xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25 #include "xfs_ialloc.h"
26 
27 #include <linux/iversion.h>
28 
29 /*
30  * Allocate and initialise an xfs_inode.
31  */
32 struct xfs_inode *
33 xfs_inode_alloc(
34 	struct xfs_mount	*mp,
35 	xfs_ino_t		ino)
36 {
37 	struct xfs_inode	*ip;
38 
39 	/*
40 	 * if this didn't occur in transactions, we could use
41 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
42 	 * code up to do this anyway.
43 	 */
44 	ip = kmem_zone_alloc(xfs_inode_zone, 0);
45 	if (!ip)
46 		return NULL;
47 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
48 		kmem_cache_free(xfs_inode_zone, ip);
49 		return NULL;
50 	}
51 
52 	/* VFS doesn't initialise i_mode! */
53 	VFS_I(ip)->i_mode = 0;
54 
55 	XFS_STATS_INC(mp, vn_active);
56 	ASSERT(atomic_read(&ip->i_pincount) == 0);
57 	ASSERT(!xfs_isiflocked(ip));
58 	ASSERT(ip->i_ino == 0);
59 
60 	/* initialise the xfs inode */
61 	ip->i_ino = ino;
62 	ip->i_mount = mp;
63 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
64 	ip->i_afp = NULL;
65 	ip->i_cowfp = NULL;
66 	memset(&ip->i_df, 0, sizeof(ip->i_df));
67 	ip->i_flags = 0;
68 	ip->i_delayed_blks = 0;
69 	memset(&ip->i_d, 0, sizeof(ip->i_d));
70 	ip->i_sick = 0;
71 	ip->i_checked = 0;
72 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
73 	INIT_LIST_HEAD(&ip->i_ioend_list);
74 	spin_lock_init(&ip->i_ioend_lock);
75 
76 	return ip;
77 }
78 
79 STATIC void
80 xfs_inode_free_callback(
81 	struct rcu_head		*head)
82 {
83 	struct inode		*inode = container_of(head, struct inode, i_rcu);
84 	struct xfs_inode	*ip = XFS_I(inode);
85 
86 	switch (VFS_I(ip)->i_mode & S_IFMT) {
87 	case S_IFREG:
88 	case S_IFDIR:
89 	case S_IFLNK:
90 		xfs_idestroy_fork(&ip->i_df);
91 		break;
92 	}
93 
94 	if (ip->i_afp) {
95 		xfs_idestroy_fork(ip->i_afp);
96 		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
97 	}
98 	if (ip->i_cowfp) {
99 		xfs_idestroy_fork(ip->i_cowfp);
100 		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
101 	}
102 	if (ip->i_itemp) {
103 		ASSERT(!test_bit(XFS_LI_IN_AIL,
104 				 &ip->i_itemp->ili_item.li_flags));
105 		xfs_inode_item_destroy(ip);
106 		ip->i_itemp = NULL;
107 	}
108 
109 	kmem_cache_free(xfs_inode_zone, ip);
110 }
111 
112 static void
113 __xfs_inode_free(
114 	struct xfs_inode	*ip)
115 {
116 	/* asserts to verify all state is correct here */
117 	ASSERT(atomic_read(&ip->i_pincount) == 0);
118 	XFS_STATS_DEC(ip->i_mount, vn_active);
119 
120 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
121 }
122 
123 void
124 xfs_inode_free(
125 	struct xfs_inode	*ip)
126 {
127 	ASSERT(!xfs_isiflocked(ip));
128 
129 	/*
130 	 * Because we use RCU freeing we need to ensure the inode always
131 	 * appears to be reclaimed with an invalid inode number when in the
132 	 * free state. The ip->i_flags_lock provides the barrier against lookup
133 	 * races.
134 	 */
135 	spin_lock(&ip->i_flags_lock);
136 	ip->i_flags = XFS_IRECLAIM;
137 	ip->i_ino = 0;
138 	spin_unlock(&ip->i_flags_lock);
139 
140 	__xfs_inode_free(ip);
141 }
142 
143 /*
144  * Queue a new inode reclaim pass if there are reclaimable inodes and there
145  * isn't a reclaim pass already in progress. By default it runs every 5s based
146  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
147  * tunable, but that can be done if this method proves to be ineffective or too
148  * aggressive.
149  */
150 static void
151 xfs_reclaim_work_queue(
152 	struct xfs_mount        *mp)
153 {
154 
155 	rcu_read_lock();
156 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
157 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
158 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
159 	}
160 	rcu_read_unlock();
161 }
162 
163 /*
164  * This is a fast pass over the inode cache to try to get reclaim moving on as
165  * many inodes as possible in a short period of time. It kicks itself every few
166  * seconds, as well as being kicked by the inode cache shrinker when memory
167  * goes low. It scans as quickly as possible avoiding locked inodes or those
168  * already being flushed, and once done schedules a future pass.
169  */
170 void
171 xfs_reclaim_worker(
172 	struct work_struct *work)
173 {
174 	struct xfs_mount *mp = container_of(to_delayed_work(work),
175 					struct xfs_mount, m_reclaim_work);
176 
177 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
178 	xfs_reclaim_work_queue(mp);
179 }
180 
181 static void
182 xfs_perag_set_reclaim_tag(
183 	struct xfs_perag	*pag)
184 {
185 	struct xfs_mount	*mp = pag->pag_mount;
186 
187 	lockdep_assert_held(&pag->pag_ici_lock);
188 	if (pag->pag_ici_reclaimable++)
189 		return;
190 
191 	/* propagate the reclaim tag up into the perag radix tree */
192 	spin_lock(&mp->m_perag_lock);
193 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
194 			   XFS_ICI_RECLAIM_TAG);
195 	spin_unlock(&mp->m_perag_lock);
196 
197 	/* schedule periodic background inode reclaim */
198 	xfs_reclaim_work_queue(mp);
199 
200 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
201 }
202 
203 static void
204 xfs_perag_clear_reclaim_tag(
205 	struct xfs_perag	*pag)
206 {
207 	struct xfs_mount	*mp = pag->pag_mount;
208 
209 	lockdep_assert_held(&pag->pag_ici_lock);
210 	if (--pag->pag_ici_reclaimable)
211 		return;
212 
213 	/* clear the reclaim tag from the perag radix tree */
214 	spin_lock(&mp->m_perag_lock);
215 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
216 			     XFS_ICI_RECLAIM_TAG);
217 	spin_unlock(&mp->m_perag_lock);
218 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
219 }
220 
221 
222 /*
223  * We set the inode flag atomically with the radix tree tag.
224  * Once we get tag lookups on the radix tree, this inode flag
225  * can go away.
226  */
227 void
228 xfs_inode_set_reclaim_tag(
229 	struct xfs_inode	*ip)
230 {
231 	struct xfs_mount	*mp = ip->i_mount;
232 	struct xfs_perag	*pag;
233 
234 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
235 	spin_lock(&pag->pag_ici_lock);
236 	spin_lock(&ip->i_flags_lock);
237 
238 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
239 			   XFS_ICI_RECLAIM_TAG);
240 	xfs_perag_set_reclaim_tag(pag);
241 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
242 
243 	spin_unlock(&ip->i_flags_lock);
244 	spin_unlock(&pag->pag_ici_lock);
245 	xfs_perag_put(pag);
246 }
247 
248 STATIC void
249 xfs_inode_clear_reclaim_tag(
250 	struct xfs_perag	*pag,
251 	xfs_ino_t		ino)
252 {
253 	radix_tree_tag_clear(&pag->pag_ici_root,
254 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
255 			     XFS_ICI_RECLAIM_TAG);
256 	xfs_perag_clear_reclaim_tag(pag);
257 }
258 
259 static void
260 xfs_inew_wait(
261 	struct xfs_inode	*ip)
262 {
263 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
264 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
265 
266 	do {
267 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
268 		if (!xfs_iflags_test(ip, XFS_INEW))
269 			break;
270 		schedule();
271 	} while (true);
272 	finish_wait(wq, &wait.wq_entry);
273 }
274 
275 /*
276  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
277  * part of the structure. This is made more complex by the fact we store
278  * information about the on-disk values in the VFS inode and so we can't just
279  * overwrite the values unconditionally. Hence we save the parameters we
280  * need to retain across reinitialisation, and rewrite them into the VFS inode
281  * after reinitialisation even if it fails.
282  */
283 static int
284 xfs_reinit_inode(
285 	struct xfs_mount	*mp,
286 	struct inode		*inode)
287 {
288 	int		error;
289 	uint32_t	nlink = inode->i_nlink;
290 	uint32_t	generation = inode->i_generation;
291 	uint64_t	version = inode_peek_iversion(inode);
292 	umode_t		mode = inode->i_mode;
293 	dev_t		dev = inode->i_rdev;
294 	kuid_t		uid = inode->i_uid;
295 	kgid_t		gid = inode->i_gid;
296 
297 	error = inode_init_always(mp->m_super, inode);
298 
299 	set_nlink(inode, nlink);
300 	inode->i_generation = generation;
301 	inode_set_iversion_queried(inode, version);
302 	inode->i_mode = mode;
303 	inode->i_rdev = dev;
304 	inode->i_uid = uid;
305 	inode->i_gid = gid;
306 	return error;
307 }
308 
309 /*
310  * If we are allocating a new inode, then check what was returned is
311  * actually a free, empty inode. If we are not allocating an inode,
312  * then check we didn't find a free inode.
313  *
314  * Returns:
315  *	0		if the inode free state matches the lookup context
316  *	-ENOENT		if the inode is free and we are not allocating
317  *	-EFSCORRUPTED	if there is any state mismatch at all
318  */
319 static int
320 xfs_iget_check_free_state(
321 	struct xfs_inode	*ip,
322 	int			flags)
323 {
324 	if (flags & XFS_IGET_CREATE) {
325 		/* should be a free inode */
326 		if (VFS_I(ip)->i_mode != 0) {
327 			xfs_warn(ip->i_mount,
328 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
329 				ip->i_ino, VFS_I(ip)->i_mode);
330 			return -EFSCORRUPTED;
331 		}
332 
333 		if (ip->i_d.di_nblocks != 0) {
334 			xfs_warn(ip->i_mount,
335 "Corruption detected! Free inode 0x%llx has blocks allocated!",
336 				ip->i_ino);
337 			return -EFSCORRUPTED;
338 		}
339 		return 0;
340 	}
341 
342 	/* should be an allocated inode */
343 	if (VFS_I(ip)->i_mode == 0)
344 		return -ENOENT;
345 
346 	return 0;
347 }
348 
349 /*
350  * Check the validity of the inode we just found it the cache
351  */
352 static int
353 xfs_iget_cache_hit(
354 	struct xfs_perag	*pag,
355 	struct xfs_inode	*ip,
356 	xfs_ino_t		ino,
357 	int			flags,
358 	int			lock_flags) __releases(RCU)
359 {
360 	struct inode		*inode = VFS_I(ip);
361 	struct xfs_mount	*mp = ip->i_mount;
362 	int			error;
363 
364 	/*
365 	 * check for re-use of an inode within an RCU grace period due to the
366 	 * radix tree nodes not being updated yet. We monitor for this by
367 	 * setting the inode number to zero before freeing the inode structure.
368 	 * If the inode has been reallocated and set up, then the inode number
369 	 * will not match, so check for that, too.
370 	 */
371 	spin_lock(&ip->i_flags_lock);
372 	if (ip->i_ino != ino) {
373 		trace_xfs_iget_skip(ip);
374 		XFS_STATS_INC(mp, xs_ig_frecycle);
375 		error = -EAGAIN;
376 		goto out_error;
377 	}
378 
379 
380 	/*
381 	 * If we are racing with another cache hit that is currently
382 	 * instantiating this inode or currently recycling it out of
383 	 * reclaimabe state, wait for the initialisation to complete
384 	 * before continuing.
385 	 *
386 	 * XXX(hch): eventually we should do something equivalent to
387 	 *	     wait_on_inode to wait for these flags to be cleared
388 	 *	     instead of polling for it.
389 	 */
390 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
391 		trace_xfs_iget_skip(ip);
392 		XFS_STATS_INC(mp, xs_ig_frecycle);
393 		error = -EAGAIN;
394 		goto out_error;
395 	}
396 
397 	/*
398 	 * Check the inode free state is valid. This also detects lookup
399 	 * racing with unlinks.
400 	 */
401 	error = xfs_iget_check_free_state(ip, flags);
402 	if (error)
403 		goto out_error;
404 
405 	/*
406 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
407 	 * Need to carefully get it back into useable state.
408 	 */
409 	if (ip->i_flags & XFS_IRECLAIMABLE) {
410 		trace_xfs_iget_reclaim(ip);
411 
412 		if (flags & XFS_IGET_INCORE) {
413 			error = -EAGAIN;
414 			goto out_error;
415 		}
416 
417 		/*
418 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
419 		 * from stomping over us while we recycle the inode.  We can't
420 		 * clear the radix tree reclaimable tag yet as it requires
421 		 * pag_ici_lock to be held exclusive.
422 		 */
423 		ip->i_flags |= XFS_IRECLAIM;
424 
425 		spin_unlock(&ip->i_flags_lock);
426 		rcu_read_unlock();
427 
428 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
429 		error = xfs_reinit_inode(mp, inode);
430 		if (error) {
431 			bool wake;
432 			/*
433 			 * Re-initializing the inode failed, and we are in deep
434 			 * trouble.  Try to re-add it to the reclaim list.
435 			 */
436 			rcu_read_lock();
437 			spin_lock(&ip->i_flags_lock);
438 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
439 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
440 			if (wake)
441 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
442 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
443 			trace_xfs_iget_reclaim_fail(ip);
444 			goto out_error;
445 		}
446 
447 		spin_lock(&pag->pag_ici_lock);
448 		spin_lock(&ip->i_flags_lock);
449 
450 		/*
451 		 * Clear the per-lifetime state in the inode as we are now
452 		 * effectively a new inode and need to return to the initial
453 		 * state before reuse occurs.
454 		 */
455 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
456 		ip->i_flags |= XFS_INEW;
457 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
458 		inode->i_state = I_NEW;
459 		ip->i_sick = 0;
460 		ip->i_checked = 0;
461 
462 		spin_unlock(&ip->i_flags_lock);
463 		spin_unlock(&pag->pag_ici_lock);
464 	} else {
465 		/* If the VFS inode is being torn down, pause and try again. */
466 		if (!igrab(inode)) {
467 			trace_xfs_iget_skip(ip);
468 			error = -EAGAIN;
469 			goto out_error;
470 		}
471 
472 		/* We've got a live one. */
473 		spin_unlock(&ip->i_flags_lock);
474 		rcu_read_unlock();
475 		trace_xfs_iget_hit(ip);
476 	}
477 
478 	if (lock_flags != 0)
479 		xfs_ilock(ip, lock_flags);
480 
481 	if (!(flags & XFS_IGET_INCORE))
482 		xfs_iflags_clear(ip, XFS_ISTALE);
483 	XFS_STATS_INC(mp, xs_ig_found);
484 
485 	return 0;
486 
487 out_error:
488 	spin_unlock(&ip->i_flags_lock);
489 	rcu_read_unlock();
490 	return error;
491 }
492 
493 
494 static int
495 xfs_iget_cache_miss(
496 	struct xfs_mount	*mp,
497 	struct xfs_perag	*pag,
498 	xfs_trans_t		*tp,
499 	xfs_ino_t		ino,
500 	struct xfs_inode	**ipp,
501 	int			flags,
502 	int			lock_flags)
503 {
504 	struct xfs_inode	*ip;
505 	int			error;
506 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
507 	int			iflags;
508 
509 	ip = xfs_inode_alloc(mp, ino);
510 	if (!ip)
511 		return -ENOMEM;
512 
513 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
514 	if (error)
515 		goto out_destroy;
516 
517 	/*
518 	 * For version 5 superblocks, if we are initialising a new inode and we
519 	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
520 	 * simply build the new inode core with a random generation number.
521 	 *
522 	 * For version 4 (and older) superblocks, log recovery is dependent on
523 	 * the di_flushiter field being initialised from the current on-disk
524 	 * value and hence we must also read the inode off disk even when
525 	 * initializing new inodes.
526 	 */
527 	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
528 	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
529 		VFS_I(ip)->i_generation = prandom_u32();
530 	} else {
531 		struct xfs_dinode	*dip;
532 		struct xfs_buf		*bp;
533 
534 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
535 		if (error)
536 			goto out_destroy;
537 
538 		error = xfs_inode_from_disk(ip, dip);
539 		if (!error)
540 			xfs_buf_set_ref(bp, XFS_INO_REF);
541 		xfs_trans_brelse(tp, bp);
542 
543 		if (error)
544 			goto out_destroy;
545 	}
546 
547 	trace_xfs_iget_miss(ip);
548 
549 	/*
550 	 * Check the inode free state is valid. This also detects lookup
551 	 * racing with unlinks.
552 	 */
553 	error = xfs_iget_check_free_state(ip, flags);
554 	if (error)
555 		goto out_destroy;
556 
557 	/*
558 	 * Preload the radix tree so we can insert safely under the
559 	 * write spinlock. Note that we cannot sleep inside the preload
560 	 * region. Since we can be called from transaction context, don't
561 	 * recurse into the file system.
562 	 */
563 	if (radix_tree_preload(GFP_NOFS)) {
564 		error = -EAGAIN;
565 		goto out_destroy;
566 	}
567 
568 	/*
569 	 * Because the inode hasn't been added to the radix-tree yet it can't
570 	 * be found by another thread, so we can do the non-sleeping lock here.
571 	 */
572 	if (lock_flags) {
573 		if (!xfs_ilock_nowait(ip, lock_flags))
574 			BUG();
575 	}
576 
577 	/*
578 	 * These values must be set before inserting the inode into the radix
579 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
580 	 * RCU locking mechanism) can find it and that lookup must see that this
581 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
582 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
583 	 * memory barrier that ensures this detection works correctly at lookup
584 	 * time.
585 	 */
586 	iflags = XFS_INEW;
587 	if (flags & XFS_IGET_DONTCACHE)
588 		d_mark_dontcache(VFS_I(ip));
589 	ip->i_udquot = NULL;
590 	ip->i_gdquot = NULL;
591 	ip->i_pdquot = NULL;
592 	xfs_iflags_set(ip, iflags);
593 
594 	/* insert the new inode */
595 	spin_lock(&pag->pag_ici_lock);
596 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
597 	if (unlikely(error)) {
598 		WARN_ON(error != -EEXIST);
599 		XFS_STATS_INC(mp, xs_ig_dup);
600 		error = -EAGAIN;
601 		goto out_preload_end;
602 	}
603 	spin_unlock(&pag->pag_ici_lock);
604 	radix_tree_preload_end();
605 
606 	*ipp = ip;
607 	return 0;
608 
609 out_preload_end:
610 	spin_unlock(&pag->pag_ici_lock);
611 	radix_tree_preload_end();
612 	if (lock_flags)
613 		xfs_iunlock(ip, lock_flags);
614 out_destroy:
615 	__destroy_inode(VFS_I(ip));
616 	xfs_inode_free(ip);
617 	return error;
618 }
619 
620 /*
621  * Look up an inode by number in the given file system.
622  * The inode is looked up in the cache held in each AG.
623  * If the inode is found in the cache, initialise the vfs inode
624  * if necessary.
625  *
626  * If it is not in core, read it in from the file system's device,
627  * add it to the cache and initialise the vfs inode.
628  *
629  * The inode is locked according to the value of the lock_flags parameter.
630  * This flag parameter indicates how and if the inode's IO lock and inode lock
631  * should be taken.
632  *
633  * mp -- the mount point structure for the current file system.  It points
634  *       to the inode hash table.
635  * tp -- a pointer to the current transaction if there is one.  This is
636  *       simply passed through to the xfs_iread() call.
637  * ino -- the number of the inode desired.  This is the unique identifier
638  *        within the file system for the inode being requested.
639  * lock_flags -- flags indicating how to lock the inode.  See the comment
640  *		 for xfs_ilock() for a list of valid values.
641  */
642 int
643 xfs_iget(
644 	xfs_mount_t	*mp,
645 	xfs_trans_t	*tp,
646 	xfs_ino_t	ino,
647 	uint		flags,
648 	uint		lock_flags,
649 	xfs_inode_t	**ipp)
650 {
651 	xfs_inode_t	*ip;
652 	int		error;
653 	xfs_perag_t	*pag;
654 	xfs_agino_t	agino;
655 
656 	/*
657 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
658 	 * doesn't get freed while it's being referenced during a
659 	 * radix tree traversal here.  It assumes this function
660 	 * aqcuires only the ILOCK (and therefore it has no need to
661 	 * involve the IOLOCK in this synchronization).
662 	 */
663 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
664 
665 	/* reject inode numbers outside existing AGs */
666 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
667 		return -EINVAL;
668 
669 	XFS_STATS_INC(mp, xs_ig_attempts);
670 
671 	/* get the perag structure and ensure that it's inode capable */
672 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
673 	agino = XFS_INO_TO_AGINO(mp, ino);
674 
675 again:
676 	error = 0;
677 	rcu_read_lock();
678 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
679 
680 	if (ip) {
681 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
682 		if (error)
683 			goto out_error_or_again;
684 	} else {
685 		rcu_read_unlock();
686 		if (flags & XFS_IGET_INCORE) {
687 			error = -ENODATA;
688 			goto out_error_or_again;
689 		}
690 		XFS_STATS_INC(mp, xs_ig_missed);
691 
692 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
693 							flags, lock_flags);
694 		if (error)
695 			goto out_error_or_again;
696 	}
697 	xfs_perag_put(pag);
698 
699 	*ipp = ip;
700 
701 	/*
702 	 * If we have a real type for an on-disk inode, we can setup the inode
703 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
704 	 */
705 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
706 		xfs_setup_existing_inode(ip);
707 	return 0;
708 
709 out_error_or_again:
710 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
711 		delay(1);
712 		goto again;
713 	}
714 	xfs_perag_put(pag);
715 	return error;
716 }
717 
718 /*
719  * "Is this a cached inode that's also allocated?"
720  *
721  * Look up an inode by number in the given file system.  If the inode is
722  * in cache and isn't in purgatory, return 1 if the inode is allocated
723  * and 0 if it is not.  For all other cases (not in cache, being torn
724  * down, etc.), return a negative error code.
725  *
726  * The caller has to prevent inode allocation and freeing activity,
727  * presumably by locking the AGI buffer.   This is to ensure that an
728  * inode cannot transition from allocated to freed until the caller is
729  * ready to allow that.  If the inode is in an intermediate state (new,
730  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
731  * inode is not in the cache, -ENOENT will be returned.  The caller must
732  * deal with these scenarios appropriately.
733  *
734  * This is a specialized use case for the online scrubber; if you're
735  * reading this, you probably want xfs_iget.
736  */
737 int
738 xfs_icache_inode_is_allocated(
739 	struct xfs_mount	*mp,
740 	struct xfs_trans	*tp,
741 	xfs_ino_t		ino,
742 	bool			*inuse)
743 {
744 	struct xfs_inode	*ip;
745 	int			error;
746 
747 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
748 	if (error)
749 		return error;
750 
751 	*inuse = !!(VFS_I(ip)->i_mode);
752 	xfs_irele(ip);
753 	return 0;
754 }
755 
756 /*
757  * The inode lookup is done in batches to keep the amount of lock traffic and
758  * radix tree lookups to a minimum. The batch size is a trade off between
759  * lookup reduction and stack usage. This is in the reclaim path, so we can't
760  * be too greedy.
761  */
762 #define XFS_LOOKUP_BATCH	32
763 
764 /*
765  * Decide if the given @ip is eligible to be a part of the inode walk, and
766  * grab it if so.  Returns true if it's ready to go or false if we should just
767  * ignore it.
768  */
769 STATIC bool
770 xfs_inode_walk_ag_grab(
771 	struct xfs_inode	*ip,
772 	int			flags)
773 {
774 	struct inode		*inode = VFS_I(ip);
775 	bool			newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
776 
777 	ASSERT(rcu_read_lock_held());
778 
779 	/*
780 	 * check for stale RCU freed inode
781 	 *
782 	 * If the inode has been reallocated, it doesn't matter if it's not in
783 	 * the AG we are walking - we are walking for writeback, so if it
784 	 * passes all the "valid inode" checks and is dirty, then we'll write
785 	 * it back anyway.  If it has been reallocated and still being
786 	 * initialised, the XFS_INEW check below will catch it.
787 	 */
788 	spin_lock(&ip->i_flags_lock);
789 	if (!ip->i_ino)
790 		goto out_unlock_noent;
791 
792 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
793 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
794 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
795 		goto out_unlock_noent;
796 	spin_unlock(&ip->i_flags_lock);
797 
798 	/* nothing to sync during shutdown */
799 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
800 		return false;
801 
802 	/* If we can't grab the inode, it must on it's way to reclaim. */
803 	if (!igrab(inode))
804 		return false;
805 
806 	/* inode is valid */
807 	return true;
808 
809 out_unlock_noent:
810 	spin_unlock(&ip->i_flags_lock);
811 	return false;
812 }
813 
814 /*
815  * For a given per-AG structure @pag, grab, @execute, and rele all incore
816  * inodes with the given radix tree @tag.
817  */
818 STATIC int
819 xfs_inode_walk_ag(
820 	struct xfs_perag	*pag,
821 	int			iter_flags,
822 	int			(*execute)(struct xfs_inode *ip, void *args),
823 	void			*args,
824 	int			tag)
825 {
826 	struct xfs_mount	*mp = pag->pag_mount;
827 	uint32_t		first_index;
828 	int			last_error = 0;
829 	int			skipped;
830 	bool			done;
831 	int			nr_found;
832 
833 restart:
834 	done = false;
835 	skipped = 0;
836 	first_index = 0;
837 	nr_found = 0;
838 	do {
839 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
840 		int		error = 0;
841 		int		i;
842 
843 		rcu_read_lock();
844 
845 		if (tag == XFS_ICI_NO_TAG)
846 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
847 					(void **)batch, first_index,
848 					XFS_LOOKUP_BATCH);
849 		else
850 			nr_found = radix_tree_gang_lookup_tag(
851 					&pag->pag_ici_root,
852 					(void **) batch, first_index,
853 					XFS_LOOKUP_BATCH, tag);
854 
855 		if (!nr_found) {
856 			rcu_read_unlock();
857 			break;
858 		}
859 
860 		/*
861 		 * Grab the inodes before we drop the lock. if we found
862 		 * nothing, nr == 0 and the loop will be skipped.
863 		 */
864 		for (i = 0; i < nr_found; i++) {
865 			struct xfs_inode *ip = batch[i];
866 
867 			if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
868 				batch[i] = NULL;
869 
870 			/*
871 			 * Update the index for the next lookup. Catch
872 			 * overflows into the next AG range which can occur if
873 			 * we have inodes in the last block of the AG and we
874 			 * are currently pointing to the last inode.
875 			 *
876 			 * Because we may see inodes that are from the wrong AG
877 			 * due to RCU freeing and reallocation, only update the
878 			 * index if it lies in this AG. It was a race that lead
879 			 * us to see this inode, so another lookup from the
880 			 * same index will not find it again.
881 			 */
882 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
883 				continue;
884 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
885 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
886 				done = true;
887 		}
888 
889 		/* unlock now we've grabbed the inodes. */
890 		rcu_read_unlock();
891 
892 		for (i = 0; i < nr_found; i++) {
893 			if (!batch[i])
894 				continue;
895 			if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
896 			    xfs_iflags_test(batch[i], XFS_INEW))
897 				xfs_inew_wait(batch[i]);
898 			error = execute(batch[i], args);
899 			xfs_irele(batch[i]);
900 			if (error == -EAGAIN) {
901 				skipped++;
902 				continue;
903 			}
904 			if (error && last_error != -EFSCORRUPTED)
905 				last_error = error;
906 		}
907 
908 		/* bail out if the filesystem is corrupted.  */
909 		if (error == -EFSCORRUPTED)
910 			break;
911 
912 		cond_resched();
913 
914 	} while (nr_found && !done);
915 
916 	if (skipped) {
917 		delay(1);
918 		goto restart;
919 	}
920 	return last_error;
921 }
922 
923 /* Fetch the next (possibly tagged) per-AG structure. */
924 static inline struct xfs_perag *
925 xfs_inode_walk_get_perag(
926 	struct xfs_mount	*mp,
927 	xfs_agnumber_t		agno,
928 	int			tag)
929 {
930 	if (tag == XFS_ICI_NO_TAG)
931 		return xfs_perag_get(mp, agno);
932 	return xfs_perag_get_tag(mp, agno, tag);
933 }
934 
935 /*
936  * Call the @execute function on all incore inodes matching the radix tree
937  * @tag.
938  */
939 int
940 xfs_inode_walk(
941 	struct xfs_mount	*mp,
942 	int			iter_flags,
943 	int			(*execute)(struct xfs_inode *ip, void *args),
944 	void			*args,
945 	int			tag)
946 {
947 	struct xfs_perag	*pag;
948 	int			error = 0;
949 	int			last_error = 0;
950 	xfs_agnumber_t		ag;
951 
952 	ag = 0;
953 	while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
954 		ag = pag->pag_agno + 1;
955 		error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
956 		xfs_perag_put(pag);
957 		if (error) {
958 			last_error = error;
959 			if (error == -EFSCORRUPTED)
960 				break;
961 		}
962 	}
963 	return last_error;
964 }
965 
966 /*
967  * Background scanning to trim post-EOF preallocated space. This is queued
968  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
969  */
970 void
971 xfs_queue_eofblocks(
972 	struct xfs_mount *mp)
973 {
974 	rcu_read_lock();
975 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
976 		queue_delayed_work(mp->m_eofblocks_workqueue,
977 				   &mp->m_eofblocks_work,
978 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
979 	rcu_read_unlock();
980 }
981 
982 void
983 xfs_eofblocks_worker(
984 	struct work_struct *work)
985 {
986 	struct xfs_mount *mp = container_of(to_delayed_work(work),
987 				struct xfs_mount, m_eofblocks_work);
988 
989 	if (!sb_start_write_trylock(mp->m_super))
990 		return;
991 	xfs_icache_free_eofblocks(mp, NULL);
992 	sb_end_write(mp->m_super);
993 
994 	xfs_queue_eofblocks(mp);
995 }
996 
997 /*
998  * Background scanning to trim preallocated CoW space. This is queued
999  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
1000  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
1001  */
1002 void
1003 xfs_queue_cowblocks(
1004 	struct xfs_mount *mp)
1005 {
1006 	rcu_read_lock();
1007 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
1008 		queue_delayed_work(mp->m_eofblocks_workqueue,
1009 				   &mp->m_cowblocks_work,
1010 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
1011 	rcu_read_unlock();
1012 }
1013 
1014 void
1015 xfs_cowblocks_worker(
1016 	struct work_struct *work)
1017 {
1018 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1019 				struct xfs_mount, m_cowblocks_work);
1020 
1021 	if (!sb_start_write_trylock(mp->m_super))
1022 		return;
1023 	xfs_icache_free_cowblocks(mp, NULL);
1024 	sb_end_write(mp->m_super);
1025 
1026 	xfs_queue_cowblocks(mp);
1027 }
1028 
1029 /*
1030  * Grab the inode for reclaim exclusively.
1031  * Return 0 if we grabbed it, non-zero otherwise.
1032  */
1033 STATIC int
1034 xfs_reclaim_inode_grab(
1035 	struct xfs_inode	*ip,
1036 	int			flags)
1037 {
1038 	ASSERT(rcu_read_lock_held());
1039 
1040 	/* quick check for stale RCU freed inode */
1041 	if (!ip->i_ino)
1042 		return 1;
1043 
1044 	/*
1045 	 * If we are asked for non-blocking operation, do unlocked checks to
1046 	 * see if the inode already is being flushed or in reclaim to avoid
1047 	 * lock traffic.
1048 	 */
1049 	if ((flags & SYNC_TRYLOCK) &&
1050 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1051 		return 1;
1052 
1053 	/*
1054 	 * The radix tree lock here protects a thread in xfs_iget from racing
1055 	 * with us starting reclaim on the inode.  Once we have the
1056 	 * XFS_IRECLAIM flag set it will not touch us.
1057 	 *
1058 	 * Due to RCU lookup, we may find inodes that have been freed and only
1059 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1060 	 * aren't candidates for reclaim at all, so we must check the
1061 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1062 	 */
1063 	spin_lock(&ip->i_flags_lock);
1064 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1065 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1066 		/* not a reclaim candidate. */
1067 		spin_unlock(&ip->i_flags_lock);
1068 		return 1;
1069 	}
1070 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1071 	spin_unlock(&ip->i_flags_lock);
1072 	return 0;
1073 }
1074 
1075 /*
1076  * Inodes in different states need to be treated differently. The following
1077  * table lists the inode states and the reclaim actions necessary:
1078  *
1079  *	inode state	     iflush ret		required action
1080  *      ---------------      ----------         ---------------
1081  *	bad			-		reclaim
1082  *	shutdown		EIO		unpin and reclaim
1083  *	clean, unpinned		0		reclaim
1084  *	stale, unpinned		0		reclaim
1085  *	clean, pinned(*)	0		requeue
1086  *	stale, pinned		EAGAIN		requeue
1087  *	dirty, async		-		requeue
1088  *	dirty, sync		0		reclaim
1089  *
1090  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1091  * handled anyway given the order of checks implemented.
1092  *
1093  * Also, because we get the flush lock first, we know that any inode that has
1094  * been flushed delwri has had the flush completed by the time we check that
1095  * the inode is clean.
1096  *
1097  * Note that because the inode is flushed delayed write by AIL pushing, the
1098  * flush lock may already be held here and waiting on it can result in very
1099  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1100  * the caller should push the AIL first before trying to reclaim inodes to
1101  * minimise the amount of time spent waiting.  For background relaim, we only
1102  * bother to reclaim clean inodes anyway.
1103  *
1104  * Hence the order of actions after gaining the locks should be:
1105  *	bad		=> reclaim
1106  *	shutdown	=> unpin and reclaim
1107  *	pinned, async	=> requeue
1108  *	pinned, sync	=> unpin
1109  *	stale		=> reclaim
1110  *	clean		=> reclaim
1111  *	dirty, async	=> requeue
1112  *	dirty, sync	=> flush, wait and reclaim
1113  */
1114 STATIC int
1115 xfs_reclaim_inode(
1116 	struct xfs_inode	*ip,
1117 	struct xfs_perag	*pag,
1118 	int			sync_mode)
1119 {
1120 	struct xfs_buf		*bp = NULL;
1121 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1122 	int			error;
1123 
1124 restart:
1125 	error = 0;
1126 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1127 	if (!xfs_iflock_nowait(ip)) {
1128 		if (!(sync_mode & SYNC_WAIT))
1129 			goto out;
1130 		xfs_iflock(ip);
1131 	}
1132 
1133 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1134 		xfs_iunpin_wait(ip);
1135 		/* xfs_iflush_abort() drops the flush lock */
1136 		xfs_iflush_abort(ip);
1137 		goto reclaim;
1138 	}
1139 	if (xfs_ipincount(ip)) {
1140 		if (!(sync_mode & SYNC_WAIT))
1141 			goto out_ifunlock;
1142 		xfs_iunpin_wait(ip);
1143 	}
1144 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1145 		xfs_ifunlock(ip);
1146 		goto reclaim;
1147 	}
1148 
1149 	/*
1150 	 * Never flush out dirty data during non-blocking reclaim, as it would
1151 	 * just contend with AIL pushing trying to do the same job.
1152 	 */
1153 	if (!(sync_mode & SYNC_WAIT))
1154 		goto out_ifunlock;
1155 
1156 	/*
1157 	 * Now we have an inode that needs flushing.
1158 	 *
1159 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1160 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1161 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1162 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1163 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1164 	 *
1165 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1166 	 * cache to mark them stale, if we hit this case we don't actually want
1167 	 * to do IO here - we want the inode marked stale so we can simply
1168 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1169 	 * inode, back off and try again.  Hopefully the next pass through will
1170 	 * see the stale flag set on the inode.
1171 	 */
1172 	error = xfs_iflush(ip, &bp);
1173 	if (error == -EAGAIN) {
1174 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1175 		/* backoff longer than in xfs_ifree_cluster */
1176 		delay(2);
1177 		goto restart;
1178 	}
1179 
1180 	if (!error) {
1181 		error = xfs_bwrite(bp);
1182 		xfs_buf_relse(bp);
1183 	}
1184 
1185 reclaim:
1186 	ASSERT(!xfs_isiflocked(ip));
1187 
1188 	/*
1189 	 * Because we use RCU freeing we need to ensure the inode always appears
1190 	 * to be reclaimed with an invalid inode number when in the free state.
1191 	 * We do this as early as possible under the ILOCK so that
1192 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1193 	 * detect races with us here. By doing this, we guarantee that once
1194 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1195 	 * it will see either a valid inode that will serialise correctly, or it
1196 	 * will see an invalid inode that it can skip.
1197 	 */
1198 	spin_lock(&ip->i_flags_lock);
1199 	ip->i_flags = XFS_IRECLAIM;
1200 	ip->i_ino = 0;
1201 	spin_unlock(&ip->i_flags_lock);
1202 
1203 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1204 
1205 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1206 	/*
1207 	 * Remove the inode from the per-AG radix tree.
1208 	 *
1209 	 * Because radix_tree_delete won't complain even if the item was never
1210 	 * added to the tree assert that it's been there before to catch
1211 	 * problems with the inode life time early on.
1212 	 */
1213 	spin_lock(&pag->pag_ici_lock);
1214 	if (!radix_tree_delete(&pag->pag_ici_root,
1215 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1216 		ASSERT(0);
1217 	xfs_perag_clear_reclaim_tag(pag);
1218 	spin_unlock(&pag->pag_ici_lock);
1219 
1220 	/*
1221 	 * Here we do an (almost) spurious inode lock in order to coordinate
1222 	 * with inode cache radix tree lookups.  This is because the lookup
1223 	 * can reference the inodes in the cache without taking references.
1224 	 *
1225 	 * We make that OK here by ensuring that we wait until the inode is
1226 	 * unlocked after the lookup before we go ahead and free it.
1227 	 */
1228 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1229 	xfs_qm_dqdetach(ip);
1230 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1231 
1232 	__xfs_inode_free(ip);
1233 	return error;
1234 
1235 out_ifunlock:
1236 	xfs_ifunlock(ip);
1237 out:
1238 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1239 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1240 	/*
1241 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1242 	 * a short while. However, this just burns CPU time scanning the tree
1243 	 * waiting for IO to complete and the reclaim work never goes back to
1244 	 * the idle state. Instead, return 0 to let the next scheduled
1245 	 * background reclaim attempt to reclaim the inode again.
1246 	 */
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1252  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1253  * then a shut down during filesystem unmount reclaim walk leak all the
1254  * unreclaimed inodes.
1255  */
1256 STATIC int
1257 xfs_reclaim_inodes_ag(
1258 	struct xfs_mount	*mp,
1259 	int			flags,
1260 	int			*nr_to_scan)
1261 {
1262 	struct xfs_perag	*pag;
1263 	int			error = 0;
1264 	int			last_error = 0;
1265 	xfs_agnumber_t		ag;
1266 	int			trylock = flags & SYNC_TRYLOCK;
1267 	int			skipped;
1268 
1269 restart:
1270 	ag = 0;
1271 	skipped = 0;
1272 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1273 		unsigned long	first_index = 0;
1274 		int		done = 0;
1275 		int		nr_found = 0;
1276 
1277 		ag = pag->pag_agno + 1;
1278 
1279 		if (trylock) {
1280 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1281 				skipped++;
1282 				xfs_perag_put(pag);
1283 				continue;
1284 			}
1285 			first_index = pag->pag_ici_reclaim_cursor;
1286 		} else
1287 			mutex_lock(&pag->pag_ici_reclaim_lock);
1288 
1289 		do {
1290 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1291 			int	i;
1292 
1293 			rcu_read_lock();
1294 			nr_found = radix_tree_gang_lookup_tag(
1295 					&pag->pag_ici_root,
1296 					(void **)batch, first_index,
1297 					XFS_LOOKUP_BATCH,
1298 					XFS_ICI_RECLAIM_TAG);
1299 			if (!nr_found) {
1300 				done = 1;
1301 				rcu_read_unlock();
1302 				break;
1303 			}
1304 
1305 			/*
1306 			 * Grab the inodes before we drop the lock. if we found
1307 			 * nothing, nr == 0 and the loop will be skipped.
1308 			 */
1309 			for (i = 0; i < nr_found; i++) {
1310 				struct xfs_inode *ip = batch[i];
1311 
1312 				if (done || xfs_reclaim_inode_grab(ip, flags))
1313 					batch[i] = NULL;
1314 
1315 				/*
1316 				 * Update the index for the next lookup. Catch
1317 				 * overflows into the next AG range which can
1318 				 * occur if we have inodes in the last block of
1319 				 * the AG and we are currently pointing to the
1320 				 * last inode.
1321 				 *
1322 				 * Because we may see inodes that are from the
1323 				 * wrong AG due to RCU freeing and
1324 				 * reallocation, only update the index if it
1325 				 * lies in this AG. It was a race that lead us
1326 				 * to see this inode, so another lookup from
1327 				 * the same index will not find it again.
1328 				 */
1329 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1330 								pag->pag_agno)
1331 					continue;
1332 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1333 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1334 					done = 1;
1335 			}
1336 
1337 			/* unlock now we've grabbed the inodes. */
1338 			rcu_read_unlock();
1339 
1340 			for (i = 0; i < nr_found; i++) {
1341 				if (!batch[i])
1342 					continue;
1343 				error = xfs_reclaim_inode(batch[i], pag, flags);
1344 				if (error && last_error != -EFSCORRUPTED)
1345 					last_error = error;
1346 			}
1347 
1348 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1349 
1350 			cond_resched();
1351 
1352 		} while (nr_found && !done && *nr_to_scan > 0);
1353 
1354 		if (trylock && !done)
1355 			pag->pag_ici_reclaim_cursor = first_index;
1356 		else
1357 			pag->pag_ici_reclaim_cursor = 0;
1358 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1359 		xfs_perag_put(pag);
1360 	}
1361 
1362 	/*
1363 	 * if we skipped any AG, and we still have scan count remaining, do
1364 	 * another pass this time using blocking reclaim semantics (i.e
1365 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1366 	 * ensure that when we get more reclaimers than AGs we block rather
1367 	 * than spin trying to execute reclaim.
1368 	 */
1369 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1370 		trylock = 0;
1371 		goto restart;
1372 	}
1373 	return last_error;
1374 }
1375 
1376 int
1377 xfs_reclaim_inodes(
1378 	xfs_mount_t	*mp,
1379 	int		mode)
1380 {
1381 	int		nr_to_scan = INT_MAX;
1382 
1383 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1384 }
1385 
1386 /*
1387  * Scan a certain number of inodes for reclaim.
1388  *
1389  * When called we make sure that there is a background (fast) inode reclaim in
1390  * progress, while we will throttle the speed of reclaim via doing synchronous
1391  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1392  * them to be cleaned, which we hope will not be very long due to the
1393  * background walker having already kicked the IO off on those dirty inodes.
1394  */
1395 long
1396 xfs_reclaim_inodes_nr(
1397 	struct xfs_mount	*mp,
1398 	int			nr_to_scan)
1399 {
1400 	/* kick background reclaimer and push the AIL */
1401 	xfs_reclaim_work_queue(mp);
1402 	xfs_ail_push_all(mp->m_ail);
1403 
1404 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1405 }
1406 
1407 /*
1408  * Return the number of reclaimable inodes in the filesystem for
1409  * the shrinker to determine how much to reclaim.
1410  */
1411 int
1412 xfs_reclaim_inodes_count(
1413 	struct xfs_mount	*mp)
1414 {
1415 	struct xfs_perag	*pag;
1416 	xfs_agnumber_t		ag = 0;
1417 	int			reclaimable = 0;
1418 
1419 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1420 		ag = pag->pag_agno + 1;
1421 		reclaimable += pag->pag_ici_reclaimable;
1422 		xfs_perag_put(pag);
1423 	}
1424 	return reclaimable;
1425 }
1426 
1427 STATIC bool
1428 xfs_inode_match_id(
1429 	struct xfs_inode	*ip,
1430 	struct xfs_eofblocks	*eofb)
1431 {
1432 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1433 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1434 		return false;
1435 
1436 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1437 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1438 		return false;
1439 
1440 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1441 	    ip->i_d.di_projid != eofb->eof_prid)
1442 		return false;
1443 
1444 	return true;
1445 }
1446 
1447 /*
1448  * A union-based inode filtering algorithm. Process the inode if any of the
1449  * criteria match. This is for global/internal scans only.
1450  */
1451 STATIC bool
1452 xfs_inode_match_id_union(
1453 	struct xfs_inode	*ip,
1454 	struct xfs_eofblocks	*eofb)
1455 {
1456 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1457 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1458 		return true;
1459 
1460 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1461 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1462 		return true;
1463 
1464 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1465 	    ip->i_d.di_projid == eofb->eof_prid)
1466 		return true;
1467 
1468 	return false;
1469 }
1470 
1471 /*
1472  * Is this inode @ip eligible for eof/cow block reclamation, given some
1473  * filtering parameters @eofb?  The inode is eligible if @eofb is null or
1474  * if the predicate functions match.
1475  */
1476 static bool
1477 xfs_inode_matches_eofb(
1478 	struct xfs_inode	*ip,
1479 	struct xfs_eofblocks	*eofb)
1480 {
1481 	bool			match;
1482 
1483 	if (!eofb)
1484 		return true;
1485 
1486 	if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1487 		match = xfs_inode_match_id_union(ip, eofb);
1488 	else
1489 		match = xfs_inode_match_id(ip, eofb);
1490 	if (!match)
1491 		return false;
1492 
1493 	/* skip the inode if the file size is too small */
1494 	if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
1495 	    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1496 		return false;
1497 
1498 	return true;
1499 }
1500 
1501 STATIC int
1502 xfs_inode_free_eofblocks(
1503 	struct xfs_inode	*ip,
1504 	void			*args)
1505 {
1506 	struct xfs_eofblocks	*eofb = args;
1507 	bool			wait;
1508 	int			ret;
1509 
1510 	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1511 
1512 	if (!xfs_can_free_eofblocks(ip, false)) {
1513 		/* inode could be preallocated or append-only */
1514 		trace_xfs_inode_free_eofblocks_invalid(ip);
1515 		xfs_inode_clear_eofblocks_tag(ip);
1516 		return 0;
1517 	}
1518 
1519 	/*
1520 	 * If the mapping is dirty the operation can block and wait for some
1521 	 * time. Unless we are waiting, skip it.
1522 	 */
1523 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1524 		return 0;
1525 
1526 	if (!xfs_inode_matches_eofb(ip, eofb))
1527 		return 0;
1528 
1529 	/*
1530 	 * If the caller is waiting, return -EAGAIN to keep the background
1531 	 * scanner moving and revisit the inode in a subsequent pass.
1532 	 */
1533 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1534 		if (wait)
1535 			return -EAGAIN;
1536 		return 0;
1537 	}
1538 
1539 	ret = xfs_free_eofblocks(ip);
1540 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1541 
1542 	return ret;
1543 }
1544 
1545 int
1546 xfs_icache_free_eofblocks(
1547 	struct xfs_mount	*mp,
1548 	struct xfs_eofblocks	*eofb)
1549 {
1550 	return xfs_inode_walk(mp, 0, xfs_inode_free_eofblocks, eofb,
1551 			XFS_ICI_EOFBLOCKS_TAG);
1552 }
1553 
1554 /*
1555  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1556  * multiple quotas, we don't know exactly which quota caused an allocation
1557  * failure. We make a best effort by including each quota under low free space
1558  * conditions (less than 1% free space) in the scan.
1559  */
1560 static int
1561 __xfs_inode_free_quota_eofblocks(
1562 	struct xfs_inode	*ip,
1563 	int			(*execute)(struct xfs_mount *mp,
1564 					   struct xfs_eofblocks	*eofb))
1565 {
1566 	int scan = 0;
1567 	struct xfs_eofblocks eofb = {0};
1568 	struct xfs_dquot *dq;
1569 
1570 	/*
1571 	 * Run a sync scan to increase effectiveness and use the union filter to
1572 	 * cover all applicable quotas in a single scan.
1573 	 */
1574 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1575 
1576 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1577 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1578 		if (dq && xfs_dquot_lowsp(dq)) {
1579 			eofb.eof_uid = VFS_I(ip)->i_uid;
1580 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1581 			scan = 1;
1582 		}
1583 	}
1584 
1585 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1586 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1587 		if (dq && xfs_dquot_lowsp(dq)) {
1588 			eofb.eof_gid = VFS_I(ip)->i_gid;
1589 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1590 			scan = 1;
1591 		}
1592 	}
1593 
1594 	if (scan)
1595 		execute(ip->i_mount, &eofb);
1596 
1597 	return scan;
1598 }
1599 
1600 int
1601 xfs_inode_free_quota_eofblocks(
1602 	struct xfs_inode *ip)
1603 {
1604 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1605 }
1606 
1607 static inline unsigned long
1608 xfs_iflag_for_tag(
1609 	int		tag)
1610 {
1611 	switch (tag) {
1612 	case XFS_ICI_EOFBLOCKS_TAG:
1613 		return XFS_IEOFBLOCKS;
1614 	case XFS_ICI_COWBLOCKS_TAG:
1615 		return XFS_ICOWBLOCKS;
1616 	default:
1617 		ASSERT(0);
1618 		return 0;
1619 	}
1620 }
1621 
1622 static void
1623 __xfs_inode_set_blocks_tag(
1624 	xfs_inode_t	*ip,
1625 	void		(*execute)(struct xfs_mount *mp),
1626 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1627 				  int error, unsigned long caller_ip),
1628 	int		tag)
1629 {
1630 	struct xfs_mount *mp = ip->i_mount;
1631 	struct xfs_perag *pag;
1632 	int tagged;
1633 
1634 	/*
1635 	 * Don't bother locking the AG and looking up in the radix trees
1636 	 * if we already know that we have the tag set.
1637 	 */
1638 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1639 		return;
1640 	spin_lock(&ip->i_flags_lock);
1641 	ip->i_flags |= xfs_iflag_for_tag(tag);
1642 	spin_unlock(&ip->i_flags_lock);
1643 
1644 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1645 	spin_lock(&pag->pag_ici_lock);
1646 
1647 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1648 	radix_tree_tag_set(&pag->pag_ici_root,
1649 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1650 	if (!tagged) {
1651 		/* propagate the eofblocks tag up into the perag radix tree */
1652 		spin_lock(&ip->i_mount->m_perag_lock);
1653 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1654 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1655 				   tag);
1656 		spin_unlock(&ip->i_mount->m_perag_lock);
1657 
1658 		/* kick off background trimming */
1659 		execute(ip->i_mount);
1660 
1661 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1662 	}
1663 
1664 	spin_unlock(&pag->pag_ici_lock);
1665 	xfs_perag_put(pag);
1666 }
1667 
1668 void
1669 xfs_inode_set_eofblocks_tag(
1670 	xfs_inode_t	*ip)
1671 {
1672 	trace_xfs_inode_set_eofblocks_tag(ip);
1673 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1674 			trace_xfs_perag_set_eofblocks,
1675 			XFS_ICI_EOFBLOCKS_TAG);
1676 }
1677 
1678 static void
1679 __xfs_inode_clear_blocks_tag(
1680 	xfs_inode_t	*ip,
1681 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1682 				    int error, unsigned long caller_ip),
1683 	int		tag)
1684 {
1685 	struct xfs_mount *mp = ip->i_mount;
1686 	struct xfs_perag *pag;
1687 
1688 	spin_lock(&ip->i_flags_lock);
1689 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1690 	spin_unlock(&ip->i_flags_lock);
1691 
1692 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1693 	spin_lock(&pag->pag_ici_lock);
1694 
1695 	radix_tree_tag_clear(&pag->pag_ici_root,
1696 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1697 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1698 		/* clear the eofblocks tag from the perag radix tree */
1699 		spin_lock(&ip->i_mount->m_perag_lock);
1700 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1701 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1702 				     tag);
1703 		spin_unlock(&ip->i_mount->m_perag_lock);
1704 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1705 	}
1706 
1707 	spin_unlock(&pag->pag_ici_lock);
1708 	xfs_perag_put(pag);
1709 }
1710 
1711 void
1712 xfs_inode_clear_eofblocks_tag(
1713 	xfs_inode_t	*ip)
1714 {
1715 	trace_xfs_inode_clear_eofblocks_tag(ip);
1716 	return __xfs_inode_clear_blocks_tag(ip,
1717 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1718 }
1719 
1720 /*
1721  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1722  * then we can bail out quickly, but otherwise we must back off if the file
1723  * is undergoing some kind of write.
1724  */
1725 static bool
1726 xfs_prep_free_cowblocks(
1727 	struct xfs_inode	*ip)
1728 {
1729 	/*
1730 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1731 	 * possible the inode was fully unshared since it was originally tagged.
1732 	 */
1733 	if (!xfs_inode_has_cow_data(ip)) {
1734 		trace_xfs_inode_free_cowblocks_invalid(ip);
1735 		xfs_inode_clear_cowblocks_tag(ip);
1736 		return false;
1737 	}
1738 
1739 	/*
1740 	 * If the mapping is dirty or under writeback we cannot touch the
1741 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1742 	 */
1743 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1744 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1745 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1746 	    atomic_read(&VFS_I(ip)->i_dio_count))
1747 		return false;
1748 
1749 	return true;
1750 }
1751 
1752 /*
1753  * Automatic CoW Reservation Freeing
1754  *
1755  * These functions automatically garbage collect leftover CoW reservations
1756  * that were made on behalf of a cowextsize hint when we start to run out
1757  * of quota or when the reservations sit around for too long.  If the file
1758  * has dirty pages or is undergoing writeback, its CoW reservations will
1759  * be retained.
1760  *
1761  * The actual garbage collection piggybacks off the same code that runs
1762  * the speculative EOF preallocation garbage collector.
1763  */
1764 STATIC int
1765 xfs_inode_free_cowblocks(
1766 	struct xfs_inode	*ip,
1767 	void			*args)
1768 {
1769 	struct xfs_eofblocks	*eofb = args;
1770 	int			ret = 0;
1771 
1772 	if (!xfs_prep_free_cowblocks(ip))
1773 		return 0;
1774 
1775 	if (!xfs_inode_matches_eofb(ip, eofb))
1776 		return 0;
1777 
1778 	/* Free the CoW blocks */
1779 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1780 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1781 
1782 	/*
1783 	 * Check again, nobody else should be able to dirty blocks or change
1784 	 * the reflink iflag now that we have the first two locks held.
1785 	 */
1786 	if (xfs_prep_free_cowblocks(ip))
1787 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1788 
1789 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1790 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1791 
1792 	return ret;
1793 }
1794 
1795 int
1796 xfs_icache_free_cowblocks(
1797 	struct xfs_mount	*mp,
1798 	struct xfs_eofblocks	*eofb)
1799 {
1800 	return xfs_inode_walk(mp, 0, xfs_inode_free_cowblocks, eofb,
1801 			XFS_ICI_COWBLOCKS_TAG);
1802 }
1803 
1804 int
1805 xfs_inode_free_quota_cowblocks(
1806 	struct xfs_inode *ip)
1807 {
1808 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1809 }
1810 
1811 void
1812 xfs_inode_set_cowblocks_tag(
1813 	xfs_inode_t	*ip)
1814 {
1815 	trace_xfs_inode_set_cowblocks_tag(ip);
1816 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1817 			trace_xfs_perag_set_cowblocks,
1818 			XFS_ICI_COWBLOCKS_TAG);
1819 }
1820 
1821 void
1822 xfs_inode_clear_cowblocks_tag(
1823 	xfs_inode_t	*ip)
1824 {
1825 	trace_xfs_inode_clear_cowblocks_tag(ip);
1826 	return __xfs_inode_clear_blocks_tag(ip,
1827 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1828 }
1829 
1830 /* Disable post-EOF and CoW block auto-reclamation. */
1831 void
1832 xfs_stop_block_reaping(
1833 	struct xfs_mount	*mp)
1834 {
1835 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1836 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1837 }
1838 
1839 /* Enable post-EOF and CoW block auto-reclamation. */
1840 void
1841 xfs_start_block_reaping(
1842 	struct xfs_mount	*mp)
1843 {
1844 	xfs_queue_eofblocks(mp);
1845 	xfs_queue_cowblocks(mp);
1846 }
1847