1151 			/*
1152 			 * Grab the inodes before we drop the lock. if we found
1153 			 * nothing, nr == 0 and the loop will be skipped.
1154 			 */
1155 			for (i = 0; i < nr_found; i++) {
1156 				struct xfs_inode *ip = batch[i];
1157 
1158 				if (done || !xfs_reclaim_inode_grab(ip))
1159 					batch[i] = NULL;
1160 
1161 				/*
1162 				 * Update the index for the next lookup. Catch
1163 				 * overflows into the next AG range which can
1164 				 * occur if we have inodes in the last block of
1165 				 * the AG and we are currently pointing to the
1166 				 * last inode.
1167 				 *
1168 				 * Because we may see inodes that are from the
1169 				 * wrong AG due to RCU freeing and
1170 				 * reallocation, only update the index if it
1171 				 * lies in this AG. It was a race that lead us
1172 				 * to see this inode, so another lookup from
1173 				 * the same index will not find it again.
1174 				 */
1175 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1176 								pag->pag_agno)
1177 					continue;
1178 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1179 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1180 					done = 1;
1181 			}
1182 
1183 			/* unlock now we've grabbed the inodes. */
1184 			rcu_read_unlock();
1185 
1186 			for (i = 0; i < nr_found; i++) {
1187 				if (batch[i])
1188 					xfs_reclaim_inode(batch[i], pag);
1189 			}
1190 
1191 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1192 			cond_resched();
1193 		} while (nr_found && !done && *nr_to_scan > 0);
1194 
1195 		if (done)
1196 			first_index = 0;
1197 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1198 		xfs_perag_put(pag);
1199 	}
1200 }
1201 
1202 void
1203 xfs_reclaim_inodes(
1204 	struct xfs_mount	*mp)
1205 {
1206 	int		nr_to_scan = INT_MAX;
1207 
1208 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1209 		xfs_ail_push_all_sync(mp->m_ail);
1210 		xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1211 	}
1212 }
1213 
1214 /*
1215  * The shrinker infrastructure determines how many inodes we should scan for
1216  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1217  * push the AIL here. We also want to proactively free up memory if we can to
1218  * minimise the amount of work memory reclaim has to do so we kick the
1219  * background reclaim if it isn't already scheduled.
1220  */
1221 long
1222 xfs_reclaim_inodes_nr(
1223 	struct xfs_mount	*mp,
1224 	int			nr_to_scan)
1225 {
1226 	/* kick background reclaimer and push the AIL */
1227 	xfs_reclaim_work_queue(mp);
1228 	xfs_ail_push_all(mp->m_ail);
1229 
1230 	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Return the number of reclaimable inodes in the filesystem for
1236  * the shrinker to determine how much to reclaim.
1237  */
1238 int
1239 xfs_reclaim_inodes_count(
1240 	struct xfs_mount	*mp)
1241 {
1242 	struct xfs_perag	*pag;
1243 	xfs_agnumber_t		ag = 0;
1244 	int			reclaimable = 0;
1245 
1246 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1247 		ag = pag->pag_agno + 1;
1248 		reclaimable += pag->pag_ici_reclaimable;
1249 		xfs_perag_put(pag);
1250 	}
1251 	return reclaimable;
1252 }
1253 
1254 STATIC bool
1255 xfs_inode_match_id(
1256 	struct xfs_inode	*ip,
1257 	struct xfs_eofblocks	*eofb)
1258 {
1259 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1260 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1261 		return false;
1262 
1263 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1264 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1265 		return false;
1266 
1267 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1268 	    ip->i_d.di_projid != eofb->eof_prid)
1269 		return false;
1270 
1271 	return true;
1272 }
1273 
1274 /*
1275  * A union-based inode filtering algorithm. Process the inode if any of the
1276  * criteria match. This is for global/internal scans only.
1277  */
1278 STATIC bool
1279 xfs_inode_match_id_union(
1280 	struct xfs_inode	*ip,
1281 	struct xfs_eofblocks	*eofb)
1282 {
1283 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1284 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1285 		return true;
1286 
1287 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1288 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1289 		return true;
1290 
1291 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1292 	    ip->i_d.di_projid == eofb->eof_prid)
1293 		return true;
1294 
1295 	return false;
1296 }
1297 
1298 /*
1299  * Is this inode @ip eligible for eof/cow block reclamation, given some
1300  * filtering parameters @eofb?  The inode is eligible if @eofb is null or
1301  * if the predicate functions match.
1302  */
1303 static bool
1304 xfs_inode_matches_eofb(
1305 	struct xfs_inode	*ip,
1306 	struct xfs_eofblocks	*eofb)
1307 {
1308 	bool			match;
1309 
1310 	if (!eofb)
1311 		return true;
1312 
1313 	if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1314 		match = xfs_inode_match_id_union(ip, eofb);
1315 	else
1316 		match = xfs_inode_match_id(ip, eofb);
1317 	if (!match)
1318 		return false;
1319 
1320 	/* skip the inode if the file size is too small */
1321 	if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
1322 	    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1323 		return false;
1324 
1325 	return true;
1326 }
1327 
1328 /*
1329  * This is a fast pass over the inode cache to try to get reclaim moving on as
1330  * many inodes as possible in a short period of time. It kicks itself every few
1331  * seconds, as well as being kicked by the inode cache shrinker when memory
1332  * goes low.
1333  */
1334 void
1335 xfs_reclaim_worker(
1336 	struct work_struct *work)
1337 {
1338 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1339 					struct xfs_mount, m_reclaim_work);
1340 	int		nr_to_scan = INT_MAX;
1341 
1342 	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1343 	xfs_reclaim_work_queue(mp);
1344 }
1345 
1346 STATIC int
1347 xfs_inode_free_eofblocks(
1348 	struct xfs_inode	*ip,
1349 	void			*args)
1350 {
1351 	struct xfs_eofblocks	*eofb = args;
1352 	bool			wait;
1353 	int			ret;
1354 
1355 	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1356 
1357 	if (!xfs_can_free_eofblocks(ip, false)) {
1358 		/* inode could be preallocated or append-only */
1359 		trace_xfs_inode_free_eofblocks_invalid(ip);
1360 		xfs_inode_clear_eofblocks_tag(ip);
1361 		return 0;
1362 	}
1363 
1364 	/*
1365 	 * If the mapping is dirty the operation can block and wait for some
1366 	 * time. Unless we are waiting, skip it.
1367 	 */
1368 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1369 		return 0;
1370 
1371 	if (!xfs_inode_matches_eofb(ip, eofb))
1372 		return 0;
1373 
1374 	/*
1375 	 * If the caller is waiting, return -EAGAIN to keep the background
1376 	 * scanner moving and revisit the inode in a subsequent pass.
1377 	 */
1378 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1379 		if (wait)
1380 			return -EAGAIN;
1381 		return 0;
1382 	}
1383 
1384 	ret = xfs_free_eofblocks(ip);
1385 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1386 
1387 	return ret;
1388 }
1389 
1390 int
1391 xfs_icache_free_eofblocks(
1392 	struct xfs_mount	*mp,
1393 	struct xfs_eofblocks	*eofb)
1394 {
1395 	return xfs_inode_walk(mp, 0, xfs_inode_free_eofblocks, eofb,
1396 			XFS_ICI_EOFBLOCKS_TAG);
1397 }
1398 
1399 /*
1400  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1401  * multiple quotas, we don't know exactly which quota caused an allocation
1402  * failure. We make a best effort by including each quota under low free space
1403  * conditions (less than 1% free space) in the scan.
1404  */
1405 static int
1406 __xfs_inode_free_quota_eofblocks(
1407 	struct xfs_inode	*ip,
1408 	int			(*execute)(struct xfs_mount *mp,
1409 					   struct xfs_eofblocks	*eofb))
1410 {
1411 	int scan = 0;
1412 	struct xfs_eofblocks eofb = {0};
1413 	struct xfs_dquot *dq;
1414 
1415 	/*
1416 	 * Run a sync scan to increase effectiveness and use the union filter to
1417 	 * cover all applicable quotas in a single scan.
1418 	 */
1419 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1420 
1421 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1422 		dq = xfs_inode_dquot(ip, XFS_DQTYPE_USER);
1423 		if (dq && xfs_dquot_lowsp(dq)) {
1424 			eofb.eof_uid = VFS_I(ip)->i_uid;
1425 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1426 			scan = 1;
1427 		}
1428 	}
1429 
1430 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1431 		dq = xfs_inode_dquot(ip, XFS_DQTYPE_GROUP);
1432 		if (dq && xfs_dquot_lowsp(dq)) {
1433 			eofb.eof_gid = VFS_I(ip)->i_gid;
1434 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1435 			scan = 1;
1436 		}
1437 	}
1438 
1439 	if (scan)
1440 		execute(ip->i_mount, &eofb);
1441 
1442 	return scan;
1443 }
1444 
1445 int
1446 xfs_inode_free_quota_eofblocks(
1447 	struct xfs_inode *ip)
1448 {
1449 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1450 }
1451 
1452 static inline unsigned long
1453 xfs_iflag_for_tag(
1454 	int		tag)
1455 {
1456 	switch (tag) {
1457 	case XFS_ICI_EOFBLOCKS_TAG:
1458 		return XFS_IEOFBLOCKS;
1459 	case XFS_ICI_COWBLOCKS_TAG:
1460 		return XFS_ICOWBLOCKS;
1461 	default:
1462 		ASSERT(0);
1463 		return 0;
1464 	}
1465 }
1466 
1467 static void
1468 __xfs_inode_set_blocks_tag(
1469 	xfs_inode_t	*ip,
1470 	void		(*execute)(struct xfs_mount *mp),
1471 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1472 				  int error, unsigned long caller_ip),
1473 	int		tag)
1474 {
1475 	struct xfs_mount *mp = ip->i_mount;
1476 	struct xfs_perag *pag;
1477 	int tagged;
1478 
1479 	/*
1480 	 * Don't bother locking the AG and looking up in the radix trees
1481 	 * if we already know that we have the tag set.
1482 	 */
1483 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1484 		return;
1485 	spin_lock(&ip->i_flags_lock);
1486 	ip->i_flags |= xfs_iflag_for_tag(tag);
1487 	spin_unlock(&ip->i_flags_lock);
1488 
1489 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1490 	spin_lock(&pag->pag_ici_lock);
1491 
1492 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1493 	radix_tree_tag_set(&pag->pag_ici_root,
1494 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1495 	if (!tagged) {
1496 		/* propagate the eofblocks tag up into the perag radix tree */
1497 		spin_lock(&ip->i_mount->m_perag_lock);
1498 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1499 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1500 				   tag);
1501 		spin_unlock(&ip->i_mount->m_perag_lock);
1502 
1503 		/* kick off background trimming */
1504 		execute(ip->i_mount);
1505 
1506 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1507 	}
1508 
1509 	spin_unlock(&pag->pag_ici_lock);
1510 	xfs_perag_put(pag);
1511 }
1512 
1513 void
1514 xfs_inode_set_eofblocks_tag(
1515 	xfs_inode_t	*ip)
1516 {
1517 	trace_xfs_inode_set_eofblocks_tag(ip);
1518 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1519 			trace_xfs_perag_set_eofblocks,
1520 			XFS_ICI_EOFBLOCKS_TAG);
1521 }
1522 
1523 static void
1524 __xfs_inode_clear_blocks_tag(
1525 	xfs_inode_t	*ip,
1526 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1527 				    int error, unsigned long caller_ip),
1528 	int		tag)
1529 {
1530 	struct xfs_mount *mp = ip->i_mount;
1531 	struct xfs_perag *pag;
1532 
1533 	spin_lock(&ip->i_flags_lock);
1534 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1535 	spin_unlock(&ip->i_flags_lock);
1536 
1537 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1538 	spin_lock(&pag->pag_ici_lock);
1539 
1540 	radix_tree_tag_clear(&pag->pag_ici_root,
1541 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1542 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1543 		/* clear the eofblocks tag from the perag radix tree */
1544 		spin_lock(&ip->i_mount->m_perag_lock);
1545 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1546 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1547 				     tag);
1548 		spin_unlock(&ip->i_mount->m_perag_lock);
1549 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1550 	}
1551 
1552 	spin_unlock(&pag->pag_ici_lock);
1553 	xfs_perag_put(pag);
1554 }
1555 
1556 void
1557 xfs_inode_clear_eofblocks_tag(
1558 	xfs_inode_t	*ip)
1559 {
1560 	trace_xfs_inode_clear_eofblocks_tag(ip);
1561 	return __xfs_inode_clear_blocks_tag(ip,
1562 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1563 }
1564 
1565 /*
1566  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1567  * then we can bail out quickly, but otherwise we must back off if the file
1568  * is undergoing some kind of write.
1569  */
1570 static bool
1571 xfs_prep_free_cowblocks(
1572 	struct xfs_inode	*ip)
1573 {
1574 	/*
1575 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1576 	 * possible the inode was fully unshared since it was originally tagged.
1577 	 */
1578 	if (!xfs_inode_has_cow_data(ip)) {
1579 		trace_xfs_inode_free_cowblocks_invalid(ip);
1580 		xfs_inode_clear_cowblocks_tag(ip);
1581 		return false;
1582 	}
1583 
1584 	/*
1585 	 * If the mapping is dirty or under writeback we cannot touch the
1586 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1587 	 */
1588 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1589 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1590 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1591 	    atomic_read(&VFS_I(ip)->i_dio_count))
1592 		return false;
1593 
1594 	return true;
1595 }
1596 
1597 /*
1598  * Automatic CoW Reservation Freeing
1599  *
1600  * These functions automatically garbage collect leftover CoW reservations
1601  * that were made on behalf of a cowextsize hint when we start to run out
1602  * of quota or when the reservations sit around for too long.  If the file
1603  * has dirty pages or is undergoing writeback, its CoW reservations will
1604  * be retained.
1605  *
1606  * The actual garbage collection piggybacks off the same code that runs
1607  * the speculative EOF preallocation garbage collector.
1608  */
1609 STATIC int
1610 xfs_inode_free_cowblocks(
1611 	struct xfs_inode	*ip,
1612 	void			*args)
1613 {
1614 	struct xfs_eofblocks	*eofb = args;
1615 	int			ret = 0;
1616 
1617 	if (!xfs_prep_free_cowblocks(ip))
1618 		return 0;
1619 
1620 	if (!xfs_inode_matches_eofb(ip, eofb))
1621 		return 0;
1622 
1623 	/* Free the CoW blocks */
1624 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1625 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1626 
1627 	/*
1628 	 * Check again, nobody else should be able to dirty blocks or change
1629 	 * the reflink iflag now that we have the first two locks held.
1630 	 */
1631 	if (xfs_prep_free_cowblocks(ip))
1632 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1633 
1634 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1635 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1636 
1637 	return ret;
1638 }
1639 
1640 int
1641 xfs_icache_free_cowblocks(
1642 	struct xfs_mount	*mp,
1643 	struct xfs_eofblocks	*eofb)
1644 {
1645 	return xfs_inode_walk(mp, 0, xfs_inode_free_cowblocks, eofb,
1646 			XFS_ICI_COWBLOCKS_TAG);
1647 }
1648 
1649 int
1650 xfs_inode_free_quota_cowblocks(
1651 	struct xfs_inode *ip)
1652 {
1653 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1654 }
1655 
1656 void
1657 xfs_inode_set_cowblocks_tag(
1658 	xfs_inode_t	*ip)
1659 {
1660 	trace_xfs_inode_set_cowblocks_tag(ip);
1661 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1662 			trace_xfs_perag_set_cowblocks,
1663 			XFS_ICI_COWBLOCKS_TAG);
1664 }
1665 
1666 void
1667 xfs_inode_clear_cowblocks_tag(
1668 	xfs_inode_t	*ip)
1669 {
1670 	trace_xfs_inode_clear_cowblocks_tag(ip);
1671 	return __xfs_inode_clear_blocks_tag(ip,
1672 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1673 }
1674 
1675 /* Disable post-EOF and CoW block auto-reclamation. */
1676 void
1677 xfs_stop_block_reaping(
1678 	struct xfs_mount	*mp)
1679 {
1680 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1681 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1682 }
1683 
1684 /* Enable post-EOF and CoW block auto-reclamation. */
1685 void
1686 xfs_start_block_reaping(
1687 	struct xfs_mount	*mp)
1688 {
1689 	xfs_queue_eofblocks(mp);
1690 	xfs_queue_cowblocks(mp);
1691 }
1692