1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 27 #include <linux/iversion.h> 28 29 /* Radix tree tags for incore inode tree. */ 30 31 /* inode is to be reclaimed */ 32 #define XFS_ICI_RECLAIM_TAG 0 33 /* Inode has speculative preallocations (posteof or cow) to clean. */ 34 #define XFS_ICI_BLOCKGC_TAG 1 35 36 /* 37 * The goal for walking incore inodes. These can correspond with incore inode 38 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 39 */ 40 enum xfs_icwalk_goal { 41 /* Goals directly associated with tagged inodes. */ 42 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 43 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 44 }; 45 46 static int xfs_icwalk(struct xfs_mount *mp, 47 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 48 static int xfs_icwalk_ag(struct xfs_perag *pag, 49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 50 51 /* 52 * Private inode cache walk flags for struct xfs_icwalk. Must not 53 * coincide with XFS_ICWALK_FLAGS_VALID. 54 */ 55 56 /* Stop scanning after icw_scan_limit inodes. */ 57 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 58 59 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 60 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 61 62 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 63 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 64 XFS_ICWALK_FLAG_UNION) 65 66 /* 67 * Allocate and initialise an xfs_inode. 68 */ 69 struct xfs_inode * 70 xfs_inode_alloc( 71 struct xfs_mount *mp, 72 xfs_ino_t ino) 73 { 74 struct xfs_inode *ip; 75 76 /* 77 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 78 * and return NULL here on ENOMEM. 79 */ 80 ip = kmem_cache_alloc(xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 81 82 if (inode_init_always(mp->m_super, VFS_I(ip))) { 83 kmem_cache_free(xfs_inode_cache, ip); 84 return NULL; 85 } 86 87 /* VFS doesn't initialise i_mode or i_state! */ 88 VFS_I(ip)->i_mode = 0; 89 VFS_I(ip)->i_state = 0; 90 91 XFS_STATS_INC(mp, vn_active); 92 ASSERT(atomic_read(&ip->i_pincount) == 0); 93 ASSERT(ip->i_ino == 0); 94 95 /* initialise the xfs inode */ 96 ip->i_ino = ino; 97 ip->i_mount = mp; 98 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 99 ip->i_afp = NULL; 100 ip->i_cowfp = NULL; 101 memset(&ip->i_df, 0, sizeof(ip->i_df)); 102 ip->i_flags = 0; 103 ip->i_delayed_blks = 0; 104 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 105 ip->i_nblocks = 0; 106 ip->i_forkoff = 0; 107 ip->i_sick = 0; 108 ip->i_checked = 0; 109 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 110 INIT_LIST_HEAD(&ip->i_ioend_list); 111 spin_lock_init(&ip->i_ioend_lock); 112 113 return ip; 114 } 115 116 STATIC void 117 xfs_inode_free_callback( 118 struct rcu_head *head) 119 { 120 struct inode *inode = container_of(head, struct inode, i_rcu); 121 struct xfs_inode *ip = XFS_I(inode); 122 123 switch (VFS_I(ip)->i_mode & S_IFMT) { 124 case S_IFREG: 125 case S_IFDIR: 126 case S_IFLNK: 127 xfs_idestroy_fork(&ip->i_df); 128 break; 129 } 130 131 if (ip->i_afp) { 132 xfs_idestroy_fork(ip->i_afp); 133 kmem_cache_free(xfs_ifork_cache, ip->i_afp); 134 } 135 if (ip->i_cowfp) { 136 xfs_idestroy_fork(ip->i_cowfp); 137 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 138 } 139 if (ip->i_itemp) { 140 ASSERT(!test_bit(XFS_LI_IN_AIL, 141 &ip->i_itemp->ili_item.li_flags)); 142 xfs_inode_item_destroy(ip); 143 ip->i_itemp = NULL; 144 } 145 146 kmem_cache_free(xfs_inode_cache, ip); 147 } 148 149 static void 150 __xfs_inode_free( 151 struct xfs_inode *ip) 152 { 153 /* asserts to verify all state is correct here */ 154 ASSERT(atomic_read(&ip->i_pincount) == 0); 155 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 156 XFS_STATS_DEC(ip->i_mount, vn_active); 157 158 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 159 } 160 161 void 162 xfs_inode_free( 163 struct xfs_inode *ip) 164 { 165 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 166 167 /* 168 * Because we use RCU freeing we need to ensure the inode always 169 * appears to be reclaimed with an invalid inode number when in the 170 * free state. The ip->i_flags_lock provides the barrier against lookup 171 * races. 172 */ 173 spin_lock(&ip->i_flags_lock); 174 ip->i_flags = XFS_IRECLAIM; 175 ip->i_ino = 0; 176 spin_unlock(&ip->i_flags_lock); 177 178 __xfs_inode_free(ip); 179 } 180 181 /* 182 * Queue background inode reclaim work if there are reclaimable inodes and there 183 * isn't reclaim work already scheduled or in progress. 184 */ 185 static void 186 xfs_reclaim_work_queue( 187 struct xfs_mount *mp) 188 { 189 190 rcu_read_lock(); 191 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 192 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 193 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 194 } 195 rcu_read_unlock(); 196 } 197 198 /* 199 * Background scanning to trim preallocated space. This is queued based on the 200 * 'speculative_prealloc_lifetime' tunable (5m by default). 201 */ 202 static inline void 203 xfs_blockgc_queue( 204 struct xfs_perag *pag) 205 { 206 struct xfs_mount *mp = pag->pag_mount; 207 208 if (!xfs_is_blockgc_enabled(mp)) 209 return; 210 211 rcu_read_lock(); 212 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 213 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 214 &pag->pag_blockgc_work, 215 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 216 rcu_read_unlock(); 217 } 218 219 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 220 static void 221 xfs_perag_set_inode_tag( 222 struct xfs_perag *pag, 223 xfs_agino_t agino, 224 unsigned int tag) 225 { 226 struct xfs_mount *mp = pag->pag_mount; 227 bool was_tagged; 228 229 lockdep_assert_held(&pag->pag_ici_lock); 230 231 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 232 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 233 234 if (tag == XFS_ICI_RECLAIM_TAG) 235 pag->pag_ici_reclaimable++; 236 237 if (was_tagged) 238 return; 239 240 /* propagate the tag up into the perag radix tree */ 241 spin_lock(&mp->m_perag_lock); 242 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 243 spin_unlock(&mp->m_perag_lock); 244 245 /* start background work */ 246 switch (tag) { 247 case XFS_ICI_RECLAIM_TAG: 248 xfs_reclaim_work_queue(mp); 249 break; 250 case XFS_ICI_BLOCKGC_TAG: 251 xfs_blockgc_queue(pag); 252 break; 253 } 254 255 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 256 } 257 258 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 259 static void 260 xfs_perag_clear_inode_tag( 261 struct xfs_perag *pag, 262 xfs_agino_t agino, 263 unsigned int tag) 264 { 265 struct xfs_mount *mp = pag->pag_mount; 266 267 lockdep_assert_held(&pag->pag_ici_lock); 268 269 /* 270 * Reclaim can signal (with a null agino) that it cleared its own tag 271 * by removing the inode from the radix tree. 272 */ 273 if (agino != NULLAGINO) 274 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 275 else 276 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 277 278 if (tag == XFS_ICI_RECLAIM_TAG) 279 pag->pag_ici_reclaimable--; 280 281 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 282 return; 283 284 /* clear the tag from the perag radix tree */ 285 spin_lock(&mp->m_perag_lock); 286 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 287 spin_unlock(&mp->m_perag_lock); 288 289 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 290 } 291 292 /* 293 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 294 * part of the structure. This is made more complex by the fact we store 295 * information about the on-disk values in the VFS inode and so we can't just 296 * overwrite the values unconditionally. Hence we save the parameters we 297 * need to retain across reinitialisation, and rewrite them into the VFS inode 298 * after reinitialisation even if it fails. 299 */ 300 static int 301 xfs_reinit_inode( 302 struct xfs_mount *mp, 303 struct inode *inode) 304 { 305 int error; 306 uint32_t nlink = inode->i_nlink; 307 uint32_t generation = inode->i_generation; 308 uint64_t version = inode_peek_iversion(inode); 309 umode_t mode = inode->i_mode; 310 dev_t dev = inode->i_rdev; 311 kuid_t uid = inode->i_uid; 312 kgid_t gid = inode->i_gid; 313 314 error = inode_init_always(mp->m_super, inode); 315 316 set_nlink(inode, nlink); 317 inode->i_generation = generation; 318 inode_set_iversion_queried(inode, version); 319 inode->i_mode = mode; 320 inode->i_rdev = dev; 321 inode->i_uid = uid; 322 inode->i_gid = gid; 323 return error; 324 } 325 326 /* 327 * Carefully nudge an inode whose VFS state has been torn down back into a 328 * usable state. Drops the i_flags_lock and the rcu read lock. 329 */ 330 static int 331 xfs_iget_recycle( 332 struct xfs_perag *pag, 333 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 334 { 335 struct xfs_mount *mp = ip->i_mount; 336 struct inode *inode = VFS_I(ip); 337 int error; 338 339 trace_xfs_iget_recycle(ip); 340 341 /* 342 * We need to make it look like the inode is being reclaimed to prevent 343 * the actual reclaim workers from stomping over us while we recycle 344 * the inode. We can't clear the radix tree tag yet as it requires 345 * pag_ici_lock to be held exclusive. 346 */ 347 ip->i_flags |= XFS_IRECLAIM; 348 349 spin_unlock(&ip->i_flags_lock); 350 rcu_read_unlock(); 351 352 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 353 error = xfs_reinit_inode(mp, inode); 354 if (error) { 355 /* 356 * Re-initializing the inode failed, and we are in deep 357 * trouble. Try to re-add it to the reclaim list. 358 */ 359 rcu_read_lock(); 360 spin_lock(&ip->i_flags_lock); 361 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 362 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 363 spin_unlock(&ip->i_flags_lock); 364 rcu_read_unlock(); 365 366 trace_xfs_iget_recycle_fail(ip); 367 return error; 368 } 369 370 spin_lock(&pag->pag_ici_lock); 371 spin_lock(&ip->i_flags_lock); 372 373 /* 374 * Clear the per-lifetime state in the inode as we are now effectively 375 * a new inode and need to return to the initial state before reuse 376 * occurs. 377 */ 378 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 379 ip->i_flags |= XFS_INEW; 380 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 381 XFS_ICI_RECLAIM_TAG); 382 inode->i_state = I_NEW; 383 spin_unlock(&ip->i_flags_lock); 384 spin_unlock(&pag->pag_ici_lock); 385 386 return 0; 387 } 388 389 /* 390 * If we are allocating a new inode, then check what was returned is 391 * actually a free, empty inode. If we are not allocating an inode, 392 * then check we didn't find a free inode. 393 * 394 * Returns: 395 * 0 if the inode free state matches the lookup context 396 * -ENOENT if the inode is free and we are not allocating 397 * -EFSCORRUPTED if there is any state mismatch at all 398 */ 399 static int 400 xfs_iget_check_free_state( 401 struct xfs_inode *ip, 402 int flags) 403 { 404 if (flags & XFS_IGET_CREATE) { 405 /* should be a free inode */ 406 if (VFS_I(ip)->i_mode != 0) { 407 xfs_warn(ip->i_mount, 408 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 409 ip->i_ino, VFS_I(ip)->i_mode); 410 return -EFSCORRUPTED; 411 } 412 413 if (ip->i_nblocks != 0) { 414 xfs_warn(ip->i_mount, 415 "Corruption detected! Free inode 0x%llx has blocks allocated!", 416 ip->i_ino); 417 return -EFSCORRUPTED; 418 } 419 return 0; 420 } 421 422 /* should be an allocated inode */ 423 if (VFS_I(ip)->i_mode == 0) 424 return -ENOENT; 425 426 return 0; 427 } 428 429 /* Make all pending inactivation work start immediately. */ 430 static void 431 xfs_inodegc_queue_all( 432 struct xfs_mount *mp) 433 { 434 struct xfs_inodegc *gc; 435 int cpu; 436 437 for_each_online_cpu(cpu) { 438 gc = per_cpu_ptr(mp->m_inodegc, cpu); 439 if (!llist_empty(&gc->list)) 440 queue_work_on(cpu, mp->m_inodegc_wq, &gc->work); 441 } 442 } 443 444 /* 445 * Check the validity of the inode we just found it the cache 446 */ 447 static int 448 xfs_iget_cache_hit( 449 struct xfs_perag *pag, 450 struct xfs_inode *ip, 451 xfs_ino_t ino, 452 int flags, 453 int lock_flags) __releases(RCU) 454 { 455 struct inode *inode = VFS_I(ip); 456 struct xfs_mount *mp = ip->i_mount; 457 int error; 458 459 /* 460 * check for re-use of an inode within an RCU grace period due to the 461 * radix tree nodes not being updated yet. We monitor for this by 462 * setting the inode number to zero before freeing the inode structure. 463 * If the inode has been reallocated and set up, then the inode number 464 * will not match, so check for that, too. 465 */ 466 spin_lock(&ip->i_flags_lock); 467 if (ip->i_ino != ino) 468 goto out_skip; 469 470 /* 471 * If we are racing with another cache hit that is currently 472 * instantiating this inode or currently recycling it out of 473 * reclaimable state, wait for the initialisation to complete 474 * before continuing. 475 * 476 * If we're racing with the inactivation worker we also want to wait. 477 * If we're creating a new file, it's possible that the worker 478 * previously marked the inode as free on disk but hasn't finished 479 * updating the incore state yet. The AGI buffer will be dirty and 480 * locked to the icreate transaction, so a synchronous push of the 481 * inodegc workers would result in deadlock. For a regular iget, the 482 * worker is running already, so we might as well wait. 483 * 484 * XXX(hch): eventually we should do something equivalent to 485 * wait_on_inode to wait for these flags to be cleared 486 * instead of polling for it. 487 */ 488 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 489 goto out_skip; 490 491 if (ip->i_flags & XFS_NEED_INACTIVE) { 492 /* Unlinked inodes cannot be re-grabbed. */ 493 if (VFS_I(ip)->i_nlink == 0) { 494 error = -ENOENT; 495 goto out_error; 496 } 497 goto out_inodegc_flush; 498 } 499 500 /* 501 * Check the inode free state is valid. This also detects lookup 502 * racing with unlinks. 503 */ 504 error = xfs_iget_check_free_state(ip, flags); 505 if (error) 506 goto out_error; 507 508 /* Skip inodes that have no vfs state. */ 509 if ((flags & XFS_IGET_INCORE) && 510 (ip->i_flags & XFS_IRECLAIMABLE)) 511 goto out_skip; 512 513 /* The inode fits the selection criteria; process it. */ 514 if (ip->i_flags & XFS_IRECLAIMABLE) { 515 /* Drops i_flags_lock and RCU read lock. */ 516 error = xfs_iget_recycle(pag, ip); 517 if (error) 518 return error; 519 } else { 520 /* If the VFS inode is being torn down, pause and try again. */ 521 if (!igrab(inode)) 522 goto out_skip; 523 524 /* We've got a live one. */ 525 spin_unlock(&ip->i_flags_lock); 526 rcu_read_unlock(); 527 trace_xfs_iget_hit(ip); 528 } 529 530 if (lock_flags != 0) 531 xfs_ilock(ip, lock_flags); 532 533 if (!(flags & XFS_IGET_INCORE)) 534 xfs_iflags_clear(ip, XFS_ISTALE); 535 XFS_STATS_INC(mp, xs_ig_found); 536 537 return 0; 538 539 out_skip: 540 trace_xfs_iget_skip(ip); 541 XFS_STATS_INC(mp, xs_ig_frecycle); 542 error = -EAGAIN; 543 out_error: 544 spin_unlock(&ip->i_flags_lock); 545 rcu_read_unlock(); 546 return error; 547 548 out_inodegc_flush: 549 spin_unlock(&ip->i_flags_lock); 550 rcu_read_unlock(); 551 /* 552 * Do not wait for the workers, because the caller could hold an AGI 553 * buffer lock. We're just going to sleep in a loop anyway. 554 */ 555 if (xfs_is_inodegc_enabled(mp)) 556 xfs_inodegc_queue_all(mp); 557 return -EAGAIN; 558 } 559 560 static int 561 xfs_iget_cache_miss( 562 struct xfs_mount *mp, 563 struct xfs_perag *pag, 564 xfs_trans_t *tp, 565 xfs_ino_t ino, 566 struct xfs_inode **ipp, 567 int flags, 568 int lock_flags) 569 { 570 struct xfs_inode *ip; 571 int error; 572 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 573 int iflags; 574 575 ip = xfs_inode_alloc(mp, ino); 576 if (!ip) 577 return -ENOMEM; 578 579 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); 580 if (error) 581 goto out_destroy; 582 583 /* 584 * For version 5 superblocks, if we are initialising a new inode and we 585 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 586 * simply build the new inode core with a random generation number. 587 * 588 * For version 4 (and older) superblocks, log recovery is dependent on 589 * the i_flushiter field being initialised from the current on-disk 590 * value and hence we must also read the inode off disk even when 591 * initializing new inodes. 592 */ 593 if (xfs_has_v3inodes(mp) && 594 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 595 VFS_I(ip)->i_generation = prandom_u32(); 596 } else { 597 struct xfs_buf *bp; 598 599 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 600 if (error) 601 goto out_destroy; 602 603 error = xfs_inode_from_disk(ip, 604 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 605 if (!error) 606 xfs_buf_set_ref(bp, XFS_INO_REF); 607 xfs_trans_brelse(tp, bp); 608 609 if (error) 610 goto out_destroy; 611 } 612 613 trace_xfs_iget_miss(ip); 614 615 /* 616 * Check the inode free state is valid. This also detects lookup 617 * racing with unlinks. 618 */ 619 error = xfs_iget_check_free_state(ip, flags); 620 if (error) 621 goto out_destroy; 622 623 /* 624 * Preload the radix tree so we can insert safely under the 625 * write spinlock. Note that we cannot sleep inside the preload 626 * region. Since we can be called from transaction context, don't 627 * recurse into the file system. 628 */ 629 if (radix_tree_preload(GFP_NOFS)) { 630 error = -EAGAIN; 631 goto out_destroy; 632 } 633 634 /* 635 * Because the inode hasn't been added to the radix-tree yet it can't 636 * be found by another thread, so we can do the non-sleeping lock here. 637 */ 638 if (lock_flags) { 639 if (!xfs_ilock_nowait(ip, lock_flags)) 640 BUG(); 641 } 642 643 /* 644 * These values must be set before inserting the inode into the radix 645 * tree as the moment it is inserted a concurrent lookup (allowed by the 646 * RCU locking mechanism) can find it and that lookup must see that this 647 * is an inode currently under construction (i.e. that XFS_INEW is set). 648 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 649 * memory barrier that ensures this detection works correctly at lookup 650 * time. 651 */ 652 iflags = XFS_INEW; 653 if (flags & XFS_IGET_DONTCACHE) 654 d_mark_dontcache(VFS_I(ip)); 655 ip->i_udquot = NULL; 656 ip->i_gdquot = NULL; 657 ip->i_pdquot = NULL; 658 xfs_iflags_set(ip, iflags); 659 660 /* insert the new inode */ 661 spin_lock(&pag->pag_ici_lock); 662 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 663 if (unlikely(error)) { 664 WARN_ON(error != -EEXIST); 665 XFS_STATS_INC(mp, xs_ig_dup); 666 error = -EAGAIN; 667 goto out_preload_end; 668 } 669 spin_unlock(&pag->pag_ici_lock); 670 radix_tree_preload_end(); 671 672 *ipp = ip; 673 return 0; 674 675 out_preload_end: 676 spin_unlock(&pag->pag_ici_lock); 677 radix_tree_preload_end(); 678 if (lock_flags) 679 xfs_iunlock(ip, lock_flags); 680 out_destroy: 681 __destroy_inode(VFS_I(ip)); 682 xfs_inode_free(ip); 683 return error; 684 } 685 686 /* 687 * Look up an inode by number in the given file system. The inode is looked up 688 * in the cache held in each AG. If the inode is found in the cache, initialise 689 * the vfs inode if necessary. 690 * 691 * If it is not in core, read it in from the file system's device, add it to the 692 * cache and initialise the vfs inode. 693 * 694 * The inode is locked according to the value of the lock_flags parameter. 695 * Inode lookup is only done during metadata operations and not as part of the 696 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 697 */ 698 int 699 xfs_iget( 700 struct xfs_mount *mp, 701 struct xfs_trans *tp, 702 xfs_ino_t ino, 703 uint flags, 704 uint lock_flags, 705 struct xfs_inode **ipp) 706 { 707 struct xfs_inode *ip; 708 struct xfs_perag *pag; 709 xfs_agino_t agino; 710 int error; 711 712 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 713 714 /* reject inode numbers outside existing AGs */ 715 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 716 return -EINVAL; 717 718 XFS_STATS_INC(mp, xs_ig_attempts); 719 720 /* get the perag structure and ensure that it's inode capable */ 721 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 722 agino = XFS_INO_TO_AGINO(mp, ino); 723 724 again: 725 error = 0; 726 rcu_read_lock(); 727 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 728 729 if (ip) { 730 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 731 if (error) 732 goto out_error_or_again; 733 } else { 734 rcu_read_unlock(); 735 if (flags & XFS_IGET_INCORE) { 736 error = -ENODATA; 737 goto out_error_or_again; 738 } 739 XFS_STATS_INC(mp, xs_ig_missed); 740 741 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 742 flags, lock_flags); 743 if (error) 744 goto out_error_or_again; 745 } 746 xfs_perag_put(pag); 747 748 *ipp = ip; 749 750 /* 751 * If we have a real type for an on-disk inode, we can setup the inode 752 * now. If it's a new inode being created, xfs_ialloc will handle it. 753 */ 754 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 755 xfs_setup_existing_inode(ip); 756 return 0; 757 758 out_error_or_again: 759 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 760 delay(1); 761 goto again; 762 } 763 xfs_perag_put(pag); 764 return error; 765 } 766 767 /* 768 * "Is this a cached inode that's also allocated?" 769 * 770 * Look up an inode by number in the given file system. If the inode is 771 * in cache and isn't in purgatory, return 1 if the inode is allocated 772 * and 0 if it is not. For all other cases (not in cache, being torn 773 * down, etc.), return a negative error code. 774 * 775 * The caller has to prevent inode allocation and freeing activity, 776 * presumably by locking the AGI buffer. This is to ensure that an 777 * inode cannot transition from allocated to freed until the caller is 778 * ready to allow that. If the inode is in an intermediate state (new, 779 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 780 * inode is not in the cache, -ENOENT will be returned. The caller must 781 * deal with these scenarios appropriately. 782 * 783 * This is a specialized use case for the online scrubber; if you're 784 * reading this, you probably want xfs_iget. 785 */ 786 int 787 xfs_icache_inode_is_allocated( 788 struct xfs_mount *mp, 789 struct xfs_trans *tp, 790 xfs_ino_t ino, 791 bool *inuse) 792 { 793 struct xfs_inode *ip; 794 int error; 795 796 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 797 if (error) 798 return error; 799 800 *inuse = !!(VFS_I(ip)->i_mode); 801 xfs_irele(ip); 802 return 0; 803 } 804 805 /* 806 * Grab the inode for reclaim exclusively. 807 * 808 * We have found this inode via a lookup under RCU, so the inode may have 809 * already been freed, or it may be in the process of being recycled by 810 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 811 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 812 * will not be set. Hence we need to check for both these flag conditions to 813 * avoid inodes that are no longer reclaim candidates. 814 * 815 * Note: checking for other state flags here, under the i_flags_lock or not, is 816 * racy and should be avoided. Those races should be resolved only after we have 817 * ensured that we are able to reclaim this inode and the world can see that we 818 * are going to reclaim it. 819 * 820 * Return true if we grabbed it, false otherwise. 821 */ 822 static bool 823 xfs_reclaim_igrab( 824 struct xfs_inode *ip, 825 struct xfs_icwalk *icw) 826 { 827 ASSERT(rcu_read_lock_held()); 828 829 spin_lock(&ip->i_flags_lock); 830 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 831 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 832 /* not a reclaim candidate. */ 833 spin_unlock(&ip->i_flags_lock); 834 return false; 835 } 836 837 /* Don't reclaim a sick inode unless the caller asked for it. */ 838 if (ip->i_sick && 839 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 840 spin_unlock(&ip->i_flags_lock); 841 return false; 842 } 843 844 __xfs_iflags_set(ip, XFS_IRECLAIM); 845 spin_unlock(&ip->i_flags_lock); 846 return true; 847 } 848 849 /* 850 * Inode reclaim is non-blocking, so the default action if progress cannot be 851 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 852 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 853 * blocking anymore and hence we can wait for the inode to be able to reclaim 854 * it. 855 * 856 * We do no IO here - if callers require inodes to be cleaned they must push the 857 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 858 * done in the background in a non-blocking manner, and enables memory reclaim 859 * to make progress without blocking. 860 */ 861 static void 862 xfs_reclaim_inode( 863 struct xfs_inode *ip, 864 struct xfs_perag *pag) 865 { 866 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 867 868 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 869 goto out; 870 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 871 goto out_iunlock; 872 873 if (xfs_is_shutdown(ip->i_mount)) { 874 xfs_iunpin_wait(ip); 875 xfs_iflush_abort(ip); 876 goto reclaim; 877 } 878 if (xfs_ipincount(ip)) 879 goto out_clear_flush; 880 if (!xfs_inode_clean(ip)) 881 goto out_clear_flush; 882 883 xfs_iflags_clear(ip, XFS_IFLUSHING); 884 reclaim: 885 trace_xfs_inode_reclaiming(ip); 886 887 /* 888 * Because we use RCU freeing we need to ensure the inode always appears 889 * to be reclaimed with an invalid inode number when in the free state. 890 * We do this as early as possible under the ILOCK so that 891 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 892 * detect races with us here. By doing this, we guarantee that once 893 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 894 * it will see either a valid inode that will serialise correctly, or it 895 * will see an invalid inode that it can skip. 896 */ 897 spin_lock(&ip->i_flags_lock); 898 ip->i_flags = XFS_IRECLAIM; 899 ip->i_ino = 0; 900 ip->i_sick = 0; 901 ip->i_checked = 0; 902 spin_unlock(&ip->i_flags_lock); 903 904 xfs_iunlock(ip, XFS_ILOCK_EXCL); 905 906 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 907 /* 908 * Remove the inode from the per-AG radix tree. 909 * 910 * Because radix_tree_delete won't complain even if the item was never 911 * added to the tree assert that it's been there before to catch 912 * problems with the inode life time early on. 913 */ 914 spin_lock(&pag->pag_ici_lock); 915 if (!radix_tree_delete(&pag->pag_ici_root, 916 XFS_INO_TO_AGINO(ip->i_mount, ino))) 917 ASSERT(0); 918 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 919 spin_unlock(&pag->pag_ici_lock); 920 921 /* 922 * Here we do an (almost) spurious inode lock in order to coordinate 923 * with inode cache radix tree lookups. This is because the lookup 924 * can reference the inodes in the cache without taking references. 925 * 926 * We make that OK here by ensuring that we wait until the inode is 927 * unlocked after the lookup before we go ahead and free it. 928 */ 929 xfs_ilock(ip, XFS_ILOCK_EXCL); 930 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 931 xfs_iunlock(ip, XFS_ILOCK_EXCL); 932 ASSERT(xfs_inode_clean(ip)); 933 934 __xfs_inode_free(ip); 935 return; 936 937 out_clear_flush: 938 xfs_iflags_clear(ip, XFS_IFLUSHING); 939 out_iunlock: 940 xfs_iunlock(ip, XFS_ILOCK_EXCL); 941 out: 942 xfs_iflags_clear(ip, XFS_IRECLAIM); 943 } 944 945 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 946 static inline bool 947 xfs_want_reclaim_sick( 948 struct xfs_mount *mp) 949 { 950 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 951 xfs_is_shutdown(mp); 952 } 953 954 void 955 xfs_reclaim_inodes( 956 struct xfs_mount *mp) 957 { 958 struct xfs_icwalk icw = { 959 .icw_flags = 0, 960 }; 961 962 if (xfs_want_reclaim_sick(mp)) 963 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 964 965 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 966 xfs_ail_push_all_sync(mp->m_ail); 967 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 968 } 969 } 970 971 /* 972 * The shrinker infrastructure determines how many inodes we should scan for 973 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 974 * push the AIL here. We also want to proactively free up memory if we can to 975 * minimise the amount of work memory reclaim has to do so we kick the 976 * background reclaim if it isn't already scheduled. 977 */ 978 long 979 xfs_reclaim_inodes_nr( 980 struct xfs_mount *mp, 981 unsigned long nr_to_scan) 982 { 983 struct xfs_icwalk icw = { 984 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 985 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 986 }; 987 988 if (xfs_want_reclaim_sick(mp)) 989 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 990 991 /* kick background reclaimer and push the AIL */ 992 xfs_reclaim_work_queue(mp); 993 xfs_ail_push_all(mp->m_ail); 994 995 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 996 return 0; 997 } 998 999 /* 1000 * Return the number of reclaimable inodes in the filesystem for 1001 * the shrinker to determine how much to reclaim. 1002 */ 1003 long 1004 xfs_reclaim_inodes_count( 1005 struct xfs_mount *mp) 1006 { 1007 struct xfs_perag *pag; 1008 xfs_agnumber_t ag = 0; 1009 long reclaimable = 0; 1010 1011 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1012 ag = pag->pag_agno + 1; 1013 reclaimable += pag->pag_ici_reclaimable; 1014 xfs_perag_put(pag); 1015 } 1016 return reclaimable; 1017 } 1018 1019 STATIC bool 1020 xfs_icwalk_match_id( 1021 struct xfs_inode *ip, 1022 struct xfs_icwalk *icw) 1023 { 1024 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1025 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1026 return false; 1027 1028 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1029 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1030 return false; 1031 1032 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1033 ip->i_projid != icw->icw_prid) 1034 return false; 1035 1036 return true; 1037 } 1038 1039 /* 1040 * A union-based inode filtering algorithm. Process the inode if any of the 1041 * criteria match. This is for global/internal scans only. 1042 */ 1043 STATIC bool 1044 xfs_icwalk_match_id_union( 1045 struct xfs_inode *ip, 1046 struct xfs_icwalk *icw) 1047 { 1048 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1049 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1050 return true; 1051 1052 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1053 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1054 return true; 1055 1056 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1057 ip->i_projid == icw->icw_prid) 1058 return true; 1059 1060 return false; 1061 } 1062 1063 /* 1064 * Is this inode @ip eligible for eof/cow block reclamation, given some 1065 * filtering parameters @icw? The inode is eligible if @icw is null or 1066 * if the predicate functions match. 1067 */ 1068 static bool 1069 xfs_icwalk_match( 1070 struct xfs_inode *ip, 1071 struct xfs_icwalk *icw) 1072 { 1073 bool match; 1074 1075 if (!icw) 1076 return true; 1077 1078 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1079 match = xfs_icwalk_match_id_union(ip, icw); 1080 else 1081 match = xfs_icwalk_match_id(ip, icw); 1082 if (!match) 1083 return false; 1084 1085 /* skip the inode if the file size is too small */ 1086 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1087 XFS_ISIZE(ip) < icw->icw_min_file_size) 1088 return false; 1089 1090 return true; 1091 } 1092 1093 /* 1094 * This is a fast pass over the inode cache to try to get reclaim moving on as 1095 * many inodes as possible in a short period of time. It kicks itself every few 1096 * seconds, as well as being kicked by the inode cache shrinker when memory 1097 * goes low. 1098 */ 1099 void 1100 xfs_reclaim_worker( 1101 struct work_struct *work) 1102 { 1103 struct xfs_mount *mp = container_of(to_delayed_work(work), 1104 struct xfs_mount, m_reclaim_work); 1105 1106 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1107 xfs_reclaim_work_queue(mp); 1108 } 1109 1110 STATIC int 1111 xfs_inode_free_eofblocks( 1112 struct xfs_inode *ip, 1113 struct xfs_icwalk *icw, 1114 unsigned int *lockflags) 1115 { 1116 bool wait; 1117 1118 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1119 1120 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1121 return 0; 1122 1123 /* 1124 * If the mapping is dirty the operation can block and wait for some 1125 * time. Unless we are waiting, skip it. 1126 */ 1127 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1128 return 0; 1129 1130 if (!xfs_icwalk_match(ip, icw)) 1131 return 0; 1132 1133 /* 1134 * If the caller is waiting, return -EAGAIN to keep the background 1135 * scanner moving and revisit the inode in a subsequent pass. 1136 */ 1137 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1138 if (wait) 1139 return -EAGAIN; 1140 return 0; 1141 } 1142 *lockflags |= XFS_IOLOCK_EXCL; 1143 1144 if (xfs_can_free_eofblocks(ip, false)) 1145 return xfs_free_eofblocks(ip); 1146 1147 /* inode could be preallocated or append-only */ 1148 trace_xfs_inode_free_eofblocks_invalid(ip); 1149 xfs_inode_clear_eofblocks_tag(ip); 1150 return 0; 1151 } 1152 1153 static void 1154 xfs_blockgc_set_iflag( 1155 struct xfs_inode *ip, 1156 unsigned long iflag) 1157 { 1158 struct xfs_mount *mp = ip->i_mount; 1159 struct xfs_perag *pag; 1160 1161 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1162 1163 /* 1164 * Don't bother locking the AG and looking up in the radix trees 1165 * if we already know that we have the tag set. 1166 */ 1167 if (ip->i_flags & iflag) 1168 return; 1169 spin_lock(&ip->i_flags_lock); 1170 ip->i_flags |= iflag; 1171 spin_unlock(&ip->i_flags_lock); 1172 1173 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1174 spin_lock(&pag->pag_ici_lock); 1175 1176 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1177 XFS_ICI_BLOCKGC_TAG); 1178 1179 spin_unlock(&pag->pag_ici_lock); 1180 xfs_perag_put(pag); 1181 } 1182 1183 void 1184 xfs_inode_set_eofblocks_tag( 1185 xfs_inode_t *ip) 1186 { 1187 trace_xfs_inode_set_eofblocks_tag(ip); 1188 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1189 } 1190 1191 static void 1192 xfs_blockgc_clear_iflag( 1193 struct xfs_inode *ip, 1194 unsigned long iflag) 1195 { 1196 struct xfs_mount *mp = ip->i_mount; 1197 struct xfs_perag *pag; 1198 bool clear_tag; 1199 1200 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1201 1202 spin_lock(&ip->i_flags_lock); 1203 ip->i_flags &= ~iflag; 1204 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1205 spin_unlock(&ip->i_flags_lock); 1206 1207 if (!clear_tag) 1208 return; 1209 1210 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1211 spin_lock(&pag->pag_ici_lock); 1212 1213 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1214 XFS_ICI_BLOCKGC_TAG); 1215 1216 spin_unlock(&pag->pag_ici_lock); 1217 xfs_perag_put(pag); 1218 } 1219 1220 void 1221 xfs_inode_clear_eofblocks_tag( 1222 xfs_inode_t *ip) 1223 { 1224 trace_xfs_inode_clear_eofblocks_tag(ip); 1225 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1226 } 1227 1228 /* 1229 * Set ourselves up to free CoW blocks from this file. If it's already clean 1230 * then we can bail out quickly, but otherwise we must back off if the file 1231 * is undergoing some kind of write. 1232 */ 1233 static bool 1234 xfs_prep_free_cowblocks( 1235 struct xfs_inode *ip) 1236 { 1237 /* 1238 * Just clear the tag if we have an empty cow fork or none at all. It's 1239 * possible the inode was fully unshared since it was originally tagged. 1240 */ 1241 if (!xfs_inode_has_cow_data(ip)) { 1242 trace_xfs_inode_free_cowblocks_invalid(ip); 1243 xfs_inode_clear_cowblocks_tag(ip); 1244 return false; 1245 } 1246 1247 /* 1248 * If the mapping is dirty or under writeback we cannot touch the 1249 * CoW fork. Leave it alone if we're in the midst of a directio. 1250 */ 1251 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1252 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1253 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1254 atomic_read(&VFS_I(ip)->i_dio_count)) 1255 return false; 1256 1257 return true; 1258 } 1259 1260 /* 1261 * Automatic CoW Reservation Freeing 1262 * 1263 * These functions automatically garbage collect leftover CoW reservations 1264 * that were made on behalf of a cowextsize hint when we start to run out 1265 * of quota or when the reservations sit around for too long. If the file 1266 * has dirty pages or is undergoing writeback, its CoW reservations will 1267 * be retained. 1268 * 1269 * The actual garbage collection piggybacks off the same code that runs 1270 * the speculative EOF preallocation garbage collector. 1271 */ 1272 STATIC int 1273 xfs_inode_free_cowblocks( 1274 struct xfs_inode *ip, 1275 struct xfs_icwalk *icw, 1276 unsigned int *lockflags) 1277 { 1278 bool wait; 1279 int ret = 0; 1280 1281 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1282 1283 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1284 return 0; 1285 1286 if (!xfs_prep_free_cowblocks(ip)) 1287 return 0; 1288 1289 if (!xfs_icwalk_match(ip, icw)) 1290 return 0; 1291 1292 /* 1293 * If the caller is waiting, return -EAGAIN to keep the background 1294 * scanner moving and revisit the inode in a subsequent pass. 1295 */ 1296 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1297 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1298 if (wait) 1299 return -EAGAIN; 1300 return 0; 1301 } 1302 *lockflags |= XFS_IOLOCK_EXCL; 1303 1304 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1305 if (wait) 1306 return -EAGAIN; 1307 return 0; 1308 } 1309 *lockflags |= XFS_MMAPLOCK_EXCL; 1310 1311 /* 1312 * Check again, nobody else should be able to dirty blocks or change 1313 * the reflink iflag now that we have the first two locks held. 1314 */ 1315 if (xfs_prep_free_cowblocks(ip)) 1316 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1317 return ret; 1318 } 1319 1320 void 1321 xfs_inode_set_cowblocks_tag( 1322 xfs_inode_t *ip) 1323 { 1324 trace_xfs_inode_set_cowblocks_tag(ip); 1325 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1326 } 1327 1328 void 1329 xfs_inode_clear_cowblocks_tag( 1330 xfs_inode_t *ip) 1331 { 1332 trace_xfs_inode_clear_cowblocks_tag(ip); 1333 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1334 } 1335 1336 /* Disable post-EOF and CoW block auto-reclamation. */ 1337 void 1338 xfs_blockgc_stop( 1339 struct xfs_mount *mp) 1340 { 1341 struct xfs_perag *pag; 1342 xfs_agnumber_t agno; 1343 1344 if (!xfs_clear_blockgc_enabled(mp)) 1345 return; 1346 1347 for_each_perag(mp, agno, pag) 1348 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1349 trace_xfs_blockgc_stop(mp, __return_address); 1350 } 1351 1352 /* Enable post-EOF and CoW block auto-reclamation. */ 1353 void 1354 xfs_blockgc_start( 1355 struct xfs_mount *mp) 1356 { 1357 struct xfs_perag *pag; 1358 xfs_agnumber_t agno; 1359 1360 if (xfs_set_blockgc_enabled(mp)) 1361 return; 1362 1363 trace_xfs_blockgc_start(mp, __return_address); 1364 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1365 xfs_blockgc_queue(pag); 1366 } 1367 1368 /* Don't try to run block gc on an inode that's in any of these states. */ 1369 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1370 XFS_NEED_INACTIVE | \ 1371 XFS_INACTIVATING | \ 1372 XFS_IRECLAIMABLE | \ 1373 XFS_IRECLAIM) 1374 /* 1375 * Decide if the given @ip is eligible for garbage collection of speculative 1376 * preallocations, and grab it if so. Returns true if it's ready to go or 1377 * false if we should just ignore it. 1378 */ 1379 static bool 1380 xfs_blockgc_igrab( 1381 struct xfs_inode *ip) 1382 { 1383 struct inode *inode = VFS_I(ip); 1384 1385 ASSERT(rcu_read_lock_held()); 1386 1387 /* Check for stale RCU freed inode */ 1388 spin_lock(&ip->i_flags_lock); 1389 if (!ip->i_ino) 1390 goto out_unlock_noent; 1391 1392 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1393 goto out_unlock_noent; 1394 spin_unlock(&ip->i_flags_lock); 1395 1396 /* nothing to sync during shutdown */ 1397 if (xfs_is_shutdown(ip->i_mount)) 1398 return false; 1399 1400 /* If we can't grab the inode, it must on it's way to reclaim. */ 1401 if (!igrab(inode)) 1402 return false; 1403 1404 /* inode is valid */ 1405 return true; 1406 1407 out_unlock_noent: 1408 spin_unlock(&ip->i_flags_lock); 1409 return false; 1410 } 1411 1412 /* Scan one incore inode for block preallocations that we can remove. */ 1413 static int 1414 xfs_blockgc_scan_inode( 1415 struct xfs_inode *ip, 1416 struct xfs_icwalk *icw) 1417 { 1418 unsigned int lockflags = 0; 1419 int error; 1420 1421 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1422 if (error) 1423 goto unlock; 1424 1425 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1426 unlock: 1427 if (lockflags) 1428 xfs_iunlock(ip, lockflags); 1429 xfs_irele(ip); 1430 return error; 1431 } 1432 1433 /* Background worker that trims preallocated space. */ 1434 void 1435 xfs_blockgc_worker( 1436 struct work_struct *work) 1437 { 1438 struct xfs_perag *pag = container_of(to_delayed_work(work), 1439 struct xfs_perag, pag_blockgc_work); 1440 struct xfs_mount *mp = pag->pag_mount; 1441 int error; 1442 1443 trace_xfs_blockgc_worker(mp, __return_address); 1444 1445 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1446 if (error) 1447 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1448 pag->pag_agno, error); 1449 xfs_blockgc_queue(pag); 1450 } 1451 1452 /* 1453 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1454 * and cowblocks. 1455 */ 1456 int 1457 xfs_blockgc_free_space( 1458 struct xfs_mount *mp, 1459 struct xfs_icwalk *icw) 1460 { 1461 int error; 1462 1463 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1464 1465 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1466 if (error) 1467 return error; 1468 1469 xfs_inodegc_flush(mp); 1470 return 0; 1471 } 1472 1473 /* 1474 * Reclaim all the free space that we can by scheduling the background blockgc 1475 * and inodegc workers immediately and waiting for them all to clear. 1476 */ 1477 void 1478 xfs_blockgc_flush_all( 1479 struct xfs_mount *mp) 1480 { 1481 struct xfs_perag *pag; 1482 xfs_agnumber_t agno; 1483 1484 trace_xfs_blockgc_flush_all(mp, __return_address); 1485 1486 /* 1487 * For each blockgc worker, move its queue time up to now. If it 1488 * wasn't queued, it will not be requeued. Then flush whatever's 1489 * left. 1490 */ 1491 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1492 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1493 &pag->pag_blockgc_work, 0); 1494 1495 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1496 flush_delayed_work(&pag->pag_blockgc_work); 1497 1498 xfs_inodegc_flush(mp); 1499 } 1500 1501 /* 1502 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1503 * quota caused an allocation failure, so we make a best effort by including 1504 * each quota under low free space conditions (less than 1% free space) in the 1505 * scan. 1506 * 1507 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1508 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1509 * MMAPLOCK. 1510 */ 1511 int 1512 xfs_blockgc_free_dquots( 1513 struct xfs_mount *mp, 1514 struct xfs_dquot *udqp, 1515 struct xfs_dquot *gdqp, 1516 struct xfs_dquot *pdqp, 1517 unsigned int iwalk_flags) 1518 { 1519 struct xfs_icwalk icw = {0}; 1520 bool do_work = false; 1521 1522 if (!udqp && !gdqp && !pdqp) 1523 return 0; 1524 1525 /* 1526 * Run a scan to free blocks using the union filter to cover all 1527 * applicable quotas in a single scan. 1528 */ 1529 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1530 1531 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1532 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1533 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1534 do_work = true; 1535 } 1536 1537 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1538 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1539 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1540 do_work = true; 1541 } 1542 1543 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1544 icw.icw_prid = pdqp->q_id; 1545 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1546 do_work = true; 1547 } 1548 1549 if (!do_work) 1550 return 0; 1551 1552 return xfs_blockgc_free_space(mp, &icw); 1553 } 1554 1555 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1556 int 1557 xfs_blockgc_free_quota( 1558 struct xfs_inode *ip, 1559 unsigned int iwalk_flags) 1560 { 1561 return xfs_blockgc_free_dquots(ip->i_mount, 1562 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1563 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1564 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1565 } 1566 1567 /* XFS Inode Cache Walking Code */ 1568 1569 /* 1570 * The inode lookup is done in batches to keep the amount of lock traffic and 1571 * radix tree lookups to a minimum. The batch size is a trade off between 1572 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1573 * be too greedy. 1574 */ 1575 #define XFS_LOOKUP_BATCH 32 1576 1577 1578 /* 1579 * Decide if we want to grab this inode in anticipation of doing work towards 1580 * the goal. 1581 */ 1582 static inline bool 1583 xfs_icwalk_igrab( 1584 enum xfs_icwalk_goal goal, 1585 struct xfs_inode *ip, 1586 struct xfs_icwalk *icw) 1587 { 1588 switch (goal) { 1589 case XFS_ICWALK_BLOCKGC: 1590 return xfs_blockgc_igrab(ip); 1591 case XFS_ICWALK_RECLAIM: 1592 return xfs_reclaim_igrab(ip, icw); 1593 default: 1594 return false; 1595 } 1596 } 1597 1598 /* 1599 * Process an inode. Each processing function must handle any state changes 1600 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1601 */ 1602 static inline int 1603 xfs_icwalk_process_inode( 1604 enum xfs_icwalk_goal goal, 1605 struct xfs_inode *ip, 1606 struct xfs_perag *pag, 1607 struct xfs_icwalk *icw) 1608 { 1609 int error = 0; 1610 1611 switch (goal) { 1612 case XFS_ICWALK_BLOCKGC: 1613 error = xfs_blockgc_scan_inode(ip, icw); 1614 break; 1615 case XFS_ICWALK_RECLAIM: 1616 xfs_reclaim_inode(ip, pag); 1617 break; 1618 } 1619 return error; 1620 } 1621 1622 /* 1623 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1624 * process them in some manner. 1625 */ 1626 static int 1627 xfs_icwalk_ag( 1628 struct xfs_perag *pag, 1629 enum xfs_icwalk_goal goal, 1630 struct xfs_icwalk *icw) 1631 { 1632 struct xfs_mount *mp = pag->pag_mount; 1633 uint32_t first_index; 1634 int last_error = 0; 1635 int skipped; 1636 bool done; 1637 int nr_found; 1638 1639 restart: 1640 done = false; 1641 skipped = 0; 1642 if (goal == XFS_ICWALK_RECLAIM) 1643 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1644 else 1645 first_index = 0; 1646 nr_found = 0; 1647 do { 1648 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1649 int error = 0; 1650 int i; 1651 1652 rcu_read_lock(); 1653 1654 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1655 (void **) batch, first_index, 1656 XFS_LOOKUP_BATCH, goal); 1657 if (!nr_found) { 1658 done = true; 1659 rcu_read_unlock(); 1660 break; 1661 } 1662 1663 /* 1664 * Grab the inodes before we drop the lock. if we found 1665 * nothing, nr == 0 and the loop will be skipped. 1666 */ 1667 for (i = 0; i < nr_found; i++) { 1668 struct xfs_inode *ip = batch[i]; 1669 1670 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1671 batch[i] = NULL; 1672 1673 /* 1674 * Update the index for the next lookup. Catch 1675 * overflows into the next AG range which can occur if 1676 * we have inodes in the last block of the AG and we 1677 * are currently pointing to the last inode. 1678 * 1679 * Because we may see inodes that are from the wrong AG 1680 * due to RCU freeing and reallocation, only update the 1681 * index if it lies in this AG. It was a race that lead 1682 * us to see this inode, so another lookup from the 1683 * same index will not find it again. 1684 */ 1685 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1686 continue; 1687 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1688 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1689 done = true; 1690 } 1691 1692 /* unlock now we've grabbed the inodes. */ 1693 rcu_read_unlock(); 1694 1695 for (i = 0; i < nr_found; i++) { 1696 if (!batch[i]) 1697 continue; 1698 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1699 icw); 1700 if (error == -EAGAIN) { 1701 skipped++; 1702 continue; 1703 } 1704 if (error && last_error != -EFSCORRUPTED) 1705 last_error = error; 1706 } 1707 1708 /* bail out if the filesystem is corrupted. */ 1709 if (error == -EFSCORRUPTED) 1710 break; 1711 1712 cond_resched(); 1713 1714 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1715 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1716 if (icw->icw_scan_limit <= 0) 1717 break; 1718 } 1719 } while (nr_found && !done); 1720 1721 if (goal == XFS_ICWALK_RECLAIM) { 1722 if (done) 1723 first_index = 0; 1724 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1725 } 1726 1727 if (skipped) { 1728 delay(1); 1729 goto restart; 1730 } 1731 return last_error; 1732 } 1733 1734 /* Walk all incore inodes to achieve a given goal. */ 1735 static int 1736 xfs_icwalk( 1737 struct xfs_mount *mp, 1738 enum xfs_icwalk_goal goal, 1739 struct xfs_icwalk *icw) 1740 { 1741 struct xfs_perag *pag; 1742 int error = 0; 1743 int last_error = 0; 1744 xfs_agnumber_t agno; 1745 1746 for_each_perag_tag(mp, agno, pag, goal) { 1747 error = xfs_icwalk_ag(pag, goal, icw); 1748 if (error) { 1749 last_error = error; 1750 if (error == -EFSCORRUPTED) { 1751 xfs_perag_put(pag); 1752 break; 1753 } 1754 } 1755 } 1756 return last_error; 1757 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1758 } 1759 1760 #ifdef DEBUG 1761 static void 1762 xfs_check_delalloc( 1763 struct xfs_inode *ip, 1764 int whichfork) 1765 { 1766 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 1767 struct xfs_bmbt_irec got; 1768 struct xfs_iext_cursor icur; 1769 1770 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1771 return; 1772 do { 1773 if (isnullstartblock(got.br_startblock)) { 1774 xfs_warn(ip->i_mount, 1775 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1776 ip->i_ino, 1777 whichfork == XFS_DATA_FORK ? "data" : "cow", 1778 got.br_startoff, got.br_blockcount); 1779 } 1780 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1781 } 1782 #else 1783 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1784 #endif 1785 1786 /* Schedule the inode for reclaim. */ 1787 static void 1788 xfs_inodegc_set_reclaimable( 1789 struct xfs_inode *ip) 1790 { 1791 struct xfs_mount *mp = ip->i_mount; 1792 struct xfs_perag *pag; 1793 1794 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1795 xfs_check_delalloc(ip, XFS_DATA_FORK); 1796 xfs_check_delalloc(ip, XFS_COW_FORK); 1797 ASSERT(0); 1798 } 1799 1800 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1801 spin_lock(&pag->pag_ici_lock); 1802 spin_lock(&ip->i_flags_lock); 1803 1804 trace_xfs_inode_set_reclaimable(ip); 1805 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1806 ip->i_flags |= XFS_IRECLAIMABLE; 1807 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1808 XFS_ICI_RECLAIM_TAG); 1809 1810 spin_unlock(&ip->i_flags_lock); 1811 spin_unlock(&pag->pag_ici_lock); 1812 xfs_perag_put(pag); 1813 } 1814 1815 /* 1816 * Free all speculative preallocations and possibly even the inode itself. 1817 * This is the last chance to make changes to an otherwise unreferenced file 1818 * before incore reclamation happens. 1819 */ 1820 static void 1821 xfs_inodegc_inactivate( 1822 struct xfs_inode *ip) 1823 { 1824 trace_xfs_inode_inactivating(ip); 1825 xfs_inactive(ip); 1826 xfs_inodegc_set_reclaimable(ip); 1827 } 1828 1829 void 1830 xfs_inodegc_worker( 1831 struct work_struct *work) 1832 { 1833 struct xfs_inodegc *gc = container_of(work, struct xfs_inodegc, 1834 work); 1835 struct llist_node *node = llist_del_all(&gc->list); 1836 struct xfs_inode *ip, *n; 1837 1838 WRITE_ONCE(gc->items, 0); 1839 1840 if (!node) 1841 return; 1842 1843 ip = llist_entry(node, struct xfs_inode, i_gclist); 1844 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); 1845 1846 WRITE_ONCE(gc->shrinker_hits, 0); 1847 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1848 xfs_iflags_set(ip, XFS_INACTIVATING); 1849 xfs_inodegc_inactivate(ip); 1850 } 1851 } 1852 1853 /* 1854 * Force all currently queued inode inactivation work to run immediately, and 1855 * wait for the work to finish. Two pass - queue all the work first pass, wait 1856 * for it in a second pass. 1857 */ 1858 void 1859 xfs_inodegc_flush( 1860 struct xfs_mount *mp) 1861 { 1862 struct xfs_inodegc *gc; 1863 int cpu; 1864 1865 if (!xfs_is_inodegc_enabled(mp)) 1866 return; 1867 1868 trace_xfs_inodegc_flush(mp, __return_address); 1869 1870 xfs_inodegc_queue_all(mp); 1871 1872 for_each_online_cpu(cpu) { 1873 gc = per_cpu_ptr(mp->m_inodegc, cpu); 1874 flush_work(&gc->work); 1875 } 1876 } 1877 1878 /* 1879 * Flush all the pending work and then disable the inode inactivation background 1880 * workers and wait for them to stop. 1881 */ 1882 void 1883 xfs_inodegc_stop( 1884 struct xfs_mount *mp) 1885 { 1886 struct xfs_inodegc *gc; 1887 int cpu; 1888 1889 if (!xfs_clear_inodegc_enabled(mp)) 1890 return; 1891 1892 xfs_inodegc_queue_all(mp); 1893 1894 for_each_online_cpu(cpu) { 1895 gc = per_cpu_ptr(mp->m_inodegc, cpu); 1896 cancel_work_sync(&gc->work); 1897 } 1898 trace_xfs_inodegc_stop(mp, __return_address); 1899 } 1900 1901 /* 1902 * Enable the inode inactivation background workers and schedule deferred inode 1903 * inactivation work if there is any. 1904 */ 1905 void 1906 xfs_inodegc_start( 1907 struct xfs_mount *mp) 1908 { 1909 if (xfs_set_inodegc_enabled(mp)) 1910 return; 1911 1912 trace_xfs_inodegc_start(mp, __return_address); 1913 xfs_inodegc_queue_all(mp); 1914 } 1915 1916 #ifdef CONFIG_XFS_RT 1917 static inline bool 1918 xfs_inodegc_want_queue_rt_file( 1919 struct xfs_inode *ip) 1920 { 1921 struct xfs_mount *mp = ip->i_mount; 1922 uint64_t freertx; 1923 1924 if (!XFS_IS_REALTIME_INODE(ip)) 1925 return false; 1926 1927 freertx = READ_ONCE(mp->m_sb.sb_frextents); 1928 return freertx < mp->m_low_rtexts[XFS_LOWSP_5_PCNT]; 1929 } 1930 #else 1931 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1932 #endif /* CONFIG_XFS_RT */ 1933 1934 /* 1935 * Schedule the inactivation worker when: 1936 * 1937 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1938 * - There is less than 5% free space left. 1939 * - Any of the quotas for this inode are near an enforcement limit. 1940 */ 1941 static inline bool 1942 xfs_inodegc_want_queue_work( 1943 struct xfs_inode *ip, 1944 unsigned int items) 1945 { 1946 struct xfs_mount *mp = ip->i_mount; 1947 1948 if (items > mp->m_ino_geo.inodes_per_cluster) 1949 return true; 1950 1951 if (__percpu_counter_compare(&mp->m_fdblocks, 1952 mp->m_low_space[XFS_LOWSP_5_PCNT], 1953 XFS_FDBLOCKS_BATCH) < 0) 1954 return true; 1955 1956 if (xfs_inodegc_want_queue_rt_file(ip)) 1957 return true; 1958 1959 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 1960 return true; 1961 1962 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 1963 return true; 1964 1965 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 1966 return true; 1967 1968 return false; 1969 } 1970 1971 /* 1972 * Upper bound on the number of inodes in each AG that can be queued for 1973 * inactivation at any given time, to avoid monopolizing the workqueue. 1974 */ 1975 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 1976 1977 /* 1978 * Make the frontend wait for inactivations when: 1979 * 1980 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 1981 * - The queue depth exceeds the maximum allowable percpu backlog. 1982 * 1983 * Note: If the current thread is running a transaction, we don't ever want to 1984 * wait for other transactions because that could introduce a deadlock. 1985 */ 1986 static inline bool 1987 xfs_inodegc_want_flush_work( 1988 struct xfs_inode *ip, 1989 unsigned int items, 1990 unsigned int shrinker_hits) 1991 { 1992 if (current->journal_info) 1993 return false; 1994 1995 if (shrinker_hits > 0) 1996 return true; 1997 1998 if (items > XFS_INODEGC_MAX_BACKLOG) 1999 return true; 2000 2001 return false; 2002 } 2003 2004 /* 2005 * Queue a background inactivation worker if there are inodes that need to be 2006 * inactivated and higher level xfs code hasn't disabled the background 2007 * workers. 2008 */ 2009 static void 2010 xfs_inodegc_queue( 2011 struct xfs_inode *ip) 2012 { 2013 struct xfs_mount *mp = ip->i_mount; 2014 struct xfs_inodegc *gc; 2015 int items; 2016 unsigned int shrinker_hits; 2017 2018 trace_xfs_inode_set_need_inactive(ip); 2019 spin_lock(&ip->i_flags_lock); 2020 ip->i_flags |= XFS_NEED_INACTIVE; 2021 spin_unlock(&ip->i_flags_lock); 2022 2023 gc = get_cpu_ptr(mp->m_inodegc); 2024 llist_add(&ip->i_gclist, &gc->list); 2025 items = READ_ONCE(gc->items); 2026 WRITE_ONCE(gc->items, items + 1); 2027 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2028 put_cpu_ptr(gc); 2029 2030 if (!xfs_is_inodegc_enabled(mp)) 2031 return; 2032 2033 if (xfs_inodegc_want_queue_work(ip, items)) { 2034 trace_xfs_inodegc_queue(mp, __return_address); 2035 queue_work(mp->m_inodegc_wq, &gc->work); 2036 } 2037 2038 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2039 trace_xfs_inodegc_throttle(mp, __return_address); 2040 flush_work(&gc->work); 2041 } 2042 } 2043 2044 /* 2045 * Fold the dead CPU inodegc queue into the current CPUs queue. 2046 */ 2047 void 2048 xfs_inodegc_cpu_dead( 2049 struct xfs_mount *mp, 2050 unsigned int dead_cpu) 2051 { 2052 struct xfs_inodegc *dead_gc, *gc; 2053 struct llist_node *first, *last; 2054 unsigned int count = 0; 2055 2056 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); 2057 cancel_work_sync(&dead_gc->work); 2058 2059 if (llist_empty(&dead_gc->list)) 2060 return; 2061 2062 first = dead_gc->list.first; 2063 last = first; 2064 while (last->next) { 2065 last = last->next; 2066 count++; 2067 } 2068 dead_gc->list.first = NULL; 2069 dead_gc->items = 0; 2070 2071 /* Add pending work to current CPU */ 2072 gc = get_cpu_ptr(mp->m_inodegc); 2073 llist_add_batch(first, last, &gc->list); 2074 count += READ_ONCE(gc->items); 2075 WRITE_ONCE(gc->items, count); 2076 put_cpu_ptr(gc); 2077 2078 if (xfs_is_inodegc_enabled(mp)) { 2079 trace_xfs_inodegc_queue(mp, __return_address); 2080 queue_work(mp->m_inodegc_wq, &gc->work); 2081 } 2082 } 2083 2084 /* 2085 * We set the inode flag atomically with the radix tree tag. Once we get tag 2086 * lookups on the radix tree, this inode flag can go away. 2087 * 2088 * We always use background reclaim here because even if the inode is clean, it 2089 * still may be under IO and hence we have wait for IO completion to occur 2090 * before we can reclaim the inode. The background reclaim path handles this 2091 * more efficiently than we can here, so simply let background reclaim tear down 2092 * all inodes. 2093 */ 2094 void 2095 xfs_inode_mark_reclaimable( 2096 struct xfs_inode *ip) 2097 { 2098 struct xfs_mount *mp = ip->i_mount; 2099 bool need_inactive; 2100 2101 XFS_STATS_INC(mp, vn_reclaim); 2102 2103 /* 2104 * We should never get here with any of the reclaim flags already set. 2105 */ 2106 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2107 2108 need_inactive = xfs_inode_needs_inactive(ip); 2109 if (need_inactive) { 2110 xfs_inodegc_queue(ip); 2111 return; 2112 } 2113 2114 /* Going straight to reclaim, so drop the dquots. */ 2115 xfs_qm_dqdetach(ip); 2116 xfs_inodegc_set_reclaimable(ip); 2117 } 2118 2119 /* 2120 * Register a phony shrinker so that we can run background inodegc sooner when 2121 * there's memory pressure. Inactivation does not itself free any memory but 2122 * it does make inodes reclaimable, which eventually frees memory. 2123 * 2124 * The count function, seek value, and batch value are crafted to trigger the 2125 * scan function during the second round of scanning. Hopefully this means 2126 * that we reclaimed enough memory that initiating metadata transactions won't 2127 * make things worse. 2128 */ 2129 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2130 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2131 2132 static unsigned long 2133 xfs_inodegc_shrinker_count( 2134 struct shrinker *shrink, 2135 struct shrink_control *sc) 2136 { 2137 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2138 m_inodegc_shrinker); 2139 struct xfs_inodegc *gc; 2140 int cpu; 2141 2142 if (!xfs_is_inodegc_enabled(mp)) 2143 return 0; 2144 2145 for_each_online_cpu(cpu) { 2146 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2147 if (!llist_empty(&gc->list)) 2148 return XFS_INODEGC_SHRINKER_COUNT; 2149 } 2150 2151 return 0; 2152 } 2153 2154 static unsigned long 2155 xfs_inodegc_shrinker_scan( 2156 struct shrinker *shrink, 2157 struct shrink_control *sc) 2158 { 2159 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2160 m_inodegc_shrinker); 2161 struct xfs_inodegc *gc; 2162 int cpu; 2163 bool no_items = true; 2164 2165 if (!xfs_is_inodegc_enabled(mp)) 2166 return SHRINK_STOP; 2167 2168 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2169 2170 for_each_online_cpu(cpu) { 2171 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2172 if (!llist_empty(&gc->list)) { 2173 unsigned int h = READ_ONCE(gc->shrinker_hits); 2174 2175 WRITE_ONCE(gc->shrinker_hits, h + 1); 2176 queue_work_on(cpu, mp->m_inodegc_wq, &gc->work); 2177 no_items = false; 2178 } 2179 } 2180 2181 /* 2182 * If there are no inodes to inactivate, we don't want the shrinker 2183 * to think there's deferred work to call us back about. 2184 */ 2185 if (no_items) 2186 return LONG_MAX; 2187 2188 return SHRINK_STOP; 2189 } 2190 2191 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2192 int 2193 xfs_inodegc_register_shrinker( 2194 struct xfs_mount *mp) 2195 { 2196 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2197 2198 shrink->count_objects = xfs_inodegc_shrinker_count; 2199 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2200 shrink->seeks = 0; 2201 shrink->flags = SHRINKER_NONSLAB; 2202 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2203 2204 return register_shrinker(shrink); 2205 } 2206