1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 28 #include <linux/iversion.h> 29 30 /* Radix tree tags for incore inode tree. */ 31 32 /* inode is to be reclaimed */ 33 #define XFS_ICI_RECLAIM_TAG 0 34 /* Inode has speculative preallocations (posteof or cow) to clean. */ 35 #define XFS_ICI_BLOCKGC_TAG 1 36 37 /* 38 * The goal for walking incore inodes. These can correspond with incore inode 39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 40 */ 41 enum xfs_icwalk_goal { 42 /* Goals directly associated with tagged inodes. */ 43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 45 }; 46 47 static int xfs_icwalk(struct xfs_mount *mp, 48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 49 static int xfs_icwalk_ag(struct xfs_perag *pag, 50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 51 52 /* 53 * Private inode cache walk flags for struct xfs_icwalk. Must not 54 * coincide with XFS_ICWALK_FLAGS_VALID. 55 */ 56 57 /* Stop scanning after icw_scan_limit inodes. */ 58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 59 60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 62 63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 64 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 65 XFS_ICWALK_FLAG_UNION) 66 67 /* 68 * Allocate and initialise an xfs_inode. 69 */ 70 struct xfs_inode * 71 xfs_inode_alloc( 72 struct xfs_mount *mp, 73 xfs_ino_t ino) 74 { 75 struct xfs_inode *ip; 76 77 /* 78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 79 * and return NULL here on ENOMEM. 80 */ 81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 82 83 if (inode_init_always(mp->m_super, VFS_I(ip))) { 84 kmem_cache_free(xfs_inode_cache, ip); 85 return NULL; 86 } 87 88 /* VFS doesn't initialise i_mode or i_state! */ 89 VFS_I(ip)->i_mode = 0; 90 VFS_I(ip)->i_state = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_cowfp = NULL; 102 memset(&ip->i_af, 0, sizeof(ip->i_af)); 103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 104 memset(&ip->i_df, 0, sizeof(ip->i_df)); 105 ip->i_flags = 0; 106 ip->i_delayed_blks = 0; 107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 108 ip->i_nblocks = 0; 109 ip->i_forkoff = 0; 110 ip->i_sick = 0; 111 ip->i_checked = 0; 112 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 113 INIT_LIST_HEAD(&ip->i_ioend_list); 114 spin_lock_init(&ip->i_ioend_lock); 115 ip->i_next_unlinked = NULLAGINO; 116 ip->i_prev_unlinked = 0; 117 118 return ip; 119 } 120 121 STATIC void 122 xfs_inode_free_callback( 123 struct rcu_head *head) 124 { 125 struct inode *inode = container_of(head, struct inode, i_rcu); 126 struct xfs_inode *ip = XFS_I(inode); 127 128 switch (VFS_I(ip)->i_mode & S_IFMT) { 129 case S_IFREG: 130 case S_IFDIR: 131 case S_IFLNK: 132 xfs_idestroy_fork(&ip->i_df); 133 break; 134 } 135 136 xfs_ifork_zap_attr(ip); 137 138 if (ip->i_cowfp) { 139 xfs_idestroy_fork(ip->i_cowfp); 140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 141 } 142 if (ip->i_itemp) { 143 ASSERT(!test_bit(XFS_LI_IN_AIL, 144 &ip->i_itemp->ili_item.li_flags)); 145 xfs_inode_item_destroy(ip); 146 ip->i_itemp = NULL; 147 } 148 149 kmem_cache_free(xfs_inode_cache, ip); 150 } 151 152 static void 153 __xfs_inode_free( 154 struct xfs_inode *ip) 155 { 156 /* asserts to verify all state is correct here */ 157 ASSERT(atomic_read(&ip->i_pincount) == 0); 158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 159 XFS_STATS_DEC(ip->i_mount, vn_active); 160 161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 162 } 163 164 void 165 xfs_inode_free( 166 struct xfs_inode *ip) 167 { 168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 169 170 /* 171 * Because we use RCU freeing we need to ensure the inode always 172 * appears to be reclaimed with an invalid inode number when in the 173 * free state. The ip->i_flags_lock provides the barrier against lookup 174 * races. 175 */ 176 spin_lock(&ip->i_flags_lock); 177 ip->i_flags = XFS_IRECLAIM; 178 ip->i_ino = 0; 179 spin_unlock(&ip->i_flags_lock); 180 181 __xfs_inode_free(ip); 182 } 183 184 /* 185 * Queue background inode reclaim work if there are reclaimable inodes and there 186 * isn't reclaim work already scheduled or in progress. 187 */ 188 static void 189 xfs_reclaim_work_queue( 190 struct xfs_mount *mp) 191 { 192 193 rcu_read_lock(); 194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 197 } 198 rcu_read_unlock(); 199 } 200 201 /* 202 * Background scanning to trim preallocated space. This is queued based on the 203 * 'speculative_prealloc_lifetime' tunable (5m by default). 204 */ 205 static inline void 206 xfs_blockgc_queue( 207 struct xfs_perag *pag) 208 { 209 struct xfs_mount *mp = pag->pag_mount; 210 211 if (!xfs_is_blockgc_enabled(mp)) 212 return; 213 214 rcu_read_lock(); 215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 216 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 217 &pag->pag_blockgc_work, 218 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 219 rcu_read_unlock(); 220 } 221 222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 223 static void 224 xfs_perag_set_inode_tag( 225 struct xfs_perag *pag, 226 xfs_agino_t agino, 227 unsigned int tag) 228 { 229 struct xfs_mount *mp = pag->pag_mount; 230 bool was_tagged; 231 232 lockdep_assert_held(&pag->pag_ici_lock); 233 234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 236 237 if (tag == XFS_ICI_RECLAIM_TAG) 238 pag->pag_ici_reclaimable++; 239 240 if (was_tagged) 241 return; 242 243 /* propagate the tag up into the perag radix tree */ 244 spin_lock(&mp->m_perag_lock); 245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 246 spin_unlock(&mp->m_perag_lock); 247 248 /* start background work */ 249 switch (tag) { 250 case XFS_ICI_RECLAIM_TAG: 251 xfs_reclaim_work_queue(mp); 252 break; 253 case XFS_ICI_BLOCKGC_TAG: 254 xfs_blockgc_queue(pag); 255 break; 256 } 257 258 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 259 } 260 261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 262 static void 263 xfs_perag_clear_inode_tag( 264 struct xfs_perag *pag, 265 xfs_agino_t agino, 266 unsigned int tag) 267 { 268 struct xfs_mount *mp = pag->pag_mount; 269 270 lockdep_assert_held(&pag->pag_ici_lock); 271 272 /* 273 * Reclaim can signal (with a null agino) that it cleared its own tag 274 * by removing the inode from the radix tree. 275 */ 276 if (agino != NULLAGINO) 277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 278 else 279 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 280 281 if (tag == XFS_ICI_RECLAIM_TAG) 282 pag->pag_ici_reclaimable--; 283 284 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 285 return; 286 287 /* clear the tag from the perag radix tree */ 288 spin_lock(&mp->m_perag_lock); 289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 290 spin_unlock(&mp->m_perag_lock); 291 292 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 293 } 294 295 /* 296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 297 * part of the structure. This is made more complex by the fact we store 298 * information about the on-disk values in the VFS inode and so we can't just 299 * overwrite the values unconditionally. Hence we save the parameters we 300 * need to retain across reinitialisation, and rewrite them into the VFS inode 301 * after reinitialisation even if it fails. 302 */ 303 static int 304 xfs_reinit_inode( 305 struct xfs_mount *mp, 306 struct inode *inode) 307 { 308 int error; 309 uint32_t nlink = inode->i_nlink; 310 uint32_t generation = inode->i_generation; 311 uint64_t version = inode_peek_iversion(inode); 312 umode_t mode = inode->i_mode; 313 dev_t dev = inode->i_rdev; 314 kuid_t uid = inode->i_uid; 315 kgid_t gid = inode->i_gid; 316 317 error = inode_init_always(mp->m_super, inode); 318 319 set_nlink(inode, nlink); 320 inode->i_generation = generation; 321 inode_set_iversion_queried(inode, version); 322 inode->i_mode = mode; 323 inode->i_rdev = dev; 324 inode->i_uid = uid; 325 inode->i_gid = gid; 326 mapping_set_large_folios(inode->i_mapping); 327 return error; 328 } 329 330 /* 331 * Carefully nudge an inode whose VFS state has been torn down back into a 332 * usable state. Drops the i_flags_lock and the rcu read lock. 333 */ 334 static int 335 xfs_iget_recycle( 336 struct xfs_perag *pag, 337 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 338 { 339 struct xfs_mount *mp = ip->i_mount; 340 struct inode *inode = VFS_I(ip); 341 int error; 342 343 trace_xfs_iget_recycle(ip); 344 345 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 346 return -EAGAIN; 347 348 /* 349 * We need to make it look like the inode is being reclaimed to prevent 350 * the actual reclaim workers from stomping over us while we recycle 351 * the inode. We can't clear the radix tree tag yet as it requires 352 * pag_ici_lock to be held exclusive. 353 */ 354 ip->i_flags |= XFS_IRECLAIM; 355 356 spin_unlock(&ip->i_flags_lock); 357 rcu_read_unlock(); 358 359 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 360 error = xfs_reinit_inode(mp, inode); 361 xfs_iunlock(ip, XFS_ILOCK_EXCL); 362 if (error) { 363 /* 364 * Re-initializing the inode failed, and we are in deep 365 * trouble. Try to re-add it to the reclaim list. 366 */ 367 rcu_read_lock(); 368 spin_lock(&ip->i_flags_lock); 369 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 370 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 371 spin_unlock(&ip->i_flags_lock); 372 rcu_read_unlock(); 373 374 trace_xfs_iget_recycle_fail(ip); 375 return error; 376 } 377 378 spin_lock(&pag->pag_ici_lock); 379 spin_lock(&ip->i_flags_lock); 380 381 /* 382 * Clear the per-lifetime state in the inode as we are now effectively 383 * a new inode and need to return to the initial state before reuse 384 * occurs. 385 */ 386 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 387 ip->i_flags |= XFS_INEW; 388 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 389 XFS_ICI_RECLAIM_TAG); 390 inode->i_state = I_NEW; 391 spin_unlock(&ip->i_flags_lock); 392 spin_unlock(&pag->pag_ici_lock); 393 394 return 0; 395 } 396 397 /* 398 * If we are allocating a new inode, then check what was returned is 399 * actually a free, empty inode. If we are not allocating an inode, 400 * then check we didn't find a free inode. 401 * 402 * Returns: 403 * 0 if the inode free state matches the lookup context 404 * -ENOENT if the inode is free and we are not allocating 405 * -EFSCORRUPTED if there is any state mismatch at all 406 */ 407 static int 408 xfs_iget_check_free_state( 409 struct xfs_inode *ip, 410 int flags) 411 { 412 if (flags & XFS_IGET_CREATE) { 413 /* should be a free inode */ 414 if (VFS_I(ip)->i_mode != 0) { 415 xfs_warn(ip->i_mount, 416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 417 ip->i_ino, VFS_I(ip)->i_mode); 418 return -EFSCORRUPTED; 419 } 420 421 if (ip->i_nblocks != 0) { 422 xfs_warn(ip->i_mount, 423 "Corruption detected! Free inode 0x%llx has blocks allocated!", 424 ip->i_ino); 425 return -EFSCORRUPTED; 426 } 427 return 0; 428 } 429 430 /* should be an allocated inode */ 431 if (VFS_I(ip)->i_mode == 0) 432 return -ENOENT; 433 434 return 0; 435 } 436 437 /* Make all pending inactivation work start immediately. */ 438 static bool 439 xfs_inodegc_queue_all( 440 struct xfs_mount *mp) 441 { 442 struct xfs_inodegc *gc; 443 int cpu; 444 bool ret = false; 445 446 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 447 gc = per_cpu_ptr(mp->m_inodegc, cpu); 448 if (!llist_empty(&gc->list)) { 449 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 450 ret = true; 451 } 452 } 453 454 return ret; 455 } 456 457 /* Wait for all queued work and collect errors */ 458 static int 459 xfs_inodegc_wait_all( 460 struct xfs_mount *mp) 461 { 462 int cpu; 463 int error = 0; 464 465 flush_workqueue(mp->m_inodegc_wq); 466 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 467 struct xfs_inodegc *gc; 468 469 gc = per_cpu_ptr(mp->m_inodegc, cpu); 470 if (gc->error && !error) 471 error = gc->error; 472 gc->error = 0; 473 } 474 475 return error; 476 } 477 478 /* 479 * Check the validity of the inode we just found it the cache 480 */ 481 static int 482 xfs_iget_cache_hit( 483 struct xfs_perag *pag, 484 struct xfs_inode *ip, 485 xfs_ino_t ino, 486 int flags, 487 int lock_flags) __releases(RCU) 488 { 489 struct inode *inode = VFS_I(ip); 490 struct xfs_mount *mp = ip->i_mount; 491 int error; 492 493 /* 494 * check for re-use of an inode within an RCU grace period due to the 495 * radix tree nodes not being updated yet. We monitor for this by 496 * setting the inode number to zero before freeing the inode structure. 497 * If the inode has been reallocated and set up, then the inode number 498 * will not match, so check for that, too. 499 */ 500 spin_lock(&ip->i_flags_lock); 501 if (ip->i_ino != ino) 502 goto out_skip; 503 504 /* 505 * If we are racing with another cache hit that is currently 506 * instantiating this inode or currently recycling it out of 507 * reclaimable state, wait for the initialisation to complete 508 * before continuing. 509 * 510 * If we're racing with the inactivation worker we also want to wait. 511 * If we're creating a new file, it's possible that the worker 512 * previously marked the inode as free on disk but hasn't finished 513 * updating the incore state yet. The AGI buffer will be dirty and 514 * locked to the icreate transaction, so a synchronous push of the 515 * inodegc workers would result in deadlock. For a regular iget, the 516 * worker is running already, so we might as well wait. 517 * 518 * XXX(hch): eventually we should do something equivalent to 519 * wait_on_inode to wait for these flags to be cleared 520 * instead of polling for it. 521 */ 522 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 523 goto out_skip; 524 525 if (ip->i_flags & XFS_NEED_INACTIVE) { 526 /* Unlinked inodes cannot be re-grabbed. */ 527 if (VFS_I(ip)->i_nlink == 0) { 528 error = -ENOENT; 529 goto out_error; 530 } 531 goto out_inodegc_flush; 532 } 533 534 /* 535 * Check the inode free state is valid. This also detects lookup 536 * racing with unlinks. 537 */ 538 error = xfs_iget_check_free_state(ip, flags); 539 if (error) 540 goto out_error; 541 542 /* Skip inodes that have no vfs state. */ 543 if ((flags & XFS_IGET_INCORE) && 544 (ip->i_flags & XFS_IRECLAIMABLE)) 545 goto out_skip; 546 547 /* The inode fits the selection criteria; process it. */ 548 if (ip->i_flags & XFS_IRECLAIMABLE) { 549 /* Drops i_flags_lock and RCU read lock. */ 550 error = xfs_iget_recycle(pag, ip); 551 if (error == -EAGAIN) 552 goto out_skip; 553 if (error) 554 return error; 555 } else { 556 /* If the VFS inode is being torn down, pause and try again. */ 557 if (!igrab(inode)) 558 goto out_skip; 559 560 /* We've got a live one. */ 561 spin_unlock(&ip->i_flags_lock); 562 rcu_read_unlock(); 563 trace_xfs_iget_hit(ip); 564 } 565 566 if (lock_flags != 0) 567 xfs_ilock(ip, lock_flags); 568 569 if (!(flags & XFS_IGET_INCORE)) 570 xfs_iflags_clear(ip, XFS_ISTALE); 571 XFS_STATS_INC(mp, xs_ig_found); 572 573 return 0; 574 575 out_skip: 576 trace_xfs_iget_skip(ip); 577 XFS_STATS_INC(mp, xs_ig_frecycle); 578 error = -EAGAIN; 579 out_error: 580 spin_unlock(&ip->i_flags_lock); 581 rcu_read_unlock(); 582 return error; 583 584 out_inodegc_flush: 585 spin_unlock(&ip->i_flags_lock); 586 rcu_read_unlock(); 587 /* 588 * Do not wait for the workers, because the caller could hold an AGI 589 * buffer lock. We're just going to sleep in a loop anyway. 590 */ 591 if (xfs_is_inodegc_enabled(mp)) 592 xfs_inodegc_queue_all(mp); 593 return -EAGAIN; 594 } 595 596 static int 597 xfs_iget_cache_miss( 598 struct xfs_mount *mp, 599 struct xfs_perag *pag, 600 xfs_trans_t *tp, 601 xfs_ino_t ino, 602 struct xfs_inode **ipp, 603 int flags, 604 int lock_flags) 605 { 606 struct xfs_inode *ip; 607 int error; 608 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 609 int iflags; 610 611 ip = xfs_inode_alloc(mp, ino); 612 if (!ip) 613 return -ENOMEM; 614 615 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 616 if (error) 617 goto out_destroy; 618 619 /* 620 * For version 5 superblocks, if we are initialising a new inode and we 621 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 622 * simply build the new inode core with a random generation number. 623 * 624 * For version 4 (and older) superblocks, log recovery is dependent on 625 * the i_flushiter field being initialised from the current on-disk 626 * value and hence we must also read the inode off disk even when 627 * initializing new inodes. 628 */ 629 if (xfs_has_v3inodes(mp) && 630 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 631 VFS_I(ip)->i_generation = get_random_u32(); 632 } else { 633 struct xfs_buf *bp; 634 635 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 636 if (error) 637 goto out_destroy; 638 639 error = xfs_inode_from_disk(ip, 640 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 641 if (!error) 642 xfs_buf_set_ref(bp, XFS_INO_REF); 643 xfs_trans_brelse(tp, bp); 644 645 if (error) 646 goto out_destroy; 647 } 648 649 trace_xfs_iget_miss(ip); 650 651 /* 652 * Check the inode free state is valid. This also detects lookup 653 * racing with unlinks. 654 */ 655 error = xfs_iget_check_free_state(ip, flags); 656 if (error) 657 goto out_destroy; 658 659 /* 660 * Preload the radix tree so we can insert safely under the 661 * write spinlock. Note that we cannot sleep inside the preload 662 * region. Since we can be called from transaction context, don't 663 * recurse into the file system. 664 */ 665 if (radix_tree_preload(GFP_NOFS)) { 666 error = -EAGAIN; 667 goto out_destroy; 668 } 669 670 /* 671 * Because the inode hasn't been added to the radix-tree yet it can't 672 * be found by another thread, so we can do the non-sleeping lock here. 673 */ 674 if (lock_flags) { 675 if (!xfs_ilock_nowait(ip, lock_flags)) 676 BUG(); 677 } 678 679 /* 680 * These values must be set before inserting the inode into the radix 681 * tree as the moment it is inserted a concurrent lookup (allowed by the 682 * RCU locking mechanism) can find it and that lookup must see that this 683 * is an inode currently under construction (i.e. that XFS_INEW is set). 684 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 685 * memory barrier that ensures this detection works correctly at lookup 686 * time. 687 */ 688 iflags = XFS_INEW; 689 if (flags & XFS_IGET_DONTCACHE) 690 d_mark_dontcache(VFS_I(ip)); 691 ip->i_udquot = NULL; 692 ip->i_gdquot = NULL; 693 ip->i_pdquot = NULL; 694 xfs_iflags_set(ip, iflags); 695 696 /* insert the new inode */ 697 spin_lock(&pag->pag_ici_lock); 698 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 699 if (unlikely(error)) { 700 WARN_ON(error != -EEXIST); 701 XFS_STATS_INC(mp, xs_ig_dup); 702 error = -EAGAIN; 703 goto out_preload_end; 704 } 705 spin_unlock(&pag->pag_ici_lock); 706 radix_tree_preload_end(); 707 708 *ipp = ip; 709 return 0; 710 711 out_preload_end: 712 spin_unlock(&pag->pag_ici_lock); 713 radix_tree_preload_end(); 714 if (lock_flags) 715 xfs_iunlock(ip, lock_flags); 716 out_destroy: 717 __destroy_inode(VFS_I(ip)); 718 xfs_inode_free(ip); 719 return error; 720 } 721 722 /* 723 * Look up an inode by number in the given file system. The inode is looked up 724 * in the cache held in each AG. If the inode is found in the cache, initialise 725 * the vfs inode if necessary. 726 * 727 * If it is not in core, read it in from the file system's device, add it to the 728 * cache and initialise the vfs inode. 729 * 730 * The inode is locked according to the value of the lock_flags parameter. 731 * Inode lookup is only done during metadata operations and not as part of the 732 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 733 */ 734 int 735 xfs_iget( 736 struct xfs_mount *mp, 737 struct xfs_trans *tp, 738 xfs_ino_t ino, 739 uint flags, 740 uint lock_flags, 741 struct xfs_inode **ipp) 742 { 743 struct xfs_inode *ip; 744 struct xfs_perag *pag; 745 xfs_agino_t agino; 746 int error; 747 748 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 749 750 /* reject inode numbers outside existing AGs */ 751 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 752 return -EINVAL; 753 754 XFS_STATS_INC(mp, xs_ig_attempts); 755 756 /* get the perag structure and ensure that it's inode capable */ 757 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 758 agino = XFS_INO_TO_AGINO(mp, ino); 759 760 again: 761 error = 0; 762 rcu_read_lock(); 763 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 764 765 if (ip) { 766 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 767 if (error) 768 goto out_error_or_again; 769 } else { 770 rcu_read_unlock(); 771 if (flags & XFS_IGET_INCORE) { 772 error = -ENODATA; 773 goto out_error_or_again; 774 } 775 XFS_STATS_INC(mp, xs_ig_missed); 776 777 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 778 flags, lock_flags); 779 if (error) 780 goto out_error_or_again; 781 } 782 xfs_perag_put(pag); 783 784 *ipp = ip; 785 786 /* 787 * If we have a real type for an on-disk inode, we can setup the inode 788 * now. If it's a new inode being created, xfs_init_new_inode will 789 * handle it. 790 */ 791 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 792 xfs_setup_existing_inode(ip); 793 return 0; 794 795 out_error_or_again: 796 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 797 error == -EAGAIN) { 798 delay(1); 799 goto again; 800 } 801 xfs_perag_put(pag); 802 return error; 803 } 804 805 /* 806 * Grab the inode for reclaim exclusively. 807 * 808 * We have found this inode via a lookup under RCU, so the inode may have 809 * already been freed, or it may be in the process of being recycled by 810 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 811 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 812 * will not be set. Hence we need to check for both these flag conditions to 813 * avoid inodes that are no longer reclaim candidates. 814 * 815 * Note: checking for other state flags here, under the i_flags_lock or not, is 816 * racy and should be avoided. Those races should be resolved only after we have 817 * ensured that we are able to reclaim this inode and the world can see that we 818 * are going to reclaim it. 819 * 820 * Return true if we grabbed it, false otherwise. 821 */ 822 static bool 823 xfs_reclaim_igrab( 824 struct xfs_inode *ip, 825 struct xfs_icwalk *icw) 826 { 827 ASSERT(rcu_read_lock_held()); 828 829 spin_lock(&ip->i_flags_lock); 830 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 831 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 832 /* not a reclaim candidate. */ 833 spin_unlock(&ip->i_flags_lock); 834 return false; 835 } 836 837 /* Don't reclaim a sick inode unless the caller asked for it. */ 838 if (ip->i_sick && 839 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 840 spin_unlock(&ip->i_flags_lock); 841 return false; 842 } 843 844 __xfs_iflags_set(ip, XFS_IRECLAIM); 845 spin_unlock(&ip->i_flags_lock); 846 return true; 847 } 848 849 /* 850 * Inode reclaim is non-blocking, so the default action if progress cannot be 851 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 852 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 853 * blocking anymore and hence we can wait for the inode to be able to reclaim 854 * it. 855 * 856 * We do no IO here - if callers require inodes to be cleaned they must push the 857 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 858 * done in the background in a non-blocking manner, and enables memory reclaim 859 * to make progress without blocking. 860 */ 861 static void 862 xfs_reclaim_inode( 863 struct xfs_inode *ip, 864 struct xfs_perag *pag) 865 { 866 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 867 868 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 869 goto out; 870 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 871 goto out_iunlock; 872 873 /* 874 * Check for log shutdown because aborting the inode can move the log 875 * tail and corrupt in memory state. This is fine if the log is shut 876 * down, but if the log is still active and only the mount is shut down 877 * then the in-memory log tail movement caused by the abort can be 878 * incorrectly propagated to disk. 879 */ 880 if (xlog_is_shutdown(ip->i_mount->m_log)) { 881 xfs_iunpin_wait(ip); 882 xfs_iflush_shutdown_abort(ip); 883 goto reclaim; 884 } 885 if (xfs_ipincount(ip)) 886 goto out_clear_flush; 887 if (!xfs_inode_clean(ip)) 888 goto out_clear_flush; 889 890 xfs_iflags_clear(ip, XFS_IFLUSHING); 891 reclaim: 892 trace_xfs_inode_reclaiming(ip); 893 894 /* 895 * Because we use RCU freeing we need to ensure the inode always appears 896 * to be reclaimed with an invalid inode number when in the free state. 897 * We do this as early as possible under the ILOCK so that 898 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 899 * detect races with us here. By doing this, we guarantee that once 900 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 901 * it will see either a valid inode that will serialise correctly, or it 902 * will see an invalid inode that it can skip. 903 */ 904 spin_lock(&ip->i_flags_lock); 905 ip->i_flags = XFS_IRECLAIM; 906 ip->i_ino = 0; 907 ip->i_sick = 0; 908 ip->i_checked = 0; 909 spin_unlock(&ip->i_flags_lock); 910 911 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 912 xfs_iunlock(ip, XFS_ILOCK_EXCL); 913 914 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 915 /* 916 * Remove the inode from the per-AG radix tree. 917 * 918 * Because radix_tree_delete won't complain even if the item was never 919 * added to the tree assert that it's been there before to catch 920 * problems with the inode life time early on. 921 */ 922 spin_lock(&pag->pag_ici_lock); 923 if (!radix_tree_delete(&pag->pag_ici_root, 924 XFS_INO_TO_AGINO(ip->i_mount, ino))) 925 ASSERT(0); 926 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 927 spin_unlock(&pag->pag_ici_lock); 928 929 /* 930 * Here we do an (almost) spurious inode lock in order to coordinate 931 * with inode cache radix tree lookups. This is because the lookup 932 * can reference the inodes in the cache without taking references. 933 * 934 * We make that OK here by ensuring that we wait until the inode is 935 * unlocked after the lookup before we go ahead and free it. 936 */ 937 xfs_ilock(ip, XFS_ILOCK_EXCL); 938 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 939 xfs_iunlock(ip, XFS_ILOCK_EXCL); 940 ASSERT(xfs_inode_clean(ip)); 941 942 __xfs_inode_free(ip); 943 return; 944 945 out_clear_flush: 946 xfs_iflags_clear(ip, XFS_IFLUSHING); 947 out_iunlock: 948 xfs_iunlock(ip, XFS_ILOCK_EXCL); 949 out: 950 xfs_iflags_clear(ip, XFS_IRECLAIM); 951 } 952 953 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 954 static inline bool 955 xfs_want_reclaim_sick( 956 struct xfs_mount *mp) 957 { 958 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 959 xfs_is_shutdown(mp); 960 } 961 962 void 963 xfs_reclaim_inodes( 964 struct xfs_mount *mp) 965 { 966 struct xfs_icwalk icw = { 967 .icw_flags = 0, 968 }; 969 970 if (xfs_want_reclaim_sick(mp)) 971 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 972 973 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 974 xfs_ail_push_all_sync(mp->m_ail); 975 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 976 } 977 } 978 979 /* 980 * The shrinker infrastructure determines how many inodes we should scan for 981 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 982 * push the AIL here. We also want to proactively free up memory if we can to 983 * minimise the amount of work memory reclaim has to do so we kick the 984 * background reclaim if it isn't already scheduled. 985 */ 986 long 987 xfs_reclaim_inodes_nr( 988 struct xfs_mount *mp, 989 unsigned long nr_to_scan) 990 { 991 struct xfs_icwalk icw = { 992 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 993 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 994 }; 995 996 if (xfs_want_reclaim_sick(mp)) 997 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 998 999 /* kick background reclaimer and push the AIL */ 1000 xfs_reclaim_work_queue(mp); 1001 xfs_ail_push_all(mp->m_ail); 1002 1003 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1004 return 0; 1005 } 1006 1007 /* 1008 * Return the number of reclaimable inodes in the filesystem for 1009 * the shrinker to determine how much to reclaim. 1010 */ 1011 long 1012 xfs_reclaim_inodes_count( 1013 struct xfs_mount *mp) 1014 { 1015 struct xfs_perag *pag; 1016 xfs_agnumber_t ag = 0; 1017 long reclaimable = 0; 1018 1019 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1020 ag = pag->pag_agno + 1; 1021 reclaimable += pag->pag_ici_reclaimable; 1022 xfs_perag_put(pag); 1023 } 1024 return reclaimable; 1025 } 1026 1027 STATIC bool 1028 xfs_icwalk_match_id( 1029 struct xfs_inode *ip, 1030 struct xfs_icwalk *icw) 1031 { 1032 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1033 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1034 return false; 1035 1036 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1037 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1038 return false; 1039 1040 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1041 ip->i_projid != icw->icw_prid) 1042 return false; 1043 1044 return true; 1045 } 1046 1047 /* 1048 * A union-based inode filtering algorithm. Process the inode if any of the 1049 * criteria match. This is for global/internal scans only. 1050 */ 1051 STATIC bool 1052 xfs_icwalk_match_id_union( 1053 struct xfs_inode *ip, 1054 struct xfs_icwalk *icw) 1055 { 1056 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1057 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1058 return true; 1059 1060 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1061 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1062 return true; 1063 1064 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1065 ip->i_projid == icw->icw_prid) 1066 return true; 1067 1068 return false; 1069 } 1070 1071 /* 1072 * Is this inode @ip eligible for eof/cow block reclamation, given some 1073 * filtering parameters @icw? The inode is eligible if @icw is null or 1074 * if the predicate functions match. 1075 */ 1076 static bool 1077 xfs_icwalk_match( 1078 struct xfs_inode *ip, 1079 struct xfs_icwalk *icw) 1080 { 1081 bool match; 1082 1083 if (!icw) 1084 return true; 1085 1086 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1087 match = xfs_icwalk_match_id_union(ip, icw); 1088 else 1089 match = xfs_icwalk_match_id(ip, icw); 1090 if (!match) 1091 return false; 1092 1093 /* skip the inode if the file size is too small */ 1094 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1095 XFS_ISIZE(ip) < icw->icw_min_file_size) 1096 return false; 1097 1098 return true; 1099 } 1100 1101 /* 1102 * This is a fast pass over the inode cache to try to get reclaim moving on as 1103 * many inodes as possible in a short period of time. It kicks itself every few 1104 * seconds, as well as being kicked by the inode cache shrinker when memory 1105 * goes low. 1106 */ 1107 void 1108 xfs_reclaim_worker( 1109 struct work_struct *work) 1110 { 1111 struct xfs_mount *mp = container_of(to_delayed_work(work), 1112 struct xfs_mount, m_reclaim_work); 1113 1114 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1115 xfs_reclaim_work_queue(mp); 1116 } 1117 1118 STATIC int 1119 xfs_inode_free_eofblocks( 1120 struct xfs_inode *ip, 1121 struct xfs_icwalk *icw, 1122 unsigned int *lockflags) 1123 { 1124 bool wait; 1125 1126 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1127 1128 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1129 return 0; 1130 1131 /* 1132 * If the mapping is dirty the operation can block and wait for some 1133 * time. Unless we are waiting, skip it. 1134 */ 1135 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1136 return 0; 1137 1138 if (!xfs_icwalk_match(ip, icw)) 1139 return 0; 1140 1141 /* 1142 * If the caller is waiting, return -EAGAIN to keep the background 1143 * scanner moving and revisit the inode in a subsequent pass. 1144 */ 1145 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1146 if (wait) 1147 return -EAGAIN; 1148 return 0; 1149 } 1150 *lockflags |= XFS_IOLOCK_EXCL; 1151 1152 if (xfs_can_free_eofblocks(ip)) 1153 return xfs_free_eofblocks(ip); 1154 1155 /* inode could be preallocated or append-only */ 1156 trace_xfs_inode_free_eofblocks_invalid(ip); 1157 xfs_inode_clear_eofblocks_tag(ip); 1158 return 0; 1159 } 1160 1161 static void 1162 xfs_blockgc_set_iflag( 1163 struct xfs_inode *ip, 1164 unsigned long iflag) 1165 { 1166 struct xfs_mount *mp = ip->i_mount; 1167 struct xfs_perag *pag; 1168 1169 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1170 1171 /* 1172 * Don't bother locking the AG and looking up in the radix trees 1173 * if we already know that we have the tag set. 1174 */ 1175 if (ip->i_flags & iflag) 1176 return; 1177 spin_lock(&ip->i_flags_lock); 1178 ip->i_flags |= iflag; 1179 spin_unlock(&ip->i_flags_lock); 1180 1181 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1182 spin_lock(&pag->pag_ici_lock); 1183 1184 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1185 XFS_ICI_BLOCKGC_TAG); 1186 1187 spin_unlock(&pag->pag_ici_lock); 1188 xfs_perag_put(pag); 1189 } 1190 1191 void 1192 xfs_inode_set_eofblocks_tag( 1193 xfs_inode_t *ip) 1194 { 1195 trace_xfs_inode_set_eofblocks_tag(ip); 1196 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1197 } 1198 1199 static void 1200 xfs_blockgc_clear_iflag( 1201 struct xfs_inode *ip, 1202 unsigned long iflag) 1203 { 1204 struct xfs_mount *mp = ip->i_mount; 1205 struct xfs_perag *pag; 1206 bool clear_tag; 1207 1208 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1209 1210 spin_lock(&ip->i_flags_lock); 1211 ip->i_flags &= ~iflag; 1212 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1213 spin_unlock(&ip->i_flags_lock); 1214 1215 if (!clear_tag) 1216 return; 1217 1218 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1219 spin_lock(&pag->pag_ici_lock); 1220 1221 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1222 XFS_ICI_BLOCKGC_TAG); 1223 1224 spin_unlock(&pag->pag_ici_lock); 1225 xfs_perag_put(pag); 1226 } 1227 1228 void 1229 xfs_inode_clear_eofblocks_tag( 1230 xfs_inode_t *ip) 1231 { 1232 trace_xfs_inode_clear_eofblocks_tag(ip); 1233 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1234 } 1235 1236 /* 1237 * Set ourselves up to free CoW blocks from this file. If it's already clean 1238 * then we can bail out quickly, but otherwise we must back off if the file 1239 * is undergoing some kind of write. 1240 */ 1241 static bool 1242 xfs_prep_free_cowblocks( 1243 struct xfs_inode *ip) 1244 { 1245 /* 1246 * Just clear the tag if we have an empty cow fork or none at all. It's 1247 * possible the inode was fully unshared since it was originally tagged. 1248 */ 1249 if (!xfs_inode_has_cow_data(ip)) { 1250 trace_xfs_inode_free_cowblocks_invalid(ip); 1251 xfs_inode_clear_cowblocks_tag(ip); 1252 return false; 1253 } 1254 1255 /* 1256 * If the mapping is dirty or under writeback we cannot touch the 1257 * CoW fork. Leave it alone if we're in the midst of a directio. 1258 */ 1259 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1260 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1261 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1262 atomic_read(&VFS_I(ip)->i_dio_count)) 1263 return false; 1264 1265 return true; 1266 } 1267 1268 /* 1269 * Automatic CoW Reservation Freeing 1270 * 1271 * These functions automatically garbage collect leftover CoW reservations 1272 * that were made on behalf of a cowextsize hint when we start to run out 1273 * of quota or when the reservations sit around for too long. If the file 1274 * has dirty pages or is undergoing writeback, its CoW reservations will 1275 * be retained. 1276 * 1277 * The actual garbage collection piggybacks off the same code that runs 1278 * the speculative EOF preallocation garbage collector. 1279 */ 1280 STATIC int 1281 xfs_inode_free_cowblocks( 1282 struct xfs_inode *ip, 1283 struct xfs_icwalk *icw, 1284 unsigned int *lockflags) 1285 { 1286 bool wait; 1287 int ret = 0; 1288 1289 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1290 1291 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1292 return 0; 1293 1294 if (!xfs_prep_free_cowblocks(ip)) 1295 return 0; 1296 1297 if (!xfs_icwalk_match(ip, icw)) 1298 return 0; 1299 1300 /* 1301 * If the caller is waiting, return -EAGAIN to keep the background 1302 * scanner moving and revisit the inode in a subsequent pass. 1303 */ 1304 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1305 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1306 if (wait) 1307 return -EAGAIN; 1308 return 0; 1309 } 1310 *lockflags |= XFS_IOLOCK_EXCL; 1311 1312 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1313 if (wait) 1314 return -EAGAIN; 1315 return 0; 1316 } 1317 *lockflags |= XFS_MMAPLOCK_EXCL; 1318 1319 /* 1320 * Check again, nobody else should be able to dirty blocks or change 1321 * the reflink iflag now that we have the first two locks held. 1322 */ 1323 if (xfs_prep_free_cowblocks(ip)) 1324 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1325 return ret; 1326 } 1327 1328 void 1329 xfs_inode_set_cowblocks_tag( 1330 xfs_inode_t *ip) 1331 { 1332 trace_xfs_inode_set_cowblocks_tag(ip); 1333 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1334 } 1335 1336 void 1337 xfs_inode_clear_cowblocks_tag( 1338 xfs_inode_t *ip) 1339 { 1340 trace_xfs_inode_clear_cowblocks_tag(ip); 1341 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1342 } 1343 1344 /* Disable post-EOF and CoW block auto-reclamation. */ 1345 void 1346 xfs_blockgc_stop( 1347 struct xfs_mount *mp) 1348 { 1349 struct xfs_perag *pag; 1350 xfs_agnumber_t agno; 1351 1352 if (!xfs_clear_blockgc_enabled(mp)) 1353 return; 1354 1355 for_each_perag(mp, agno, pag) 1356 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1357 trace_xfs_blockgc_stop(mp, __return_address); 1358 } 1359 1360 /* Enable post-EOF and CoW block auto-reclamation. */ 1361 void 1362 xfs_blockgc_start( 1363 struct xfs_mount *mp) 1364 { 1365 struct xfs_perag *pag; 1366 xfs_agnumber_t agno; 1367 1368 if (xfs_set_blockgc_enabled(mp)) 1369 return; 1370 1371 trace_xfs_blockgc_start(mp, __return_address); 1372 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1373 xfs_blockgc_queue(pag); 1374 } 1375 1376 /* Don't try to run block gc on an inode that's in any of these states. */ 1377 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1378 XFS_NEED_INACTIVE | \ 1379 XFS_INACTIVATING | \ 1380 XFS_IRECLAIMABLE | \ 1381 XFS_IRECLAIM) 1382 /* 1383 * Decide if the given @ip is eligible for garbage collection of speculative 1384 * preallocations, and grab it if so. Returns true if it's ready to go or 1385 * false if we should just ignore it. 1386 */ 1387 static bool 1388 xfs_blockgc_igrab( 1389 struct xfs_inode *ip) 1390 { 1391 struct inode *inode = VFS_I(ip); 1392 1393 ASSERT(rcu_read_lock_held()); 1394 1395 /* Check for stale RCU freed inode */ 1396 spin_lock(&ip->i_flags_lock); 1397 if (!ip->i_ino) 1398 goto out_unlock_noent; 1399 1400 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1401 goto out_unlock_noent; 1402 spin_unlock(&ip->i_flags_lock); 1403 1404 /* nothing to sync during shutdown */ 1405 if (xfs_is_shutdown(ip->i_mount)) 1406 return false; 1407 1408 /* If we can't grab the inode, it must on it's way to reclaim. */ 1409 if (!igrab(inode)) 1410 return false; 1411 1412 /* inode is valid */ 1413 return true; 1414 1415 out_unlock_noent: 1416 spin_unlock(&ip->i_flags_lock); 1417 return false; 1418 } 1419 1420 /* Scan one incore inode for block preallocations that we can remove. */ 1421 static int 1422 xfs_blockgc_scan_inode( 1423 struct xfs_inode *ip, 1424 struct xfs_icwalk *icw) 1425 { 1426 unsigned int lockflags = 0; 1427 int error; 1428 1429 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1430 if (error) 1431 goto unlock; 1432 1433 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1434 unlock: 1435 if (lockflags) 1436 xfs_iunlock(ip, lockflags); 1437 xfs_irele(ip); 1438 return error; 1439 } 1440 1441 /* Background worker that trims preallocated space. */ 1442 void 1443 xfs_blockgc_worker( 1444 struct work_struct *work) 1445 { 1446 struct xfs_perag *pag = container_of(to_delayed_work(work), 1447 struct xfs_perag, pag_blockgc_work); 1448 struct xfs_mount *mp = pag->pag_mount; 1449 int error; 1450 1451 trace_xfs_blockgc_worker(mp, __return_address); 1452 1453 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1454 if (error) 1455 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1456 pag->pag_agno, error); 1457 xfs_blockgc_queue(pag); 1458 } 1459 1460 /* 1461 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1462 * and cowblocks. 1463 */ 1464 int 1465 xfs_blockgc_free_space( 1466 struct xfs_mount *mp, 1467 struct xfs_icwalk *icw) 1468 { 1469 int error; 1470 1471 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1472 1473 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1474 if (error) 1475 return error; 1476 1477 return xfs_inodegc_flush(mp); 1478 } 1479 1480 /* 1481 * Reclaim all the free space that we can by scheduling the background blockgc 1482 * and inodegc workers immediately and waiting for them all to clear. 1483 */ 1484 int 1485 xfs_blockgc_flush_all( 1486 struct xfs_mount *mp) 1487 { 1488 struct xfs_perag *pag; 1489 xfs_agnumber_t agno; 1490 1491 trace_xfs_blockgc_flush_all(mp, __return_address); 1492 1493 /* 1494 * For each blockgc worker, move its queue time up to now. If it 1495 * wasn't queued, it will not be requeued. Then flush whatever's 1496 * left. 1497 */ 1498 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1499 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1500 &pag->pag_blockgc_work, 0); 1501 1502 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1503 flush_delayed_work(&pag->pag_blockgc_work); 1504 1505 return xfs_inodegc_flush(mp); 1506 } 1507 1508 /* 1509 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1510 * quota caused an allocation failure, so we make a best effort by including 1511 * each quota under low free space conditions (less than 1% free space) in the 1512 * scan. 1513 * 1514 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1515 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1516 * MMAPLOCK. 1517 */ 1518 int 1519 xfs_blockgc_free_dquots( 1520 struct xfs_mount *mp, 1521 struct xfs_dquot *udqp, 1522 struct xfs_dquot *gdqp, 1523 struct xfs_dquot *pdqp, 1524 unsigned int iwalk_flags) 1525 { 1526 struct xfs_icwalk icw = {0}; 1527 bool do_work = false; 1528 1529 if (!udqp && !gdqp && !pdqp) 1530 return 0; 1531 1532 /* 1533 * Run a scan to free blocks using the union filter to cover all 1534 * applicable quotas in a single scan. 1535 */ 1536 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1537 1538 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1539 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1540 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1541 do_work = true; 1542 } 1543 1544 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1545 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1546 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1547 do_work = true; 1548 } 1549 1550 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1551 icw.icw_prid = pdqp->q_id; 1552 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1553 do_work = true; 1554 } 1555 1556 if (!do_work) 1557 return 0; 1558 1559 return xfs_blockgc_free_space(mp, &icw); 1560 } 1561 1562 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1563 int 1564 xfs_blockgc_free_quota( 1565 struct xfs_inode *ip, 1566 unsigned int iwalk_flags) 1567 { 1568 return xfs_blockgc_free_dquots(ip->i_mount, 1569 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1570 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1571 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1572 } 1573 1574 /* XFS Inode Cache Walking Code */ 1575 1576 /* 1577 * The inode lookup is done in batches to keep the amount of lock traffic and 1578 * radix tree lookups to a minimum. The batch size is a trade off between 1579 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1580 * be too greedy. 1581 */ 1582 #define XFS_LOOKUP_BATCH 32 1583 1584 1585 /* 1586 * Decide if we want to grab this inode in anticipation of doing work towards 1587 * the goal. 1588 */ 1589 static inline bool 1590 xfs_icwalk_igrab( 1591 enum xfs_icwalk_goal goal, 1592 struct xfs_inode *ip, 1593 struct xfs_icwalk *icw) 1594 { 1595 switch (goal) { 1596 case XFS_ICWALK_BLOCKGC: 1597 return xfs_blockgc_igrab(ip); 1598 case XFS_ICWALK_RECLAIM: 1599 return xfs_reclaim_igrab(ip, icw); 1600 default: 1601 return false; 1602 } 1603 } 1604 1605 /* 1606 * Process an inode. Each processing function must handle any state changes 1607 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1608 */ 1609 static inline int 1610 xfs_icwalk_process_inode( 1611 enum xfs_icwalk_goal goal, 1612 struct xfs_inode *ip, 1613 struct xfs_perag *pag, 1614 struct xfs_icwalk *icw) 1615 { 1616 int error = 0; 1617 1618 switch (goal) { 1619 case XFS_ICWALK_BLOCKGC: 1620 error = xfs_blockgc_scan_inode(ip, icw); 1621 break; 1622 case XFS_ICWALK_RECLAIM: 1623 xfs_reclaim_inode(ip, pag); 1624 break; 1625 } 1626 return error; 1627 } 1628 1629 /* 1630 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1631 * process them in some manner. 1632 */ 1633 static int 1634 xfs_icwalk_ag( 1635 struct xfs_perag *pag, 1636 enum xfs_icwalk_goal goal, 1637 struct xfs_icwalk *icw) 1638 { 1639 struct xfs_mount *mp = pag->pag_mount; 1640 uint32_t first_index; 1641 int last_error = 0; 1642 int skipped; 1643 bool done; 1644 int nr_found; 1645 1646 restart: 1647 done = false; 1648 skipped = 0; 1649 if (goal == XFS_ICWALK_RECLAIM) 1650 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1651 else 1652 first_index = 0; 1653 nr_found = 0; 1654 do { 1655 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1656 int error = 0; 1657 int i; 1658 1659 rcu_read_lock(); 1660 1661 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1662 (void **) batch, first_index, 1663 XFS_LOOKUP_BATCH, goal); 1664 if (!nr_found) { 1665 done = true; 1666 rcu_read_unlock(); 1667 break; 1668 } 1669 1670 /* 1671 * Grab the inodes before we drop the lock. if we found 1672 * nothing, nr == 0 and the loop will be skipped. 1673 */ 1674 for (i = 0; i < nr_found; i++) { 1675 struct xfs_inode *ip = batch[i]; 1676 1677 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1678 batch[i] = NULL; 1679 1680 /* 1681 * Update the index for the next lookup. Catch 1682 * overflows into the next AG range which can occur if 1683 * we have inodes in the last block of the AG and we 1684 * are currently pointing to the last inode. 1685 * 1686 * Because we may see inodes that are from the wrong AG 1687 * due to RCU freeing and reallocation, only update the 1688 * index if it lies in this AG. It was a race that lead 1689 * us to see this inode, so another lookup from the 1690 * same index will not find it again. 1691 */ 1692 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1693 continue; 1694 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1695 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1696 done = true; 1697 } 1698 1699 /* unlock now we've grabbed the inodes. */ 1700 rcu_read_unlock(); 1701 1702 for (i = 0; i < nr_found; i++) { 1703 if (!batch[i]) 1704 continue; 1705 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1706 icw); 1707 if (error == -EAGAIN) { 1708 skipped++; 1709 continue; 1710 } 1711 if (error && last_error != -EFSCORRUPTED) 1712 last_error = error; 1713 } 1714 1715 /* bail out if the filesystem is corrupted. */ 1716 if (error == -EFSCORRUPTED) 1717 break; 1718 1719 cond_resched(); 1720 1721 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1722 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1723 if (icw->icw_scan_limit <= 0) 1724 break; 1725 } 1726 } while (nr_found && !done); 1727 1728 if (goal == XFS_ICWALK_RECLAIM) { 1729 if (done) 1730 first_index = 0; 1731 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1732 } 1733 1734 if (skipped) { 1735 delay(1); 1736 goto restart; 1737 } 1738 return last_error; 1739 } 1740 1741 /* Walk all incore inodes to achieve a given goal. */ 1742 static int 1743 xfs_icwalk( 1744 struct xfs_mount *mp, 1745 enum xfs_icwalk_goal goal, 1746 struct xfs_icwalk *icw) 1747 { 1748 struct xfs_perag *pag; 1749 int error = 0; 1750 int last_error = 0; 1751 xfs_agnumber_t agno; 1752 1753 for_each_perag_tag(mp, agno, pag, goal) { 1754 error = xfs_icwalk_ag(pag, goal, icw); 1755 if (error) { 1756 last_error = error; 1757 if (error == -EFSCORRUPTED) { 1758 xfs_perag_rele(pag); 1759 break; 1760 } 1761 } 1762 } 1763 return last_error; 1764 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1765 } 1766 1767 #ifdef DEBUG 1768 static void 1769 xfs_check_delalloc( 1770 struct xfs_inode *ip, 1771 int whichfork) 1772 { 1773 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1774 struct xfs_bmbt_irec got; 1775 struct xfs_iext_cursor icur; 1776 1777 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1778 return; 1779 do { 1780 if (isnullstartblock(got.br_startblock)) { 1781 xfs_warn(ip->i_mount, 1782 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1783 ip->i_ino, 1784 whichfork == XFS_DATA_FORK ? "data" : "cow", 1785 got.br_startoff, got.br_blockcount); 1786 } 1787 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1788 } 1789 #else 1790 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1791 #endif 1792 1793 /* Schedule the inode for reclaim. */ 1794 static void 1795 xfs_inodegc_set_reclaimable( 1796 struct xfs_inode *ip) 1797 { 1798 struct xfs_mount *mp = ip->i_mount; 1799 struct xfs_perag *pag; 1800 1801 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1802 xfs_check_delalloc(ip, XFS_DATA_FORK); 1803 xfs_check_delalloc(ip, XFS_COW_FORK); 1804 ASSERT(0); 1805 } 1806 1807 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1808 spin_lock(&pag->pag_ici_lock); 1809 spin_lock(&ip->i_flags_lock); 1810 1811 trace_xfs_inode_set_reclaimable(ip); 1812 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1813 ip->i_flags |= XFS_IRECLAIMABLE; 1814 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1815 XFS_ICI_RECLAIM_TAG); 1816 1817 spin_unlock(&ip->i_flags_lock); 1818 spin_unlock(&pag->pag_ici_lock); 1819 xfs_perag_put(pag); 1820 } 1821 1822 /* 1823 * Free all speculative preallocations and possibly even the inode itself. 1824 * This is the last chance to make changes to an otherwise unreferenced file 1825 * before incore reclamation happens. 1826 */ 1827 static int 1828 xfs_inodegc_inactivate( 1829 struct xfs_inode *ip) 1830 { 1831 int error; 1832 1833 trace_xfs_inode_inactivating(ip); 1834 error = xfs_inactive(ip); 1835 xfs_inodegc_set_reclaimable(ip); 1836 return error; 1837 1838 } 1839 1840 void 1841 xfs_inodegc_worker( 1842 struct work_struct *work) 1843 { 1844 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1845 struct xfs_inodegc, work); 1846 struct llist_node *node = llist_del_all(&gc->list); 1847 struct xfs_inode *ip, *n; 1848 struct xfs_mount *mp = gc->mp; 1849 unsigned int nofs_flag; 1850 1851 /* 1852 * Clear the cpu mask bit and ensure that we have seen the latest 1853 * update of the gc structure associated with this CPU. This matches 1854 * with the release semantics used when setting the cpumask bit in 1855 * xfs_inodegc_queue. 1856 */ 1857 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); 1858 smp_mb__after_atomic(); 1859 1860 WRITE_ONCE(gc->items, 0); 1861 1862 if (!node) 1863 return; 1864 1865 /* 1866 * We can allocate memory here while doing writeback on behalf of 1867 * memory reclaim. To avoid memory allocation deadlocks set the 1868 * task-wide nofs context for the following operations. 1869 */ 1870 nofs_flag = memalloc_nofs_save(); 1871 1872 ip = llist_entry(node, struct xfs_inode, i_gclist); 1873 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); 1874 1875 WRITE_ONCE(gc->shrinker_hits, 0); 1876 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1877 int error; 1878 1879 xfs_iflags_set(ip, XFS_INACTIVATING); 1880 error = xfs_inodegc_inactivate(ip); 1881 if (error && !gc->error) 1882 gc->error = error; 1883 } 1884 1885 memalloc_nofs_restore(nofs_flag); 1886 } 1887 1888 /* 1889 * Expedite all pending inodegc work to run immediately. This does not wait for 1890 * completion of the work. 1891 */ 1892 void 1893 xfs_inodegc_push( 1894 struct xfs_mount *mp) 1895 { 1896 if (!xfs_is_inodegc_enabled(mp)) 1897 return; 1898 trace_xfs_inodegc_push(mp, __return_address); 1899 xfs_inodegc_queue_all(mp); 1900 } 1901 1902 /* 1903 * Force all currently queued inode inactivation work to run immediately and 1904 * wait for the work to finish. 1905 */ 1906 int 1907 xfs_inodegc_flush( 1908 struct xfs_mount *mp) 1909 { 1910 xfs_inodegc_push(mp); 1911 trace_xfs_inodegc_flush(mp, __return_address); 1912 return xfs_inodegc_wait_all(mp); 1913 } 1914 1915 /* 1916 * Flush all the pending work and then disable the inode inactivation background 1917 * workers and wait for them to stop. Caller must hold sb->s_umount to 1918 * coordinate changes in the inodegc_enabled state. 1919 */ 1920 void 1921 xfs_inodegc_stop( 1922 struct xfs_mount *mp) 1923 { 1924 bool rerun; 1925 1926 if (!xfs_clear_inodegc_enabled(mp)) 1927 return; 1928 1929 /* 1930 * Drain all pending inodegc work, including inodes that could be 1931 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 1932 * threads that sample the inodegc state just prior to us clearing it. 1933 * The inodegc flag state prevents new threads from queuing more 1934 * inodes, so we queue pending work items and flush the workqueue until 1935 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 1936 * here because it does not allow other unserialized mechanisms to 1937 * reschedule inodegc work while this draining is in progress. 1938 */ 1939 xfs_inodegc_queue_all(mp); 1940 do { 1941 flush_workqueue(mp->m_inodegc_wq); 1942 rerun = xfs_inodegc_queue_all(mp); 1943 } while (rerun); 1944 1945 trace_xfs_inodegc_stop(mp, __return_address); 1946 } 1947 1948 /* 1949 * Enable the inode inactivation background workers and schedule deferred inode 1950 * inactivation work if there is any. Caller must hold sb->s_umount to 1951 * coordinate changes in the inodegc_enabled state. 1952 */ 1953 void 1954 xfs_inodegc_start( 1955 struct xfs_mount *mp) 1956 { 1957 if (xfs_set_inodegc_enabled(mp)) 1958 return; 1959 1960 trace_xfs_inodegc_start(mp, __return_address); 1961 xfs_inodegc_queue_all(mp); 1962 } 1963 1964 #ifdef CONFIG_XFS_RT 1965 static inline bool 1966 xfs_inodegc_want_queue_rt_file( 1967 struct xfs_inode *ip) 1968 { 1969 struct xfs_mount *mp = ip->i_mount; 1970 1971 if (!XFS_IS_REALTIME_INODE(ip)) 1972 return false; 1973 1974 if (__percpu_counter_compare(&mp->m_frextents, 1975 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 1976 XFS_FDBLOCKS_BATCH) < 0) 1977 return true; 1978 1979 return false; 1980 } 1981 #else 1982 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1983 #endif /* CONFIG_XFS_RT */ 1984 1985 /* 1986 * Schedule the inactivation worker when: 1987 * 1988 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1989 * - There is less than 5% free space left. 1990 * - Any of the quotas for this inode are near an enforcement limit. 1991 */ 1992 static inline bool 1993 xfs_inodegc_want_queue_work( 1994 struct xfs_inode *ip, 1995 unsigned int items) 1996 { 1997 struct xfs_mount *mp = ip->i_mount; 1998 1999 if (items > mp->m_ino_geo.inodes_per_cluster) 2000 return true; 2001 2002 if (__percpu_counter_compare(&mp->m_fdblocks, 2003 mp->m_low_space[XFS_LOWSP_5_PCNT], 2004 XFS_FDBLOCKS_BATCH) < 0) 2005 return true; 2006 2007 if (xfs_inodegc_want_queue_rt_file(ip)) 2008 return true; 2009 2010 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2011 return true; 2012 2013 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2014 return true; 2015 2016 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2017 return true; 2018 2019 return false; 2020 } 2021 2022 /* 2023 * Upper bound on the number of inodes in each AG that can be queued for 2024 * inactivation at any given time, to avoid monopolizing the workqueue. 2025 */ 2026 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2027 2028 /* 2029 * Make the frontend wait for inactivations when: 2030 * 2031 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2032 * - The queue depth exceeds the maximum allowable percpu backlog. 2033 * 2034 * Note: If we are in a NOFS context here (e.g. current thread is running a 2035 * transaction) the we don't want to block here as inodegc progress may require 2036 * filesystem resources we hold to make progress and that could result in a 2037 * deadlock. Hence we skip out of here if we are in a scoped NOFS context. 2038 */ 2039 static inline bool 2040 xfs_inodegc_want_flush_work( 2041 struct xfs_inode *ip, 2042 unsigned int items, 2043 unsigned int shrinker_hits) 2044 { 2045 if (current->flags & PF_MEMALLOC_NOFS) 2046 return false; 2047 2048 if (shrinker_hits > 0) 2049 return true; 2050 2051 if (items > XFS_INODEGC_MAX_BACKLOG) 2052 return true; 2053 2054 return false; 2055 } 2056 2057 /* 2058 * Queue a background inactivation worker if there are inodes that need to be 2059 * inactivated and higher level xfs code hasn't disabled the background 2060 * workers. 2061 */ 2062 static void 2063 xfs_inodegc_queue( 2064 struct xfs_inode *ip) 2065 { 2066 struct xfs_mount *mp = ip->i_mount; 2067 struct xfs_inodegc *gc; 2068 int items; 2069 unsigned int shrinker_hits; 2070 unsigned int cpu_nr; 2071 unsigned long queue_delay = 1; 2072 2073 trace_xfs_inode_set_need_inactive(ip); 2074 spin_lock(&ip->i_flags_lock); 2075 ip->i_flags |= XFS_NEED_INACTIVE; 2076 spin_unlock(&ip->i_flags_lock); 2077 2078 cpu_nr = get_cpu(); 2079 gc = this_cpu_ptr(mp->m_inodegc); 2080 llist_add(&ip->i_gclist, &gc->list); 2081 items = READ_ONCE(gc->items); 2082 WRITE_ONCE(gc->items, items + 1); 2083 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2084 2085 /* 2086 * Ensure the list add is always seen by anyone who finds the cpumask 2087 * bit set. This effectively gives the cpumask bit set operation 2088 * release ordering semantics. 2089 */ 2090 smp_mb__before_atomic(); 2091 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) 2092 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); 2093 2094 /* 2095 * We queue the work while holding the current CPU so that the work 2096 * is scheduled to run on this CPU. 2097 */ 2098 if (!xfs_is_inodegc_enabled(mp)) { 2099 put_cpu(); 2100 return; 2101 } 2102 2103 if (xfs_inodegc_want_queue_work(ip, items)) 2104 queue_delay = 0; 2105 2106 trace_xfs_inodegc_queue(mp, __return_address); 2107 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2108 queue_delay); 2109 put_cpu(); 2110 2111 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2112 trace_xfs_inodegc_throttle(mp, __return_address); 2113 flush_delayed_work(&gc->work); 2114 } 2115 } 2116 2117 /* 2118 * We set the inode flag atomically with the radix tree tag. Once we get tag 2119 * lookups on the radix tree, this inode flag can go away. 2120 * 2121 * We always use background reclaim here because even if the inode is clean, it 2122 * still may be under IO and hence we have wait for IO completion to occur 2123 * before we can reclaim the inode. The background reclaim path handles this 2124 * more efficiently than we can here, so simply let background reclaim tear down 2125 * all inodes. 2126 */ 2127 void 2128 xfs_inode_mark_reclaimable( 2129 struct xfs_inode *ip) 2130 { 2131 struct xfs_mount *mp = ip->i_mount; 2132 bool need_inactive; 2133 2134 XFS_STATS_INC(mp, vn_reclaim); 2135 2136 /* 2137 * We should never get here with any of the reclaim flags already set. 2138 */ 2139 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2140 2141 need_inactive = xfs_inode_needs_inactive(ip); 2142 if (need_inactive) { 2143 xfs_inodegc_queue(ip); 2144 return; 2145 } 2146 2147 /* Going straight to reclaim, so drop the dquots. */ 2148 xfs_qm_dqdetach(ip); 2149 xfs_inodegc_set_reclaimable(ip); 2150 } 2151 2152 /* 2153 * Register a phony shrinker so that we can run background inodegc sooner when 2154 * there's memory pressure. Inactivation does not itself free any memory but 2155 * it does make inodes reclaimable, which eventually frees memory. 2156 * 2157 * The count function, seek value, and batch value are crafted to trigger the 2158 * scan function during the second round of scanning. Hopefully this means 2159 * that we reclaimed enough memory that initiating metadata transactions won't 2160 * make things worse. 2161 */ 2162 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2163 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2164 2165 static unsigned long 2166 xfs_inodegc_shrinker_count( 2167 struct shrinker *shrink, 2168 struct shrink_control *sc) 2169 { 2170 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2171 m_inodegc_shrinker); 2172 struct xfs_inodegc *gc; 2173 int cpu; 2174 2175 if (!xfs_is_inodegc_enabled(mp)) 2176 return 0; 2177 2178 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2179 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2180 if (!llist_empty(&gc->list)) 2181 return XFS_INODEGC_SHRINKER_COUNT; 2182 } 2183 2184 return 0; 2185 } 2186 2187 static unsigned long 2188 xfs_inodegc_shrinker_scan( 2189 struct shrinker *shrink, 2190 struct shrink_control *sc) 2191 { 2192 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2193 m_inodegc_shrinker); 2194 struct xfs_inodegc *gc; 2195 int cpu; 2196 bool no_items = true; 2197 2198 if (!xfs_is_inodegc_enabled(mp)) 2199 return SHRINK_STOP; 2200 2201 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2202 2203 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2204 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2205 if (!llist_empty(&gc->list)) { 2206 unsigned int h = READ_ONCE(gc->shrinker_hits); 2207 2208 WRITE_ONCE(gc->shrinker_hits, h + 1); 2209 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2210 no_items = false; 2211 } 2212 } 2213 2214 /* 2215 * If there are no inodes to inactivate, we don't want the shrinker 2216 * to think there's deferred work to call us back about. 2217 */ 2218 if (no_items) 2219 return LONG_MAX; 2220 2221 return SHRINK_STOP; 2222 } 2223 2224 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2225 int 2226 xfs_inodegc_register_shrinker( 2227 struct xfs_mount *mp) 2228 { 2229 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2230 2231 shrink->count_objects = xfs_inodegc_shrinker_count; 2232 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2233 shrink->seeks = 0; 2234 shrink->flags = SHRINKER_NONSLAB; 2235 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2236 2237 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id); 2238 } 2239