xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 55b37d9c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 
28 #include <linux/iversion.h>
29 
30 /* Radix tree tags for incore inode tree. */
31 
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG	0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG	1
36 
37 /*
38  * The goal for walking incore inodes.  These can correspond with incore inode
39  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
40  */
41 enum xfs_icwalk_goal {
42 	/* Goals directly associated with tagged inodes. */
43 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
44 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
45 };
46 
47 static int xfs_icwalk(struct xfs_mount *mp,
48 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51 
52 /*
53  * Private inode cache walk flags for struct xfs_icwalk.  Must not
54  * coincide with XFS_ICWALK_FLAGS_VALID.
55  */
56 
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
59 
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
61 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
62 
63 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 					 XFS_ICWALK_FLAG_UNION)
66 
67 /*
68  * Allocate and initialise an xfs_inode.
69  */
70 struct xfs_inode *
71 xfs_inode_alloc(
72 	struct xfs_mount	*mp,
73 	xfs_ino_t		ino)
74 {
75 	struct xfs_inode	*ip;
76 
77 	/*
78 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 	 * and return NULL here on ENOMEM.
80 	 */
81 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82 
83 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 		kmem_cache_free(xfs_inode_cache, ip);
85 		return NULL;
86 	}
87 
88 	/* VFS doesn't initialise i_mode or i_state! */
89 	VFS_I(ip)->i_mode = 0;
90 	VFS_I(ip)->i_state = 0;
91 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92 
93 	XFS_STATS_INC(mp, vn_active);
94 	ASSERT(atomic_read(&ip->i_pincount) == 0);
95 	ASSERT(ip->i_ino == 0);
96 
97 	/* initialise the xfs inode */
98 	ip->i_ino = ino;
99 	ip->i_mount = mp;
100 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 	ip->i_cowfp = NULL;
102 	memset(&ip->i_af, 0, sizeof(ip->i_af));
103 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 	memset(&ip->i_df, 0, sizeof(ip->i_df));
105 	ip->i_flags = 0;
106 	ip->i_delayed_blks = 0;
107 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 	ip->i_nblocks = 0;
109 	ip->i_forkoff = 0;
110 	ip->i_sick = 0;
111 	ip->i_checked = 0;
112 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 	INIT_LIST_HEAD(&ip->i_ioend_list);
114 	spin_lock_init(&ip->i_ioend_lock);
115 	ip->i_next_unlinked = NULLAGINO;
116 	ip->i_prev_unlinked = NULLAGINO;
117 
118 	return ip;
119 }
120 
121 STATIC void
122 xfs_inode_free_callback(
123 	struct rcu_head		*head)
124 {
125 	struct inode		*inode = container_of(head, struct inode, i_rcu);
126 	struct xfs_inode	*ip = XFS_I(inode);
127 
128 	switch (VFS_I(ip)->i_mode & S_IFMT) {
129 	case S_IFREG:
130 	case S_IFDIR:
131 	case S_IFLNK:
132 		xfs_idestroy_fork(&ip->i_df);
133 		break;
134 	}
135 
136 	xfs_ifork_zap_attr(ip);
137 
138 	if (ip->i_cowfp) {
139 		xfs_idestroy_fork(ip->i_cowfp);
140 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 	}
142 	if (ip->i_itemp) {
143 		ASSERT(!test_bit(XFS_LI_IN_AIL,
144 				 &ip->i_itemp->ili_item.li_flags));
145 		xfs_inode_item_destroy(ip);
146 		ip->i_itemp = NULL;
147 	}
148 
149 	kmem_cache_free(xfs_inode_cache, ip);
150 }
151 
152 static void
153 __xfs_inode_free(
154 	struct xfs_inode	*ip)
155 {
156 	/* asserts to verify all state is correct here */
157 	ASSERT(atomic_read(&ip->i_pincount) == 0);
158 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 	XFS_STATS_DEC(ip->i_mount, vn_active);
160 
161 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163 
164 void
165 xfs_inode_free(
166 	struct xfs_inode	*ip)
167 {
168 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169 
170 	/*
171 	 * Because we use RCU freeing we need to ensure the inode always
172 	 * appears to be reclaimed with an invalid inode number when in the
173 	 * free state. The ip->i_flags_lock provides the barrier against lookup
174 	 * races.
175 	 */
176 	spin_lock(&ip->i_flags_lock);
177 	ip->i_flags = XFS_IRECLAIM;
178 	ip->i_ino = 0;
179 	spin_unlock(&ip->i_flags_lock);
180 
181 	__xfs_inode_free(ip);
182 }
183 
184 /*
185  * Queue background inode reclaim work if there are reclaimable inodes and there
186  * isn't reclaim work already scheduled or in progress.
187  */
188 static void
189 xfs_reclaim_work_queue(
190 	struct xfs_mount        *mp)
191 {
192 
193 	rcu_read_lock();
194 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 	}
198 	rcu_read_unlock();
199 }
200 
201 /*
202  * Background scanning to trim preallocated space. This is queued based on the
203  * 'speculative_prealloc_lifetime' tunable (5m by default).
204  */
205 static inline void
206 xfs_blockgc_queue(
207 	struct xfs_perag	*pag)
208 {
209 	struct xfs_mount	*mp = pag->pag_mount;
210 
211 	if (!xfs_is_blockgc_enabled(mp))
212 		return;
213 
214 	rcu_read_lock();
215 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 				   &pag->pag_blockgc_work,
218 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 	rcu_read_unlock();
220 }
221 
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
224 xfs_perag_set_inode_tag(
225 	struct xfs_perag	*pag,
226 	xfs_agino_t		agino,
227 	unsigned int		tag)
228 {
229 	struct xfs_mount	*mp = pag->pag_mount;
230 	bool			was_tagged;
231 
232 	lockdep_assert_held(&pag->pag_ici_lock);
233 
234 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236 
237 	if (tag == XFS_ICI_RECLAIM_TAG)
238 		pag->pag_ici_reclaimable++;
239 
240 	if (was_tagged)
241 		return;
242 
243 	/* propagate the tag up into the perag radix tree */
244 	spin_lock(&mp->m_perag_lock);
245 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 	spin_unlock(&mp->m_perag_lock);
247 
248 	/* start background work */
249 	switch (tag) {
250 	case XFS_ICI_RECLAIM_TAG:
251 		xfs_reclaim_work_queue(mp);
252 		break;
253 	case XFS_ICI_BLOCKGC_TAG:
254 		xfs_blockgc_queue(pag);
255 		break;
256 	}
257 
258 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
259 }
260 
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
263 xfs_perag_clear_inode_tag(
264 	struct xfs_perag	*pag,
265 	xfs_agino_t		agino,
266 	unsigned int		tag)
267 {
268 	struct xfs_mount	*mp = pag->pag_mount;
269 
270 	lockdep_assert_held(&pag->pag_ici_lock);
271 
272 	/*
273 	 * Reclaim can signal (with a null agino) that it cleared its own tag
274 	 * by removing the inode from the radix tree.
275 	 */
276 	if (agino != NULLAGINO)
277 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 	else
279 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280 
281 	if (tag == XFS_ICI_RECLAIM_TAG)
282 		pag->pag_ici_reclaimable--;
283 
284 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 		return;
286 
287 	/* clear the tag from the perag radix tree */
288 	spin_lock(&mp->m_perag_lock);
289 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 	spin_unlock(&mp->m_perag_lock);
291 
292 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
293 }
294 
295 /*
296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297  * part of the structure. This is made more complex by the fact we store
298  * information about the on-disk values in the VFS inode and so we can't just
299  * overwrite the values unconditionally. Hence we save the parameters we
300  * need to retain across reinitialisation, and rewrite them into the VFS inode
301  * after reinitialisation even if it fails.
302  */
303 static int
304 xfs_reinit_inode(
305 	struct xfs_mount	*mp,
306 	struct inode		*inode)
307 {
308 	int			error;
309 	uint32_t		nlink = inode->i_nlink;
310 	uint32_t		generation = inode->i_generation;
311 	uint64_t		version = inode_peek_iversion(inode);
312 	umode_t			mode = inode->i_mode;
313 	dev_t			dev = inode->i_rdev;
314 	kuid_t			uid = inode->i_uid;
315 	kgid_t			gid = inode->i_gid;
316 
317 	error = inode_init_always(mp->m_super, inode);
318 
319 	set_nlink(inode, nlink);
320 	inode->i_generation = generation;
321 	inode_set_iversion_queried(inode, version);
322 	inode->i_mode = mode;
323 	inode->i_rdev = dev;
324 	inode->i_uid = uid;
325 	inode->i_gid = gid;
326 	mapping_set_large_folios(inode->i_mapping);
327 	return error;
328 }
329 
330 /*
331  * Carefully nudge an inode whose VFS state has been torn down back into a
332  * usable state.  Drops the i_flags_lock and the rcu read lock.
333  */
334 static int
335 xfs_iget_recycle(
336 	struct xfs_perag	*pag,
337 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
338 {
339 	struct xfs_mount	*mp = ip->i_mount;
340 	struct inode		*inode = VFS_I(ip);
341 	int			error;
342 
343 	trace_xfs_iget_recycle(ip);
344 
345 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
346 		return -EAGAIN;
347 
348 	/*
349 	 * We need to make it look like the inode is being reclaimed to prevent
350 	 * the actual reclaim workers from stomping over us while we recycle
351 	 * the inode.  We can't clear the radix tree tag yet as it requires
352 	 * pag_ici_lock to be held exclusive.
353 	 */
354 	ip->i_flags |= XFS_IRECLAIM;
355 
356 	spin_unlock(&ip->i_flags_lock);
357 	rcu_read_unlock();
358 
359 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
360 	error = xfs_reinit_inode(mp, inode);
361 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
362 	if (error) {
363 		/*
364 		 * Re-initializing the inode failed, and we are in deep
365 		 * trouble.  Try to re-add it to the reclaim list.
366 		 */
367 		rcu_read_lock();
368 		spin_lock(&ip->i_flags_lock);
369 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
370 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
371 		spin_unlock(&ip->i_flags_lock);
372 		rcu_read_unlock();
373 
374 		trace_xfs_iget_recycle_fail(ip);
375 		return error;
376 	}
377 
378 	spin_lock(&pag->pag_ici_lock);
379 	spin_lock(&ip->i_flags_lock);
380 
381 	/*
382 	 * Clear the per-lifetime state in the inode as we are now effectively
383 	 * a new inode and need to return to the initial state before reuse
384 	 * occurs.
385 	 */
386 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
387 	ip->i_flags |= XFS_INEW;
388 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
389 			XFS_ICI_RECLAIM_TAG);
390 	inode->i_state = I_NEW;
391 	spin_unlock(&ip->i_flags_lock);
392 	spin_unlock(&pag->pag_ici_lock);
393 
394 	return 0;
395 }
396 
397 /*
398  * If we are allocating a new inode, then check what was returned is
399  * actually a free, empty inode. If we are not allocating an inode,
400  * then check we didn't find a free inode.
401  *
402  * Returns:
403  *	0		if the inode free state matches the lookup context
404  *	-ENOENT		if the inode is free and we are not allocating
405  *	-EFSCORRUPTED	if there is any state mismatch at all
406  */
407 static int
408 xfs_iget_check_free_state(
409 	struct xfs_inode	*ip,
410 	int			flags)
411 {
412 	if (flags & XFS_IGET_CREATE) {
413 		/* should be a free inode */
414 		if (VFS_I(ip)->i_mode != 0) {
415 			xfs_warn(ip->i_mount,
416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
417 				ip->i_ino, VFS_I(ip)->i_mode);
418 			return -EFSCORRUPTED;
419 		}
420 
421 		if (ip->i_nblocks != 0) {
422 			xfs_warn(ip->i_mount,
423 "Corruption detected! Free inode 0x%llx has blocks allocated!",
424 				ip->i_ino);
425 			return -EFSCORRUPTED;
426 		}
427 		return 0;
428 	}
429 
430 	/* should be an allocated inode */
431 	if (VFS_I(ip)->i_mode == 0)
432 		return -ENOENT;
433 
434 	return 0;
435 }
436 
437 /* Make all pending inactivation work start immediately. */
438 static void
439 xfs_inodegc_queue_all(
440 	struct xfs_mount	*mp)
441 {
442 	struct xfs_inodegc	*gc;
443 	int			cpu;
444 
445 	for_each_online_cpu(cpu) {
446 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
447 		if (!llist_empty(&gc->list))
448 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
449 	}
450 }
451 
452 /*
453  * Check the validity of the inode we just found it the cache
454  */
455 static int
456 xfs_iget_cache_hit(
457 	struct xfs_perag	*pag,
458 	struct xfs_inode	*ip,
459 	xfs_ino_t		ino,
460 	int			flags,
461 	int			lock_flags) __releases(RCU)
462 {
463 	struct inode		*inode = VFS_I(ip);
464 	struct xfs_mount	*mp = ip->i_mount;
465 	int			error;
466 
467 	/*
468 	 * check for re-use of an inode within an RCU grace period due to the
469 	 * radix tree nodes not being updated yet. We monitor for this by
470 	 * setting the inode number to zero before freeing the inode structure.
471 	 * If the inode has been reallocated and set up, then the inode number
472 	 * will not match, so check for that, too.
473 	 */
474 	spin_lock(&ip->i_flags_lock);
475 	if (ip->i_ino != ino)
476 		goto out_skip;
477 
478 	/*
479 	 * If we are racing with another cache hit that is currently
480 	 * instantiating this inode or currently recycling it out of
481 	 * reclaimable state, wait for the initialisation to complete
482 	 * before continuing.
483 	 *
484 	 * If we're racing with the inactivation worker we also want to wait.
485 	 * If we're creating a new file, it's possible that the worker
486 	 * previously marked the inode as free on disk but hasn't finished
487 	 * updating the incore state yet.  The AGI buffer will be dirty and
488 	 * locked to the icreate transaction, so a synchronous push of the
489 	 * inodegc workers would result in deadlock.  For a regular iget, the
490 	 * worker is running already, so we might as well wait.
491 	 *
492 	 * XXX(hch): eventually we should do something equivalent to
493 	 *	     wait_on_inode to wait for these flags to be cleared
494 	 *	     instead of polling for it.
495 	 */
496 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
497 		goto out_skip;
498 
499 	if (ip->i_flags & XFS_NEED_INACTIVE) {
500 		/* Unlinked inodes cannot be re-grabbed. */
501 		if (VFS_I(ip)->i_nlink == 0) {
502 			error = -ENOENT;
503 			goto out_error;
504 		}
505 		goto out_inodegc_flush;
506 	}
507 
508 	/*
509 	 * Check the inode free state is valid. This also detects lookup
510 	 * racing with unlinks.
511 	 */
512 	error = xfs_iget_check_free_state(ip, flags);
513 	if (error)
514 		goto out_error;
515 
516 	/* Skip inodes that have no vfs state. */
517 	if ((flags & XFS_IGET_INCORE) &&
518 	    (ip->i_flags & XFS_IRECLAIMABLE))
519 		goto out_skip;
520 
521 	/* The inode fits the selection criteria; process it. */
522 	if (ip->i_flags & XFS_IRECLAIMABLE) {
523 		/* Drops i_flags_lock and RCU read lock. */
524 		error = xfs_iget_recycle(pag, ip);
525 		if (error == -EAGAIN)
526 			goto out_skip;
527 		if (error)
528 			return error;
529 	} else {
530 		/* If the VFS inode is being torn down, pause and try again. */
531 		if (!igrab(inode))
532 			goto out_skip;
533 
534 		/* We've got a live one. */
535 		spin_unlock(&ip->i_flags_lock);
536 		rcu_read_unlock();
537 		trace_xfs_iget_hit(ip);
538 	}
539 
540 	if (lock_flags != 0)
541 		xfs_ilock(ip, lock_flags);
542 
543 	if (!(flags & XFS_IGET_INCORE))
544 		xfs_iflags_clear(ip, XFS_ISTALE);
545 	XFS_STATS_INC(mp, xs_ig_found);
546 
547 	return 0;
548 
549 out_skip:
550 	trace_xfs_iget_skip(ip);
551 	XFS_STATS_INC(mp, xs_ig_frecycle);
552 	error = -EAGAIN;
553 out_error:
554 	spin_unlock(&ip->i_flags_lock);
555 	rcu_read_unlock();
556 	return error;
557 
558 out_inodegc_flush:
559 	spin_unlock(&ip->i_flags_lock);
560 	rcu_read_unlock();
561 	/*
562 	 * Do not wait for the workers, because the caller could hold an AGI
563 	 * buffer lock.  We're just going to sleep in a loop anyway.
564 	 */
565 	if (xfs_is_inodegc_enabled(mp))
566 		xfs_inodegc_queue_all(mp);
567 	return -EAGAIN;
568 }
569 
570 static int
571 xfs_iget_cache_miss(
572 	struct xfs_mount	*mp,
573 	struct xfs_perag	*pag,
574 	xfs_trans_t		*tp,
575 	xfs_ino_t		ino,
576 	struct xfs_inode	**ipp,
577 	int			flags,
578 	int			lock_flags)
579 {
580 	struct xfs_inode	*ip;
581 	int			error;
582 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
583 	int			iflags;
584 
585 	ip = xfs_inode_alloc(mp, ino);
586 	if (!ip)
587 		return -ENOMEM;
588 
589 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
590 	if (error)
591 		goto out_destroy;
592 
593 	/*
594 	 * For version 5 superblocks, if we are initialising a new inode and we
595 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
596 	 * simply build the new inode core with a random generation number.
597 	 *
598 	 * For version 4 (and older) superblocks, log recovery is dependent on
599 	 * the i_flushiter field being initialised from the current on-disk
600 	 * value and hence we must also read the inode off disk even when
601 	 * initializing new inodes.
602 	 */
603 	if (xfs_has_v3inodes(mp) &&
604 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
605 		VFS_I(ip)->i_generation = get_random_u32();
606 	} else {
607 		struct xfs_buf		*bp;
608 
609 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
610 		if (error)
611 			goto out_destroy;
612 
613 		error = xfs_inode_from_disk(ip,
614 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
615 		if (!error)
616 			xfs_buf_set_ref(bp, XFS_INO_REF);
617 		xfs_trans_brelse(tp, bp);
618 
619 		if (error)
620 			goto out_destroy;
621 	}
622 
623 	trace_xfs_iget_miss(ip);
624 
625 	/*
626 	 * Check the inode free state is valid. This also detects lookup
627 	 * racing with unlinks.
628 	 */
629 	error = xfs_iget_check_free_state(ip, flags);
630 	if (error)
631 		goto out_destroy;
632 
633 	/*
634 	 * Preload the radix tree so we can insert safely under the
635 	 * write spinlock. Note that we cannot sleep inside the preload
636 	 * region. Since we can be called from transaction context, don't
637 	 * recurse into the file system.
638 	 */
639 	if (radix_tree_preload(GFP_NOFS)) {
640 		error = -EAGAIN;
641 		goto out_destroy;
642 	}
643 
644 	/*
645 	 * Because the inode hasn't been added to the radix-tree yet it can't
646 	 * be found by another thread, so we can do the non-sleeping lock here.
647 	 */
648 	if (lock_flags) {
649 		if (!xfs_ilock_nowait(ip, lock_flags))
650 			BUG();
651 	}
652 
653 	/*
654 	 * These values must be set before inserting the inode into the radix
655 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
656 	 * RCU locking mechanism) can find it and that lookup must see that this
657 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
658 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
659 	 * memory barrier that ensures this detection works correctly at lookup
660 	 * time.
661 	 */
662 	iflags = XFS_INEW;
663 	if (flags & XFS_IGET_DONTCACHE)
664 		d_mark_dontcache(VFS_I(ip));
665 	ip->i_udquot = NULL;
666 	ip->i_gdquot = NULL;
667 	ip->i_pdquot = NULL;
668 	xfs_iflags_set(ip, iflags);
669 
670 	/* insert the new inode */
671 	spin_lock(&pag->pag_ici_lock);
672 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
673 	if (unlikely(error)) {
674 		WARN_ON(error != -EEXIST);
675 		XFS_STATS_INC(mp, xs_ig_dup);
676 		error = -EAGAIN;
677 		goto out_preload_end;
678 	}
679 	spin_unlock(&pag->pag_ici_lock);
680 	radix_tree_preload_end();
681 
682 	*ipp = ip;
683 	return 0;
684 
685 out_preload_end:
686 	spin_unlock(&pag->pag_ici_lock);
687 	radix_tree_preload_end();
688 	if (lock_flags)
689 		xfs_iunlock(ip, lock_flags);
690 out_destroy:
691 	__destroy_inode(VFS_I(ip));
692 	xfs_inode_free(ip);
693 	return error;
694 }
695 
696 /*
697  * Look up an inode by number in the given file system.  The inode is looked up
698  * in the cache held in each AG.  If the inode is found in the cache, initialise
699  * the vfs inode if necessary.
700  *
701  * If it is not in core, read it in from the file system's device, add it to the
702  * cache and initialise the vfs inode.
703  *
704  * The inode is locked according to the value of the lock_flags parameter.
705  * Inode lookup is only done during metadata operations and not as part of the
706  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
707  */
708 int
709 xfs_iget(
710 	struct xfs_mount	*mp,
711 	struct xfs_trans	*tp,
712 	xfs_ino_t		ino,
713 	uint			flags,
714 	uint			lock_flags,
715 	struct xfs_inode	**ipp)
716 {
717 	struct xfs_inode	*ip;
718 	struct xfs_perag	*pag;
719 	xfs_agino_t		agino;
720 	int			error;
721 
722 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
723 
724 	/* reject inode numbers outside existing AGs */
725 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
726 		return -EINVAL;
727 
728 	XFS_STATS_INC(mp, xs_ig_attempts);
729 
730 	/* get the perag structure and ensure that it's inode capable */
731 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
732 	agino = XFS_INO_TO_AGINO(mp, ino);
733 
734 again:
735 	error = 0;
736 	rcu_read_lock();
737 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
738 
739 	if (ip) {
740 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
741 		if (error)
742 			goto out_error_or_again;
743 	} else {
744 		rcu_read_unlock();
745 		if (flags & XFS_IGET_INCORE) {
746 			error = -ENODATA;
747 			goto out_error_or_again;
748 		}
749 		XFS_STATS_INC(mp, xs_ig_missed);
750 
751 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
752 							flags, lock_flags);
753 		if (error)
754 			goto out_error_or_again;
755 	}
756 	xfs_perag_put(pag);
757 
758 	*ipp = ip;
759 
760 	/*
761 	 * If we have a real type for an on-disk inode, we can setup the inode
762 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
763 	 * handle it.
764 	 */
765 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
766 		xfs_setup_existing_inode(ip);
767 	return 0;
768 
769 out_error_or_again:
770 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
771 	    error == -EAGAIN) {
772 		delay(1);
773 		goto again;
774 	}
775 	xfs_perag_put(pag);
776 	return error;
777 }
778 
779 /*
780  * "Is this a cached inode that's also allocated?"
781  *
782  * Look up an inode by number in the given file system.  If the inode is
783  * in cache and isn't in purgatory, return 1 if the inode is allocated
784  * and 0 if it is not.  For all other cases (not in cache, being torn
785  * down, etc.), return a negative error code.
786  *
787  * The caller has to prevent inode allocation and freeing activity,
788  * presumably by locking the AGI buffer.   This is to ensure that an
789  * inode cannot transition from allocated to freed until the caller is
790  * ready to allow that.  If the inode is in an intermediate state (new,
791  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
792  * inode is not in the cache, -ENOENT will be returned.  The caller must
793  * deal with these scenarios appropriately.
794  *
795  * This is a specialized use case for the online scrubber; if you're
796  * reading this, you probably want xfs_iget.
797  */
798 int
799 xfs_icache_inode_is_allocated(
800 	struct xfs_mount	*mp,
801 	struct xfs_trans	*tp,
802 	xfs_ino_t		ino,
803 	bool			*inuse)
804 {
805 	struct xfs_inode	*ip;
806 	int			error;
807 
808 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
809 	if (error)
810 		return error;
811 
812 	*inuse = !!(VFS_I(ip)->i_mode);
813 	xfs_irele(ip);
814 	return 0;
815 }
816 
817 /*
818  * Grab the inode for reclaim exclusively.
819  *
820  * We have found this inode via a lookup under RCU, so the inode may have
821  * already been freed, or it may be in the process of being recycled by
822  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
823  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
824  * will not be set. Hence we need to check for both these flag conditions to
825  * avoid inodes that are no longer reclaim candidates.
826  *
827  * Note: checking for other state flags here, under the i_flags_lock or not, is
828  * racy and should be avoided. Those races should be resolved only after we have
829  * ensured that we are able to reclaim this inode and the world can see that we
830  * are going to reclaim it.
831  *
832  * Return true if we grabbed it, false otherwise.
833  */
834 static bool
835 xfs_reclaim_igrab(
836 	struct xfs_inode	*ip,
837 	struct xfs_icwalk	*icw)
838 {
839 	ASSERT(rcu_read_lock_held());
840 
841 	spin_lock(&ip->i_flags_lock);
842 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
843 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
844 		/* not a reclaim candidate. */
845 		spin_unlock(&ip->i_flags_lock);
846 		return false;
847 	}
848 
849 	/* Don't reclaim a sick inode unless the caller asked for it. */
850 	if (ip->i_sick &&
851 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
852 		spin_unlock(&ip->i_flags_lock);
853 		return false;
854 	}
855 
856 	__xfs_iflags_set(ip, XFS_IRECLAIM);
857 	spin_unlock(&ip->i_flags_lock);
858 	return true;
859 }
860 
861 /*
862  * Inode reclaim is non-blocking, so the default action if progress cannot be
863  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
864  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
865  * blocking anymore and hence we can wait for the inode to be able to reclaim
866  * it.
867  *
868  * We do no IO here - if callers require inodes to be cleaned they must push the
869  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
870  * done in the background in a non-blocking manner, and enables memory reclaim
871  * to make progress without blocking.
872  */
873 static void
874 xfs_reclaim_inode(
875 	struct xfs_inode	*ip,
876 	struct xfs_perag	*pag)
877 {
878 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
879 
880 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
881 		goto out;
882 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
883 		goto out_iunlock;
884 
885 	/*
886 	 * Check for log shutdown because aborting the inode can move the log
887 	 * tail and corrupt in memory state. This is fine if the log is shut
888 	 * down, but if the log is still active and only the mount is shut down
889 	 * then the in-memory log tail movement caused by the abort can be
890 	 * incorrectly propagated to disk.
891 	 */
892 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
893 		xfs_iunpin_wait(ip);
894 		xfs_iflush_shutdown_abort(ip);
895 		goto reclaim;
896 	}
897 	if (xfs_ipincount(ip))
898 		goto out_clear_flush;
899 	if (!xfs_inode_clean(ip))
900 		goto out_clear_flush;
901 
902 	xfs_iflags_clear(ip, XFS_IFLUSHING);
903 reclaim:
904 	trace_xfs_inode_reclaiming(ip);
905 
906 	/*
907 	 * Because we use RCU freeing we need to ensure the inode always appears
908 	 * to be reclaimed with an invalid inode number when in the free state.
909 	 * We do this as early as possible under the ILOCK so that
910 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
911 	 * detect races with us here. By doing this, we guarantee that once
912 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
913 	 * it will see either a valid inode that will serialise correctly, or it
914 	 * will see an invalid inode that it can skip.
915 	 */
916 	spin_lock(&ip->i_flags_lock);
917 	ip->i_flags = XFS_IRECLAIM;
918 	ip->i_ino = 0;
919 	ip->i_sick = 0;
920 	ip->i_checked = 0;
921 	spin_unlock(&ip->i_flags_lock);
922 
923 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
924 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
925 
926 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
927 	/*
928 	 * Remove the inode from the per-AG radix tree.
929 	 *
930 	 * Because radix_tree_delete won't complain even if the item was never
931 	 * added to the tree assert that it's been there before to catch
932 	 * problems with the inode life time early on.
933 	 */
934 	spin_lock(&pag->pag_ici_lock);
935 	if (!radix_tree_delete(&pag->pag_ici_root,
936 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
937 		ASSERT(0);
938 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
939 	spin_unlock(&pag->pag_ici_lock);
940 
941 	/*
942 	 * Here we do an (almost) spurious inode lock in order to coordinate
943 	 * with inode cache radix tree lookups.  This is because the lookup
944 	 * can reference the inodes in the cache without taking references.
945 	 *
946 	 * We make that OK here by ensuring that we wait until the inode is
947 	 * unlocked after the lookup before we go ahead and free it.
948 	 */
949 	xfs_ilock(ip, XFS_ILOCK_EXCL);
950 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
951 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
952 	ASSERT(xfs_inode_clean(ip));
953 
954 	__xfs_inode_free(ip);
955 	return;
956 
957 out_clear_flush:
958 	xfs_iflags_clear(ip, XFS_IFLUSHING);
959 out_iunlock:
960 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
961 out:
962 	xfs_iflags_clear(ip, XFS_IRECLAIM);
963 }
964 
965 /* Reclaim sick inodes if we're unmounting or the fs went down. */
966 static inline bool
967 xfs_want_reclaim_sick(
968 	struct xfs_mount	*mp)
969 {
970 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
971 	       xfs_is_shutdown(mp);
972 }
973 
974 void
975 xfs_reclaim_inodes(
976 	struct xfs_mount	*mp)
977 {
978 	struct xfs_icwalk	icw = {
979 		.icw_flags	= 0,
980 	};
981 
982 	if (xfs_want_reclaim_sick(mp))
983 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
984 
985 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
986 		xfs_ail_push_all_sync(mp->m_ail);
987 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
988 	}
989 }
990 
991 /*
992  * The shrinker infrastructure determines how many inodes we should scan for
993  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
994  * push the AIL here. We also want to proactively free up memory if we can to
995  * minimise the amount of work memory reclaim has to do so we kick the
996  * background reclaim if it isn't already scheduled.
997  */
998 long
999 xfs_reclaim_inodes_nr(
1000 	struct xfs_mount	*mp,
1001 	unsigned long		nr_to_scan)
1002 {
1003 	struct xfs_icwalk	icw = {
1004 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1005 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1006 	};
1007 
1008 	if (xfs_want_reclaim_sick(mp))
1009 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1010 
1011 	/* kick background reclaimer and push the AIL */
1012 	xfs_reclaim_work_queue(mp);
1013 	xfs_ail_push_all(mp->m_ail);
1014 
1015 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Return the number of reclaimable inodes in the filesystem for
1021  * the shrinker to determine how much to reclaim.
1022  */
1023 long
1024 xfs_reclaim_inodes_count(
1025 	struct xfs_mount	*mp)
1026 {
1027 	struct xfs_perag	*pag;
1028 	xfs_agnumber_t		ag = 0;
1029 	long			reclaimable = 0;
1030 
1031 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1032 		ag = pag->pag_agno + 1;
1033 		reclaimable += pag->pag_ici_reclaimable;
1034 		xfs_perag_put(pag);
1035 	}
1036 	return reclaimable;
1037 }
1038 
1039 STATIC bool
1040 xfs_icwalk_match_id(
1041 	struct xfs_inode	*ip,
1042 	struct xfs_icwalk	*icw)
1043 {
1044 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1045 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1046 		return false;
1047 
1048 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1049 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1050 		return false;
1051 
1052 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1053 	    ip->i_projid != icw->icw_prid)
1054 		return false;
1055 
1056 	return true;
1057 }
1058 
1059 /*
1060  * A union-based inode filtering algorithm. Process the inode if any of the
1061  * criteria match. This is for global/internal scans only.
1062  */
1063 STATIC bool
1064 xfs_icwalk_match_id_union(
1065 	struct xfs_inode	*ip,
1066 	struct xfs_icwalk	*icw)
1067 {
1068 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1069 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1070 		return true;
1071 
1072 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1073 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1074 		return true;
1075 
1076 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1077 	    ip->i_projid == icw->icw_prid)
1078 		return true;
1079 
1080 	return false;
1081 }
1082 
1083 /*
1084  * Is this inode @ip eligible for eof/cow block reclamation, given some
1085  * filtering parameters @icw?  The inode is eligible if @icw is null or
1086  * if the predicate functions match.
1087  */
1088 static bool
1089 xfs_icwalk_match(
1090 	struct xfs_inode	*ip,
1091 	struct xfs_icwalk	*icw)
1092 {
1093 	bool			match;
1094 
1095 	if (!icw)
1096 		return true;
1097 
1098 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1099 		match = xfs_icwalk_match_id_union(ip, icw);
1100 	else
1101 		match = xfs_icwalk_match_id(ip, icw);
1102 	if (!match)
1103 		return false;
1104 
1105 	/* skip the inode if the file size is too small */
1106 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1107 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1108 		return false;
1109 
1110 	return true;
1111 }
1112 
1113 /*
1114  * This is a fast pass over the inode cache to try to get reclaim moving on as
1115  * many inodes as possible in a short period of time. It kicks itself every few
1116  * seconds, as well as being kicked by the inode cache shrinker when memory
1117  * goes low.
1118  */
1119 void
1120 xfs_reclaim_worker(
1121 	struct work_struct *work)
1122 {
1123 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1124 					struct xfs_mount, m_reclaim_work);
1125 
1126 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1127 	xfs_reclaim_work_queue(mp);
1128 }
1129 
1130 STATIC int
1131 xfs_inode_free_eofblocks(
1132 	struct xfs_inode	*ip,
1133 	struct xfs_icwalk	*icw,
1134 	unsigned int		*lockflags)
1135 {
1136 	bool			wait;
1137 
1138 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1139 
1140 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1141 		return 0;
1142 
1143 	/*
1144 	 * If the mapping is dirty the operation can block and wait for some
1145 	 * time. Unless we are waiting, skip it.
1146 	 */
1147 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1148 		return 0;
1149 
1150 	if (!xfs_icwalk_match(ip, icw))
1151 		return 0;
1152 
1153 	/*
1154 	 * If the caller is waiting, return -EAGAIN to keep the background
1155 	 * scanner moving and revisit the inode in a subsequent pass.
1156 	 */
1157 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1158 		if (wait)
1159 			return -EAGAIN;
1160 		return 0;
1161 	}
1162 	*lockflags |= XFS_IOLOCK_EXCL;
1163 
1164 	if (xfs_can_free_eofblocks(ip, false))
1165 		return xfs_free_eofblocks(ip);
1166 
1167 	/* inode could be preallocated or append-only */
1168 	trace_xfs_inode_free_eofblocks_invalid(ip);
1169 	xfs_inode_clear_eofblocks_tag(ip);
1170 	return 0;
1171 }
1172 
1173 static void
1174 xfs_blockgc_set_iflag(
1175 	struct xfs_inode	*ip,
1176 	unsigned long		iflag)
1177 {
1178 	struct xfs_mount	*mp = ip->i_mount;
1179 	struct xfs_perag	*pag;
1180 
1181 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1182 
1183 	/*
1184 	 * Don't bother locking the AG and looking up in the radix trees
1185 	 * if we already know that we have the tag set.
1186 	 */
1187 	if (ip->i_flags & iflag)
1188 		return;
1189 	spin_lock(&ip->i_flags_lock);
1190 	ip->i_flags |= iflag;
1191 	spin_unlock(&ip->i_flags_lock);
1192 
1193 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1194 	spin_lock(&pag->pag_ici_lock);
1195 
1196 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1197 			XFS_ICI_BLOCKGC_TAG);
1198 
1199 	spin_unlock(&pag->pag_ici_lock);
1200 	xfs_perag_put(pag);
1201 }
1202 
1203 void
1204 xfs_inode_set_eofblocks_tag(
1205 	xfs_inode_t	*ip)
1206 {
1207 	trace_xfs_inode_set_eofblocks_tag(ip);
1208 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1209 }
1210 
1211 static void
1212 xfs_blockgc_clear_iflag(
1213 	struct xfs_inode	*ip,
1214 	unsigned long		iflag)
1215 {
1216 	struct xfs_mount	*mp = ip->i_mount;
1217 	struct xfs_perag	*pag;
1218 	bool			clear_tag;
1219 
1220 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1221 
1222 	spin_lock(&ip->i_flags_lock);
1223 	ip->i_flags &= ~iflag;
1224 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1225 	spin_unlock(&ip->i_flags_lock);
1226 
1227 	if (!clear_tag)
1228 		return;
1229 
1230 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1231 	spin_lock(&pag->pag_ici_lock);
1232 
1233 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1234 			XFS_ICI_BLOCKGC_TAG);
1235 
1236 	spin_unlock(&pag->pag_ici_lock);
1237 	xfs_perag_put(pag);
1238 }
1239 
1240 void
1241 xfs_inode_clear_eofblocks_tag(
1242 	xfs_inode_t	*ip)
1243 {
1244 	trace_xfs_inode_clear_eofblocks_tag(ip);
1245 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1246 }
1247 
1248 /*
1249  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1250  * then we can bail out quickly, but otherwise we must back off if the file
1251  * is undergoing some kind of write.
1252  */
1253 static bool
1254 xfs_prep_free_cowblocks(
1255 	struct xfs_inode	*ip)
1256 {
1257 	/*
1258 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1259 	 * possible the inode was fully unshared since it was originally tagged.
1260 	 */
1261 	if (!xfs_inode_has_cow_data(ip)) {
1262 		trace_xfs_inode_free_cowblocks_invalid(ip);
1263 		xfs_inode_clear_cowblocks_tag(ip);
1264 		return false;
1265 	}
1266 
1267 	/*
1268 	 * If the mapping is dirty or under writeback we cannot touch the
1269 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1270 	 */
1271 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1272 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1273 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1274 	    atomic_read(&VFS_I(ip)->i_dio_count))
1275 		return false;
1276 
1277 	return true;
1278 }
1279 
1280 /*
1281  * Automatic CoW Reservation Freeing
1282  *
1283  * These functions automatically garbage collect leftover CoW reservations
1284  * that were made on behalf of a cowextsize hint when we start to run out
1285  * of quota or when the reservations sit around for too long.  If the file
1286  * has dirty pages or is undergoing writeback, its CoW reservations will
1287  * be retained.
1288  *
1289  * The actual garbage collection piggybacks off the same code that runs
1290  * the speculative EOF preallocation garbage collector.
1291  */
1292 STATIC int
1293 xfs_inode_free_cowblocks(
1294 	struct xfs_inode	*ip,
1295 	struct xfs_icwalk	*icw,
1296 	unsigned int		*lockflags)
1297 {
1298 	bool			wait;
1299 	int			ret = 0;
1300 
1301 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1302 
1303 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1304 		return 0;
1305 
1306 	if (!xfs_prep_free_cowblocks(ip))
1307 		return 0;
1308 
1309 	if (!xfs_icwalk_match(ip, icw))
1310 		return 0;
1311 
1312 	/*
1313 	 * If the caller is waiting, return -EAGAIN to keep the background
1314 	 * scanner moving and revisit the inode in a subsequent pass.
1315 	 */
1316 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1317 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1318 		if (wait)
1319 			return -EAGAIN;
1320 		return 0;
1321 	}
1322 	*lockflags |= XFS_IOLOCK_EXCL;
1323 
1324 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1325 		if (wait)
1326 			return -EAGAIN;
1327 		return 0;
1328 	}
1329 	*lockflags |= XFS_MMAPLOCK_EXCL;
1330 
1331 	/*
1332 	 * Check again, nobody else should be able to dirty blocks or change
1333 	 * the reflink iflag now that we have the first two locks held.
1334 	 */
1335 	if (xfs_prep_free_cowblocks(ip))
1336 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1337 	return ret;
1338 }
1339 
1340 void
1341 xfs_inode_set_cowblocks_tag(
1342 	xfs_inode_t	*ip)
1343 {
1344 	trace_xfs_inode_set_cowblocks_tag(ip);
1345 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1346 }
1347 
1348 void
1349 xfs_inode_clear_cowblocks_tag(
1350 	xfs_inode_t	*ip)
1351 {
1352 	trace_xfs_inode_clear_cowblocks_tag(ip);
1353 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1354 }
1355 
1356 /* Disable post-EOF and CoW block auto-reclamation. */
1357 void
1358 xfs_blockgc_stop(
1359 	struct xfs_mount	*mp)
1360 {
1361 	struct xfs_perag	*pag;
1362 	xfs_agnumber_t		agno;
1363 
1364 	if (!xfs_clear_blockgc_enabled(mp))
1365 		return;
1366 
1367 	for_each_perag(mp, agno, pag)
1368 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1369 	trace_xfs_blockgc_stop(mp, __return_address);
1370 }
1371 
1372 /* Enable post-EOF and CoW block auto-reclamation. */
1373 void
1374 xfs_blockgc_start(
1375 	struct xfs_mount	*mp)
1376 {
1377 	struct xfs_perag	*pag;
1378 	xfs_agnumber_t		agno;
1379 
1380 	if (xfs_set_blockgc_enabled(mp))
1381 		return;
1382 
1383 	trace_xfs_blockgc_start(mp, __return_address);
1384 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1385 		xfs_blockgc_queue(pag);
1386 }
1387 
1388 /* Don't try to run block gc on an inode that's in any of these states. */
1389 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1390 					 XFS_NEED_INACTIVE | \
1391 					 XFS_INACTIVATING | \
1392 					 XFS_IRECLAIMABLE | \
1393 					 XFS_IRECLAIM)
1394 /*
1395  * Decide if the given @ip is eligible for garbage collection of speculative
1396  * preallocations, and grab it if so.  Returns true if it's ready to go or
1397  * false if we should just ignore it.
1398  */
1399 static bool
1400 xfs_blockgc_igrab(
1401 	struct xfs_inode	*ip)
1402 {
1403 	struct inode		*inode = VFS_I(ip);
1404 
1405 	ASSERT(rcu_read_lock_held());
1406 
1407 	/* Check for stale RCU freed inode */
1408 	spin_lock(&ip->i_flags_lock);
1409 	if (!ip->i_ino)
1410 		goto out_unlock_noent;
1411 
1412 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1413 		goto out_unlock_noent;
1414 	spin_unlock(&ip->i_flags_lock);
1415 
1416 	/* nothing to sync during shutdown */
1417 	if (xfs_is_shutdown(ip->i_mount))
1418 		return false;
1419 
1420 	/* If we can't grab the inode, it must on it's way to reclaim. */
1421 	if (!igrab(inode))
1422 		return false;
1423 
1424 	/* inode is valid */
1425 	return true;
1426 
1427 out_unlock_noent:
1428 	spin_unlock(&ip->i_flags_lock);
1429 	return false;
1430 }
1431 
1432 /* Scan one incore inode for block preallocations that we can remove. */
1433 static int
1434 xfs_blockgc_scan_inode(
1435 	struct xfs_inode	*ip,
1436 	struct xfs_icwalk	*icw)
1437 {
1438 	unsigned int		lockflags = 0;
1439 	int			error;
1440 
1441 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1442 	if (error)
1443 		goto unlock;
1444 
1445 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1446 unlock:
1447 	if (lockflags)
1448 		xfs_iunlock(ip, lockflags);
1449 	xfs_irele(ip);
1450 	return error;
1451 }
1452 
1453 /* Background worker that trims preallocated space. */
1454 void
1455 xfs_blockgc_worker(
1456 	struct work_struct	*work)
1457 {
1458 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1459 					struct xfs_perag, pag_blockgc_work);
1460 	struct xfs_mount	*mp = pag->pag_mount;
1461 	int			error;
1462 
1463 	trace_xfs_blockgc_worker(mp, __return_address);
1464 
1465 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1466 	if (error)
1467 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1468 				pag->pag_agno, error);
1469 	xfs_blockgc_queue(pag);
1470 }
1471 
1472 /*
1473  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1474  * and cowblocks.
1475  */
1476 int
1477 xfs_blockgc_free_space(
1478 	struct xfs_mount	*mp,
1479 	struct xfs_icwalk	*icw)
1480 {
1481 	int			error;
1482 
1483 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1484 
1485 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1486 	if (error)
1487 		return error;
1488 
1489 	xfs_inodegc_flush(mp);
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Reclaim all the free space that we can by scheduling the background blockgc
1495  * and inodegc workers immediately and waiting for them all to clear.
1496  */
1497 void
1498 xfs_blockgc_flush_all(
1499 	struct xfs_mount	*mp)
1500 {
1501 	struct xfs_perag	*pag;
1502 	xfs_agnumber_t		agno;
1503 
1504 	trace_xfs_blockgc_flush_all(mp, __return_address);
1505 
1506 	/*
1507 	 * For each blockgc worker, move its queue time up to now.  If it
1508 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1509 	 * left.
1510 	 */
1511 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1512 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1513 				&pag->pag_blockgc_work, 0);
1514 
1515 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1516 		flush_delayed_work(&pag->pag_blockgc_work);
1517 
1518 	xfs_inodegc_flush(mp);
1519 }
1520 
1521 /*
1522  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1523  * quota caused an allocation failure, so we make a best effort by including
1524  * each quota under low free space conditions (less than 1% free space) in the
1525  * scan.
1526  *
1527  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1528  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1529  * MMAPLOCK.
1530  */
1531 int
1532 xfs_blockgc_free_dquots(
1533 	struct xfs_mount	*mp,
1534 	struct xfs_dquot	*udqp,
1535 	struct xfs_dquot	*gdqp,
1536 	struct xfs_dquot	*pdqp,
1537 	unsigned int		iwalk_flags)
1538 {
1539 	struct xfs_icwalk	icw = {0};
1540 	bool			do_work = false;
1541 
1542 	if (!udqp && !gdqp && !pdqp)
1543 		return 0;
1544 
1545 	/*
1546 	 * Run a scan to free blocks using the union filter to cover all
1547 	 * applicable quotas in a single scan.
1548 	 */
1549 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1550 
1551 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1552 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1553 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1554 		do_work = true;
1555 	}
1556 
1557 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1558 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1559 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1560 		do_work = true;
1561 	}
1562 
1563 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1564 		icw.icw_prid = pdqp->q_id;
1565 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1566 		do_work = true;
1567 	}
1568 
1569 	if (!do_work)
1570 		return 0;
1571 
1572 	return xfs_blockgc_free_space(mp, &icw);
1573 }
1574 
1575 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1576 int
1577 xfs_blockgc_free_quota(
1578 	struct xfs_inode	*ip,
1579 	unsigned int		iwalk_flags)
1580 {
1581 	return xfs_blockgc_free_dquots(ip->i_mount,
1582 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1583 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1584 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1585 }
1586 
1587 /* XFS Inode Cache Walking Code */
1588 
1589 /*
1590  * The inode lookup is done in batches to keep the amount of lock traffic and
1591  * radix tree lookups to a minimum. The batch size is a trade off between
1592  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1593  * be too greedy.
1594  */
1595 #define XFS_LOOKUP_BATCH	32
1596 
1597 
1598 /*
1599  * Decide if we want to grab this inode in anticipation of doing work towards
1600  * the goal.
1601  */
1602 static inline bool
1603 xfs_icwalk_igrab(
1604 	enum xfs_icwalk_goal	goal,
1605 	struct xfs_inode	*ip,
1606 	struct xfs_icwalk	*icw)
1607 {
1608 	switch (goal) {
1609 	case XFS_ICWALK_BLOCKGC:
1610 		return xfs_blockgc_igrab(ip);
1611 	case XFS_ICWALK_RECLAIM:
1612 		return xfs_reclaim_igrab(ip, icw);
1613 	default:
1614 		return false;
1615 	}
1616 }
1617 
1618 /*
1619  * Process an inode.  Each processing function must handle any state changes
1620  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1621  */
1622 static inline int
1623 xfs_icwalk_process_inode(
1624 	enum xfs_icwalk_goal	goal,
1625 	struct xfs_inode	*ip,
1626 	struct xfs_perag	*pag,
1627 	struct xfs_icwalk	*icw)
1628 {
1629 	int			error = 0;
1630 
1631 	switch (goal) {
1632 	case XFS_ICWALK_BLOCKGC:
1633 		error = xfs_blockgc_scan_inode(ip, icw);
1634 		break;
1635 	case XFS_ICWALK_RECLAIM:
1636 		xfs_reclaim_inode(ip, pag);
1637 		break;
1638 	}
1639 	return error;
1640 }
1641 
1642 /*
1643  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1644  * process them in some manner.
1645  */
1646 static int
1647 xfs_icwalk_ag(
1648 	struct xfs_perag	*pag,
1649 	enum xfs_icwalk_goal	goal,
1650 	struct xfs_icwalk	*icw)
1651 {
1652 	struct xfs_mount	*mp = pag->pag_mount;
1653 	uint32_t		first_index;
1654 	int			last_error = 0;
1655 	int			skipped;
1656 	bool			done;
1657 	int			nr_found;
1658 
1659 restart:
1660 	done = false;
1661 	skipped = 0;
1662 	if (goal == XFS_ICWALK_RECLAIM)
1663 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1664 	else
1665 		first_index = 0;
1666 	nr_found = 0;
1667 	do {
1668 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1669 		int		error = 0;
1670 		int		i;
1671 
1672 		rcu_read_lock();
1673 
1674 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1675 				(void **) batch, first_index,
1676 				XFS_LOOKUP_BATCH, goal);
1677 		if (!nr_found) {
1678 			done = true;
1679 			rcu_read_unlock();
1680 			break;
1681 		}
1682 
1683 		/*
1684 		 * Grab the inodes before we drop the lock. if we found
1685 		 * nothing, nr == 0 and the loop will be skipped.
1686 		 */
1687 		for (i = 0; i < nr_found; i++) {
1688 			struct xfs_inode *ip = batch[i];
1689 
1690 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1691 				batch[i] = NULL;
1692 
1693 			/*
1694 			 * Update the index for the next lookup. Catch
1695 			 * overflows into the next AG range which can occur if
1696 			 * we have inodes in the last block of the AG and we
1697 			 * are currently pointing to the last inode.
1698 			 *
1699 			 * Because we may see inodes that are from the wrong AG
1700 			 * due to RCU freeing and reallocation, only update the
1701 			 * index if it lies in this AG. It was a race that lead
1702 			 * us to see this inode, so another lookup from the
1703 			 * same index will not find it again.
1704 			 */
1705 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1706 				continue;
1707 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1708 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1709 				done = true;
1710 		}
1711 
1712 		/* unlock now we've grabbed the inodes. */
1713 		rcu_read_unlock();
1714 
1715 		for (i = 0; i < nr_found; i++) {
1716 			if (!batch[i])
1717 				continue;
1718 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1719 					icw);
1720 			if (error == -EAGAIN) {
1721 				skipped++;
1722 				continue;
1723 			}
1724 			if (error && last_error != -EFSCORRUPTED)
1725 				last_error = error;
1726 		}
1727 
1728 		/* bail out if the filesystem is corrupted.  */
1729 		if (error == -EFSCORRUPTED)
1730 			break;
1731 
1732 		cond_resched();
1733 
1734 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1735 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1736 			if (icw->icw_scan_limit <= 0)
1737 				break;
1738 		}
1739 	} while (nr_found && !done);
1740 
1741 	if (goal == XFS_ICWALK_RECLAIM) {
1742 		if (done)
1743 			first_index = 0;
1744 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1745 	}
1746 
1747 	if (skipped) {
1748 		delay(1);
1749 		goto restart;
1750 	}
1751 	return last_error;
1752 }
1753 
1754 /* Walk all incore inodes to achieve a given goal. */
1755 static int
1756 xfs_icwalk(
1757 	struct xfs_mount	*mp,
1758 	enum xfs_icwalk_goal	goal,
1759 	struct xfs_icwalk	*icw)
1760 {
1761 	struct xfs_perag	*pag;
1762 	int			error = 0;
1763 	int			last_error = 0;
1764 	xfs_agnumber_t		agno;
1765 
1766 	for_each_perag_tag(mp, agno, pag, goal) {
1767 		error = xfs_icwalk_ag(pag, goal, icw);
1768 		if (error) {
1769 			last_error = error;
1770 			if (error == -EFSCORRUPTED) {
1771 				xfs_perag_rele(pag);
1772 				break;
1773 			}
1774 		}
1775 	}
1776 	return last_error;
1777 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1778 }
1779 
1780 #ifdef DEBUG
1781 static void
1782 xfs_check_delalloc(
1783 	struct xfs_inode	*ip,
1784 	int			whichfork)
1785 {
1786 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1787 	struct xfs_bmbt_irec	got;
1788 	struct xfs_iext_cursor	icur;
1789 
1790 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1791 		return;
1792 	do {
1793 		if (isnullstartblock(got.br_startblock)) {
1794 			xfs_warn(ip->i_mount,
1795 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1796 				ip->i_ino,
1797 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1798 				got.br_startoff, got.br_blockcount);
1799 		}
1800 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1801 }
1802 #else
1803 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1804 #endif
1805 
1806 /* Schedule the inode for reclaim. */
1807 static void
1808 xfs_inodegc_set_reclaimable(
1809 	struct xfs_inode	*ip)
1810 {
1811 	struct xfs_mount	*mp = ip->i_mount;
1812 	struct xfs_perag	*pag;
1813 
1814 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1815 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1816 		xfs_check_delalloc(ip, XFS_COW_FORK);
1817 		ASSERT(0);
1818 	}
1819 
1820 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1821 	spin_lock(&pag->pag_ici_lock);
1822 	spin_lock(&ip->i_flags_lock);
1823 
1824 	trace_xfs_inode_set_reclaimable(ip);
1825 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1826 	ip->i_flags |= XFS_IRECLAIMABLE;
1827 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1828 			XFS_ICI_RECLAIM_TAG);
1829 
1830 	spin_unlock(&ip->i_flags_lock);
1831 	spin_unlock(&pag->pag_ici_lock);
1832 	xfs_perag_put(pag);
1833 }
1834 
1835 /*
1836  * Free all speculative preallocations and possibly even the inode itself.
1837  * This is the last chance to make changes to an otherwise unreferenced file
1838  * before incore reclamation happens.
1839  */
1840 static void
1841 xfs_inodegc_inactivate(
1842 	struct xfs_inode	*ip)
1843 {
1844 	trace_xfs_inode_inactivating(ip);
1845 	xfs_inactive(ip);
1846 	xfs_inodegc_set_reclaimable(ip);
1847 }
1848 
1849 void
1850 xfs_inodegc_worker(
1851 	struct work_struct	*work)
1852 {
1853 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1854 						struct xfs_inodegc, work);
1855 	struct llist_node	*node = llist_del_all(&gc->list);
1856 	struct xfs_inode	*ip, *n;
1857 	unsigned int		nofs_flag;
1858 
1859 	WRITE_ONCE(gc->items, 0);
1860 
1861 	if (!node)
1862 		return;
1863 
1864 	/*
1865 	 * We can allocate memory here while doing writeback on behalf of
1866 	 * memory reclaim.  To avoid memory allocation deadlocks set the
1867 	 * task-wide nofs context for the following operations.
1868 	 */
1869 	nofs_flag = memalloc_nofs_save();
1870 
1871 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1872 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1873 
1874 	WRITE_ONCE(gc->shrinker_hits, 0);
1875 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1876 		xfs_iflags_set(ip, XFS_INACTIVATING);
1877 		xfs_inodegc_inactivate(ip);
1878 	}
1879 
1880 	memalloc_nofs_restore(nofs_flag);
1881 }
1882 
1883 /*
1884  * Expedite all pending inodegc work to run immediately. This does not wait for
1885  * completion of the work.
1886  */
1887 void
1888 xfs_inodegc_push(
1889 	struct xfs_mount	*mp)
1890 {
1891 	if (!xfs_is_inodegc_enabled(mp))
1892 		return;
1893 	trace_xfs_inodegc_push(mp, __return_address);
1894 	xfs_inodegc_queue_all(mp);
1895 }
1896 
1897 /*
1898  * Force all currently queued inode inactivation work to run immediately and
1899  * wait for the work to finish.
1900  */
1901 void
1902 xfs_inodegc_flush(
1903 	struct xfs_mount	*mp)
1904 {
1905 	xfs_inodegc_push(mp);
1906 	trace_xfs_inodegc_flush(mp, __return_address);
1907 	flush_workqueue(mp->m_inodegc_wq);
1908 }
1909 
1910 /*
1911  * Flush all the pending work and then disable the inode inactivation background
1912  * workers and wait for them to stop.
1913  */
1914 void
1915 xfs_inodegc_stop(
1916 	struct xfs_mount	*mp)
1917 {
1918 	if (!xfs_clear_inodegc_enabled(mp))
1919 		return;
1920 
1921 	xfs_inodegc_queue_all(mp);
1922 	drain_workqueue(mp->m_inodegc_wq);
1923 
1924 	trace_xfs_inodegc_stop(mp, __return_address);
1925 }
1926 
1927 /*
1928  * Enable the inode inactivation background workers and schedule deferred inode
1929  * inactivation work if there is any.
1930  */
1931 void
1932 xfs_inodegc_start(
1933 	struct xfs_mount	*mp)
1934 {
1935 	if (xfs_set_inodegc_enabled(mp))
1936 		return;
1937 
1938 	trace_xfs_inodegc_start(mp, __return_address);
1939 	xfs_inodegc_queue_all(mp);
1940 }
1941 
1942 #ifdef CONFIG_XFS_RT
1943 static inline bool
1944 xfs_inodegc_want_queue_rt_file(
1945 	struct xfs_inode	*ip)
1946 {
1947 	struct xfs_mount	*mp = ip->i_mount;
1948 
1949 	if (!XFS_IS_REALTIME_INODE(ip))
1950 		return false;
1951 
1952 	if (__percpu_counter_compare(&mp->m_frextents,
1953 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1954 				XFS_FDBLOCKS_BATCH) < 0)
1955 		return true;
1956 
1957 	return false;
1958 }
1959 #else
1960 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1961 #endif /* CONFIG_XFS_RT */
1962 
1963 /*
1964  * Schedule the inactivation worker when:
1965  *
1966  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1967  *  - There is less than 5% free space left.
1968  *  - Any of the quotas for this inode are near an enforcement limit.
1969  */
1970 static inline bool
1971 xfs_inodegc_want_queue_work(
1972 	struct xfs_inode	*ip,
1973 	unsigned int		items)
1974 {
1975 	struct xfs_mount	*mp = ip->i_mount;
1976 
1977 	if (items > mp->m_ino_geo.inodes_per_cluster)
1978 		return true;
1979 
1980 	if (__percpu_counter_compare(&mp->m_fdblocks,
1981 				mp->m_low_space[XFS_LOWSP_5_PCNT],
1982 				XFS_FDBLOCKS_BATCH) < 0)
1983 		return true;
1984 
1985 	if (xfs_inodegc_want_queue_rt_file(ip))
1986 		return true;
1987 
1988 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1989 		return true;
1990 
1991 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1992 		return true;
1993 
1994 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
1995 		return true;
1996 
1997 	return false;
1998 }
1999 
2000 /*
2001  * Upper bound on the number of inodes in each AG that can be queued for
2002  * inactivation at any given time, to avoid monopolizing the workqueue.
2003  */
2004 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2005 
2006 /*
2007  * Make the frontend wait for inactivations when:
2008  *
2009  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2010  *  - The queue depth exceeds the maximum allowable percpu backlog.
2011  *
2012  * Note: If the current thread is running a transaction, we don't ever want to
2013  * wait for other transactions because that could introduce a deadlock.
2014  */
2015 static inline bool
2016 xfs_inodegc_want_flush_work(
2017 	struct xfs_inode	*ip,
2018 	unsigned int		items,
2019 	unsigned int		shrinker_hits)
2020 {
2021 	if (current->journal_info)
2022 		return false;
2023 
2024 	if (shrinker_hits > 0)
2025 		return true;
2026 
2027 	if (items > XFS_INODEGC_MAX_BACKLOG)
2028 		return true;
2029 
2030 	return false;
2031 }
2032 
2033 /*
2034  * Queue a background inactivation worker if there are inodes that need to be
2035  * inactivated and higher level xfs code hasn't disabled the background
2036  * workers.
2037  */
2038 static void
2039 xfs_inodegc_queue(
2040 	struct xfs_inode	*ip)
2041 {
2042 	struct xfs_mount	*mp = ip->i_mount;
2043 	struct xfs_inodegc	*gc;
2044 	int			items;
2045 	unsigned int		shrinker_hits;
2046 	unsigned long		queue_delay = 1;
2047 
2048 	trace_xfs_inode_set_need_inactive(ip);
2049 	spin_lock(&ip->i_flags_lock);
2050 	ip->i_flags |= XFS_NEED_INACTIVE;
2051 	spin_unlock(&ip->i_flags_lock);
2052 
2053 	gc = get_cpu_ptr(mp->m_inodegc);
2054 	llist_add(&ip->i_gclist, &gc->list);
2055 	items = READ_ONCE(gc->items);
2056 	WRITE_ONCE(gc->items, items + 1);
2057 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2058 
2059 	/*
2060 	 * We queue the work while holding the current CPU so that the work
2061 	 * is scheduled to run on this CPU.
2062 	 */
2063 	if (!xfs_is_inodegc_enabled(mp)) {
2064 		put_cpu_ptr(gc);
2065 		return;
2066 	}
2067 
2068 	if (xfs_inodegc_want_queue_work(ip, items))
2069 		queue_delay = 0;
2070 
2071 	trace_xfs_inodegc_queue(mp, __return_address);
2072 	mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay);
2073 	put_cpu_ptr(gc);
2074 
2075 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2076 		trace_xfs_inodegc_throttle(mp, __return_address);
2077 		flush_delayed_work(&gc->work);
2078 	}
2079 }
2080 
2081 /*
2082  * Fold the dead CPU inodegc queue into the current CPUs queue.
2083  */
2084 void
2085 xfs_inodegc_cpu_dead(
2086 	struct xfs_mount	*mp,
2087 	unsigned int		dead_cpu)
2088 {
2089 	struct xfs_inodegc	*dead_gc, *gc;
2090 	struct llist_node	*first, *last;
2091 	unsigned int		count = 0;
2092 
2093 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2094 	cancel_delayed_work_sync(&dead_gc->work);
2095 
2096 	if (llist_empty(&dead_gc->list))
2097 		return;
2098 
2099 	first = dead_gc->list.first;
2100 	last = first;
2101 	while (last->next) {
2102 		last = last->next;
2103 		count++;
2104 	}
2105 	dead_gc->list.first = NULL;
2106 	dead_gc->items = 0;
2107 
2108 	/* Add pending work to current CPU */
2109 	gc = get_cpu_ptr(mp->m_inodegc);
2110 	llist_add_batch(first, last, &gc->list);
2111 	count += READ_ONCE(gc->items);
2112 	WRITE_ONCE(gc->items, count);
2113 
2114 	if (xfs_is_inodegc_enabled(mp)) {
2115 		trace_xfs_inodegc_queue(mp, __return_address);
2116 		mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0);
2117 	}
2118 	put_cpu_ptr(gc);
2119 }
2120 
2121 /*
2122  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2123  * lookups on the radix tree, this inode flag can go away.
2124  *
2125  * We always use background reclaim here because even if the inode is clean, it
2126  * still may be under IO and hence we have wait for IO completion to occur
2127  * before we can reclaim the inode. The background reclaim path handles this
2128  * more efficiently than we can here, so simply let background reclaim tear down
2129  * all inodes.
2130  */
2131 void
2132 xfs_inode_mark_reclaimable(
2133 	struct xfs_inode	*ip)
2134 {
2135 	struct xfs_mount	*mp = ip->i_mount;
2136 	bool			need_inactive;
2137 
2138 	XFS_STATS_INC(mp, vn_reclaim);
2139 
2140 	/*
2141 	 * We should never get here with any of the reclaim flags already set.
2142 	 */
2143 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2144 
2145 	need_inactive = xfs_inode_needs_inactive(ip);
2146 	if (need_inactive) {
2147 		xfs_inodegc_queue(ip);
2148 		return;
2149 	}
2150 
2151 	/* Going straight to reclaim, so drop the dquots. */
2152 	xfs_qm_dqdetach(ip);
2153 	xfs_inodegc_set_reclaimable(ip);
2154 }
2155 
2156 /*
2157  * Register a phony shrinker so that we can run background inodegc sooner when
2158  * there's memory pressure.  Inactivation does not itself free any memory but
2159  * it does make inodes reclaimable, which eventually frees memory.
2160  *
2161  * The count function, seek value, and batch value are crafted to trigger the
2162  * scan function during the second round of scanning.  Hopefully this means
2163  * that we reclaimed enough memory that initiating metadata transactions won't
2164  * make things worse.
2165  */
2166 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2167 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2168 
2169 static unsigned long
2170 xfs_inodegc_shrinker_count(
2171 	struct shrinker		*shrink,
2172 	struct shrink_control	*sc)
2173 {
2174 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2175 						   m_inodegc_shrinker);
2176 	struct xfs_inodegc	*gc;
2177 	int			cpu;
2178 
2179 	if (!xfs_is_inodegc_enabled(mp))
2180 		return 0;
2181 
2182 	for_each_online_cpu(cpu) {
2183 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2184 		if (!llist_empty(&gc->list))
2185 			return XFS_INODEGC_SHRINKER_COUNT;
2186 	}
2187 
2188 	return 0;
2189 }
2190 
2191 static unsigned long
2192 xfs_inodegc_shrinker_scan(
2193 	struct shrinker		*shrink,
2194 	struct shrink_control	*sc)
2195 {
2196 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2197 						   m_inodegc_shrinker);
2198 	struct xfs_inodegc	*gc;
2199 	int			cpu;
2200 	bool			no_items = true;
2201 
2202 	if (!xfs_is_inodegc_enabled(mp))
2203 		return SHRINK_STOP;
2204 
2205 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2206 
2207 	for_each_online_cpu(cpu) {
2208 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2209 		if (!llist_empty(&gc->list)) {
2210 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2211 
2212 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2213 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2214 			no_items = false;
2215 		}
2216 	}
2217 
2218 	/*
2219 	 * If there are no inodes to inactivate, we don't want the shrinker
2220 	 * to think there's deferred work to call us back about.
2221 	 */
2222 	if (no_items)
2223 		return LONG_MAX;
2224 
2225 	return SHRINK_STOP;
2226 }
2227 
2228 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2229 int
2230 xfs_inodegc_register_shrinker(
2231 	struct xfs_mount	*mp)
2232 {
2233 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2234 
2235 	shrink->count_objects = xfs_inodegc_shrinker_count;
2236 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2237 	shrink->seeks = 0;
2238 	shrink->flags = SHRINKER_NONSLAB;
2239 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2240 
2241 	return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2242 }
2243