1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_error.h" 27 #include "xfs_trans.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_quota.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_dquot_item.h" 35 #include "xfs_dquot.h" 36 37 #include <linux/kthread.h> 38 #include <linux/freezer.h> 39 40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 41 struct xfs_perag *pag, struct xfs_inode *ip); 42 43 /* 44 * Allocate and initialise an xfs_inode. 45 */ 46 struct xfs_inode * 47 xfs_inode_alloc( 48 struct xfs_mount *mp, 49 xfs_ino_t ino) 50 { 51 struct xfs_inode *ip; 52 53 /* 54 * if this didn't occur in transactions, we could use 55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 56 * code up to do this anyway. 57 */ 58 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 59 if (!ip) 60 return NULL; 61 if (inode_init_always(mp->m_super, VFS_I(ip))) { 62 kmem_zone_free(xfs_inode_zone, ip); 63 return NULL; 64 } 65 66 XFS_STATS_INC(vn_active); 67 ASSERT(atomic_read(&ip->i_pincount) == 0); 68 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 69 ASSERT(!xfs_isiflocked(ip)); 70 ASSERT(ip->i_ino == 0); 71 72 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 73 74 /* initialise the xfs inode */ 75 ip->i_ino = ino; 76 ip->i_mount = mp; 77 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 78 ip->i_afp = NULL; 79 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 80 ip->i_flags = 0; 81 ip->i_delayed_blks = 0; 82 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 83 84 return ip; 85 } 86 87 STATIC void 88 xfs_inode_free_callback( 89 struct rcu_head *head) 90 { 91 struct inode *inode = container_of(head, struct inode, i_rcu); 92 struct xfs_inode *ip = XFS_I(inode); 93 94 kmem_zone_free(xfs_inode_zone, ip); 95 } 96 97 void 98 xfs_inode_free( 99 struct xfs_inode *ip) 100 { 101 switch (ip->i_d.di_mode & S_IFMT) { 102 case S_IFREG: 103 case S_IFDIR: 104 case S_IFLNK: 105 xfs_idestroy_fork(ip, XFS_DATA_FORK); 106 break; 107 } 108 109 if (ip->i_afp) 110 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 111 112 if (ip->i_itemp) { 113 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 114 xfs_inode_item_destroy(ip); 115 ip->i_itemp = NULL; 116 } 117 118 /* 119 * Because we use RCU freeing we need to ensure the inode always 120 * appears to be reclaimed with an invalid inode number when in the 121 * free state. The ip->i_flags_lock provides the barrier against lookup 122 * races. 123 */ 124 spin_lock(&ip->i_flags_lock); 125 ip->i_flags = XFS_IRECLAIM; 126 ip->i_ino = 0; 127 spin_unlock(&ip->i_flags_lock); 128 129 /* asserts to verify all state is correct here */ 130 ASSERT(atomic_read(&ip->i_pincount) == 0); 131 ASSERT(!xfs_isiflocked(ip)); 132 XFS_STATS_DEC(vn_active); 133 134 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 135 } 136 137 /* 138 * Check the validity of the inode we just found it the cache 139 */ 140 static int 141 xfs_iget_cache_hit( 142 struct xfs_perag *pag, 143 struct xfs_inode *ip, 144 xfs_ino_t ino, 145 int flags, 146 int lock_flags) __releases(RCU) 147 { 148 struct inode *inode = VFS_I(ip); 149 struct xfs_mount *mp = ip->i_mount; 150 int error; 151 152 /* 153 * check for re-use of an inode within an RCU grace period due to the 154 * radix tree nodes not being updated yet. We monitor for this by 155 * setting the inode number to zero before freeing the inode structure. 156 * If the inode has been reallocated and set up, then the inode number 157 * will not match, so check for that, too. 158 */ 159 spin_lock(&ip->i_flags_lock); 160 if (ip->i_ino != ino) { 161 trace_xfs_iget_skip(ip); 162 XFS_STATS_INC(xs_ig_frecycle); 163 error = -EAGAIN; 164 goto out_error; 165 } 166 167 168 /* 169 * If we are racing with another cache hit that is currently 170 * instantiating this inode or currently recycling it out of 171 * reclaimabe state, wait for the initialisation to complete 172 * before continuing. 173 * 174 * XXX(hch): eventually we should do something equivalent to 175 * wait_on_inode to wait for these flags to be cleared 176 * instead of polling for it. 177 */ 178 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 179 trace_xfs_iget_skip(ip); 180 XFS_STATS_INC(xs_ig_frecycle); 181 error = -EAGAIN; 182 goto out_error; 183 } 184 185 /* 186 * If lookup is racing with unlink return an error immediately. 187 */ 188 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 189 error = -ENOENT; 190 goto out_error; 191 } 192 193 /* 194 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 195 * Need to carefully get it back into useable state. 196 */ 197 if (ip->i_flags & XFS_IRECLAIMABLE) { 198 trace_xfs_iget_reclaim(ip); 199 200 /* 201 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 202 * from stomping over us while we recycle the inode. We can't 203 * clear the radix tree reclaimable tag yet as it requires 204 * pag_ici_lock to be held exclusive. 205 */ 206 ip->i_flags |= XFS_IRECLAIM; 207 208 spin_unlock(&ip->i_flags_lock); 209 rcu_read_unlock(); 210 211 error = inode_init_always(mp->m_super, inode); 212 if (error) { 213 /* 214 * Re-initializing the inode failed, and we are in deep 215 * trouble. Try to re-add it to the reclaim list. 216 */ 217 rcu_read_lock(); 218 spin_lock(&ip->i_flags_lock); 219 220 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 221 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 222 trace_xfs_iget_reclaim_fail(ip); 223 goto out_error; 224 } 225 226 spin_lock(&pag->pag_ici_lock); 227 spin_lock(&ip->i_flags_lock); 228 229 /* 230 * Clear the per-lifetime state in the inode as we are now 231 * effectively a new inode and need to return to the initial 232 * state before reuse occurs. 233 */ 234 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 235 ip->i_flags |= XFS_INEW; 236 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 237 inode->i_state = I_NEW; 238 239 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 240 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 241 242 spin_unlock(&ip->i_flags_lock); 243 spin_unlock(&pag->pag_ici_lock); 244 } else { 245 /* If the VFS inode is being torn down, pause and try again. */ 246 if (!igrab(inode)) { 247 trace_xfs_iget_skip(ip); 248 error = -EAGAIN; 249 goto out_error; 250 } 251 252 /* We've got a live one. */ 253 spin_unlock(&ip->i_flags_lock); 254 rcu_read_unlock(); 255 trace_xfs_iget_hit(ip); 256 } 257 258 if (lock_flags != 0) 259 xfs_ilock(ip, lock_flags); 260 261 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 262 XFS_STATS_INC(xs_ig_found); 263 264 return 0; 265 266 out_error: 267 spin_unlock(&ip->i_flags_lock); 268 rcu_read_unlock(); 269 return error; 270 } 271 272 273 static int 274 xfs_iget_cache_miss( 275 struct xfs_mount *mp, 276 struct xfs_perag *pag, 277 xfs_trans_t *tp, 278 xfs_ino_t ino, 279 struct xfs_inode **ipp, 280 int flags, 281 int lock_flags) 282 { 283 struct xfs_inode *ip; 284 int error; 285 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 286 int iflags; 287 288 ip = xfs_inode_alloc(mp, ino); 289 if (!ip) 290 return -ENOMEM; 291 292 error = xfs_iread(mp, tp, ip, flags); 293 if (error) 294 goto out_destroy; 295 296 trace_xfs_iget_miss(ip); 297 298 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 299 error = -ENOENT; 300 goto out_destroy; 301 } 302 303 /* 304 * Preload the radix tree so we can insert safely under the 305 * write spinlock. Note that we cannot sleep inside the preload 306 * region. Since we can be called from transaction context, don't 307 * recurse into the file system. 308 */ 309 if (radix_tree_preload(GFP_NOFS)) { 310 error = -EAGAIN; 311 goto out_destroy; 312 } 313 314 /* 315 * Because the inode hasn't been added to the radix-tree yet it can't 316 * be found by another thread, so we can do the non-sleeping lock here. 317 */ 318 if (lock_flags) { 319 if (!xfs_ilock_nowait(ip, lock_flags)) 320 BUG(); 321 } 322 323 /* 324 * These values must be set before inserting the inode into the radix 325 * tree as the moment it is inserted a concurrent lookup (allowed by the 326 * RCU locking mechanism) can find it and that lookup must see that this 327 * is an inode currently under construction (i.e. that XFS_INEW is set). 328 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 329 * memory barrier that ensures this detection works correctly at lookup 330 * time. 331 */ 332 iflags = XFS_INEW; 333 if (flags & XFS_IGET_DONTCACHE) 334 iflags |= XFS_IDONTCACHE; 335 ip->i_udquot = NULL; 336 ip->i_gdquot = NULL; 337 ip->i_pdquot = NULL; 338 xfs_iflags_set(ip, iflags); 339 340 /* insert the new inode */ 341 spin_lock(&pag->pag_ici_lock); 342 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 343 if (unlikely(error)) { 344 WARN_ON(error != -EEXIST); 345 XFS_STATS_INC(xs_ig_dup); 346 error = -EAGAIN; 347 goto out_preload_end; 348 } 349 spin_unlock(&pag->pag_ici_lock); 350 radix_tree_preload_end(); 351 352 *ipp = ip; 353 return 0; 354 355 out_preload_end: 356 spin_unlock(&pag->pag_ici_lock); 357 radix_tree_preload_end(); 358 if (lock_flags) 359 xfs_iunlock(ip, lock_flags); 360 out_destroy: 361 __destroy_inode(VFS_I(ip)); 362 xfs_inode_free(ip); 363 return error; 364 } 365 366 /* 367 * Look up an inode by number in the given file system. 368 * The inode is looked up in the cache held in each AG. 369 * If the inode is found in the cache, initialise the vfs inode 370 * if necessary. 371 * 372 * If it is not in core, read it in from the file system's device, 373 * add it to the cache and initialise the vfs inode. 374 * 375 * The inode is locked according to the value of the lock_flags parameter. 376 * This flag parameter indicates how and if the inode's IO lock and inode lock 377 * should be taken. 378 * 379 * mp -- the mount point structure for the current file system. It points 380 * to the inode hash table. 381 * tp -- a pointer to the current transaction if there is one. This is 382 * simply passed through to the xfs_iread() call. 383 * ino -- the number of the inode desired. This is the unique identifier 384 * within the file system for the inode being requested. 385 * lock_flags -- flags indicating how to lock the inode. See the comment 386 * for xfs_ilock() for a list of valid values. 387 */ 388 int 389 xfs_iget( 390 xfs_mount_t *mp, 391 xfs_trans_t *tp, 392 xfs_ino_t ino, 393 uint flags, 394 uint lock_flags, 395 xfs_inode_t **ipp) 396 { 397 xfs_inode_t *ip; 398 int error; 399 xfs_perag_t *pag; 400 xfs_agino_t agino; 401 402 /* 403 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 404 * doesn't get freed while it's being referenced during a 405 * radix tree traversal here. It assumes this function 406 * aqcuires only the ILOCK (and therefore it has no need to 407 * involve the IOLOCK in this synchronization). 408 */ 409 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 410 411 /* reject inode numbers outside existing AGs */ 412 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 413 return -EINVAL; 414 415 /* get the perag structure and ensure that it's inode capable */ 416 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 417 agino = XFS_INO_TO_AGINO(mp, ino); 418 419 again: 420 error = 0; 421 rcu_read_lock(); 422 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 423 424 if (ip) { 425 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 426 if (error) 427 goto out_error_or_again; 428 } else { 429 rcu_read_unlock(); 430 XFS_STATS_INC(xs_ig_missed); 431 432 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 433 flags, lock_flags); 434 if (error) 435 goto out_error_or_again; 436 } 437 xfs_perag_put(pag); 438 439 *ipp = ip; 440 441 /* 442 * If we have a real type for an on-disk inode, we can set ops(&unlock) 443 * now. If it's a new inode being created, xfs_ialloc will handle it. 444 */ 445 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 446 xfs_setup_inode(ip); 447 return 0; 448 449 out_error_or_again: 450 if (error == -EAGAIN) { 451 delay(1); 452 goto again; 453 } 454 xfs_perag_put(pag); 455 return error; 456 } 457 458 /* 459 * The inode lookup is done in batches to keep the amount of lock traffic and 460 * radix tree lookups to a minimum. The batch size is a trade off between 461 * lookup reduction and stack usage. This is in the reclaim path, so we can't 462 * be too greedy. 463 */ 464 #define XFS_LOOKUP_BATCH 32 465 466 STATIC int 467 xfs_inode_ag_walk_grab( 468 struct xfs_inode *ip) 469 { 470 struct inode *inode = VFS_I(ip); 471 472 ASSERT(rcu_read_lock_held()); 473 474 /* 475 * check for stale RCU freed inode 476 * 477 * If the inode has been reallocated, it doesn't matter if it's not in 478 * the AG we are walking - we are walking for writeback, so if it 479 * passes all the "valid inode" checks and is dirty, then we'll write 480 * it back anyway. If it has been reallocated and still being 481 * initialised, the XFS_INEW check below will catch it. 482 */ 483 spin_lock(&ip->i_flags_lock); 484 if (!ip->i_ino) 485 goto out_unlock_noent; 486 487 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 488 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 489 goto out_unlock_noent; 490 spin_unlock(&ip->i_flags_lock); 491 492 /* nothing to sync during shutdown */ 493 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 494 return -EFSCORRUPTED; 495 496 /* If we can't grab the inode, it must on it's way to reclaim. */ 497 if (!igrab(inode)) 498 return -ENOENT; 499 500 /* inode is valid */ 501 return 0; 502 503 out_unlock_noent: 504 spin_unlock(&ip->i_flags_lock); 505 return -ENOENT; 506 } 507 508 STATIC int 509 xfs_inode_ag_walk( 510 struct xfs_mount *mp, 511 struct xfs_perag *pag, 512 int (*execute)(struct xfs_inode *ip, int flags, 513 void *args), 514 int flags, 515 void *args, 516 int tag) 517 { 518 uint32_t first_index; 519 int last_error = 0; 520 int skipped; 521 int done; 522 int nr_found; 523 524 restart: 525 done = 0; 526 skipped = 0; 527 first_index = 0; 528 nr_found = 0; 529 do { 530 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 531 int error = 0; 532 int i; 533 534 rcu_read_lock(); 535 536 if (tag == -1) 537 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 538 (void **)batch, first_index, 539 XFS_LOOKUP_BATCH); 540 else 541 nr_found = radix_tree_gang_lookup_tag( 542 &pag->pag_ici_root, 543 (void **) batch, first_index, 544 XFS_LOOKUP_BATCH, tag); 545 546 if (!nr_found) { 547 rcu_read_unlock(); 548 break; 549 } 550 551 /* 552 * Grab the inodes before we drop the lock. if we found 553 * nothing, nr == 0 and the loop will be skipped. 554 */ 555 for (i = 0; i < nr_found; i++) { 556 struct xfs_inode *ip = batch[i]; 557 558 if (done || xfs_inode_ag_walk_grab(ip)) 559 batch[i] = NULL; 560 561 /* 562 * Update the index for the next lookup. Catch 563 * overflows into the next AG range which can occur if 564 * we have inodes in the last block of the AG and we 565 * are currently pointing to the last inode. 566 * 567 * Because we may see inodes that are from the wrong AG 568 * due to RCU freeing and reallocation, only update the 569 * index if it lies in this AG. It was a race that lead 570 * us to see this inode, so another lookup from the 571 * same index will not find it again. 572 */ 573 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 574 continue; 575 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 576 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 577 done = 1; 578 } 579 580 /* unlock now we've grabbed the inodes. */ 581 rcu_read_unlock(); 582 583 for (i = 0; i < nr_found; i++) { 584 if (!batch[i]) 585 continue; 586 error = execute(batch[i], flags, args); 587 IRELE(batch[i]); 588 if (error == -EAGAIN) { 589 skipped++; 590 continue; 591 } 592 if (error && last_error != -EFSCORRUPTED) 593 last_error = error; 594 } 595 596 /* bail out if the filesystem is corrupted. */ 597 if (error == -EFSCORRUPTED) 598 break; 599 600 cond_resched(); 601 602 } while (nr_found && !done); 603 604 if (skipped) { 605 delay(1); 606 goto restart; 607 } 608 return last_error; 609 } 610 611 /* 612 * Background scanning to trim post-EOF preallocated space. This is queued 613 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 614 */ 615 STATIC void 616 xfs_queue_eofblocks( 617 struct xfs_mount *mp) 618 { 619 rcu_read_lock(); 620 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 621 queue_delayed_work(mp->m_eofblocks_workqueue, 622 &mp->m_eofblocks_work, 623 msecs_to_jiffies(xfs_eofb_secs * 1000)); 624 rcu_read_unlock(); 625 } 626 627 void 628 xfs_eofblocks_worker( 629 struct work_struct *work) 630 { 631 struct xfs_mount *mp = container_of(to_delayed_work(work), 632 struct xfs_mount, m_eofblocks_work); 633 xfs_icache_free_eofblocks(mp, NULL); 634 xfs_queue_eofblocks(mp); 635 } 636 637 int 638 xfs_inode_ag_iterator( 639 struct xfs_mount *mp, 640 int (*execute)(struct xfs_inode *ip, int flags, 641 void *args), 642 int flags, 643 void *args) 644 { 645 struct xfs_perag *pag; 646 int error = 0; 647 int last_error = 0; 648 xfs_agnumber_t ag; 649 650 ag = 0; 651 while ((pag = xfs_perag_get(mp, ag))) { 652 ag = pag->pag_agno + 1; 653 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 654 xfs_perag_put(pag); 655 if (error) { 656 last_error = error; 657 if (error == -EFSCORRUPTED) 658 break; 659 } 660 } 661 return last_error; 662 } 663 664 int 665 xfs_inode_ag_iterator_tag( 666 struct xfs_mount *mp, 667 int (*execute)(struct xfs_inode *ip, int flags, 668 void *args), 669 int flags, 670 void *args, 671 int tag) 672 { 673 struct xfs_perag *pag; 674 int error = 0; 675 int last_error = 0; 676 xfs_agnumber_t ag; 677 678 ag = 0; 679 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 680 ag = pag->pag_agno + 1; 681 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 682 xfs_perag_put(pag); 683 if (error) { 684 last_error = error; 685 if (error == -EFSCORRUPTED) 686 break; 687 } 688 } 689 return last_error; 690 } 691 692 /* 693 * Queue a new inode reclaim pass if there are reclaimable inodes and there 694 * isn't a reclaim pass already in progress. By default it runs every 5s based 695 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 696 * tunable, but that can be done if this method proves to be ineffective or too 697 * aggressive. 698 */ 699 static void 700 xfs_reclaim_work_queue( 701 struct xfs_mount *mp) 702 { 703 704 rcu_read_lock(); 705 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 706 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 707 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 708 } 709 rcu_read_unlock(); 710 } 711 712 /* 713 * This is a fast pass over the inode cache to try to get reclaim moving on as 714 * many inodes as possible in a short period of time. It kicks itself every few 715 * seconds, as well as being kicked by the inode cache shrinker when memory 716 * goes low. It scans as quickly as possible avoiding locked inodes or those 717 * already being flushed, and once done schedules a future pass. 718 */ 719 void 720 xfs_reclaim_worker( 721 struct work_struct *work) 722 { 723 struct xfs_mount *mp = container_of(to_delayed_work(work), 724 struct xfs_mount, m_reclaim_work); 725 726 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 727 xfs_reclaim_work_queue(mp); 728 } 729 730 static void 731 __xfs_inode_set_reclaim_tag( 732 struct xfs_perag *pag, 733 struct xfs_inode *ip) 734 { 735 radix_tree_tag_set(&pag->pag_ici_root, 736 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 737 XFS_ICI_RECLAIM_TAG); 738 739 if (!pag->pag_ici_reclaimable) { 740 /* propagate the reclaim tag up into the perag radix tree */ 741 spin_lock(&ip->i_mount->m_perag_lock); 742 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 743 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 744 XFS_ICI_RECLAIM_TAG); 745 spin_unlock(&ip->i_mount->m_perag_lock); 746 747 /* schedule periodic background inode reclaim */ 748 xfs_reclaim_work_queue(ip->i_mount); 749 750 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 751 -1, _RET_IP_); 752 } 753 pag->pag_ici_reclaimable++; 754 } 755 756 /* 757 * We set the inode flag atomically with the radix tree tag. 758 * Once we get tag lookups on the radix tree, this inode flag 759 * can go away. 760 */ 761 void 762 xfs_inode_set_reclaim_tag( 763 xfs_inode_t *ip) 764 { 765 struct xfs_mount *mp = ip->i_mount; 766 struct xfs_perag *pag; 767 768 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 769 spin_lock(&pag->pag_ici_lock); 770 spin_lock(&ip->i_flags_lock); 771 __xfs_inode_set_reclaim_tag(pag, ip); 772 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 773 spin_unlock(&ip->i_flags_lock); 774 spin_unlock(&pag->pag_ici_lock); 775 xfs_perag_put(pag); 776 } 777 778 STATIC void 779 __xfs_inode_clear_reclaim( 780 xfs_perag_t *pag, 781 xfs_inode_t *ip) 782 { 783 pag->pag_ici_reclaimable--; 784 if (!pag->pag_ici_reclaimable) { 785 /* clear the reclaim tag from the perag radix tree */ 786 spin_lock(&ip->i_mount->m_perag_lock); 787 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 788 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 789 XFS_ICI_RECLAIM_TAG); 790 spin_unlock(&ip->i_mount->m_perag_lock); 791 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 792 -1, _RET_IP_); 793 } 794 } 795 796 STATIC void 797 __xfs_inode_clear_reclaim_tag( 798 xfs_mount_t *mp, 799 xfs_perag_t *pag, 800 xfs_inode_t *ip) 801 { 802 radix_tree_tag_clear(&pag->pag_ici_root, 803 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 804 __xfs_inode_clear_reclaim(pag, ip); 805 } 806 807 /* 808 * Grab the inode for reclaim exclusively. 809 * Return 0 if we grabbed it, non-zero otherwise. 810 */ 811 STATIC int 812 xfs_reclaim_inode_grab( 813 struct xfs_inode *ip, 814 int flags) 815 { 816 ASSERT(rcu_read_lock_held()); 817 818 /* quick check for stale RCU freed inode */ 819 if (!ip->i_ino) 820 return 1; 821 822 /* 823 * If we are asked for non-blocking operation, do unlocked checks to 824 * see if the inode already is being flushed or in reclaim to avoid 825 * lock traffic. 826 */ 827 if ((flags & SYNC_TRYLOCK) && 828 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 829 return 1; 830 831 /* 832 * The radix tree lock here protects a thread in xfs_iget from racing 833 * with us starting reclaim on the inode. Once we have the 834 * XFS_IRECLAIM flag set it will not touch us. 835 * 836 * Due to RCU lookup, we may find inodes that have been freed and only 837 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 838 * aren't candidates for reclaim at all, so we must check the 839 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 840 */ 841 spin_lock(&ip->i_flags_lock); 842 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 843 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 844 /* not a reclaim candidate. */ 845 spin_unlock(&ip->i_flags_lock); 846 return 1; 847 } 848 __xfs_iflags_set(ip, XFS_IRECLAIM); 849 spin_unlock(&ip->i_flags_lock); 850 return 0; 851 } 852 853 /* 854 * Inodes in different states need to be treated differently. The following 855 * table lists the inode states and the reclaim actions necessary: 856 * 857 * inode state iflush ret required action 858 * --------------- ---------- --------------- 859 * bad - reclaim 860 * shutdown EIO unpin and reclaim 861 * clean, unpinned 0 reclaim 862 * stale, unpinned 0 reclaim 863 * clean, pinned(*) 0 requeue 864 * stale, pinned EAGAIN requeue 865 * dirty, async - requeue 866 * dirty, sync 0 reclaim 867 * 868 * (*) dgc: I don't think the clean, pinned state is possible but it gets 869 * handled anyway given the order of checks implemented. 870 * 871 * Also, because we get the flush lock first, we know that any inode that has 872 * been flushed delwri has had the flush completed by the time we check that 873 * the inode is clean. 874 * 875 * Note that because the inode is flushed delayed write by AIL pushing, the 876 * flush lock may already be held here and waiting on it can result in very 877 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 878 * the caller should push the AIL first before trying to reclaim inodes to 879 * minimise the amount of time spent waiting. For background relaim, we only 880 * bother to reclaim clean inodes anyway. 881 * 882 * Hence the order of actions after gaining the locks should be: 883 * bad => reclaim 884 * shutdown => unpin and reclaim 885 * pinned, async => requeue 886 * pinned, sync => unpin 887 * stale => reclaim 888 * clean => reclaim 889 * dirty, async => requeue 890 * dirty, sync => flush, wait and reclaim 891 */ 892 STATIC int 893 xfs_reclaim_inode( 894 struct xfs_inode *ip, 895 struct xfs_perag *pag, 896 int sync_mode) 897 { 898 struct xfs_buf *bp = NULL; 899 int error; 900 901 restart: 902 error = 0; 903 xfs_ilock(ip, XFS_ILOCK_EXCL); 904 if (!xfs_iflock_nowait(ip)) { 905 if (!(sync_mode & SYNC_WAIT)) 906 goto out; 907 xfs_iflock(ip); 908 } 909 910 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 911 xfs_iunpin_wait(ip); 912 xfs_iflush_abort(ip, false); 913 goto reclaim; 914 } 915 if (xfs_ipincount(ip)) { 916 if (!(sync_mode & SYNC_WAIT)) 917 goto out_ifunlock; 918 xfs_iunpin_wait(ip); 919 } 920 if (xfs_iflags_test(ip, XFS_ISTALE)) 921 goto reclaim; 922 if (xfs_inode_clean(ip)) 923 goto reclaim; 924 925 /* 926 * Never flush out dirty data during non-blocking reclaim, as it would 927 * just contend with AIL pushing trying to do the same job. 928 */ 929 if (!(sync_mode & SYNC_WAIT)) 930 goto out_ifunlock; 931 932 /* 933 * Now we have an inode that needs flushing. 934 * 935 * Note that xfs_iflush will never block on the inode buffer lock, as 936 * xfs_ifree_cluster() can lock the inode buffer before it locks the 937 * ip->i_lock, and we are doing the exact opposite here. As a result, 938 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 939 * result in an ABBA deadlock with xfs_ifree_cluster(). 940 * 941 * As xfs_ifree_cluser() must gather all inodes that are active in the 942 * cache to mark them stale, if we hit this case we don't actually want 943 * to do IO here - we want the inode marked stale so we can simply 944 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 945 * inode, back off and try again. Hopefully the next pass through will 946 * see the stale flag set on the inode. 947 */ 948 error = xfs_iflush(ip, &bp); 949 if (error == -EAGAIN) { 950 xfs_iunlock(ip, XFS_ILOCK_EXCL); 951 /* backoff longer than in xfs_ifree_cluster */ 952 delay(2); 953 goto restart; 954 } 955 956 if (!error) { 957 error = xfs_bwrite(bp); 958 xfs_buf_relse(bp); 959 } 960 961 xfs_iflock(ip); 962 reclaim: 963 xfs_ifunlock(ip); 964 xfs_iunlock(ip, XFS_ILOCK_EXCL); 965 966 XFS_STATS_INC(xs_ig_reclaims); 967 /* 968 * Remove the inode from the per-AG radix tree. 969 * 970 * Because radix_tree_delete won't complain even if the item was never 971 * added to the tree assert that it's been there before to catch 972 * problems with the inode life time early on. 973 */ 974 spin_lock(&pag->pag_ici_lock); 975 if (!radix_tree_delete(&pag->pag_ici_root, 976 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 977 ASSERT(0); 978 __xfs_inode_clear_reclaim(pag, ip); 979 spin_unlock(&pag->pag_ici_lock); 980 981 /* 982 * Here we do an (almost) spurious inode lock in order to coordinate 983 * with inode cache radix tree lookups. This is because the lookup 984 * can reference the inodes in the cache without taking references. 985 * 986 * We make that OK here by ensuring that we wait until the inode is 987 * unlocked after the lookup before we go ahead and free it. 988 */ 989 xfs_ilock(ip, XFS_ILOCK_EXCL); 990 xfs_qm_dqdetach(ip); 991 xfs_iunlock(ip, XFS_ILOCK_EXCL); 992 993 xfs_inode_free(ip); 994 return error; 995 996 out_ifunlock: 997 xfs_ifunlock(ip); 998 out: 999 xfs_iflags_clear(ip, XFS_IRECLAIM); 1000 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1001 /* 1002 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1003 * a short while. However, this just burns CPU time scanning the tree 1004 * waiting for IO to complete and the reclaim work never goes back to 1005 * the idle state. Instead, return 0 to let the next scheduled 1006 * background reclaim attempt to reclaim the inode again. 1007 */ 1008 return 0; 1009 } 1010 1011 /* 1012 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1013 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1014 * then a shut down during filesystem unmount reclaim walk leak all the 1015 * unreclaimed inodes. 1016 */ 1017 STATIC int 1018 xfs_reclaim_inodes_ag( 1019 struct xfs_mount *mp, 1020 int flags, 1021 int *nr_to_scan) 1022 { 1023 struct xfs_perag *pag; 1024 int error = 0; 1025 int last_error = 0; 1026 xfs_agnumber_t ag; 1027 int trylock = flags & SYNC_TRYLOCK; 1028 int skipped; 1029 1030 restart: 1031 ag = 0; 1032 skipped = 0; 1033 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1034 unsigned long first_index = 0; 1035 int done = 0; 1036 int nr_found = 0; 1037 1038 ag = pag->pag_agno + 1; 1039 1040 if (trylock) { 1041 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1042 skipped++; 1043 xfs_perag_put(pag); 1044 continue; 1045 } 1046 first_index = pag->pag_ici_reclaim_cursor; 1047 } else 1048 mutex_lock(&pag->pag_ici_reclaim_lock); 1049 1050 do { 1051 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1052 int i; 1053 1054 rcu_read_lock(); 1055 nr_found = radix_tree_gang_lookup_tag( 1056 &pag->pag_ici_root, 1057 (void **)batch, first_index, 1058 XFS_LOOKUP_BATCH, 1059 XFS_ICI_RECLAIM_TAG); 1060 if (!nr_found) { 1061 done = 1; 1062 rcu_read_unlock(); 1063 break; 1064 } 1065 1066 /* 1067 * Grab the inodes before we drop the lock. if we found 1068 * nothing, nr == 0 and the loop will be skipped. 1069 */ 1070 for (i = 0; i < nr_found; i++) { 1071 struct xfs_inode *ip = batch[i]; 1072 1073 if (done || xfs_reclaim_inode_grab(ip, flags)) 1074 batch[i] = NULL; 1075 1076 /* 1077 * Update the index for the next lookup. Catch 1078 * overflows into the next AG range which can 1079 * occur if we have inodes in the last block of 1080 * the AG and we are currently pointing to the 1081 * last inode. 1082 * 1083 * Because we may see inodes that are from the 1084 * wrong AG due to RCU freeing and 1085 * reallocation, only update the index if it 1086 * lies in this AG. It was a race that lead us 1087 * to see this inode, so another lookup from 1088 * the same index will not find it again. 1089 */ 1090 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1091 pag->pag_agno) 1092 continue; 1093 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1094 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1095 done = 1; 1096 } 1097 1098 /* unlock now we've grabbed the inodes. */ 1099 rcu_read_unlock(); 1100 1101 for (i = 0; i < nr_found; i++) { 1102 if (!batch[i]) 1103 continue; 1104 error = xfs_reclaim_inode(batch[i], pag, flags); 1105 if (error && last_error != -EFSCORRUPTED) 1106 last_error = error; 1107 } 1108 1109 *nr_to_scan -= XFS_LOOKUP_BATCH; 1110 1111 cond_resched(); 1112 1113 } while (nr_found && !done && *nr_to_scan > 0); 1114 1115 if (trylock && !done) 1116 pag->pag_ici_reclaim_cursor = first_index; 1117 else 1118 pag->pag_ici_reclaim_cursor = 0; 1119 mutex_unlock(&pag->pag_ici_reclaim_lock); 1120 xfs_perag_put(pag); 1121 } 1122 1123 /* 1124 * if we skipped any AG, and we still have scan count remaining, do 1125 * another pass this time using blocking reclaim semantics (i.e 1126 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1127 * ensure that when we get more reclaimers than AGs we block rather 1128 * than spin trying to execute reclaim. 1129 */ 1130 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1131 trylock = 0; 1132 goto restart; 1133 } 1134 return last_error; 1135 } 1136 1137 int 1138 xfs_reclaim_inodes( 1139 xfs_mount_t *mp, 1140 int mode) 1141 { 1142 int nr_to_scan = INT_MAX; 1143 1144 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1145 } 1146 1147 /* 1148 * Scan a certain number of inodes for reclaim. 1149 * 1150 * When called we make sure that there is a background (fast) inode reclaim in 1151 * progress, while we will throttle the speed of reclaim via doing synchronous 1152 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1153 * them to be cleaned, which we hope will not be very long due to the 1154 * background walker having already kicked the IO off on those dirty inodes. 1155 */ 1156 long 1157 xfs_reclaim_inodes_nr( 1158 struct xfs_mount *mp, 1159 int nr_to_scan) 1160 { 1161 /* kick background reclaimer and push the AIL */ 1162 xfs_reclaim_work_queue(mp); 1163 xfs_ail_push_all(mp->m_ail); 1164 1165 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1166 } 1167 1168 /* 1169 * Return the number of reclaimable inodes in the filesystem for 1170 * the shrinker to determine how much to reclaim. 1171 */ 1172 int 1173 xfs_reclaim_inodes_count( 1174 struct xfs_mount *mp) 1175 { 1176 struct xfs_perag *pag; 1177 xfs_agnumber_t ag = 0; 1178 int reclaimable = 0; 1179 1180 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1181 ag = pag->pag_agno + 1; 1182 reclaimable += pag->pag_ici_reclaimable; 1183 xfs_perag_put(pag); 1184 } 1185 return reclaimable; 1186 } 1187 1188 STATIC int 1189 xfs_inode_match_id( 1190 struct xfs_inode *ip, 1191 struct xfs_eofblocks *eofb) 1192 { 1193 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1194 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1195 return 0; 1196 1197 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1198 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1199 return 0; 1200 1201 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1202 xfs_get_projid(ip) != eofb->eof_prid) 1203 return 0; 1204 1205 return 1; 1206 } 1207 1208 /* 1209 * A union-based inode filtering algorithm. Process the inode if any of the 1210 * criteria match. This is for global/internal scans only. 1211 */ 1212 STATIC int 1213 xfs_inode_match_id_union( 1214 struct xfs_inode *ip, 1215 struct xfs_eofblocks *eofb) 1216 { 1217 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1218 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1219 return 1; 1220 1221 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1222 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1223 return 1; 1224 1225 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1226 xfs_get_projid(ip) == eofb->eof_prid) 1227 return 1; 1228 1229 return 0; 1230 } 1231 1232 STATIC int 1233 xfs_inode_free_eofblocks( 1234 struct xfs_inode *ip, 1235 int flags, 1236 void *args) 1237 { 1238 int ret; 1239 struct xfs_eofblocks *eofb = args; 1240 bool need_iolock = true; 1241 int match; 1242 1243 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0)); 1244 1245 if (!xfs_can_free_eofblocks(ip, false)) { 1246 /* inode could be preallocated or append-only */ 1247 trace_xfs_inode_free_eofblocks_invalid(ip); 1248 xfs_inode_clear_eofblocks_tag(ip); 1249 return 0; 1250 } 1251 1252 /* 1253 * If the mapping is dirty the operation can block and wait for some 1254 * time. Unless we are waiting, skip it. 1255 */ 1256 if (!(flags & SYNC_WAIT) && 1257 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1258 return 0; 1259 1260 if (eofb) { 1261 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1262 match = xfs_inode_match_id_union(ip, eofb); 1263 else 1264 match = xfs_inode_match_id(ip, eofb); 1265 if (!match) 1266 return 0; 1267 1268 /* skip the inode if the file size is too small */ 1269 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1270 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1271 return 0; 1272 1273 /* 1274 * A scan owner implies we already hold the iolock. Skip it in 1275 * xfs_free_eofblocks() to avoid deadlock. This also eliminates 1276 * the possibility of EAGAIN being returned. 1277 */ 1278 if (eofb->eof_scan_owner == ip->i_ino) 1279 need_iolock = false; 1280 } 1281 1282 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock); 1283 1284 /* don't revisit the inode if we're not waiting */ 1285 if (ret == -EAGAIN && !(flags & SYNC_WAIT)) 1286 ret = 0; 1287 1288 return ret; 1289 } 1290 1291 int 1292 xfs_icache_free_eofblocks( 1293 struct xfs_mount *mp, 1294 struct xfs_eofblocks *eofb) 1295 { 1296 int flags = SYNC_TRYLOCK; 1297 1298 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1299 flags = SYNC_WAIT; 1300 1301 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, 1302 eofb, XFS_ICI_EOFBLOCKS_TAG); 1303 } 1304 1305 /* 1306 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1307 * multiple quotas, we don't know exactly which quota caused an allocation 1308 * failure. We make a best effort by including each quota under low free space 1309 * conditions (less than 1% free space) in the scan. 1310 */ 1311 int 1312 xfs_inode_free_quota_eofblocks( 1313 struct xfs_inode *ip) 1314 { 1315 int scan = 0; 1316 struct xfs_eofblocks eofb = {0}; 1317 struct xfs_dquot *dq; 1318 1319 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1320 1321 /* 1322 * Set the scan owner to avoid a potential livelock. Otherwise, the scan 1323 * can repeatedly trylock on the inode we're currently processing. We 1324 * run a sync scan to increase effectiveness and use the union filter to 1325 * cover all applicable quotas in a single scan. 1326 */ 1327 eofb.eof_scan_owner = ip->i_ino; 1328 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1329 1330 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1331 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1332 if (dq && xfs_dquot_lowsp(dq)) { 1333 eofb.eof_uid = VFS_I(ip)->i_uid; 1334 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1335 scan = 1; 1336 } 1337 } 1338 1339 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1340 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1341 if (dq && xfs_dquot_lowsp(dq)) { 1342 eofb.eof_gid = VFS_I(ip)->i_gid; 1343 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1344 scan = 1; 1345 } 1346 } 1347 1348 if (scan) 1349 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 1350 1351 return scan; 1352 } 1353 1354 void 1355 xfs_inode_set_eofblocks_tag( 1356 xfs_inode_t *ip) 1357 { 1358 struct xfs_mount *mp = ip->i_mount; 1359 struct xfs_perag *pag; 1360 int tagged; 1361 1362 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1363 spin_lock(&pag->pag_ici_lock); 1364 trace_xfs_inode_set_eofblocks_tag(ip); 1365 1366 tagged = radix_tree_tagged(&pag->pag_ici_root, 1367 XFS_ICI_EOFBLOCKS_TAG); 1368 radix_tree_tag_set(&pag->pag_ici_root, 1369 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1370 XFS_ICI_EOFBLOCKS_TAG); 1371 if (!tagged) { 1372 /* propagate the eofblocks tag up into the perag radix tree */ 1373 spin_lock(&ip->i_mount->m_perag_lock); 1374 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1375 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1376 XFS_ICI_EOFBLOCKS_TAG); 1377 spin_unlock(&ip->i_mount->m_perag_lock); 1378 1379 /* kick off background trimming */ 1380 xfs_queue_eofblocks(ip->i_mount); 1381 1382 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, 1383 -1, _RET_IP_); 1384 } 1385 1386 spin_unlock(&pag->pag_ici_lock); 1387 xfs_perag_put(pag); 1388 } 1389 1390 void 1391 xfs_inode_clear_eofblocks_tag( 1392 xfs_inode_t *ip) 1393 { 1394 struct xfs_mount *mp = ip->i_mount; 1395 struct xfs_perag *pag; 1396 1397 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1398 spin_lock(&pag->pag_ici_lock); 1399 trace_xfs_inode_clear_eofblocks_tag(ip); 1400 1401 radix_tree_tag_clear(&pag->pag_ici_root, 1402 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1403 XFS_ICI_EOFBLOCKS_TAG); 1404 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { 1405 /* clear the eofblocks tag from the perag radix tree */ 1406 spin_lock(&ip->i_mount->m_perag_lock); 1407 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1408 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1409 XFS_ICI_EOFBLOCKS_TAG); 1410 spin_unlock(&ip->i_mount->m_perag_lock); 1411 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, 1412 -1, _RET_IP_); 1413 } 1414 1415 spin_unlock(&pag->pag_ici_lock); 1416 xfs_perag_put(pag); 1417 } 1418 1419