1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 28 #include <linux/iversion.h> 29 30 /* Radix tree tags for incore inode tree. */ 31 32 /* inode is to be reclaimed */ 33 #define XFS_ICI_RECLAIM_TAG 0 34 /* Inode has speculative preallocations (posteof or cow) to clean. */ 35 #define XFS_ICI_BLOCKGC_TAG 1 36 37 /* 38 * The goal for walking incore inodes. These can correspond with incore inode 39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 40 */ 41 enum xfs_icwalk_goal { 42 /* Goals directly associated with tagged inodes. */ 43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 45 }; 46 47 static int xfs_icwalk(struct xfs_mount *mp, 48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 49 static int xfs_icwalk_ag(struct xfs_perag *pag, 50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 51 52 /* 53 * Private inode cache walk flags for struct xfs_icwalk. Must not 54 * coincide with XFS_ICWALK_FLAGS_VALID. 55 */ 56 57 /* Stop scanning after icw_scan_limit inodes. */ 58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 59 60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 62 63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 64 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 65 XFS_ICWALK_FLAG_UNION) 66 67 /* 68 * Allocate and initialise an xfs_inode. 69 */ 70 struct xfs_inode * 71 xfs_inode_alloc( 72 struct xfs_mount *mp, 73 xfs_ino_t ino) 74 { 75 struct xfs_inode *ip; 76 77 /* 78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 79 * and return NULL here on ENOMEM. 80 */ 81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 82 83 if (inode_init_always(mp->m_super, VFS_I(ip))) { 84 kmem_cache_free(xfs_inode_cache, ip); 85 return NULL; 86 } 87 88 /* VFS doesn't initialise i_mode or i_state! */ 89 VFS_I(ip)->i_mode = 0; 90 VFS_I(ip)->i_state = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_cowfp = NULL; 102 memset(&ip->i_af, 0, sizeof(ip->i_af)); 103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 104 memset(&ip->i_df, 0, sizeof(ip->i_df)); 105 ip->i_flags = 0; 106 ip->i_delayed_blks = 0; 107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 108 ip->i_nblocks = 0; 109 ip->i_forkoff = 0; 110 ip->i_sick = 0; 111 ip->i_checked = 0; 112 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 113 INIT_LIST_HEAD(&ip->i_ioend_list); 114 spin_lock_init(&ip->i_ioend_lock); 115 ip->i_next_unlinked = NULLAGINO; 116 ip->i_prev_unlinked = NULLAGINO; 117 118 return ip; 119 } 120 121 STATIC void 122 xfs_inode_free_callback( 123 struct rcu_head *head) 124 { 125 struct inode *inode = container_of(head, struct inode, i_rcu); 126 struct xfs_inode *ip = XFS_I(inode); 127 128 switch (VFS_I(ip)->i_mode & S_IFMT) { 129 case S_IFREG: 130 case S_IFDIR: 131 case S_IFLNK: 132 xfs_idestroy_fork(&ip->i_df); 133 break; 134 } 135 136 xfs_ifork_zap_attr(ip); 137 138 if (ip->i_cowfp) { 139 xfs_idestroy_fork(ip->i_cowfp); 140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 141 } 142 if (ip->i_itemp) { 143 ASSERT(!test_bit(XFS_LI_IN_AIL, 144 &ip->i_itemp->ili_item.li_flags)); 145 xfs_inode_item_destroy(ip); 146 ip->i_itemp = NULL; 147 } 148 149 kmem_cache_free(xfs_inode_cache, ip); 150 } 151 152 static void 153 __xfs_inode_free( 154 struct xfs_inode *ip) 155 { 156 /* asserts to verify all state is correct here */ 157 ASSERT(atomic_read(&ip->i_pincount) == 0); 158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 159 XFS_STATS_DEC(ip->i_mount, vn_active); 160 161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 162 } 163 164 void 165 xfs_inode_free( 166 struct xfs_inode *ip) 167 { 168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 169 170 /* 171 * Because we use RCU freeing we need to ensure the inode always 172 * appears to be reclaimed with an invalid inode number when in the 173 * free state. The ip->i_flags_lock provides the barrier against lookup 174 * races. 175 */ 176 spin_lock(&ip->i_flags_lock); 177 ip->i_flags = XFS_IRECLAIM; 178 ip->i_ino = 0; 179 spin_unlock(&ip->i_flags_lock); 180 181 __xfs_inode_free(ip); 182 } 183 184 /* 185 * Queue background inode reclaim work if there are reclaimable inodes and there 186 * isn't reclaim work already scheduled or in progress. 187 */ 188 static void 189 xfs_reclaim_work_queue( 190 struct xfs_mount *mp) 191 { 192 193 rcu_read_lock(); 194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 197 } 198 rcu_read_unlock(); 199 } 200 201 /* 202 * Background scanning to trim preallocated space. This is queued based on the 203 * 'speculative_prealloc_lifetime' tunable (5m by default). 204 */ 205 static inline void 206 xfs_blockgc_queue( 207 struct xfs_perag *pag) 208 { 209 struct xfs_mount *mp = pag->pag_mount; 210 211 if (!xfs_is_blockgc_enabled(mp)) 212 return; 213 214 rcu_read_lock(); 215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 216 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 217 &pag->pag_blockgc_work, 218 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 219 rcu_read_unlock(); 220 } 221 222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 223 static void 224 xfs_perag_set_inode_tag( 225 struct xfs_perag *pag, 226 xfs_agino_t agino, 227 unsigned int tag) 228 { 229 struct xfs_mount *mp = pag->pag_mount; 230 bool was_tagged; 231 232 lockdep_assert_held(&pag->pag_ici_lock); 233 234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 236 237 if (tag == XFS_ICI_RECLAIM_TAG) 238 pag->pag_ici_reclaimable++; 239 240 if (was_tagged) 241 return; 242 243 /* propagate the tag up into the perag radix tree */ 244 spin_lock(&mp->m_perag_lock); 245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 246 spin_unlock(&mp->m_perag_lock); 247 248 /* start background work */ 249 switch (tag) { 250 case XFS_ICI_RECLAIM_TAG: 251 xfs_reclaim_work_queue(mp); 252 break; 253 case XFS_ICI_BLOCKGC_TAG: 254 xfs_blockgc_queue(pag); 255 break; 256 } 257 258 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 259 } 260 261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 262 static void 263 xfs_perag_clear_inode_tag( 264 struct xfs_perag *pag, 265 xfs_agino_t agino, 266 unsigned int tag) 267 { 268 struct xfs_mount *mp = pag->pag_mount; 269 270 lockdep_assert_held(&pag->pag_ici_lock); 271 272 /* 273 * Reclaim can signal (with a null agino) that it cleared its own tag 274 * by removing the inode from the radix tree. 275 */ 276 if (agino != NULLAGINO) 277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 278 else 279 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 280 281 if (tag == XFS_ICI_RECLAIM_TAG) 282 pag->pag_ici_reclaimable--; 283 284 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 285 return; 286 287 /* clear the tag from the perag radix tree */ 288 spin_lock(&mp->m_perag_lock); 289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 290 spin_unlock(&mp->m_perag_lock); 291 292 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 293 } 294 295 /* 296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 297 * part of the structure. This is made more complex by the fact we store 298 * information about the on-disk values in the VFS inode and so we can't just 299 * overwrite the values unconditionally. Hence we save the parameters we 300 * need to retain across reinitialisation, and rewrite them into the VFS inode 301 * after reinitialisation even if it fails. 302 */ 303 static int 304 xfs_reinit_inode( 305 struct xfs_mount *mp, 306 struct inode *inode) 307 { 308 int error; 309 uint32_t nlink = inode->i_nlink; 310 uint32_t generation = inode->i_generation; 311 uint64_t version = inode_peek_iversion(inode); 312 umode_t mode = inode->i_mode; 313 dev_t dev = inode->i_rdev; 314 kuid_t uid = inode->i_uid; 315 kgid_t gid = inode->i_gid; 316 317 error = inode_init_always(mp->m_super, inode); 318 319 set_nlink(inode, nlink); 320 inode->i_generation = generation; 321 inode_set_iversion_queried(inode, version); 322 inode->i_mode = mode; 323 inode->i_rdev = dev; 324 inode->i_uid = uid; 325 inode->i_gid = gid; 326 mapping_set_large_folios(inode->i_mapping); 327 return error; 328 } 329 330 /* 331 * Carefully nudge an inode whose VFS state has been torn down back into a 332 * usable state. Drops the i_flags_lock and the rcu read lock. 333 */ 334 static int 335 xfs_iget_recycle( 336 struct xfs_perag *pag, 337 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 338 { 339 struct xfs_mount *mp = ip->i_mount; 340 struct inode *inode = VFS_I(ip); 341 int error; 342 343 trace_xfs_iget_recycle(ip); 344 345 /* 346 * We need to make it look like the inode is being reclaimed to prevent 347 * the actual reclaim workers from stomping over us while we recycle 348 * the inode. We can't clear the radix tree tag yet as it requires 349 * pag_ici_lock to be held exclusive. 350 */ 351 ip->i_flags |= XFS_IRECLAIM; 352 353 spin_unlock(&ip->i_flags_lock); 354 rcu_read_unlock(); 355 356 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 357 error = xfs_reinit_inode(mp, inode); 358 if (error) { 359 /* 360 * Re-initializing the inode failed, and we are in deep 361 * trouble. Try to re-add it to the reclaim list. 362 */ 363 rcu_read_lock(); 364 spin_lock(&ip->i_flags_lock); 365 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 366 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 367 spin_unlock(&ip->i_flags_lock); 368 rcu_read_unlock(); 369 370 trace_xfs_iget_recycle_fail(ip); 371 return error; 372 } 373 374 spin_lock(&pag->pag_ici_lock); 375 spin_lock(&ip->i_flags_lock); 376 377 /* 378 * Clear the per-lifetime state in the inode as we are now effectively 379 * a new inode and need to return to the initial state before reuse 380 * occurs. 381 */ 382 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 383 ip->i_flags |= XFS_INEW; 384 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 385 XFS_ICI_RECLAIM_TAG); 386 inode->i_state = I_NEW; 387 spin_unlock(&ip->i_flags_lock); 388 spin_unlock(&pag->pag_ici_lock); 389 390 return 0; 391 } 392 393 /* 394 * If we are allocating a new inode, then check what was returned is 395 * actually a free, empty inode. If we are not allocating an inode, 396 * then check we didn't find a free inode. 397 * 398 * Returns: 399 * 0 if the inode free state matches the lookup context 400 * -ENOENT if the inode is free and we are not allocating 401 * -EFSCORRUPTED if there is any state mismatch at all 402 */ 403 static int 404 xfs_iget_check_free_state( 405 struct xfs_inode *ip, 406 int flags) 407 { 408 if (flags & XFS_IGET_CREATE) { 409 /* should be a free inode */ 410 if (VFS_I(ip)->i_mode != 0) { 411 xfs_warn(ip->i_mount, 412 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 413 ip->i_ino, VFS_I(ip)->i_mode); 414 return -EFSCORRUPTED; 415 } 416 417 if (ip->i_nblocks != 0) { 418 xfs_warn(ip->i_mount, 419 "Corruption detected! Free inode 0x%llx has blocks allocated!", 420 ip->i_ino); 421 return -EFSCORRUPTED; 422 } 423 return 0; 424 } 425 426 /* should be an allocated inode */ 427 if (VFS_I(ip)->i_mode == 0) 428 return -ENOENT; 429 430 return 0; 431 } 432 433 /* Make all pending inactivation work start immediately. */ 434 static void 435 xfs_inodegc_queue_all( 436 struct xfs_mount *mp) 437 { 438 struct xfs_inodegc *gc; 439 int cpu; 440 441 for_each_online_cpu(cpu) { 442 gc = per_cpu_ptr(mp->m_inodegc, cpu); 443 if (!llist_empty(&gc->list)) 444 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 445 } 446 } 447 448 /* 449 * Check the validity of the inode we just found it the cache 450 */ 451 static int 452 xfs_iget_cache_hit( 453 struct xfs_perag *pag, 454 struct xfs_inode *ip, 455 xfs_ino_t ino, 456 int flags, 457 int lock_flags) __releases(RCU) 458 { 459 struct inode *inode = VFS_I(ip); 460 struct xfs_mount *mp = ip->i_mount; 461 int error; 462 463 /* 464 * check for re-use of an inode within an RCU grace period due to the 465 * radix tree nodes not being updated yet. We monitor for this by 466 * setting the inode number to zero before freeing the inode structure. 467 * If the inode has been reallocated and set up, then the inode number 468 * will not match, so check for that, too. 469 */ 470 spin_lock(&ip->i_flags_lock); 471 if (ip->i_ino != ino) 472 goto out_skip; 473 474 /* 475 * If we are racing with another cache hit that is currently 476 * instantiating this inode or currently recycling it out of 477 * reclaimable state, wait for the initialisation to complete 478 * before continuing. 479 * 480 * If we're racing with the inactivation worker we also want to wait. 481 * If we're creating a new file, it's possible that the worker 482 * previously marked the inode as free on disk but hasn't finished 483 * updating the incore state yet. The AGI buffer will be dirty and 484 * locked to the icreate transaction, so a synchronous push of the 485 * inodegc workers would result in deadlock. For a regular iget, the 486 * worker is running already, so we might as well wait. 487 * 488 * XXX(hch): eventually we should do something equivalent to 489 * wait_on_inode to wait for these flags to be cleared 490 * instead of polling for it. 491 */ 492 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 493 goto out_skip; 494 495 if (ip->i_flags & XFS_NEED_INACTIVE) { 496 /* Unlinked inodes cannot be re-grabbed. */ 497 if (VFS_I(ip)->i_nlink == 0) { 498 error = -ENOENT; 499 goto out_error; 500 } 501 goto out_inodegc_flush; 502 } 503 504 /* 505 * Check the inode free state is valid. This also detects lookup 506 * racing with unlinks. 507 */ 508 error = xfs_iget_check_free_state(ip, flags); 509 if (error) 510 goto out_error; 511 512 /* Skip inodes that have no vfs state. */ 513 if ((flags & XFS_IGET_INCORE) && 514 (ip->i_flags & XFS_IRECLAIMABLE)) 515 goto out_skip; 516 517 /* The inode fits the selection criteria; process it. */ 518 if (ip->i_flags & XFS_IRECLAIMABLE) { 519 /* Drops i_flags_lock and RCU read lock. */ 520 error = xfs_iget_recycle(pag, ip); 521 if (error) 522 return error; 523 } else { 524 /* If the VFS inode is being torn down, pause and try again. */ 525 if (!igrab(inode)) 526 goto out_skip; 527 528 /* We've got a live one. */ 529 spin_unlock(&ip->i_flags_lock); 530 rcu_read_unlock(); 531 trace_xfs_iget_hit(ip); 532 } 533 534 if (lock_flags != 0) 535 xfs_ilock(ip, lock_flags); 536 537 if (!(flags & XFS_IGET_INCORE)) 538 xfs_iflags_clear(ip, XFS_ISTALE); 539 XFS_STATS_INC(mp, xs_ig_found); 540 541 return 0; 542 543 out_skip: 544 trace_xfs_iget_skip(ip); 545 XFS_STATS_INC(mp, xs_ig_frecycle); 546 error = -EAGAIN; 547 out_error: 548 spin_unlock(&ip->i_flags_lock); 549 rcu_read_unlock(); 550 return error; 551 552 out_inodegc_flush: 553 spin_unlock(&ip->i_flags_lock); 554 rcu_read_unlock(); 555 /* 556 * Do not wait for the workers, because the caller could hold an AGI 557 * buffer lock. We're just going to sleep in a loop anyway. 558 */ 559 if (xfs_is_inodegc_enabled(mp)) 560 xfs_inodegc_queue_all(mp); 561 return -EAGAIN; 562 } 563 564 static int 565 xfs_iget_cache_miss( 566 struct xfs_mount *mp, 567 struct xfs_perag *pag, 568 xfs_trans_t *tp, 569 xfs_ino_t ino, 570 struct xfs_inode **ipp, 571 int flags, 572 int lock_flags) 573 { 574 struct xfs_inode *ip; 575 int error; 576 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 577 int iflags; 578 579 ip = xfs_inode_alloc(mp, ino); 580 if (!ip) 581 return -ENOMEM; 582 583 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); 584 if (error) 585 goto out_destroy; 586 587 /* 588 * For version 5 superblocks, if we are initialising a new inode and we 589 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 590 * simply build the new inode core with a random generation number. 591 * 592 * For version 4 (and older) superblocks, log recovery is dependent on 593 * the i_flushiter field being initialised from the current on-disk 594 * value and hence we must also read the inode off disk even when 595 * initializing new inodes. 596 */ 597 if (xfs_has_v3inodes(mp) && 598 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 599 VFS_I(ip)->i_generation = get_random_u32(); 600 } else { 601 struct xfs_buf *bp; 602 603 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 604 if (error) 605 goto out_destroy; 606 607 error = xfs_inode_from_disk(ip, 608 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 609 if (!error) 610 xfs_buf_set_ref(bp, XFS_INO_REF); 611 xfs_trans_brelse(tp, bp); 612 613 if (error) 614 goto out_destroy; 615 } 616 617 trace_xfs_iget_miss(ip); 618 619 /* 620 * Check the inode free state is valid. This also detects lookup 621 * racing with unlinks. 622 */ 623 error = xfs_iget_check_free_state(ip, flags); 624 if (error) 625 goto out_destroy; 626 627 /* 628 * Preload the radix tree so we can insert safely under the 629 * write spinlock. Note that we cannot sleep inside the preload 630 * region. Since we can be called from transaction context, don't 631 * recurse into the file system. 632 */ 633 if (radix_tree_preload(GFP_NOFS)) { 634 error = -EAGAIN; 635 goto out_destroy; 636 } 637 638 /* 639 * Because the inode hasn't been added to the radix-tree yet it can't 640 * be found by another thread, so we can do the non-sleeping lock here. 641 */ 642 if (lock_flags) { 643 if (!xfs_ilock_nowait(ip, lock_flags)) 644 BUG(); 645 } 646 647 /* 648 * These values must be set before inserting the inode into the radix 649 * tree as the moment it is inserted a concurrent lookup (allowed by the 650 * RCU locking mechanism) can find it and that lookup must see that this 651 * is an inode currently under construction (i.e. that XFS_INEW is set). 652 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 653 * memory barrier that ensures this detection works correctly at lookup 654 * time. 655 */ 656 iflags = XFS_INEW; 657 if (flags & XFS_IGET_DONTCACHE) 658 d_mark_dontcache(VFS_I(ip)); 659 ip->i_udquot = NULL; 660 ip->i_gdquot = NULL; 661 ip->i_pdquot = NULL; 662 xfs_iflags_set(ip, iflags); 663 664 /* insert the new inode */ 665 spin_lock(&pag->pag_ici_lock); 666 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 667 if (unlikely(error)) { 668 WARN_ON(error != -EEXIST); 669 XFS_STATS_INC(mp, xs_ig_dup); 670 error = -EAGAIN; 671 goto out_preload_end; 672 } 673 spin_unlock(&pag->pag_ici_lock); 674 radix_tree_preload_end(); 675 676 *ipp = ip; 677 return 0; 678 679 out_preload_end: 680 spin_unlock(&pag->pag_ici_lock); 681 radix_tree_preload_end(); 682 if (lock_flags) 683 xfs_iunlock(ip, lock_flags); 684 out_destroy: 685 __destroy_inode(VFS_I(ip)); 686 xfs_inode_free(ip); 687 return error; 688 } 689 690 /* 691 * Look up an inode by number in the given file system. The inode is looked up 692 * in the cache held in each AG. If the inode is found in the cache, initialise 693 * the vfs inode if necessary. 694 * 695 * If it is not in core, read it in from the file system's device, add it to the 696 * cache and initialise the vfs inode. 697 * 698 * The inode is locked according to the value of the lock_flags parameter. 699 * Inode lookup is only done during metadata operations and not as part of the 700 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 701 */ 702 int 703 xfs_iget( 704 struct xfs_mount *mp, 705 struct xfs_trans *tp, 706 xfs_ino_t ino, 707 uint flags, 708 uint lock_flags, 709 struct xfs_inode **ipp) 710 { 711 struct xfs_inode *ip; 712 struct xfs_perag *pag; 713 xfs_agino_t agino; 714 int error; 715 716 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 717 718 /* reject inode numbers outside existing AGs */ 719 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 720 return -EINVAL; 721 722 XFS_STATS_INC(mp, xs_ig_attempts); 723 724 /* get the perag structure and ensure that it's inode capable */ 725 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 726 agino = XFS_INO_TO_AGINO(mp, ino); 727 728 again: 729 error = 0; 730 rcu_read_lock(); 731 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 732 733 if (ip) { 734 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 735 if (error) 736 goto out_error_or_again; 737 } else { 738 rcu_read_unlock(); 739 if (flags & XFS_IGET_INCORE) { 740 error = -ENODATA; 741 goto out_error_or_again; 742 } 743 XFS_STATS_INC(mp, xs_ig_missed); 744 745 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 746 flags, lock_flags); 747 if (error) 748 goto out_error_or_again; 749 } 750 xfs_perag_put(pag); 751 752 *ipp = ip; 753 754 /* 755 * If we have a real type for an on-disk inode, we can setup the inode 756 * now. If it's a new inode being created, xfs_init_new_inode will 757 * handle it. 758 */ 759 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 760 xfs_setup_existing_inode(ip); 761 return 0; 762 763 out_error_or_again: 764 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 765 delay(1); 766 goto again; 767 } 768 xfs_perag_put(pag); 769 return error; 770 } 771 772 /* 773 * "Is this a cached inode that's also allocated?" 774 * 775 * Look up an inode by number in the given file system. If the inode is 776 * in cache and isn't in purgatory, return 1 if the inode is allocated 777 * and 0 if it is not. For all other cases (not in cache, being torn 778 * down, etc.), return a negative error code. 779 * 780 * The caller has to prevent inode allocation and freeing activity, 781 * presumably by locking the AGI buffer. This is to ensure that an 782 * inode cannot transition from allocated to freed until the caller is 783 * ready to allow that. If the inode is in an intermediate state (new, 784 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 785 * inode is not in the cache, -ENOENT will be returned. The caller must 786 * deal with these scenarios appropriately. 787 * 788 * This is a specialized use case for the online scrubber; if you're 789 * reading this, you probably want xfs_iget. 790 */ 791 int 792 xfs_icache_inode_is_allocated( 793 struct xfs_mount *mp, 794 struct xfs_trans *tp, 795 xfs_ino_t ino, 796 bool *inuse) 797 { 798 struct xfs_inode *ip; 799 int error; 800 801 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 802 if (error) 803 return error; 804 805 *inuse = !!(VFS_I(ip)->i_mode); 806 xfs_irele(ip); 807 return 0; 808 } 809 810 /* 811 * Grab the inode for reclaim exclusively. 812 * 813 * We have found this inode via a lookup under RCU, so the inode may have 814 * already been freed, or it may be in the process of being recycled by 815 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 816 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 817 * will not be set. Hence we need to check for both these flag conditions to 818 * avoid inodes that are no longer reclaim candidates. 819 * 820 * Note: checking for other state flags here, under the i_flags_lock or not, is 821 * racy and should be avoided. Those races should be resolved only after we have 822 * ensured that we are able to reclaim this inode and the world can see that we 823 * are going to reclaim it. 824 * 825 * Return true if we grabbed it, false otherwise. 826 */ 827 static bool 828 xfs_reclaim_igrab( 829 struct xfs_inode *ip, 830 struct xfs_icwalk *icw) 831 { 832 ASSERT(rcu_read_lock_held()); 833 834 spin_lock(&ip->i_flags_lock); 835 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 836 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 837 /* not a reclaim candidate. */ 838 spin_unlock(&ip->i_flags_lock); 839 return false; 840 } 841 842 /* Don't reclaim a sick inode unless the caller asked for it. */ 843 if (ip->i_sick && 844 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 845 spin_unlock(&ip->i_flags_lock); 846 return false; 847 } 848 849 __xfs_iflags_set(ip, XFS_IRECLAIM); 850 spin_unlock(&ip->i_flags_lock); 851 return true; 852 } 853 854 /* 855 * Inode reclaim is non-blocking, so the default action if progress cannot be 856 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 857 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 858 * blocking anymore and hence we can wait for the inode to be able to reclaim 859 * it. 860 * 861 * We do no IO here - if callers require inodes to be cleaned they must push the 862 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 863 * done in the background in a non-blocking manner, and enables memory reclaim 864 * to make progress without blocking. 865 */ 866 static void 867 xfs_reclaim_inode( 868 struct xfs_inode *ip, 869 struct xfs_perag *pag) 870 { 871 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 872 873 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 874 goto out; 875 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 876 goto out_iunlock; 877 878 /* 879 * Check for log shutdown because aborting the inode can move the log 880 * tail and corrupt in memory state. This is fine if the log is shut 881 * down, but if the log is still active and only the mount is shut down 882 * then the in-memory log tail movement caused by the abort can be 883 * incorrectly propagated to disk. 884 */ 885 if (xlog_is_shutdown(ip->i_mount->m_log)) { 886 xfs_iunpin_wait(ip); 887 xfs_iflush_shutdown_abort(ip); 888 goto reclaim; 889 } 890 if (xfs_ipincount(ip)) 891 goto out_clear_flush; 892 if (!xfs_inode_clean(ip)) 893 goto out_clear_flush; 894 895 xfs_iflags_clear(ip, XFS_IFLUSHING); 896 reclaim: 897 trace_xfs_inode_reclaiming(ip); 898 899 /* 900 * Because we use RCU freeing we need to ensure the inode always appears 901 * to be reclaimed with an invalid inode number when in the free state. 902 * We do this as early as possible under the ILOCK so that 903 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 904 * detect races with us here. By doing this, we guarantee that once 905 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 906 * it will see either a valid inode that will serialise correctly, or it 907 * will see an invalid inode that it can skip. 908 */ 909 spin_lock(&ip->i_flags_lock); 910 ip->i_flags = XFS_IRECLAIM; 911 ip->i_ino = 0; 912 ip->i_sick = 0; 913 ip->i_checked = 0; 914 spin_unlock(&ip->i_flags_lock); 915 916 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 917 xfs_iunlock(ip, XFS_ILOCK_EXCL); 918 919 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 920 /* 921 * Remove the inode from the per-AG radix tree. 922 * 923 * Because radix_tree_delete won't complain even if the item was never 924 * added to the tree assert that it's been there before to catch 925 * problems with the inode life time early on. 926 */ 927 spin_lock(&pag->pag_ici_lock); 928 if (!radix_tree_delete(&pag->pag_ici_root, 929 XFS_INO_TO_AGINO(ip->i_mount, ino))) 930 ASSERT(0); 931 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 932 spin_unlock(&pag->pag_ici_lock); 933 934 /* 935 * Here we do an (almost) spurious inode lock in order to coordinate 936 * with inode cache radix tree lookups. This is because the lookup 937 * can reference the inodes in the cache without taking references. 938 * 939 * We make that OK here by ensuring that we wait until the inode is 940 * unlocked after the lookup before we go ahead and free it. 941 */ 942 xfs_ilock(ip, XFS_ILOCK_EXCL); 943 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 944 xfs_iunlock(ip, XFS_ILOCK_EXCL); 945 ASSERT(xfs_inode_clean(ip)); 946 947 __xfs_inode_free(ip); 948 return; 949 950 out_clear_flush: 951 xfs_iflags_clear(ip, XFS_IFLUSHING); 952 out_iunlock: 953 xfs_iunlock(ip, XFS_ILOCK_EXCL); 954 out: 955 xfs_iflags_clear(ip, XFS_IRECLAIM); 956 } 957 958 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 959 static inline bool 960 xfs_want_reclaim_sick( 961 struct xfs_mount *mp) 962 { 963 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 964 xfs_is_shutdown(mp); 965 } 966 967 void 968 xfs_reclaim_inodes( 969 struct xfs_mount *mp) 970 { 971 struct xfs_icwalk icw = { 972 .icw_flags = 0, 973 }; 974 975 if (xfs_want_reclaim_sick(mp)) 976 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 977 978 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 979 xfs_ail_push_all_sync(mp->m_ail); 980 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 981 } 982 } 983 984 /* 985 * The shrinker infrastructure determines how many inodes we should scan for 986 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 987 * push the AIL here. We also want to proactively free up memory if we can to 988 * minimise the amount of work memory reclaim has to do so we kick the 989 * background reclaim if it isn't already scheduled. 990 */ 991 long 992 xfs_reclaim_inodes_nr( 993 struct xfs_mount *mp, 994 unsigned long nr_to_scan) 995 { 996 struct xfs_icwalk icw = { 997 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 998 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 999 }; 1000 1001 if (xfs_want_reclaim_sick(mp)) 1002 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1003 1004 /* kick background reclaimer and push the AIL */ 1005 xfs_reclaim_work_queue(mp); 1006 xfs_ail_push_all(mp->m_ail); 1007 1008 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1009 return 0; 1010 } 1011 1012 /* 1013 * Return the number of reclaimable inodes in the filesystem for 1014 * the shrinker to determine how much to reclaim. 1015 */ 1016 long 1017 xfs_reclaim_inodes_count( 1018 struct xfs_mount *mp) 1019 { 1020 struct xfs_perag *pag; 1021 xfs_agnumber_t ag = 0; 1022 long reclaimable = 0; 1023 1024 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1025 ag = pag->pag_agno + 1; 1026 reclaimable += pag->pag_ici_reclaimable; 1027 xfs_perag_put(pag); 1028 } 1029 return reclaimable; 1030 } 1031 1032 STATIC bool 1033 xfs_icwalk_match_id( 1034 struct xfs_inode *ip, 1035 struct xfs_icwalk *icw) 1036 { 1037 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1038 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1039 return false; 1040 1041 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1042 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1043 return false; 1044 1045 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1046 ip->i_projid != icw->icw_prid) 1047 return false; 1048 1049 return true; 1050 } 1051 1052 /* 1053 * A union-based inode filtering algorithm. Process the inode if any of the 1054 * criteria match. This is for global/internal scans only. 1055 */ 1056 STATIC bool 1057 xfs_icwalk_match_id_union( 1058 struct xfs_inode *ip, 1059 struct xfs_icwalk *icw) 1060 { 1061 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1062 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1063 return true; 1064 1065 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1066 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1067 return true; 1068 1069 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1070 ip->i_projid == icw->icw_prid) 1071 return true; 1072 1073 return false; 1074 } 1075 1076 /* 1077 * Is this inode @ip eligible for eof/cow block reclamation, given some 1078 * filtering parameters @icw? The inode is eligible if @icw is null or 1079 * if the predicate functions match. 1080 */ 1081 static bool 1082 xfs_icwalk_match( 1083 struct xfs_inode *ip, 1084 struct xfs_icwalk *icw) 1085 { 1086 bool match; 1087 1088 if (!icw) 1089 return true; 1090 1091 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1092 match = xfs_icwalk_match_id_union(ip, icw); 1093 else 1094 match = xfs_icwalk_match_id(ip, icw); 1095 if (!match) 1096 return false; 1097 1098 /* skip the inode if the file size is too small */ 1099 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1100 XFS_ISIZE(ip) < icw->icw_min_file_size) 1101 return false; 1102 1103 return true; 1104 } 1105 1106 /* 1107 * This is a fast pass over the inode cache to try to get reclaim moving on as 1108 * many inodes as possible in a short period of time. It kicks itself every few 1109 * seconds, as well as being kicked by the inode cache shrinker when memory 1110 * goes low. 1111 */ 1112 void 1113 xfs_reclaim_worker( 1114 struct work_struct *work) 1115 { 1116 struct xfs_mount *mp = container_of(to_delayed_work(work), 1117 struct xfs_mount, m_reclaim_work); 1118 1119 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1120 xfs_reclaim_work_queue(mp); 1121 } 1122 1123 STATIC int 1124 xfs_inode_free_eofblocks( 1125 struct xfs_inode *ip, 1126 struct xfs_icwalk *icw, 1127 unsigned int *lockflags) 1128 { 1129 bool wait; 1130 1131 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1132 1133 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1134 return 0; 1135 1136 /* 1137 * If the mapping is dirty the operation can block and wait for some 1138 * time. Unless we are waiting, skip it. 1139 */ 1140 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1141 return 0; 1142 1143 if (!xfs_icwalk_match(ip, icw)) 1144 return 0; 1145 1146 /* 1147 * If the caller is waiting, return -EAGAIN to keep the background 1148 * scanner moving and revisit the inode in a subsequent pass. 1149 */ 1150 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1151 if (wait) 1152 return -EAGAIN; 1153 return 0; 1154 } 1155 *lockflags |= XFS_IOLOCK_EXCL; 1156 1157 if (xfs_can_free_eofblocks(ip, false)) 1158 return xfs_free_eofblocks(ip); 1159 1160 /* inode could be preallocated or append-only */ 1161 trace_xfs_inode_free_eofblocks_invalid(ip); 1162 xfs_inode_clear_eofblocks_tag(ip); 1163 return 0; 1164 } 1165 1166 static void 1167 xfs_blockgc_set_iflag( 1168 struct xfs_inode *ip, 1169 unsigned long iflag) 1170 { 1171 struct xfs_mount *mp = ip->i_mount; 1172 struct xfs_perag *pag; 1173 1174 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1175 1176 /* 1177 * Don't bother locking the AG and looking up in the radix trees 1178 * if we already know that we have the tag set. 1179 */ 1180 if (ip->i_flags & iflag) 1181 return; 1182 spin_lock(&ip->i_flags_lock); 1183 ip->i_flags |= iflag; 1184 spin_unlock(&ip->i_flags_lock); 1185 1186 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1187 spin_lock(&pag->pag_ici_lock); 1188 1189 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1190 XFS_ICI_BLOCKGC_TAG); 1191 1192 spin_unlock(&pag->pag_ici_lock); 1193 xfs_perag_put(pag); 1194 } 1195 1196 void 1197 xfs_inode_set_eofblocks_tag( 1198 xfs_inode_t *ip) 1199 { 1200 trace_xfs_inode_set_eofblocks_tag(ip); 1201 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1202 } 1203 1204 static void 1205 xfs_blockgc_clear_iflag( 1206 struct xfs_inode *ip, 1207 unsigned long iflag) 1208 { 1209 struct xfs_mount *mp = ip->i_mount; 1210 struct xfs_perag *pag; 1211 bool clear_tag; 1212 1213 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1214 1215 spin_lock(&ip->i_flags_lock); 1216 ip->i_flags &= ~iflag; 1217 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1218 spin_unlock(&ip->i_flags_lock); 1219 1220 if (!clear_tag) 1221 return; 1222 1223 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1224 spin_lock(&pag->pag_ici_lock); 1225 1226 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1227 XFS_ICI_BLOCKGC_TAG); 1228 1229 spin_unlock(&pag->pag_ici_lock); 1230 xfs_perag_put(pag); 1231 } 1232 1233 void 1234 xfs_inode_clear_eofblocks_tag( 1235 xfs_inode_t *ip) 1236 { 1237 trace_xfs_inode_clear_eofblocks_tag(ip); 1238 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1239 } 1240 1241 /* 1242 * Set ourselves up to free CoW blocks from this file. If it's already clean 1243 * then we can bail out quickly, but otherwise we must back off if the file 1244 * is undergoing some kind of write. 1245 */ 1246 static bool 1247 xfs_prep_free_cowblocks( 1248 struct xfs_inode *ip) 1249 { 1250 /* 1251 * Just clear the tag if we have an empty cow fork or none at all. It's 1252 * possible the inode was fully unshared since it was originally tagged. 1253 */ 1254 if (!xfs_inode_has_cow_data(ip)) { 1255 trace_xfs_inode_free_cowblocks_invalid(ip); 1256 xfs_inode_clear_cowblocks_tag(ip); 1257 return false; 1258 } 1259 1260 /* 1261 * If the mapping is dirty or under writeback we cannot touch the 1262 * CoW fork. Leave it alone if we're in the midst of a directio. 1263 */ 1264 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1265 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1266 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1267 atomic_read(&VFS_I(ip)->i_dio_count)) 1268 return false; 1269 1270 return true; 1271 } 1272 1273 /* 1274 * Automatic CoW Reservation Freeing 1275 * 1276 * These functions automatically garbage collect leftover CoW reservations 1277 * that were made on behalf of a cowextsize hint when we start to run out 1278 * of quota or when the reservations sit around for too long. If the file 1279 * has dirty pages or is undergoing writeback, its CoW reservations will 1280 * be retained. 1281 * 1282 * The actual garbage collection piggybacks off the same code that runs 1283 * the speculative EOF preallocation garbage collector. 1284 */ 1285 STATIC int 1286 xfs_inode_free_cowblocks( 1287 struct xfs_inode *ip, 1288 struct xfs_icwalk *icw, 1289 unsigned int *lockflags) 1290 { 1291 bool wait; 1292 int ret = 0; 1293 1294 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1295 1296 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1297 return 0; 1298 1299 if (!xfs_prep_free_cowblocks(ip)) 1300 return 0; 1301 1302 if (!xfs_icwalk_match(ip, icw)) 1303 return 0; 1304 1305 /* 1306 * If the caller is waiting, return -EAGAIN to keep the background 1307 * scanner moving and revisit the inode in a subsequent pass. 1308 */ 1309 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1310 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1311 if (wait) 1312 return -EAGAIN; 1313 return 0; 1314 } 1315 *lockflags |= XFS_IOLOCK_EXCL; 1316 1317 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1318 if (wait) 1319 return -EAGAIN; 1320 return 0; 1321 } 1322 *lockflags |= XFS_MMAPLOCK_EXCL; 1323 1324 /* 1325 * Check again, nobody else should be able to dirty blocks or change 1326 * the reflink iflag now that we have the first two locks held. 1327 */ 1328 if (xfs_prep_free_cowblocks(ip)) 1329 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1330 return ret; 1331 } 1332 1333 void 1334 xfs_inode_set_cowblocks_tag( 1335 xfs_inode_t *ip) 1336 { 1337 trace_xfs_inode_set_cowblocks_tag(ip); 1338 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1339 } 1340 1341 void 1342 xfs_inode_clear_cowblocks_tag( 1343 xfs_inode_t *ip) 1344 { 1345 trace_xfs_inode_clear_cowblocks_tag(ip); 1346 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1347 } 1348 1349 /* Disable post-EOF and CoW block auto-reclamation. */ 1350 void 1351 xfs_blockgc_stop( 1352 struct xfs_mount *mp) 1353 { 1354 struct xfs_perag *pag; 1355 xfs_agnumber_t agno; 1356 1357 if (!xfs_clear_blockgc_enabled(mp)) 1358 return; 1359 1360 for_each_perag(mp, agno, pag) 1361 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1362 trace_xfs_blockgc_stop(mp, __return_address); 1363 } 1364 1365 /* Enable post-EOF and CoW block auto-reclamation. */ 1366 void 1367 xfs_blockgc_start( 1368 struct xfs_mount *mp) 1369 { 1370 struct xfs_perag *pag; 1371 xfs_agnumber_t agno; 1372 1373 if (xfs_set_blockgc_enabled(mp)) 1374 return; 1375 1376 trace_xfs_blockgc_start(mp, __return_address); 1377 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1378 xfs_blockgc_queue(pag); 1379 } 1380 1381 /* Don't try to run block gc on an inode that's in any of these states. */ 1382 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1383 XFS_NEED_INACTIVE | \ 1384 XFS_INACTIVATING | \ 1385 XFS_IRECLAIMABLE | \ 1386 XFS_IRECLAIM) 1387 /* 1388 * Decide if the given @ip is eligible for garbage collection of speculative 1389 * preallocations, and grab it if so. Returns true if it's ready to go or 1390 * false if we should just ignore it. 1391 */ 1392 static bool 1393 xfs_blockgc_igrab( 1394 struct xfs_inode *ip) 1395 { 1396 struct inode *inode = VFS_I(ip); 1397 1398 ASSERT(rcu_read_lock_held()); 1399 1400 /* Check for stale RCU freed inode */ 1401 spin_lock(&ip->i_flags_lock); 1402 if (!ip->i_ino) 1403 goto out_unlock_noent; 1404 1405 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1406 goto out_unlock_noent; 1407 spin_unlock(&ip->i_flags_lock); 1408 1409 /* nothing to sync during shutdown */ 1410 if (xfs_is_shutdown(ip->i_mount)) 1411 return false; 1412 1413 /* If we can't grab the inode, it must on it's way to reclaim. */ 1414 if (!igrab(inode)) 1415 return false; 1416 1417 /* inode is valid */ 1418 return true; 1419 1420 out_unlock_noent: 1421 spin_unlock(&ip->i_flags_lock); 1422 return false; 1423 } 1424 1425 /* Scan one incore inode for block preallocations that we can remove. */ 1426 static int 1427 xfs_blockgc_scan_inode( 1428 struct xfs_inode *ip, 1429 struct xfs_icwalk *icw) 1430 { 1431 unsigned int lockflags = 0; 1432 int error; 1433 1434 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1435 if (error) 1436 goto unlock; 1437 1438 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1439 unlock: 1440 if (lockflags) 1441 xfs_iunlock(ip, lockflags); 1442 xfs_irele(ip); 1443 return error; 1444 } 1445 1446 /* Background worker that trims preallocated space. */ 1447 void 1448 xfs_blockgc_worker( 1449 struct work_struct *work) 1450 { 1451 struct xfs_perag *pag = container_of(to_delayed_work(work), 1452 struct xfs_perag, pag_blockgc_work); 1453 struct xfs_mount *mp = pag->pag_mount; 1454 int error; 1455 1456 trace_xfs_blockgc_worker(mp, __return_address); 1457 1458 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1459 if (error) 1460 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1461 pag->pag_agno, error); 1462 xfs_blockgc_queue(pag); 1463 } 1464 1465 /* 1466 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1467 * and cowblocks. 1468 */ 1469 int 1470 xfs_blockgc_free_space( 1471 struct xfs_mount *mp, 1472 struct xfs_icwalk *icw) 1473 { 1474 int error; 1475 1476 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1477 1478 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1479 if (error) 1480 return error; 1481 1482 xfs_inodegc_flush(mp); 1483 return 0; 1484 } 1485 1486 /* 1487 * Reclaim all the free space that we can by scheduling the background blockgc 1488 * and inodegc workers immediately and waiting for them all to clear. 1489 */ 1490 void 1491 xfs_blockgc_flush_all( 1492 struct xfs_mount *mp) 1493 { 1494 struct xfs_perag *pag; 1495 xfs_agnumber_t agno; 1496 1497 trace_xfs_blockgc_flush_all(mp, __return_address); 1498 1499 /* 1500 * For each blockgc worker, move its queue time up to now. If it 1501 * wasn't queued, it will not be requeued. Then flush whatever's 1502 * left. 1503 */ 1504 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1505 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1506 &pag->pag_blockgc_work, 0); 1507 1508 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1509 flush_delayed_work(&pag->pag_blockgc_work); 1510 1511 xfs_inodegc_flush(mp); 1512 } 1513 1514 /* 1515 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1516 * quota caused an allocation failure, so we make a best effort by including 1517 * each quota under low free space conditions (less than 1% free space) in the 1518 * scan. 1519 * 1520 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1521 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1522 * MMAPLOCK. 1523 */ 1524 int 1525 xfs_blockgc_free_dquots( 1526 struct xfs_mount *mp, 1527 struct xfs_dquot *udqp, 1528 struct xfs_dquot *gdqp, 1529 struct xfs_dquot *pdqp, 1530 unsigned int iwalk_flags) 1531 { 1532 struct xfs_icwalk icw = {0}; 1533 bool do_work = false; 1534 1535 if (!udqp && !gdqp && !pdqp) 1536 return 0; 1537 1538 /* 1539 * Run a scan to free blocks using the union filter to cover all 1540 * applicable quotas in a single scan. 1541 */ 1542 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1543 1544 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1545 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1546 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1547 do_work = true; 1548 } 1549 1550 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1551 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1552 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1553 do_work = true; 1554 } 1555 1556 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1557 icw.icw_prid = pdqp->q_id; 1558 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1559 do_work = true; 1560 } 1561 1562 if (!do_work) 1563 return 0; 1564 1565 return xfs_blockgc_free_space(mp, &icw); 1566 } 1567 1568 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1569 int 1570 xfs_blockgc_free_quota( 1571 struct xfs_inode *ip, 1572 unsigned int iwalk_flags) 1573 { 1574 return xfs_blockgc_free_dquots(ip->i_mount, 1575 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1576 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1577 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1578 } 1579 1580 /* XFS Inode Cache Walking Code */ 1581 1582 /* 1583 * The inode lookup is done in batches to keep the amount of lock traffic and 1584 * radix tree lookups to a minimum. The batch size is a trade off between 1585 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1586 * be too greedy. 1587 */ 1588 #define XFS_LOOKUP_BATCH 32 1589 1590 1591 /* 1592 * Decide if we want to grab this inode in anticipation of doing work towards 1593 * the goal. 1594 */ 1595 static inline bool 1596 xfs_icwalk_igrab( 1597 enum xfs_icwalk_goal goal, 1598 struct xfs_inode *ip, 1599 struct xfs_icwalk *icw) 1600 { 1601 switch (goal) { 1602 case XFS_ICWALK_BLOCKGC: 1603 return xfs_blockgc_igrab(ip); 1604 case XFS_ICWALK_RECLAIM: 1605 return xfs_reclaim_igrab(ip, icw); 1606 default: 1607 return false; 1608 } 1609 } 1610 1611 /* 1612 * Process an inode. Each processing function must handle any state changes 1613 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1614 */ 1615 static inline int 1616 xfs_icwalk_process_inode( 1617 enum xfs_icwalk_goal goal, 1618 struct xfs_inode *ip, 1619 struct xfs_perag *pag, 1620 struct xfs_icwalk *icw) 1621 { 1622 int error = 0; 1623 1624 switch (goal) { 1625 case XFS_ICWALK_BLOCKGC: 1626 error = xfs_blockgc_scan_inode(ip, icw); 1627 break; 1628 case XFS_ICWALK_RECLAIM: 1629 xfs_reclaim_inode(ip, pag); 1630 break; 1631 } 1632 return error; 1633 } 1634 1635 /* 1636 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1637 * process them in some manner. 1638 */ 1639 static int 1640 xfs_icwalk_ag( 1641 struct xfs_perag *pag, 1642 enum xfs_icwalk_goal goal, 1643 struct xfs_icwalk *icw) 1644 { 1645 struct xfs_mount *mp = pag->pag_mount; 1646 uint32_t first_index; 1647 int last_error = 0; 1648 int skipped; 1649 bool done; 1650 int nr_found; 1651 1652 restart: 1653 done = false; 1654 skipped = 0; 1655 if (goal == XFS_ICWALK_RECLAIM) 1656 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1657 else 1658 first_index = 0; 1659 nr_found = 0; 1660 do { 1661 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1662 int error = 0; 1663 int i; 1664 1665 rcu_read_lock(); 1666 1667 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1668 (void **) batch, first_index, 1669 XFS_LOOKUP_BATCH, goal); 1670 if (!nr_found) { 1671 done = true; 1672 rcu_read_unlock(); 1673 break; 1674 } 1675 1676 /* 1677 * Grab the inodes before we drop the lock. if we found 1678 * nothing, nr == 0 and the loop will be skipped. 1679 */ 1680 for (i = 0; i < nr_found; i++) { 1681 struct xfs_inode *ip = batch[i]; 1682 1683 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1684 batch[i] = NULL; 1685 1686 /* 1687 * Update the index for the next lookup. Catch 1688 * overflows into the next AG range which can occur if 1689 * we have inodes in the last block of the AG and we 1690 * are currently pointing to the last inode. 1691 * 1692 * Because we may see inodes that are from the wrong AG 1693 * due to RCU freeing and reallocation, only update the 1694 * index if it lies in this AG. It was a race that lead 1695 * us to see this inode, so another lookup from the 1696 * same index will not find it again. 1697 */ 1698 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1699 continue; 1700 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1701 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1702 done = true; 1703 } 1704 1705 /* unlock now we've grabbed the inodes. */ 1706 rcu_read_unlock(); 1707 1708 for (i = 0; i < nr_found; i++) { 1709 if (!batch[i]) 1710 continue; 1711 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1712 icw); 1713 if (error == -EAGAIN) { 1714 skipped++; 1715 continue; 1716 } 1717 if (error && last_error != -EFSCORRUPTED) 1718 last_error = error; 1719 } 1720 1721 /* bail out if the filesystem is corrupted. */ 1722 if (error == -EFSCORRUPTED) 1723 break; 1724 1725 cond_resched(); 1726 1727 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1728 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1729 if (icw->icw_scan_limit <= 0) 1730 break; 1731 } 1732 } while (nr_found && !done); 1733 1734 if (goal == XFS_ICWALK_RECLAIM) { 1735 if (done) 1736 first_index = 0; 1737 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1738 } 1739 1740 if (skipped) { 1741 delay(1); 1742 goto restart; 1743 } 1744 return last_error; 1745 } 1746 1747 /* Walk all incore inodes to achieve a given goal. */ 1748 static int 1749 xfs_icwalk( 1750 struct xfs_mount *mp, 1751 enum xfs_icwalk_goal goal, 1752 struct xfs_icwalk *icw) 1753 { 1754 struct xfs_perag *pag; 1755 int error = 0; 1756 int last_error = 0; 1757 xfs_agnumber_t agno; 1758 1759 for_each_perag_tag(mp, agno, pag, goal) { 1760 error = xfs_icwalk_ag(pag, goal, icw); 1761 if (error) { 1762 last_error = error; 1763 if (error == -EFSCORRUPTED) { 1764 xfs_perag_put(pag); 1765 break; 1766 } 1767 } 1768 } 1769 return last_error; 1770 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1771 } 1772 1773 #ifdef DEBUG 1774 static void 1775 xfs_check_delalloc( 1776 struct xfs_inode *ip, 1777 int whichfork) 1778 { 1779 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1780 struct xfs_bmbt_irec got; 1781 struct xfs_iext_cursor icur; 1782 1783 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1784 return; 1785 do { 1786 if (isnullstartblock(got.br_startblock)) { 1787 xfs_warn(ip->i_mount, 1788 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1789 ip->i_ino, 1790 whichfork == XFS_DATA_FORK ? "data" : "cow", 1791 got.br_startoff, got.br_blockcount); 1792 } 1793 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1794 } 1795 #else 1796 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1797 #endif 1798 1799 /* Schedule the inode for reclaim. */ 1800 static void 1801 xfs_inodegc_set_reclaimable( 1802 struct xfs_inode *ip) 1803 { 1804 struct xfs_mount *mp = ip->i_mount; 1805 struct xfs_perag *pag; 1806 1807 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1808 xfs_check_delalloc(ip, XFS_DATA_FORK); 1809 xfs_check_delalloc(ip, XFS_COW_FORK); 1810 ASSERT(0); 1811 } 1812 1813 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1814 spin_lock(&pag->pag_ici_lock); 1815 spin_lock(&ip->i_flags_lock); 1816 1817 trace_xfs_inode_set_reclaimable(ip); 1818 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1819 ip->i_flags |= XFS_IRECLAIMABLE; 1820 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1821 XFS_ICI_RECLAIM_TAG); 1822 1823 spin_unlock(&ip->i_flags_lock); 1824 spin_unlock(&pag->pag_ici_lock); 1825 xfs_perag_put(pag); 1826 } 1827 1828 /* 1829 * Free all speculative preallocations and possibly even the inode itself. 1830 * This is the last chance to make changes to an otherwise unreferenced file 1831 * before incore reclamation happens. 1832 */ 1833 static void 1834 xfs_inodegc_inactivate( 1835 struct xfs_inode *ip) 1836 { 1837 trace_xfs_inode_inactivating(ip); 1838 xfs_inactive(ip); 1839 xfs_inodegc_set_reclaimable(ip); 1840 } 1841 1842 void 1843 xfs_inodegc_worker( 1844 struct work_struct *work) 1845 { 1846 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1847 struct xfs_inodegc, work); 1848 struct llist_node *node = llist_del_all(&gc->list); 1849 struct xfs_inode *ip, *n; 1850 1851 WRITE_ONCE(gc->items, 0); 1852 1853 if (!node) 1854 return; 1855 1856 ip = llist_entry(node, struct xfs_inode, i_gclist); 1857 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); 1858 1859 WRITE_ONCE(gc->shrinker_hits, 0); 1860 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1861 xfs_iflags_set(ip, XFS_INACTIVATING); 1862 xfs_inodegc_inactivate(ip); 1863 } 1864 } 1865 1866 /* 1867 * Expedite all pending inodegc work to run immediately. This does not wait for 1868 * completion of the work. 1869 */ 1870 void 1871 xfs_inodegc_push( 1872 struct xfs_mount *mp) 1873 { 1874 if (!xfs_is_inodegc_enabled(mp)) 1875 return; 1876 trace_xfs_inodegc_push(mp, __return_address); 1877 xfs_inodegc_queue_all(mp); 1878 } 1879 1880 /* 1881 * Force all currently queued inode inactivation work to run immediately and 1882 * wait for the work to finish. 1883 */ 1884 void 1885 xfs_inodegc_flush( 1886 struct xfs_mount *mp) 1887 { 1888 xfs_inodegc_push(mp); 1889 trace_xfs_inodegc_flush(mp, __return_address); 1890 flush_workqueue(mp->m_inodegc_wq); 1891 } 1892 1893 /* 1894 * Flush all the pending work and then disable the inode inactivation background 1895 * workers and wait for them to stop. 1896 */ 1897 void 1898 xfs_inodegc_stop( 1899 struct xfs_mount *mp) 1900 { 1901 if (!xfs_clear_inodegc_enabled(mp)) 1902 return; 1903 1904 xfs_inodegc_queue_all(mp); 1905 drain_workqueue(mp->m_inodegc_wq); 1906 1907 trace_xfs_inodegc_stop(mp, __return_address); 1908 } 1909 1910 /* 1911 * Enable the inode inactivation background workers and schedule deferred inode 1912 * inactivation work if there is any. 1913 */ 1914 void 1915 xfs_inodegc_start( 1916 struct xfs_mount *mp) 1917 { 1918 if (xfs_set_inodegc_enabled(mp)) 1919 return; 1920 1921 trace_xfs_inodegc_start(mp, __return_address); 1922 xfs_inodegc_queue_all(mp); 1923 } 1924 1925 #ifdef CONFIG_XFS_RT 1926 static inline bool 1927 xfs_inodegc_want_queue_rt_file( 1928 struct xfs_inode *ip) 1929 { 1930 struct xfs_mount *mp = ip->i_mount; 1931 1932 if (!XFS_IS_REALTIME_INODE(ip)) 1933 return false; 1934 1935 if (__percpu_counter_compare(&mp->m_frextents, 1936 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 1937 XFS_FDBLOCKS_BATCH) < 0) 1938 return true; 1939 1940 return false; 1941 } 1942 #else 1943 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1944 #endif /* CONFIG_XFS_RT */ 1945 1946 /* 1947 * Schedule the inactivation worker when: 1948 * 1949 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1950 * - There is less than 5% free space left. 1951 * - Any of the quotas for this inode are near an enforcement limit. 1952 */ 1953 static inline bool 1954 xfs_inodegc_want_queue_work( 1955 struct xfs_inode *ip, 1956 unsigned int items) 1957 { 1958 struct xfs_mount *mp = ip->i_mount; 1959 1960 if (items > mp->m_ino_geo.inodes_per_cluster) 1961 return true; 1962 1963 if (__percpu_counter_compare(&mp->m_fdblocks, 1964 mp->m_low_space[XFS_LOWSP_5_PCNT], 1965 XFS_FDBLOCKS_BATCH) < 0) 1966 return true; 1967 1968 if (xfs_inodegc_want_queue_rt_file(ip)) 1969 return true; 1970 1971 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 1972 return true; 1973 1974 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 1975 return true; 1976 1977 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 1978 return true; 1979 1980 return false; 1981 } 1982 1983 /* 1984 * Upper bound on the number of inodes in each AG that can be queued for 1985 * inactivation at any given time, to avoid monopolizing the workqueue. 1986 */ 1987 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 1988 1989 /* 1990 * Make the frontend wait for inactivations when: 1991 * 1992 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 1993 * - The queue depth exceeds the maximum allowable percpu backlog. 1994 * 1995 * Note: If the current thread is running a transaction, we don't ever want to 1996 * wait for other transactions because that could introduce a deadlock. 1997 */ 1998 static inline bool 1999 xfs_inodegc_want_flush_work( 2000 struct xfs_inode *ip, 2001 unsigned int items, 2002 unsigned int shrinker_hits) 2003 { 2004 if (current->journal_info) 2005 return false; 2006 2007 if (shrinker_hits > 0) 2008 return true; 2009 2010 if (items > XFS_INODEGC_MAX_BACKLOG) 2011 return true; 2012 2013 return false; 2014 } 2015 2016 /* 2017 * Queue a background inactivation worker if there are inodes that need to be 2018 * inactivated and higher level xfs code hasn't disabled the background 2019 * workers. 2020 */ 2021 static void 2022 xfs_inodegc_queue( 2023 struct xfs_inode *ip) 2024 { 2025 struct xfs_mount *mp = ip->i_mount; 2026 struct xfs_inodegc *gc; 2027 int items; 2028 unsigned int shrinker_hits; 2029 unsigned long queue_delay = 1; 2030 2031 trace_xfs_inode_set_need_inactive(ip); 2032 spin_lock(&ip->i_flags_lock); 2033 ip->i_flags |= XFS_NEED_INACTIVE; 2034 spin_unlock(&ip->i_flags_lock); 2035 2036 gc = get_cpu_ptr(mp->m_inodegc); 2037 llist_add(&ip->i_gclist, &gc->list); 2038 items = READ_ONCE(gc->items); 2039 WRITE_ONCE(gc->items, items + 1); 2040 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2041 2042 /* 2043 * We queue the work while holding the current CPU so that the work 2044 * is scheduled to run on this CPU. 2045 */ 2046 if (!xfs_is_inodegc_enabled(mp)) { 2047 put_cpu_ptr(gc); 2048 return; 2049 } 2050 2051 if (xfs_inodegc_want_queue_work(ip, items)) 2052 queue_delay = 0; 2053 2054 trace_xfs_inodegc_queue(mp, __return_address); 2055 mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay); 2056 put_cpu_ptr(gc); 2057 2058 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2059 trace_xfs_inodegc_throttle(mp, __return_address); 2060 flush_delayed_work(&gc->work); 2061 } 2062 } 2063 2064 /* 2065 * Fold the dead CPU inodegc queue into the current CPUs queue. 2066 */ 2067 void 2068 xfs_inodegc_cpu_dead( 2069 struct xfs_mount *mp, 2070 unsigned int dead_cpu) 2071 { 2072 struct xfs_inodegc *dead_gc, *gc; 2073 struct llist_node *first, *last; 2074 unsigned int count = 0; 2075 2076 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); 2077 cancel_delayed_work_sync(&dead_gc->work); 2078 2079 if (llist_empty(&dead_gc->list)) 2080 return; 2081 2082 first = dead_gc->list.first; 2083 last = first; 2084 while (last->next) { 2085 last = last->next; 2086 count++; 2087 } 2088 dead_gc->list.first = NULL; 2089 dead_gc->items = 0; 2090 2091 /* Add pending work to current CPU */ 2092 gc = get_cpu_ptr(mp->m_inodegc); 2093 llist_add_batch(first, last, &gc->list); 2094 count += READ_ONCE(gc->items); 2095 WRITE_ONCE(gc->items, count); 2096 2097 if (xfs_is_inodegc_enabled(mp)) { 2098 trace_xfs_inodegc_queue(mp, __return_address); 2099 mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0); 2100 } 2101 put_cpu_ptr(gc); 2102 } 2103 2104 /* 2105 * We set the inode flag atomically with the radix tree tag. Once we get tag 2106 * lookups on the radix tree, this inode flag can go away. 2107 * 2108 * We always use background reclaim here because even if the inode is clean, it 2109 * still may be under IO and hence we have wait for IO completion to occur 2110 * before we can reclaim the inode. The background reclaim path handles this 2111 * more efficiently than we can here, so simply let background reclaim tear down 2112 * all inodes. 2113 */ 2114 void 2115 xfs_inode_mark_reclaimable( 2116 struct xfs_inode *ip) 2117 { 2118 struct xfs_mount *mp = ip->i_mount; 2119 bool need_inactive; 2120 2121 XFS_STATS_INC(mp, vn_reclaim); 2122 2123 /* 2124 * We should never get here with any of the reclaim flags already set. 2125 */ 2126 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2127 2128 need_inactive = xfs_inode_needs_inactive(ip); 2129 if (need_inactive) { 2130 xfs_inodegc_queue(ip); 2131 return; 2132 } 2133 2134 /* Going straight to reclaim, so drop the dquots. */ 2135 xfs_qm_dqdetach(ip); 2136 xfs_inodegc_set_reclaimable(ip); 2137 } 2138 2139 /* 2140 * Register a phony shrinker so that we can run background inodegc sooner when 2141 * there's memory pressure. Inactivation does not itself free any memory but 2142 * it does make inodes reclaimable, which eventually frees memory. 2143 * 2144 * The count function, seek value, and batch value are crafted to trigger the 2145 * scan function during the second round of scanning. Hopefully this means 2146 * that we reclaimed enough memory that initiating metadata transactions won't 2147 * make things worse. 2148 */ 2149 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2150 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2151 2152 static unsigned long 2153 xfs_inodegc_shrinker_count( 2154 struct shrinker *shrink, 2155 struct shrink_control *sc) 2156 { 2157 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2158 m_inodegc_shrinker); 2159 struct xfs_inodegc *gc; 2160 int cpu; 2161 2162 if (!xfs_is_inodegc_enabled(mp)) 2163 return 0; 2164 2165 for_each_online_cpu(cpu) { 2166 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2167 if (!llist_empty(&gc->list)) 2168 return XFS_INODEGC_SHRINKER_COUNT; 2169 } 2170 2171 return 0; 2172 } 2173 2174 static unsigned long 2175 xfs_inodegc_shrinker_scan( 2176 struct shrinker *shrink, 2177 struct shrink_control *sc) 2178 { 2179 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2180 m_inodegc_shrinker); 2181 struct xfs_inodegc *gc; 2182 int cpu; 2183 bool no_items = true; 2184 2185 if (!xfs_is_inodegc_enabled(mp)) 2186 return SHRINK_STOP; 2187 2188 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2189 2190 for_each_online_cpu(cpu) { 2191 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2192 if (!llist_empty(&gc->list)) { 2193 unsigned int h = READ_ONCE(gc->shrinker_hits); 2194 2195 WRITE_ONCE(gc->shrinker_hits, h + 1); 2196 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2197 no_items = false; 2198 } 2199 } 2200 2201 /* 2202 * If there are no inodes to inactivate, we don't want the shrinker 2203 * to think there's deferred work to call us back about. 2204 */ 2205 if (no_items) 2206 return LONG_MAX; 2207 2208 return SHRINK_STOP; 2209 } 2210 2211 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2212 int 2213 xfs_inodegc_register_shrinker( 2214 struct xfs_mount *mp) 2215 { 2216 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2217 2218 shrink->count_objects = xfs_inodegc_shrinker_count; 2219 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2220 shrink->seeks = 0; 2221 shrink->flags = SHRINKER_NONSLAB; 2222 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2223 2224 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id); 2225 } 2226