xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25 
26 #include <linux/iversion.h>
27 
28 /*
29  * Allocate and initialise an xfs_inode.
30  */
31 struct xfs_inode *
32 xfs_inode_alloc(
33 	struct xfs_mount	*mp,
34 	xfs_ino_t		ino)
35 {
36 	struct xfs_inode	*ip;
37 
38 	/*
39 	 * if this didn't occur in transactions, we could use
40 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
41 	 * code up to do this anyway.
42 	 */
43 	ip = kmem_zone_alloc(xfs_inode_zone, 0);
44 	if (!ip)
45 		return NULL;
46 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
47 		kmem_cache_free(xfs_inode_zone, ip);
48 		return NULL;
49 	}
50 
51 	/* VFS doesn't initialise i_mode! */
52 	VFS_I(ip)->i_mode = 0;
53 
54 	XFS_STATS_INC(mp, vn_active);
55 	ASSERT(atomic_read(&ip->i_pincount) == 0);
56 	ASSERT(!xfs_isiflocked(ip));
57 	ASSERT(ip->i_ino == 0);
58 
59 	/* initialise the xfs inode */
60 	ip->i_ino = ino;
61 	ip->i_mount = mp;
62 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
63 	ip->i_afp = NULL;
64 	ip->i_cowfp = NULL;
65 	ip->i_cnextents = 0;
66 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
67 	memset(&ip->i_df, 0, sizeof(ip->i_df));
68 	ip->i_flags = 0;
69 	ip->i_delayed_blks = 0;
70 	memset(&ip->i_d, 0, sizeof(ip->i_d));
71 	ip->i_sick = 0;
72 	ip->i_checked = 0;
73 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
74 	INIT_LIST_HEAD(&ip->i_ioend_list);
75 	spin_lock_init(&ip->i_ioend_lock);
76 
77 	return ip;
78 }
79 
80 STATIC void
81 xfs_inode_free_callback(
82 	struct rcu_head		*head)
83 {
84 	struct inode		*inode = container_of(head, struct inode, i_rcu);
85 	struct xfs_inode	*ip = XFS_I(inode);
86 
87 	switch (VFS_I(ip)->i_mode & S_IFMT) {
88 	case S_IFREG:
89 	case S_IFDIR:
90 	case S_IFLNK:
91 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
92 		break;
93 	}
94 
95 	if (ip->i_afp)
96 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
97 	if (ip->i_cowfp)
98 		xfs_idestroy_fork(ip, XFS_COW_FORK);
99 
100 	if (ip->i_itemp) {
101 		ASSERT(!test_bit(XFS_LI_IN_AIL,
102 				 &ip->i_itemp->ili_item.li_flags));
103 		xfs_inode_item_destroy(ip);
104 		ip->i_itemp = NULL;
105 	}
106 
107 	kmem_cache_free(xfs_inode_zone, ip);
108 }
109 
110 static void
111 __xfs_inode_free(
112 	struct xfs_inode	*ip)
113 {
114 	/* asserts to verify all state is correct here */
115 	ASSERT(atomic_read(&ip->i_pincount) == 0);
116 	XFS_STATS_DEC(ip->i_mount, vn_active);
117 
118 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
119 }
120 
121 void
122 xfs_inode_free(
123 	struct xfs_inode	*ip)
124 {
125 	ASSERT(!xfs_isiflocked(ip));
126 
127 	/*
128 	 * Because we use RCU freeing we need to ensure the inode always
129 	 * appears to be reclaimed with an invalid inode number when in the
130 	 * free state. The ip->i_flags_lock provides the barrier against lookup
131 	 * races.
132 	 */
133 	spin_lock(&ip->i_flags_lock);
134 	ip->i_flags = XFS_IRECLAIM;
135 	ip->i_ino = 0;
136 	spin_unlock(&ip->i_flags_lock);
137 
138 	__xfs_inode_free(ip);
139 }
140 
141 /*
142  * Queue a new inode reclaim pass if there are reclaimable inodes and there
143  * isn't a reclaim pass already in progress. By default it runs every 5s based
144  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
145  * tunable, but that can be done if this method proves to be ineffective or too
146  * aggressive.
147  */
148 static void
149 xfs_reclaim_work_queue(
150 	struct xfs_mount        *mp)
151 {
152 
153 	rcu_read_lock();
154 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
155 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
156 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
157 	}
158 	rcu_read_unlock();
159 }
160 
161 /*
162  * This is a fast pass over the inode cache to try to get reclaim moving on as
163  * many inodes as possible in a short period of time. It kicks itself every few
164  * seconds, as well as being kicked by the inode cache shrinker when memory
165  * goes low. It scans as quickly as possible avoiding locked inodes or those
166  * already being flushed, and once done schedules a future pass.
167  */
168 void
169 xfs_reclaim_worker(
170 	struct work_struct *work)
171 {
172 	struct xfs_mount *mp = container_of(to_delayed_work(work),
173 					struct xfs_mount, m_reclaim_work);
174 
175 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
176 	xfs_reclaim_work_queue(mp);
177 }
178 
179 static void
180 xfs_perag_set_reclaim_tag(
181 	struct xfs_perag	*pag)
182 {
183 	struct xfs_mount	*mp = pag->pag_mount;
184 
185 	lockdep_assert_held(&pag->pag_ici_lock);
186 	if (pag->pag_ici_reclaimable++)
187 		return;
188 
189 	/* propagate the reclaim tag up into the perag radix tree */
190 	spin_lock(&mp->m_perag_lock);
191 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
192 			   XFS_ICI_RECLAIM_TAG);
193 	spin_unlock(&mp->m_perag_lock);
194 
195 	/* schedule periodic background inode reclaim */
196 	xfs_reclaim_work_queue(mp);
197 
198 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
199 }
200 
201 static void
202 xfs_perag_clear_reclaim_tag(
203 	struct xfs_perag	*pag)
204 {
205 	struct xfs_mount	*mp = pag->pag_mount;
206 
207 	lockdep_assert_held(&pag->pag_ici_lock);
208 	if (--pag->pag_ici_reclaimable)
209 		return;
210 
211 	/* clear the reclaim tag from the perag radix tree */
212 	spin_lock(&mp->m_perag_lock);
213 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
214 			     XFS_ICI_RECLAIM_TAG);
215 	spin_unlock(&mp->m_perag_lock);
216 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
217 }
218 
219 
220 /*
221  * We set the inode flag atomically with the radix tree tag.
222  * Once we get tag lookups on the radix tree, this inode flag
223  * can go away.
224  */
225 void
226 xfs_inode_set_reclaim_tag(
227 	struct xfs_inode	*ip)
228 {
229 	struct xfs_mount	*mp = ip->i_mount;
230 	struct xfs_perag	*pag;
231 
232 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
233 	spin_lock(&pag->pag_ici_lock);
234 	spin_lock(&ip->i_flags_lock);
235 
236 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
237 			   XFS_ICI_RECLAIM_TAG);
238 	xfs_perag_set_reclaim_tag(pag);
239 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
240 
241 	spin_unlock(&ip->i_flags_lock);
242 	spin_unlock(&pag->pag_ici_lock);
243 	xfs_perag_put(pag);
244 }
245 
246 STATIC void
247 xfs_inode_clear_reclaim_tag(
248 	struct xfs_perag	*pag,
249 	xfs_ino_t		ino)
250 {
251 	radix_tree_tag_clear(&pag->pag_ici_root,
252 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
253 			     XFS_ICI_RECLAIM_TAG);
254 	xfs_perag_clear_reclaim_tag(pag);
255 }
256 
257 static void
258 xfs_inew_wait(
259 	struct xfs_inode	*ip)
260 {
261 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
262 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
263 
264 	do {
265 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
266 		if (!xfs_iflags_test(ip, XFS_INEW))
267 			break;
268 		schedule();
269 	} while (true);
270 	finish_wait(wq, &wait.wq_entry);
271 }
272 
273 /*
274  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
275  * part of the structure. This is made more complex by the fact we store
276  * information about the on-disk values in the VFS inode and so we can't just
277  * overwrite the values unconditionally. Hence we save the parameters we
278  * need to retain across reinitialisation, and rewrite them into the VFS inode
279  * after reinitialisation even if it fails.
280  */
281 static int
282 xfs_reinit_inode(
283 	struct xfs_mount	*mp,
284 	struct inode		*inode)
285 {
286 	int		error;
287 	uint32_t	nlink = inode->i_nlink;
288 	uint32_t	generation = inode->i_generation;
289 	uint64_t	version = inode_peek_iversion(inode);
290 	umode_t		mode = inode->i_mode;
291 	dev_t		dev = inode->i_rdev;
292 
293 	error = inode_init_always(mp->m_super, inode);
294 
295 	set_nlink(inode, nlink);
296 	inode->i_generation = generation;
297 	inode_set_iversion_queried(inode, version);
298 	inode->i_mode = mode;
299 	inode->i_rdev = dev;
300 	return error;
301 }
302 
303 /*
304  * If we are allocating a new inode, then check what was returned is
305  * actually a free, empty inode. If we are not allocating an inode,
306  * then check we didn't find a free inode.
307  *
308  * Returns:
309  *	0		if the inode free state matches the lookup context
310  *	-ENOENT		if the inode is free and we are not allocating
311  *	-EFSCORRUPTED	if there is any state mismatch at all
312  */
313 static int
314 xfs_iget_check_free_state(
315 	struct xfs_inode	*ip,
316 	int			flags)
317 {
318 	if (flags & XFS_IGET_CREATE) {
319 		/* should be a free inode */
320 		if (VFS_I(ip)->i_mode != 0) {
321 			xfs_warn(ip->i_mount,
322 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
323 				ip->i_ino, VFS_I(ip)->i_mode);
324 			return -EFSCORRUPTED;
325 		}
326 
327 		if (ip->i_d.di_nblocks != 0) {
328 			xfs_warn(ip->i_mount,
329 "Corruption detected! Free inode 0x%llx has blocks allocated!",
330 				ip->i_ino);
331 			return -EFSCORRUPTED;
332 		}
333 		return 0;
334 	}
335 
336 	/* should be an allocated inode */
337 	if (VFS_I(ip)->i_mode == 0)
338 		return -ENOENT;
339 
340 	return 0;
341 }
342 
343 /*
344  * Check the validity of the inode we just found it the cache
345  */
346 static int
347 xfs_iget_cache_hit(
348 	struct xfs_perag	*pag,
349 	struct xfs_inode	*ip,
350 	xfs_ino_t		ino,
351 	int			flags,
352 	int			lock_flags) __releases(RCU)
353 {
354 	struct inode		*inode = VFS_I(ip);
355 	struct xfs_mount	*mp = ip->i_mount;
356 	int			error;
357 
358 	/*
359 	 * check for re-use of an inode within an RCU grace period due to the
360 	 * radix tree nodes not being updated yet. We monitor for this by
361 	 * setting the inode number to zero before freeing the inode structure.
362 	 * If the inode has been reallocated and set up, then the inode number
363 	 * will not match, so check for that, too.
364 	 */
365 	spin_lock(&ip->i_flags_lock);
366 	if (ip->i_ino != ino) {
367 		trace_xfs_iget_skip(ip);
368 		XFS_STATS_INC(mp, xs_ig_frecycle);
369 		error = -EAGAIN;
370 		goto out_error;
371 	}
372 
373 
374 	/*
375 	 * If we are racing with another cache hit that is currently
376 	 * instantiating this inode or currently recycling it out of
377 	 * reclaimabe state, wait for the initialisation to complete
378 	 * before continuing.
379 	 *
380 	 * XXX(hch): eventually we should do something equivalent to
381 	 *	     wait_on_inode to wait for these flags to be cleared
382 	 *	     instead of polling for it.
383 	 */
384 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
385 		trace_xfs_iget_skip(ip);
386 		XFS_STATS_INC(mp, xs_ig_frecycle);
387 		error = -EAGAIN;
388 		goto out_error;
389 	}
390 
391 	/*
392 	 * Check the inode free state is valid. This also detects lookup
393 	 * racing with unlinks.
394 	 */
395 	error = xfs_iget_check_free_state(ip, flags);
396 	if (error)
397 		goto out_error;
398 
399 	/*
400 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
401 	 * Need to carefully get it back into useable state.
402 	 */
403 	if (ip->i_flags & XFS_IRECLAIMABLE) {
404 		trace_xfs_iget_reclaim(ip);
405 
406 		if (flags & XFS_IGET_INCORE) {
407 			error = -EAGAIN;
408 			goto out_error;
409 		}
410 
411 		/*
412 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
413 		 * from stomping over us while we recycle the inode.  We can't
414 		 * clear the radix tree reclaimable tag yet as it requires
415 		 * pag_ici_lock to be held exclusive.
416 		 */
417 		ip->i_flags |= XFS_IRECLAIM;
418 
419 		spin_unlock(&ip->i_flags_lock);
420 		rcu_read_unlock();
421 
422 		error = xfs_reinit_inode(mp, inode);
423 		if (error) {
424 			bool wake;
425 			/*
426 			 * Re-initializing the inode failed, and we are in deep
427 			 * trouble.  Try to re-add it to the reclaim list.
428 			 */
429 			rcu_read_lock();
430 			spin_lock(&ip->i_flags_lock);
431 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
432 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
433 			if (wake)
434 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
435 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
436 			trace_xfs_iget_reclaim_fail(ip);
437 			goto out_error;
438 		}
439 
440 		spin_lock(&pag->pag_ici_lock);
441 		spin_lock(&ip->i_flags_lock);
442 
443 		/*
444 		 * Clear the per-lifetime state in the inode as we are now
445 		 * effectively a new inode and need to return to the initial
446 		 * state before reuse occurs.
447 		 */
448 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
449 		ip->i_flags |= XFS_INEW;
450 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
451 		inode->i_state = I_NEW;
452 		ip->i_sick = 0;
453 		ip->i_checked = 0;
454 
455 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
456 		init_rwsem(&inode->i_rwsem);
457 
458 		spin_unlock(&ip->i_flags_lock);
459 		spin_unlock(&pag->pag_ici_lock);
460 	} else {
461 		/* If the VFS inode is being torn down, pause and try again. */
462 		if (!igrab(inode)) {
463 			trace_xfs_iget_skip(ip);
464 			error = -EAGAIN;
465 			goto out_error;
466 		}
467 
468 		/* We've got a live one. */
469 		spin_unlock(&ip->i_flags_lock);
470 		rcu_read_unlock();
471 		trace_xfs_iget_hit(ip);
472 	}
473 
474 	if (lock_flags != 0)
475 		xfs_ilock(ip, lock_flags);
476 
477 	if (!(flags & XFS_IGET_INCORE))
478 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
479 	XFS_STATS_INC(mp, xs_ig_found);
480 
481 	return 0;
482 
483 out_error:
484 	spin_unlock(&ip->i_flags_lock);
485 	rcu_read_unlock();
486 	return error;
487 }
488 
489 
490 static int
491 xfs_iget_cache_miss(
492 	struct xfs_mount	*mp,
493 	struct xfs_perag	*pag,
494 	xfs_trans_t		*tp,
495 	xfs_ino_t		ino,
496 	struct xfs_inode	**ipp,
497 	int			flags,
498 	int			lock_flags)
499 {
500 	struct xfs_inode	*ip;
501 	int			error;
502 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
503 	int			iflags;
504 
505 	ip = xfs_inode_alloc(mp, ino);
506 	if (!ip)
507 		return -ENOMEM;
508 
509 	error = xfs_iread(mp, tp, ip, flags);
510 	if (error)
511 		goto out_destroy;
512 
513 	if (!xfs_inode_verify_forks(ip)) {
514 		error = -EFSCORRUPTED;
515 		goto out_destroy;
516 	}
517 
518 	trace_xfs_iget_miss(ip);
519 
520 
521 	/*
522 	 * Check the inode free state is valid. This also detects lookup
523 	 * racing with unlinks.
524 	 */
525 	error = xfs_iget_check_free_state(ip, flags);
526 	if (error)
527 		goto out_destroy;
528 
529 	/*
530 	 * Preload the radix tree so we can insert safely under the
531 	 * write spinlock. Note that we cannot sleep inside the preload
532 	 * region. Since we can be called from transaction context, don't
533 	 * recurse into the file system.
534 	 */
535 	if (radix_tree_preload(GFP_NOFS)) {
536 		error = -EAGAIN;
537 		goto out_destroy;
538 	}
539 
540 	/*
541 	 * Because the inode hasn't been added to the radix-tree yet it can't
542 	 * be found by another thread, so we can do the non-sleeping lock here.
543 	 */
544 	if (lock_flags) {
545 		if (!xfs_ilock_nowait(ip, lock_flags))
546 			BUG();
547 	}
548 
549 	/*
550 	 * These values must be set before inserting the inode into the radix
551 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
552 	 * RCU locking mechanism) can find it and that lookup must see that this
553 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
554 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
555 	 * memory barrier that ensures this detection works correctly at lookup
556 	 * time.
557 	 */
558 	iflags = XFS_INEW;
559 	if (flags & XFS_IGET_DONTCACHE)
560 		iflags |= XFS_IDONTCACHE;
561 	ip->i_udquot = NULL;
562 	ip->i_gdquot = NULL;
563 	ip->i_pdquot = NULL;
564 	xfs_iflags_set(ip, iflags);
565 
566 	/* insert the new inode */
567 	spin_lock(&pag->pag_ici_lock);
568 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
569 	if (unlikely(error)) {
570 		WARN_ON(error != -EEXIST);
571 		XFS_STATS_INC(mp, xs_ig_dup);
572 		error = -EAGAIN;
573 		goto out_preload_end;
574 	}
575 	spin_unlock(&pag->pag_ici_lock);
576 	radix_tree_preload_end();
577 
578 	*ipp = ip;
579 	return 0;
580 
581 out_preload_end:
582 	spin_unlock(&pag->pag_ici_lock);
583 	radix_tree_preload_end();
584 	if (lock_flags)
585 		xfs_iunlock(ip, lock_flags);
586 out_destroy:
587 	__destroy_inode(VFS_I(ip));
588 	xfs_inode_free(ip);
589 	return error;
590 }
591 
592 /*
593  * Look up an inode by number in the given file system.
594  * The inode is looked up in the cache held in each AG.
595  * If the inode is found in the cache, initialise the vfs inode
596  * if necessary.
597  *
598  * If it is not in core, read it in from the file system's device,
599  * add it to the cache and initialise the vfs inode.
600  *
601  * The inode is locked according to the value of the lock_flags parameter.
602  * This flag parameter indicates how and if the inode's IO lock and inode lock
603  * should be taken.
604  *
605  * mp -- the mount point structure for the current file system.  It points
606  *       to the inode hash table.
607  * tp -- a pointer to the current transaction if there is one.  This is
608  *       simply passed through to the xfs_iread() call.
609  * ino -- the number of the inode desired.  This is the unique identifier
610  *        within the file system for the inode being requested.
611  * lock_flags -- flags indicating how to lock the inode.  See the comment
612  *		 for xfs_ilock() for a list of valid values.
613  */
614 int
615 xfs_iget(
616 	xfs_mount_t	*mp,
617 	xfs_trans_t	*tp,
618 	xfs_ino_t	ino,
619 	uint		flags,
620 	uint		lock_flags,
621 	xfs_inode_t	**ipp)
622 {
623 	xfs_inode_t	*ip;
624 	int		error;
625 	xfs_perag_t	*pag;
626 	xfs_agino_t	agino;
627 
628 	/*
629 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
630 	 * doesn't get freed while it's being referenced during a
631 	 * radix tree traversal here.  It assumes this function
632 	 * aqcuires only the ILOCK (and therefore it has no need to
633 	 * involve the IOLOCK in this synchronization).
634 	 */
635 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
636 
637 	/* reject inode numbers outside existing AGs */
638 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
639 		return -EINVAL;
640 
641 	XFS_STATS_INC(mp, xs_ig_attempts);
642 
643 	/* get the perag structure and ensure that it's inode capable */
644 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
645 	agino = XFS_INO_TO_AGINO(mp, ino);
646 
647 again:
648 	error = 0;
649 	rcu_read_lock();
650 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
651 
652 	if (ip) {
653 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
654 		if (error)
655 			goto out_error_or_again;
656 	} else {
657 		rcu_read_unlock();
658 		if (flags & XFS_IGET_INCORE) {
659 			error = -ENODATA;
660 			goto out_error_or_again;
661 		}
662 		XFS_STATS_INC(mp, xs_ig_missed);
663 
664 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
665 							flags, lock_flags);
666 		if (error)
667 			goto out_error_or_again;
668 	}
669 	xfs_perag_put(pag);
670 
671 	*ipp = ip;
672 
673 	/*
674 	 * If we have a real type for an on-disk inode, we can setup the inode
675 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
676 	 */
677 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
678 		xfs_setup_existing_inode(ip);
679 	return 0;
680 
681 out_error_or_again:
682 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
683 		delay(1);
684 		goto again;
685 	}
686 	xfs_perag_put(pag);
687 	return error;
688 }
689 
690 /*
691  * "Is this a cached inode that's also allocated?"
692  *
693  * Look up an inode by number in the given file system.  If the inode is
694  * in cache and isn't in purgatory, return 1 if the inode is allocated
695  * and 0 if it is not.  For all other cases (not in cache, being torn
696  * down, etc.), return a negative error code.
697  *
698  * The caller has to prevent inode allocation and freeing activity,
699  * presumably by locking the AGI buffer.   This is to ensure that an
700  * inode cannot transition from allocated to freed until the caller is
701  * ready to allow that.  If the inode is in an intermediate state (new,
702  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
703  * inode is not in the cache, -ENOENT will be returned.  The caller must
704  * deal with these scenarios appropriately.
705  *
706  * This is a specialized use case for the online scrubber; if you're
707  * reading this, you probably want xfs_iget.
708  */
709 int
710 xfs_icache_inode_is_allocated(
711 	struct xfs_mount	*mp,
712 	struct xfs_trans	*tp,
713 	xfs_ino_t		ino,
714 	bool			*inuse)
715 {
716 	struct xfs_inode	*ip;
717 	int			error;
718 
719 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
720 	if (error)
721 		return error;
722 
723 	*inuse = !!(VFS_I(ip)->i_mode);
724 	xfs_irele(ip);
725 	return 0;
726 }
727 
728 /*
729  * The inode lookup is done in batches to keep the amount of lock traffic and
730  * radix tree lookups to a minimum. The batch size is a trade off between
731  * lookup reduction and stack usage. This is in the reclaim path, so we can't
732  * be too greedy.
733  */
734 #define XFS_LOOKUP_BATCH	32
735 
736 STATIC int
737 xfs_inode_ag_walk_grab(
738 	struct xfs_inode	*ip,
739 	int			flags)
740 {
741 	struct inode		*inode = VFS_I(ip);
742 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
743 
744 	ASSERT(rcu_read_lock_held());
745 
746 	/*
747 	 * check for stale RCU freed inode
748 	 *
749 	 * If the inode has been reallocated, it doesn't matter if it's not in
750 	 * the AG we are walking - we are walking for writeback, so if it
751 	 * passes all the "valid inode" checks and is dirty, then we'll write
752 	 * it back anyway.  If it has been reallocated and still being
753 	 * initialised, the XFS_INEW check below will catch it.
754 	 */
755 	spin_lock(&ip->i_flags_lock);
756 	if (!ip->i_ino)
757 		goto out_unlock_noent;
758 
759 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
760 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
761 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
762 		goto out_unlock_noent;
763 	spin_unlock(&ip->i_flags_lock);
764 
765 	/* nothing to sync during shutdown */
766 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
767 		return -EFSCORRUPTED;
768 
769 	/* If we can't grab the inode, it must on it's way to reclaim. */
770 	if (!igrab(inode))
771 		return -ENOENT;
772 
773 	/* inode is valid */
774 	return 0;
775 
776 out_unlock_noent:
777 	spin_unlock(&ip->i_flags_lock);
778 	return -ENOENT;
779 }
780 
781 STATIC int
782 xfs_inode_ag_walk(
783 	struct xfs_mount	*mp,
784 	struct xfs_perag	*pag,
785 	int			(*execute)(struct xfs_inode *ip, int flags,
786 					   void *args),
787 	int			flags,
788 	void			*args,
789 	int			tag,
790 	int			iter_flags)
791 {
792 	uint32_t		first_index;
793 	int			last_error = 0;
794 	int			skipped;
795 	int			done;
796 	int			nr_found;
797 
798 restart:
799 	done = 0;
800 	skipped = 0;
801 	first_index = 0;
802 	nr_found = 0;
803 	do {
804 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
805 		int		error = 0;
806 		int		i;
807 
808 		rcu_read_lock();
809 
810 		if (tag == -1)
811 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
812 					(void **)batch, first_index,
813 					XFS_LOOKUP_BATCH);
814 		else
815 			nr_found = radix_tree_gang_lookup_tag(
816 					&pag->pag_ici_root,
817 					(void **) batch, first_index,
818 					XFS_LOOKUP_BATCH, tag);
819 
820 		if (!nr_found) {
821 			rcu_read_unlock();
822 			break;
823 		}
824 
825 		/*
826 		 * Grab the inodes before we drop the lock. if we found
827 		 * nothing, nr == 0 and the loop will be skipped.
828 		 */
829 		for (i = 0; i < nr_found; i++) {
830 			struct xfs_inode *ip = batch[i];
831 
832 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
833 				batch[i] = NULL;
834 
835 			/*
836 			 * Update the index for the next lookup. Catch
837 			 * overflows into the next AG range which can occur if
838 			 * we have inodes in the last block of the AG and we
839 			 * are currently pointing to the last inode.
840 			 *
841 			 * Because we may see inodes that are from the wrong AG
842 			 * due to RCU freeing and reallocation, only update the
843 			 * index if it lies in this AG. It was a race that lead
844 			 * us to see this inode, so another lookup from the
845 			 * same index will not find it again.
846 			 */
847 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
848 				continue;
849 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
850 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
851 				done = 1;
852 		}
853 
854 		/* unlock now we've grabbed the inodes. */
855 		rcu_read_unlock();
856 
857 		for (i = 0; i < nr_found; i++) {
858 			if (!batch[i])
859 				continue;
860 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
861 			    xfs_iflags_test(batch[i], XFS_INEW))
862 				xfs_inew_wait(batch[i]);
863 			error = execute(batch[i], flags, args);
864 			xfs_irele(batch[i]);
865 			if (error == -EAGAIN) {
866 				skipped++;
867 				continue;
868 			}
869 			if (error && last_error != -EFSCORRUPTED)
870 				last_error = error;
871 		}
872 
873 		/* bail out if the filesystem is corrupted.  */
874 		if (error == -EFSCORRUPTED)
875 			break;
876 
877 		cond_resched();
878 
879 	} while (nr_found && !done);
880 
881 	if (skipped) {
882 		delay(1);
883 		goto restart;
884 	}
885 	return last_error;
886 }
887 
888 /*
889  * Background scanning to trim post-EOF preallocated space. This is queued
890  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
891  */
892 void
893 xfs_queue_eofblocks(
894 	struct xfs_mount *mp)
895 {
896 	rcu_read_lock();
897 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
898 		queue_delayed_work(mp->m_eofblocks_workqueue,
899 				   &mp->m_eofblocks_work,
900 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
901 	rcu_read_unlock();
902 }
903 
904 void
905 xfs_eofblocks_worker(
906 	struct work_struct *work)
907 {
908 	struct xfs_mount *mp = container_of(to_delayed_work(work),
909 				struct xfs_mount, m_eofblocks_work);
910 	xfs_icache_free_eofblocks(mp, NULL);
911 	xfs_queue_eofblocks(mp);
912 }
913 
914 /*
915  * Background scanning to trim preallocated CoW space. This is queued
916  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
917  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
918  */
919 void
920 xfs_queue_cowblocks(
921 	struct xfs_mount *mp)
922 {
923 	rcu_read_lock();
924 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
925 		queue_delayed_work(mp->m_eofblocks_workqueue,
926 				   &mp->m_cowblocks_work,
927 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
928 	rcu_read_unlock();
929 }
930 
931 void
932 xfs_cowblocks_worker(
933 	struct work_struct *work)
934 {
935 	struct xfs_mount *mp = container_of(to_delayed_work(work),
936 				struct xfs_mount, m_cowblocks_work);
937 	xfs_icache_free_cowblocks(mp, NULL);
938 	xfs_queue_cowblocks(mp);
939 }
940 
941 int
942 xfs_inode_ag_iterator_flags(
943 	struct xfs_mount	*mp,
944 	int			(*execute)(struct xfs_inode *ip, int flags,
945 					   void *args),
946 	int			flags,
947 	void			*args,
948 	int			iter_flags)
949 {
950 	struct xfs_perag	*pag;
951 	int			error = 0;
952 	int			last_error = 0;
953 	xfs_agnumber_t		ag;
954 
955 	ag = 0;
956 	while ((pag = xfs_perag_get(mp, ag))) {
957 		ag = pag->pag_agno + 1;
958 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
959 					  iter_flags);
960 		xfs_perag_put(pag);
961 		if (error) {
962 			last_error = error;
963 			if (error == -EFSCORRUPTED)
964 				break;
965 		}
966 	}
967 	return last_error;
968 }
969 
970 int
971 xfs_inode_ag_iterator(
972 	struct xfs_mount	*mp,
973 	int			(*execute)(struct xfs_inode *ip, int flags,
974 					   void *args),
975 	int			flags,
976 	void			*args)
977 {
978 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
979 }
980 
981 int
982 xfs_inode_ag_iterator_tag(
983 	struct xfs_mount	*mp,
984 	int			(*execute)(struct xfs_inode *ip, int flags,
985 					   void *args),
986 	int			flags,
987 	void			*args,
988 	int			tag)
989 {
990 	struct xfs_perag	*pag;
991 	int			error = 0;
992 	int			last_error = 0;
993 	xfs_agnumber_t		ag;
994 
995 	ag = 0;
996 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
997 		ag = pag->pag_agno + 1;
998 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
999 					  0);
1000 		xfs_perag_put(pag);
1001 		if (error) {
1002 			last_error = error;
1003 			if (error == -EFSCORRUPTED)
1004 				break;
1005 		}
1006 	}
1007 	return last_error;
1008 }
1009 
1010 /*
1011  * Grab the inode for reclaim exclusively.
1012  * Return 0 if we grabbed it, non-zero otherwise.
1013  */
1014 STATIC int
1015 xfs_reclaim_inode_grab(
1016 	struct xfs_inode	*ip,
1017 	int			flags)
1018 {
1019 	ASSERT(rcu_read_lock_held());
1020 
1021 	/* quick check for stale RCU freed inode */
1022 	if (!ip->i_ino)
1023 		return 1;
1024 
1025 	/*
1026 	 * If we are asked for non-blocking operation, do unlocked checks to
1027 	 * see if the inode already is being flushed or in reclaim to avoid
1028 	 * lock traffic.
1029 	 */
1030 	if ((flags & SYNC_TRYLOCK) &&
1031 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1032 		return 1;
1033 
1034 	/*
1035 	 * The radix tree lock here protects a thread in xfs_iget from racing
1036 	 * with us starting reclaim on the inode.  Once we have the
1037 	 * XFS_IRECLAIM flag set it will not touch us.
1038 	 *
1039 	 * Due to RCU lookup, we may find inodes that have been freed and only
1040 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1041 	 * aren't candidates for reclaim at all, so we must check the
1042 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1043 	 */
1044 	spin_lock(&ip->i_flags_lock);
1045 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1046 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1047 		/* not a reclaim candidate. */
1048 		spin_unlock(&ip->i_flags_lock);
1049 		return 1;
1050 	}
1051 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1052 	spin_unlock(&ip->i_flags_lock);
1053 	return 0;
1054 }
1055 
1056 /*
1057  * Inodes in different states need to be treated differently. The following
1058  * table lists the inode states and the reclaim actions necessary:
1059  *
1060  *	inode state	     iflush ret		required action
1061  *      ---------------      ----------         ---------------
1062  *	bad			-		reclaim
1063  *	shutdown		EIO		unpin and reclaim
1064  *	clean, unpinned		0		reclaim
1065  *	stale, unpinned		0		reclaim
1066  *	clean, pinned(*)	0		requeue
1067  *	stale, pinned		EAGAIN		requeue
1068  *	dirty, async		-		requeue
1069  *	dirty, sync		0		reclaim
1070  *
1071  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1072  * handled anyway given the order of checks implemented.
1073  *
1074  * Also, because we get the flush lock first, we know that any inode that has
1075  * been flushed delwri has had the flush completed by the time we check that
1076  * the inode is clean.
1077  *
1078  * Note that because the inode is flushed delayed write by AIL pushing, the
1079  * flush lock may already be held here and waiting on it can result in very
1080  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1081  * the caller should push the AIL first before trying to reclaim inodes to
1082  * minimise the amount of time spent waiting.  For background relaim, we only
1083  * bother to reclaim clean inodes anyway.
1084  *
1085  * Hence the order of actions after gaining the locks should be:
1086  *	bad		=> reclaim
1087  *	shutdown	=> unpin and reclaim
1088  *	pinned, async	=> requeue
1089  *	pinned, sync	=> unpin
1090  *	stale		=> reclaim
1091  *	clean		=> reclaim
1092  *	dirty, async	=> requeue
1093  *	dirty, sync	=> flush, wait and reclaim
1094  */
1095 STATIC int
1096 xfs_reclaim_inode(
1097 	struct xfs_inode	*ip,
1098 	struct xfs_perag	*pag,
1099 	int			sync_mode)
1100 {
1101 	struct xfs_buf		*bp = NULL;
1102 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1103 	int			error;
1104 
1105 restart:
1106 	error = 0;
1107 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1108 	if (!xfs_iflock_nowait(ip)) {
1109 		if (!(sync_mode & SYNC_WAIT))
1110 			goto out;
1111 		xfs_iflock(ip);
1112 	}
1113 
1114 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1115 		xfs_iunpin_wait(ip);
1116 		/* xfs_iflush_abort() drops the flush lock */
1117 		xfs_iflush_abort(ip, false);
1118 		goto reclaim;
1119 	}
1120 	if (xfs_ipincount(ip)) {
1121 		if (!(sync_mode & SYNC_WAIT))
1122 			goto out_ifunlock;
1123 		xfs_iunpin_wait(ip);
1124 	}
1125 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1126 		xfs_ifunlock(ip);
1127 		goto reclaim;
1128 	}
1129 
1130 	/*
1131 	 * Never flush out dirty data during non-blocking reclaim, as it would
1132 	 * just contend with AIL pushing trying to do the same job.
1133 	 */
1134 	if (!(sync_mode & SYNC_WAIT))
1135 		goto out_ifunlock;
1136 
1137 	/*
1138 	 * Now we have an inode that needs flushing.
1139 	 *
1140 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1141 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1142 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1143 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1144 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1145 	 *
1146 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1147 	 * cache to mark them stale, if we hit this case we don't actually want
1148 	 * to do IO here - we want the inode marked stale so we can simply
1149 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1150 	 * inode, back off and try again.  Hopefully the next pass through will
1151 	 * see the stale flag set on the inode.
1152 	 */
1153 	error = xfs_iflush(ip, &bp);
1154 	if (error == -EAGAIN) {
1155 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1156 		/* backoff longer than in xfs_ifree_cluster */
1157 		delay(2);
1158 		goto restart;
1159 	}
1160 
1161 	if (!error) {
1162 		error = xfs_bwrite(bp);
1163 		xfs_buf_relse(bp);
1164 	}
1165 
1166 reclaim:
1167 	ASSERT(!xfs_isiflocked(ip));
1168 
1169 	/*
1170 	 * Because we use RCU freeing we need to ensure the inode always appears
1171 	 * to be reclaimed with an invalid inode number when in the free state.
1172 	 * We do this as early as possible under the ILOCK so that
1173 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1174 	 * detect races with us here. By doing this, we guarantee that once
1175 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1176 	 * it will see either a valid inode that will serialise correctly, or it
1177 	 * will see an invalid inode that it can skip.
1178 	 */
1179 	spin_lock(&ip->i_flags_lock);
1180 	ip->i_flags = XFS_IRECLAIM;
1181 	ip->i_ino = 0;
1182 	spin_unlock(&ip->i_flags_lock);
1183 
1184 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185 
1186 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1187 	/*
1188 	 * Remove the inode from the per-AG radix tree.
1189 	 *
1190 	 * Because radix_tree_delete won't complain even if the item was never
1191 	 * added to the tree assert that it's been there before to catch
1192 	 * problems with the inode life time early on.
1193 	 */
1194 	spin_lock(&pag->pag_ici_lock);
1195 	if (!radix_tree_delete(&pag->pag_ici_root,
1196 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1197 		ASSERT(0);
1198 	xfs_perag_clear_reclaim_tag(pag);
1199 	spin_unlock(&pag->pag_ici_lock);
1200 
1201 	/*
1202 	 * Here we do an (almost) spurious inode lock in order to coordinate
1203 	 * with inode cache radix tree lookups.  This is because the lookup
1204 	 * can reference the inodes in the cache without taking references.
1205 	 *
1206 	 * We make that OK here by ensuring that we wait until the inode is
1207 	 * unlocked after the lookup before we go ahead and free it.
1208 	 */
1209 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1210 	xfs_qm_dqdetach(ip);
1211 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1212 
1213 	__xfs_inode_free(ip);
1214 	return error;
1215 
1216 out_ifunlock:
1217 	xfs_ifunlock(ip);
1218 out:
1219 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1220 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1221 	/*
1222 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1223 	 * a short while. However, this just burns CPU time scanning the tree
1224 	 * waiting for IO to complete and the reclaim work never goes back to
1225 	 * the idle state. Instead, return 0 to let the next scheduled
1226 	 * background reclaim attempt to reclaim the inode again.
1227 	 */
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1233  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1234  * then a shut down during filesystem unmount reclaim walk leak all the
1235  * unreclaimed inodes.
1236  */
1237 STATIC int
1238 xfs_reclaim_inodes_ag(
1239 	struct xfs_mount	*mp,
1240 	int			flags,
1241 	int			*nr_to_scan)
1242 {
1243 	struct xfs_perag	*pag;
1244 	int			error = 0;
1245 	int			last_error = 0;
1246 	xfs_agnumber_t		ag;
1247 	int			trylock = flags & SYNC_TRYLOCK;
1248 	int			skipped;
1249 
1250 restart:
1251 	ag = 0;
1252 	skipped = 0;
1253 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1254 		unsigned long	first_index = 0;
1255 		int		done = 0;
1256 		int		nr_found = 0;
1257 
1258 		ag = pag->pag_agno + 1;
1259 
1260 		if (trylock) {
1261 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1262 				skipped++;
1263 				xfs_perag_put(pag);
1264 				continue;
1265 			}
1266 			first_index = pag->pag_ici_reclaim_cursor;
1267 		} else
1268 			mutex_lock(&pag->pag_ici_reclaim_lock);
1269 
1270 		do {
1271 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1272 			int	i;
1273 
1274 			rcu_read_lock();
1275 			nr_found = radix_tree_gang_lookup_tag(
1276 					&pag->pag_ici_root,
1277 					(void **)batch, first_index,
1278 					XFS_LOOKUP_BATCH,
1279 					XFS_ICI_RECLAIM_TAG);
1280 			if (!nr_found) {
1281 				done = 1;
1282 				rcu_read_unlock();
1283 				break;
1284 			}
1285 
1286 			/*
1287 			 * Grab the inodes before we drop the lock. if we found
1288 			 * nothing, nr == 0 and the loop will be skipped.
1289 			 */
1290 			for (i = 0; i < nr_found; i++) {
1291 				struct xfs_inode *ip = batch[i];
1292 
1293 				if (done || xfs_reclaim_inode_grab(ip, flags))
1294 					batch[i] = NULL;
1295 
1296 				/*
1297 				 * Update the index for the next lookup. Catch
1298 				 * overflows into the next AG range which can
1299 				 * occur if we have inodes in the last block of
1300 				 * the AG and we are currently pointing to the
1301 				 * last inode.
1302 				 *
1303 				 * Because we may see inodes that are from the
1304 				 * wrong AG due to RCU freeing and
1305 				 * reallocation, only update the index if it
1306 				 * lies in this AG. It was a race that lead us
1307 				 * to see this inode, so another lookup from
1308 				 * the same index will not find it again.
1309 				 */
1310 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1311 								pag->pag_agno)
1312 					continue;
1313 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1314 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1315 					done = 1;
1316 			}
1317 
1318 			/* unlock now we've grabbed the inodes. */
1319 			rcu_read_unlock();
1320 
1321 			for (i = 0; i < nr_found; i++) {
1322 				if (!batch[i])
1323 					continue;
1324 				error = xfs_reclaim_inode(batch[i], pag, flags);
1325 				if (error && last_error != -EFSCORRUPTED)
1326 					last_error = error;
1327 			}
1328 
1329 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1330 
1331 			cond_resched();
1332 
1333 		} while (nr_found && !done && *nr_to_scan > 0);
1334 
1335 		if (trylock && !done)
1336 			pag->pag_ici_reclaim_cursor = first_index;
1337 		else
1338 			pag->pag_ici_reclaim_cursor = 0;
1339 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1340 		xfs_perag_put(pag);
1341 	}
1342 
1343 	/*
1344 	 * if we skipped any AG, and we still have scan count remaining, do
1345 	 * another pass this time using blocking reclaim semantics (i.e
1346 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1347 	 * ensure that when we get more reclaimers than AGs we block rather
1348 	 * than spin trying to execute reclaim.
1349 	 */
1350 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1351 		trylock = 0;
1352 		goto restart;
1353 	}
1354 	return last_error;
1355 }
1356 
1357 int
1358 xfs_reclaim_inodes(
1359 	xfs_mount_t	*mp,
1360 	int		mode)
1361 {
1362 	int		nr_to_scan = INT_MAX;
1363 
1364 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1365 }
1366 
1367 /*
1368  * Scan a certain number of inodes for reclaim.
1369  *
1370  * When called we make sure that there is a background (fast) inode reclaim in
1371  * progress, while we will throttle the speed of reclaim via doing synchronous
1372  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1373  * them to be cleaned, which we hope will not be very long due to the
1374  * background walker having already kicked the IO off on those dirty inodes.
1375  */
1376 long
1377 xfs_reclaim_inodes_nr(
1378 	struct xfs_mount	*mp,
1379 	int			nr_to_scan)
1380 {
1381 	/* kick background reclaimer and push the AIL */
1382 	xfs_reclaim_work_queue(mp);
1383 	xfs_ail_push_all(mp->m_ail);
1384 
1385 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1386 }
1387 
1388 /*
1389  * Return the number of reclaimable inodes in the filesystem for
1390  * the shrinker to determine how much to reclaim.
1391  */
1392 int
1393 xfs_reclaim_inodes_count(
1394 	struct xfs_mount	*mp)
1395 {
1396 	struct xfs_perag	*pag;
1397 	xfs_agnumber_t		ag = 0;
1398 	int			reclaimable = 0;
1399 
1400 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1401 		ag = pag->pag_agno + 1;
1402 		reclaimable += pag->pag_ici_reclaimable;
1403 		xfs_perag_put(pag);
1404 	}
1405 	return reclaimable;
1406 }
1407 
1408 STATIC int
1409 xfs_inode_match_id(
1410 	struct xfs_inode	*ip,
1411 	struct xfs_eofblocks	*eofb)
1412 {
1413 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1414 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1415 		return 0;
1416 
1417 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1418 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1419 		return 0;
1420 
1421 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1422 	    ip->i_d.di_projid != eofb->eof_prid)
1423 		return 0;
1424 
1425 	return 1;
1426 }
1427 
1428 /*
1429  * A union-based inode filtering algorithm. Process the inode if any of the
1430  * criteria match. This is for global/internal scans only.
1431  */
1432 STATIC int
1433 xfs_inode_match_id_union(
1434 	struct xfs_inode	*ip,
1435 	struct xfs_eofblocks	*eofb)
1436 {
1437 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1438 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1439 		return 1;
1440 
1441 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1442 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1443 		return 1;
1444 
1445 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1446 	    ip->i_d.di_projid == eofb->eof_prid)
1447 		return 1;
1448 
1449 	return 0;
1450 }
1451 
1452 STATIC int
1453 xfs_inode_free_eofblocks(
1454 	struct xfs_inode	*ip,
1455 	int			flags,
1456 	void			*args)
1457 {
1458 	int ret = 0;
1459 	struct xfs_eofblocks *eofb = args;
1460 	int match;
1461 
1462 	if (!xfs_can_free_eofblocks(ip, false)) {
1463 		/* inode could be preallocated or append-only */
1464 		trace_xfs_inode_free_eofblocks_invalid(ip);
1465 		xfs_inode_clear_eofblocks_tag(ip);
1466 		return 0;
1467 	}
1468 
1469 	/*
1470 	 * If the mapping is dirty the operation can block and wait for some
1471 	 * time. Unless we are waiting, skip it.
1472 	 */
1473 	if (!(flags & SYNC_WAIT) &&
1474 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1475 		return 0;
1476 
1477 	if (eofb) {
1478 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1479 			match = xfs_inode_match_id_union(ip, eofb);
1480 		else
1481 			match = xfs_inode_match_id(ip, eofb);
1482 		if (!match)
1483 			return 0;
1484 
1485 		/* skip the inode if the file size is too small */
1486 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1487 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1488 			return 0;
1489 	}
1490 
1491 	/*
1492 	 * If the caller is waiting, return -EAGAIN to keep the background
1493 	 * scanner moving and revisit the inode in a subsequent pass.
1494 	 */
1495 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1496 		if (flags & SYNC_WAIT)
1497 			ret = -EAGAIN;
1498 		return ret;
1499 	}
1500 	ret = xfs_free_eofblocks(ip);
1501 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1502 
1503 	return ret;
1504 }
1505 
1506 static int
1507 __xfs_icache_free_eofblocks(
1508 	struct xfs_mount	*mp,
1509 	struct xfs_eofblocks	*eofb,
1510 	int			(*execute)(struct xfs_inode *ip, int flags,
1511 					   void *args),
1512 	int			tag)
1513 {
1514 	int flags = SYNC_TRYLOCK;
1515 
1516 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1517 		flags = SYNC_WAIT;
1518 
1519 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1520 					 eofb, tag);
1521 }
1522 
1523 int
1524 xfs_icache_free_eofblocks(
1525 	struct xfs_mount	*mp,
1526 	struct xfs_eofblocks	*eofb)
1527 {
1528 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1529 			XFS_ICI_EOFBLOCKS_TAG);
1530 }
1531 
1532 /*
1533  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1534  * multiple quotas, we don't know exactly which quota caused an allocation
1535  * failure. We make a best effort by including each quota under low free space
1536  * conditions (less than 1% free space) in the scan.
1537  */
1538 static int
1539 __xfs_inode_free_quota_eofblocks(
1540 	struct xfs_inode	*ip,
1541 	int			(*execute)(struct xfs_mount *mp,
1542 					   struct xfs_eofblocks	*eofb))
1543 {
1544 	int scan = 0;
1545 	struct xfs_eofblocks eofb = {0};
1546 	struct xfs_dquot *dq;
1547 
1548 	/*
1549 	 * Run a sync scan to increase effectiveness and use the union filter to
1550 	 * cover all applicable quotas in a single scan.
1551 	 */
1552 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1553 
1554 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1555 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1556 		if (dq && xfs_dquot_lowsp(dq)) {
1557 			eofb.eof_uid = VFS_I(ip)->i_uid;
1558 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1559 			scan = 1;
1560 		}
1561 	}
1562 
1563 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1564 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1565 		if (dq && xfs_dquot_lowsp(dq)) {
1566 			eofb.eof_gid = VFS_I(ip)->i_gid;
1567 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1568 			scan = 1;
1569 		}
1570 	}
1571 
1572 	if (scan)
1573 		execute(ip->i_mount, &eofb);
1574 
1575 	return scan;
1576 }
1577 
1578 int
1579 xfs_inode_free_quota_eofblocks(
1580 	struct xfs_inode *ip)
1581 {
1582 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1583 }
1584 
1585 static inline unsigned long
1586 xfs_iflag_for_tag(
1587 	int		tag)
1588 {
1589 	switch (tag) {
1590 	case XFS_ICI_EOFBLOCKS_TAG:
1591 		return XFS_IEOFBLOCKS;
1592 	case XFS_ICI_COWBLOCKS_TAG:
1593 		return XFS_ICOWBLOCKS;
1594 	default:
1595 		ASSERT(0);
1596 		return 0;
1597 	}
1598 }
1599 
1600 static void
1601 __xfs_inode_set_blocks_tag(
1602 	xfs_inode_t	*ip,
1603 	void		(*execute)(struct xfs_mount *mp),
1604 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1605 				  int error, unsigned long caller_ip),
1606 	int		tag)
1607 {
1608 	struct xfs_mount *mp = ip->i_mount;
1609 	struct xfs_perag *pag;
1610 	int tagged;
1611 
1612 	/*
1613 	 * Don't bother locking the AG and looking up in the radix trees
1614 	 * if we already know that we have the tag set.
1615 	 */
1616 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1617 		return;
1618 	spin_lock(&ip->i_flags_lock);
1619 	ip->i_flags |= xfs_iflag_for_tag(tag);
1620 	spin_unlock(&ip->i_flags_lock);
1621 
1622 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1623 	spin_lock(&pag->pag_ici_lock);
1624 
1625 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1626 	radix_tree_tag_set(&pag->pag_ici_root,
1627 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1628 	if (!tagged) {
1629 		/* propagate the eofblocks tag up into the perag radix tree */
1630 		spin_lock(&ip->i_mount->m_perag_lock);
1631 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1632 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1633 				   tag);
1634 		spin_unlock(&ip->i_mount->m_perag_lock);
1635 
1636 		/* kick off background trimming */
1637 		execute(ip->i_mount);
1638 
1639 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1640 	}
1641 
1642 	spin_unlock(&pag->pag_ici_lock);
1643 	xfs_perag_put(pag);
1644 }
1645 
1646 void
1647 xfs_inode_set_eofblocks_tag(
1648 	xfs_inode_t	*ip)
1649 {
1650 	trace_xfs_inode_set_eofblocks_tag(ip);
1651 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1652 			trace_xfs_perag_set_eofblocks,
1653 			XFS_ICI_EOFBLOCKS_TAG);
1654 }
1655 
1656 static void
1657 __xfs_inode_clear_blocks_tag(
1658 	xfs_inode_t	*ip,
1659 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1660 				    int error, unsigned long caller_ip),
1661 	int		tag)
1662 {
1663 	struct xfs_mount *mp = ip->i_mount;
1664 	struct xfs_perag *pag;
1665 
1666 	spin_lock(&ip->i_flags_lock);
1667 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1668 	spin_unlock(&ip->i_flags_lock);
1669 
1670 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1671 	spin_lock(&pag->pag_ici_lock);
1672 
1673 	radix_tree_tag_clear(&pag->pag_ici_root,
1674 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1675 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1676 		/* clear the eofblocks tag from the perag radix tree */
1677 		spin_lock(&ip->i_mount->m_perag_lock);
1678 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1679 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1680 				     tag);
1681 		spin_unlock(&ip->i_mount->m_perag_lock);
1682 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1683 	}
1684 
1685 	spin_unlock(&pag->pag_ici_lock);
1686 	xfs_perag_put(pag);
1687 }
1688 
1689 void
1690 xfs_inode_clear_eofblocks_tag(
1691 	xfs_inode_t	*ip)
1692 {
1693 	trace_xfs_inode_clear_eofblocks_tag(ip);
1694 	return __xfs_inode_clear_blocks_tag(ip,
1695 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1696 }
1697 
1698 /*
1699  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1700  * then we can bail out quickly, but otherwise we must back off if the file
1701  * is undergoing some kind of write.
1702  */
1703 static bool
1704 xfs_prep_free_cowblocks(
1705 	struct xfs_inode	*ip)
1706 {
1707 	/*
1708 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1709 	 * possible the inode was fully unshared since it was originally tagged.
1710 	 */
1711 	if (!xfs_inode_has_cow_data(ip)) {
1712 		trace_xfs_inode_free_cowblocks_invalid(ip);
1713 		xfs_inode_clear_cowblocks_tag(ip);
1714 		return false;
1715 	}
1716 
1717 	/*
1718 	 * If the mapping is dirty or under writeback we cannot touch the
1719 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1720 	 */
1721 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1722 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1723 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1724 	    atomic_read(&VFS_I(ip)->i_dio_count))
1725 		return false;
1726 
1727 	return true;
1728 }
1729 
1730 /*
1731  * Automatic CoW Reservation Freeing
1732  *
1733  * These functions automatically garbage collect leftover CoW reservations
1734  * that were made on behalf of a cowextsize hint when we start to run out
1735  * of quota or when the reservations sit around for too long.  If the file
1736  * has dirty pages or is undergoing writeback, its CoW reservations will
1737  * be retained.
1738  *
1739  * The actual garbage collection piggybacks off the same code that runs
1740  * the speculative EOF preallocation garbage collector.
1741  */
1742 STATIC int
1743 xfs_inode_free_cowblocks(
1744 	struct xfs_inode	*ip,
1745 	int			flags,
1746 	void			*args)
1747 {
1748 	struct xfs_eofblocks	*eofb = args;
1749 	int			match;
1750 	int			ret = 0;
1751 
1752 	if (!xfs_prep_free_cowblocks(ip))
1753 		return 0;
1754 
1755 	if (eofb) {
1756 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1757 			match = xfs_inode_match_id_union(ip, eofb);
1758 		else
1759 			match = xfs_inode_match_id(ip, eofb);
1760 		if (!match)
1761 			return 0;
1762 
1763 		/* skip the inode if the file size is too small */
1764 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1765 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1766 			return 0;
1767 	}
1768 
1769 	/* Free the CoW blocks */
1770 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1771 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1772 
1773 	/*
1774 	 * Check again, nobody else should be able to dirty blocks or change
1775 	 * the reflink iflag now that we have the first two locks held.
1776 	 */
1777 	if (xfs_prep_free_cowblocks(ip))
1778 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1779 
1780 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1781 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1782 
1783 	return ret;
1784 }
1785 
1786 int
1787 xfs_icache_free_cowblocks(
1788 	struct xfs_mount	*mp,
1789 	struct xfs_eofblocks	*eofb)
1790 {
1791 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1792 			XFS_ICI_COWBLOCKS_TAG);
1793 }
1794 
1795 int
1796 xfs_inode_free_quota_cowblocks(
1797 	struct xfs_inode *ip)
1798 {
1799 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1800 }
1801 
1802 void
1803 xfs_inode_set_cowblocks_tag(
1804 	xfs_inode_t	*ip)
1805 {
1806 	trace_xfs_inode_set_cowblocks_tag(ip);
1807 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1808 			trace_xfs_perag_set_cowblocks,
1809 			XFS_ICI_COWBLOCKS_TAG);
1810 }
1811 
1812 void
1813 xfs_inode_clear_cowblocks_tag(
1814 	xfs_inode_t	*ip)
1815 {
1816 	trace_xfs_inode_clear_cowblocks_tag(ip);
1817 	return __xfs_inode_clear_blocks_tag(ip,
1818 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1819 }
1820 
1821 /* Disable post-EOF and CoW block auto-reclamation. */
1822 void
1823 xfs_stop_block_reaping(
1824 	struct xfs_mount	*mp)
1825 {
1826 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1827 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1828 }
1829 
1830 /* Enable post-EOF and CoW block auto-reclamation. */
1831 void
1832 xfs_start_block_reaping(
1833 	struct xfs_mount	*mp)
1834 {
1835 	xfs_queue_eofblocks(mp);
1836 	xfs_queue_cowblocks(mp);
1837 }
1838