xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 405db98b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 
27 #include <linux/iversion.h>
28 
29 /* Radix tree tags for incore inode tree. */
30 
31 /* inode is to be reclaimed */
32 #define XFS_ICI_RECLAIM_TAG	0
33 /* Inode has speculative preallocations (posteof or cow) to clean. */
34 #define XFS_ICI_BLOCKGC_TAG	1
35 
36 /*
37  * The goal for walking incore inodes.  These can correspond with incore inode
38  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
39  */
40 enum xfs_icwalk_goal {
41 	/* Goals directly associated with tagged inodes. */
42 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
43 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
44 };
45 
46 static int xfs_icwalk(struct xfs_mount *mp,
47 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
48 static int xfs_icwalk_ag(struct xfs_perag *pag,
49 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 
51 /*
52  * Private inode cache walk flags for struct xfs_icwalk.  Must not
53  * coincide with XFS_ICWALK_FLAGS_VALID.
54  */
55 
56 /* Stop scanning after icw_scan_limit inodes. */
57 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
58 
59 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
60 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
61 
62 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
63 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
64 					 XFS_ICWALK_FLAG_UNION)
65 
66 /*
67  * Allocate and initialise an xfs_inode.
68  */
69 struct xfs_inode *
70 xfs_inode_alloc(
71 	struct xfs_mount	*mp,
72 	xfs_ino_t		ino)
73 {
74 	struct xfs_inode	*ip;
75 
76 	/*
77 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
78 	 * and return NULL here on ENOMEM.
79 	 */
80 	ip = kmem_cache_alloc(xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
81 
82 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
83 		kmem_cache_free(xfs_inode_cache, ip);
84 		return NULL;
85 	}
86 
87 	/* VFS doesn't initialise i_mode or i_state! */
88 	VFS_I(ip)->i_mode = 0;
89 	VFS_I(ip)->i_state = 0;
90 
91 	XFS_STATS_INC(mp, vn_active);
92 	ASSERT(atomic_read(&ip->i_pincount) == 0);
93 	ASSERT(ip->i_ino == 0);
94 
95 	/* initialise the xfs inode */
96 	ip->i_ino = ino;
97 	ip->i_mount = mp;
98 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
99 	ip->i_afp = NULL;
100 	ip->i_cowfp = NULL;
101 	memset(&ip->i_df, 0, sizeof(ip->i_df));
102 	ip->i_flags = 0;
103 	ip->i_delayed_blks = 0;
104 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
105 	ip->i_nblocks = 0;
106 	ip->i_forkoff = 0;
107 	ip->i_sick = 0;
108 	ip->i_checked = 0;
109 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
110 	INIT_LIST_HEAD(&ip->i_ioend_list);
111 	spin_lock_init(&ip->i_ioend_lock);
112 
113 	return ip;
114 }
115 
116 STATIC void
117 xfs_inode_free_callback(
118 	struct rcu_head		*head)
119 {
120 	struct inode		*inode = container_of(head, struct inode, i_rcu);
121 	struct xfs_inode	*ip = XFS_I(inode);
122 
123 	switch (VFS_I(ip)->i_mode & S_IFMT) {
124 	case S_IFREG:
125 	case S_IFDIR:
126 	case S_IFLNK:
127 		xfs_idestroy_fork(&ip->i_df);
128 		break;
129 	}
130 
131 	if (ip->i_afp) {
132 		xfs_idestroy_fork(ip->i_afp);
133 		kmem_cache_free(xfs_ifork_cache, ip->i_afp);
134 	}
135 	if (ip->i_cowfp) {
136 		xfs_idestroy_fork(ip->i_cowfp);
137 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
138 	}
139 	if (ip->i_itemp) {
140 		ASSERT(!test_bit(XFS_LI_IN_AIL,
141 				 &ip->i_itemp->ili_item.li_flags));
142 		xfs_inode_item_destroy(ip);
143 		ip->i_itemp = NULL;
144 	}
145 
146 	kmem_cache_free(xfs_inode_cache, ip);
147 }
148 
149 static void
150 __xfs_inode_free(
151 	struct xfs_inode	*ip)
152 {
153 	/* asserts to verify all state is correct here */
154 	ASSERT(atomic_read(&ip->i_pincount) == 0);
155 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
156 	XFS_STATS_DEC(ip->i_mount, vn_active);
157 
158 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
159 }
160 
161 void
162 xfs_inode_free(
163 	struct xfs_inode	*ip)
164 {
165 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
166 
167 	/*
168 	 * Because we use RCU freeing we need to ensure the inode always
169 	 * appears to be reclaimed with an invalid inode number when in the
170 	 * free state. The ip->i_flags_lock provides the barrier against lookup
171 	 * races.
172 	 */
173 	spin_lock(&ip->i_flags_lock);
174 	ip->i_flags = XFS_IRECLAIM;
175 	ip->i_ino = 0;
176 	spin_unlock(&ip->i_flags_lock);
177 
178 	__xfs_inode_free(ip);
179 }
180 
181 /*
182  * Queue background inode reclaim work if there are reclaimable inodes and there
183  * isn't reclaim work already scheduled or in progress.
184  */
185 static void
186 xfs_reclaim_work_queue(
187 	struct xfs_mount        *mp)
188 {
189 
190 	rcu_read_lock();
191 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
192 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
193 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
194 	}
195 	rcu_read_unlock();
196 }
197 
198 /*
199  * Background scanning to trim preallocated space. This is queued based on the
200  * 'speculative_prealloc_lifetime' tunable (5m by default).
201  */
202 static inline void
203 xfs_blockgc_queue(
204 	struct xfs_perag	*pag)
205 {
206 	struct xfs_mount	*mp = pag->pag_mount;
207 
208 	if (!xfs_is_blockgc_enabled(mp))
209 		return;
210 
211 	rcu_read_lock();
212 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
213 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
214 				   &pag->pag_blockgc_work,
215 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
216 	rcu_read_unlock();
217 }
218 
219 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
220 static void
221 xfs_perag_set_inode_tag(
222 	struct xfs_perag	*pag,
223 	xfs_agino_t		agino,
224 	unsigned int		tag)
225 {
226 	struct xfs_mount	*mp = pag->pag_mount;
227 	bool			was_tagged;
228 
229 	lockdep_assert_held(&pag->pag_ici_lock);
230 
231 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
232 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
233 
234 	if (tag == XFS_ICI_RECLAIM_TAG)
235 		pag->pag_ici_reclaimable++;
236 
237 	if (was_tagged)
238 		return;
239 
240 	/* propagate the tag up into the perag radix tree */
241 	spin_lock(&mp->m_perag_lock);
242 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
243 	spin_unlock(&mp->m_perag_lock);
244 
245 	/* start background work */
246 	switch (tag) {
247 	case XFS_ICI_RECLAIM_TAG:
248 		xfs_reclaim_work_queue(mp);
249 		break;
250 	case XFS_ICI_BLOCKGC_TAG:
251 		xfs_blockgc_queue(pag);
252 		break;
253 	}
254 
255 	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
256 }
257 
258 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
259 static void
260 xfs_perag_clear_inode_tag(
261 	struct xfs_perag	*pag,
262 	xfs_agino_t		agino,
263 	unsigned int		tag)
264 {
265 	struct xfs_mount	*mp = pag->pag_mount;
266 
267 	lockdep_assert_held(&pag->pag_ici_lock);
268 
269 	/*
270 	 * Reclaim can signal (with a null agino) that it cleared its own tag
271 	 * by removing the inode from the radix tree.
272 	 */
273 	if (agino != NULLAGINO)
274 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
275 	else
276 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
277 
278 	if (tag == XFS_ICI_RECLAIM_TAG)
279 		pag->pag_ici_reclaimable--;
280 
281 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
282 		return;
283 
284 	/* clear the tag from the perag radix tree */
285 	spin_lock(&mp->m_perag_lock);
286 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
287 	spin_unlock(&mp->m_perag_lock);
288 
289 	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
290 }
291 
292 /*
293  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
294  * part of the structure. This is made more complex by the fact we store
295  * information about the on-disk values in the VFS inode and so we can't just
296  * overwrite the values unconditionally. Hence we save the parameters we
297  * need to retain across reinitialisation, and rewrite them into the VFS inode
298  * after reinitialisation even if it fails.
299  */
300 static int
301 xfs_reinit_inode(
302 	struct xfs_mount	*mp,
303 	struct inode		*inode)
304 {
305 	int			error;
306 	uint32_t		nlink = inode->i_nlink;
307 	uint32_t		generation = inode->i_generation;
308 	uint64_t		version = inode_peek_iversion(inode);
309 	umode_t			mode = inode->i_mode;
310 	dev_t			dev = inode->i_rdev;
311 	kuid_t			uid = inode->i_uid;
312 	kgid_t			gid = inode->i_gid;
313 
314 	error = inode_init_always(mp->m_super, inode);
315 
316 	set_nlink(inode, nlink);
317 	inode->i_generation = generation;
318 	inode_set_iversion_queried(inode, version);
319 	inode->i_mode = mode;
320 	inode->i_rdev = dev;
321 	inode->i_uid = uid;
322 	inode->i_gid = gid;
323 	return error;
324 }
325 
326 /*
327  * Carefully nudge an inode whose VFS state has been torn down back into a
328  * usable state.  Drops the i_flags_lock and the rcu read lock.
329  */
330 static int
331 xfs_iget_recycle(
332 	struct xfs_perag	*pag,
333 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
334 {
335 	struct xfs_mount	*mp = ip->i_mount;
336 	struct inode		*inode = VFS_I(ip);
337 	int			error;
338 
339 	trace_xfs_iget_recycle(ip);
340 
341 	/*
342 	 * We need to make it look like the inode is being reclaimed to prevent
343 	 * the actual reclaim workers from stomping over us while we recycle
344 	 * the inode.  We can't clear the radix tree tag yet as it requires
345 	 * pag_ici_lock to be held exclusive.
346 	 */
347 	ip->i_flags |= XFS_IRECLAIM;
348 
349 	spin_unlock(&ip->i_flags_lock);
350 	rcu_read_unlock();
351 
352 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
353 	error = xfs_reinit_inode(mp, inode);
354 	if (error) {
355 		/*
356 		 * Re-initializing the inode failed, and we are in deep
357 		 * trouble.  Try to re-add it to the reclaim list.
358 		 */
359 		rcu_read_lock();
360 		spin_lock(&ip->i_flags_lock);
361 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
362 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
363 		spin_unlock(&ip->i_flags_lock);
364 		rcu_read_unlock();
365 
366 		trace_xfs_iget_recycle_fail(ip);
367 		return error;
368 	}
369 
370 	spin_lock(&pag->pag_ici_lock);
371 	spin_lock(&ip->i_flags_lock);
372 
373 	/*
374 	 * Clear the per-lifetime state in the inode as we are now effectively
375 	 * a new inode and need to return to the initial state before reuse
376 	 * occurs.
377 	 */
378 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
379 	ip->i_flags |= XFS_INEW;
380 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
381 			XFS_ICI_RECLAIM_TAG);
382 	inode->i_state = I_NEW;
383 	spin_unlock(&ip->i_flags_lock);
384 	spin_unlock(&pag->pag_ici_lock);
385 
386 	return 0;
387 }
388 
389 /*
390  * If we are allocating a new inode, then check what was returned is
391  * actually a free, empty inode. If we are not allocating an inode,
392  * then check we didn't find a free inode.
393  *
394  * Returns:
395  *	0		if the inode free state matches the lookup context
396  *	-ENOENT		if the inode is free and we are not allocating
397  *	-EFSCORRUPTED	if there is any state mismatch at all
398  */
399 static int
400 xfs_iget_check_free_state(
401 	struct xfs_inode	*ip,
402 	int			flags)
403 {
404 	if (flags & XFS_IGET_CREATE) {
405 		/* should be a free inode */
406 		if (VFS_I(ip)->i_mode != 0) {
407 			xfs_warn(ip->i_mount,
408 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
409 				ip->i_ino, VFS_I(ip)->i_mode);
410 			return -EFSCORRUPTED;
411 		}
412 
413 		if (ip->i_nblocks != 0) {
414 			xfs_warn(ip->i_mount,
415 "Corruption detected! Free inode 0x%llx has blocks allocated!",
416 				ip->i_ino);
417 			return -EFSCORRUPTED;
418 		}
419 		return 0;
420 	}
421 
422 	/* should be an allocated inode */
423 	if (VFS_I(ip)->i_mode == 0)
424 		return -ENOENT;
425 
426 	return 0;
427 }
428 
429 /* Make all pending inactivation work start immediately. */
430 static void
431 xfs_inodegc_queue_all(
432 	struct xfs_mount	*mp)
433 {
434 	struct xfs_inodegc	*gc;
435 	int			cpu;
436 
437 	for_each_online_cpu(cpu) {
438 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
439 		if (!llist_empty(&gc->list))
440 			queue_work_on(cpu, mp->m_inodegc_wq, &gc->work);
441 	}
442 }
443 
444 /*
445  * Check the validity of the inode we just found it the cache
446  */
447 static int
448 xfs_iget_cache_hit(
449 	struct xfs_perag	*pag,
450 	struct xfs_inode	*ip,
451 	xfs_ino_t		ino,
452 	int			flags,
453 	int			lock_flags) __releases(RCU)
454 {
455 	struct inode		*inode = VFS_I(ip);
456 	struct xfs_mount	*mp = ip->i_mount;
457 	int			error;
458 
459 	/*
460 	 * check for re-use of an inode within an RCU grace period due to the
461 	 * radix tree nodes not being updated yet. We monitor for this by
462 	 * setting the inode number to zero before freeing the inode structure.
463 	 * If the inode has been reallocated and set up, then the inode number
464 	 * will not match, so check for that, too.
465 	 */
466 	spin_lock(&ip->i_flags_lock);
467 	if (ip->i_ino != ino)
468 		goto out_skip;
469 
470 	/*
471 	 * If we are racing with another cache hit that is currently
472 	 * instantiating this inode or currently recycling it out of
473 	 * reclaimable state, wait for the initialisation to complete
474 	 * before continuing.
475 	 *
476 	 * If we're racing with the inactivation worker we also want to wait.
477 	 * If we're creating a new file, it's possible that the worker
478 	 * previously marked the inode as free on disk but hasn't finished
479 	 * updating the incore state yet.  The AGI buffer will be dirty and
480 	 * locked to the icreate transaction, so a synchronous push of the
481 	 * inodegc workers would result in deadlock.  For a regular iget, the
482 	 * worker is running already, so we might as well wait.
483 	 *
484 	 * XXX(hch): eventually we should do something equivalent to
485 	 *	     wait_on_inode to wait for these flags to be cleared
486 	 *	     instead of polling for it.
487 	 */
488 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
489 		goto out_skip;
490 
491 	if (ip->i_flags & XFS_NEED_INACTIVE) {
492 		/* Unlinked inodes cannot be re-grabbed. */
493 		if (VFS_I(ip)->i_nlink == 0) {
494 			error = -ENOENT;
495 			goto out_error;
496 		}
497 		goto out_inodegc_flush;
498 	}
499 
500 	/*
501 	 * Check the inode free state is valid. This also detects lookup
502 	 * racing with unlinks.
503 	 */
504 	error = xfs_iget_check_free_state(ip, flags);
505 	if (error)
506 		goto out_error;
507 
508 	/* Skip inodes that have no vfs state. */
509 	if ((flags & XFS_IGET_INCORE) &&
510 	    (ip->i_flags & XFS_IRECLAIMABLE))
511 		goto out_skip;
512 
513 	/* The inode fits the selection criteria; process it. */
514 	if (ip->i_flags & XFS_IRECLAIMABLE) {
515 		/* Drops i_flags_lock and RCU read lock. */
516 		error = xfs_iget_recycle(pag, ip);
517 		if (error)
518 			return error;
519 	} else {
520 		/* If the VFS inode is being torn down, pause and try again. */
521 		if (!igrab(inode))
522 			goto out_skip;
523 
524 		/* We've got a live one. */
525 		spin_unlock(&ip->i_flags_lock);
526 		rcu_read_unlock();
527 		trace_xfs_iget_hit(ip);
528 	}
529 
530 	if (lock_flags != 0)
531 		xfs_ilock(ip, lock_flags);
532 
533 	if (!(flags & XFS_IGET_INCORE))
534 		xfs_iflags_clear(ip, XFS_ISTALE);
535 	XFS_STATS_INC(mp, xs_ig_found);
536 
537 	return 0;
538 
539 out_skip:
540 	trace_xfs_iget_skip(ip);
541 	XFS_STATS_INC(mp, xs_ig_frecycle);
542 	error = -EAGAIN;
543 out_error:
544 	spin_unlock(&ip->i_flags_lock);
545 	rcu_read_unlock();
546 	return error;
547 
548 out_inodegc_flush:
549 	spin_unlock(&ip->i_flags_lock);
550 	rcu_read_unlock();
551 	/*
552 	 * Do not wait for the workers, because the caller could hold an AGI
553 	 * buffer lock.  We're just going to sleep in a loop anyway.
554 	 */
555 	if (xfs_is_inodegc_enabled(mp))
556 		xfs_inodegc_queue_all(mp);
557 	return -EAGAIN;
558 }
559 
560 static int
561 xfs_iget_cache_miss(
562 	struct xfs_mount	*mp,
563 	struct xfs_perag	*pag,
564 	xfs_trans_t		*tp,
565 	xfs_ino_t		ino,
566 	struct xfs_inode	**ipp,
567 	int			flags,
568 	int			lock_flags)
569 {
570 	struct xfs_inode	*ip;
571 	int			error;
572 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
573 	int			iflags;
574 
575 	ip = xfs_inode_alloc(mp, ino);
576 	if (!ip)
577 		return -ENOMEM;
578 
579 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
580 	if (error)
581 		goto out_destroy;
582 
583 	/*
584 	 * For version 5 superblocks, if we are initialising a new inode and we
585 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
586 	 * simply build the new inode core with a random generation number.
587 	 *
588 	 * For version 4 (and older) superblocks, log recovery is dependent on
589 	 * the i_flushiter field being initialised from the current on-disk
590 	 * value and hence we must also read the inode off disk even when
591 	 * initializing new inodes.
592 	 */
593 	if (xfs_has_v3inodes(mp) &&
594 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
595 		VFS_I(ip)->i_generation = prandom_u32();
596 	} else {
597 		struct xfs_buf		*bp;
598 
599 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
600 		if (error)
601 			goto out_destroy;
602 
603 		error = xfs_inode_from_disk(ip,
604 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
605 		if (!error)
606 			xfs_buf_set_ref(bp, XFS_INO_REF);
607 		xfs_trans_brelse(tp, bp);
608 
609 		if (error)
610 			goto out_destroy;
611 	}
612 
613 	trace_xfs_iget_miss(ip);
614 
615 	/*
616 	 * Check the inode free state is valid. This also detects lookup
617 	 * racing with unlinks.
618 	 */
619 	error = xfs_iget_check_free_state(ip, flags);
620 	if (error)
621 		goto out_destroy;
622 
623 	/*
624 	 * Preload the radix tree so we can insert safely under the
625 	 * write spinlock. Note that we cannot sleep inside the preload
626 	 * region. Since we can be called from transaction context, don't
627 	 * recurse into the file system.
628 	 */
629 	if (radix_tree_preload(GFP_NOFS)) {
630 		error = -EAGAIN;
631 		goto out_destroy;
632 	}
633 
634 	/*
635 	 * Because the inode hasn't been added to the radix-tree yet it can't
636 	 * be found by another thread, so we can do the non-sleeping lock here.
637 	 */
638 	if (lock_flags) {
639 		if (!xfs_ilock_nowait(ip, lock_flags))
640 			BUG();
641 	}
642 
643 	/*
644 	 * These values must be set before inserting the inode into the radix
645 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
646 	 * RCU locking mechanism) can find it and that lookup must see that this
647 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
648 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
649 	 * memory barrier that ensures this detection works correctly at lookup
650 	 * time.
651 	 */
652 	iflags = XFS_INEW;
653 	if (flags & XFS_IGET_DONTCACHE)
654 		d_mark_dontcache(VFS_I(ip));
655 	ip->i_udquot = NULL;
656 	ip->i_gdquot = NULL;
657 	ip->i_pdquot = NULL;
658 	xfs_iflags_set(ip, iflags);
659 
660 	/* insert the new inode */
661 	spin_lock(&pag->pag_ici_lock);
662 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
663 	if (unlikely(error)) {
664 		WARN_ON(error != -EEXIST);
665 		XFS_STATS_INC(mp, xs_ig_dup);
666 		error = -EAGAIN;
667 		goto out_preload_end;
668 	}
669 	spin_unlock(&pag->pag_ici_lock);
670 	radix_tree_preload_end();
671 
672 	*ipp = ip;
673 	return 0;
674 
675 out_preload_end:
676 	spin_unlock(&pag->pag_ici_lock);
677 	radix_tree_preload_end();
678 	if (lock_flags)
679 		xfs_iunlock(ip, lock_flags);
680 out_destroy:
681 	__destroy_inode(VFS_I(ip));
682 	xfs_inode_free(ip);
683 	return error;
684 }
685 
686 /*
687  * Look up an inode by number in the given file system.  The inode is looked up
688  * in the cache held in each AG.  If the inode is found in the cache, initialise
689  * the vfs inode if necessary.
690  *
691  * If it is not in core, read it in from the file system's device, add it to the
692  * cache and initialise the vfs inode.
693  *
694  * The inode is locked according to the value of the lock_flags parameter.
695  * Inode lookup is only done during metadata operations and not as part of the
696  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
697  */
698 int
699 xfs_iget(
700 	struct xfs_mount	*mp,
701 	struct xfs_trans	*tp,
702 	xfs_ino_t		ino,
703 	uint			flags,
704 	uint			lock_flags,
705 	struct xfs_inode	**ipp)
706 {
707 	struct xfs_inode	*ip;
708 	struct xfs_perag	*pag;
709 	xfs_agino_t		agino;
710 	int			error;
711 
712 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
713 
714 	/* reject inode numbers outside existing AGs */
715 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
716 		return -EINVAL;
717 
718 	XFS_STATS_INC(mp, xs_ig_attempts);
719 
720 	/* get the perag structure and ensure that it's inode capable */
721 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
722 	agino = XFS_INO_TO_AGINO(mp, ino);
723 
724 again:
725 	error = 0;
726 	rcu_read_lock();
727 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
728 
729 	if (ip) {
730 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
731 		if (error)
732 			goto out_error_or_again;
733 	} else {
734 		rcu_read_unlock();
735 		if (flags & XFS_IGET_INCORE) {
736 			error = -ENODATA;
737 			goto out_error_or_again;
738 		}
739 		XFS_STATS_INC(mp, xs_ig_missed);
740 
741 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
742 							flags, lock_flags);
743 		if (error)
744 			goto out_error_or_again;
745 	}
746 	xfs_perag_put(pag);
747 
748 	*ipp = ip;
749 
750 	/*
751 	 * If we have a real type for an on-disk inode, we can setup the inode
752 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
753 	 */
754 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
755 		xfs_setup_existing_inode(ip);
756 	return 0;
757 
758 out_error_or_again:
759 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
760 		delay(1);
761 		goto again;
762 	}
763 	xfs_perag_put(pag);
764 	return error;
765 }
766 
767 /*
768  * "Is this a cached inode that's also allocated?"
769  *
770  * Look up an inode by number in the given file system.  If the inode is
771  * in cache and isn't in purgatory, return 1 if the inode is allocated
772  * and 0 if it is not.  For all other cases (not in cache, being torn
773  * down, etc.), return a negative error code.
774  *
775  * The caller has to prevent inode allocation and freeing activity,
776  * presumably by locking the AGI buffer.   This is to ensure that an
777  * inode cannot transition from allocated to freed until the caller is
778  * ready to allow that.  If the inode is in an intermediate state (new,
779  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
780  * inode is not in the cache, -ENOENT will be returned.  The caller must
781  * deal with these scenarios appropriately.
782  *
783  * This is a specialized use case for the online scrubber; if you're
784  * reading this, you probably want xfs_iget.
785  */
786 int
787 xfs_icache_inode_is_allocated(
788 	struct xfs_mount	*mp,
789 	struct xfs_trans	*tp,
790 	xfs_ino_t		ino,
791 	bool			*inuse)
792 {
793 	struct xfs_inode	*ip;
794 	int			error;
795 
796 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
797 	if (error)
798 		return error;
799 
800 	*inuse = !!(VFS_I(ip)->i_mode);
801 	xfs_irele(ip);
802 	return 0;
803 }
804 
805 /*
806  * Grab the inode for reclaim exclusively.
807  *
808  * We have found this inode via a lookup under RCU, so the inode may have
809  * already been freed, or it may be in the process of being recycled by
810  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
811  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
812  * will not be set. Hence we need to check for both these flag conditions to
813  * avoid inodes that are no longer reclaim candidates.
814  *
815  * Note: checking for other state flags here, under the i_flags_lock or not, is
816  * racy and should be avoided. Those races should be resolved only after we have
817  * ensured that we are able to reclaim this inode and the world can see that we
818  * are going to reclaim it.
819  *
820  * Return true if we grabbed it, false otherwise.
821  */
822 static bool
823 xfs_reclaim_igrab(
824 	struct xfs_inode	*ip,
825 	struct xfs_icwalk	*icw)
826 {
827 	ASSERT(rcu_read_lock_held());
828 
829 	spin_lock(&ip->i_flags_lock);
830 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
831 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
832 		/* not a reclaim candidate. */
833 		spin_unlock(&ip->i_flags_lock);
834 		return false;
835 	}
836 
837 	/* Don't reclaim a sick inode unless the caller asked for it. */
838 	if (ip->i_sick &&
839 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
840 		spin_unlock(&ip->i_flags_lock);
841 		return false;
842 	}
843 
844 	__xfs_iflags_set(ip, XFS_IRECLAIM);
845 	spin_unlock(&ip->i_flags_lock);
846 	return true;
847 }
848 
849 /*
850  * Inode reclaim is non-blocking, so the default action if progress cannot be
851  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
852  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
853  * blocking anymore and hence we can wait for the inode to be able to reclaim
854  * it.
855  *
856  * We do no IO here - if callers require inodes to be cleaned they must push the
857  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
858  * done in the background in a non-blocking manner, and enables memory reclaim
859  * to make progress without blocking.
860  */
861 static void
862 xfs_reclaim_inode(
863 	struct xfs_inode	*ip,
864 	struct xfs_perag	*pag)
865 {
866 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
867 
868 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
869 		goto out;
870 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
871 		goto out_iunlock;
872 
873 	if (xfs_is_shutdown(ip->i_mount)) {
874 		xfs_iunpin_wait(ip);
875 		xfs_iflush_abort(ip);
876 		goto reclaim;
877 	}
878 	if (xfs_ipincount(ip))
879 		goto out_clear_flush;
880 	if (!xfs_inode_clean(ip))
881 		goto out_clear_flush;
882 
883 	xfs_iflags_clear(ip, XFS_IFLUSHING);
884 reclaim:
885 	trace_xfs_inode_reclaiming(ip);
886 
887 	/*
888 	 * Because we use RCU freeing we need to ensure the inode always appears
889 	 * to be reclaimed with an invalid inode number when in the free state.
890 	 * We do this as early as possible under the ILOCK so that
891 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
892 	 * detect races with us here. By doing this, we guarantee that once
893 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
894 	 * it will see either a valid inode that will serialise correctly, or it
895 	 * will see an invalid inode that it can skip.
896 	 */
897 	spin_lock(&ip->i_flags_lock);
898 	ip->i_flags = XFS_IRECLAIM;
899 	ip->i_ino = 0;
900 	ip->i_sick = 0;
901 	ip->i_checked = 0;
902 	spin_unlock(&ip->i_flags_lock);
903 
904 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
905 
906 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
907 	/*
908 	 * Remove the inode from the per-AG radix tree.
909 	 *
910 	 * Because radix_tree_delete won't complain even if the item was never
911 	 * added to the tree assert that it's been there before to catch
912 	 * problems with the inode life time early on.
913 	 */
914 	spin_lock(&pag->pag_ici_lock);
915 	if (!radix_tree_delete(&pag->pag_ici_root,
916 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
917 		ASSERT(0);
918 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
919 	spin_unlock(&pag->pag_ici_lock);
920 
921 	/*
922 	 * Here we do an (almost) spurious inode lock in order to coordinate
923 	 * with inode cache radix tree lookups.  This is because the lookup
924 	 * can reference the inodes in the cache without taking references.
925 	 *
926 	 * We make that OK here by ensuring that we wait until the inode is
927 	 * unlocked after the lookup before we go ahead and free it.
928 	 */
929 	xfs_ilock(ip, XFS_ILOCK_EXCL);
930 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
931 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
932 	ASSERT(xfs_inode_clean(ip));
933 
934 	__xfs_inode_free(ip);
935 	return;
936 
937 out_clear_flush:
938 	xfs_iflags_clear(ip, XFS_IFLUSHING);
939 out_iunlock:
940 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
941 out:
942 	xfs_iflags_clear(ip, XFS_IRECLAIM);
943 }
944 
945 /* Reclaim sick inodes if we're unmounting or the fs went down. */
946 static inline bool
947 xfs_want_reclaim_sick(
948 	struct xfs_mount	*mp)
949 {
950 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
951 	       xfs_is_shutdown(mp);
952 }
953 
954 void
955 xfs_reclaim_inodes(
956 	struct xfs_mount	*mp)
957 {
958 	struct xfs_icwalk	icw = {
959 		.icw_flags	= 0,
960 	};
961 
962 	if (xfs_want_reclaim_sick(mp))
963 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
964 
965 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
966 		xfs_ail_push_all_sync(mp->m_ail);
967 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
968 	}
969 }
970 
971 /*
972  * The shrinker infrastructure determines how many inodes we should scan for
973  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
974  * push the AIL here. We also want to proactively free up memory if we can to
975  * minimise the amount of work memory reclaim has to do so we kick the
976  * background reclaim if it isn't already scheduled.
977  */
978 long
979 xfs_reclaim_inodes_nr(
980 	struct xfs_mount	*mp,
981 	unsigned long		nr_to_scan)
982 {
983 	struct xfs_icwalk	icw = {
984 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
985 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
986 	};
987 
988 	if (xfs_want_reclaim_sick(mp))
989 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
990 
991 	/* kick background reclaimer and push the AIL */
992 	xfs_reclaim_work_queue(mp);
993 	xfs_ail_push_all(mp->m_ail);
994 
995 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
996 	return 0;
997 }
998 
999 /*
1000  * Return the number of reclaimable inodes in the filesystem for
1001  * the shrinker to determine how much to reclaim.
1002  */
1003 long
1004 xfs_reclaim_inodes_count(
1005 	struct xfs_mount	*mp)
1006 {
1007 	struct xfs_perag	*pag;
1008 	xfs_agnumber_t		ag = 0;
1009 	long			reclaimable = 0;
1010 
1011 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1012 		ag = pag->pag_agno + 1;
1013 		reclaimable += pag->pag_ici_reclaimable;
1014 		xfs_perag_put(pag);
1015 	}
1016 	return reclaimable;
1017 }
1018 
1019 STATIC bool
1020 xfs_icwalk_match_id(
1021 	struct xfs_inode	*ip,
1022 	struct xfs_icwalk	*icw)
1023 {
1024 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1025 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1026 		return false;
1027 
1028 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1029 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1030 		return false;
1031 
1032 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1033 	    ip->i_projid != icw->icw_prid)
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 /*
1040  * A union-based inode filtering algorithm. Process the inode if any of the
1041  * criteria match. This is for global/internal scans only.
1042  */
1043 STATIC bool
1044 xfs_icwalk_match_id_union(
1045 	struct xfs_inode	*ip,
1046 	struct xfs_icwalk	*icw)
1047 {
1048 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1049 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1050 		return true;
1051 
1052 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1053 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1054 		return true;
1055 
1056 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1057 	    ip->i_projid == icw->icw_prid)
1058 		return true;
1059 
1060 	return false;
1061 }
1062 
1063 /*
1064  * Is this inode @ip eligible for eof/cow block reclamation, given some
1065  * filtering parameters @icw?  The inode is eligible if @icw is null or
1066  * if the predicate functions match.
1067  */
1068 static bool
1069 xfs_icwalk_match(
1070 	struct xfs_inode	*ip,
1071 	struct xfs_icwalk	*icw)
1072 {
1073 	bool			match;
1074 
1075 	if (!icw)
1076 		return true;
1077 
1078 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1079 		match = xfs_icwalk_match_id_union(ip, icw);
1080 	else
1081 		match = xfs_icwalk_match_id(ip, icw);
1082 	if (!match)
1083 		return false;
1084 
1085 	/* skip the inode if the file size is too small */
1086 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1087 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1088 		return false;
1089 
1090 	return true;
1091 }
1092 
1093 /*
1094  * This is a fast pass over the inode cache to try to get reclaim moving on as
1095  * many inodes as possible in a short period of time. It kicks itself every few
1096  * seconds, as well as being kicked by the inode cache shrinker when memory
1097  * goes low.
1098  */
1099 void
1100 xfs_reclaim_worker(
1101 	struct work_struct *work)
1102 {
1103 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1104 					struct xfs_mount, m_reclaim_work);
1105 
1106 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1107 	xfs_reclaim_work_queue(mp);
1108 }
1109 
1110 STATIC int
1111 xfs_inode_free_eofblocks(
1112 	struct xfs_inode	*ip,
1113 	struct xfs_icwalk	*icw,
1114 	unsigned int		*lockflags)
1115 {
1116 	bool			wait;
1117 
1118 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1119 
1120 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1121 		return 0;
1122 
1123 	/*
1124 	 * If the mapping is dirty the operation can block and wait for some
1125 	 * time. Unless we are waiting, skip it.
1126 	 */
1127 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1128 		return 0;
1129 
1130 	if (!xfs_icwalk_match(ip, icw))
1131 		return 0;
1132 
1133 	/*
1134 	 * If the caller is waiting, return -EAGAIN to keep the background
1135 	 * scanner moving and revisit the inode in a subsequent pass.
1136 	 */
1137 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1138 		if (wait)
1139 			return -EAGAIN;
1140 		return 0;
1141 	}
1142 	*lockflags |= XFS_IOLOCK_EXCL;
1143 
1144 	if (xfs_can_free_eofblocks(ip, false))
1145 		return xfs_free_eofblocks(ip);
1146 
1147 	/* inode could be preallocated or append-only */
1148 	trace_xfs_inode_free_eofblocks_invalid(ip);
1149 	xfs_inode_clear_eofblocks_tag(ip);
1150 	return 0;
1151 }
1152 
1153 static void
1154 xfs_blockgc_set_iflag(
1155 	struct xfs_inode	*ip,
1156 	unsigned long		iflag)
1157 {
1158 	struct xfs_mount	*mp = ip->i_mount;
1159 	struct xfs_perag	*pag;
1160 
1161 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1162 
1163 	/*
1164 	 * Don't bother locking the AG and looking up in the radix trees
1165 	 * if we already know that we have the tag set.
1166 	 */
1167 	if (ip->i_flags & iflag)
1168 		return;
1169 	spin_lock(&ip->i_flags_lock);
1170 	ip->i_flags |= iflag;
1171 	spin_unlock(&ip->i_flags_lock);
1172 
1173 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1174 	spin_lock(&pag->pag_ici_lock);
1175 
1176 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1177 			XFS_ICI_BLOCKGC_TAG);
1178 
1179 	spin_unlock(&pag->pag_ici_lock);
1180 	xfs_perag_put(pag);
1181 }
1182 
1183 void
1184 xfs_inode_set_eofblocks_tag(
1185 	xfs_inode_t	*ip)
1186 {
1187 	trace_xfs_inode_set_eofblocks_tag(ip);
1188 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1189 }
1190 
1191 static void
1192 xfs_blockgc_clear_iflag(
1193 	struct xfs_inode	*ip,
1194 	unsigned long		iflag)
1195 {
1196 	struct xfs_mount	*mp = ip->i_mount;
1197 	struct xfs_perag	*pag;
1198 	bool			clear_tag;
1199 
1200 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1201 
1202 	spin_lock(&ip->i_flags_lock);
1203 	ip->i_flags &= ~iflag;
1204 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1205 	spin_unlock(&ip->i_flags_lock);
1206 
1207 	if (!clear_tag)
1208 		return;
1209 
1210 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1211 	spin_lock(&pag->pag_ici_lock);
1212 
1213 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1214 			XFS_ICI_BLOCKGC_TAG);
1215 
1216 	spin_unlock(&pag->pag_ici_lock);
1217 	xfs_perag_put(pag);
1218 }
1219 
1220 void
1221 xfs_inode_clear_eofblocks_tag(
1222 	xfs_inode_t	*ip)
1223 {
1224 	trace_xfs_inode_clear_eofblocks_tag(ip);
1225 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1226 }
1227 
1228 /*
1229  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1230  * then we can bail out quickly, but otherwise we must back off if the file
1231  * is undergoing some kind of write.
1232  */
1233 static bool
1234 xfs_prep_free_cowblocks(
1235 	struct xfs_inode	*ip)
1236 {
1237 	/*
1238 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1239 	 * possible the inode was fully unshared since it was originally tagged.
1240 	 */
1241 	if (!xfs_inode_has_cow_data(ip)) {
1242 		trace_xfs_inode_free_cowblocks_invalid(ip);
1243 		xfs_inode_clear_cowblocks_tag(ip);
1244 		return false;
1245 	}
1246 
1247 	/*
1248 	 * If the mapping is dirty or under writeback we cannot touch the
1249 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1250 	 */
1251 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1252 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1253 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1254 	    atomic_read(&VFS_I(ip)->i_dio_count))
1255 		return false;
1256 
1257 	return true;
1258 }
1259 
1260 /*
1261  * Automatic CoW Reservation Freeing
1262  *
1263  * These functions automatically garbage collect leftover CoW reservations
1264  * that were made on behalf of a cowextsize hint when we start to run out
1265  * of quota or when the reservations sit around for too long.  If the file
1266  * has dirty pages or is undergoing writeback, its CoW reservations will
1267  * be retained.
1268  *
1269  * The actual garbage collection piggybacks off the same code that runs
1270  * the speculative EOF preallocation garbage collector.
1271  */
1272 STATIC int
1273 xfs_inode_free_cowblocks(
1274 	struct xfs_inode	*ip,
1275 	struct xfs_icwalk	*icw,
1276 	unsigned int		*lockflags)
1277 {
1278 	bool			wait;
1279 	int			ret = 0;
1280 
1281 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1282 
1283 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1284 		return 0;
1285 
1286 	if (!xfs_prep_free_cowblocks(ip))
1287 		return 0;
1288 
1289 	if (!xfs_icwalk_match(ip, icw))
1290 		return 0;
1291 
1292 	/*
1293 	 * If the caller is waiting, return -EAGAIN to keep the background
1294 	 * scanner moving and revisit the inode in a subsequent pass.
1295 	 */
1296 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1297 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1298 		if (wait)
1299 			return -EAGAIN;
1300 		return 0;
1301 	}
1302 	*lockflags |= XFS_IOLOCK_EXCL;
1303 
1304 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1305 		if (wait)
1306 			return -EAGAIN;
1307 		return 0;
1308 	}
1309 	*lockflags |= XFS_MMAPLOCK_EXCL;
1310 
1311 	/*
1312 	 * Check again, nobody else should be able to dirty blocks or change
1313 	 * the reflink iflag now that we have the first two locks held.
1314 	 */
1315 	if (xfs_prep_free_cowblocks(ip))
1316 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1317 	return ret;
1318 }
1319 
1320 void
1321 xfs_inode_set_cowblocks_tag(
1322 	xfs_inode_t	*ip)
1323 {
1324 	trace_xfs_inode_set_cowblocks_tag(ip);
1325 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1326 }
1327 
1328 void
1329 xfs_inode_clear_cowblocks_tag(
1330 	xfs_inode_t	*ip)
1331 {
1332 	trace_xfs_inode_clear_cowblocks_tag(ip);
1333 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1334 }
1335 
1336 /* Disable post-EOF and CoW block auto-reclamation. */
1337 void
1338 xfs_blockgc_stop(
1339 	struct xfs_mount	*mp)
1340 {
1341 	struct xfs_perag	*pag;
1342 	xfs_agnumber_t		agno;
1343 
1344 	if (!xfs_clear_blockgc_enabled(mp))
1345 		return;
1346 
1347 	for_each_perag(mp, agno, pag)
1348 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1349 	trace_xfs_blockgc_stop(mp, __return_address);
1350 }
1351 
1352 /* Enable post-EOF and CoW block auto-reclamation. */
1353 void
1354 xfs_blockgc_start(
1355 	struct xfs_mount	*mp)
1356 {
1357 	struct xfs_perag	*pag;
1358 	xfs_agnumber_t		agno;
1359 
1360 	if (xfs_set_blockgc_enabled(mp))
1361 		return;
1362 
1363 	trace_xfs_blockgc_start(mp, __return_address);
1364 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1365 		xfs_blockgc_queue(pag);
1366 }
1367 
1368 /* Don't try to run block gc on an inode that's in any of these states. */
1369 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1370 					 XFS_NEED_INACTIVE | \
1371 					 XFS_INACTIVATING | \
1372 					 XFS_IRECLAIMABLE | \
1373 					 XFS_IRECLAIM)
1374 /*
1375  * Decide if the given @ip is eligible for garbage collection of speculative
1376  * preallocations, and grab it if so.  Returns true if it's ready to go or
1377  * false if we should just ignore it.
1378  */
1379 static bool
1380 xfs_blockgc_igrab(
1381 	struct xfs_inode	*ip)
1382 {
1383 	struct inode		*inode = VFS_I(ip);
1384 
1385 	ASSERT(rcu_read_lock_held());
1386 
1387 	/* Check for stale RCU freed inode */
1388 	spin_lock(&ip->i_flags_lock);
1389 	if (!ip->i_ino)
1390 		goto out_unlock_noent;
1391 
1392 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1393 		goto out_unlock_noent;
1394 	spin_unlock(&ip->i_flags_lock);
1395 
1396 	/* nothing to sync during shutdown */
1397 	if (xfs_is_shutdown(ip->i_mount))
1398 		return false;
1399 
1400 	/* If we can't grab the inode, it must on it's way to reclaim. */
1401 	if (!igrab(inode))
1402 		return false;
1403 
1404 	/* inode is valid */
1405 	return true;
1406 
1407 out_unlock_noent:
1408 	spin_unlock(&ip->i_flags_lock);
1409 	return false;
1410 }
1411 
1412 /* Scan one incore inode for block preallocations that we can remove. */
1413 static int
1414 xfs_blockgc_scan_inode(
1415 	struct xfs_inode	*ip,
1416 	struct xfs_icwalk	*icw)
1417 {
1418 	unsigned int		lockflags = 0;
1419 	int			error;
1420 
1421 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1422 	if (error)
1423 		goto unlock;
1424 
1425 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1426 unlock:
1427 	if (lockflags)
1428 		xfs_iunlock(ip, lockflags);
1429 	xfs_irele(ip);
1430 	return error;
1431 }
1432 
1433 /* Background worker that trims preallocated space. */
1434 void
1435 xfs_blockgc_worker(
1436 	struct work_struct	*work)
1437 {
1438 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1439 					struct xfs_perag, pag_blockgc_work);
1440 	struct xfs_mount	*mp = pag->pag_mount;
1441 	int			error;
1442 
1443 	trace_xfs_blockgc_worker(mp, __return_address);
1444 
1445 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1446 	if (error)
1447 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1448 				pag->pag_agno, error);
1449 	xfs_blockgc_queue(pag);
1450 }
1451 
1452 /*
1453  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1454  * and cowblocks.
1455  */
1456 int
1457 xfs_blockgc_free_space(
1458 	struct xfs_mount	*mp,
1459 	struct xfs_icwalk	*icw)
1460 {
1461 	int			error;
1462 
1463 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1464 
1465 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1466 	if (error)
1467 		return error;
1468 
1469 	xfs_inodegc_flush(mp);
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Reclaim all the free space that we can by scheduling the background blockgc
1475  * and inodegc workers immediately and waiting for them all to clear.
1476  */
1477 void
1478 xfs_blockgc_flush_all(
1479 	struct xfs_mount	*mp)
1480 {
1481 	struct xfs_perag	*pag;
1482 	xfs_agnumber_t		agno;
1483 
1484 	trace_xfs_blockgc_flush_all(mp, __return_address);
1485 
1486 	/*
1487 	 * For each blockgc worker, move its queue time up to now.  If it
1488 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1489 	 * left.
1490 	 */
1491 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1492 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1493 				&pag->pag_blockgc_work, 0);
1494 
1495 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1496 		flush_delayed_work(&pag->pag_blockgc_work);
1497 
1498 	xfs_inodegc_flush(mp);
1499 }
1500 
1501 /*
1502  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1503  * quota caused an allocation failure, so we make a best effort by including
1504  * each quota under low free space conditions (less than 1% free space) in the
1505  * scan.
1506  *
1507  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1508  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1509  * MMAPLOCK.
1510  */
1511 int
1512 xfs_blockgc_free_dquots(
1513 	struct xfs_mount	*mp,
1514 	struct xfs_dquot	*udqp,
1515 	struct xfs_dquot	*gdqp,
1516 	struct xfs_dquot	*pdqp,
1517 	unsigned int		iwalk_flags)
1518 {
1519 	struct xfs_icwalk	icw = {0};
1520 	bool			do_work = false;
1521 
1522 	if (!udqp && !gdqp && !pdqp)
1523 		return 0;
1524 
1525 	/*
1526 	 * Run a scan to free blocks using the union filter to cover all
1527 	 * applicable quotas in a single scan.
1528 	 */
1529 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1530 
1531 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1532 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1533 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1534 		do_work = true;
1535 	}
1536 
1537 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1538 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1539 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1540 		do_work = true;
1541 	}
1542 
1543 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1544 		icw.icw_prid = pdqp->q_id;
1545 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1546 		do_work = true;
1547 	}
1548 
1549 	if (!do_work)
1550 		return 0;
1551 
1552 	return xfs_blockgc_free_space(mp, &icw);
1553 }
1554 
1555 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1556 int
1557 xfs_blockgc_free_quota(
1558 	struct xfs_inode	*ip,
1559 	unsigned int		iwalk_flags)
1560 {
1561 	return xfs_blockgc_free_dquots(ip->i_mount,
1562 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1563 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1564 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1565 }
1566 
1567 /* XFS Inode Cache Walking Code */
1568 
1569 /*
1570  * The inode lookup is done in batches to keep the amount of lock traffic and
1571  * radix tree lookups to a minimum. The batch size is a trade off between
1572  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1573  * be too greedy.
1574  */
1575 #define XFS_LOOKUP_BATCH	32
1576 
1577 
1578 /*
1579  * Decide if we want to grab this inode in anticipation of doing work towards
1580  * the goal.
1581  */
1582 static inline bool
1583 xfs_icwalk_igrab(
1584 	enum xfs_icwalk_goal	goal,
1585 	struct xfs_inode	*ip,
1586 	struct xfs_icwalk	*icw)
1587 {
1588 	switch (goal) {
1589 	case XFS_ICWALK_BLOCKGC:
1590 		return xfs_blockgc_igrab(ip);
1591 	case XFS_ICWALK_RECLAIM:
1592 		return xfs_reclaim_igrab(ip, icw);
1593 	default:
1594 		return false;
1595 	}
1596 }
1597 
1598 /*
1599  * Process an inode.  Each processing function must handle any state changes
1600  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1601  */
1602 static inline int
1603 xfs_icwalk_process_inode(
1604 	enum xfs_icwalk_goal	goal,
1605 	struct xfs_inode	*ip,
1606 	struct xfs_perag	*pag,
1607 	struct xfs_icwalk	*icw)
1608 {
1609 	int			error = 0;
1610 
1611 	switch (goal) {
1612 	case XFS_ICWALK_BLOCKGC:
1613 		error = xfs_blockgc_scan_inode(ip, icw);
1614 		break;
1615 	case XFS_ICWALK_RECLAIM:
1616 		xfs_reclaim_inode(ip, pag);
1617 		break;
1618 	}
1619 	return error;
1620 }
1621 
1622 /*
1623  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1624  * process them in some manner.
1625  */
1626 static int
1627 xfs_icwalk_ag(
1628 	struct xfs_perag	*pag,
1629 	enum xfs_icwalk_goal	goal,
1630 	struct xfs_icwalk	*icw)
1631 {
1632 	struct xfs_mount	*mp = pag->pag_mount;
1633 	uint32_t		first_index;
1634 	int			last_error = 0;
1635 	int			skipped;
1636 	bool			done;
1637 	int			nr_found;
1638 
1639 restart:
1640 	done = false;
1641 	skipped = 0;
1642 	if (goal == XFS_ICWALK_RECLAIM)
1643 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1644 	else
1645 		first_index = 0;
1646 	nr_found = 0;
1647 	do {
1648 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1649 		int		error = 0;
1650 		int		i;
1651 
1652 		rcu_read_lock();
1653 
1654 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1655 				(void **) batch, first_index,
1656 				XFS_LOOKUP_BATCH, goal);
1657 		if (!nr_found) {
1658 			done = true;
1659 			rcu_read_unlock();
1660 			break;
1661 		}
1662 
1663 		/*
1664 		 * Grab the inodes before we drop the lock. if we found
1665 		 * nothing, nr == 0 and the loop will be skipped.
1666 		 */
1667 		for (i = 0; i < nr_found; i++) {
1668 			struct xfs_inode *ip = batch[i];
1669 
1670 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1671 				batch[i] = NULL;
1672 
1673 			/*
1674 			 * Update the index for the next lookup. Catch
1675 			 * overflows into the next AG range which can occur if
1676 			 * we have inodes in the last block of the AG and we
1677 			 * are currently pointing to the last inode.
1678 			 *
1679 			 * Because we may see inodes that are from the wrong AG
1680 			 * due to RCU freeing and reallocation, only update the
1681 			 * index if it lies in this AG. It was a race that lead
1682 			 * us to see this inode, so another lookup from the
1683 			 * same index will not find it again.
1684 			 */
1685 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1686 				continue;
1687 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1688 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1689 				done = true;
1690 		}
1691 
1692 		/* unlock now we've grabbed the inodes. */
1693 		rcu_read_unlock();
1694 
1695 		for (i = 0; i < nr_found; i++) {
1696 			if (!batch[i])
1697 				continue;
1698 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1699 					icw);
1700 			if (error == -EAGAIN) {
1701 				skipped++;
1702 				continue;
1703 			}
1704 			if (error && last_error != -EFSCORRUPTED)
1705 				last_error = error;
1706 		}
1707 
1708 		/* bail out if the filesystem is corrupted.  */
1709 		if (error == -EFSCORRUPTED)
1710 			break;
1711 
1712 		cond_resched();
1713 
1714 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1715 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1716 			if (icw->icw_scan_limit <= 0)
1717 				break;
1718 		}
1719 	} while (nr_found && !done);
1720 
1721 	if (goal == XFS_ICWALK_RECLAIM) {
1722 		if (done)
1723 			first_index = 0;
1724 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1725 	}
1726 
1727 	if (skipped) {
1728 		delay(1);
1729 		goto restart;
1730 	}
1731 	return last_error;
1732 }
1733 
1734 /* Walk all incore inodes to achieve a given goal. */
1735 static int
1736 xfs_icwalk(
1737 	struct xfs_mount	*mp,
1738 	enum xfs_icwalk_goal	goal,
1739 	struct xfs_icwalk	*icw)
1740 {
1741 	struct xfs_perag	*pag;
1742 	int			error = 0;
1743 	int			last_error = 0;
1744 	xfs_agnumber_t		agno;
1745 
1746 	for_each_perag_tag(mp, agno, pag, goal) {
1747 		error = xfs_icwalk_ag(pag, goal, icw);
1748 		if (error) {
1749 			last_error = error;
1750 			if (error == -EFSCORRUPTED) {
1751 				xfs_perag_put(pag);
1752 				break;
1753 			}
1754 		}
1755 	}
1756 	return last_error;
1757 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1758 }
1759 
1760 #ifdef DEBUG
1761 static void
1762 xfs_check_delalloc(
1763 	struct xfs_inode	*ip,
1764 	int			whichfork)
1765 {
1766 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
1767 	struct xfs_bmbt_irec	got;
1768 	struct xfs_iext_cursor	icur;
1769 
1770 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1771 		return;
1772 	do {
1773 		if (isnullstartblock(got.br_startblock)) {
1774 			xfs_warn(ip->i_mount,
1775 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1776 				ip->i_ino,
1777 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1778 				got.br_startoff, got.br_blockcount);
1779 		}
1780 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1781 }
1782 #else
1783 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1784 #endif
1785 
1786 /* Schedule the inode for reclaim. */
1787 static void
1788 xfs_inodegc_set_reclaimable(
1789 	struct xfs_inode	*ip)
1790 {
1791 	struct xfs_mount	*mp = ip->i_mount;
1792 	struct xfs_perag	*pag;
1793 
1794 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1795 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1796 		xfs_check_delalloc(ip, XFS_COW_FORK);
1797 		ASSERT(0);
1798 	}
1799 
1800 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1801 	spin_lock(&pag->pag_ici_lock);
1802 	spin_lock(&ip->i_flags_lock);
1803 
1804 	trace_xfs_inode_set_reclaimable(ip);
1805 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1806 	ip->i_flags |= XFS_IRECLAIMABLE;
1807 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1808 			XFS_ICI_RECLAIM_TAG);
1809 
1810 	spin_unlock(&ip->i_flags_lock);
1811 	spin_unlock(&pag->pag_ici_lock);
1812 	xfs_perag_put(pag);
1813 }
1814 
1815 /*
1816  * Free all speculative preallocations and possibly even the inode itself.
1817  * This is the last chance to make changes to an otherwise unreferenced file
1818  * before incore reclamation happens.
1819  */
1820 static void
1821 xfs_inodegc_inactivate(
1822 	struct xfs_inode	*ip)
1823 {
1824 	trace_xfs_inode_inactivating(ip);
1825 	xfs_inactive(ip);
1826 	xfs_inodegc_set_reclaimable(ip);
1827 }
1828 
1829 void
1830 xfs_inodegc_worker(
1831 	struct work_struct	*work)
1832 {
1833 	struct xfs_inodegc	*gc = container_of(work, struct xfs_inodegc,
1834 							work);
1835 	struct llist_node	*node = llist_del_all(&gc->list);
1836 	struct xfs_inode	*ip, *n;
1837 
1838 	WRITE_ONCE(gc->items, 0);
1839 
1840 	if (!node)
1841 		return;
1842 
1843 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1844 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1845 
1846 	WRITE_ONCE(gc->shrinker_hits, 0);
1847 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1848 		xfs_iflags_set(ip, XFS_INACTIVATING);
1849 		xfs_inodegc_inactivate(ip);
1850 	}
1851 }
1852 
1853 /*
1854  * Force all currently queued inode inactivation work to run immediately, and
1855  * wait for the work to finish. Two pass - queue all the work first pass, wait
1856  * for it in a second pass.
1857  */
1858 void
1859 xfs_inodegc_flush(
1860 	struct xfs_mount	*mp)
1861 {
1862 	struct xfs_inodegc	*gc;
1863 	int			cpu;
1864 
1865 	if (!xfs_is_inodegc_enabled(mp))
1866 		return;
1867 
1868 	trace_xfs_inodegc_flush(mp, __return_address);
1869 
1870 	xfs_inodegc_queue_all(mp);
1871 
1872 	for_each_online_cpu(cpu) {
1873 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
1874 		flush_work(&gc->work);
1875 	}
1876 }
1877 
1878 /*
1879  * Flush all the pending work and then disable the inode inactivation background
1880  * workers and wait for them to stop.
1881  */
1882 void
1883 xfs_inodegc_stop(
1884 	struct xfs_mount	*mp)
1885 {
1886 	struct xfs_inodegc	*gc;
1887 	int			cpu;
1888 
1889 	if (!xfs_clear_inodegc_enabled(mp))
1890 		return;
1891 
1892 	xfs_inodegc_queue_all(mp);
1893 
1894 	for_each_online_cpu(cpu) {
1895 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
1896 		cancel_work_sync(&gc->work);
1897 	}
1898 	trace_xfs_inodegc_stop(mp, __return_address);
1899 }
1900 
1901 /*
1902  * Enable the inode inactivation background workers and schedule deferred inode
1903  * inactivation work if there is any.
1904  */
1905 void
1906 xfs_inodegc_start(
1907 	struct xfs_mount	*mp)
1908 {
1909 	if (xfs_set_inodegc_enabled(mp))
1910 		return;
1911 
1912 	trace_xfs_inodegc_start(mp, __return_address);
1913 	xfs_inodegc_queue_all(mp);
1914 }
1915 
1916 #ifdef CONFIG_XFS_RT
1917 static inline bool
1918 xfs_inodegc_want_queue_rt_file(
1919 	struct xfs_inode	*ip)
1920 {
1921 	struct xfs_mount	*mp = ip->i_mount;
1922 	uint64_t		freertx;
1923 
1924 	if (!XFS_IS_REALTIME_INODE(ip))
1925 		return false;
1926 
1927 	freertx = READ_ONCE(mp->m_sb.sb_frextents);
1928 	return freertx < mp->m_low_rtexts[XFS_LOWSP_5_PCNT];
1929 }
1930 #else
1931 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1932 #endif /* CONFIG_XFS_RT */
1933 
1934 /*
1935  * Schedule the inactivation worker when:
1936  *
1937  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1938  *  - There is less than 5% free space left.
1939  *  - Any of the quotas for this inode are near an enforcement limit.
1940  */
1941 static inline bool
1942 xfs_inodegc_want_queue_work(
1943 	struct xfs_inode	*ip,
1944 	unsigned int		items)
1945 {
1946 	struct xfs_mount	*mp = ip->i_mount;
1947 
1948 	if (items > mp->m_ino_geo.inodes_per_cluster)
1949 		return true;
1950 
1951 	if (__percpu_counter_compare(&mp->m_fdblocks,
1952 				mp->m_low_space[XFS_LOWSP_5_PCNT],
1953 				XFS_FDBLOCKS_BATCH) < 0)
1954 		return true;
1955 
1956 	if (xfs_inodegc_want_queue_rt_file(ip))
1957 		return true;
1958 
1959 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1960 		return true;
1961 
1962 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1963 		return true;
1964 
1965 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
1966 		return true;
1967 
1968 	return false;
1969 }
1970 
1971 /*
1972  * Upper bound on the number of inodes in each AG that can be queued for
1973  * inactivation at any given time, to avoid monopolizing the workqueue.
1974  */
1975 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
1976 
1977 /*
1978  * Make the frontend wait for inactivations when:
1979  *
1980  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
1981  *  - The queue depth exceeds the maximum allowable percpu backlog.
1982  *
1983  * Note: If the current thread is running a transaction, we don't ever want to
1984  * wait for other transactions because that could introduce a deadlock.
1985  */
1986 static inline bool
1987 xfs_inodegc_want_flush_work(
1988 	struct xfs_inode	*ip,
1989 	unsigned int		items,
1990 	unsigned int		shrinker_hits)
1991 {
1992 	if (current->journal_info)
1993 		return false;
1994 
1995 	if (shrinker_hits > 0)
1996 		return true;
1997 
1998 	if (items > XFS_INODEGC_MAX_BACKLOG)
1999 		return true;
2000 
2001 	return false;
2002 }
2003 
2004 /*
2005  * Queue a background inactivation worker if there are inodes that need to be
2006  * inactivated and higher level xfs code hasn't disabled the background
2007  * workers.
2008  */
2009 static void
2010 xfs_inodegc_queue(
2011 	struct xfs_inode	*ip)
2012 {
2013 	struct xfs_mount	*mp = ip->i_mount;
2014 	struct xfs_inodegc	*gc;
2015 	int			items;
2016 	unsigned int		shrinker_hits;
2017 
2018 	trace_xfs_inode_set_need_inactive(ip);
2019 	spin_lock(&ip->i_flags_lock);
2020 	ip->i_flags |= XFS_NEED_INACTIVE;
2021 	spin_unlock(&ip->i_flags_lock);
2022 
2023 	gc = get_cpu_ptr(mp->m_inodegc);
2024 	llist_add(&ip->i_gclist, &gc->list);
2025 	items = READ_ONCE(gc->items);
2026 	WRITE_ONCE(gc->items, items + 1);
2027 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2028 	put_cpu_ptr(gc);
2029 
2030 	if (!xfs_is_inodegc_enabled(mp))
2031 		return;
2032 
2033 	if (xfs_inodegc_want_queue_work(ip, items)) {
2034 		trace_xfs_inodegc_queue(mp, __return_address);
2035 		queue_work(mp->m_inodegc_wq, &gc->work);
2036 	}
2037 
2038 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2039 		trace_xfs_inodegc_throttle(mp, __return_address);
2040 		flush_work(&gc->work);
2041 	}
2042 }
2043 
2044 /*
2045  * Fold the dead CPU inodegc queue into the current CPUs queue.
2046  */
2047 void
2048 xfs_inodegc_cpu_dead(
2049 	struct xfs_mount	*mp,
2050 	unsigned int		dead_cpu)
2051 {
2052 	struct xfs_inodegc	*dead_gc, *gc;
2053 	struct llist_node	*first, *last;
2054 	unsigned int		count = 0;
2055 
2056 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2057 	cancel_work_sync(&dead_gc->work);
2058 
2059 	if (llist_empty(&dead_gc->list))
2060 		return;
2061 
2062 	first = dead_gc->list.first;
2063 	last = first;
2064 	while (last->next) {
2065 		last = last->next;
2066 		count++;
2067 	}
2068 	dead_gc->list.first = NULL;
2069 	dead_gc->items = 0;
2070 
2071 	/* Add pending work to current CPU */
2072 	gc = get_cpu_ptr(mp->m_inodegc);
2073 	llist_add_batch(first, last, &gc->list);
2074 	count += READ_ONCE(gc->items);
2075 	WRITE_ONCE(gc->items, count);
2076 	put_cpu_ptr(gc);
2077 
2078 	if (xfs_is_inodegc_enabled(mp)) {
2079 		trace_xfs_inodegc_queue(mp, __return_address);
2080 		queue_work(mp->m_inodegc_wq, &gc->work);
2081 	}
2082 }
2083 
2084 /*
2085  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2086  * lookups on the radix tree, this inode flag can go away.
2087  *
2088  * We always use background reclaim here because even if the inode is clean, it
2089  * still may be under IO and hence we have wait for IO completion to occur
2090  * before we can reclaim the inode. The background reclaim path handles this
2091  * more efficiently than we can here, so simply let background reclaim tear down
2092  * all inodes.
2093  */
2094 void
2095 xfs_inode_mark_reclaimable(
2096 	struct xfs_inode	*ip)
2097 {
2098 	struct xfs_mount	*mp = ip->i_mount;
2099 	bool			need_inactive;
2100 
2101 	XFS_STATS_INC(mp, vn_reclaim);
2102 
2103 	/*
2104 	 * We should never get here with any of the reclaim flags already set.
2105 	 */
2106 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2107 
2108 	need_inactive = xfs_inode_needs_inactive(ip);
2109 	if (need_inactive) {
2110 		xfs_inodegc_queue(ip);
2111 		return;
2112 	}
2113 
2114 	/* Going straight to reclaim, so drop the dquots. */
2115 	xfs_qm_dqdetach(ip);
2116 	xfs_inodegc_set_reclaimable(ip);
2117 }
2118 
2119 /*
2120  * Register a phony shrinker so that we can run background inodegc sooner when
2121  * there's memory pressure.  Inactivation does not itself free any memory but
2122  * it does make inodes reclaimable, which eventually frees memory.
2123  *
2124  * The count function, seek value, and batch value are crafted to trigger the
2125  * scan function during the second round of scanning.  Hopefully this means
2126  * that we reclaimed enough memory that initiating metadata transactions won't
2127  * make things worse.
2128  */
2129 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2130 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2131 
2132 static unsigned long
2133 xfs_inodegc_shrinker_count(
2134 	struct shrinker		*shrink,
2135 	struct shrink_control	*sc)
2136 {
2137 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2138 						   m_inodegc_shrinker);
2139 	struct xfs_inodegc	*gc;
2140 	int			cpu;
2141 
2142 	if (!xfs_is_inodegc_enabled(mp))
2143 		return 0;
2144 
2145 	for_each_online_cpu(cpu) {
2146 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2147 		if (!llist_empty(&gc->list))
2148 			return XFS_INODEGC_SHRINKER_COUNT;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 static unsigned long
2155 xfs_inodegc_shrinker_scan(
2156 	struct shrinker		*shrink,
2157 	struct shrink_control	*sc)
2158 {
2159 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2160 						   m_inodegc_shrinker);
2161 	struct xfs_inodegc	*gc;
2162 	int			cpu;
2163 	bool			no_items = true;
2164 
2165 	if (!xfs_is_inodegc_enabled(mp))
2166 		return SHRINK_STOP;
2167 
2168 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2169 
2170 	for_each_online_cpu(cpu) {
2171 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2172 		if (!llist_empty(&gc->list)) {
2173 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2174 
2175 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2176 			queue_work_on(cpu, mp->m_inodegc_wq, &gc->work);
2177 			no_items = false;
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * If there are no inodes to inactivate, we don't want the shrinker
2183 	 * to think there's deferred work to call us back about.
2184 	 */
2185 	if (no_items)
2186 		return LONG_MAX;
2187 
2188 	return SHRINK_STOP;
2189 }
2190 
2191 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2192 int
2193 xfs_inodegc_register_shrinker(
2194 	struct xfs_mount	*mp)
2195 {
2196 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2197 
2198 	shrink->count_objects = xfs_inodegc_shrinker_count;
2199 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2200 	shrink->seeks = 0;
2201 	shrink->flags = SHRINKER_NONSLAB;
2202 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2203 
2204 	return register_shrinker(shrink);
2205 }
2206