1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 28 #include <linux/iversion.h> 29 30 /* Radix tree tags for incore inode tree. */ 31 32 /* inode is to be reclaimed */ 33 #define XFS_ICI_RECLAIM_TAG 0 34 /* Inode has speculative preallocations (posteof or cow) to clean. */ 35 #define XFS_ICI_BLOCKGC_TAG 1 36 37 /* 38 * The goal for walking incore inodes. These can correspond with incore inode 39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 40 */ 41 enum xfs_icwalk_goal { 42 /* Goals directly associated with tagged inodes. */ 43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 45 }; 46 47 static int xfs_icwalk(struct xfs_mount *mp, 48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 49 static int xfs_icwalk_ag(struct xfs_perag *pag, 50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 51 52 /* 53 * Private inode cache walk flags for struct xfs_icwalk. Must not 54 * coincide with XFS_ICWALK_FLAGS_VALID. 55 */ 56 57 /* Stop scanning after icw_scan_limit inodes. */ 58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 59 60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 62 63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 64 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 65 XFS_ICWALK_FLAG_UNION) 66 67 /* 68 * Allocate and initialise an xfs_inode. 69 */ 70 struct xfs_inode * 71 xfs_inode_alloc( 72 struct xfs_mount *mp, 73 xfs_ino_t ino) 74 { 75 struct xfs_inode *ip; 76 77 /* 78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 79 * and return NULL here on ENOMEM. 80 */ 81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 82 83 if (inode_init_always(mp->m_super, VFS_I(ip))) { 84 kmem_cache_free(xfs_inode_cache, ip); 85 return NULL; 86 } 87 88 /* VFS doesn't initialise i_mode or i_state! */ 89 VFS_I(ip)->i_mode = 0; 90 VFS_I(ip)->i_state = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_cowfp = NULL; 102 memset(&ip->i_af, 0, sizeof(ip->i_af)); 103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 104 memset(&ip->i_df, 0, sizeof(ip->i_df)); 105 ip->i_flags = 0; 106 ip->i_delayed_blks = 0; 107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 108 ip->i_nblocks = 0; 109 ip->i_forkoff = 0; 110 ip->i_sick = 0; 111 ip->i_checked = 0; 112 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 113 INIT_LIST_HEAD(&ip->i_ioend_list); 114 spin_lock_init(&ip->i_ioend_lock); 115 ip->i_next_unlinked = NULLAGINO; 116 ip->i_prev_unlinked = NULLAGINO; 117 118 return ip; 119 } 120 121 STATIC void 122 xfs_inode_free_callback( 123 struct rcu_head *head) 124 { 125 struct inode *inode = container_of(head, struct inode, i_rcu); 126 struct xfs_inode *ip = XFS_I(inode); 127 128 switch (VFS_I(ip)->i_mode & S_IFMT) { 129 case S_IFREG: 130 case S_IFDIR: 131 case S_IFLNK: 132 xfs_idestroy_fork(&ip->i_df); 133 break; 134 } 135 136 xfs_ifork_zap_attr(ip); 137 138 if (ip->i_cowfp) { 139 xfs_idestroy_fork(ip->i_cowfp); 140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 141 } 142 if (ip->i_itemp) { 143 ASSERT(!test_bit(XFS_LI_IN_AIL, 144 &ip->i_itemp->ili_item.li_flags)); 145 xfs_inode_item_destroy(ip); 146 ip->i_itemp = NULL; 147 } 148 149 kmem_cache_free(xfs_inode_cache, ip); 150 } 151 152 static void 153 __xfs_inode_free( 154 struct xfs_inode *ip) 155 { 156 /* asserts to verify all state is correct here */ 157 ASSERT(atomic_read(&ip->i_pincount) == 0); 158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 159 XFS_STATS_DEC(ip->i_mount, vn_active); 160 161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 162 } 163 164 void 165 xfs_inode_free( 166 struct xfs_inode *ip) 167 { 168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 169 170 /* 171 * Because we use RCU freeing we need to ensure the inode always 172 * appears to be reclaimed with an invalid inode number when in the 173 * free state. The ip->i_flags_lock provides the barrier against lookup 174 * races. 175 */ 176 spin_lock(&ip->i_flags_lock); 177 ip->i_flags = XFS_IRECLAIM; 178 ip->i_ino = 0; 179 spin_unlock(&ip->i_flags_lock); 180 181 __xfs_inode_free(ip); 182 } 183 184 /* 185 * Queue background inode reclaim work if there are reclaimable inodes and there 186 * isn't reclaim work already scheduled or in progress. 187 */ 188 static void 189 xfs_reclaim_work_queue( 190 struct xfs_mount *mp) 191 { 192 193 rcu_read_lock(); 194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 197 } 198 rcu_read_unlock(); 199 } 200 201 /* 202 * Background scanning to trim preallocated space. This is queued based on the 203 * 'speculative_prealloc_lifetime' tunable (5m by default). 204 */ 205 static inline void 206 xfs_blockgc_queue( 207 struct xfs_perag *pag) 208 { 209 struct xfs_mount *mp = pag->pag_mount; 210 211 if (!xfs_is_blockgc_enabled(mp)) 212 return; 213 214 rcu_read_lock(); 215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 216 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 217 &pag->pag_blockgc_work, 218 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 219 rcu_read_unlock(); 220 } 221 222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 223 static void 224 xfs_perag_set_inode_tag( 225 struct xfs_perag *pag, 226 xfs_agino_t agino, 227 unsigned int tag) 228 { 229 struct xfs_mount *mp = pag->pag_mount; 230 bool was_tagged; 231 232 lockdep_assert_held(&pag->pag_ici_lock); 233 234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 236 237 if (tag == XFS_ICI_RECLAIM_TAG) 238 pag->pag_ici_reclaimable++; 239 240 if (was_tagged) 241 return; 242 243 /* propagate the tag up into the perag radix tree */ 244 spin_lock(&mp->m_perag_lock); 245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 246 spin_unlock(&mp->m_perag_lock); 247 248 /* start background work */ 249 switch (tag) { 250 case XFS_ICI_RECLAIM_TAG: 251 xfs_reclaim_work_queue(mp); 252 break; 253 case XFS_ICI_BLOCKGC_TAG: 254 xfs_blockgc_queue(pag); 255 break; 256 } 257 258 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 259 } 260 261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 262 static void 263 xfs_perag_clear_inode_tag( 264 struct xfs_perag *pag, 265 xfs_agino_t agino, 266 unsigned int tag) 267 { 268 struct xfs_mount *mp = pag->pag_mount; 269 270 lockdep_assert_held(&pag->pag_ici_lock); 271 272 /* 273 * Reclaim can signal (with a null agino) that it cleared its own tag 274 * by removing the inode from the radix tree. 275 */ 276 if (agino != NULLAGINO) 277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 278 else 279 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 280 281 if (tag == XFS_ICI_RECLAIM_TAG) 282 pag->pag_ici_reclaimable--; 283 284 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 285 return; 286 287 /* clear the tag from the perag radix tree */ 288 spin_lock(&mp->m_perag_lock); 289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 290 spin_unlock(&mp->m_perag_lock); 291 292 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 293 } 294 295 /* 296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 297 * part of the structure. This is made more complex by the fact we store 298 * information about the on-disk values in the VFS inode and so we can't just 299 * overwrite the values unconditionally. Hence we save the parameters we 300 * need to retain across reinitialisation, and rewrite them into the VFS inode 301 * after reinitialisation even if it fails. 302 */ 303 static int 304 xfs_reinit_inode( 305 struct xfs_mount *mp, 306 struct inode *inode) 307 { 308 int error; 309 uint32_t nlink = inode->i_nlink; 310 uint32_t generation = inode->i_generation; 311 uint64_t version = inode_peek_iversion(inode); 312 umode_t mode = inode->i_mode; 313 dev_t dev = inode->i_rdev; 314 kuid_t uid = inode->i_uid; 315 kgid_t gid = inode->i_gid; 316 317 error = inode_init_always(mp->m_super, inode); 318 319 set_nlink(inode, nlink); 320 inode->i_generation = generation; 321 inode_set_iversion_queried(inode, version); 322 inode->i_mode = mode; 323 inode->i_rdev = dev; 324 inode->i_uid = uid; 325 inode->i_gid = gid; 326 mapping_set_large_folios(inode->i_mapping); 327 return error; 328 } 329 330 /* 331 * Carefully nudge an inode whose VFS state has been torn down back into a 332 * usable state. Drops the i_flags_lock and the rcu read lock. 333 */ 334 static int 335 xfs_iget_recycle( 336 struct xfs_perag *pag, 337 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 338 { 339 struct xfs_mount *mp = ip->i_mount; 340 struct inode *inode = VFS_I(ip); 341 int error; 342 343 trace_xfs_iget_recycle(ip); 344 345 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 346 return -EAGAIN; 347 348 /* 349 * We need to make it look like the inode is being reclaimed to prevent 350 * the actual reclaim workers from stomping over us while we recycle 351 * the inode. We can't clear the radix tree tag yet as it requires 352 * pag_ici_lock to be held exclusive. 353 */ 354 ip->i_flags |= XFS_IRECLAIM; 355 356 spin_unlock(&ip->i_flags_lock); 357 rcu_read_unlock(); 358 359 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 360 error = xfs_reinit_inode(mp, inode); 361 xfs_iunlock(ip, XFS_ILOCK_EXCL); 362 if (error) { 363 /* 364 * Re-initializing the inode failed, and we are in deep 365 * trouble. Try to re-add it to the reclaim list. 366 */ 367 rcu_read_lock(); 368 spin_lock(&ip->i_flags_lock); 369 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 370 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 371 spin_unlock(&ip->i_flags_lock); 372 rcu_read_unlock(); 373 374 trace_xfs_iget_recycle_fail(ip); 375 return error; 376 } 377 378 spin_lock(&pag->pag_ici_lock); 379 spin_lock(&ip->i_flags_lock); 380 381 /* 382 * Clear the per-lifetime state in the inode as we are now effectively 383 * a new inode and need to return to the initial state before reuse 384 * occurs. 385 */ 386 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 387 ip->i_flags |= XFS_INEW; 388 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 389 XFS_ICI_RECLAIM_TAG); 390 inode->i_state = I_NEW; 391 spin_unlock(&ip->i_flags_lock); 392 spin_unlock(&pag->pag_ici_lock); 393 394 return 0; 395 } 396 397 /* 398 * If we are allocating a new inode, then check what was returned is 399 * actually a free, empty inode. If we are not allocating an inode, 400 * then check we didn't find a free inode. 401 * 402 * Returns: 403 * 0 if the inode free state matches the lookup context 404 * -ENOENT if the inode is free and we are not allocating 405 * -EFSCORRUPTED if there is any state mismatch at all 406 */ 407 static int 408 xfs_iget_check_free_state( 409 struct xfs_inode *ip, 410 int flags) 411 { 412 if (flags & XFS_IGET_CREATE) { 413 /* should be a free inode */ 414 if (VFS_I(ip)->i_mode != 0) { 415 xfs_warn(ip->i_mount, 416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 417 ip->i_ino, VFS_I(ip)->i_mode); 418 return -EFSCORRUPTED; 419 } 420 421 if (ip->i_nblocks != 0) { 422 xfs_warn(ip->i_mount, 423 "Corruption detected! Free inode 0x%llx has blocks allocated!", 424 ip->i_ino); 425 return -EFSCORRUPTED; 426 } 427 return 0; 428 } 429 430 /* should be an allocated inode */ 431 if (VFS_I(ip)->i_mode == 0) 432 return -ENOENT; 433 434 return 0; 435 } 436 437 /* Make all pending inactivation work start immediately. */ 438 static bool 439 xfs_inodegc_queue_all( 440 struct xfs_mount *mp) 441 { 442 struct xfs_inodegc *gc; 443 int cpu; 444 bool ret = false; 445 446 for_each_online_cpu(cpu) { 447 gc = per_cpu_ptr(mp->m_inodegc, cpu); 448 if (!llist_empty(&gc->list)) { 449 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 450 ret = true; 451 } 452 } 453 454 return ret; 455 } 456 457 /* 458 * Check the validity of the inode we just found it the cache 459 */ 460 static int 461 xfs_iget_cache_hit( 462 struct xfs_perag *pag, 463 struct xfs_inode *ip, 464 xfs_ino_t ino, 465 int flags, 466 int lock_flags) __releases(RCU) 467 { 468 struct inode *inode = VFS_I(ip); 469 struct xfs_mount *mp = ip->i_mount; 470 int error; 471 472 /* 473 * check for re-use of an inode within an RCU grace period due to the 474 * radix tree nodes not being updated yet. We monitor for this by 475 * setting the inode number to zero before freeing the inode structure. 476 * If the inode has been reallocated and set up, then the inode number 477 * will not match, so check for that, too. 478 */ 479 spin_lock(&ip->i_flags_lock); 480 if (ip->i_ino != ino) 481 goto out_skip; 482 483 /* 484 * If we are racing with another cache hit that is currently 485 * instantiating this inode or currently recycling it out of 486 * reclaimable state, wait for the initialisation to complete 487 * before continuing. 488 * 489 * If we're racing with the inactivation worker we also want to wait. 490 * If we're creating a new file, it's possible that the worker 491 * previously marked the inode as free on disk but hasn't finished 492 * updating the incore state yet. The AGI buffer will be dirty and 493 * locked to the icreate transaction, so a synchronous push of the 494 * inodegc workers would result in deadlock. For a regular iget, the 495 * worker is running already, so we might as well wait. 496 * 497 * XXX(hch): eventually we should do something equivalent to 498 * wait_on_inode to wait for these flags to be cleared 499 * instead of polling for it. 500 */ 501 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 502 goto out_skip; 503 504 if (ip->i_flags & XFS_NEED_INACTIVE) { 505 /* Unlinked inodes cannot be re-grabbed. */ 506 if (VFS_I(ip)->i_nlink == 0) { 507 error = -ENOENT; 508 goto out_error; 509 } 510 goto out_inodegc_flush; 511 } 512 513 /* 514 * Check the inode free state is valid. This also detects lookup 515 * racing with unlinks. 516 */ 517 error = xfs_iget_check_free_state(ip, flags); 518 if (error) 519 goto out_error; 520 521 /* Skip inodes that have no vfs state. */ 522 if ((flags & XFS_IGET_INCORE) && 523 (ip->i_flags & XFS_IRECLAIMABLE)) 524 goto out_skip; 525 526 /* The inode fits the selection criteria; process it. */ 527 if (ip->i_flags & XFS_IRECLAIMABLE) { 528 /* Drops i_flags_lock and RCU read lock. */ 529 error = xfs_iget_recycle(pag, ip); 530 if (error == -EAGAIN) 531 goto out_skip; 532 if (error) 533 return error; 534 } else { 535 /* If the VFS inode is being torn down, pause and try again. */ 536 if (!igrab(inode)) 537 goto out_skip; 538 539 /* We've got a live one. */ 540 spin_unlock(&ip->i_flags_lock); 541 rcu_read_unlock(); 542 trace_xfs_iget_hit(ip); 543 } 544 545 if (lock_flags != 0) 546 xfs_ilock(ip, lock_flags); 547 548 if (!(flags & XFS_IGET_INCORE)) 549 xfs_iflags_clear(ip, XFS_ISTALE); 550 XFS_STATS_INC(mp, xs_ig_found); 551 552 return 0; 553 554 out_skip: 555 trace_xfs_iget_skip(ip); 556 XFS_STATS_INC(mp, xs_ig_frecycle); 557 error = -EAGAIN; 558 out_error: 559 spin_unlock(&ip->i_flags_lock); 560 rcu_read_unlock(); 561 return error; 562 563 out_inodegc_flush: 564 spin_unlock(&ip->i_flags_lock); 565 rcu_read_unlock(); 566 /* 567 * Do not wait for the workers, because the caller could hold an AGI 568 * buffer lock. We're just going to sleep in a loop anyway. 569 */ 570 if (xfs_is_inodegc_enabled(mp)) 571 xfs_inodegc_queue_all(mp); 572 return -EAGAIN; 573 } 574 575 static int 576 xfs_iget_cache_miss( 577 struct xfs_mount *mp, 578 struct xfs_perag *pag, 579 xfs_trans_t *tp, 580 xfs_ino_t ino, 581 struct xfs_inode **ipp, 582 int flags, 583 int lock_flags) 584 { 585 struct xfs_inode *ip; 586 int error; 587 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 588 int iflags; 589 590 ip = xfs_inode_alloc(mp, ino); 591 if (!ip) 592 return -ENOMEM; 593 594 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 595 if (error) 596 goto out_destroy; 597 598 /* 599 * For version 5 superblocks, if we are initialising a new inode and we 600 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 601 * simply build the new inode core with a random generation number. 602 * 603 * For version 4 (and older) superblocks, log recovery is dependent on 604 * the i_flushiter field being initialised from the current on-disk 605 * value and hence we must also read the inode off disk even when 606 * initializing new inodes. 607 */ 608 if (xfs_has_v3inodes(mp) && 609 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 610 VFS_I(ip)->i_generation = get_random_u32(); 611 } else { 612 struct xfs_buf *bp; 613 614 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 615 if (error) 616 goto out_destroy; 617 618 error = xfs_inode_from_disk(ip, 619 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 620 if (!error) 621 xfs_buf_set_ref(bp, XFS_INO_REF); 622 xfs_trans_brelse(tp, bp); 623 624 if (error) 625 goto out_destroy; 626 } 627 628 trace_xfs_iget_miss(ip); 629 630 /* 631 * Check the inode free state is valid. This also detects lookup 632 * racing with unlinks. 633 */ 634 error = xfs_iget_check_free_state(ip, flags); 635 if (error) 636 goto out_destroy; 637 638 /* 639 * Preload the radix tree so we can insert safely under the 640 * write spinlock. Note that we cannot sleep inside the preload 641 * region. Since we can be called from transaction context, don't 642 * recurse into the file system. 643 */ 644 if (radix_tree_preload(GFP_NOFS)) { 645 error = -EAGAIN; 646 goto out_destroy; 647 } 648 649 /* 650 * Because the inode hasn't been added to the radix-tree yet it can't 651 * be found by another thread, so we can do the non-sleeping lock here. 652 */ 653 if (lock_flags) { 654 if (!xfs_ilock_nowait(ip, lock_flags)) 655 BUG(); 656 } 657 658 /* 659 * These values must be set before inserting the inode into the radix 660 * tree as the moment it is inserted a concurrent lookup (allowed by the 661 * RCU locking mechanism) can find it and that lookup must see that this 662 * is an inode currently under construction (i.e. that XFS_INEW is set). 663 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 664 * memory barrier that ensures this detection works correctly at lookup 665 * time. 666 */ 667 iflags = XFS_INEW; 668 if (flags & XFS_IGET_DONTCACHE) 669 d_mark_dontcache(VFS_I(ip)); 670 ip->i_udquot = NULL; 671 ip->i_gdquot = NULL; 672 ip->i_pdquot = NULL; 673 xfs_iflags_set(ip, iflags); 674 675 /* insert the new inode */ 676 spin_lock(&pag->pag_ici_lock); 677 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 678 if (unlikely(error)) { 679 WARN_ON(error != -EEXIST); 680 XFS_STATS_INC(mp, xs_ig_dup); 681 error = -EAGAIN; 682 goto out_preload_end; 683 } 684 spin_unlock(&pag->pag_ici_lock); 685 radix_tree_preload_end(); 686 687 *ipp = ip; 688 return 0; 689 690 out_preload_end: 691 spin_unlock(&pag->pag_ici_lock); 692 radix_tree_preload_end(); 693 if (lock_flags) 694 xfs_iunlock(ip, lock_flags); 695 out_destroy: 696 __destroy_inode(VFS_I(ip)); 697 xfs_inode_free(ip); 698 return error; 699 } 700 701 /* 702 * Look up an inode by number in the given file system. The inode is looked up 703 * in the cache held in each AG. If the inode is found in the cache, initialise 704 * the vfs inode if necessary. 705 * 706 * If it is not in core, read it in from the file system's device, add it to the 707 * cache and initialise the vfs inode. 708 * 709 * The inode is locked according to the value of the lock_flags parameter. 710 * Inode lookup is only done during metadata operations and not as part of the 711 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 712 */ 713 int 714 xfs_iget( 715 struct xfs_mount *mp, 716 struct xfs_trans *tp, 717 xfs_ino_t ino, 718 uint flags, 719 uint lock_flags, 720 struct xfs_inode **ipp) 721 { 722 struct xfs_inode *ip; 723 struct xfs_perag *pag; 724 xfs_agino_t agino; 725 int error; 726 727 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 728 729 /* reject inode numbers outside existing AGs */ 730 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 731 return -EINVAL; 732 733 XFS_STATS_INC(mp, xs_ig_attempts); 734 735 /* get the perag structure and ensure that it's inode capable */ 736 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 737 agino = XFS_INO_TO_AGINO(mp, ino); 738 739 again: 740 error = 0; 741 rcu_read_lock(); 742 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 743 744 if (ip) { 745 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 746 if (error) 747 goto out_error_or_again; 748 } else { 749 rcu_read_unlock(); 750 if (flags & XFS_IGET_INCORE) { 751 error = -ENODATA; 752 goto out_error_or_again; 753 } 754 XFS_STATS_INC(mp, xs_ig_missed); 755 756 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 757 flags, lock_flags); 758 if (error) 759 goto out_error_or_again; 760 } 761 xfs_perag_put(pag); 762 763 *ipp = ip; 764 765 /* 766 * If we have a real type for an on-disk inode, we can setup the inode 767 * now. If it's a new inode being created, xfs_init_new_inode will 768 * handle it. 769 */ 770 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 771 xfs_setup_existing_inode(ip); 772 return 0; 773 774 out_error_or_again: 775 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 776 error == -EAGAIN) { 777 delay(1); 778 goto again; 779 } 780 xfs_perag_put(pag); 781 return error; 782 } 783 784 /* 785 * "Is this a cached inode that's also allocated?" 786 * 787 * Look up an inode by number in the given file system. If the inode is 788 * in cache and isn't in purgatory, return 1 if the inode is allocated 789 * and 0 if it is not. For all other cases (not in cache, being torn 790 * down, etc.), return a negative error code. 791 * 792 * The caller has to prevent inode allocation and freeing activity, 793 * presumably by locking the AGI buffer. This is to ensure that an 794 * inode cannot transition from allocated to freed until the caller is 795 * ready to allow that. If the inode is in an intermediate state (new, 796 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 797 * inode is not in the cache, -ENOENT will be returned. The caller must 798 * deal with these scenarios appropriately. 799 * 800 * This is a specialized use case for the online scrubber; if you're 801 * reading this, you probably want xfs_iget. 802 */ 803 int 804 xfs_icache_inode_is_allocated( 805 struct xfs_mount *mp, 806 struct xfs_trans *tp, 807 xfs_ino_t ino, 808 bool *inuse) 809 { 810 struct xfs_inode *ip; 811 int error; 812 813 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 814 if (error) 815 return error; 816 817 *inuse = !!(VFS_I(ip)->i_mode); 818 xfs_irele(ip); 819 return 0; 820 } 821 822 /* 823 * Grab the inode for reclaim exclusively. 824 * 825 * We have found this inode via a lookup under RCU, so the inode may have 826 * already been freed, or it may be in the process of being recycled by 827 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 828 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 829 * will not be set. Hence we need to check for both these flag conditions to 830 * avoid inodes that are no longer reclaim candidates. 831 * 832 * Note: checking for other state flags here, under the i_flags_lock or not, is 833 * racy and should be avoided. Those races should be resolved only after we have 834 * ensured that we are able to reclaim this inode and the world can see that we 835 * are going to reclaim it. 836 * 837 * Return true if we grabbed it, false otherwise. 838 */ 839 static bool 840 xfs_reclaim_igrab( 841 struct xfs_inode *ip, 842 struct xfs_icwalk *icw) 843 { 844 ASSERT(rcu_read_lock_held()); 845 846 spin_lock(&ip->i_flags_lock); 847 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 848 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 849 /* not a reclaim candidate. */ 850 spin_unlock(&ip->i_flags_lock); 851 return false; 852 } 853 854 /* Don't reclaim a sick inode unless the caller asked for it. */ 855 if (ip->i_sick && 856 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 857 spin_unlock(&ip->i_flags_lock); 858 return false; 859 } 860 861 __xfs_iflags_set(ip, XFS_IRECLAIM); 862 spin_unlock(&ip->i_flags_lock); 863 return true; 864 } 865 866 /* 867 * Inode reclaim is non-blocking, so the default action if progress cannot be 868 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 869 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 870 * blocking anymore and hence we can wait for the inode to be able to reclaim 871 * it. 872 * 873 * We do no IO here - if callers require inodes to be cleaned they must push the 874 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 875 * done in the background in a non-blocking manner, and enables memory reclaim 876 * to make progress without blocking. 877 */ 878 static void 879 xfs_reclaim_inode( 880 struct xfs_inode *ip, 881 struct xfs_perag *pag) 882 { 883 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 884 885 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 886 goto out; 887 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 888 goto out_iunlock; 889 890 /* 891 * Check for log shutdown because aborting the inode can move the log 892 * tail and corrupt in memory state. This is fine if the log is shut 893 * down, but if the log is still active and only the mount is shut down 894 * then the in-memory log tail movement caused by the abort can be 895 * incorrectly propagated to disk. 896 */ 897 if (xlog_is_shutdown(ip->i_mount->m_log)) { 898 xfs_iunpin_wait(ip); 899 xfs_iflush_shutdown_abort(ip); 900 goto reclaim; 901 } 902 if (xfs_ipincount(ip)) 903 goto out_clear_flush; 904 if (!xfs_inode_clean(ip)) 905 goto out_clear_flush; 906 907 xfs_iflags_clear(ip, XFS_IFLUSHING); 908 reclaim: 909 trace_xfs_inode_reclaiming(ip); 910 911 /* 912 * Because we use RCU freeing we need to ensure the inode always appears 913 * to be reclaimed with an invalid inode number when in the free state. 914 * We do this as early as possible under the ILOCK so that 915 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 916 * detect races with us here. By doing this, we guarantee that once 917 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 918 * it will see either a valid inode that will serialise correctly, or it 919 * will see an invalid inode that it can skip. 920 */ 921 spin_lock(&ip->i_flags_lock); 922 ip->i_flags = XFS_IRECLAIM; 923 ip->i_ino = 0; 924 ip->i_sick = 0; 925 ip->i_checked = 0; 926 spin_unlock(&ip->i_flags_lock); 927 928 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 929 xfs_iunlock(ip, XFS_ILOCK_EXCL); 930 931 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 932 /* 933 * Remove the inode from the per-AG radix tree. 934 * 935 * Because radix_tree_delete won't complain even if the item was never 936 * added to the tree assert that it's been there before to catch 937 * problems with the inode life time early on. 938 */ 939 spin_lock(&pag->pag_ici_lock); 940 if (!radix_tree_delete(&pag->pag_ici_root, 941 XFS_INO_TO_AGINO(ip->i_mount, ino))) 942 ASSERT(0); 943 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 944 spin_unlock(&pag->pag_ici_lock); 945 946 /* 947 * Here we do an (almost) spurious inode lock in order to coordinate 948 * with inode cache radix tree lookups. This is because the lookup 949 * can reference the inodes in the cache without taking references. 950 * 951 * We make that OK here by ensuring that we wait until the inode is 952 * unlocked after the lookup before we go ahead and free it. 953 */ 954 xfs_ilock(ip, XFS_ILOCK_EXCL); 955 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 956 xfs_iunlock(ip, XFS_ILOCK_EXCL); 957 ASSERT(xfs_inode_clean(ip)); 958 959 __xfs_inode_free(ip); 960 return; 961 962 out_clear_flush: 963 xfs_iflags_clear(ip, XFS_IFLUSHING); 964 out_iunlock: 965 xfs_iunlock(ip, XFS_ILOCK_EXCL); 966 out: 967 xfs_iflags_clear(ip, XFS_IRECLAIM); 968 } 969 970 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 971 static inline bool 972 xfs_want_reclaim_sick( 973 struct xfs_mount *mp) 974 { 975 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 976 xfs_is_shutdown(mp); 977 } 978 979 void 980 xfs_reclaim_inodes( 981 struct xfs_mount *mp) 982 { 983 struct xfs_icwalk icw = { 984 .icw_flags = 0, 985 }; 986 987 if (xfs_want_reclaim_sick(mp)) 988 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 989 990 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 991 xfs_ail_push_all_sync(mp->m_ail); 992 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 993 } 994 } 995 996 /* 997 * The shrinker infrastructure determines how many inodes we should scan for 998 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 999 * push the AIL here. We also want to proactively free up memory if we can to 1000 * minimise the amount of work memory reclaim has to do so we kick the 1001 * background reclaim if it isn't already scheduled. 1002 */ 1003 long 1004 xfs_reclaim_inodes_nr( 1005 struct xfs_mount *mp, 1006 unsigned long nr_to_scan) 1007 { 1008 struct xfs_icwalk icw = { 1009 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1010 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1011 }; 1012 1013 if (xfs_want_reclaim_sick(mp)) 1014 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1015 1016 /* kick background reclaimer and push the AIL */ 1017 xfs_reclaim_work_queue(mp); 1018 xfs_ail_push_all(mp->m_ail); 1019 1020 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1021 return 0; 1022 } 1023 1024 /* 1025 * Return the number of reclaimable inodes in the filesystem for 1026 * the shrinker to determine how much to reclaim. 1027 */ 1028 long 1029 xfs_reclaim_inodes_count( 1030 struct xfs_mount *mp) 1031 { 1032 struct xfs_perag *pag; 1033 xfs_agnumber_t ag = 0; 1034 long reclaimable = 0; 1035 1036 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1037 ag = pag->pag_agno + 1; 1038 reclaimable += pag->pag_ici_reclaimable; 1039 xfs_perag_put(pag); 1040 } 1041 return reclaimable; 1042 } 1043 1044 STATIC bool 1045 xfs_icwalk_match_id( 1046 struct xfs_inode *ip, 1047 struct xfs_icwalk *icw) 1048 { 1049 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1050 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1051 return false; 1052 1053 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1054 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1055 return false; 1056 1057 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1058 ip->i_projid != icw->icw_prid) 1059 return false; 1060 1061 return true; 1062 } 1063 1064 /* 1065 * A union-based inode filtering algorithm. Process the inode if any of the 1066 * criteria match. This is for global/internal scans only. 1067 */ 1068 STATIC bool 1069 xfs_icwalk_match_id_union( 1070 struct xfs_inode *ip, 1071 struct xfs_icwalk *icw) 1072 { 1073 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1074 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1075 return true; 1076 1077 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1078 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1079 return true; 1080 1081 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1082 ip->i_projid == icw->icw_prid) 1083 return true; 1084 1085 return false; 1086 } 1087 1088 /* 1089 * Is this inode @ip eligible for eof/cow block reclamation, given some 1090 * filtering parameters @icw? The inode is eligible if @icw is null or 1091 * if the predicate functions match. 1092 */ 1093 static bool 1094 xfs_icwalk_match( 1095 struct xfs_inode *ip, 1096 struct xfs_icwalk *icw) 1097 { 1098 bool match; 1099 1100 if (!icw) 1101 return true; 1102 1103 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1104 match = xfs_icwalk_match_id_union(ip, icw); 1105 else 1106 match = xfs_icwalk_match_id(ip, icw); 1107 if (!match) 1108 return false; 1109 1110 /* skip the inode if the file size is too small */ 1111 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1112 XFS_ISIZE(ip) < icw->icw_min_file_size) 1113 return false; 1114 1115 return true; 1116 } 1117 1118 /* 1119 * This is a fast pass over the inode cache to try to get reclaim moving on as 1120 * many inodes as possible in a short period of time. It kicks itself every few 1121 * seconds, as well as being kicked by the inode cache shrinker when memory 1122 * goes low. 1123 */ 1124 void 1125 xfs_reclaim_worker( 1126 struct work_struct *work) 1127 { 1128 struct xfs_mount *mp = container_of(to_delayed_work(work), 1129 struct xfs_mount, m_reclaim_work); 1130 1131 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1132 xfs_reclaim_work_queue(mp); 1133 } 1134 1135 STATIC int 1136 xfs_inode_free_eofblocks( 1137 struct xfs_inode *ip, 1138 struct xfs_icwalk *icw, 1139 unsigned int *lockflags) 1140 { 1141 bool wait; 1142 1143 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1144 1145 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1146 return 0; 1147 1148 /* 1149 * If the mapping is dirty the operation can block and wait for some 1150 * time. Unless we are waiting, skip it. 1151 */ 1152 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1153 return 0; 1154 1155 if (!xfs_icwalk_match(ip, icw)) 1156 return 0; 1157 1158 /* 1159 * If the caller is waiting, return -EAGAIN to keep the background 1160 * scanner moving and revisit the inode in a subsequent pass. 1161 */ 1162 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1163 if (wait) 1164 return -EAGAIN; 1165 return 0; 1166 } 1167 *lockflags |= XFS_IOLOCK_EXCL; 1168 1169 if (xfs_can_free_eofblocks(ip, false)) 1170 return xfs_free_eofblocks(ip); 1171 1172 /* inode could be preallocated or append-only */ 1173 trace_xfs_inode_free_eofblocks_invalid(ip); 1174 xfs_inode_clear_eofblocks_tag(ip); 1175 return 0; 1176 } 1177 1178 static void 1179 xfs_blockgc_set_iflag( 1180 struct xfs_inode *ip, 1181 unsigned long iflag) 1182 { 1183 struct xfs_mount *mp = ip->i_mount; 1184 struct xfs_perag *pag; 1185 1186 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1187 1188 /* 1189 * Don't bother locking the AG and looking up in the radix trees 1190 * if we already know that we have the tag set. 1191 */ 1192 if (ip->i_flags & iflag) 1193 return; 1194 spin_lock(&ip->i_flags_lock); 1195 ip->i_flags |= iflag; 1196 spin_unlock(&ip->i_flags_lock); 1197 1198 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1199 spin_lock(&pag->pag_ici_lock); 1200 1201 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1202 XFS_ICI_BLOCKGC_TAG); 1203 1204 spin_unlock(&pag->pag_ici_lock); 1205 xfs_perag_put(pag); 1206 } 1207 1208 void 1209 xfs_inode_set_eofblocks_tag( 1210 xfs_inode_t *ip) 1211 { 1212 trace_xfs_inode_set_eofblocks_tag(ip); 1213 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1214 } 1215 1216 static void 1217 xfs_blockgc_clear_iflag( 1218 struct xfs_inode *ip, 1219 unsigned long iflag) 1220 { 1221 struct xfs_mount *mp = ip->i_mount; 1222 struct xfs_perag *pag; 1223 bool clear_tag; 1224 1225 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1226 1227 spin_lock(&ip->i_flags_lock); 1228 ip->i_flags &= ~iflag; 1229 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1230 spin_unlock(&ip->i_flags_lock); 1231 1232 if (!clear_tag) 1233 return; 1234 1235 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1236 spin_lock(&pag->pag_ici_lock); 1237 1238 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1239 XFS_ICI_BLOCKGC_TAG); 1240 1241 spin_unlock(&pag->pag_ici_lock); 1242 xfs_perag_put(pag); 1243 } 1244 1245 void 1246 xfs_inode_clear_eofblocks_tag( 1247 xfs_inode_t *ip) 1248 { 1249 trace_xfs_inode_clear_eofblocks_tag(ip); 1250 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1251 } 1252 1253 /* 1254 * Set ourselves up to free CoW blocks from this file. If it's already clean 1255 * then we can bail out quickly, but otherwise we must back off if the file 1256 * is undergoing some kind of write. 1257 */ 1258 static bool 1259 xfs_prep_free_cowblocks( 1260 struct xfs_inode *ip) 1261 { 1262 /* 1263 * Just clear the tag if we have an empty cow fork or none at all. It's 1264 * possible the inode was fully unshared since it was originally tagged. 1265 */ 1266 if (!xfs_inode_has_cow_data(ip)) { 1267 trace_xfs_inode_free_cowblocks_invalid(ip); 1268 xfs_inode_clear_cowblocks_tag(ip); 1269 return false; 1270 } 1271 1272 /* 1273 * If the mapping is dirty or under writeback we cannot touch the 1274 * CoW fork. Leave it alone if we're in the midst of a directio. 1275 */ 1276 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1277 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1278 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1279 atomic_read(&VFS_I(ip)->i_dio_count)) 1280 return false; 1281 1282 return true; 1283 } 1284 1285 /* 1286 * Automatic CoW Reservation Freeing 1287 * 1288 * These functions automatically garbage collect leftover CoW reservations 1289 * that were made on behalf of a cowextsize hint when we start to run out 1290 * of quota or when the reservations sit around for too long. If the file 1291 * has dirty pages or is undergoing writeback, its CoW reservations will 1292 * be retained. 1293 * 1294 * The actual garbage collection piggybacks off the same code that runs 1295 * the speculative EOF preallocation garbage collector. 1296 */ 1297 STATIC int 1298 xfs_inode_free_cowblocks( 1299 struct xfs_inode *ip, 1300 struct xfs_icwalk *icw, 1301 unsigned int *lockflags) 1302 { 1303 bool wait; 1304 int ret = 0; 1305 1306 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1307 1308 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1309 return 0; 1310 1311 if (!xfs_prep_free_cowblocks(ip)) 1312 return 0; 1313 1314 if (!xfs_icwalk_match(ip, icw)) 1315 return 0; 1316 1317 /* 1318 * If the caller is waiting, return -EAGAIN to keep the background 1319 * scanner moving and revisit the inode in a subsequent pass. 1320 */ 1321 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1322 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1323 if (wait) 1324 return -EAGAIN; 1325 return 0; 1326 } 1327 *lockflags |= XFS_IOLOCK_EXCL; 1328 1329 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1330 if (wait) 1331 return -EAGAIN; 1332 return 0; 1333 } 1334 *lockflags |= XFS_MMAPLOCK_EXCL; 1335 1336 /* 1337 * Check again, nobody else should be able to dirty blocks or change 1338 * the reflink iflag now that we have the first two locks held. 1339 */ 1340 if (xfs_prep_free_cowblocks(ip)) 1341 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1342 return ret; 1343 } 1344 1345 void 1346 xfs_inode_set_cowblocks_tag( 1347 xfs_inode_t *ip) 1348 { 1349 trace_xfs_inode_set_cowblocks_tag(ip); 1350 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1351 } 1352 1353 void 1354 xfs_inode_clear_cowblocks_tag( 1355 xfs_inode_t *ip) 1356 { 1357 trace_xfs_inode_clear_cowblocks_tag(ip); 1358 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1359 } 1360 1361 /* Disable post-EOF and CoW block auto-reclamation. */ 1362 void 1363 xfs_blockgc_stop( 1364 struct xfs_mount *mp) 1365 { 1366 struct xfs_perag *pag; 1367 xfs_agnumber_t agno; 1368 1369 if (!xfs_clear_blockgc_enabled(mp)) 1370 return; 1371 1372 for_each_perag(mp, agno, pag) 1373 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1374 trace_xfs_blockgc_stop(mp, __return_address); 1375 } 1376 1377 /* Enable post-EOF and CoW block auto-reclamation. */ 1378 void 1379 xfs_blockgc_start( 1380 struct xfs_mount *mp) 1381 { 1382 struct xfs_perag *pag; 1383 xfs_agnumber_t agno; 1384 1385 if (xfs_set_blockgc_enabled(mp)) 1386 return; 1387 1388 trace_xfs_blockgc_start(mp, __return_address); 1389 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1390 xfs_blockgc_queue(pag); 1391 } 1392 1393 /* Don't try to run block gc on an inode that's in any of these states. */ 1394 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1395 XFS_NEED_INACTIVE | \ 1396 XFS_INACTIVATING | \ 1397 XFS_IRECLAIMABLE | \ 1398 XFS_IRECLAIM) 1399 /* 1400 * Decide if the given @ip is eligible for garbage collection of speculative 1401 * preallocations, and grab it if so. Returns true if it's ready to go or 1402 * false if we should just ignore it. 1403 */ 1404 static bool 1405 xfs_blockgc_igrab( 1406 struct xfs_inode *ip) 1407 { 1408 struct inode *inode = VFS_I(ip); 1409 1410 ASSERT(rcu_read_lock_held()); 1411 1412 /* Check for stale RCU freed inode */ 1413 spin_lock(&ip->i_flags_lock); 1414 if (!ip->i_ino) 1415 goto out_unlock_noent; 1416 1417 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1418 goto out_unlock_noent; 1419 spin_unlock(&ip->i_flags_lock); 1420 1421 /* nothing to sync during shutdown */ 1422 if (xfs_is_shutdown(ip->i_mount)) 1423 return false; 1424 1425 /* If we can't grab the inode, it must on it's way to reclaim. */ 1426 if (!igrab(inode)) 1427 return false; 1428 1429 /* inode is valid */ 1430 return true; 1431 1432 out_unlock_noent: 1433 spin_unlock(&ip->i_flags_lock); 1434 return false; 1435 } 1436 1437 /* Scan one incore inode for block preallocations that we can remove. */ 1438 static int 1439 xfs_blockgc_scan_inode( 1440 struct xfs_inode *ip, 1441 struct xfs_icwalk *icw) 1442 { 1443 unsigned int lockflags = 0; 1444 int error; 1445 1446 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1447 if (error) 1448 goto unlock; 1449 1450 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1451 unlock: 1452 if (lockflags) 1453 xfs_iunlock(ip, lockflags); 1454 xfs_irele(ip); 1455 return error; 1456 } 1457 1458 /* Background worker that trims preallocated space. */ 1459 void 1460 xfs_blockgc_worker( 1461 struct work_struct *work) 1462 { 1463 struct xfs_perag *pag = container_of(to_delayed_work(work), 1464 struct xfs_perag, pag_blockgc_work); 1465 struct xfs_mount *mp = pag->pag_mount; 1466 int error; 1467 1468 trace_xfs_blockgc_worker(mp, __return_address); 1469 1470 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1471 if (error) 1472 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1473 pag->pag_agno, error); 1474 xfs_blockgc_queue(pag); 1475 } 1476 1477 /* 1478 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1479 * and cowblocks. 1480 */ 1481 int 1482 xfs_blockgc_free_space( 1483 struct xfs_mount *mp, 1484 struct xfs_icwalk *icw) 1485 { 1486 int error; 1487 1488 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1489 1490 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1491 if (error) 1492 return error; 1493 1494 xfs_inodegc_flush(mp); 1495 return 0; 1496 } 1497 1498 /* 1499 * Reclaim all the free space that we can by scheduling the background blockgc 1500 * and inodegc workers immediately and waiting for them all to clear. 1501 */ 1502 void 1503 xfs_blockgc_flush_all( 1504 struct xfs_mount *mp) 1505 { 1506 struct xfs_perag *pag; 1507 xfs_agnumber_t agno; 1508 1509 trace_xfs_blockgc_flush_all(mp, __return_address); 1510 1511 /* 1512 * For each blockgc worker, move its queue time up to now. If it 1513 * wasn't queued, it will not be requeued. Then flush whatever's 1514 * left. 1515 */ 1516 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1517 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1518 &pag->pag_blockgc_work, 0); 1519 1520 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1521 flush_delayed_work(&pag->pag_blockgc_work); 1522 1523 xfs_inodegc_flush(mp); 1524 } 1525 1526 /* 1527 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1528 * quota caused an allocation failure, so we make a best effort by including 1529 * each quota under low free space conditions (less than 1% free space) in the 1530 * scan. 1531 * 1532 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1533 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1534 * MMAPLOCK. 1535 */ 1536 int 1537 xfs_blockgc_free_dquots( 1538 struct xfs_mount *mp, 1539 struct xfs_dquot *udqp, 1540 struct xfs_dquot *gdqp, 1541 struct xfs_dquot *pdqp, 1542 unsigned int iwalk_flags) 1543 { 1544 struct xfs_icwalk icw = {0}; 1545 bool do_work = false; 1546 1547 if (!udqp && !gdqp && !pdqp) 1548 return 0; 1549 1550 /* 1551 * Run a scan to free blocks using the union filter to cover all 1552 * applicable quotas in a single scan. 1553 */ 1554 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1555 1556 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1557 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1558 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1559 do_work = true; 1560 } 1561 1562 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1563 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1564 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1565 do_work = true; 1566 } 1567 1568 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1569 icw.icw_prid = pdqp->q_id; 1570 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1571 do_work = true; 1572 } 1573 1574 if (!do_work) 1575 return 0; 1576 1577 return xfs_blockgc_free_space(mp, &icw); 1578 } 1579 1580 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1581 int 1582 xfs_blockgc_free_quota( 1583 struct xfs_inode *ip, 1584 unsigned int iwalk_flags) 1585 { 1586 return xfs_blockgc_free_dquots(ip->i_mount, 1587 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1588 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1589 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1590 } 1591 1592 /* XFS Inode Cache Walking Code */ 1593 1594 /* 1595 * The inode lookup is done in batches to keep the amount of lock traffic and 1596 * radix tree lookups to a minimum. The batch size is a trade off between 1597 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1598 * be too greedy. 1599 */ 1600 #define XFS_LOOKUP_BATCH 32 1601 1602 1603 /* 1604 * Decide if we want to grab this inode in anticipation of doing work towards 1605 * the goal. 1606 */ 1607 static inline bool 1608 xfs_icwalk_igrab( 1609 enum xfs_icwalk_goal goal, 1610 struct xfs_inode *ip, 1611 struct xfs_icwalk *icw) 1612 { 1613 switch (goal) { 1614 case XFS_ICWALK_BLOCKGC: 1615 return xfs_blockgc_igrab(ip); 1616 case XFS_ICWALK_RECLAIM: 1617 return xfs_reclaim_igrab(ip, icw); 1618 default: 1619 return false; 1620 } 1621 } 1622 1623 /* 1624 * Process an inode. Each processing function must handle any state changes 1625 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1626 */ 1627 static inline int 1628 xfs_icwalk_process_inode( 1629 enum xfs_icwalk_goal goal, 1630 struct xfs_inode *ip, 1631 struct xfs_perag *pag, 1632 struct xfs_icwalk *icw) 1633 { 1634 int error = 0; 1635 1636 switch (goal) { 1637 case XFS_ICWALK_BLOCKGC: 1638 error = xfs_blockgc_scan_inode(ip, icw); 1639 break; 1640 case XFS_ICWALK_RECLAIM: 1641 xfs_reclaim_inode(ip, pag); 1642 break; 1643 } 1644 return error; 1645 } 1646 1647 /* 1648 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1649 * process them in some manner. 1650 */ 1651 static int 1652 xfs_icwalk_ag( 1653 struct xfs_perag *pag, 1654 enum xfs_icwalk_goal goal, 1655 struct xfs_icwalk *icw) 1656 { 1657 struct xfs_mount *mp = pag->pag_mount; 1658 uint32_t first_index; 1659 int last_error = 0; 1660 int skipped; 1661 bool done; 1662 int nr_found; 1663 1664 restart: 1665 done = false; 1666 skipped = 0; 1667 if (goal == XFS_ICWALK_RECLAIM) 1668 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1669 else 1670 first_index = 0; 1671 nr_found = 0; 1672 do { 1673 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1674 int error = 0; 1675 int i; 1676 1677 rcu_read_lock(); 1678 1679 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1680 (void **) batch, first_index, 1681 XFS_LOOKUP_BATCH, goal); 1682 if (!nr_found) { 1683 done = true; 1684 rcu_read_unlock(); 1685 break; 1686 } 1687 1688 /* 1689 * Grab the inodes before we drop the lock. if we found 1690 * nothing, nr == 0 and the loop will be skipped. 1691 */ 1692 for (i = 0; i < nr_found; i++) { 1693 struct xfs_inode *ip = batch[i]; 1694 1695 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1696 batch[i] = NULL; 1697 1698 /* 1699 * Update the index for the next lookup. Catch 1700 * overflows into the next AG range which can occur if 1701 * we have inodes in the last block of the AG and we 1702 * are currently pointing to the last inode. 1703 * 1704 * Because we may see inodes that are from the wrong AG 1705 * due to RCU freeing and reallocation, only update the 1706 * index if it lies in this AG. It was a race that lead 1707 * us to see this inode, so another lookup from the 1708 * same index will not find it again. 1709 */ 1710 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1711 continue; 1712 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1713 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1714 done = true; 1715 } 1716 1717 /* unlock now we've grabbed the inodes. */ 1718 rcu_read_unlock(); 1719 1720 for (i = 0; i < nr_found; i++) { 1721 if (!batch[i]) 1722 continue; 1723 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1724 icw); 1725 if (error == -EAGAIN) { 1726 skipped++; 1727 continue; 1728 } 1729 if (error && last_error != -EFSCORRUPTED) 1730 last_error = error; 1731 } 1732 1733 /* bail out if the filesystem is corrupted. */ 1734 if (error == -EFSCORRUPTED) 1735 break; 1736 1737 cond_resched(); 1738 1739 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1740 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1741 if (icw->icw_scan_limit <= 0) 1742 break; 1743 } 1744 } while (nr_found && !done); 1745 1746 if (goal == XFS_ICWALK_RECLAIM) { 1747 if (done) 1748 first_index = 0; 1749 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1750 } 1751 1752 if (skipped) { 1753 delay(1); 1754 goto restart; 1755 } 1756 return last_error; 1757 } 1758 1759 /* Walk all incore inodes to achieve a given goal. */ 1760 static int 1761 xfs_icwalk( 1762 struct xfs_mount *mp, 1763 enum xfs_icwalk_goal goal, 1764 struct xfs_icwalk *icw) 1765 { 1766 struct xfs_perag *pag; 1767 int error = 0; 1768 int last_error = 0; 1769 xfs_agnumber_t agno; 1770 1771 for_each_perag_tag(mp, agno, pag, goal) { 1772 error = xfs_icwalk_ag(pag, goal, icw); 1773 if (error) { 1774 last_error = error; 1775 if (error == -EFSCORRUPTED) { 1776 xfs_perag_rele(pag); 1777 break; 1778 } 1779 } 1780 } 1781 return last_error; 1782 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1783 } 1784 1785 #ifdef DEBUG 1786 static void 1787 xfs_check_delalloc( 1788 struct xfs_inode *ip, 1789 int whichfork) 1790 { 1791 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1792 struct xfs_bmbt_irec got; 1793 struct xfs_iext_cursor icur; 1794 1795 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1796 return; 1797 do { 1798 if (isnullstartblock(got.br_startblock)) { 1799 xfs_warn(ip->i_mount, 1800 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1801 ip->i_ino, 1802 whichfork == XFS_DATA_FORK ? "data" : "cow", 1803 got.br_startoff, got.br_blockcount); 1804 } 1805 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1806 } 1807 #else 1808 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1809 #endif 1810 1811 /* Schedule the inode for reclaim. */ 1812 static void 1813 xfs_inodegc_set_reclaimable( 1814 struct xfs_inode *ip) 1815 { 1816 struct xfs_mount *mp = ip->i_mount; 1817 struct xfs_perag *pag; 1818 1819 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1820 xfs_check_delalloc(ip, XFS_DATA_FORK); 1821 xfs_check_delalloc(ip, XFS_COW_FORK); 1822 ASSERT(0); 1823 } 1824 1825 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1826 spin_lock(&pag->pag_ici_lock); 1827 spin_lock(&ip->i_flags_lock); 1828 1829 trace_xfs_inode_set_reclaimable(ip); 1830 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1831 ip->i_flags |= XFS_IRECLAIMABLE; 1832 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1833 XFS_ICI_RECLAIM_TAG); 1834 1835 spin_unlock(&ip->i_flags_lock); 1836 spin_unlock(&pag->pag_ici_lock); 1837 xfs_perag_put(pag); 1838 } 1839 1840 /* 1841 * Free all speculative preallocations and possibly even the inode itself. 1842 * This is the last chance to make changes to an otherwise unreferenced file 1843 * before incore reclamation happens. 1844 */ 1845 static void 1846 xfs_inodegc_inactivate( 1847 struct xfs_inode *ip) 1848 { 1849 trace_xfs_inode_inactivating(ip); 1850 xfs_inactive(ip); 1851 xfs_inodegc_set_reclaimable(ip); 1852 } 1853 1854 void 1855 xfs_inodegc_worker( 1856 struct work_struct *work) 1857 { 1858 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1859 struct xfs_inodegc, work); 1860 struct llist_node *node = llist_del_all(&gc->list); 1861 struct xfs_inode *ip, *n; 1862 unsigned int nofs_flag; 1863 1864 ASSERT(gc->cpu == smp_processor_id()); 1865 1866 WRITE_ONCE(gc->items, 0); 1867 1868 if (!node) 1869 return; 1870 1871 /* 1872 * We can allocate memory here while doing writeback on behalf of 1873 * memory reclaim. To avoid memory allocation deadlocks set the 1874 * task-wide nofs context for the following operations. 1875 */ 1876 nofs_flag = memalloc_nofs_save(); 1877 1878 ip = llist_entry(node, struct xfs_inode, i_gclist); 1879 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); 1880 1881 WRITE_ONCE(gc->shrinker_hits, 0); 1882 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1883 xfs_iflags_set(ip, XFS_INACTIVATING); 1884 xfs_inodegc_inactivate(ip); 1885 } 1886 1887 memalloc_nofs_restore(nofs_flag); 1888 } 1889 1890 /* 1891 * Expedite all pending inodegc work to run immediately. This does not wait for 1892 * completion of the work. 1893 */ 1894 void 1895 xfs_inodegc_push( 1896 struct xfs_mount *mp) 1897 { 1898 if (!xfs_is_inodegc_enabled(mp)) 1899 return; 1900 trace_xfs_inodegc_push(mp, __return_address); 1901 xfs_inodegc_queue_all(mp); 1902 } 1903 1904 /* 1905 * Force all currently queued inode inactivation work to run immediately and 1906 * wait for the work to finish. 1907 */ 1908 void 1909 xfs_inodegc_flush( 1910 struct xfs_mount *mp) 1911 { 1912 xfs_inodegc_push(mp); 1913 trace_xfs_inodegc_flush(mp, __return_address); 1914 flush_workqueue(mp->m_inodegc_wq); 1915 } 1916 1917 /* 1918 * Flush all the pending work and then disable the inode inactivation background 1919 * workers and wait for them to stop. Caller must hold sb->s_umount to 1920 * coordinate changes in the inodegc_enabled state. 1921 */ 1922 void 1923 xfs_inodegc_stop( 1924 struct xfs_mount *mp) 1925 { 1926 bool rerun; 1927 1928 if (!xfs_clear_inodegc_enabled(mp)) 1929 return; 1930 1931 /* 1932 * Drain all pending inodegc work, including inodes that could be 1933 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 1934 * threads that sample the inodegc state just prior to us clearing it. 1935 * The inodegc flag state prevents new threads from queuing more 1936 * inodes, so we queue pending work items and flush the workqueue until 1937 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 1938 * here because it does not allow other unserialized mechanisms to 1939 * reschedule inodegc work while this draining is in progress. 1940 */ 1941 xfs_inodegc_queue_all(mp); 1942 do { 1943 flush_workqueue(mp->m_inodegc_wq); 1944 rerun = xfs_inodegc_queue_all(mp); 1945 } while (rerun); 1946 1947 trace_xfs_inodegc_stop(mp, __return_address); 1948 } 1949 1950 /* 1951 * Enable the inode inactivation background workers and schedule deferred inode 1952 * inactivation work if there is any. Caller must hold sb->s_umount to 1953 * coordinate changes in the inodegc_enabled state. 1954 */ 1955 void 1956 xfs_inodegc_start( 1957 struct xfs_mount *mp) 1958 { 1959 if (xfs_set_inodegc_enabled(mp)) 1960 return; 1961 1962 trace_xfs_inodegc_start(mp, __return_address); 1963 xfs_inodegc_queue_all(mp); 1964 } 1965 1966 #ifdef CONFIG_XFS_RT 1967 static inline bool 1968 xfs_inodegc_want_queue_rt_file( 1969 struct xfs_inode *ip) 1970 { 1971 struct xfs_mount *mp = ip->i_mount; 1972 1973 if (!XFS_IS_REALTIME_INODE(ip)) 1974 return false; 1975 1976 if (__percpu_counter_compare(&mp->m_frextents, 1977 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 1978 XFS_FDBLOCKS_BATCH) < 0) 1979 return true; 1980 1981 return false; 1982 } 1983 #else 1984 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1985 #endif /* CONFIG_XFS_RT */ 1986 1987 /* 1988 * Schedule the inactivation worker when: 1989 * 1990 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1991 * - There is less than 5% free space left. 1992 * - Any of the quotas for this inode are near an enforcement limit. 1993 */ 1994 static inline bool 1995 xfs_inodegc_want_queue_work( 1996 struct xfs_inode *ip, 1997 unsigned int items) 1998 { 1999 struct xfs_mount *mp = ip->i_mount; 2000 2001 if (items > mp->m_ino_geo.inodes_per_cluster) 2002 return true; 2003 2004 if (__percpu_counter_compare(&mp->m_fdblocks, 2005 mp->m_low_space[XFS_LOWSP_5_PCNT], 2006 XFS_FDBLOCKS_BATCH) < 0) 2007 return true; 2008 2009 if (xfs_inodegc_want_queue_rt_file(ip)) 2010 return true; 2011 2012 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2013 return true; 2014 2015 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2016 return true; 2017 2018 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2019 return true; 2020 2021 return false; 2022 } 2023 2024 /* 2025 * Upper bound on the number of inodes in each AG that can be queued for 2026 * inactivation at any given time, to avoid monopolizing the workqueue. 2027 */ 2028 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2029 2030 /* 2031 * Make the frontend wait for inactivations when: 2032 * 2033 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2034 * - The queue depth exceeds the maximum allowable percpu backlog. 2035 * 2036 * Note: If the current thread is running a transaction, we don't ever want to 2037 * wait for other transactions because that could introduce a deadlock. 2038 */ 2039 static inline bool 2040 xfs_inodegc_want_flush_work( 2041 struct xfs_inode *ip, 2042 unsigned int items, 2043 unsigned int shrinker_hits) 2044 { 2045 if (current->journal_info) 2046 return false; 2047 2048 if (shrinker_hits > 0) 2049 return true; 2050 2051 if (items > XFS_INODEGC_MAX_BACKLOG) 2052 return true; 2053 2054 return false; 2055 } 2056 2057 /* 2058 * Queue a background inactivation worker if there are inodes that need to be 2059 * inactivated and higher level xfs code hasn't disabled the background 2060 * workers. 2061 */ 2062 static void 2063 xfs_inodegc_queue( 2064 struct xfs_inode *ip) 2065 { 2066 struct xfs_mount *mp = ip->i_mount; 2067 struct xfs_inodegc *gc; 2068 int items; 2069 unsigned int shrinker_hits; 2070 unsigned long queue_delay = 1; 2071 2072 trace_xfs_inode_set_need_inactive(ip); 2073 spin_lock(&ip->i_flags_lock); 2074 ip->i_flags |= XFS_NEED_INACTIVE; 2075 spin_unlock(&ip->i_flags_lock); 2076 2077 gc = get_cpu_ptr(mp->m_inodegc); 2078 llist_add(&ip->i_gclist, &gc->list); 2079 items = READ_ONCE(gc->items); 2080 WRITE_ONCE(gc->items, items + 1); 2081 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2082 2083 /* 2084 * We queue the work while holding the current CPU so that the work 2085 * is scheduled to run on this CPU. 2086 */ 2087 if (!xfs_is_inodegc_enabled(mp)) { 2088 put_cpu_ptr(gc); 2089 return; 2090 } 2091 2092 if (xfs_inodegc_want_queue_work(ip, items)) 2093 queue_delay = 0; 2094 2095 trace_xfs_inodegc_queue(mp, __return_address); 2096 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2097 queue_delay); 2098 put_cpu_ptr(gc); 2099 2100 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2101 trace_xfs_inodegc_throttle(mp, __return_address); 2102 flush_delayed_work(&gc->work); 2103 } 2104 } 2105 2106 /* 2107 * Fold the dead CPU inodegc queue into the current CPUs queue. 2108 */ 2109 void 2110 xfs_inodegc_cpu_dead( 2111 struct xfs_mount *mp, 2112 unsigned int dead_cpu) 2113 { 2114 struct xfs_inodegc *dead_gc, *gc; 2115 struct llist_node *first, *last; 2116 unsigned int count = 0; 2117 2118 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); 2119 cancel_delayed_work_sync(&dead_gc->work); 2120 2121 if (llist_empty(&dead_gc->list)) 2122 return; 2123 2124 first = dead_gc->list.first; 2125 last = first; 2126 while (last->next) { 2127 last = last->next; 2128 count++; 2129 } 2130 dead_gc->list.first = NULL; 2131 dead_gc->items = 0; 2132 2133 /* Add pending work to current CPU */ 2134 gc = get_cpu_ptr(mp->m_inodegc); 2135 llist_add_batch(first, last, &gc->list); 2136 count += READ_ONCE(gc->items); 2137 WRITE_ONCE(gc->items, count); 2138 2139 if (xfs_is_inodegc_enabled(mp)) { 2140 trace_xfs_inodegc_queue(mp, __return_address); 2141 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2142 0); 2143 } 2144 put_cpu_ptr(gc); 2145 } 2146 2147 /* 2148 * We set the inode flag atomically with the radix tree tag. Once we get tag 2149 * lookups on the radix tree, this inode flag can go away. 2150 * 2151 * We always use background reclaim here because even if the inode is clean, it 2152 * still may be under IO and hence we have wait for IO completion to occur 2153 * before we can reclaim the inode. The background reclaim path handles this 2154 * more efficiently than we can here, so simply let background reclaim tear down 2155 * all inodes. 2156 */ 2157 void 2158 xfs_inode_mark_reclaimable( 2159 struct xfs_inode *ip) 2160 { 2161 struct xfs_mount *mp = ip->i_mount; 2162 bool need_inactive; 2163 2164 XFS_STATS_INC(mp, vn_reclaim); 2165 2166 /* 2167 * We should never get here with any of the reclaim flags already set. 2168 */ 2169 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2170 2171 need_inactive = xfs_inode_needs_inactive(ip); 2172 if (need_inactive) { 2173 xfs_inodegc_queue(ip); 2174 return; 2175 } 2176 2177 /* Going straight to reclaim, so drop the dquots. */ 2178 xfs_qm_dqdetach(ip); 2179 xfs_inodegc_set_reclaimable(ip); 2180 } 2181 2182 /* 2183 * Register a phony shrinker so that we can run background inodegc sooner when 2184 * there's memory pressure. Inactivation does not itself free any memory but 2185 * it does make inodes reclaimable, which eventually frees memory. 2186 * 2187 * The count function, seek value, and batch value are crafted to trigger the 2188 * scan function during the second round of scanning. Hopefully this means 2189 * that we reclaimed enough memory that initiating metadata transactions won't 2190 * make things worse. 2191 */ 2192 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2193 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2194 2195 static unsigned long 2196 xfs_inodegc_shrinker_count( 2197 struct shrinker *shrink, 2198 struct shrink_control *sc) 2199 { 2200 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2201 m_inodegc_shrinker); 2202 struct xfs_inodegc *gc; 2203 int cpu; 2204 2205 if (!xfs_is_inodegc_enabled(mp)) 2206 return 0; 2207 2208 for_each_online_cpu(cpu) { 2209 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2210 if (!llist_empty(&gc->list)) 2211 return XFS_INODEGC_SHRINKER_COUNT; 2212 } 2213 2214 return 0; 2215 } 2216 2217 static unsigned long 2218 xfs_inodegc_shrinker_scan( 2219 struct shrinker *shrink, 2220 struct shrink_control *sc) 2221 { 2222 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2223 m_inodegc_shrinker); 2224 struct xfs_inodegc *gc; 2225 int cpu; 2226 bool no_items = true; 2227 2228 if (!xfs_is_inodegc_enabled(mp)) 2229 return SHRINK_STOP; 2230 2231 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2232 2233 for_each_online_cpu(cpu) { 2234 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2235 if (!llist_empty(&gc->list)) { 2236 unsigned int h = READ_ONCE(gc->shrinker_hits); 2237 2238 WRITE_ONCE(gc->shrinker_hits, h + 1); 2239 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2240 no_items = false; 2241 } 2242 } 2243 2244 /* 2245 * If there are no inodes to inactivate, we don't want the shrinker 2246 * to think there's deferred work to call us back about. 2247 */ 2248 if (no_items) 2249 return LONG_MAX; 2250 2251 return SHRINK_STOP; 2252 } 2253 2254 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2255 int 2256 xfs_inodegc_register_shrinker( 2257 struct xfs_mount *mp) 2258 { 2259 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2260 2261 shrink->count_objects = xfs_inodegc_shrinker_count; 2262 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2263 shrink->seeks = 0; 2264 shrink->flags = SHRINKER_NONSLAB; 2265 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2266 2267 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id); 2268 } 2269