1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_types.h" 22 #include "xfs_log.h" 23 #include "xfs_log_priv.h" 24 #include "xfs_inum.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_inode.h" 32 #include "xfs_dinode.h" 33 #include "xfs_error.h" 34 #include "xfs_filestream.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_quota.h" 37 #include "xfs_trace.h" 38 #include "xfs_fsops.h" 39 #include "xfs_icache.h" 40 #include "xfs_bmap_util.h" 41 42 #include <linux/kthread.h> 43 #include <linux/freezer.h> 44 45 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 46 struct xfs_perag *pag, struct xfs_inode *ip); 47 48 /* 49 * Allocate and initialise an xfs_inode. 50 */ 51 struct xfs_inode * 52 xfs_inode_alloc( 53 struct xfs_mount *mp, 54 xfs_ino_t ino) 55 { 56 struct xfs_inode *ip; 57 58 /* 59 * if this didn't occur in transactions, we could use 60 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 61 * code up to do this anyway. 62 */ 63 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 64 if (!ip) 65 return NULL; 66 if (inode_init_always(mp->m_super, VFS_I(ip))) { 67 kmem_zone_free(xfs_inode_zone, ip); 68 return NULL; 69 } 70 71 ASSERT(atomic_read(&ip->i_pincount) == 0); 72 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 73 ASSERT(!xfs_isiflocked(ip)); 74 ASSERT(ip->i_ino == 0); 75 76 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 77 78 /* initialise the xfs inode */ 79 ip->i_ino = ino; 80 ip->i_mount = mp; 81 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 82 ip->i_afp = NULL; 83 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 84 ip->i_flags = 0; 85 ip->i_delayed_blks = 0; 86 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 87 88 return ip; 89 } 90 91 STATIC void 92 xfs_inode_free_callback( 93 struct rcu_head *head) 94 { 95 struct inode *inode = container_of(head, struct inode, i_rcu); 96 struct xfs_inode *ip = XFS_I(inode); 97 98 kmem_zone_free(xfs_inode_zone, ip); 99 } 100 101 void 102 xfs_inode_free( 103 struct xfs_inode *ip) 104 { 105 switch (ip->i_d.di_mode & S_IFMT) { 106 case S_IFREG: 107 case S_IFDIR: 108 case S_IFLNK: 109 xfs_idestroy_fork(ip, XFS_DATA_FORK); 110 break; 111 } 112 113 if (ip->i_afp) 114 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 115 116 if (ip->i_itemp) { 117 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 118 xfs_inode_item_destroy(ip); 119 ip->i_itemp = NULL; 120 } 121 122 /* asserts to verify all state is correct here */ 123 ASSERT(atomic_read(&ip->i_pincount) == 0); 124 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 125 ASSERT(!xfs_isiflocked(ip)); 126 127 /* 128 * Because we use RCU freeing we need to ensure the inode always 129 * appears to be reclaimed with an invalid inode number when in the 130 * free state. The ip->i_flags_lock provides the barrier against lookup 131 * races. 132 */ 133 spin_lock(&ip->i_flags_lock); 134 ip->i_flags = XFS_IRECLAIM; 135 ip->i_ino = 0; 136 spin_unlock(&ip->i_flags_lock); 137 138 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 139 } 140 141 /* 142 * Check the validity of the inode we just found it the cache 143 */ 144 static int 145 xfs_iget_cache_hit( 146 struct xfs_perag *pag, 147 struct xfs_inode *ip, 148 xfs_ino_t ino, 149 int flags, 150 int lock_flags) __releases(RCU) 151 { 152 struct inode *inode = VFS_I(ip); 153 struct xfs_mount *mp = ip->i_mount; 154 int error; 155 156 /* 157 * check for re-use of an inode within an RCU grace period due to the 158 * radix tree nodes not being updated yet. We monitor for this by 159 * setting the inode number to zero before freeing the inode structure. 160 * If the inode has been reallocated and set up, then the inode number 161 * will not match, so check for that, too. 162 */ 163 spin_lock(&ip->i_flags_lock); 164 if (ip->i_ino != ino) { 165 trace_xfs_iget_skip(ip); 166 XFS_STATS_INC(xs_ig_frecycle); 167 error = EAGAIN; 168 goto out_error; 169 } 170 171 172 /* 173 * If we are racing with another cache hit that is currently 174 * instantiating this inode or currently recycling it out of 175 * reclaimabe state, wait for the initialisation to complete 176 * before continuing. 177 * 178 * XXX(hch): eventually we should do something equivalent to 179 * wait_on_inode to wait for these flags to be cleared 180 * instead of polling for it. 181 */ 182 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 183 trace_xfs_iget_skip(ip); 184 XFS_STATS_INC(xs_ig_frecycle); 185 error = EAGAIN; 186 goto out_error; 187 } 188 189 /* 190 * If lookup is racing with unlink return an error immediately. 191 */ 192 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 193 error = ENOENT; 194 goto out_error; 195 } 196 197 /* 198 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 199 * Need to carefully get it back into useable state. 200 */ 201 if (ip->i_flags & XFS_IRECLAIMABLE) { 202 trace_xfs_iget_reclaim(ip); 203 204 /* 205 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 206 * from stomping over us while we recycle the inode. We can't 207 * clear the radix tree reclaimable tag yet as it requires 208 * pag_ici_lock to be held exclusive. 209 */ 210 ip->i_flags |= XFS_IRECLAIM; 211 212 spin_unlock(&ip->i_flags_lock); 213 rcu_read_unlock(); 214 215 error = -inode_init_always(mp->m_super, inode); 216 if (error) { 217 /* 218 * Re-initializing the inode failed, and we are in deep 219 * trouble. Try to re-add it to the reclaim list. 220 */ 221 rcu_read_lock(); 222 spin_lock(&ip->i_flags_lock); 223 224 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 225 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 226 trace_xfs_iget_reclaim_fail(ip); 227 goto out_error; 228 } 229 230 spin_lock(&pag->pag_ici_lock); 231 spin_lock(&ip->i_flags_lock); 232 233 /* 234 * Clear the per-lifetime state in the inode as we are now 235 * effectively a new inode and need to return to the initial 236 * state before reuse occurs. 237 */ 238 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 239 ip->i_flags |= XFS_INEW; 240 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 241 inode->i_state = I_NEW; 242 243 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 244 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 245 246 spin_unlock(&ip->i_flags_lock); 247 spin_unlock(&pag->pag_ici_lock); 248 } else { 249 /* If the VFS inode is being torn down, pause and try again. */ 250 if (!igrab(inode)) { 251 trace_xfs_iget_skip(ip); 252 error = EAGAIN; 253 goto out_error; 254 } 255 256 /* We've got a live one. */ 257 spin_unlock(&ip->i_flags_lock); 258 rcu_read_unlock(); 259 trace_xfs_iget_hit(ip); 260 } 261 262 if (lock_flags != 0) 263 xfs_ilock(ip, lock_flags); 264 265 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 266 XFS_STATS_INC(xs_ig_found); 267 268 return 0; 269 270 out_error: 271 spin_unlock(&ip->i_flags_lock); 272 rcu_read_unlock(); 273 return error; 274 } 275 276 277 static int 278 xfs_iget_cache_miss( 279 struct xfs_mount *mp, 280 struct xfs_perag *pag, 281 xfs_trans_t *tp, 282 xfs_ino_t ino, 283 struct xfs_inode **ipp, 284 int flags, 285 int lock_flags) 286 { 287 struct xfs_inode *ip; 288 int error; 289 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 290 int iflags; 291 292 ip = xfs_inode_alloc(mp, ino); 293 if (!ip) 294 return ENOMEM; 295 296 error = xfs_iread(mp, tp, ip, flags); 297 if (error) 298 goto out_destroy; 299 300 trace_xfs_iget_miss(ip); 301 302 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 303 error = ENOENT; 304 goto out_destroy; 305 } 306 307 /* 308 * Preload the radix tree so we can insert safely under the 309 * write spinlock. Note that we cannot sleep inside the preload 310 * region. Since we can be called from transaction context, don't 311 * recurse into the file system. 312 */ 313 if (radix_tree_preload(GFP_NOFS)) { 314 error = EAGAIN; 315 goto out_destroy; 316 } 317 318 /* 319 * Because the inode hasn't been added to the radix-tree yet it can't 320 * be found by another thread, so we can do the non-sleeping lock here. 321 */ 322 if (lock_flags) { 323 if (!xfs_ilock_nowait(ip, lock_flags)) 324 BUG(); 325 } 326 327 /* 328 * These values must be set before inserting the inode into the radix 329 * tree as the moment it is inserted a concurrent lookup (allowed by the 330 * RCU locking mechanism) can find it and that lookup must see that this 331 * is an inode currently under construction (i.e. that XFS_INEW is set). 332 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 333 * memory barrier that ensures this detection works correctly at lookup 334 * time. 335 */ 336 iflags = XFS_INEW; 337 if (flags & XFS_IGET_DONTCACHE) 338 iflags |= XFS_IDONTCACHE; 339 ip->i_udquot = NULL; 340 ip->i_gdquot = NULL; 341 ip->i_pdquot = NULL; 342 xfs_iflags_set(ip, iflags); 343 344 /* insert the new inode */ 345 spin_lock(&pag->pag_ici_lock); 346 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 347 if (unlikely(error)) { 348 WARN_ON(error != -EEXIST); 349 XFS_STATS_INC(xs_ig_dup); 350 error = EAGAIN; 351 goto out_preload_end; 352 } 353 spin_unlock(&pag->pag_ici_lock); 354 radix_tree_preload_end(); 355 356 *ipp = ip; 357 return 0; 358 359 out_preload_end: 360 spin_unlock(&pag->pag_ici_lock); 361 radix_tree_preload_end(); 362 if (lock_flags) 363 xfs_iunlock(ip, lock_flags); 364 out_destroy: 365 __destroy_inode(VFS_I(ip)); 366 xfs_inode_free(ip); 367 return error; 368 } 369 370 /* 371 * Look up an inode by number in the given file system. 372 * The inode is looked up in the cache held in each AG. 373 * If the inode is found in the cache, initialise the vfs inode 374 * if necessary. 375 * 376 * If it is not in core, read it in from the file system's device, 377 * add it to the cache and initialise the vfs inode. 378 * 379 * The inode is locked according to the value of the lock_flags parameter. 380 * This flag parameter indicates how and if the inode's IO lock and inode lock 381 * should be taken. 382 * 383 * mp -- the mount point structure for the current file system. It points 384 * to the inode hash table. 385 * tp -- a pointer to the current transaction if there is one. This is 386 * simply passed through to the xfs_iread() call. 387 * ino -- the number of the inode desired. This is the unique identifier 388 * within the file system for the inode being requested. 389 * lock_flags -- flags indicating how to lock the inode. See the comment 390 * for xfs_ilock() for a list of valid values. 391 */ 392 int 393 xfs_iget( 394 xfs_mount_t *mp, 395 xfs_trans_t *tp, 396 xfs_ino_t ino, 397 uint flags, 398 uint lock_flags, 399 xfs_inode_t **ipp) 400 { 401 xfs_inode_t *ip; 402 int error; 403 xfs_perag_t *pag; 404 xfs_agino_t agino; 405 406 /* 407 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 408 * doesn't get freed while it's being referenced during a 409 * radix tree traversal here. It assumes this function 410 * aqcuires only the ILOCK (and therefore it has no need to 411 * involve the IOLOCK in this synchronization). 412 */ 413 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 414 415 /* reject inode numbers outside existing AGs */ 416 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 417 return EINVAL; 418 419 /* get the perag structure and ensure that it's inode capable */ 420 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 421 agino = XFS_INO_TO_AGINO(mp, ino); 422 423 again: 424 error = 0; 425 rcu_read_lock(); 426 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 427 428 if (ip) { 429 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 430 if (error) 431 goto out_error_or_again; 432 } else { 433 rcu_read_unlock(); 434 XFS_STATS_INC(xs_ig_missed); 435 436 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 437 flags, lock_flags); 438 if (error) 439 goto out_error_or_again; 440 } 441 xfs_perag_put(pag); 442 443 *ipp = ip; 444 445 /* 446 * If we have a real type for an on-disk inode, we can set ops(&unlock) 447 * now. If it's a new inode being created, xfs_ialloc will handle it. 448 */ 449 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 450 xfs_setup_inode(ip); 451 return 0; 452 453 out_error_or_again: 454 if (error == EAGAIN) { 455 delay(1); 456 goto again; 457 } 458 xfs_perag_put(pag); 459 return error; 460 } 461 462 /* 463 * The inode lookup is done in batches to keep the amount of lock traffic and 464 * radix tree lookups to a minimum. The batch size is a trade off between 465 * lookup reduction and stack usage. This is in the reclaim path, so we can't 466 * be too greedy. 467 */ 468 #define XFS_LOOKUP_BATCH 32 469 470 STATIC int 471 xfs_inode_ag_walk_grab( 472 struct xfs_inode *ip) 473 { 474 struct inode *inode = VFS_I(ip); 475 476 ASSERT(rcu_read_lock_held()); 477 478 /* 479 * check for stale RCU freed inode 480 * 481 * If the inode has been reallocated, it doesn't matter if it's not in 482 * the AG we are walking - we are walking for writeback, so if it 483 * passes all the "valid inode" checks and is dirty, then we'll write 484 * it back anyway. If it has been reallocated and still being 485 * initialised, the XFS_INEW check below will catch it. 486 */ 487 spin_lock(&ip->i_flags_lock); 488 if (!ip->i_ino) 489 goto out_unlock_noent; 490 491 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 492 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 493 goto out_unlock_noent; 494 spin_unlock(&ip->i_flags_lock); 495 496 /* nothing to sync during shutdown */ 497 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 498 return EFSCORRUPTED; 499 500 /* If we can't grab the inode, it must on it's way to reclaim. */ 501 if (!igrab(inode)) 502 return ENOENT; 503 504 if (is_bad_inode(inode)) { 505 IRELE(ip); 506 return ENOENT; 507 } 508 509 /* inode is valid */ 510 return 0; 511 512 out_unlock_noent: 513 spin_unlock(&ip->i_flags_lock); 514 return ENOENT; 515 } 516 517 STATIC int 518 xfs_inode_ag_walk( 519 struct xfs_mount *mp, 520 struct xfs_perag *pag, 521 int (*execute)(struct xfs_inode *ip, 522 struct xfs_perag *pag, int flags, 523 void *args), 524 int flags, 525 void *args, 526 int tag) 527 { 528 uint32_t first_index; 529 int last_error = 0; 530 int skipped; 531 int done; 532 int nr_found; 533 534 restart: 535 done = 0; 536 skipped = 0; 537 first_index = 0; 538 nr_found = 0; 539 do { 540 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 541 int error = 0; 542 int i; 543 544 rcu_read_lock(); 545 546 if (tag == -1) 547 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 548 (void **)batch, first_index, 549 XFS_LOOKUP_BATCH); 550 else 551 nr_found = radix_tree_gang_lookup_tag( 552 &pag->pag_ici_root, 553 (void **) batch, first_index, 554 XFS_LOOKUP_BATCH, tag); 555 556 if (!nr_found) { 557 rcu_read_unlock(); 558 break; 559 } 560 561 /* 562 * Grab the inodes before we drop the lock. if we found 563 * nothing, nr == 0 and the loop will be skipped. 564 */ 565 for (i = 0; i < nr_found; i++) { 566 struct xfs_inode *ip = batch[i]; 567 568 if (done || xfs_inode_ag_walk_grab(ip)) 569 batch[i] = NULL; 570 571 /* 572 * Update the index for the next lookup. Catch 573 * overflows into the next AG range which can occur if 574 * we have inodes in the last block of the AG and we 575 * are currently pointing to the last inode. 576 * 577 * Because we may see inodes that are from the wrong AG 578 * due to RCU freeing and reallocation, only update the 579 * index if it lies in this AG. It was a race that lead 580 * us to see this inode, so another lookup from the 581 * same index will not find it again. 582 */ 583 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 584 continue; 585 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 586 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 587 done = 1; 588 } 589 590 /* unlock now we've grabbed the inodes. */ 591 rcu_read_unlock(); 592 593 for (i = 0; i < nr_found; i++) { 594 if (!batch[i]) 595 continue; 596 error = execute(batch[i], pag, flags, args); 597 IRELE(batch[i]); 598 if (error == EAGAIN) { 599 skipped++; 600 continue; 601 } 602 if (error && last_error != EFSCORRUPTED) 603 last_error = error; 604 } 605 606 /* bail out if the filesystem is corrupted. */ 607 if (error == EFSCORRUPTED) 608 break; 609 610 cond_resched(); 611 612 } while (nr_found && !done); 613 614 if (skipped) { 615 delay(1); 616 goto restart; 617 } 618 return last_error; 619 } 620 621 /* 622 * Background scanning to trim post-EOF preallocated space. This is queued 623 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 624 */ 625 STATIC void 626 xfs_queue_eofblocks( 627 struct xfs_mount *mp) 628 { 629 rcu_read_lock(); 630 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 631 queue_delayed_work(mp->m_eofblocks_workqueue, 632 &mp->m_eofblocks_work, 633 msecs_to_jiffies(xfs_eofb_secs * 1000)); 634 rcu_read_unlock(); 635 } 636 637 void 638 xfs_eofblocks_worker( 639 struct work_struct *work) 640 { 641 struct xfs_mount *mp = container_of(to_delayed_work(work), 642 struct xfs_mount, m_eofblocks_work); 643 xfs_icache_free_eofblocks(mp, NULL); 644 xfs_queue_eofblocks(mp); 645 } 646 647 int 648 xfs_inode_ag_iterator( 649 struct xfs_mount *mp, 650 int (*execute)(struct xfs_inode *ip, 651 struct xfs_perag *pag, int flags, 652 void *args), 653 int flags, 654 void *args) 655 { 656 struct xfs_perag *pag; 657 int error = 0; 658 int last_error = 0; 659 xfs_agnumber_t ag; 660 661 ag = 0; 662 while ((pag = xfs_perag_get(mp, ag))) { 663 ag = pag->pag_agno + 1; 664 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 665 xfs_perag_put(pag); 666 if (error) { 667 last_error = error; 668 if (error == EFSCORRUPTED) 669 break; 670 } 671 } 672 return XFS_ERROR(last_error); 673 } 674 675 int 676 xfs_inode_ag_iterator_tag( 677 struct xfs_mount *mp, 678 int (*execute)(struct xfs_inode *ip, 679 struct xfs_perag *pag, int flags, 680 void *args), 681 int flags, 682 void *args, 683 int tag) 684 { 685 struct xfs_perag *pag; 686 int error = 0; 687 int last_error = 0; 688 xfs_agnumber_t ag; 689 690 ag = 0; 691 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 692 ag = pag->pag_agno + 1; 693 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 694 xfs_perag_put(pag); 695 if (error) { 696 last_error = error; 697 if (error == EFSCORRUPTED) 698 break; 699 } 700 } 701 return XFS_ERROR(last_error); 702 } 703 704 /* 705 * Queue a new inode reclaim pass if there are reclaimable inodes and there 706 * isn't a reclaim pass already in progress. By default it runs every 5s based 707 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 708 * tunable, but that can be done if this method proves to be ineffective or too 709 * aggressive. 710 */ 711 static void 712 xfs_reclaim_work_queue( 713 struct xfs_mount *mp) 714 { 715 716 rcu_read_lock(); 717 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 718 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 719 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 720 } 721 rcu_read_unlock(); 722 } 723 724 /* 725 * This is a fast pass over the inode cache to try to get reclaim moving on as 726 * many inodes as possible in a short period of time. It kicks itself every few 727 * seconds, as well as being kicked by the inode cache shrinker when memory 728 * goes low. It scans as quickly as possible avoiding locked inodes or those 729 * already being flushed, and once done schedules a future pass. 730 */ 731 void 732 xfs_reclaim_worker( 733 struct work_struct *work) 734 { 735 struct xfs_mount *mp = container_of(to_delayed_work(work), 736 struct xfs_mount, m_reclaim_work); 737 738 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 739 xfs_reclaim_work_queue(mp); 740 } 741 742 static void 743 __xfs_inode_set_reclaim_tag( 744 struct xfs_perag *pag, 745 struct xfs_inode *ip) 746 { 747 radix_tree_tag_set(&pag->pag_ici_root, 748 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 749 XFS_ICI_RECLAIM_TAG); 750 751 if (!pag->pag_ici_reclaimable) { 752 /* propagate the reclaim tag up into the perag radix tree */ 753 spin_lock(&ip->i_mount->m_perag_lock); 754 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 755 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 756 XFS_ICI_RECLAIM_TAG); 757 spin_unlock(&ip->i_mount->m_perag_lock); 758 759 /* schedule periodic background inode reclaim */ 760 xfs_reclaim_work_queue(ip->i_mount); 761 762 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 763 -1, _RET_IP_); 764 } 765 pag->pag_ici_reclaimable++; 766 } 767 768 /* 769 * We set the inode flag atomically with the radix tree tag. 770 * Once we get tag lookups on the radix tree, this inode flag 771 * can go away. 772 */ 773 void 774 xfs_inode_set_reclaim_tag( 775 xfs_inode_t *ip) 776 { 777 struct xfs_mount *mp = ip->i_mount; 778 struct xfs_perag *pag; 779 780 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 781 spin_lock(&pag->pag_ici_lock); 782 spin_lock(&ip->i_flags_lock); 783 __xfs_inode_set_reclaim_tag(pag, ip); 784 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 785 spin_unlock(&ip->i_flags_lock); 786 spin_unlock(&pag->pag_ici_lock); 787 xfs_perag_put(pag); 788 } 789 790 STATIC void 791 __xfs_inode_clear_reclaim( 792 xfs_perag_t *pag, 793 xfs_inode_t *ip) 794 { 795 pag->pag_ici_reclaimable--; 796 if (!pag->pag_ici_reclaimable) { 797 /* clear the reclaim tag from the perag radix tree */ 798 spin_lock(&ip->i_mount->m_perag_lock); 799 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 800 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 801 XFS_ICI_RECLAIM_TAG); 802 spin_unlock(&ip->i_mount->m_perag_lock); 803 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 804 -1, _RET_IP_); 805 } 806 } 807 808 STATIC void 809 __xfs_inode_clear_reclaim_tag( 810 xfs_mount_t *mp, 811 xfs_perag_t *pag, 812 xfs_inode_t *ip) 813 { 814 radix_tree_tag_clear(&pag->pag_ici_root, 815 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 816 __xfs_inode_clear_reclaim(pag, ip); 817 } 818 819 /* 820 * Grab the inode for reclaim exclusively. 821 * Return 0 if we grabbed it, non-zero otherwise. 822 */ 823 STATIC int 824 xfs_reclaim_inode_grab( 825 struct xfs_inode *ip, 826 int flags) 827 { 828 ASSERT(rcu_read_lock_held()); 829 830 /* quick check for stale RCU freed inode */ 831 if (!ip->i_ino) 832 return 1; 833 834 /* 835 * If we are asked for non-blocking operation, do unlocked checks to 836 * see if the inode already is being flushed or in reclaim to avoid 837 * lock traffic. 838 */ 839 if ((flags & SYNC_TRYLOCK) && 840 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 841 return 1; 842 843 /* 844 * The radix tree lock here protects a thread in xfs_iget from racing 845 * with us starting reclaim on the inode. Once we have the 846 * XFS_IRECLAIM flag set it will not touch us. 847 * 848 * Due to RCU lookup, we may find inodes that have been freed and only 849 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 850 * aren't candidates for reclaim at all, so we must check the 851 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 852 */ 853 spin_lock(&ip->i_flags_lock); 854 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 855 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 856 /* not a reclaim candidate. */ 857 spin_unlock(&ip->i_flags_lock); 858 return 1; 859 } 860 __xfs_iflags_set(ip, XFS_IRECLAIM); 861 spin_unlock(&ip->i_flags_lock); 862 return 0; 863 } 864 865 /* 866 * Inodes in different states need to be treated differently. The following 867 * table lists the inode states and the reclaim actions necessary: 868 * 869 * inode state iflush ret required action 870 * --------------- ---------- --------------- 871 * bad - reclaim 872 * shutdown EIO unpin and reclaim 873 * clean, unpinned 0 reclaim 874 * stale, unpinned 0 reclaim 875 * clean, pinned(*) 0 requeue 876 * stale, pinned EAGAIN requeue 877 * dirty, async - requeue 878 * dirty, sync 0 reclaim 879 * 880 * (*) dgc: I don't think the clean, pinned state is possible but it gets 881 * handled anyway given the order of checks implemented. 882 * 883 * Also, because we get the flush lock first, we know that any inode that has 884 * been flushed delwri has had the flush completed by the time we check that 885 * the inode is clean. 886 * 887 * Note that because the inode is flushed delayed write by AIL pushing, the 888 * flush lock may already be held here and waiting on it can result in very 889 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 890 * the caller should push the AIL first before trying to reclaim inodes to 891 * minimise the amount of time spent waiting. For background relaim, we only 892 * bother to reclaim clean inodes anyway. 893 * 894 * Hence the order of actions after gaining the locks should be: 895 * bad => reclaim 896 * shutdown => unpin and reclaim 897 * pinned, async => requeue 898 * pinned, sync => unpin 899 * stale => reclaim 900 * clean => reclaim 901 * dirty, async => requeue 902 * dirty, sync => flush, wait and reclaim 903 */ 904 STATIC int 905 xfs_reclaim_inode( 906 struct xfs_inode *ip, 907 struct xfs_perag *pag, 908 int sync_mode) 909 { 910 struct xfs_buf *bp = NULL; 911 int error; 912 913 restart: 914 error = 0; 915 xfs_ilock(ip, XFS_ILOCK_EXCL); 916 if (!xfs_iflock_nowait(ip)) { 917 if (!(sync_mode & SYNC_WAIT)) 918 goto out; 919 xfs_iflock(ip); 920 } 921 922 if (is_bad_inode(VFS_I(ip))) 923 goto reclaim; 924 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 925 xfs_iunpin_wait(ip); 926 xfs_iflush_abort(ip, false); 927 goto reclaim; 928 } 929 if (xfs_ipincount(ip)) { 930 if (!(sync_mode & SYNC_WAIT)) 931 goto out_ifunlock; 932 xfs_iunpin_wait(ip); 933 } 934 if (xfs_iflags_test(ip, XFS_ISTALE)) 935 goto reclaim; 936 if (xfs_inode_clean(ip)) 937 goto reclaim; 938 939 /* 940 * Never flush out dirty data during non-blocking reclaim, as it would 941 * just contend with AIL pushing trying to do the same job. 942 */ 943 if (!(sync_mode & SYNC_WAIT)) 944 goto out_ifunlock; 945 946 /* 947 * Now we have an inode that needs flushing. 948 * 949 * Note that xfs_iflush will never block on the inode buffer lock, as 950 * xfs_ifree_cluster() can lock the inode buffer before it locks the 951 * ip->i_lock, and we are doing the exact opposite here. As a result, 952 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 953 * result in an ABBA deadlock with xfs_ifree_cluster(). 954 * 955 * As xfs_ifree_cluser() must gather all inodes that are active in the 956 * cache to mark them stale, if we hit this case we don't actually want 957 * to do IO here - we want the inode marked stale so we can simply 958 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 959 * inode, back off and try again. Hopefully the next pass through will 960 * see the stale flag set on the inode. 961 */ 962 error = xfs_iflush(ip, &bp); 963 if (error == EAGAIN) { 964 xfs_iunlock(ip, XFS_ILOCK_EXCL); 965 /* backoff longer than in xfs_ifree_cluster */ 966 delay(2); 967 goto restart; 968 } 969 970 if (!error) { 971 error = xfs_bwrite(bp); 972 xfs_buf_relse(bp); 973 } 974 975 xfs_iflock(ip); 976 reclaim: 977 xfs_ifunlock(ip); 978 xfs_iunlock(ip, XFS_ILOCK_EXCL); 979 980 XFS_STATS_INC(xs_ig_reclaims); 981 /* 982 * Remove the inode from the per-AG radix tree. 983 * 984 * Because radix_tree_delete won't complain even if the item was never 985 * added to the tree assert that it's been there before to catch 986 * problems with the inode life time early on. 987 */ 988 spin_lock(&pag->pag_ici_lock); 989 if (!radix_tree_delete(&pag->pag_ici_root, 990 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 991 ASSERT(0); 992 __xfs_inode_clear_reclaim(pag, ip); 993 spin_unlock(&pag->pag_ici_lock); 994 995 /* 996 * Here we do an (almost) spurious inode lock in order to coordinate 997 * with inode cache radix tree lookups. This is because the lookup 998 * can reference the inodes in the cache without taking references. 999 * 1000 * We make that OK here by ensuring that we wait until the inode is 1001 * unlocked after the lookup before we go ahead and free it. 1002 */ 1003 xfs_ilock(ip, XFS_ILOCK_EXCL); 1004 xfs_qm_dqdetach(ip); 1005 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1006 1007 xfs_inode_free(ip); 1008 return error; 1009 1010 out_ifunlock: 1011 xfs_ifunlock(ip); 1012 out: 1013 xfs_iflags_clear(ip, XFS_IRECLAIM); 1014 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1015 /* 1016 * We could return EAGAIN here to make reclaim rescan the inode tree in 1017 * a short while. However, this just burns CPU time scanning the tree 1018 * waiting for IO to complete and the reclaim work never goes back to 1019 * the idle state. Instead, return 0 to let the next scheduled 1020 * background reclaim attempt to reclaim the inode again. 1021 */ 1022 return 0; 1023 } 1024 1025 /* 1026 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1027 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1028 * then a shut down during filesystem unmount reclaim walk leak all the 1029 * unreclaimed inodes. 1030 */ 1031 STATIC int 1032 xfs_reclaim_inodes_ag( 1033 struct xfs_mount *mp, 1034 int flags, 1035 int *nr_to_scan) 1036 { 1037 struct xfs_perag *pag; 1038 int error = 0; 1039 int last_error = 0; 1040 xfs_agnumber_t ag; 1041 int trylock = flags & SYNC_TRYLOCK; 1042 int skipped; 1043 1044 restart: 1045 ag = 0; 1046 skipped = 0; 1047 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1048 unsigned long first_index = 0; 1049 int done = 0; 1050 int nr_found = 0; 1051 1052 ag = pag->pag_agno + 1; 1053 1054 if (trylock) { 1055 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1056 skipped++; 1057 xfs_perag_put(pag); 1058 continue; 1059 } 1060 first_index = pag->pag_ici_reclaim_cursor; 1061 } else 1062 mutex_lock(&pag->pag_ici_reclaim_lock); 1063 1064 do { 1065 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1066 int i; 1067 1068 rcu_read_lock(); 1069 nr_found = radix_tree_gang_lookup_tag( 1070 &pag->pag_ici_root, 1071 (void **)batch, first_index, 1072 XFS_LOOKUP_BATCH, 1073 XFS_ICI_RECLAIM_TAG); 1074 if (!nr_found) { 1075 done = 1; 1076 rcu_read_unlock(); 1077 break; 1078 } 1079 1080 /* 1081 * Grab the inodes before we drop the lock. if we found 1082 * nothing, nr == 0 and the loop will be skipped. 1083 */ 1084 for (i = 0; i < nr_found; i++) { 1085 struct xfs_inode *ip = batch[i]; 1086 1087 if (done || xfs_reclaim_inode_grab(ip, flags)) 1088 batch[i] = NULL; 1089 1090 /* 1091 * Update the index for the next lookup. Catch 1092 * overflows into the next AG range which can 1093 * occur if we have inodes in the last block of 1094 * the AG and we are currently pointing to the 1095 * last inode. 1096 * 1097 * Because we may see inodes that are from the 1098 * wrong AG due to RCU freeing and 1099 * reallocation, only update the index if it 1100 * lies in this AG. It was a race that lead us 1101 * to see this inode, so another lookup from 1102 * the same index will not find it again. 1103 */ 1104 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1105 pag->pag_agno) 1106 continue; 1107 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1108 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1109 done = 1; 1110 } 1111 1112 /* unlock now we've grabbed the inodes. */ 1113 rcu_read_unlock(); 1114 1115 for (i = 0; i < nr_found; i++) { 1116 if (!batch[i]) 1117 continue; 1118 error = xfs_reclaim_inode(batch[i], pag, flags); 1119 if (error && last_error != EFSCORRUPTED) 1120 last_error = error; 1121 } 1122 1123 *nr_to_scan -= XFS_LOOKUP_BATCH; 1124 1125 cond_resched(); 1126 1127 } while (nr_found && !done && *nr_to_scan > 0); 1128 1129 if (trylock && !done) 1130 pag->pag_ici_reclaim_cursor = first_index; 1131 else 1132 pag->pag_ici_reclaim_cursor = 0; 1133 mutex_unlock(&pag->pag_ici_reclaim_lock); 1134 xfs_perag_put(pag); 1135 } 1136 1137 /* 1138 * if we skipped any AG, and we still have scan count remaining, do 1139 * another pass this time using blocking reclaim semantics (i.e 1140 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1141 * ensure that when we get more reclaimers than AGs we block rather 1142 * than spin trying to execute reclaim. 1143 */ 1144 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1145 trylock = 0; 1146 goto restart; 1147 } 1148 return XFS_ERROR(last_error); 1149 } 1150 1151 int 1152 xfs_reclaim_inodes( 1153 xfs_mount_t *mp, 1154 int mode) 1155 { 1156 int nr_to_scan = INT_MAX; 1157 1158 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1159 } 1160 1161 /* 1162 * Scan a certain number of inodes for reclaim. 1163 * 1164 * When called we make sure that there is a background (fast) inode reclaim in 1165 * progress, while we will throttle the speed of reclaim via doing synchronous 1166 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1167 * them to be cleaned, which we hope will not be very long due to the 1168 * background walker having already kicked the IO off on those dirty inodes. 1169 */ 1170 long 1171 xfs_reclaim_inodes_nr( 1172 struct xfs_mount *mp, 1173 int nr_to_scan) 1174 { 1175 /* kick background reclaimer and push the AIL */ 1176 xfs_reclaim_work_queue(mp); 1177 xfs_ail_push_all(mp->m_ail); 1178 1179 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1180 } 1181 1182 /* 1183 * Return the number of reclaimable inodes in the filesystem for 1184 * the shrinker to determine how much to reclaim. 1185 */ 1186 int 1187 xfs_reclaim_inodes_count( 1188 struct xfs_mount *mp) 1189 { 1190 struct xfs_perag *pag; 1191 xfs_agnumber_t ag = 0; 1192 int reclaimable = 0; 1193 1194 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1195 ag = pag->pag_agno + 1; 1196 reclaimable += pag->pag_ici_reclaimable; 1197 xfs_perag_put(pag); 1198 } 1199 return reclaimable; 1200 } 1201 1202 STATIC int 1203 xfs_inode_match_id( 1204 struct xfs_inode *ip, 1205 struct xfs_eofblocks *eofb) 1206 { 1207 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1208 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1209 return 0; 1210 1211 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1212 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1213 return 0; 1214 1215 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1216 xfs_get_projid(ip) != eofb->eof_prid) 1217 return 0; 1218 1219 return 1; 1220 } 1221 1222 STATIC int 1223 xfs_inode_free_eofblocks( 1224 struct xfs_inode *ip, 1225 struct xfs_perag *pag, 1226 int flags, 1227 void *args) 1228 { 1229 int ret; 1230 struct xfs_eofblocks *eofb = args; 1231 1232 if (!xfs_can_free_eofblocks(ip, false)) { 1233 /* inode could be preallocated or append-only */ 1234 trace_xfs_inode_free_eofblocks_invalid(ip); 1235 xfs_inode_clear_eofblocks_tag(ip); 1236 return 0; 1237 } 1238 1239 /* 1240 * If the mapping is dirty the operation can block and wait for some 1241 * time. Unless we are waiting, skip it. 1242 */ 1243 if (!(flags & SYNC_WAIT) && 1244 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1245 return 0; 1246 1247 if (eofb) { 1248 if (!xfs_inode_match_id(ip, eofb)) 1249 return 0; 1250 1251 /* skip the inode if the file size is too small */ 1252 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1253 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1254 return 0; 1255 } 1256 1257 ret = xfs_free_eofblocks(ip->i_mount, ip, true); 1258 1259 /* don't revisit the inode if we're not waiting */ 1260 if (ret == EAGAIN && !(flags & SYNC_WAIT)) 1261 ret = 0; 1262 1263 return ret; 1264 } 1265 1266 int 1267 xfs_icache_free_eofblocks( 1268 struct xfs_mount *mp, 1269 struct xfs_eofblocks *eofb) 1270 { 1271 int flags = SYNC_TRYLOCK; 1272 1273 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1274 flags = SYNC_WAIT; 1275 1276 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, 1277 eofb, XFS_ICI_EOFBLOCKS_TAG); 1278 } 1279 1280 void 1281 xfs_inode_set_eofblocks_tag( 1282 xfs_inode_t *ip) 1283 { 1284 struct xfs_mount *mp = ip->i_mount; 1285 struct xfs_perag *pag; 1286 int tagged; 1287 1288 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1289 spin_lock(&pag->pag_ici_lock); 1290 trace_xfs_inode_set_eofblocks_tag(ip); 1291 1292 tagged = radix_tree_tagged(&pag->pag_ici_root, 1293 XFS_ICI_EOFBLOCKS_TAG); 1294 radix_tree_tag_set(&pag->pag_ici_root, 1295 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1296 XFS_ICI_EOFBLOCKS_TAG); 1297 if (!tagged) { 1298 /* propagate the eofblocks tag up into the perag radix tree */ 1299 spin_lock(&ip->i_mount->m_perag_lock); 1300 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1301 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1302 XFS_ICI_EOFBLOCKS_TAG); 1303 spin_unlock(&ip->i_mount->m_perag_lock); 1304 1305 /* kick off background trimming */ 1306 xfs_queue_eofblocks(ip->i_mount); 1307 1308 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, 1309 -1, _RET_IP_); 1310 } 1311 1312 spin_unlock(&pag->pag_ici_lock); 1313 xfs_perag_put(pag); 1314 } 1315 1316 void 1317 xfs_inode_clear_eofblocks_tag( 1318 xfs_inode_t *ip) 1319 { 1320 struct xfs_mount *mp = ip->i_mount; 1321 struct xfs_perag *pag; 1322 1323 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1324 spin_lock(&pag->pag_ici_lock); 1325 trace_xfs_inode_clear_eofblocks_tag(ip); 1326 1327 radix_tree_tag_clear(&pag->pag_ici_root, 1328 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1329 XFS_ICI_EOFBLOCKS_TAG); 1330 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { 1331 /* clear the eofblocks tag from the perag radix tree */ 1332 spin_lock(&ip->i_mount->m_perag_lock); 1333 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1334 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1335 XFS_ICI_EOFBLOCKS_TAG); 1336 spin_unlock(&ip->i_mount->m_perag_lock); 1337 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, 1338 -1, _RET_IP_); 1339 } 1340 1341 spin_unlock(&pag->pag_ici_lock); 1342 xfs_perag_put(pag); 1343 } 1344 1345