xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 7f8256ae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 
28 #include <linux/iversion.h>
29 
30 /* Radix tree tags for incore inode tree. */
31 
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG	0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG	1
36 
37 /*
38  * The goal for walking incore inodes.  These can correspond with incore inode
39  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
40  */
41 enum xfs_icwalk_goal {
42 	/* Goals directly associated with tagged inodes. */
43 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
44 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
45 };
46 
47 static int xfs_icwalk(struct xfs_mount *mp,
48 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51 
52 /*
53  * Private inode cache walk flags for struct xfs_icwalk.  Must not
54  * coincide with XFS_ICWALK_FLAGS_VALID.
55  */
56 
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
59 
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
61 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
62 
63 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 					 XFS_ICWALK_FLAG_UNION)
66 
67 /*
68  * Allocate and initialise an xfs_inode.
69  */
70 struct xfs_inode *
71 xfs_inode_alloc(
72 	struct xfs_mount	*mp,
73 	xfs_ino_t		ino)
74 {
75 	struct xfs_inode	*ip;
76 
77 	/*
78 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 	 * and return NULL here on ENOMEM.
80 	 */
81 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82 
83 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 		kmem_cache_free(xfs_inode_cache, ip);
85 		return NULL;
86 	}
87 
88 	/* VFS doesn't initialise i_mode or i_state! */
89 	VFS_I(ip)->i_mode = 0;
90 	VFS_I(ip)->i_state = 0;
91 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92 
93 	XFS_STATS_INC(mp, vn_active);
94 	ASSERT(atomic_read(&ip->i_pincount) == 0);
95 	ASSERT(ip->i_ino == 0);
96 
97 	/* initialise the xfs inode */
98 	ip->i_ino = ino;
99 	ip->i_mount = mp;
100 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 	ip->i_cowfp = NULL;
102 	memset(&ip->i_af, 0, sizeof(ip->i_af));
103 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 	memset(&ip->i_df, 0, sizeof(ip->i_df));
105 	ip->i_flags = 0;
106 	ip->i_delayed_blks = 0;
107 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 	ip->i_nblocks = 0;
109 	ip->i_forkoff = 0;
110 	ip->i_sick = 0;
111 	ip->i_checked = 0;
112 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 	INIT_LIST_HEAD(&ip->i_ioend_list);
114 	spin_lock_init(&ip->i_ioend_lock);
115 	ip->i_next_unlinked = NULLAGINO;
116 	ip->i_prev_unlinked = NULLAGINO;
117 
118 	return ip;
119 }
120 
121 STATIC void
122 xfs_inode_free_callback(
123 	struct rcu_head		*head)
124 {
125 	struct inode		*inode = container_of(head, struct inode, i_rcu);
126 	struct xfs_inode	*ip = XFS_I(inode);
127 
128 	switch (VFS_I(ip)->i_mode & S_IFMT) {
129 	case S_IFREG:
130 	case S_IFDIR:
131 	case S_IFLNK:
132 		xfs_idestroy_fork(&ip->i_df);
133 		break;
134 	}
135 
136 	xfs_ifork_zap_attr(ip);
137 
138 	if (ip->i_cowfp) {
139 		xfs_idestroy_fork(ip->i_cowfp);
140 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 	}
142 	if (ip->i_itemp) {
143 		ASSERT(!test_bit(XFS_LI_IN_AIL,
144 				 &ip->i_itemp->ili_item.li_flags));
145 		xfs_inode_item_destroy(ip);
146 		ip->i_itemp = NULL;
147 	}
148 
149 	kmem_cache_free(xfs_inode_cache, ip);
150 }
151 
152 static void
153 __xfs_inode_free(
154 	struct xfs_inode	*ip)
155 {
156 	/* asserts to verify all state is correct here */
157 	ASSERT(atomic_read(&ip->i_pincount) == 0);
158 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 	XFS_STATS_DEC(ip->i_mount, vn_active);
160 
161 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163 
164 void
165 xfs_inode_free(
166 	struct xfs_inode	*ip)
167 {
168 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169 
170 	/*
171 	 * Because we use RCU freeing we need to ensure the inode always
172 	 * appears to be reclaimed with an invalid inode number when in the
173 	 * free state. The ip->i_flags_lock provides the barrier against lookup
174 	 * races.
175 	 */
176 	spin_lock(&ip->i_flags_lock);
177 	ip->i_flags = XFS_IRECLAIM;
178 	ip->i_ino = 0;
179 	spin_unlock(&ip->i_flags_lock);
180 
181 	__xfs_inode_free(ip);
182 }
183 
184 /*
185  * Queue background inode reclaim work if there are reclaimable inodes and there
186  * isn't reclaim work already scheduled or in progress.
187  */
188 static void
189 xfs_reclaim_work_queue(
190 	struct xfs_mount        *mp)
191 {
192 
193 	rcu_read_lock();
194 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 	}
198 	rcu_read_unlock();
199 }
200 
201 /*
202  * Background scanning to trim preallocated space. This is queued based on the
203  * 'speculative_prealloc_lifetime' tunable (5m by default).
204  */
205 static inline void
206 xfs_blockgc_queue(
207 	struct xfs_perag	*pag)
208 {
209 	struct xfs_mount	*mp = pag->pag_mount;
210 
211 	if (!xfs_is_blockgc_enabled(mp))
212 		return;
213 
214 	rcu_read_lock();
215 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 				   &pag->pag_blockgc_work,
218 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 	rcu_read_unlock();
220 }
221 
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
224 xfs_perag_set_inode_tag(
225 	struct xfs_perag	*pag,
226 	xfs_agino_t		agino,
227 	unsigned int		tag)
228 {
229 	struct xfs_mount	*mp = pag->pag_mount;
230 	bool			was_tagged;
231 
232 	lockdep_assert_held(&pag->pag_ici_lock);
233 
234 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236 
237 	if (tag == XFS_ICI_RECLAIM_TAG)
238 		pag->pag_ici_reclaimable++;
239 
240 	if (was_tagged)
241 		return;
242 
243 	/* propagate the tag up into the perag radix tree */
244 	spin_lock(&mp->m_perag_lock);
245 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 	spin_unlock(&mp->m_perag_lock);
247 
248 	/* start background work */
249 	switch (tag) {
250 	case XFS_ICI_RECLAIM_TAG:
251 		xfs_reclaim_work_queue(mp);
252 		break;
253 	case XFS_ICI_BLOCKGC_TAG:
254 		xfs_blockgc_queue(pag);
255 		break;
256 	}
257 
258 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
259 }
260 
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
263 xfs_perag_clear_inode_tag(
264 	struct xfs_perag	*pag,
265 	xfs_agino_t		agino,
266 	unsigned int		tag)
267 {
268 	struct xfs_mount	*mp = pag->pag_mount;
269 
270 	lockdep_assert_held(&pag->pag_ici_lock);
271 
272 	/*
273 	 * Reclaim can signal (with a null agino) that it cleared its own tag
274 	 * by removing the inode from the radix tree.
275 	 */
276 	if (agino != NULLAGINO)
277 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 	else
279 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280 
281 	if (tag == XFS_ICI_RECLAIM_TAG)
282 		pag->pag_ici_reclaimable--;
283 
284 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 		return;
286 
287 	/* clear the tag from the perag radix tree */
288 	spin_lock(&mp->m_perag_lock);
289 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 	spin_unlock(&mp->m_perag_lock);
291 
292 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
293 }
294 
295 /*
296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297  * part of the structure. This is made more complex by the fact we store
298  * information about the on-disk values in the VFS inode and so we can't just
299  * overwrite the values unconditionally. Hence we save the parameters we
300  * need to retain across reinitialisation, and rewrite them into the VFS inode
301  * after reinitialisation even if it fails.
302  */
303 static int
304 xfs_reinit_inode(
305 	struct xfs_mount	*mp,
306 	struct inode		*inode)
307 {
308 	int			error;
309 	uint32_t		nlink = inode->i_nlink;
310 	uint32_t		generation = inode->i_generation;
311 	uint64_t		version = inode_peek_iversion(inode);
312 	umode_t			mode = inode->i_mode;
313 	dev_t			dev = inode->i_rdev;
314 	kuid_t			uid = inode->i_uid;
315 	kgid_t			gid = inode->i_gid;
316 
317 	error = inode_init_always(mp->m_super, inode);
318 
319 	set_nlink(inode, nlink);
320 	inode->i_generation = generation;
321 	inode_set_iversion_queried(inode, version);
322 	inode->i_mode = mode;
323 	inode->i_rdev = dev;
324 	inode->i_uid = uid;
325 	inode->i_gid = gid;
326 	mapping_set_large_folios(inode->i_mapping);
327 	return error;
328 }
329 
330 /*
331  * Carefully nudge an inode whose VFS state has been torn down back into a
332  * usable state.  Drops the i_flags_lock and the rcu read lock.
333  */
334 static int
335 xfs_iget_recycle(
336 	struct xfs_perag	*pag,
337 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
338 {
339 	struct xfs_mount	*mp = ip->i_mount;
340 	struct inode		*inode = VFS_I(ip);
341 	int			error;
342 
343 	trace_xfs_iget_recycle(ip);
344 
345 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
346 		return -EAGAIN;
347 
348 	/*
349 	 * We need to make it look like the inode is being reclaimed to prevent
350 	 * the actual reclaim workers from stomping over us while we recycle
351 	 * the inode.  We can't clear the radix tree tag yet as it requires
352 	 * pag_ici_lock to be held exclusive.
353 	 */
354 	ip->i_flags |= XFS_IRECLAIM;
355 
356 	spin_unlock(&ip->i_flags_lock);
357 	rcu_read_unlock();
358 
359 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
360 	error = xfs_reinit_inode(mp, inode);
361 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
362 	if (error) {
363 		/*
364 		 * Re-initializing the inode failed, and we are in deep
365 		 * trouble.  Try to re-add it to the reclaim list.
366 		 */
367 		rcu_read_lock();
368 		spin_lock(&ip->i_flags_lock);
369 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
370 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
371 		spin_unlock(&ip->i_flags_lock);
372 		rcu_read_unlock();
373 
374 		trace_xfs_iget_recycle_fail(ip);
375 		return error;
376 	}
377 
378 	spin_lock(&pag->pag_ici_lock);
379 	spin_lock(&ip->i_flags_lock);
380 
381 	/*
382 	 * Clear the per-lifetime state in the inode as we are now effectively
383 	 * a new inode and need to return to the initial state before reuse
384 	 * occurs.
385 	 */
386 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
387 	ip->i_flags |= XFS_INEW;
388 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
389 			XFS_ICI_RECLAIM_TAG);
390 	inode->i_state = I_NEW;
391 	spin_unlock(&ip->i_flags_lock);
392 	spin_unlock(&pag->pag_ici_lock);
393 
394 	return 0;
395 }
396 
397 /*
398  * If we are allocating a new inode, then check what was returned is
399  * actually a free, empty inode. If we are not allocating an inode,
400  * then check we didn't find a free inode.
401  *
402  * Returns:
403  *	0		if the inode free state matches the lookup context
404  *	-ENOENT		if the inode is free and we are not allocating
405  *	-EFSCORRUPTED	if there is any state mismatch at all
406  */
407 static int
408 xfs_iget_check_free_state(
409 	struct xfs_inode	*ip,
410 	int			flags)
411 {
412 	if (flags & XFS_IGET_CREATE) {
413 		/* should be a free inode */
414 		if (VFS_I(ip)->i_mode != 0) {
415 			xfs_warn(ip->i_mount,
416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
417 				ip->i_ino, VFS_I(ip)->i_mode);
418 			return -EFSCORRUPTED;
419 		}
420 
421 		if (ip->i_nblocks != 0) {
422 			xfs_warn(ip->i_mount,
423 "Corruption detected! Free inode 0x%llx has blocks allocated!",
424 				ip->i_ino);
425 			return -EFSCORRUPTED;
426 		}
427 		return 0;
428 	}
429 
430 	/* should be an allocated inode */
431 	if (VFS_I(ip)->i_mode == 0)
432 		return -ENOENT;
433 
434 	return 0;
435 }
436 
437 /* Make all pending inactivation work start immediately. */
438 static bool
439 xfs_inodegc_queue_all(
440 	struct xfs_mount	*mp)
441 {
442 	struct xfs_inodegc	*gc;
443 	int			cpu;
444 	bool			ret = false;
445 
446 	for_each_online_cpu(cpu) {
447 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
448 		if (!llist_empty(&gc->list)) {
449 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
450 			ret = true;
451 		}
452 	}
453 
454 	return ret;
455 }
456 
457 /*
458  * Check the validity of the inode we just found it the cache
459  */
460 static int
461 xfs_iget_cache_hit(
462 	struct xfs_perag	*pag,
463 	struct xfs_inode	*ip,
464 	xfs_ino_t		ino,
465 	int			flags,
466 	int			lock_flags) __releases(RCU)
467 {
468 	struct inode		*inode = VFS_I(ip);
469 	struct xfs_mount	*mp = ip->i_mount;
470 	int			error;
471 
472 	/*
473 	 * check for re-use of an inode within an RCU grace period due to the
474 	 * radix tree nodes not being updated yet. We monitor for this by
475 	 * setting the inode number to zero before freeing the inode structure.
476 	 * If the inode has been reallocated and set up, then the inode number
477 	 * will not match, so check for that, too.
478 	 */
479 	spin_lock(&ip->i_flags_lock);
480 	if (ip->i_ino != ino)
481 		goto out_skip;
482 
483 	/*
484 	 * If we are racing with another cache hit that is currently
485 	 * instantiating this inode or currently recycling it out of
486 	 * reclaimable state, wait for the initialisation to complete
487 	 * before continuing.
488 	 *
489 	 * If we're racing with the inactivation worker we also want to wait.
490 	 * If we're creating a new file, it's possible that the worker
491 	 * previously marked the inode as free on disk but hasn't finished
492 	 * updating the incore state yet.  The AGI buffer will be dirty and
493 	 * locked to the icreate transaction, so a synchronous push of the
494 	 * inodegc workers would result in deadlock.  For a regular iget, the
495 	 * worker is running already, so we might as well wait.
496 	 *
497 	 * XXX(hch): eventually we should do something equivalent to
498 	 *	     wait_on_inode to wait for these flags to be cleared
499 	 *	     instead of polling for it.
500 	 */
501 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
502 		goto out_skip;
503 
504 	if (ip->i_flags & XFS_NEED_INACTIVE) {
505 		/* Unlinked inodes cannot be re-grabbed. */
506 		if (VFS_I(ip)->i_nlink == 0) {
507 			error = -ENOENT;
508 			goto out_error;
509 		}
510 		goto out_inodegc_flush;
511 	}
512 
513 	/*
514 	 * Check the inode free state is valid. This also detects lookup
515 	 * racing with unlinks.
516 	 */
517 	error = xfs_iget_check_free_state(ip, flags);
518 	if (error)
519 		goto out_error;
520 
521 	/* Skip inodes that have no vfs state. */
522 	if ((flags & XFS_IGET_INCORE) &&
523 	    (ip->i_flags & XFS_IRECLAIMABLE))
524 		goto out_skip;
525 
526 	/* The inode fits the selection criteria; process it. */
527 	if (ip->i_flags & XFS_IRECLAIMABLE) {
528 		/* Drops i_flags_lock and RCU read lock. */
529 		error = xfs_iget_recycle(pag, ip);
530 		if (error == -EAGAIN)
531 			goto out_skip;
532 		if (error)
533 			return error;
534 	} else {
535 		/* If the VFS inode is being torn down, pause and try again. */
536 		if (!igrab(inode))
537 			goto out_skip;
538 
539 		/* We've got a live one. */
540 		spin_unlock(&ip->i_flags_lock);
541 		rcu_read_unlock();
542 		trace_xfs_iget_hit(ip);
543 	}
544 
545 	if (lock_flags != 0)
546 		xfs_ilock(ip, lock_flags);
547 
548 	if (!(flags & XFS_IGET_INCORE))
549 		xfs_iflags_clear(ip, XFS_ISTALE);
550 	XFS_STATS_INC(mp, xs_ig_found);
551 
552 	return 0;
553 
554 out_skip:
555 	trace_xfs_iget_skip(ip);
556 	XFS_STATS_INC(mp, xs_ig_frecycle);
557 	error = -EAGAIN;
558 out_error:
559 	spin_unlock(&ip->i_flags_lock);
560 	rcu_read_unlock();
561 	return error;
562 
563 out_inodegc_flush:
564 	spin_unlock(&ip->i_flags_lock);
565 	rcu_read_unlock();
566 	/*
567 	 * Do not wait for the workers, because the caller could hold an AGI
568 	 * buffer lock.  We're just going to sleep in a loop anyway.
569 	 */
570 	if (xfs_is_inodegc_enabled(mp))
571 		xfs_inodegc_queue_all(mp);
572 	return -EAGAIN;
573 }
574 
575 static int
576 xfs_iget_cache_miss(
577 	struct xfs_mount	*mp,
578 	struct xfs_perag	*pag,
579 	xfs_trans_t		*tp,
580 	xfs_ino_t		ino,
581 	struct xfs_inode	**ipp,
582 	int			flags,
583 	int			lock_flags)
584 {
585 	struct xfs_inode	*ip;
586 	int			error;
587 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
588 	int			iflags;
589 
590 	ip = xfs_inode_alloc(mp, ino);
591 	if (!ip)
592 		return -ENOMEM;
593 
594 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
595 	if (error)
596 		goto out_destroy;
597 
598 	/*
599 	 * For version 5 superblocks, if we are initialising a new inode and we
600 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
601 	 * simply build the new inode core with a random generation number.
602 	 *
603 	 * For version 4 (and older) superblocks, log recovery is dependent on
604 	 * the i_flushiter field being initialised from the current on-disk
605 	 * value and hence we must also read the inode off disk even when
606 	 * initializing new inodes.
607 	 */
608 	if (xfs_has_v3inodes(mp) &&
609 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
610 		VFS_I(ip)->i_generation = get_random_u32();
611 	} else {
612 		struct xfs_buf		*bp;
613 
614 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
615 		if (error)
616 			goto out_destroy;
617 
618 		error = xfs_inode_from_disk(ip,
619 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
620 		if (!error)
621 			xfs_buf_set_ref(bp, XFS_INO_REF);
622 		xfs_trans_brelse(tp, bp);
623 
624 		if (error)
625 			goto out_destroy;
626 	}
627 
628 	trace_xfs_iget_miss(ip);
629 
630 	/*
631 	 * Check the inode free state is valid. This also detects lookup
632 	 * racing with unlinks.
633 	 */
634 	error = xfs_iget_check_free_state(ip, flags);
635 	if (error)
636 		goto out_destroy;
637 
638 	/*
639 	 * Preload the radix tree so we can insert safely under the
640 	 * write spinlock. Note that we cannot sleep inside the preload
641 	 * region. Since we can be called from transaction context, don't
642 	 * recurse into the file system.
643 	 */
644 	if (radix_tree_preload(GFP_NOFS)) {
645 		error = -EAGAIN;
646 		goto out_destroy;
647 	}
648 
649 	/*
650 	 * Because the inode hasn't been added to the radix-tree yet it can't
651 	 * be found by another thread, so we can do the non-sleeping lock here.
652 	 */
653 	if (lock_flags) {
654 		if (!xfs_ilock_nowait(ip, lock_flags))
655 			BUG();
656 	}
657 
658 	/*
659 	 * These values must be set before inserting the inode into the radix
660 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
661 	 * RCU locking mechanism) can find it and that lookup must see that this
662 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
663 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
664 	 * memory barrier that ensures this detection works correctly at lookup
665 	 * time.
666 	 */
667 	iflags = XFS_INEW;
668 	if (flags & XFS_IGET_DONTCACHE)
669 		d_mark_dontcache(VFS_I(ip));
670 	ip->i_udquot = NULL;
671 	ip->i_gdquot = NULL;
672 	ip->i_pdquot = NULL;
673 	xfs_iflags_set(ip, iflags);
674 
675 	/* insert the new inode */
676 	spin_lock(&pag->pag_ici_lock);
677 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
678 	if (unlikely(error)) {
679 		WARN_ON(error != -EEXIST);
680 		XFS_STATS_INC(mp, xs_ig_dup);
681 		error = -EAGAIN;
682 		goto out_preload_end;
683 	}
684 	spin_unlock(&pag->pag_ici_lock);
685 	radix_tree_preload_end();
686 
687 	*ipp = ip;
688 	return 0;
689 
690 out_preload_end:
691 	spin_unlock(&pag->pag_ici_lock);
692 	radix_tree_preload_end();
693 	if (lock_flags)
694 		xfs_iunlock(ip, lock_flags);
695 out_destroy:
696 	__destroy_inode(VFS_I(ip));
697 	xfs_inode_free(ip);
698 	return error;
699 }
700 
701 /*
702  * Look up an inode by number in the given file system.  The inode is looked up
703  * in the cache held in each AG.  If the inode is found in the cache, initialise
704  * the vfs inode if necessary.
705  *
706  * If it is not in core, read it in from the file system's device, add it to the
707  * cache and initialise the vfs inode.
708  *
709  * The inode is locked according to the value of the lock_flags parameter.
710  * Inode lookup is only done during metadata operations and not as part of the
711  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
712  */
713 int
714 xfs_iget(
715 	struct xfs_mount	*mp,
716 	struct xfs_trans	*tp,
717 	xfs_ino_t		ino,
718 	uint			flags,
719 	uint			lock_flags,
720 	struct xfs_inode	**ipp)
721 {
722 	struct xfs_inode	*ip;
723 	struct xfs_perag	*pag;
724 	xfs_agino_t		agino;
725 	int			error;
726 
727 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
728 
729 	/* reject inode numbers outside existing AGs */
730 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
731 		return -EINVAL;
732 
733 	XFS_STATS_INC(mp, xs_ig_attempts);
734 
735 	/* get the perag structure and ensure that it's inode capable */
736 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
737 	agino = XFS_INO_TO_AGINO(mp, ino);
738 
739 again:
740 	error = 0;
741 	rcu_read_lock();
742 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
743 
744 	if (ip) {
745 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
746 		if (error)
747 			goto out_error_or_again;
748 	} else {
749 		rcu_read_unlock();
750 		if (flags & XFS_IGET_INCORE) {
751 			error = -ENODATA;
752 			goto out_error_or_again;
753 		}
754 		XFS_STATS_INC(mp, xs_ig_missed);
755 
756 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
757 							flags, lock_flags);
758 		if (error)
759 			goto out_error_or_again;
760 	}
761 	xfs_perag_put(pag);
762 
763 	*ipp = ip;
764 
765 	/*
766 	 * If we have a real type for an on-disk inode, we can setup the inode
767 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
768 	 * handle it.
769 	 */
770 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
771 		xfs_setup_existing_inode(ip);
772 	return 0;
773 
774 out_error_or_again:
775 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
776 	    error == -EAGAIN) {
777 		delay(1);
778 		goto again;
779 	}
780 	xfs_perag_put(pag);
781 	return error;
782 }
783 
784 /*
785  * "Is this a cached inode that's also allocated?"
786  *
787  * Look up an inode by number in the given file system.  If the inode is
788  * in cache and isn't in purgatory, return 1 if the inode is allocated
789  * and 0 if it is not.  For all other cases (not in cache, being torn
790  * down, etc.), return a negative error code.
791  *
792  * The caller has to prevent inode allocation and freeing activity,
793  * presumably by locking the AGI buffer.   This is to ensure that an
794  * inode cannot transition from allocated to freed until the caller is
795  * ready to allow that.  If the inode is in an intermediate state (new,
796  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
797  * inode is not in the cache, -ENOENT will be returned.  The caller must
798  * deal with these scenarios appropriately.
799  *
800  * This is a specialized use case for the online scrubber; if you're
801  * reading this, you probably want xfs_iget.
802  */
803 int
804 xfs_icache_inode_is_allocated(
805 	struct xfs_mount	*mp,
806 	struct xfs_trans	*tp,
807 	xfs_ino_t		ino,
808 	bool			*inuse)
809 {
810 	struct xfs_inode	*ip;
811 	int			error;
812 
813 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
814 	if (error)
815 		return error;
816 
817 	*inuse = !!(VFS_I(ip)->i_mode);
818 	xfs_irele(ip);
819 	return 0;
820 }
821 
822 /*
823  * Grab the inode for reclaim exclusively.
824  *
825  * We have found this inode via a lookup under RCU, so the inode may have
826  * already been freed, or it may be in the process of being recycled by
827  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
828  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
829  * will not be set. Hence we need to check for both these flag conditions to
830  * avoid inodes that are no longer reclaim candidates.
831  *
832  * Note: checking for other state flags here, under the i_flags_lock or not, is
833  * racy and should be avoided. Those races should be resolved only after we have
834  * ensured that we are able to reclaim this inode and the world can see that we
835  * are going to reclaim it.
836  *
837  * Return true if we grabbed it, false otherwise.
838  */
839 static bool
840 xfs_reclaim_igrab(
841 	struct xfs_inode	*ip,
842 	struct xfs_icwalk	*icw)
843 {
844 	ASSERT(rcu_read_lock_held());
845 
846 	spin_lock(&ip->i_flags_lock);
847 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
848 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
849 		/* not a reclaim candidate. */
850 		spin_unlock(&ip->i_flags_lock);
851 		return false;
852 	}
853 
854 	/* Don't reclaim a sick inode unless the caller asked for it. */
855 	if (ip->i_sick &&
856 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
857 		spin_unlock(&ip->i_flags_lock);
858 		return false;
859 	}
860 
861 	__xfs_iflags_set(ip, XFS_IRECLAIM);
862 	spin_unlock(&ip->i_flags_lock);
863 	return true;
864 }
865 
866 /*
867  * Inode reclaim is non-blocking, so the default action if progress cannot be
868  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
869  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
870  * blocking anymore and hence we can wait for the inode to be able to reclaim
871  * it.
872  *
873  * We do no IO here - if callers require inodes to be cleaned they must push the
874  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
875  * done in the background in a non-blocking manner, and enables memory reclaim
876  * to make progress without blocking.
877  */
878 static void
879 xfs_reclaim_inode(
880 	struct xfs_inode	*ip,
881 	struct xfs_perag	*pag)
882 {
883 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
884 
885 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
886 		goto out;
887 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
888 		goto out_iunlock;
889 
890 	/*
891 	 * Check for log shutdown because aborting the inode can move the log
892 	 * tail and corrupt in memory state. This is fine if the log is shut
893 	 * down, but if the log is still active and only the mount is shut down
894 	 * then the in-memory log tail movement caused by the abort can be
895 	 * incorrectly propagated to disk.
896 	 */
897 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
898 		xfs_iunpin_wait(ip);
899 		xfs_iflush_shutdown_abort(ip);
900 		goto reclaim;
901 	}
902 	if (xfs_ipincount(ip))
903 		goto out_clear_flush;
904 	if (!xfs_inode_clean(ip))
905 		goto out_clear_flush;
906 
907 	xfs_iflags_clear(ip, XFS_IFLUSHING);
908 reclaim:
909 	trace_xfs_inode_reclaiming(ip);
910 
911 	/*
912 	 * Because we use RCU freeing we need to ensure the inode always appears
913 	 * to be reclaimed with an invalid inode number when in the free state.
914 	 * We do this as early as possible under the ILOCK so that
915 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
916 	 * detect races with us here. By doing this, we guarantee that once
917 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
918 	 * it will see either a valid inode that will serialise correctly, or it
919 	 * will see an invalid inode that it can skip.
920 	 */
921 	spin_lock(&ip->i_flags_lock);
922 	ip->i_flags = XFS_IRECLAIM;
923 	ip->i_ino = 0;
924 	ip->i_sick = 0;
925 	ip->i_checked = 0;
926 	spin_unlock(&ip->i_flags_lock);
927 
928 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
929 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
930 
931 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
932 	/*
933 	 * Remove the inode from the per-AG radix tree.
934 	 *
935 	 * Because radix_tree_delete won't complain even if the item was never
936 	 * added to the tree assert that it's been there before to catch
937 	 * problems with the inode life time early on.
938 	 */
939 	spin_lock(&pag->pag_ici_lock);
940 	if (!radix_tree_delete(&pag->pag_ici_root,
941 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
942 		ASSERT(0);
943 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
944 	spin_unlock(&pag->pag_ici_lock);
945 
946 	/*
947 	 * Here we do an (almost) spurious inode lock in order to coordinate
948 	 * with inode cache radix tree lookups.  This is because the lookup
949 	 * can reference the inodes in the cache without taking references.
950 	 *
951 	 * We make that OK here by ensuring that we wait until the inode is
952 	 * unlocked after the lookup before we go ahead and free it.
953 	 */
954 	xfs_ilock(ip, XFS_ILOCK_EXCL);
955 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
956 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
957 	ASSERT(xfs_inode_clean(ip));
958 
959 	__xfs_inode_free(ip);
960 	return;
961 
962 out_clear_flush:
963 	xfs_iflags_clear(ip, XFS_IFLUSHING);
964 out_iunlock:
965 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
966 out:
967 	xfs_iflags_clear(ip, XFS_IRECLAIM);
968 }
969 
970 /* Reclaim sick inodes if we're unmounting or the fs went down. */
971 static inline bool
972 xfs_want_reclaim_sick(
973 	struct xfs_mount	*mp)
974 {
975 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
976 	       xfs_is_shutdown(mp);
977 }
978 
979 void
980 xfs_reclaim_inodes(
981 	struct xfs_mount	*mp)
982 {
983 	struct xfs_icwalk	icw = {
984 		.icw_flags	= 0,
985 	};
986 
987 	if (xfs_want_reclaim_sick(mp))
988 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
989 
990 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
991 		xfs_ail_push_all_sync(mp->m_ail);
992 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
993 	}
994 }
995 
996 /*
997  * The shrinker infrastructure determines how many inodes we should scan for
998  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
999  * push the AIL here. We also want to proactively free up memory if we can to
1000  * minimise the amount of work memory reclaim has to do so we kick the
1001  * background reclaim if it isn't already scheduled.
1002  */
1003 long
1004 xfs_reclaim_inodes_nr(
1005 	struct xfs_mount	*mp,
1006 	unsigned long		nr_to_scan)
1007 {
1008 	struct xfs_icwalk	icw = {
1009 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1010 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1011 	};
1012 
1013 	if (xfs_want_reclaim_sick(mp))
1014 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1015 
1016 	/* kick background reclaimer and push the AIL */
1017 	xfs_reclaim_work_queue(mp);
1018 	xfs_ail_push_all(mp->m_ail);
1019 
1020 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Return the number of reclaimable inodes in the filesystem for
1026  * the shrinker to determine how much to reclaim.
1027  */
1028 long
1029 xfs_reclaim_inodes_count(
1030 	struct xfs_mount	*mp)
1031 {
1032 	struct xfs_perag	*pag;
1033 	xfs_agnumber_t		ag = 0;
1034 	long			reclaimable = 0;
1035 
1036 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1037 		ag = pag->pag_agno + 1;
1038 		reclaimable += pag->pag_ici_reclaimable;
1039 		xfs_perag_put(pag);
1040 	}
1041 	return reclaimable;
1042 }
1043 
1044 STATIC bool
1045 xfs_icwalk_match_id(
1046 	struct xfs_inode	*ip,
1047 	struct xfs_icwalk	*icw)
1048 {
1049 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1050 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1051 		return false;
1052 
1053 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1054 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1055 		return false;
1056 
1057 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1058 	    ip->i_projid != icw->icw_prid)
1059 		return false;
1060 
1061 	return true;
1062 }
1063 
1064 /*
1065  * A union-based inode filtering algorithm. Process the inode if any of the
1066  * criteria match. This is for global/internal scans only.
1067  */
1068 STATIC bool
1069 xfs_icwalk_match_id_union(
1070 	struct xfs_inode	*ip,
1071 	struct xfs_icwalk	*icw)
1072 {
1073 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1074 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1075 		return true;
1076 
1077 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1078 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1079 		return true;
1080 
1081 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1082 	    ip->i_projid == icw->icw_prid)
1083 		return true;
1084 
1085 	return false;
1086 }
1087 
1088 /*
1089  * Is this inode @ip eligible for eof/cow block reclamation, given some
1090  * filtering parameters @icw?  The inode is eligible if @icw is null or
1091  * if the predicate functions match.
1092  */
1093 static bool
1094 xfs_icwalk_match(
1095 	struct xfs_inode	*ip,
1096 	struct xfs_icwalk	*icw)
1097 {
1098 	bool			match;
1099 
1100 	if (!icw)
1101 		return true;
1102 
1103 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1104 		match = xfs_icwalk_match_id_union(ip, icw);
1105 	else
1106 		match = xfs_icwalk_match_id(ip, icw);
1107 	if (!match)
1108 		return false;
1109 
1110 	/* skip the inode if the file size is too small */
1111 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1112 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1113 		return false;
1114 
1115 	return true;
1116 }
1117 
1118 /*
1119  * This is a fast pass over the inode cache to try to get reclaim moving on as
1120  * many inodes as possible in a short period of time. It kicks itself every few
1121  * seconds, as well as being kicked by the inode cache shrinker when memory
1122  * goes low.
1123  */
1124 void
1125 xfs_reclaim_worker(
1126 	struct work_struct *work)
1127 {
1128 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1129 					struct xfs_mount, m_reclaim_work);
1130 
1131 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1132 	xfs_reclaim_work_queue(mp);
1133 }
1134 
1135 STATIC int
1136 xfs_inode_free_eofblocks(
1137 	struct xfs_inode	*ip,
1138 	struct xfs_icwalk	*icw,
1139 	unsigned int		*lockflags)
1140 {
1141 	bool			wait;
1142 
1143 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1144 
1145 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1146 		return 0;
1147 
1148 	/*
1149 	 * If the mapping is dirty the operation can block and wait for some
1150 	 * time. Unless we are waiting, skip it.
1151 	 */
1152 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1153 		return 0;
1154 
1155 	if (!xfs_icwalk_match(ip, icw))
1156 		return 0;
1157 
1158 	/*
1159 	 * If the caller is waiting, return -EAGAIN to keep the background
1160 	 * scanner moving and revisit the inode in a subsequent pass.
1161 	 */
1162 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1163 		if (wait)
1164 			return -EAGAIN;
1165 		return 0;
1166 	}
1167 	*lockflags |= XFS_IOLOCK_EXCL;
1168 
1169 	if (xfs_can_free_eofblocks(ip, false))
1170 		return xfs_free_eofblocks(ip);
1171 
1172 	/* inode could be preallocated or append-only */
1173 	trace_xfs_inode_free_eofblocks_invalid(ip);
1174 	xfs_inode_clear_eofblocks_tag(ip);
1175 	return 0;
1176 }
1177 
1178 static void
1179 xfs_blockgc_set_iflag(
1180 	struct xfs_inode	*ip,
1181 	unsigned long		iflag)
1182 {
1183 	struct xfs_mount	*mp = ip->i_mount;
1184 	struct xfs_perag	*pag;
1185 
1186 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1187 
1188 	/*
1189 	 * Don't bother locking the AG and looking up in the radix trees
1190 	 * if we already know that we have the tag set.
1191 	 */
1192 	if (ip->i_flags & iflag)
1193 		return;
1194 	spin_lock(&ip->i_flags_lock);
1195 	ip->i_flags |= iflag;
1196 	spin_unlock(&ip->i_flags_lock);
1197 
1198 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1199 	spin_lock(&pag->pag_ici_lock);
1200 
1201 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1202 			XFS_ICI_BLOCKGC_TAG);
1203 
1204 	spin_unlock(&pag->pag_ici_lock);
1205 	xfs_perag_put(pag);
1206 }
1207 
1208 void
1209 xfs_inode_set_eofblocks_tag(
1210 	xfs_inode_t	*ip)
1211 {
1212 	trace_xfs_inode_set_eofblocks_tag(ip);
1213 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1214 }
1215 
1216 static void
1217 xfs_blockgc_clear_iflag(
1218 	struct xfs_inode	*ip,
1219 	unsigned long		iflag)
1220 {
1221 	struct xfs_mount	*mp = ip->i_mount;
1222 	struct xfs_perag	*pag;
1223 	bool			clear_tag;
1224 
1225 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1226 
1227 	spin_lock(&ip->i_flags_lock);
1228 	ip->i_flags &= ~iflag;
1229 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1230 	spin_unlock(&ip->i_flags_lock);
1231 
1232 	if (!clear_tag)
1233 		return;
1234 
1235 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1236 	spin_lock(&pag->pag_ici_lock);
1237 
1238 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1239 			XFS_ICI_BLOCKGC_TAG);
1240 
1241 	spin_unlock(&pag->pag_ici_lock);
1242 	xfs_perag_put(pag);
1243 }
1244 
1245 void
1246 xfs_inode_clear_eofblocks_tag(
1247 	xfs_inode_t	*ip)
1248 {
1249 	trace_xfs_inode_clear_eofblocks_tag(ip);
1250 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1251 }
1252 
1253 /*
1254  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1255  * then we can bail out quickly, but otherwise we must back off if the file
1256  * is undergoing some kind of write.
1257  */
1258 static bool
1259 xfs_prep_free_cowblocks(
1260 	struct xfs_inode	*ip)
1261 {
1262 	/*
1263 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1264 	 * possible the inode was fully unshared since it was originally tagged.
1265 	 */
1266 	if (!xfs_inode_has_cow_data(ip)) {
1267 		trace_xfs_inode_free_cowblocks_invalid(ip);
1268 		xfs_inode_clear_cowblocks_tag(ip);
1269 		return false;
1270 	}
1271 
1272 	/*
1273 	 * If the mapping is dirty or under writeback we cannot touch the
1274 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1275 	 */
1276 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1277 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1278 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1279 	    atomic_read(&VFS_I(ip)->i_dio_count))
1280 		return false;
1281 
1282 	return true;
1283 }
1284 
1285 /*
1286  * Automatic CoW Reservation Freeing
1287  *
1288  * These functions automatically garbage collect leftover CoW reservations
1289  * that were made on behalf of a cowextsize hint when we start to run out
1290  * of quota or when the reservations sit around for too long.  If the file
1291  * has dirty pages or is undergoing writeback, its CoW reservations will
1292  * be retained.
1293  *
1294  * The actual garbage collection piggybacks off the same code that runs
1295  * the speculative EOF preallocation garbage collector.
1296  */
1297 STATIC int
1298 xfs_inode_free_cowblocks(
1299 	struct xfs_inode	*ip,
1300 	struct xfs_icwalk	*icw,
1301 	unsigned int		*lockflags)
1302 {
1303 	bool			wait;
1304 	int			ret = 0;
1305 
1306 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1307 
1308 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1309 		return 0;
1310 
1311 	if (!xfs_prep_free_cowblocks(ip))
1312 		return 0;
1313 
1314 	if (!xfs_icwalk_match(ip, icw))
1315 		return 0;
1316 
1317 	/*
1318 	 * If the caller is waiting, return -EAGAIN to keep the background
1319 	 * scanner moving and revisit the inode in a subsequent pass.
1320 	 */
1321 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1322 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1323 		if (wait)
1324 			return -EAGAIN;
1325 		return 0;
1326 	}
1327 	*lockflags |= XFS_IOLOCK_EXCL;
1328 
1329 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1330 		if (wait)
1331 			return -EAGAIN;
1332 		return 0;
1333 	}
1334 	*lockflags |= XFS_MMAPLOCK_EXCL;
1335 
1336 	/*
1337 	 * Check again, nobody else should be able to dirty blocks or change
1338 	 * the reflink iflag now that we have the first two locks held.
1339 	 */
1340 	if (xfs_prep_free_cowblocks(ip))
1341 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1342 	return ret;
1343 }
1344 
1345 void
1346 xfs_inode_set_cowblocks_tag(
1347 	xfs_inode_t	*ip)
1348 {
1349 	trace_xfs_inode_set_cowblocks_tag(ip);
1350 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1351 }
1352 
1353 void
1354 xfs_inode_clear_cowblocks_tag(
1355 	xfs_inode_t	*ip)
1356 {
1357 	trace_xfs_inode_clear_cowblocks_tag(ip);
1358 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1359 }
1360 
1361 /* Disable post-EOF and CoW block auto-reclamation. */
1362 void
1363 xfs_blockgc_stop(
1364 	struct xfs_mount	*mp)
1365 {
1366 	struct xfs_perag	*pag;
1367 	xfs_agnumber_t		agno;
1368 
1369 	if (!xfs_clear_blockgc_enabled(mp))
1370 		return;
1371 
1372 	for_each_perag(mp, agno, pag)
1373 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1374 	trace_xfs_blockgc_stop(mp, __return_address);
1375 }
1376 
1377 /* Enable post-EOF and CoW block auto-reclamation. */
1378 void
1379 xfs_blockgc_start(
1380 	struct xfs_mount	*mp)
1381 {
1382 	struct xfs_perag	*pag;
1383 	xfs_agnumber_t		agno;
1384 
1385 	if (xfs_set_blockgc_enabled(mp))
1386 		return;
1387 
1388 	trace_xfs_blockgc_start(mp, __return_address);
1389 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1390 		xfs_blockgc_queue(pag);
1391 }
1392 
1393 /* Don't try to run block gc on an inode that's in any of these states. */
1394 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1395 					 XFS_NEED_INACTIVE | \
1396 					 XFS_INACTIVATING | \
1397 					 XFS_IRECLAIMABLE | \
1398 					 XFS_IRECLAIM)
1399 /*
1400  * Decide if the given @ip is eligible for garbage collection of speculative
1401  * preallocations, and grab it if so.  Returns true if it's ready to go or
1402  * false if we should just ignore it.
1403  */
1404 static bool
1405 xfs_blockgc_igrab(
1406 	struct xfs_inode	*ip)
1407 {
1408 	struct inode		*inode = VFS_I(ip);
1409 
1410 	ASSERT(rcu_read_lock_held());
1411 
1412 	/* Check for stale RCU freed inode */
1413 	spin_lock(&ip->i_flags_lock);
1414 	if (!ip->i_ino)
1415 		goto out_unlock_noent;
1416 
1417 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1418 		goto out_unlock_noent;
1419 	spin_unlock(&ip->i_flags_lock);
1420 
1421 	/* nothing to sync during shutdown */
1422 	if (xfs_is_shutdown(ip->i_mount))
1423 		return false;
1424 
1425 	/* If we can't grab the inode, it must on it's way to reclaim. */
1426 	if (!igrab(inode))
1427 		return false;
1428 
1429 	/* inode is valid */
1430 	return true;
1431 
1432 out_unlock_noent:
1433 	spin_unlock(&ip->i_flags_lock);
1434 	return false;
1435 }
1436 
1437 /* Scan one incore inode for block preallocations that we can remove. */
1438 static int
1439 xfs_blockgc_scan_inode(
1440 	struct xfs_inode	*ip,
1441 	struct xfs_icwalk	*icw)
1442 {
1443 	unsigned int		lockflags = 0;
1444 	int			error;
1445 
1446 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1447 	if (error)
1448 		goto unlock;
1449 
1450 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1451 unlock:
1452 	if (lockflags)
1453 		xfs_iunlock(ip, lockflags);
1454 	xfs_irele(ip);
1455 	return error;
1456 }
1457 
1458 /* Background worker that trims preallocated space. */
1459 void
1460 xfs_blockgc_worker(
1461 	struct work_struct	*work)
1462 {
1463 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1464 					struct xfs_perag, pag_blockgc_work);
1465 	struct xfs_mount	*mp = pag->pag_mount;
1466 	int			error;
1467 
1468 	trace_xfs_blockgc_worker(mp, __return_address);
1469 
1470 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1471 	if (error)
1472 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1473 				pag->pag_agno, error);
1474 	xfs_blockgc_queue(pag);
1475 }
1476 
1477 /*
1478  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1479  * and cowblocks.
1480  */
1481 int
1482 xfs_blockgc_free_space(
1483 	struct xfs_mount	*mp,
1484 	struct xfs_icwalk	*icw)
1485 {
1486 	int			error;
1487 
1488 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1489 
1490 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1491 	if (error)
1492 		return error;
1493 
1494 	xfs_inodegc_flush(mp);
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Reclaim all the free space that we can by scheduling the background blockgc
1500  * and inodegc workers immediately and waiting for them all to clear.
1501  */
1502 void
1503 xfs_blockgc_flush_all(
1504 	struct xfs_mount	*mp)
1505 {
1506 	struct xfs_perag	*pag;
1507 	xfs_agnumber_t		agno;
1508 
1509 	trace_xfs_blockgc_flush_all(mp, __return_address);
1510 
1511 	/*
1512 	 * For each blockgc worker, move its queue time up to now.  If it
1513 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1514 	 * left.
1515 	 */
1516 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1517 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1518 				&pag->pag_blockgc_work, 0);
1519 
1520 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1521 		flush_delayed_work(&pag->pag_blockgc_work);
1522 
1523 	xfs_inodegc_flush(mp);
1524 }
1525 
1526 /*
1527  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1528  * quota caused an allocation failure, so we make a best effort by including
1529  * each quota under low free space conditions (less than 1% free space) in the
1530  * scan.
1531  *
1532  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1533  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1534  * MMAPLOCK.
1535  */
1536 int
1537 xfs_blockgc_free_dquots(
1538 	struct xfs_mount	*mp,
1539 	struct xfs_dquot	*udqp,
1540 	struct xfs_dquot	*gdqp,
1541 	struct xfs_dquot	*pdqp,
1542 	unsigned int		iwalk_flags)
1543 {
1544 	struct xfs_icwalk	icw = {0};
1545 	bool			do_work = false;
1546 
1547 	if (!udqp && !gdqp && !pdqp)
1548 		return 0;
1549 
1550 	/*
1551 	 * Run a scan to free blocks using the union filter to cover all
1552 	 * applicable quotas in a single scan.
1553 	 */
1554 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1555 
1556 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1557 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1558 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1559 		do_work = true;
1560 	}
1561 
1562 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1563 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1564 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1565 		do_work = true;
1566 	}
1567 
1568 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1569 		icw.icw_prid = pdqp->q_id;
1570 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1571 		do_work = true;
1572 	}
1573 
1574 	if (!do_work)
1575 		return 0;
1576 
1577 	return xfs_blockgc_free_space(mp, &icw);
1578 }
1579 
1580 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1581 int
1582 xfs_blockgc_free_quota(
1583 	struct xfs_inode	*ip,
1584 	unsigned int		iwalk_flags)
1585 {
1586 	return xfs_blockgc_free_dquots(ip->i_mount,
1587 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1588 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1589 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1590 }
1591 
1592 /* XFS Inode Cache Walking Code */
1593 
1594 /*
1595  * The inode lookup is done in batches to keep the amount of lock traffic and
1596  * radix tree lookups to a minimum. The batch size is a trade off between
1597  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1598  * be too greedy.
1599  */
1600 #define XFS_LOOKUP_BATCH	32
1601 
1602 
1603 /*
1604  * Decide if we want to grab this inode in anticipation of doing work towards
1605  * the goal.
1606  */
1607 static inline bool
1608 xfs_icwalk_igrab(
1609 	enum xfs_icwalk_goal	goal,
1610 	struct xfs_inode	*ip,
1611 	struct xfs_icwalk	*icw)
1612 {
1613 	switch (goal) {
1614 	case XFS_ICWALK_BLOCKGC:
1615 		return xfs_blockgc_igrab(ip);
1616 	case XFS_ICWALK_RECLAIM:
1617 		return xfs_reclaim_igrab(ip, icw);
1618 	default:
1619 		return false;
1620 	}
1621 }
1622 
1623 /*
1624  * Process an inode.  Each processing function must handle any state changes
1625  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1626  */
1627 static inline int
1628 xfs_icwalk_process_inode(
1629 	enum xfs_icwalk_goal	goal,
1630 	struct xfs_inode	*ip,
1631 	struct xfs_perag	*pag,
1632 	struct xfs_icwalk	*icw)
1633 {
1634 	int			error = 0;
1635 
1636 	switch (goal) {
1637 	case XFS_ICWALK_BLOCKGC:
1638 		error = xfs_blockgc_scan_inode(ip, icw);
1639 		break;
1640 	case XFS_ICWALK_RECLAIM:
1641 		xfs_reclaim_inode(ip, pag);
1642 		break;
1643 	}
1644 	return error;
1645 }
1646 
1647 /*
1648  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1649  * process them in some manner.
1650  */
1651 static int
1652 xfs_icwalk_ag(
1653 	struct xfs_perag	*pag,
1654 	enum xfs_icwalk_goal	goal,
1655 	struct xfs_icwalk	*icw)
1656 {
1657 	struct xfs_mount	*mp = pag->pag_mount;
1658 	uint32_t		first_index;
1659 	int			last_error = 0;
1660 	int			skipped;
1661 	bool			done;
1662 	int			nr_found;
1663 
1664 restart:
1665 	done = false;
1666 	skipped = 0;
1667 	if (goal == XFS_ICWALK_RECLAIM)
1668 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1669 	else
1670 		first_index = 0;
1671 	nr_found = 0;
1672 	do {
1673 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1674 		int		error = 0;
1675 		int		i;
1676 
1677 		rcu_read_lock();
1678 
1679 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1680 				(void **) batch, first_index,
1681 				XFS_LOOKUP_BATCH, goal);
1682 		if (!nr_found) {
1683 			done = true;
1684 			rcu_read_unlock();
1685 			break;
1686 		}
1687 
1688 		/*
1689 		 * Grab the inodes before we drop the lock. if we found
1690 		 * nothing, nr == 0 and the loop will be skipped.
1691 		 */
1692 		for (i = 0; i < nr_found; i++) {
1693 			struct xfs_inode *ip = batch[i];
1694 
1695 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1696 				batch[i] = NULL;
1697 
1698 			/*
1699 			 * Update the index for the next lookup. Catch
1700 			 * overflows into the next AG range which can occur if
1701 			 * we have inodes in the last block of the AG and we
1702 			 * are currently pointing to the last inode.
1703 			 *
1704 			 * Because we may see inodes that are from the wrong AG
1705 			 * due to RCU freeing and reallocation, only update the
1706 			 * index if it lies in this AG. It was a race that lead
1707 			 * us to see this inode, so another lookup from the
1708 			 * same index will not find it again.
1709 			 */
1710 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1711 				continue;
1712 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1713 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1714 				done = true;
1715 		}
1716 
1717 		/* unlock now we've grabbed the inodes. */
1718 		rcu_read_unlock();
1719 
1720 		for (i = 0; i < nr_found; i++) {
1721 			if (!batch[i])
1722 				continue;
1723 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1724 					icw);
1725 			if (error == -EAGAIN) {
1726 				skipped++;
1727 				continue;
1728 			}
1729 			if (error && last_error != -EFSCORRUPTED)
1730 				last_error = error;
1731 		}
1732 
1733 		/* bail out if the filesystem is corrupted.  */
1734 		if (error == -EFSCORRUPTED)
1735 			break;
1736 
1737 		cond_resched();
1738 
1739 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1740 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1741 			if (icw->icw_scan_limit <= 0)
1742 				break;
1743 		}
1744 	} while (nr_found && !done);
1745 
1746 	if (goal == XFS_ICWALK_RECLAIM) {
1747 		if (done)
1748 			first_index = 0;
1749 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1750 	}
1751 
1752 	if (skipped) {
1753 		delay(1);
1754 		goto restart;
1755 	}
1756 	return last_error;
1757 }
1758 
1759 /* Walk all incore inodes to achieve a given goal. */
1760 static int
1761 xfs_icwalk(
1762 	struct xfs_mount	*mp,
1763 	enum xfs_icwalk_goal	goal,
1764 	struct xfs_icwalk	*icw)
1765 {
1766 	struct xfs_perag	*pag;
1767 	int			error = 0;
1768 	int			last_error = 0;
1769 	xfs_agnumber_t		agno;
1770 
1771 	for_each_perag_tag(mp, agno, pag, goal) {
1772 		error = xfs_icwalk_ag(pag, goal, icw);
1773 		if (error) {
1774 			last_error = error;
1775 			if (error == -EFSCORRUPTED) {
1776 				xfs_perag_rele(pag);
1777 				break;
1778 			}
1779 		}
1780 	}
1781 	return last_error;
1782 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1783 }
1784 
1785 #ifdef DEBUG
1786 static void
1787 xfs_check_delalloc(
1788 	struct xfs_inode	*ip,
1789 	int			whichfork)
1790 {
1791 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1792 	struct xfs_bmbt_irec	got;
1793 	struct xfs_iext_cursor	icur;
1794 
1795 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1796 		return;
1797 	do {
1798 		if (isnullstartblock(got.br_startblock)) {
1799 			xfs_warn(ip->i_mount,
1800 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1801 				ip->i_ino,
1802 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1803 				got.br_startoff, got.br_blockcount);
1804 		}
1805 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1806 }
1807 #else
1808 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1809 #endif
1810 
1811 /* Schedule the inode for reclaim. */
1812 static void
1813 xfs_inodegc_set_reclaimable(
1814 	struct xfs_inode	*ip)
1815 {
1816 	struct xfs_mount	*mp = ip->i_mount;
1817 	struct xfs_perag	*pag;
1818 
1819 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1820 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1821 		xfs_check_delalloc(ip, XFS_COW_FORK);
1822 		ASSERT(0);
1823 	}
1824 
1825 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1826 	spin_lock(&pag->pag_ici_lock);
1827 	spin_lock(&ip->i_flags_lock);
1828 
1829 	trace_xfs_inode_set_reclaimable(ip);
1830 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1831 	ip->i_flags |= XFS_IRECLAIMABLE;
1832 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1833 			XFS_ICI_RECLAIM_TAG);
1834 
1835 	spin_unlock(&ip->i_flags_lock);
1836 	spin_unlock(&pag->pag_ici_lock);
1837 	xfs_perag_put(pag);
1838 }
1839 
1840 /*
1841  * Free all speculative preallocations and possibly even the inode itself.
1842  * This is the last chance to make changes to an otherwise unreferenced file
1843  * before incore reclamation happens.
1844  */
1845 static void
1846 xfs_inodegc_inactivate(
1847 	struct xfs_inode	*ip)
1848 {
1849 	trace_xfs_inode_inactivating(ip);
1850 	xfs_inactive(ip);
1851 	xfs_inodegc_set_reclaimable(ip);
1852 }
1853 
1854 void
1855 xfs_inodegc_worker(
1856 	struct work_struct	*work)
1857 {
1858 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1859 						struct xfs_inodegc, work);
1860 	struct llist_node	*node = llist_del_all(&gc->list);
1861 	struct xfs_inode	*ip, *n;
1862 	unsigned int		nofs_flag;
1863 
1864 	ASSERT(gc->cpu == smp_processor_id());
1865 
1866 	WRITE_ONCE(gc->items, 0);
1867 
1868 	if (!node)
1869 		return;
1870 
1871 	/*
1872 	 * We can allocate memory here while doing writeback on behalf of
1873 	 * memory reclaim.  To avoid memory allocation deadlocks set the
1874 	 * task-wide nofs context for the following operations.
1875 	 */
1876 	nofs_flag = memalloc_nofs_save();
1877 
1878 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1879 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1880 
1881 	WRITE_ONCE(gc->shrinker_hits, 0);
1882 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1883 		xfs_iflags_set(ip, XFS_INACTIVATING);
1884 		xfs_inodegc_inactivate(ip);
1885 	}
1886 
1887 	memalloc_nofs_restore(nofs_flag);
1888 }
1889 
1890 /*
1891  * Expedite all pending inodegc work to run immediately. This does not wait for
1892  * completion of the work.
1893  */
1894 void
1895 xfs_inodegc_push(
1896 	struct xfs_mount	*mp)
1897 {
1898 	if (!xfs_is_inodegc_enabled(mp))
1899 		return;
1900 	trace_xfs_inodegc_push(mp, __return_address);
1901 	xfs_inodegc_queue_all(mp);
1902 }
1903 
1904 /*
1905  * Force all currently queued inode inactivation work to run immediately and
1906  * wait for the work to finish.
1907  */
1908 void
1909 xfs_inodegc_flush(
1910 	struct xfs_mount	*mp)
1911 {
1912 	xfs_inodegc_push(mp);
1913 	trace_xfs_inodegc_flush(mp, __return_address);
1914 	flush_workqueue(mp->m_inodegc_wq);
1915 }
1916 
1917 /*
1918  * Flush all the pending work and then disable the inode inactivation background
1919  * workers and wait for them to stop.  Caller must hold sb->s_umount to
1920  * coordinate changes in the inodegc_enabled state.
1921  */
1922 void
1923 xfs_inodegc_stop(
1924 	struct xfs_mount	*mp)
1925 {
1926 	bool			rerun;
1927 
1928 	if (!xfs_clear_inodegc_enabled(mp))
1929 		return;
1930 
1931 	/*
1932 	 * Drain all pending inodegc work, including inodes that could be
1933 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1934 	 * threads that sample the inodegc state just prior to us clearing it.
1935 	 * The inodegc flag state prevents new threads from queuing more
1936 	 * inodes, so we queue pending work items and flush the workqueue until
1937 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1938 	 * here because it does not allow other unserialized mechanisms to
1939 	 * reschedule inodegc work while this draining is in progress.
1940 	 */
1941 	xfs_inodegc_queue_all(mp);
1942 	do {
1943 		flush_workqueue(mp->m_inodegc_wq);
1944 		rerun = xfs_inodegc_queue_all(mp);
1945 	} while (rerun);
1946 
1947 	trace_xfs_inodegc_stop(mp, __return_address);
1948 }
1949 
1950 /*
1951  * Enable the inode inactivation background workers and schedule deferred inode
1952  * inactivation work if there is any.  Caller must hold sb->s_umount to
1953  * coordinate changes in the inodegc_enabled state.
1954  */
1955 void
1956 xfs_inodegc_start(
1957 	struct xfs_mount	*mp)
1958 {
1959 	if (xfs_set_inodegc_enabled(mp))
1960 		return;
1961 
1962 	trace_xfs_inodegc_start(mp, __return_address);
1963 	xfs_inodegc_queue_all(mp);
1964 }
1965 
1966 #ifdef CONFIG_XFS_RT
1967 static inline bool
1968 xfs_inodegc_want_queue_rt_file(
1969 	struct xfs_inode	*ip)
1970 {
1971 	struct xfs_mount	*mp = ip->i_mount;
1972 
1973 	if (!XFS_IS_REALTIME_INODE(ip))
1974 		return false;
1975 
1976 	if (__percpu_counter_compare(&mp->m_frextents,
1977 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1978 				XFS_FDBLOCKS_BATCH) < 0)
1979 		return true;
1980 
1981 	return false;
1982 }
1983 #else
1984 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1985 #endif /* CONFIG_XFS_RT */
1986 
1987 /*
1988  * Schedule the inactivation worker when:
1989  *
1990  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1991  *  - There is less than 5% free space left.
1992  *  - Any of the quotas for this inode are near an enforcement limit.
1993  */
1994 static inline bool
1995 xfs_inodegc_want_queue_work(
1996 	struct xfs_inode	*ip,
1997 	unsigned int		items)
1998 {
1999 	struct xfs_mount	*mp = ip->i_mount;
2000 
2001 	if (items > mp->m_ino_geo.inodes_per_cluster)
2002 		return true;
2003 
2004 	if (__percpu_counter_compare(&mp->m_fdblocks,
2005 				mp->m_low_space[XFS_LOWSP_5_PCNT],
2006 				XFS_FDBLOCKS_BATCH) < 0)
2007 		return true;
2008 
2009 	if (xfs_inodegc_want_queue_rt_file(ip))
2010 		return true;
2011 
2012 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2013 		return true;
2014 
2015 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2016 		return true;
2017 
2018 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2019 		return true;
2020 
2021 	return false;
2022 }
2023 
2024 /*
2025  * Upper bound on the number of inodes in each AG that can be queued for
2026  * inactivation at any given time, to avoid monopolizing the workqueue.
2027  */
2028 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2029 
2030 /*
2031  * Make the frontend wait for inactivations when:
2032  *
2033  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2034  *  - The queue depth exceeds the maximum allowable percpu backlog.
2035  *
2036  * Note: If the current thread is running a transaction, we don't ever want to
2037  * wait for other transactions because that could introduce a deadlock.
2038  */
2039 static inline bool
2040 xfs_inodegc_want_flush_work(
2041 	struct xfs_inode	*ip,
2042 	unsigned int		items,
2043 	unsigned int		shrinker_hits)
2044 {
2045 	if (current->journal_info)
2046 		return false;
2047 
2048 	if (shrinker_hits > 0)
2049 		return true;
2050 
2051 	if (items > XFS_INODEGC_MAX_BACKLOG)
2052 		return true;
2053 
2054 	return false;
2055 }
2056 
2057 /*
2058  * Queue a background inactivation worker if there are inodes that need to be
2059  * inactivated and higher level xfs code hasn't disabled the background
2060  * workers.
2061  */
2062 static void
2063 xfs_inodegc_queue(
2064 	struct xfs_inode	*ip)
2065 {
2066 	struct xfs_mount	*mp = ip->i_mount;
2067 	struct xfs_inodegc	*gc;
2068 	int			items;
2069 	unsigned int		shrinker_hits;
2070 	unsigned long		queue_delay = 1;
2071 
2072 	trace_xfs_inode_set_need_inactive(ip);
2073 	spin_lock(&ip->i_flags_lock);
2074 	ip->i_flags |= XFS_NEED_INACTIVE;
2075 	spin_unlock(&ip->i_flags_lock);
2076 
2077 	gc = get_cpu_ptr(mp->m_inodegc);
2078 	llist_add(&ip->i_gclist, &gc->list);
2079 	items = READ_ONCE(gc->items);
2080 	WRITE_ONCE(gc->items, items + 1);
2081 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2082 
2083 	/*
2084 	 * We queue the work while holding the current CPU so that the work
2085 	 * is scheduled to run on this CPU.
2086 	 */
2087 	if (!xfs_is_inodegc_enabled(mp)) {
2088 		put_cpu_ptr(gc);
2089 		return;
2090 	}
2091 
2092 	if (xfs_inodegc_want_queue_work(ip, items))
2093 		queue_delay = 0;
2094 
2095 	trace_xfs_inodegc_queue(mp, __return_address);
2096 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2097 			queue_delay);
2098 	put_cpu_ptr(gc);
2099 
2100 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2101 		trace_xfs_inodegc_throttle(mp, __return_address);
2102 		flush_delayed_work(&gc->work);
2103 	}
2104 }
2105 
2106 /*
2107  * Fold the dead CPU inodegc queue into the current CPUs queue.
2108  */
2109 void
2110 xfs_inodegc_cpu_dead(
2111 	struct xfs_mount	*mp,
2112 	unsigned int		dead_cpu)
2113 {
2114 	struct xfs_inodegc	*dead_gc, *gc;
2115 	struct llist_node	*first, *last;
2116 	unsigned int		count = 0;
2117 
2118 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2119 	cancel_delayed_work_sync(&dead_gc->work);
2120 
2121 	if (llist_empty(&dead_gc->list))
2122 		return;
2123 
2124 	first = dead_gc->list.first;
2125 	last = first;
2126 	while (last->next) {
2127 		last = last->next;
2128 		count++;
2129 	}
2130 	dead_gc->list.first = NULL;
2131 	dead_gc->items = 0;
2132 
2133 	/* Add pending work to current CPU */
2134 	gc = get_cpu_ptr(mp->m_inodegc);
2135 	llist_add_batch(first, last, &gc->list);
2136 	count += READ_ONCE(gc->items);
2137 	WRITE_ONCE(gc->items, count);
2138 
2139 	if (xfs_is_inodegc_enabled(mp)) {
2140 		trace_xfs_inodegc_queue(mp, __return_address);
2141 		mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2142 				0);
2143 	}
2144 	put_cpu_ptr(gc);
2145 }
2146 
2147 /*
2148  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2149  * lookups on the radix tree, this inode flag can go away.
2150  *
2151  * We always use background reclaim here because even if the inode is clean, it
2152  * still may be under IO and hence we have wait for IO completion to occur
2153  * before we can reclaim the inode. The background reclaim path handles this
2154  * more efficiently than we can here, so simply let background reclaim tear down
2155  * all inodes.
2156  */
2157 void
2158 xfs_inode_mark_reclaimable(
2159 	struct xfs_inode	*ip)
2160 {
2161 	struct xfs_mount	*mp = ip->i_mount;
2162 	bool			need_inactive;
2163 
2164 	XFS_STATS_INC(mp, vn_reclaim);
2165 
2166 	/*
2167 	 * We should never get here with any of the reclaim flags already set.
2168 	 */
2169 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2170 
2171 	need_inactive = xfs_inode_needs_inactive(ip);
2172 	if (need_inactive) {
2173 		xfs_inodegc_queue(ip);
2174 		return;
2175 	}
2176 
2177 	/* Going straight to reclaim, so drop the dquots. */
2178 	xfs_qm_dqdetach(ip);
2179 	xfs_inodegc_set_reclaimable(ip);
2180 }
2181 
2182 /*
2183  * Register a phony shrinker so that we can run background inodegc sooner when
2184  * there's memory pressure.  Inactivation does not itself free any memory but
2185  * it does make inodes reclaimable, which eventually frees memory.
2186  *
2187  * The count function, seek value, and batch value are crafted to trigger the
2188  * scan function during the second round of scanning.  Hopefully this means
2189  * that we reclaimed enough memory that initiating metadata transactions won't
2190  * make things worse.
2191  */
2192 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2193 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2194 
2195 static unsigned long
2196 xfs_inodegc_shrinker_count(
2197 	struct shrinker		*shrink,
2198 	struct shrink_control	*sc)
2199 {
2200 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2201 						   m_inodegc_shrinker);
2202 	struct xfs_inodegc	*gc;
2203 	int			cpu;
2204 
2205 	if (!xfs_is_inodegc_enabled(mp))
2206 		return 0;
2207 
2208 	for_each_online_cpu(cpu) {
2209 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2210 		if (!llist_empty(&gc->list))
2211 			return XFS_INODEGC_SHRINKER_COUNT;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static unsigned long
2218 xfs_inodegc_shrinker_scan(
2219 	struct shrinker		*shrink,
2220 	struct shrink_control	*sc)
2221 {
2222 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2223 						   m_inodegc_shrinker);
2224 	struct xfs_inodegc	*gc;
2225 	int			cpu;
2226 	bool			no_items = true;
2227 
2228 	if (!xfs_is_inodegc_enabled(mp))
2229 		return SHRINK_STOP;
2230 
2231 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2232 
2233 	for_each_online_cpu(cpu) {
2234 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2235 		if (!llist_empty(&gc->list)) {
2236 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2237 
2238 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2239 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2240 			no_items = false;
2241 		}
2242 	}
2243 
2244 	/*
2245 	 * If there are no inodes to inactivate, we don't want the shrinker
2246 	 * to think there's deferred work to call us back about.
2247 	 */
2248 	if (no_items)
2249 		return LONG_MAX;
2250 
2251 	return SHRINK_STOP;
2252 }
2253 
2254 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2255 int
2256 xfs_inodegc_register_shrinker(
2257 	struct xfs_mount	*mp)
2258 {
2259 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2260 
2261 	shrink->count_objects = xfs_inodegc_shrinker_count;
2262 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2263 	shrink->seeks = 0;
2264 	shrink->flags = SHRINKER_NONSLAB;
2265 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2266 
2267 	return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2268 }
2269