1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_quota.h" 19 #include "xfs_trace.h" 20 #include "xfs_icache.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_dquot_item.h" 23 #include "xfs_dquot.h" 24 #include "xfs_reflink.h" 25 #include "xfs_ialloc.h" 26 27 #include <linux/iversion.h> 28 29 /* 30 * Allocate and initialise an xfs_inode. 31 */ 32 struct xfs_inode * 33 xfs_inode_alloc( 34 struct xfs_mount *mp, 35 xfs_ino_t ino) 36 { 37 struct xfs_inode *ip; 38 39 /* 40 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 41 * and return NULL here on ENOMEM. 42 */ 43 ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL); 44 45 if (inode_init_always(mp->m_super, VFS_I(ip))) { 46 kmem_cache_free(xfs_inode_zone, ip); 47 return NULL; 48 } 49 50 /* VFS doesn't initialise i_mode! */ 51 VFS_I(ip)->i_mode = 0; 52 53 XFS_STATS_INC(mp, vn_active); 54 ASSERT(atomic_read(&ip->i_pincount) == 0); 55 ASSERT(ip->i_ino == 0); 56 57 /* initialise the xfs inode */ 58 ip->i_ino = ino; 59 ip->i_mount = mp; 60 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 61 ip->i_afp = NULL; 62 ip->i_cowfp = NULL; 63 memset(&ip->i_df, 0, sizeof(ip->i_df)); 64 ip->i_flags = 0; 65 ip->i_delayed_blks = 0; 66 memset(&ip->i_d, 0, sizeof(ip->i_d)); 67 ip->i_sick = 0; 68 ip->i_checked = 0; 69 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 70 INIT_LIST_HEAD(&ip->i_ioend_list); 71 spin_lock_init(&ip->i_ioend_lock); 72 73 return ip; 74 } 75 76 STATIC void 77 xfs_inode_free_callback( 78 struct rcu_head *head) 79 { 80 struct inode *inode = container_of(head, struct inode, i_rcu); 81 struct xfs_inode *ip = XFS_I(inode); 82 83 switch (VFS_I(ip)->i_mode & S_IFMT) { 84 case S_IFREG: 85 case S_IFDIR: 86 case S_IFLNK: 87 xfs_idestroy_fork(&ip->i_df); 88 break; 89 } 90 91 if (ip->i_afp) { 92 xfs_idestroy_fork(ip->i_afp); 93 kmem_cache_free(xfs_ifork_zone, ip->i_afp); 94 } 95 if (ip->i_cowfp) { 96 xfs_idestroy_fork(ip->i_cowfp); 97 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp); 98 } 99 if (ip->i_itemp) { 100 ASSERT(!test_bit(XFS_LI_IN_AIL, 101 &ip->i_itemp->ili_item.li_flags)); 102 xfs_inode_item_destroy(ip); 103 ip->i_itemp = NULL; 104 } 105 106 kmem_cache_free(xfs_inode_zone, ip); 107 } 108 109 static void 110 __xfs_inode_free( 111 struct xfs_inode *ip) 112 { 113 /* asserts to verify all state is correct here */ 114 ASSERT(atomic_read(&ip->i_pincount) == 0); 115 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 116 XFS_STATS_DEC(ip->i_mount, vn_active); 117 118 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 119 } 120 121 void 122 xfs_inode_free( 123 struct xfs_inode *ip) 124 { 125 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 126 127 /* 128 * Because we use RCU freeing we need to ensure the inode always 129 * appears to be reclaimed with an invalid inode number when in the 130 * free state. The ip->i_flags_lock provides the barrier against lookup 131 * races. 132 */ 133 spin_lock(&ip->i_flags_lock); 134 ip->i_flags = XFS_IRECLAIM; 135 ip->i_ino = 0; 136 spin_unlock(&ip->i_flags_lock); 137 138 __xfs_inode_free(ip); 139 } 140 141 /* 142 * Queue background inode reclaim work if there are reclaimable inodes and there 143 * isn't reclaim work already scheduled or in progress. 144 */ 145 static void 146 xfs_reclaim_work_queue( 147 struct xfs_mount *mp) 148 { 149 150 rcu_read_lock(); 151 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 152 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 153 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 154 } 155 rcu_read_unlock(); 156 } 157 158 static void 159 xfs_perag_set_reclaim_tag( 160 struct xfs_perag *pag) 161 { 162 struct xfs_mount *mp = pag->pag_mount; 163 164 lockdep_assert_held(&pag->pag_ici_lock); 165 if (pag->pag_ici_reclaimable++) 166 return; 167 168 /* propagate the reclaim tag up into the perag radix tree */ 169 spin_lock(&mp->m_perag_lock); 170 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 171 XFS_ICI_RECLAIM_TAG); 172 spin_unlock(&mp->m_perag_lock); 173 174 /* schedule periodic background inode reclaim */ 175 xfs_reclaim_work_queue(mp); 176 177 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 178 } 179 180 static void 181 xfs_perag_clear_reclaim_tag( 182 struct xfs_perag *pag) 183 { 184 struct xfs_mount *mp = pag->pag_mount; 185 186 lockdep_assert_held(&pag->pag_ici_lock); 187 if (--pag->pag_ici_reclaimable) 188 return; 189 190 /* clear the reclaim tag from the perag radix tree */ 191 spin_lock(&mp->m_perag_lock); 192 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 193 XFS_ICI_RECLAIM_TAG); 194 spin_unlock(&mp->m_perag_lock); 195 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 196 } 197 198 199 /* 200 * We set the inode flag atomically with the radix tree tag. 201 * Once we get tag lookups on the radix tree, this inode flag 202 * can go away. 203 */ 204 void 205 xfs_inode_set_reclaim_tag( 206 struct xfs_inode *ip) 207 { 208 struct xfs_mount *mp = ip->i_mount; 209 struct xfs_perag *pag; 210 211 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 212 spin_lock(&pag->pag_ici_lock); 213 spin_lock(&ip->i_flags_lock); 214 215 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 216 XFS_ICI_RECLAIM_TAG); 217 xfs_perag_set_reclaim_tag(pag); 218 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 219 220 spin_unlock(&ip->i_flags_lock); 221 spin_unlock(&pag->pag_ici_lock); 222 xfs_perag_put(pag); 223 } 224 225 STATIC void 226 xfs_inode_clear_reclaim_tag( 227 struct xfs_perag *pag, 228 xfs_ino_t ino) 229 { 230 radix_tree_tag_clear(&pag->pag_ici_root, 231 XFS_INO_TO_AGINO(pag->pag_mount, ino), 232 XFS_ICI_RECLAIM_TAG); 233 xfs_perag_clear_reclaim_tag(pag); 234 } 235 236 static void 237 xfs_inew_wait( 238 struct xfs_inode *ip) 239 { 240 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 241 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 242 243 do { 244 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 245 if (!xfs_iflags_test(ip, XFS_INEW)) 246 break; 247 schedule(); 248 } while (true); 249 finish_wait(wq, &wait.wq_entry); 250 } 251 252 /* 253 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 254 * part of the structure. This is made more complex by the fact we store 255 * information about the on-disk values in the VFS inode and so we can't just 256 * overwrite the values unconditionally. Hence we save the parameters we 257 * need to retain across reinitialisation, and rewrite them into the VFS inode 258 * after reinitialisation even if it fails. 259 */ 260 static int 261 xfs_reinit_inode( 262 struct xfs_mount *mp, 263 struct inode *inode) 264 { 265 int error; 266 uint32_t nlink = inode->i_nlink; 267 uint32_t generation = inode->i_generation; 268 uint64_t version = inode_peek_iversion(inode); 269 umode_t mode = inode->i_mode; 270 dev_t dev = inode->i_rdev; 271 kuid_t uid = inode->i_uid; 272 kgid_t gid = inode->i_gid; 273 274 error = inode_init_always(mp->m_super, inode); 275 276 set_nlink(inode, nlink); 277 inode->i_generation = generation; 278 inode_set_iversion_queried(inode, version); 279 inode->i_mode = mode; 280 inode->i_rdev = dev; 281 inode->i_uid = uid; 282 inode->i_gid = gid; 283 return error; 284 } 285 286 /* 287 * If we are allocating a new inode, then check what was returned is 288 * actually a free, empty inode. If we are not allocating an inode, 289 * then check we didn't find a free inode. 290 * 291 * Returns: 292 * 0 if the inode free state matches the lookup context 293 * -ENOENT if the inode is free and we are not allocating 294 * -EFSCORRUPTED if there is any state mismatch at all 295 */ 296 static int 297 xfs_iget_check_free_state( 298 struct xfs_inode *ip, 299 int flags) 300 { 301 if (flags & XFS_IGET_CREATE) { 302 /* should be a free inode */ 303 if (VFS_I(ip)->i_mode != 0) { 304 xfs_warn(ip->i_mount, 305 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 306 ip->i_ino, VFS_I(ip)->i_mode); 307 return -EFSCORRUPTED; 308 } 309 310 if (ip->i_d.di_nblocks != 0) { 311 xfs_warn(ip->i_mount, 312 "Corruption detected! Free inode 0x%llx has blocks allocated!", 313 ip->i_ino); 314 return -EFSCORRUPTED; 315 } 316 return 0; 317 } 318 319 /* should be an allocated inode */ 320 if (VFS_I(ip)->i_mode == 0) 321 return -ENOENT; 322 323 return 0; 324 } 325 326 /* 327 * Check the validity of the inode we just found it the cache 328 */ 329 static int 330 xfs_iget_cache_hit( 331 struct xfs_perag *pag, 332 struct xfs_inode *ip, 333 xfs_ino_t ino, 334 int flags, 335 int lock_flags) __releases(RCU) 336 { 337 struct inode *inode = VFS_I(ip); 338 struct xfs_mount *mp = ip->i_mount; 339 int error; 340 341 /* 342 * check for re-use of an inode within an RCU grace period due to the 343 * radix tree nodes not being updated yet. We monitor for this by 344 * setting the inode number to zero before freeing the inode structure. 345 * If the inode has been reallocated and set up, then the inode number 346 * will not match, so check for that, too. 347 */ 348 spin_lock(&ip->i_flags_lock); 349 if (ip->i_ino != ino) { 350 trace_xfs_iget_skip(ip); 351 XFS_STATS_INC(mp, xs_ig_frecycle); 352 error = -EAGAIN; 353 goto out_error; 354 } 355 356 357 /* 358 * If we are racing with another cache hit that is currently 359 * instantiating this inode or currently recycling it out of 360 * reclaimabe state, wait for the initialisation to complete 361 * before continuing. 362 * 363 * XXX(hch): eventually we should do something equivalent to 364 * wait_on_inode to wait for these flags to be cleared 365 * instead of polling for it. 366 */ 367 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 368 trace_xfs_iget_skip(ip); 369 XFS_STATS_INC(mp, xs_ig_frecycle); 370 error = -EAGAIN; 371 goto out_error; 372 } 373 374 /* 375 * Check the inode free state is valid. This also detects lookup 376 * racing with unlinks. 377 */ 378 error = xfs_iget_check_free_state(ip, flags); 379 if (error) 380 goto out_error; 381 382 /* 383 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 384 * Need to carefully get it back into useable state. 385 */ 386 if (ip->i_flags & XFS_IRECLAIMABLE) { 387 trace_xfs_iget_reclaim(ip); 388 389 if (flags & XFS_IGET_INCORE) { 390 error = -EAGAIN; 391 goto out_error; 392 } 393 394 /* 395 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 396 * from stomping over us while we recycle the inode. We can't 397 * clear the radix tree reclaimable tag yet as it requires 398 * pag_ici_lock to be held exclusive. 399 */ 400 ip->i_flags |= XFS_IRECLAIM; 401 402 spin_unlock(&ip->i_flags_lock); 403 rcu_read_unlock(); 404 405 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 406 error = xfs_reinit_inode(mp, inode); 407 if (error) { 408 bool wake; 409 /* 410 * Re-initializing the inode failed, and we are in deep 411 * trouble. Try to re-add it to the reclaim list. 412 */ 413 rcu_read_lock(); 414 spin_lock(&ip->i_flags_lock); 415 wake = !!__xfs_iflags_test(ip, XFS_INEW); 416 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 417 if (wake) 418 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 419 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 420 trace_xfs_iget_reclaim_fail(ip); 421 goto out_error; 422 } 423 424 spin_lock(&pag->pag_ici_lock); 425 spin_lock(&ip->i_flags_lock); 426 427 /* 428 * Clear the per-lifetime state in the inode as we are now 429 * effectively a new inode and need to return to the initial 430 * state before reuse occurs. 431 */ 432 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 433 ip->i_flags |= XFS_INEW; 434 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 435 inode->i_state = I_NEW; 436 ip->i_sick = 0; 437 ip->i_checked = 0; 438 439 spin_unlock(&ip->i_flags_lock); 440 spin_unlock(&pag->pag_ici_lock); 441 } else { 442 /* If the VFS inode is being torn down, pause and try again. */ 443 if (!igrab(inode)) { 444 trace_xfs_iget_skip(ip); 445 error = -EAGAIN; 446 goto out_error; 447 } 448 449 /* We've got a live one. */ 450 spin_unlock(&ip->i_flags_lock); 451 rcu_read_unlock(); 452 trace_xfs_iget_hit(ip); 453 } 454 455 if (lock_flags != 0) 456 xfs_ilock(ip, lock_flags); 457 458 if (!(flags & XFS_IGET_INCORE)) 459 xfs_iflags_clear(ip, XFS_ISTALE); 460 XFS_STATS_INC(mp, xs_ig_found); 461 462 return 0; 463 464 out_error: 465 spin_unlock(&ip->i_flags_lock); 466 rcu_read_unlock(); 467 return error; 468 } 469 470 471 static int 472 xfs_iget_cache_miss( 473 struct xfs_mount *mp, 474 struct xfs_perag *pag, 475 xfs_trans_t *tp, 476 xfs_ino_t ino, 477 struct xfs_inode **ipp, 478 int flags, 479 int lock_flags) 480 { 481 struct xfs_inode *ip; 482 int error; 483 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 484 int iflags; 485 486 ip = xfs_inode_alloc(mp, ino); 487 if (!ip) 488 return -ENOMEM; 489 490 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); 491 if (error) 492 goto out_destroy; 493 494 /* 495 * For version 5 superblocks, if we are initialising a new inode and we 496 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can 497 * simply build the new inode core with a random generation number. 498 * 499 * For version 4 (and older) superblocks, log recovery is dependent on 500 * the di_flushiter field being initialised from the current on-disk 501 * value and hence we must also read the inode off disk even when 502 * initializing new inodes. 503 */ 504 if (xfs_sb_version_has_v3inode(&mp->m_sb) && 505 (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) { 506 VFS_I(ip)->i_generation = prandom_u32(); 507 } else { 508 struct xfs_dinode *dip; 509 struct xfs_buf *bp; 510 511 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0); 512 if (error) 513 goto out_destroy; 514 515 error = xfs_inode_from_disk(ip, dip); 516 if (!error) 517 xfs_buf_set_ref(bp, XFS_INO_REF); 518 xfs_trans_brelse(tp, bp); 519 520 if (error) 521 goto out_destroy; 522 } 523 524 trace_xfs_iget_miss(ip); 525 526 /* 527 * Check the inode free state is valid. This also detects lookup 528 * racing with unlinks. 529 */ 530 error = xfs_iget_check_free_state(ip, flags); 531 if (error) 532 goto out_destroy; 533 534 /* 535 * Preload the radix tree so we can insert safely under the 536 * write spinlock. Note that we cannot sleep inside the preload 537 * region. Since we can be called from transaction context, don't 538 * recurse into the file system. 539 */ 540 if (radix_tree_preload(GFP_NOFS)) { 541 error = -EAGAIN; 542 goto out_destroy; 543 } 544 545 /* 546 * Because the inode hasn't been added to the radix-tree yet it can't 547 * be found by another thread, so we can do the non-sleeping lock here. 548 */ 549 if (lock_flags) { 550 if (!xfs_ilock_nowait(ip, lock_flags)) 551 BUG(); 552 } 553 554 /* 555 * These values must be set before inserting the inode into the radix 556 * tree as the moment it is inserted a concurrent lookup (allowed by the 557 * RCU locking mechanism) can find it and that lookup must see that this 558 * is an inode currently under construction (i.e. that XFS_INEW is set). 559 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 560 * memory barrier that ensures this detection works correctly at lookup 561 * time. 562 */ 563 iflags = XFS_INEW; 564 if (flags & XFS_IGET_DONTCACHE) 565 d_mark_dontcache(VFS_I(ip)); 566 ip->i_udquot = NULL; 567 ip->i_gdquot = NULL; 568 ip->i_pdquot = NULL; 569 xfs_iflags_set(ip, iflags); 570 571 /* insert the new inode */ 572 spin_lock(&pag->pag_ici_lock); 573 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 574 if (unlikely(error)) { 575 WARN_ON(error != -EEXIST); 576 XFS_STATS_INC(mp, xs_ig_dup); 577 error = -EAGAIN; 578 goto out_preload_end; 579 } 580 spin_unlock(&pag->pag_ici_lock); 581 radix_tree_preload_end(); 582 583 *ipp = ip; 584 return 0; 585 586 out_preload_end: 587 spin_unlock(&pag->pag_ici_lock); 588 radix_tree_preload_end(); 589 if (lock_flags) 590 xfs_iunlock(ip, lock_flags); 591 out_destroy: 592 __destroy_inode(VFS_I(ip)); 593 xfs_inode_free(ip); 594 return error; 595 } 596 597 /* 598 * Look up an inode by number in the given file system. The inode is looked up 599 * in the cache held in each AG. If the inode is found in the cache, initialise 600 * the vfs inode if necessary. 601 * 602 * If it is not in core, read it in from the file system's device, add it to the 603 * cache and initialise the vfs inode. 604 * 605 * The inode is locked according to the value of the lock_flags parameter. 606 * Inode lookup is only done during metadata operations and not as part of the 607 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 608 */ 609 int 610 xfs_iget( 611 struct xfs_mount *mp, 612 struct xfs_trans *tp, 613 xfs_ino_t ino, 614 uint flags, 615 uint lock_flags, 616 struct xfs_inode **ipp) 617 { 618 struct xfs_inode *ip; 619 struct xfs_perag *pag; 620 xfs_agino_t agino; 621 int error; 622 623 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 624 625 /* reject inode numbers outside existing AGs */ 626 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 627 return -EINVAL; 628 629 XFS_STATS_INC(mp, xs_ig_attempts); 630 631 /* get the perag structure and ensure that it's inode capable */ 632 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 633 agino = XFS_INO_TO_AGINO(mp, ino); 634 635 again: 636 error = 0; 637 rcu_read_lock(); 638 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 639 640 if (ip) { 641 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 642 if (error) 643 goto out_error_or_again; 644 } else { 645 rcu_read_unlock(); 646 if (flags & XFS_IGET_INCORE) { 647 error = -ENODATA; 648 goto out_error_or_again; 649 } 650 XFS_STATS_INC(mp, xs_ig_missed); 651 652 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 653 flags, lock_flags); 654 if (error) 655 goto out_error_or_again; 656 } 657 xfs_perag_put(pag); 658 659 *ipp = ip; 660 661 /* 662 * If we have a real type for an on-disk inode, we can setup the inode 663 * now. If it's a new inode being created, xfs_ialloc will handle it. 664 */ 665 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 666 xfs_setup_existing_inode(ip); 667 return 0; 668 669 out_error_or_again: 670 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 671 delay(1); 672 goto again; 673 } 674 xfs_perag_put(pag); 675 return error; 676 } 677 678 /* 679 * "Is this a cached inode that's also allocated?" 680 * 681 * Look up an inode by number in the given file system. If the inode is 682 * in cache and isn't in purgatory, return 1 if the inode is allocated 683 * and 0 if it is not. For all other cases (not in cache, being torn 684 * down, etc.), return a negative error code. 685 * 686 * The caller has to prevent inode allocation and freeing activity, 687 * presumably by locking the AGI buffer. This is to ensure that an 688 * inode cannot transition from allocated to freed until the caller is 689 * ready to allow that. If the inode is in an intermediate state (new, 690 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 691 * inode is not in the cache, -ENOENT will be returned. The caller must 692 * deal with these scenarios appropriately. 693 * 694 * This is a specialized use case for the online scrubber; if you're 695 * reading this, you probably want xfs_iget. 696 */ 697 int 698 xfs_icache_inode_is_allocated( 699 struct xfs_mount *mp, 700 struct xfs_trans *tp, 701 xfs_ino_t ino, 702 bool *inuse) 703 { 704 struct xfs_inode *ip; 705 int error; 706 707 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 708 if (error) 709 return error; 710 711 *inuse = !!(VFS_I(ip)->i_mode); 712 xfs_irele(ip); 713 return 0; 714 } 715 716 /* 717 * The inode lookup is done in batches to keep the amount of lock traffic and 718 * radix tree lookups to a minimum. The batch size is a trade off between 719 * lookup reduction and stack usage. This is in the reclaim path, so we can't 720 * be too greedy. 721 */ 722 #define XFS_LOOKUP_BATCH 32 723 724 /* 725 * Decide if the given @ip is eligible to be a part of the inode walk, and 726 * grab it if so. Returns true if it's ready to go or false if we should just 727 * ignore it. 728 */ 729 STATIC bool 730 xfs_inode_walk_ag_grab( 731 struct xfs_inode *ip, 732 int flags) 733 { 734 struct inode *inode = VFS_I(ip); 735 bool newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT); 736 737 ASSERT(rcu_read_lock_held()); 738 739 /* Check for stale RCU freed inode */ 740 spin_lock(&ip->i_flags_lock); 741 if (!ip->i_ino) 742 goto out_unlock_noent; 743 744 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 745 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || 746 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) 747 goto out_unlock_noent; 748 spin_unlock(&ip->i_flags_lock); 749 750 /* nothing to sync during shutdown */ 751 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 752 return false; 753 754 /* If we can't grab the inode, it must on it's way to reclaim. */ 755 if (!igrab(inode)) 756 return false; 757 758 /* inode is valid */ 759 return true; 760 761 out_unlock_noent: 762 spin_unlock(&ip->i_flags_lock); 763 return false; 764 } 765 766 /* 767 * For a given per-AG structure @pag, grab, @execute, and rele all incore 768 * inodes with the given radix tree @tag. 769 */ 770 STATIC int 771 xfs_inode_walk_ag( 772 struct xfs_perag *pag, 773 int iter_flags, 774 int (*execute)(struct xfs_inode *ip, void *args), 775 void *args, 776 int tag) 777 { 778 struct xfs_mount *mp = pag->pag_mount; 779 uint32_t first_index; 780 int last_error = 0; 781 int skipped; 782 bool done; 783 int nr_found; 784 785 restart: 786 done = false; 787 skipped = 0; 788 first_index = 0; 789 nr_found = 0; 790 do { 791 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 792 int error = 0; 793 int i; 794 795 rcu_read_lock(); 796 797 if (tag == XFS_ICI_NO_TAG) 798 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 799 (void **)batch, first_index, 800 XFS_LOOKUP_BATCH); 801 else 802 nr_found = radix_tree_gang_lookup_tag( 803 &pag->pag_ici_root, 804 (void **) batch, first_index, 805 XFS_LOOKUP_BATCH, tag); 806 807 if (!nr_found) { 808 rcu_read_unlock(); 809 break; 810 } 811 812 /* 813 * Grab the inodes before we drop the lock. if we found 814 * nothing, nr == 0 and the loop will be skipped. 815 */ 816 for (i = 0; i < nr_found; i++) { 817 struct xfs_inode *ip = batch[i]; 818 819 if (done || !xfs_inode_walk_ag_grab(ip, iter_flags)) 820 batch[i] = NULL; 821 822 /* 823 * Update the index for the next lookup. Catch 824 * overflows into the next AG range which can occur if 825 * we have inodes in the last block of the AG and we 826 * are currently pointing to the last inode. 827 * 828 * Because we may see inodes that are from the wrong AG 829 * due to RCU freeing and reallocation, only update the 830 * index if it lies in this AG. It was a race that lead 831 * us to see this inode, so another lookup from the 832 * same index will not find it again. 833 */ 834 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 835 continue; 836 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 837 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 838 done = true; 839 } 840 841 /* unlock now we've grabbed the inodes. */ 842 rcu_read_unlock(); 843 844 for (i = 0; i < nr_found; i++) { 845 if (!batch[i]) 846 continue; 847 if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) && 848 xfs_iflags_test(batch[i], XFS_INEW)) 849 xfs_inew_wait(batch[i]); 850 error = execute(batch[i], args); 851 xfs_irele(batch[i]); 852 if (error == -EAGAIN) { 853 skipped++; 854 continue; 855 } 856 if (error && last_error != -EFSCORRUPTED) 857 last_error = error; 858 } 859 860 /* bail out if the filesystem is corrupted. */ 861 if (error == -EFSCORRUPTED) 862 break; 863 864 cond_resched(); 865 866 } while (nr_found && !done); 867 868 if (skipped) { 869 delay(1); 870 goto restart; 871 } 872 return last_error; 873 } 874 875 /* Fetch the next (possibly tagged) per-AG structure. */ 876 static inline struct xfs_perag * 877 xfs_inode_walk_get_perag( 878 struct xfs_mount *mp, 879 xfs_agnumber_t agno, 880 int tag) 881 { 882 if (tag == XFS_ICI_NO_TAG) 883 return xfs_perag_get(mp, agno); 884 return xfs_perag_get_tag(mp, agno, tag); 885 } 886 887 /* 888 * Call the @execute function on all incore inodes matching the radix tree 889 * @tag. 890 */ 891 int 892 xfs_inode_walk( 893 struct xfs_mount *mp, 894 int iter_flags, 895 int (*execute)(struct xfs_inode *ip, void *args), 896 void *args, 897 int tag) 898 { 899 struct xfs_perag *pag; 900 int error = 0; 901 int last_error = 0; 902 xfs_agnumber_t ag; 903 904 ag = 0; 905 while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) { 906 ag = pag->pag_agno + 1; 907 error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag); 908 xfs_perag_put(pag); 909 if (error) { 910 last_error = error; 911 if (error == -EFSCORRUPTED) 912 break; 913 } 914 } 915 return last_error; 916 } 917 918 /* 919 * Background scanning to trim post-EOF preallocated space. This is queued 920 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 921 */ 922 void 923 xfs_queue_eofblocks( 924 struct xfs_mount *mp) 925 { 926 rcu_read_lock(); 927 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 928 queue_delayed_work(mp->m_eofblocks_workqueue, 929 &mp->m_eofblocks_work, 930 msecs_to_jiffies(xfs_eofb_secs * 1000)); 931 rcu_read_unlock(); 932 } 933 934 void 935 xfs_eofblocks_worker( 936 struct work_struct *work) 937 { 938 struct xfs_mount *mp = container_of(to_delayed_work(work), 939 struct xfs_mount, m_eofblocks_work); 940 941 if (!sb_start_write_trylock(mp->m_super)) 942 return; 943 xfs_icache_free_eofblocks(mp, NULL); 944 sb_end_write(mp->m_super); 945 946 xfs_queue_eofblocks(mp); 947 } 948 949 /* 950 * Background scanning to trim preallocated CoW space. This is queued 951 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). 952 * (We'll just piggyback on the post-EOF prealloc space workqueue.) 953 */ 954 void 955 xfs_queue_cowblocks( 956 struct xfs_mount *mp) 957 { 958 rcu_read_lock(); 959 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) 960 queue_delayed_work(mp->m_eofblocks_workqueue, 961 &mp->m_cowblocks_work, 962 msecs_to_jiffies(xfs_cowb_secs * 1000)); 963 rcu_read_unlock(); 964 } 965 966 void 967 xfs_cowblocks_worker( 968 struct work_struct *work) 969 { 970 struct xfs_mount *mp = container_of(to_delayed_work(work), 971 struct xfs_mount, m_cowblocks_work); 972 973 if (!sb_start_write_trylock(mp->m_super)) 974 return; 975 xfs_icache_free_cowblocks(mp, NULL); 976 sb_end_write(mp->m_super); 977 978 xfs_queue_cowblocks(mp); 979 } 980 981 /* 982 * Grab the inode for reclaim exclusively. 983 * 984 * We have found this inode via a lookup under RCU, so the inode may have 985 * already been freed, or it may be in the process of being recycled by 986 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 987 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 988 * will not be set. Hence we need to check for both these flag conditions to 989 * avoid inodes that are no longer reclaim candidates. 990 * 991 * Note: checking for other state flags here, under the i_flags_lock or not, is 992 * racy and should be avoided. Those races should be resolved only after we have 993 * ensured that we are able to reclaim this inode and the world can see that we 994 * are going to reclaim it. 995 * 996 * Return true if we grabbed it, false otherwise. 997 */ 998 static bool 999 xfs_reclaim_inode_grab( 1000 struct xfs_inode *ip) 1001 { 1002 ASSERT(rcu_read_lock_held()); 1003 1004 spin_lock(&ip->i_flags_lock); 1005 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 1006 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 1007 /* not a reclaim candidate. */ 1008 spin_unlock(&ip->i_flags_lock); 1009 return false; 1010 } 1011 __xfs_iflags_set(ip, XFS_IRECLAIM); 1012 spin_unlock(&ip->i_flags_lock); 1013 return true; 1014 } 1015 1016 /* 1017 * Inode reclaim is non-blocking, so the default action if progress cannot be 1018 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 1019 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 1020 * blocking anymore and hence we can wait for the inode to be able to reclaim 1021 * it. 1022 * 1023 * We do no IO here - if callers require inodes to be cleaned they must push the 1024 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 1025 * done in the background in a non-blocking manner, and enables memory reclaim 1026 * to make progress without blocking. 1027 */ 1028 static void 1029 xfs_reclaim_inode( 1030 struct xfs_inode *ip, 1031 struct xfs_perag *pag) 1032 { 1033 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 1034 1035 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 1036 goto out; 1037 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 1038 goto out_iunlock; 1039 1040 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1041 xfs_iunpin_wait(ip); 1042 xfs_iflush_abort(ip); 1043 goto reclaim; 1044 } 1045 if (xfs_ipincount(ip)) 1046 goto out_clear_flush; 1047 if (!xfs_inode_clean(ip)) 1048 goto out_clear_flush; 1049 1050 xfs_iflags_clear(ip, XFS_IFLUSHING); 1051 reclaim: 1052 1053 /* 1054 * Because we use RCU freeing we need to ensure the inode always appears 1055 * to be reclaimed with an invalid inode number when in the free state. 1056 * We do this as early as possible under the ILOCK so that 1057 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 1058 * detect races with us here. By doing this, we guarantee that once 1059 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 1060 * it will see either a valid inode that will serialise correctly, or it 1061 * will see an invalid inode that it can skip. 1062 */ 1063 spin_lock(&ip->i_flags_lock); 1064 ip->i_flags = XFS_IRECLAIM; 1065 ip->i_ino = 0; 1066 spin_unlock(&ip->i_flags_lock); 1067 1068 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1069 1070 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1071 /* 1072 * Remove the inode from the per-AG radix tree. 1073 * 1074 * Because radix_tree_delete won't complain even if the item was never 1075 * added to the tree assert that it's been there before to catch 1076 * problems with the inode life time early on. 1077 */ 1078 spin_lock(&pag->pag_ici_lock); 1079 if (!radix_tree_delete(&pag->pag_ici_root, 1080 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1081 ASSERT(0); 1082 xfs_perag_clear_reclaim_tag(pag); 1083 spin_unlock(&pag->pag_ici_lock); 1084 1085 /* 1086 * Here we do an (almost) spurious inode lock in order to coordinate 1087 * with inode cache radix tree lookups. This is because the lookup 1088 * can reference the inodes in the cache without taking references. 1089 * 1090 * We make that OK here by ensuring that we wait until the inode is 1091 * unlocked after the lookup before we go ahead and free it. 1092 */ 1093 xfs_ilock(ip, XFS_ILOCK_EXCL); 1094 xfs_qm_dqdetach(ip); 1095 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1096 ASSERT(xfs_inode_clean(ip)); 1097 1098 __xfs_inode_free(ip); 1099 return; 1100 1101 out_clear_flush: 1102 xfs_iflags_clear(ip, XFS_IFLUSHING); 1103 out_iunlock: 1104 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1105 out: 1106 xfs_iflags_clear(ip, XFS_IRECLAIM); 1107 } 1108 1109 /* 1110 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1111 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1112 * then a shut down during filesystem unmount reclaim walk leak all the 1113 * unreclaimed inodes. 1114 * 1115 * Returns non-zero if any AGs or inodes were skipped in the reclaim pass 1116 * so that callers that want to block until all dirty inodes are written back 1117 * and reclaimed can sanely loop. 1118 */ 1119 static void 1120 xfs_reclaim_inodes_ag( 1121 struct xfs_mount *mp, 1122 int *nr_to_scan) 1123 { 1124 struct xfs_perag *pag; 1125 xfs_agnumber_t ag = 0; 1126 1127 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1128 unsigned long first_index = 0; 1129 int done = 0; 1130 int nr_found = 0; 1131 1132 ag = pag->pag_agno + 1; 1133 1134 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1135 do { 1136 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1137 int i; 1138 1139 rcu_read_lock(); 1140 nr_found = radix_tree_gang_lookup_tag( 1141 &pag->pag_ici_root, 1142 (void **)batch, first_index, 1143 XFS_LOOKUP_BATCH, 1144 XFS_ICI_RECLAIM_TAG); 1145 if (!nr_found) { 1146 done = 1; 1147 rcu_read_unlock(); 1148 break; 1149 } 1150 1151 /* 1152 * Grab the inodes before we drop the lock. if we found 1153 * nothing, nr == 0 and the loop will be skipped. 1154 */ 1155 for (i = 0; i < nr_found; i++) { 1156 struct xfs_inode *ip = batch[i]; 1157 1158 if (done || !xfs_reclaim_inode_grab(ip)) 1159 batch[i] = NULL; 1160 1161 /* 1162 * Update the index for the next lookup. Catch 1163 * overflows into the next AG range which can 1164 * occur if we have inodes in the last block of 1165 * the AG and we are currently pointing to the 1166 * last inode. 1167 * 1168 * Because we may see inodes that are from the 1169 * wrong AG due to RCU freeing and 1170 * reallocation, only update the index if it 1171 * lies in this AG. It was a race that lead us 1172 * to see this inode, so another lookup from 1173 * the same index will not find it again. 1174 */ 1175 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1176 pag->pag_agno) 1177 continue; 1178 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1179 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1180 done = 1; 1181 } 1182 1183 /* unlock now we've grabbed the inodes. */ 1184 rcu_read_unlock(); 1185 1186 for (i = 0; i < nr_found; i++) { 1187 if (batch[i]) 1188 xfs_reclaim_inode(batch[i], pag); 1189 } 1190 1191 *nr_to_scan -= XFS_LOOKUP_BATCH; 1192 cond_resched(); 1193 } while (nr_found && !done && *nr_to_scan > 0); 1194 1195 if (done) 1196 first_index = 0; 1197 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1198 xfs_perag_put(pag); 1199 } 1200 } 1201 1202 void 1203 xfs_reclaim_inodes( 1204 struct xfs_mount *mp) 1205 { 1206 int nr_to_scan = INT_MAX; 1207 1208 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 1209 xfs_ail_push_all_sync(mp->m_ail); 1210 xfs_reclaim_inodes_ag(mp, &nr_to_scan); 1211 } 1212 } 1213 1214 /* 1215 * The shrinker infrastructure determines how many inodes we should scan for 1216 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 1217 * push the AIL here. We also want to proactively free up memory if we can to 1218 * minimise the amount of work memory reclaim has to do so we kick the 1219 * background reclaim if it isn't already scheduled. 1220 */ 1221 long 1222 xfs_reclaim_inodes_nr( 1223 struct xfs_mount *mp, 1224 int nr_to_scan) 1225 { 1226 /* kick background reclaimer and push the AIL */ 1227 xfs_reclaim_work_queue(mp); 1228 xfs_ail_push_all(mp->m_ail); 1229 1230 xfs_reclaim_inodes_ag(mp, &nr_to_scan); 1231 return 0; 1232 } 1233 1234 /* 1235 * Return the number of reclaimable inodes in the filesystem for 1236 * the shrinker to determine how much to reclaim. 1237 */ 1238 int 1239 xfs_reclaim_inodes_count( 1240 struct xfs_mount *mp) 1241 { 1242 struct xfs_perag *pag; 1243 xfs_agnumber_t ag = 0; 1244 int reclaimable = 0; 1245 1246 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1247 ag = pag->pag_agno + 1; 1248 reclaimable += pag->pag_ici_reclaimable; 1249 xfs_perag_put(pag); 1250 } 1251 return reclaimable; 1252 } 1253 1254 STATIC bool 1255 xfs_inode_match_id( 1256 struct xfs_inode *ip, 1257 struct xfs_eofblocks *eofb) 1258 { 1259 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1260 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1261 return false; 1262 1263 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1264 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1265 return false; 1266 1267 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1268 ip->i_d.di_projid != eofb->eof_prid) 1269 return false; 1270 1271 return true; 1272 } 1273 1274 /* 1275 * A union-based inode filtering algorithm. Process the inode if any of the 1276 * criteria match. This is for global/internal scans only. 1277 */ 1278 STATIC bool 1279 xfs_inode_match_id_union( 1280 struct xfs_inode *ip, 1281 struct xfs_eofblocks *eofb) 1282 { 1283 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1284 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1285 return true; 1286 1287 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1288 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1289 return true; 1290 1291 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1292 ip->i_d.di_projid == eofb->eof_prid) 1293 return true; 1294 1295 return false; 1296 } 1297 1298 /* 1299 * Is this inode @ip eligible for eof/cow block reclamation, given some 1300 * filtering parameters @eofb? The inode is eligible if @eofb is null or 1301 * if the predicate functions match. 1302 */ 1303 static bool 1304 xfs_inode_matches_eofb( 1305 struct xfs_inode *ip, 1306 struct xfs_eofblocks *eofb) 1307 { 1308 bool match; 1309 1310 if (!eofb) 1311 return true; 1312 1313 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1314 match = xfs_inode_match_id_union(ip, eofb); 1315 else 1316 match = xfs_inode_match_id(ip, eofb); 1317 if (!match) 1318 return false; 1319 1320 /* skip the inode if the file size is too small */ 1321 if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) && 1322 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1323 return false; 1324 1325 return true; 1326 } 1327 1328 /* 1329 * This is a fast pass over the inode cache to try to get reclaim moving on as 1330 * many inodes as possible in a short period of time. It kicks itself every few 1331 * seconds, as well as being kicked by the inode cache shrinker when memory 1332 * goes low. 1333 */ 1334 void 1335 xfs_reclaim_worker( 1336 struct work_struct *work) 1337 { 1338 struct xfs_mount *mp = container_of(to_delayed_work(work), 1339 struct xfs_mount, m_reclaim_work); 1340 int nr_to_scan = INT_MAX; 1341 1342 xfs_reclaim_inodes_ag(mp, &nr_to_scan); 1343 xfs_reclaim_work_queue(mp); 1344 } 1345 1346 STATIC int 1347 xfs_inode_free_eofblocks( 1348 struct xfs_inode *ip, 1349 void *args) 1350 { 1351 struct xfs_eofblocks *eofb = args; 1352 bool wait; 1353 int ret; 1354 1355 wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC); 1356 1357 if (!xfs_can_free_eofblocks(ip, false)) { 1358 /* inode could be preallocated or append-only */ 1359 trace_xfs_inode_free_eofblocks_invalid(ip); 1360 xfs_inode_clear_eofblocks_tag(ip); 1361 return 0; 1362 } 1363 1364 /* 1365 * If the mapping is dirty the operation can block and wait for some 1366 * time. Unless we are waiting, skip it. 1367 */ 1368 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1369 return 0; 1370 1371 if (!xfs_inode_matches_eofb(ip, eofb)) 1372 return 0; 1373 1374 /* 1375 * If the caller is waiting, return -EAGAIN to keep the background 1376 * scanner moving and revisit the inode in a subsequent pass. 1377 */ 1378 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1379 if (wait) 1380 return -EAGAIN; 1381 return 0; 1382 } 1383 1384 ret = xfs_free_eofblocks(ip); 1385 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1386 1387 return ret; 1388 } 1389 1390 int 1391 xfs_icache_free_eofblocks( 1392 struct xfs_mount *mp, 1393 struct xfs_eofblocks *eofb) 1394 { 1395 return xfs_inode_walk(mp, 0, xfs_inode_free_eofblocks, eofb, 1396 XFS_ICI_EOFBLOCKS_TAG); 1397 } 1398 1399 /* 1400 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1401 * multiple quotas, we don't know exactly which quota caused an allocation 1402 * failure. We make a best effort by including each quota under low free space 1403 * conditions (less than 1% free space) in the scan. 1404 */ 1405 static int 1406 __xfs_inode_free_quota_eofblocks( 1407 struct xfs_inode *ip, 1408 int (*execute)(struct xfs_mount *mp, 1409 struct xfs_eofblocks *eofb)) 1410 { 1411 int scan = 0; 1412 struct xfs_eofblocks eofb = {0}; 1413 struct xfs_dquot *dq; 1414 1415 /* 1416 * Run a sync scan to increase effectiveness and use the union filter to 1417 * cover all applicable quotas in a single scan. 1418 */ 1419 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1420 1421 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1422 dq = xfs_inode_dquot(ip, XFS_DQTYPE_USER); 1423 if (dq && xfs_dquot_lowsp(dq)) { 1424 eofb.eof_uid = VFS_I(ip)->i_uid; 1425 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1426 scan = 1; 1427 } 1428 } 1429 1430 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1431 dq = xfs_inode_dquot(ip, XFS_DQTYPE_GROUP); 1432 if (dq && xfs_dquot_lowsp(dq)) { 1433 eofb.eof_gid = VFS_I(ip)->i_gid; 1434 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1435 scan = 1; 1436 } 1437 } 1438 1439 if (scan) 1440 execute(ip->i_mount, &eofb); 1441 1442 return scan; 1443 } 1444 1445 int 1446 xfs_inode_free_quota_eofblocks( 1447 struct xfs_inode *ip) 1448 { 1449 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); 1450 } 1451 1452 static inline unsigned long 1453 xfs_iflag_for_tag( 1454 int tag) 1455 { 1456 switch (tag) { 1457 case XFS_ICI_EOFBLOCKS_TAG: 1458 return XFS_IEOFBLOCKS; 1459 case XFS_ICI_COWBLOCKS_TAG: 1460 return XFS_ICOWBLOCKS; 1461 default: 1462 ASSERT(0); 1463 return 0; 1464 } 1465 } 1466 1467 static void 1468 __xfs_inode_set_blocks_tag( 1469 xfs_inode_t *ip, 1470 void (*execute)(struct xfs_mount *mp), 1471 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1472 int error, unsigned long caller_ip), 1473 int tag) 1474 { 1475 struct xfs_mount *mp = ip->i_mount; 1476 struct xfs_perag *pag; 1477 int tagged; 1478 1479 /* 1480 * Don't bother locking the AG and looking up in the radix trees 1481 * if we already know that we have the tag set. 1482 */ 1483 if (ip->i_flags & xfs_iflag_for_tag(tag)) 1484 return; 1485 spin_lock(&ip->i_flags_lock); 1486 ip->i_flags |= xfs_iflag_for_tag(tag); 1487 spin_unlock(&ip->i_flags_lock); 1488 1489 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1490 spin_lock(&pag->pag_ici_lock); 1491 1492 tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 1493 radix_tree_tag_set(&pag->pag_ici_root, 1494 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1495 if (!tagged) { 1496 /* propagate the eofblocks tag up into the perag radix tree */ 1497 spin_lock(&ip->i_mount->m_perag_lock); 1498 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1499 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1500 tag); 1501 spin_unlock(&ip->i_mount->m_perag_lock); 1502 1503 /* kick off background trimming */ 1504 execute(ip->i_mount); 1505 1506 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1507 } 1508 1509 spin_unlock(&pag->pag_ici_lock); 1510 xfs_perag_put(pag); 1511 } 1512 1513 void 1514 xfs_inode_set_eofblocks_tag( 1515 xfs_inode_t *ip) 1516 { 1517 trace_xfs_inode_set_eofblocks_tag(ip); 1518 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, 1519 trace_xfs_perag_set_eofblocks, 1520 XFS_ICI_EOFBLOCKS_TAG); 1521 } 1522 1523 static void 1524 __xfs_inode_clear_blocks_tag( 1525 xfs_inode_t *ip, 1526 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1527 int error, unsigned long caller_ip), 1528 int tag) 1529 { 1530 struct xfs_mount *mp = ip->i_mount; 1531 struct xfs_perag *pag; 1532 1533 spin_lock(&ip->i_flags_lock); 1534 ip->i_flags &= ~xfs_iflag_for_tag(tag); 1535 spin_unlock(&ip->i_flags_lock); 1536 1537 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1538 spin_lock(&pag->pag_ici_lock); 1539 1540 radix_tree_tag_clear(&pag->pag_ici_root, 1541 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1542 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { 1543 /* clear the eofblocks tag from the perag radix tree */ 1544 spin_lock(&ip->i_mount->m_perag_lock); 1545 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1546 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1547 tag); 1548 spin_unlock(&ip->i_mount->m_perag_lock); 1549 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1550 } 1551 1552 spin_unlock(&pag->pag_ici_lock); 1553 xfs_perag_put(pag); 1554 } 1555 1556 void 1557 xfs_inode_clear_eofblocks_tag( 1558 xfs_inode_t *ip) 1559 { 1560 trace_xfs_inode_clear_eofblocks_tag(ip); 1561 return __xfs_inode_clear_blocks_tag(ip, 1562 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); 1563 } 1564 1565 /* 1566 * Set ourselves up to free CoW blocks from this file. If it's already clean 1567 * then we can bail out quickly, but otherwise we must back off if the file 1568 * is undergoing some kind of write. 1569 */ 1570 static bool 1571 xfs_prep_free_cowblocks( 1572 struct xfs_inode *ip) 1573 { 1574 /* 1575 * Just clear the tag if we have an empty cow fork or none at all. It's 1576 * possible the inode was fully unshared since it was originally tagged. 1577 */ 1578 if (!xfs_inode_has_cow_data(ip)) { 1579 trace_xfs_inode_free_cowblocks_invalid(ip); 1580 xfs_inode_clear_cowblocks_tag(ip); 1581 return false; 1582 } 1583 1584 /* 1585 * If the mapping is dirty or under writeback we cannot touch the 1586 * CoW fork. Leave it alone if we're in the midst of a directio. 1587 */ 1588 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1589 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1590 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1591 atomic_read(&VFS_I(ip)->i_dio_count)) 1592 return false; 1593 1594 return true; 1595 } 1596 1597 /* 1598 * Automatic CoW Reservation Freeing 1599 * 1600 * These functions automatically garbage collect leftover CoW reservations 1601 * that were made on behalf of a cowextsize hint when we start to run out 1602 * of quota or when the reservations sit around for too long. If the file 1603 * has dirty pages or is undergoing writeback, its CoW reservations will 1604 * be retained. 1605 * 1606 * The actual garbage collection piggybacks off the same code that runs 1607 * the speculative EOF preallocation garbage collector. 1608 */ 1609 STATIC int 1610 xfs_inode_free_cowblocks( 1611 struct xfs_inode *ip, 1612 void *args) 1613 { 1614 struct xfs_eofblocks *eofb = args; 1615 int ret = 0; 1616 1617 if (!xfs_prep_free_cowblocks(ip)) 1618 return 0; 1619 1620 if (!xfs_inode_matches_eofb(ip, eofb)) 1621 return 0; 1622 1623 /* Free the CoW blocks */ 1624 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1625 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1626 1627 /* 1628 * Check again, nobody else should be able to dirty blocks or change 1629 * the reflink iflag now that we have the first two locks held. 1630 */ 1631 if (xfs_prep_free_cowblocks(ip)) 1632 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1633 1634 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1635 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1636 1637 return ret; 1638 } 1639 1640 int 1641 xfs_icache_free_cowblocks( 1642 struct xfs_mount *mp, 1643 struct xfs_eofblocks *eofb) 1644 { 1645 return xfs_inode_walk(mp, 0, xfs_inode_free_cowblocks, eofb, 1646 XFS_ICI_COWBLOCKS_TAG); 1647 } 1648 1649 int 1650 xfs_inode_free_quota_cowblocks( 1651 struct xfs_inode *ip) 1652 { 1653 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); 1654 } 1655 1656 void 1657 xfs_inode_set_cowblocks_tag( 1658 xfs_inode_t *ip) 1659 { 1660 trace_xfs_inode_set_cowblocks_tag(ip); 1661 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, 1662 trace_xfs_perag_set_cowblocks, 1663 XFS_ICI_COWBLOCKS_TAG); 1664 } 1665 1666 void 1667 xfs_inode_clear_cowblocks_tag( 1668 xfs_inode_t *ip) 1669 { 1670 trace_xfs_inode_clear_cowblocks_tag(ip); 1671 return __xfs_inode_clear_blocks_tag(ip, 1672 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); 1673 } 1674 1675 /* Disable post-EOF and CoW block auto-reclamation. */ 1676 void 1677 xfs_stop_block_reaping( 1678 struct xfs_mount *mp) 1679 { 1680 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1681 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1682 } 1683 1684 /* Enable post-EOF and CoW block auto-reclamation. */ 1685 void 1686 xfs_start_block_reaping( 1687 struct xfs_mount *mp) 1688 { 1689 xfs_queue_eofblocks(mp); 1690 xfs_queue_cowblocks(mp); 1691 } 1692