xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 
28 #include <linux/iversion.h>
29 
30 /* Radix tree tags for incore inode tree. */
31 
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG	0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG	1
36 
37 /*
38  * The goal for walking incore inodes.  These can correspond with incore inode
39  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
40  */
41 enum xfs_icwalk_goal {
42 	/* Goals directly associated with tagged inodes. */
43 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
44 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
45 };
46 
47 static int xfs_icwalk(struct xfs_mount *mp,
48 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51 
52 /*
53  * Private inode cache walk flags for struct xfs_icwalk.  Must not
54  * coincide with XFS_ICWALK_FLAGS_VALID.
55  */
56 
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
59 
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
61 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
62 
63 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 					 XFS_ICWALK_FLAG_UNION)
66 
67 /*
68  * Allocate and initialise an xfs_inode.
69  */
70 struct xfs_inode *
71 xfs_inode_alloc(
72 	struct xfs_mount	*mp,
73 	xfs_ino_t		ino)
74 {
75 	struct xfs_inode	*ip;
76 
77 	/*
78 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 	 * and return NULL here on ENOMEM.
80 	 */
81 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82 
83 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 		kmem_cache_free(xfs_inode_cache, ip);
85 		return NULL;
86 	}
87 
88 	/* VFS doesn't initialise i_mode or i_state! */
89 	VFS_I(ip)->i_mode = 0;
90 	VFS_I(ip)->i_state = 0;
91 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92 
93 	XFS_STATS_INC(mp, vn_active);
94 	ASSERT(atomic_read(&ip->i_pincount) == 0);
95 	ASSERT(ip->i_ino == 0);
96 
97 	/* initialise the xfs inode */
98 	ip->i_ino = ino;
99 	ip->i_mount = mp;
100 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 	ip->i_cowfp = NULL;
102 	memset(&ip->i_af, 0, sizeof(ip->i_af));
103 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 	memset(&ip->i_df, 0, sizeof(ip->i_df));
105 	ip->i_flags = 0;
106 	ip->i_delayed_blks = 0;
107 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 	ip->i_nblocks = 0;
109 	ip->i_forkoff = 0;
110 	ip->i_sick = 0;
111 	ip->i_checked = 0;
112 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 	INIT_LIST_HEAD(&ip->i_ioend_list);
114 	spin_lock_init(&ip->i_ioend_lock);
115 	ip->i_next_unlinked = NULLAGINO;
116 	ip->i_prev_unlinked = 0;
117 
118 	return ip;
119 }
120 
121 STATIC void
122 xfs_inode_free_callback(
123 	struct rcu_head		*head)
124 {
125 	struct inode		*inode = container_of(head, struct inode, i_rcu);
126 	struct xfs_inode	*ip = XFS_I(inode);
127 
128 	switch (VFS_I(ip)->i_mode & S_IFMT) {
129 	case S_IFREG:
130 	case S_IFDIR:
131 	case S_IFLNK:
132 		xfs_idestroy_fork(&ip->i_df);
133 		break;
134 	}
135 
136 	xfs_ifork_zap_attr(ip);
137 
138 	if (ip->i_cowfp) {
139 		xfs_idestroy_fork(ip->i_cowfp);
140 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 	}
142 	if (ip->i_itemp) {
143 		ASSERT(!test_bit(XFS_LI_IN_AIL,
144 				 &ip->i_itemp->ili_item.li_flags));
145 		xfs_inode_item_destroy(ip);
146 		ip->i_itemp = NULL;
147 	}
148 
149 	kmem_cache_free(xfs_inode_cache, ip);
150 }
151 
152 static void
153 __xfs_inode_free(
154 	struct xfs_inode	*ip)
155 {
156 	/* asserts to verify all state is correct here */
157 	ASSERT(atomic_read(&ip->i_pincount) == 0);
158 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 	XFS_STATS_DEC(ip->i_mount, vn_active);
160 
161 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163 
164 void
165 xfs_inode_free(
166 	struct xfs_inode	*ip)
167 {
168 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169 
170 	/*
171 	 * Because we use RCU freeing we need to ensure the inode always
172 	 * appears to be reclaimed with an invalid inode number when in the
173 	 * free state. The ip->i_flags_lock provides the barrier against lookup
174 	 * races.
175 	 */
176 	spin_lock(&ip->i_flags_lock);
177 	ip->i_flags = XFS_IRECLAIM;
178 	ip->i_ino = 0;
179 	spin_unlock(&ip->i_flags_lock);
180 
181 	__xfs_inode_free(ip);
182 }
183 
184 /*
185  * Queue background inode reclaim work if there are reclaimable inodes and there
186  * isn't reclaim work already scheduled or in progress.
187  */
188 static void
189 xfs_reclaim_work_queue(
190 	struct xfs_mount        *mp)
191 {
192 
193 	rcu_read_lock();
194 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 	}
198 	rcu_read_unlock();
199 }
200 
201 /*
202  * Background scanning to trim preallocated space. This is queued based on the
203  * 'speculative_prealloc_lifetime' tunable (5m by default).
204  */
205 static inline void
206 xfs_blockgc_queue(
207 	struct xfs_perag	*pag)
208 {
209 	struct xfs_mount	*mp = pag->pag_mount;
210 
211 	if (!xfs_is_blockgc_enabled(mp))
212 		return;
213 
214 	rcu_read_lock();
215 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 				   &pag->pag_blockgc_work,
218 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 	rcu_read_unlock();
220 }
221 
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
224 xfs_perag_set_inode_tag(
225 	struct xfs_perag	*pag,
226 	xfs_agino_t		agino,
227 	unsigned int		tag)
228 {
229 	struct xfs_mount	*mp = pag->pag_mount;
230 	bool			was_tagged;
231 
232 	lockdep_assert_held(&pag->pag_ici_lock);
233 
234 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236 
237 	if (tag == XFS_ICI_RECLAIM_TAG)
238 		pag->pag_ici_reclaimable++;
239 
240 	if (was_tagged)
241 		return;
242 
243 	/* propagate the tag up into the perag radix tree */
244 	spin_lock(&mp->m_perag_lock);
245 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 	spin_unlock(&mp->m_perag_lock);
247 
248 	/* start background work */
249 	switch (tag) {
250 	case XFS_ICI_RECLAIM_TAG:
251 		xfs_reclaim_work_queue(mp);
252 		break;
253 	case XFS_ICI_BLOCKGC_TAG:
254 		xfs_blockgc_queue(pag);
255 		break;
256 	}
257 
258 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
259 }
260 
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
263 xfs_perag_clear_inode_tag(
264 	struct xfs_perag	*pag,
265 	xfs_agino_t		agino,
266 	unsigned int		tag)
267 {
268 	struct xfs_mount	*mp = pag->pag_mount;
269 
270 	lockdep_assert_held(&pag->pag_ici_lock);
271 
272 	/*
273 	 * Reclaim can signal (with a null agino) that it cleared its own tag
274 	 * by removing the inode from the radix tree.
275 	 */
276 	if (agino != NULLAGINO)
277 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 	else
279 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280 
281 	if (tag == XFS_ICI_RECLAIM_TAG)
282 		pag->pag_ici_reclaimable--;
283 
284 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 		return;
286 
287 	/* clear the tag from the perag radix tree */
288 	spin_lock(&mp->m_perag_lock);
289 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 	spin_unlock(&mp->m_perag_lock);
291 
292 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
293 }
294 
295 /*
296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297  * part of the structure. This is made more complex by the fact we store
298  * information about the on-disk values in the VFS inode and so we can't just
299  * overwrite the values unconditionally. Hence we save the parameters we
300  * need to retain across reinitialisation, and rewrite them into the VFS inode
301  * after reinitialisation even if it fails.
302  */
303 static int
304 xfs_reinit_inode(
305 	struct xfs_mount	*mp,
306 	struct inode		*inode)
307 {
308 	int			error;
309 	uint32_t		nlink = inode->i_nlink;
310 	uint32_t		generation = inode->i_generation;
311 	uint64_t		version = inode_peek_iversion(inode);
312 	umode_t			mode = inode->i_mode;
313 	dev_t			dev = inode->i_rdev;
314 	kuid_t			uid = inode->i_uid;
315 	kgid_t			gid = inode->i_gid;
316 
317 	error = inode_init_always(mp->m_super, inode);
318 
319 	set_nlink(inode, nlink);
320 	inode->i_generation = generation;
321 	inode_set_iversion_queried(inode, version);
322 	inode->i_mode = mode;
323 	inode->i_rdev = dev;
324 	inode->i_uid = uid;
325 	inode->i_gid = gid;
326 	mapping_set_large_folios(inode->i_mapping);
327 	return error;
328 }
329 
330 /*
331  * Carefully nudge an inode whose VFS state has been torn down back into a
332  * usable state.  Drops the i_flags_lock and the rcu read lock.
333  */
334 static int
335 xfs_iget_recycle(
336 	struct xfs_perag	*pag,
337 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
338 {
339 	struct xfs_mount	*mp = ip->i_mount;
340 	struct inode		*inode = VFS_I(ip);
341 	int			error;
342 
343 	trace_xfs_iget_recycle(ip);
344 
345 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
346 		return -EAGAIN;
347 
348 	/*
349 	 * We need to make it look like the inode is being reclaimed to prevent
350 	 * the actual reclaim workers from stomping over us while we recycle
351 	 * the inode.  We can't clear the radix tree tag yet as it requires
352 	 * pag_ici_lock to be held exclusive.
353 	 */
354 	ip->i_flags |= XFS_IRECLAIM;
355 
356 	spin_unlock(&ip->i_flags_lock);
357 	rcu_read_unlock();
358 
359 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
360 	error = xfs_reinit_inode(mp, inode);
361 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
362 	if (error) {
363 		/*
364 		 * Re-initializing the inode failed, and we are in deep
365 		 * trouble.  Try to re-add it to the reclaim list.
366 		 */
367 		rcu_read_lock();
368 		spin_lock(&ip->i_flags_lock);
369 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
370 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
371 		spin_unlock(&ip->i_flags_lock);
372 		rcu_read_unlock();
373 
374 		trace_xfs_iget_recycle_fail(ip);
375 		return error;
376 	}
377 
378 	spin_lock(&pag->pag_ici_lock);
379 	spin_lock(&ip->i_flags_lock);
380 
381 	/*
382 	 * Clear the per-lifetime state in the inode as we are now effectively
383 	 * a new inode and need to return to the initial state before reuse
384 	 * occurs.
385 	 */
386 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
387 	ip->i_flags |= XFS_INEW;
388 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
389 			XFS_ICI_RECLAIM_TAG);
390 	inode->i_state = I_NEW;
391 	spin_unlock(&ip->i_flags_lock);
392 	spin_unlock(&pag->pag_ici_lock);
393 
394 	return 0;
395 }
396 
397 /*
398  * If we are allocating a new inode, then check what was returned is
399  * actually a free, empty inode. If we are not allocating an inode,
400  * then check we didn't find a free inode.
401  *
402  * Returns:
403  *	0		if the inode free state matches the lookup context
404  *	-ENOENT		if the inode is free and we are not allocating
405  *	-EFSCORRUPTED	if there is any state mismatch at all
406  */
407 static int
408 xfs_iget_check_free_state(
409 	struct xfs_inode	*ip,
410 	int			flags)
411 {
412 	if (flags & XFS_IGET_CREATE) {
413 		/* should be a free inode */
414 		if (VFS_I(ip)->i_mode != 0) {
415 			xfs_warn(ip->i_mount,
416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
417 				ip->i_ino, VFS_I(ip)->i_mode);
418 			return -EFSCORRUPTED;
419 		}
420 
421 		if (ip->i_nblocks != 0) {
422 			xfs_warn(ip->i_mount,
423 "Corruption detected! Free inode 0x%llx has blocks allocated!",
424 				ip->i_ino);
425 			return -EFSCORRUPTED;
426 		}
427 		return 0;
428 	}
429 
430 	/* should be an allocated inode */
431 	if (VFS_I(ip)->i_mode == 0)
432 		return -ENOENT;
433 
434 	return 0;
435 }
436 
437 /* Make all pending inactivation work start immediately. */
438 static bool
439 xfs_inodegc_queue_all(
440 	struct xfs_mount	*mp)
441 {
442 	struct xfs_inodegc	*gc;
443 	int			cpu;
444 	bool			ret = false;
445 
446 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
447 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
448 		if (!llist_empty(&gc->list)) {
449 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
450 			ret = true;
451 		}
452 	}
453 
454 	return ret;
455 }
456 
457 /* Wait for all queued work and collect errors */
458 static int
459 xfs_inodegc_wait_all(
460 	struct xfs_mount	*mp)
461 {
462 	int			cpu;
463 	int			error = 0;
464 
465 	flush_workqueue(mp->m_inodegc_wq);
466 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
467 		struct xfs_inodegc	*gc;
468 
469 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
470 		if (gc->error && !error)
471 			error = gc->error;
472 		gc->error = 0;
473 	}
474 
475 	return error;
476 }
477 
478 /*
479  * Check the validity of the inode we just found it the cache
480  */
481 static int
482 xfs_iget_cache_hit(
483 	struct xfs_perag	*pag,
484 	struct xfs_inode	*ip,
485 	xfs_ino_t		ino,
486 	int			flags,
487 	int			lock_flags) __releases(RCU)
488 {
489 	struct inode		*inode = VFS_I(ip);
490 	struct xfs_mount	*mp = ip->i_mount;
491 	int			error;
492 
493 	/*
494 	 * check for re-use of an inode within an RCU grace period due to the
495 	 * radix tree nodes not being updated yet. We monitor for this by
496 	 * setting the inode number to zero before freeing the inode structure.
497 	 * If the inode has been reallocated and set up, then the inode number
498 	 * will not match, so check for that, too.
499 	 */
500 	spin_lock(&ip->i_flags_lock);
501 	if (ip->i_ino != ino)
502 		goto out_skip;
503 
504 	/*
505 	 * If we are racing with another cache hit that is currently
506 	 * instantiating this inode or currently recycling it out of
507 	 * reclaimable state, wait for the initialisation to complete
508 	 * before continuing.
509 	 *
510 	 * If we're racing with the inactivation worker we also want to wait.
511 	 * If we're creating a new file, it's possible that the worker
512 	 * previously marked the inode as free on disk but hasn't finished
513 	 * updating the incore state yet.  The AGI buffer will be dirty and
514 	 * locked to the icreate transaction, so a synchronous push of the
515 	 * inodegc workers would result in deadlock.  For a regular iget, the
516 	 * worker is running already, so we might as well wait.
517 	 *
518 	 * XXX(hch): eventually we should do something equivalent to
519 	 *	     wait_on_inode to wait for these flags to be cleared
520 	 *	     instead of polling for it.
521 	 */
522 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
523 		goto out_skip;
524 
525 	if (ip->i_flags & XFS_NEED_INACTIVE) {
526 		/* Unlinked inodes cannot be re-grabbed. */
527 		if (VFS_I(ip)->i_nlink == 0) {
528 			error = -ENOENT;
529 			goto out_error;
530 		}
531 		goto out_inodegc_flush;
532 	}
533 
534 	/*
535 	 * Check the inode free state is valid. This also detects lookup
536 	 * racing with unlinks.
537 	 */
538 	error = xfs_iget_check_free_state(ip, flags);
539 	if (error)
540 		goto out_error;
541 
542 	/* Skip inodes that have no vfs state. */
543 	if ((flags & XFS_IGET_INCORE) &&
544 	    (ip->i_flags & XFS_IRECLAIMABLE))
545 		goto out_skip;
546 
547 	/* The inode fits the selection criteria; process it. */
548 	if (ip->i_flags & XFS_IRECLAIMABLE) {
549 		/* Drops i_flags_lock and RCU read lock. */
550 		error = xfs_iget_recycle(pag, ip);
551 		if (error == -EAGAIN)
552 			goto out_skip;
553 		if (error)
554 			return error;
555 	} else {
556 		/* If the VFS inode is being torn down, pause and try again. */
557 		if (!igrab(inode))
558 			goto out_skip;
559 
560 		/* We've got a live one. */
561 		spin_unlock(&ip->i_flags_lock);
562 		rcu_read_unlock();
563 		trace_xfs_iget_hit(ip);
564 	}
565 
566 	if (lock_flags != 0)
567 		xfs_ilock(ip, lock_flags);
568 
569 	if (!(flags & XFS_IGET_INCORE))
570 		xfs_iflags_clear(ip, XFS_ISTALE);
571 	XFS_STATS_INC(mp, xs_ig_found);
572 
573 	return 0;
574 
575 out_skip:
576 	trace_xfs_iget_skip(ip);
577 	XFS_STATS_INC(mp, xs_ig_frecycle);
578 	error = -EAGAIN;
579 out_error:
580 	spin_unlock(&ip->i_flags_lock);
581 	rcu_read_unlock();
582 	return error;
583 
584 out_inodegc_flush:
585 	spin_unlock(&ip->i_flags_lock);
586 	rcu_read_unlock();
587 	/*
588 	 * Do not wait for the workers, because the caller could hold an AGI
589 	 * buffer lock.  We're just going to sleep in a loop anyway.
590 	 */
591 	if (xfs_is_inodegc_enabled(mp))
592 		xfs_inodegc_queue_all(mp);
593 	return -EAGAIN;
594 }
595 
596 static int
597 xfs_iget_cache_miss(
598 	struct xfs_mount	*mp,
599 	struct xfs_perag	*pag,
600 	xfs_trans_t		*tp,
601 	xfs_ino_t		ino,
602 	struct xfs_inode	**ipp,
603 	int			flags,
604 	int			lock_flags)
605 {
606 	struct xfs_inode	*ip;
607 	int			error;
608 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
609 	int			iflags;
610 
611 	ip = xfs_inode_alloc(mp, ino);
612 	if (!ip)
613 		return -ENOMEM;
614 
615 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
616 	if (error)
617 		goto out_destroy;
618 
619 	/*
620 	 * For version 5 superblocks, if we are initialising a new inode and we
621 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
622 	 * simply build the new inode core with a random generation number.
623 	 *
624 	 * For version 4 (and older) superblocks, log recovery is dependent on
625 	 * the i_flushiter field being initialised from the current on-disk
626 	 * value and hence we must also read the inode off disk even when
627 	 * initializing new inodes.
628 	 */
629 	if (xfs_has_v3inodes(mp) &&
630 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
631 		VFS_I(ip)->i_generation = get_random_u32();
632 	} else {
633 		struct xfs_buf		*bp;
634 
635 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
636 		if (error)
637 			goto out_destroy;
638 
639 		error = xfs_inode_from_disk(ip,
640 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
641 		if (!error)
642 			xfs_buf_set_ref(bp, XFS_INO_REF);
643 		xfs_trans_brelse(tp, bp);
644 
645 		if (error)
646 			goto out_destroy;
647 	}
648 
649 	trace_xfs_iget_miss(ip);
650 
651 	/*
652 	 * Check the inode free state is valid. This also detects lookup
653 	 * racing with unlinks.
654 	 */
655 	error = xfs_iget_check_free_state(ip, flags);
656 	if (error)
657 		goto out_destroy;
658 
659 	/*
660 	 * Preload the radix tree so we can insert safely under the
661 	 * write spinlock. Note that we cannot sleep inside the preload
662 	 * region. Since we can be called from transaction context, don't
663 	 * recurse into the file system.
664 	 */
665 	if (radix_tree_preload(GFP_NOFS)) {
666 		error = -EAGAIN;
667 		goto out_destroy;
668 	}
669 
670 	/*
671 	 * Because the inode hasn't been added to the radix-tree yet it can't
672 	 * be found by another thread, so we can do the non-sleeping lock here.
673 	 */
674 	if (lock_flags) {
675 		if (!xfs_ilock_nowait(ip, lock_flags))
676 			BUG();
677 	}
678 
679 	/*
680 	 * These values must be set before inserting the inode into the radix
681 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
682 	 * RCU locking mechanism) can find it and that lookup must see that this
683 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
684 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
685 	 * memory barrier that ensures this detection works correctly at lookup
686 	 * time.
687 	 */
688 	iflags = XFS_INEW;
689 	if (flags & XFS_IGET_DONTCACHE)
690 		d_mark_dontcache(VFS_I(ip));
691 	ip->i_udquot = NULL;
692 	ip->i_gdquot = NULL;
693 	ip->i_pdquot = NULL;
694 	xfs_iflags_set(ip, iflags);
695 
696 	/* insert the new inode */
697 	spin_lock(&pag->pag_ici_lock);
698 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
699 	if (unlikely(error)) {
700 		WARN_ON(error != -EEXIST);
701 		XFS_STATS_INC(mp, xs_ig_dup);
702 		error = -EAGAIN;
703 		goto out_preload_end;
704 	}
705 	spin_unlock(&pag->pag_ici_lock);
706 	radix_tree_preload_end();
707 
708 	*ipp = ip;
709 	return 0;
710 
711 out_preload_end:
712 	spin_unlock(&pag->pag_ici_lock);
713 	radix_tree_preload_end();
714 	if (lock_flags)
715 		xfs_iunlock(ip, lock_flags);
716 out_destroy:
717 	__destroy_inode(VFS_I(ip));
718 	xfs_inode_free(ip);
719 	return error;
720 }
721 
722 /*
723  * Look up an inode by number in the given file system.  The inode is looked up
724  * in the cache held in each AG.  If the inode is found in the cache, initialise
725  * the vfs inode if necessary.
726  *
727  * If it is not in core, read it in from the file system's device, add it to the
728  * cache and initialise the vfs inode.
729  *
730  * The inode is locked according to the value of the lock_flags parameter.
731  * Inode lookup is only done during metadata operations and not as part of the
732  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
733  */
734 int
735 xfs_iget(
736 	struct xfs_mount	*mp,
737 	struct xfs_trans	*tp,
738 	xfs_ino_t		ino,
739 	uint			flags,
740 	uint			lock_flags,
741 	struct xfs_inode	**ipp)
742 {
743 	struct xfs_inode	*ip;
744 	struct xfs_perag	*pag;
745 	xfs_agino_t		agino;
746 	int			error;
747 
748 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
749 
750 	/* reject inode numbers outside existing AGs */
751 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
752 		return -EINVAL;
753 
754 	XFS_STATS_INC(mp, xs_ig_attempts);
755 
756 	/* get the perag structure and ensure that it's inode capable */
757 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
758 	agino = XFS_INO_TO_AGINO(mp, ino);
759 
760 again:
761 	error = 0;
762 	rcu_read_lock();
763 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
764 
765 	if (ip) {
766 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
767 		if (error)
768 			goto out_error_or_again;
769 	} else {
770 		rcu_read_unlock();
771 		if (flags & XFS_IGET_INCORE) {
772 			error = -ENODATA;
773 			goto out_error_or_again;
774 		}
775 		XFS_STATS_INC(mp, xs_ig_missed);
776 
777 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
778 							flags, lock_flags);
779 		if (error)
780 			goto out_error_or_again;
781 	}
782 	xfs_perag_put(pag);
783 
784 	*ipp = ip;
785 
786 	/*
787 	 * If we have a real type for an on-disk inode, we can setup the inode
788 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
789 	 * handle it.
790 	 */
791 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
792 		xfs_setup_existing_inode(ip);
793 	return 0;
794 
795 out_error_or_again:
796 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
797 	    error == -EAGAIN) {
798 		delay(1);
799 		goto again;
800 	}
801 	xfs_perag_put(pag);
802 	return error;
803 }
804 
805 /*
806  * Grab the inode for reclaim exclusively.
807  *
808  * We have found this inode via a lookup under RCU, so the inode may have
809  * already been freed, or it may be in the process of being recycled by
810  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
811  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
812  * will not be set. Hence we need to check for both these flag conditions to
813  * avoid inodes that are no longer reclaim candidates.
814  *
815  * Note: checking for other state flags here, under the i_flags_lock or not, is
816  * racy and should be avoided. Those races should be resolved only after we have
817  * ensured that we are able to reclaim this inode and the world can see that we
818  * are going to reclaim it.
819  *
820  * Return true if we grabbed it, false otherwise.
821  */
822 static bool
823 xfs_reclaim_igrab(
824 	struct xfs_inode	*ip,
825 	struct xfs_icwalk	*icw)
826 {
827 	ASSERT(rcu_read_lock_held());
828 
829 	spin_lock(&ip->i_flags_lock);
830 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
831 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
832 		/* not a reclaim candidate. */
833 		spin_unlock(&ip->i_flags_lock);
834 		return false;
835 	}
836 
837 	/* Don't reclaim a sick inode unless the caller asked for it. */
838 	if (ip->i_sick &&
839 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
840 		spin_unlock(&ip->i_flags_lock);
841 		return false;
842 	}
843 
844 	__xfs_iflags_set(ip, XFS_IRECLAIM);
845 	spin_unlock(&ip->i_flags_lock);
846 	return true;
847 }
848 
849 /*
850  * Inode reclaim is non-blocking, so the default action if progress cannot be
851  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
852  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
853  * blocking anymore and hence we can wait for the inode to be able to reclaim
854  * it.
855  *
856  * We do no IO here - if callers require inodes to be cleaned they must push the
857  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
858  * done in the background in a non-blocking manner, and enables memory reclaim
859  * to make progress without blocking.
860  */
861 static void
862 xfs_reclaim_inode(
863 	struct xfs_inode	*ip,
864 	struct xfs_perag	*pag)
865 {
866 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
867 
868 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
869 		goto out;
870 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
871 		goto out_iunlock;
872 
873 	/*
874 	 * Check for log shutdown because aborting the inode can move the log
875 	 * tail and corrupt in memory state. This is fine if the log is shut
876 	 * down, but if the log is still active and only the mount is shut down
877 	 * then the in-memory log tail movement caused by the abort can be
878 	 * incorrectly propagated to disk.
879 	 */
880 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
881 		xfs_iunpin_wait(ip);
882 		xfs_iflush_shutdown_abort(ip);
883 		goto reclaim;
884 	}
885 	if (xfs_ipincount(ip))
886 		goto out_clear_flush;
887 	if (!xfs_inode_clean(ip))
888 		goto out_clear_flush;
889 
890 	xfs_iflags_clear(ip, XFS_IFLUSHING);
891 reclaim:
892 	trace_xfs_inode_reclaiming(ip);
893 
894 	/*
895 	 * Because we use RCU freeing we need to ensure the inode always appears
896 	 * to be reclaimed with an invalid inode number when in the free state.
897 	 * We do this as early as possible under the ILOCK so that
898 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
899 	 * detect races with us here. By doing this, we guarantee that once
900 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
901 	 * it will see either a valid inode that will serialise correctly, or it
902 	 * will see an invalid inode that it can skip.
903 	 */
904 	spin_lock(&ip->i_flags_lock);
905 	ip->i_flags = XFS_IRECLAIM;
906 	ip->i_ino = 0;
907 	ip->i_sick = 0;
908 	ip->i_checked = 0;
909 	spin_unlock(&ip->i_flags_lock);
910 
911 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
912 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
913 
914 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
915 	/*
916 	 * Remove the inode from the per-AG radix tree.
917 	 *
918 	 * Because radix_tree_delete won't complain even if the item was never
919 	 * added to the tree assert that it's been there before to catch
920 	 * problems with the inode life time early on.
921 	 */
922 	spin_lock(&pag->pag_ici_lock);
923 	if (!radix_tree_delete(&pag->pag_ici_root,
924 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
925 		ASSERT(0);
926 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
927 	spin_unlock(&pag->pag_ici_lock);
928 
929 	/*
930 	 * Here we do an (almost) spurious inode lock in order to coordinate
931 	 * with inode cache radix tree lookups.  This is because the lookup
932 	 * can reference the inodes in the cache without taking references.
933 	 *
934 	 * We make that OK here by ensuring that we wait until the inode is
935 	 * unlocked after the lookup before we go ahead and free it.
936 	 */
937 	xfs_ilock(ip, XFS_ILOCK_EXCL);
938 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
939 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
940 	ASSERT(xfs_inode_clean(ip));
941 
942 	__xfs_inode_free(ip);
943 	return;
944 
945 out_clear_flush:
946 	xfs_iflags_clear(ip, XFS_IFLUSHING);
947 out_iunlock:
948 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
949 out:
950 	xfs_iflags_clear(ip, XFS_IRECLAIM);
951 }
952 
953 /* Reclaim sick inodes if we're unmounting or the fs went down. */
954 static inline bool
955 xfs_want_reclaim_sick(
956 	struct xfs_mount	*mp)
957 {
958 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
959 	       xfs_is_shutdown(mp);
960 }
961 
962 void
963 xfs_reclaim_inodes(
964 	struct xfs_mount	*mp)
965 {
966 	struct xfs_icwalk	icw = {
967 		.icw_flags	= 0,
968 	};
969 
970 	if (xfs_want_reclaim_sick(mp))
971 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
972 
973 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
974 		xfs_ail_push_all_sync(mp->m_ail);
975 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
976 	}
977 }
978 
979 /*
980  * The shrinker infrastructure determines how many inodes we should scan for
981  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
982  * push the AIL here. We also want to proactively free up memory if we can to
983  * minimise the amount of work memory reclaim has to do so we kick the
984  * background reclaim if it isn't already scheduled.
985  */
986 long
987 xfs_reclaim_inodes_nr(
988 	struct xfs_mount	*mp,
989 	unsigned long		nr_to_scan)
990 {
991 	struct xfs_icwalk	icw = {
992 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
993 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
994 	};
995 
996 	if (xfs_want_reclaim_sick(mp))
997 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
998 
999 	/* kick background reclaimer and push the AIL */
1000 	xfs_reclaim_work_queue(mp);
1001 	xfs_ail_push_all(mp->m_ail);
1002 
1003 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Return the number of reclaimable inodes in the filesystem for
1009  * the shrinker to determine how much to reclaim.
1010  */
1011 long
1012 xfs_reclaim_inodes_count(
1013 	struct xfs_mount	*mp)
1014 {
1015 	struct xfs_perag	*pag;
1016 	xfs_agnumber_t		ag = 0;
1017 	long			reclaimable = 0;
1018 
1019 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1020 		ag = pag->pag_agno + 1;
1021 		reclaimable += pag->pag_ici_reclaimable;
1022 		xfs_perag_put(pag);
1023 	}
1024 	return reclaimable;
1025 }
1026 
1027 STATIC bool
1028 xfs_icwalk_match_id(
1029 	struct xfs_inode	*ip,
1030 	struct xfs_icwalk	*icw)
1031 {
1032 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1033 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1034 		return false;
1035 
1036 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1037 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1038 		return false;
1039 
1040 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1041 	    ip->i_projid != icw->icw_prid)
1042 		return false;
1043 
1044 	return true;
1045 }
1046 
1047 /*
1048  * A union-based inode filtering algorithm. Process the inode if any of the
1049  * criteria match. This is for global/internal scans only.
1050  */
1051 STATIC bool
1052 xfs_icwalk_match_id_union(
1053 	struct xfs_inode	*ip,
1054 	struct xfs_icwalk	*icw)
1055 {
1056 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1057 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1058 		return true;
1059 
1060 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1061 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1062 		return true;
1063 
1064 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1065 	    ip->i_projid == icw->icw_prid)
1066 		return true;
1067 
1068 	return false;
1069 }
1070 
1071 /*
1072  * Is this inode @ip eligible for eof/cow block reclamation, given some
1073  * filtering parameters @icw?  The inode is eligible if @icw is null or
1074  * if the predicate functions match.
1075  */
1076 static bool
1077 xfs_icwalk_match(
1078 	struct xfs_inode	*ip,
1079 	struct xfs_icwalk	*icw)
1080 {
1081 	bool			match;
1082 
1083 	if (!icw)
1084 		return true;
1085 
1086 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1087 		match = xfs_icwalk_match_id_union(ip, icw);
1088 	else
1089 		match = xfs_icwalk_match_id(ip, icw);
1090 	if (!match)
1091 		return false;
1092 
1093 	/* skip the inode if the file size is too small */
1094 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1095 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1096 		return false;
1097 
1098 	return true;
1099 }
1100 
1101 /*
1102  * This is a fast pass over the inode cache to try to get reclaim moving on as
1103  * many inodes as possible in a short period of time. It kicks itself every few
1104  * seconds, as well as being kicked by the inode cache shrinker when memory
1105  * goes low.
1106  */
1107 void
1108 xfs_reclaim_worker(
1109 	struct work_struct *work)
1110 {
1111 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1112 					struct xfs_mount, m_reclaim_work);
1113 
1114 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1115 	xfs_reclaim_work_queue(mp);
1116 }
1117 
1118 STATIC int
1119 xfs_inode_free_eofblocks(
1120 	struct xfs_inode	*ip,
1121 	struct xfs_icwalk	*icw,
1122 	unsigned int		*lockflags)
1123 {
1124 	bool			wait;
1125 
1126 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1127 
1128 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1129 		return 0;
1130 
1131 	/*
1132 	 * If the mapping is dirty the operation can block and wait for some
1133 	 * time. Unless we are waiting, skip it.
1134 	 */
1135 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1136 		return 0;
1137 
1138 	if (!xfs_icwalk_match(ip, icw))
1139 		return 0;
1140 
1141 	/*
1142 	 * If the caller is waiting, return -EAGAIN to keep the background
1143 	 * scanner moving and revisit the inode in a subsequent pass.
1144 	 */
1145 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1146 		if (wait)
1147 			return -EAGAIN;
1148 		return 0;
1149 	}
1150 	*lockflags |= XFS_IOLOCK_EXCL;
1151 
1152 	if (xfs_can_free_eofblocks(ip, false))
1153 		return xfs_free_eofblocks(ip);
1154 
1155 	/* inode could be preallocated or append-only */
1156 	trace_xfs_inode_free_eofblocks_invalid(ip);
1157 	xfs_inode_clear_eofblocks_tag(ip);
1158 	return 0;
1159 }
1160 
1161 static void
1162 xfs_blockgc_set_iflag(
1163 	struct xfs_inode	*ip,
1164 	unsigned long		iflag)
1165 {
1166 	struct xfs_mount	*mp = ip->i_mount;
1167 	struct xfs_perag	*pag;
1168 
1169 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1170 
1171 	/*
1172 	 * Don't bother locking the AG and looking up in the radix trees
1173 	 * if we already know that we have the tag set.
1174 	 */
1175 	if (ip->i_flags & iflag)
1176 		return;
1177 	spin_lock(&ip->i_flags_lock);
1178 	ip->i_flags |= iflag;
1179 	spin_unlock(&ip->i_flags_lock);
1180 
1181 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1182 	spin_lock(&pag->pag_ici_lock);
1183 
1184 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1185 			XFS_ICI_BLOCKGC_TAG);
1186 
1187 	spin_unlock(&pag->pag_ici_lock);
1188 	xfs_perag_put(pag);
1189 }
1190 
1191 void
1192 xfs_inode_set_eofblocks_tag(
1193 	xfs_inode_t	*ip)
1194 {
1195 	trace_xfs_inode_set_eofblocks_tag(ip);
1196 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1197 }
1198 
1199 static void
1200 xfs_blockgc_clear_iflag(
1201 	struct xfs_inode	*ip,
1202 	unsigned long		iflag)
1203 {
1204 	struct xfs_mount	*mp = ip->i_mount;
1205 	struct xfs_perag	*pag;
1206 	bool			clear_tag;
1207 
1208 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1209 
1210 	spin_lock(&ip->i_flags_lock);
1211 	ip->i_flags &= ~iflag;
1212 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1213 	spin_unlock(&ip->i_flags_lock);
1214 
1215 	if (!clear_tag)
1216 		return;
1217 
1218 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1219 	spin_lock(&pag->pag_ici_lock);
1220 
1221 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1222 			XFS_ICI_BLOCKGC_TAG);
1223 
1224 	spin_unlock(&pag->pag_ici_lock);
1225 	xfs_perag_put(pag);
1226 }
1227 
1228 void
1229 xfs_inode_clear_eofblocks_tag(
1230 	xfs_inode_t	*ip)
1231 {
1232 	trace_xfs_inode_clear_eofblocks_tag(ip);
1233 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1234 }
1235 
1236 /*
1237  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1238  * then we can bail out quickly, but otherwise we must back off if the file
1239  * is undergoing some kind of write.
1240  */
1241 static bool
1242 xfs_prep_free_cowblocks(
1243 	struct xfs_inode	*ip)
1244 {
1245 	/*
1246 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1247 	 * possible the inode was fully unshared since it was originally tagged.
1248 	 */
1249 	if (!xfs_inode_has_cow_data(ip)) {
1250 		trace_xfs_inode_free_cowblocks_invalid(ip);
1251 		xfs_inode_clear_cowblocks_tag(ip);
1252 		return false;
1253 	}
1254 
1255 	/*
1256 	 * If the mapping is dirty or under writeback we cannot touch the
1257 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1258 	 */
1259 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1260 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1261 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1262 	    atomic_read(&VFS_I(ip)->i_dio_count))
1263 		return false;
1264 
1265 	return true;
1266 }
1267 
1268 /*
1269  * Automatic CoW Reservation Freeing
1270  *
1271  * These functions automatically garbage collect leftover CoW reservations
1272  * that were made on behalf of a cowextsize hint when we start to run out
1273  * of quota or when the reservations sit around for too long.  If the file
1274  * has dirty pages or is undergoing writeback, its CoW reservations will
1275  * be retained.
1276  *
1277  * The actual garbage collection piggybacks off the same code that runs
1278  * the speculative EOF preallocation garbage collector.
1279  */
1280 STATIC int
1281 xfs_inode_free_cowblocks(
1282 	struct xfs_inode	*ip,
1283 	struct xfs_icwalk	*icw,
1284 	unsigned int		*lockflags)
1285 {
1286 	bool			wait;
1287 	int			ret = 0;
1288 
1289 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1290 
1291 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1292 		return 0;
1293 
1294 	if (!xfs_prep_free_cowblocks(ip))
1295 		return 0;
1296 
1297 	if (!xfs_icwalk_match(ip, icw))
1298 		return 0;
1299 
1300 	/*
1301 	 * If the caller is waiting, return -EAGAIN to keep the background
1302 	 * scanner moving and revisit the inode in a subsequent pass.
1303 	 */
1304 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1305 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1306 		if (wait)
1307 			return -EAGAIN;
1308 		return 0;
1309 	}
1310 	*lockflags |= XFS_IOLOCK_EXCL;
1311 
1312 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1313 		if (wait)
1314 			return -EAGAIN;
1315 		return 0;
1316 	}
1317 	*lockflags |= XFS_MMAPLOCK_EXCL;
1318 
1319 	/*
1320 	 * Check again, nobody else should be able to dirty blocks or change
1321 	 * the reflink iflag now that we have the first two locks held.
1322 	 */
1323 	if (xfs_prep_free_cowblocks(ip))
1324 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1325 	return ret;
1326 }
1327 
1328 void
1329 xfs_inode_set_cowblocks_tag(
1330 	xfs_inode_t	*ip)
1331 {
1332 	trace_xfs_inode_set_cowblocks_tag(ip);
1333 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1334 }
1335 
1336 void
1337 xfs_inode_clear_cowblocks_tag(
1338 	xfs_inode_t	*ip)
1339 {
1340 	trace_xfs_inode_clear_cowblocks_tag(ip);
1341 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1342 }
1343 
1344 /* Disable post-EOF and CoW block auto-reclamation. */
1345 void
1346 xfs_blockgc_stop(
1347 	struct xfs_mount	*mp)
1348 {
1349 	struct xfs_perag	*pag;
1350 	xfs_agnumber_t		agno;
1351 
1352 	if (!xfs_clear_blockgc_enabled(mp))
1353 		return;
1354 
1355 	for_each_perag(mp, agno, pag)
1356 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1357 	trace_xfs_blockgc_stop(mp, __return_address);
1358 }
1359 
1360 /* Enable post-EOF and CoW block auto-reclamation. */
1361 void
1362 xfs_blockgc_start(
1363 	struct xfs_mount	*mp)
1364 {
1365 	struct xfs_perag	*pag;
1366 	xfs_agnumber_t		agno;
1367 
1368 	if (xfs_set_blockgc_enabled(mp))
1369 		return;
1370 
1371 	trace_xfs_blockgc_start(mp, __return_address);
1372 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1373 		xfs_blockgc_queue(pag);
1374 }
1375 
1376 /* Don't try to run block gc on an inode that's in any of these states. */
1377 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1378 					 XFS_NEED_INACTIVE | \
1379 					 XFS_INACTIVATING | \
1380 					 XFS_IRECLAIMABLE | \
1381 					 XFS_IRECLAIM)
1382 /*
1383  * Decide if the given @ip is eligible for garbage collection of speculative
1384  * preallocations, and grab it if so.  Returns true if it's ready to go or
1385  * false if we should just ignore it.
1386  */
1387 static bool
1388 xfs_blockgc_igrab(
1389 	struct xfs_inode	*ip)
1390 {
1391 	struct inode		*inode = VFS_I(ip);
1392 
1393 	ASSERT(rcu_read_lock_held());
1394 
1395 	/* Check for stale RCU freed inode */
1396 	spin_lock(&ip->i_flags_lock);
1397 	if (!ip->i_ino)
1398 		goto out_unlock_noent;
1399 
1400 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1401 		goto out_unlock_noent;
1402 	spin_unlock(&ip->i_flags_lock);
1403 
1404 	/* nothing to sync during shutdown */
1405 	if (xfs_is_shutdown(ip->i_mount))
1406 		return false;
1407 
1408 	/* If we can't grab the inode, it must on it's way to reclaim. */
1409 	if (!igrab(inode))
1410 		return false;
1411 
1412 	/* inode is valid */
1413 	return true;
1414 
1415 out_unlock_noent:
1416 	spin_unlock(&ip->i_flags_lock);
1417 	return false;
1418 }
1419 
1420 /* Scan one incore inode for block preallocations that we can remove. */
1421 static int
1422 xfs_blockgc_scan_inode(
1423 	struct xfs_inode	*ip,
1424 	struct xfs_icwalk	*icw)
1425 {
1426 	unsigned int		lockflags = 0;
1427 	int			error;
1428 
1429 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1430 	if (error)
1431 		goto unlock;
1432 
1433 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1434 unlock:
1435 	if (lockflags)
1436 		xfs_iunlock(ip, lockflags);
1437 	xfs_irele(ip);
1438 	return error;
1439 }
1440 
1441 /* Background worker that trims preallocated space. */
1442 void
1443 xfs_blockgc_worker(
1444 	struct work_struct	*work)
1445 {
1446 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1447 					struct xfs_perag, pag_blockgc_work);
1448 	struct xfs_mount	*mp = pag->pag_mount;
1449 	int			error;
1450 
1451 	trace_xfs_blockgc_worker(mp, __return_address);
1452 
1453 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1454 	if (error)
1455 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1456 				pag->pag_agno, error);
1457 	xfs_blockgc_queue(pag);
1458 }
1459 
1460 /*
1461  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1462  * and cowblocks.
1463  */
1464 int
1465 xfs_blockgc_free_space(
1466 	struct xfs_mount	*mp,
1467 	struct xfs_icwalk	*icw)
1468 {
1469 	int			error;
1470 
1471 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1472 
1473 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1474 	if (error)
1475 		return error;
1476 
1477 	return xfs_inodegc_flush(mp);
1478 }
1479 
1480 /*
1481  * Reclaim all the free space that we can by scheduling the background blockgc
1482  * and inodegc workers immediately and waiting for them all to clear.
1483  */
1484 int
1485 xfs_blockgc_flush_all(
1486 	struct xfs_mount	*mp)
1487 {
1488 	struct xfs_perag	*pag;
1489 	xfs_agnumber_t		agno;
1490 
1491 	trace_xfs_blockgc_flush_all(mp, __return_address);
1492 
1493 	/*
1494 	 * For each blockgc worker, move its queue time up to now.  If it
1495 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1496 	 * left.
1497 	 */
1498 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1499 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1500 				&pag->pag_blockgc_work, 0);
1501 
1502 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1503 		flush_delayed_work(&pag->pag_blockgc_work);
1504 
1505 	return xfs_inodegc_flush(mp);
1506 }
1507 
1508 /*
1509  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1510  * quota caused an allocation failure, so we make a best effort by including
1511  * each quota under low free space conditions (less than 1% free space) in the
1512  * scan.
1513  *
1514  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1515  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1516  * MMAPLOCK.
1517  */
1518 int
1519 xfs_blockgc_free_dquots(
1520 	struct xfs_mount	*mp,
1521 	struct xfs_dquot	*udqp,
1522 	struct xfs_dquot	*gdqp,
1523 	struct xfs_dquot	*pdqp,
1524 	unsigned int		iwalk_flags)
1525 {
1526 	struct xfs_icwalk	icw = {0};
1527 	bool			do_work = false;
1528 
1529 	if (!udqp && !gdqp && !pdqp)
1530 		return 0;
1531 
1532 	/*
1533 	 * Run a scan to free blocks using the union filter to cover all
1534 	 * applicable quotas in a single scan.
1535 	 */
1536 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1537 
1538 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1539 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1540 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1541 		do_work = true;
1542 	}
1543 
1544 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1545 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1546 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1547 		do_work = true;
1548 	}
1549 
1550 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1551 		icw.icw_prid = pdqp->q_id;
1552 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1553 		do_work = true;
1554 	}
1555 
1556 	if (!do_work)
1557 		return 0;
1558 
1559 	return xfs_blockgc_free_space(mp, &icw);
1560 }
1561 
1562 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1563 int
1564 xfs_blockgc_free_quota(
1565 	struct xfs_inode	*ip,
1566 	unsigned int		iwalk_flags)
1567 {
1568 	return xfs_blockgc_free_dquots(ip->i_mount,
1569 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1570 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1571 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1572 }
1573 
1574 /* XFS Inode Cache Walking Code */
1575 
1576 /*
1577  * The inode lookup is done in batches to keep the amount of lock traffic and
1578  * radix tree lookups to a minimum. The batch size is a trade off between
1579  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1580  * be too greedy.
1581  */
1582 #define XFS_LOOKUP_BATCH	32
1583 
1584 
1585 /*
1586  * Decide if we want to grab this inode in anticipation of doing work towards
1587  * the goal.
1588  */
1589 static inline bool
1590 xfs_icwalk_igrab(
1591 	enum xfs_icwalk_goal	goal,
1592 	struct xfs_inode	*ip,
1593 	struct xfs_icwalk	*icw)
1594 {
1595 	switch (goal) {
1596 	case XFS_ICWALK_BLOCKGC:
1597 		return xfs_blockgc_igrab(ip);
1598 	case XFS_ICWALK_RECLAIM:
1599 		return xfs_reclaim_igrab(ip, icw);
1600 	default:
1601 		return false;
1602 	}
1603 }
1604 
1605 /*
1606  * Process an inode.  Each processing function must handle any state changes
1607  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1608  */
1609 static inline int
1610 xfs_icwalk_process_inode(
1611 	enum xfs_icwalk_goal	goal,
1612 	struct xfs_inode	*ip,
1613 	struct xfs_perag	*pag,
1614 	struct xfs_icwalk	*icw)
1615 {
1616 	int			error = 0;
1617 
1618 	switch (goal) {
1619 	case XFS_ICWALK_BLOCKGC:
1620 		error = xfs_blockgc_scan_inode(ip, icw);
1621 		break;
1622 	case XFS_ICWALK_RECLAIM:
1623 		xfs_reclaim_inode(ip, pag);
1624 		break;
1625 	}
1626 	return error;
1627 }
1628 
1629 /*
1630  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1631  * process them in some manner.
1632  */
1633 static int
1634 xfs_icwalk_ag(
1635 	struct xfs_perag	*pag,
1636 	enum xfs_icwalk_goal	goal,
1637 	struct xfs_icwalk	*icw)
1638 {
1639 	struct xfs_mount	*mp = pag->pag_mount;
1640 	uint32_t		first_index;
1641 	int			last_error = 0;
1642 	int			skipped;
1643 	bool			done;
1644 	int			nr_found;
1645 
1646 restart:
1647 	done = false;
1648 	skipped = 0;
1649 	if (goal == XFS_ICWALK_RECLAIM)
1650 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1651 	else
1652 		first_index = 0;
1653 	nr_found = 0;
1654 	do {
1655 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1656 		int		error = 0;
1657 		int		i;
1658 
1659 		rcu_read_lock();
1660 
1661 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1662 				(void **) batch, first_index,
1663 				XFS_LOOKUP_BATCH, goal);
1664 		if (!nr_found) {
1665 			done = true;
1666 			rcu_read_unlock();
1667 			break;
1668 		}
1669 
1670 		/*
1671 		 * Grab the inodes before we drop the lock. if we found
1672 		 * nothing, nr == 0 and the loop will be skipped.
1673 		 */
1674 		for (i = 0; i < nr_found; i++) {
1675 			struct xfs_inode *ip = batch[i];
1676 
1677 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1678 				batch[i] = NULL;
1679 
1680 			/*
1681 			 * Update the index for the next lookup. Catch
1682 			 * overflows into the next AG range which can occur if
1683 			 * we have inodes in the last block of the AG and we
1684 			 * are currently pointing to the last inode.
1685 			 *
1686 			 * Because we may see inodes that are from the wrong AG
1687 			 * due to RCU freeing and reallocation, only update the
1688 			 * index if it lies in this AG. It was a race that lead
1689 			 * us to see this inode, so another lookup from the
1690 			 * same index will not find it again.
1691 			 */
1692 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1693 				continue;
1694 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1695 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1696 				done = true;
1697 		}
1698 
1699 		/* unlock now we've grabbed the inodes. */
1700 		rcu_read_unlock();
1701 
1702 		for (i = 0; i < nr_found; i++) {
1703 			if (!batch[i])
1704 				continue;
1705 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1706 					icw);
1707 			if (error == -EAGAIN) {
1708 				skipped++;
1709 				continue;
1710 			}
1711 			if (error && last_error != -EFSCORRUPTED)
1712 				last_error = error;
1713 		}
1714 
1715 		/* bail out if the filesystem is corrupted.  */
1716 		if (error == -EFSCORRUPTED)
1717 			break;
1718 
1719 		cond_resched();
1720 
1721 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1722 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1723 			if (icw->icw_scan_limit <= 0)
1724 				break;
1725 		}
1726 	} while (nr_found && !done);
1727 
1728 	if (goal == XFS_ICWALK_RECLAIM) {
1729 		if (done)
1730 			first_index = 0;
1731 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1732 	}
1733 
1734 	if (skipped) {
1735 		delay(1);
1736 		goto restart;
1737 	}
1738 	return last_error;
1739 }
1740 
1741 /* Walk all incore inodes to achieve a given goal. */
1742 static int
1743 xfs_icwalk(
1744 	struct xfs_mount	*mp,
1745 	enum xfs_icwalk_goal	goal,
1746 	struct xfs_icwalk	*icw)
1747 {
1748 	struct xfs_perag	*pag;
1749 	int			error = 0;
1750 	int			last_error = 0;
1751 	xfs_agnumber_t		agno;
1752 
1753 	for_each_perag_tag(mp, agno, pag, goal) {
1754 		error = xfs_icwalk_ag(pag, goal, icw);
1755 		if (error) {
1756 			last_error = error;
1757 			if (error == -EFSCORRUPTED) {
1758 				xfs_perag_rele(pag);
1759 				break;
1760 			}
1761 		}
1762 	}
1763 	return last_error;
1764 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1765 }
1766 
1767 #ifdef DEBUG
1768 static void
1769 xfs_check_delalloc(
1770 	struct xfs_inode	*ip,
1771 	int			whichfork)
1772 {
1773 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1774 	struct xfs_bmbt_irec	got;
1775 	struct xfs_iext_cursor	icur;
1776 
1777 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1778 		return;
1779 	do {
1780 		if (isnullstartblock(got.br_startblock)) {
1781 			xfs_warn(ip->i_mount,
1782 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1783 				ip->i_ino,
1784 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1785 				got.br_startoff, got.br_blockcount);
1786 		}
1787 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1788 }
1789 #else
1790 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1791 #endif
1792 
1793 /* Schedule the inode for reclaim. */
1794 static void
1795 xfs_inodegc_set_reclaimable(
1796 	struct xfs_inode	*ip)
1797 {
1798 	struct xfs_mount	*mp = ip->i_mount;
1799 	struct xfs_perag	*pag;
1800 
1801 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1802 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1803 		xfs_check_delalloc(ip, XFS_COW_FORK);
1804 		ASSERT(0);
1805 	}
1806 
1807 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1808 	spin_lock(&pag->pag_ici_lock);
1809 	spin_lock(&ip->i_flags_lock);
1810 
1811 	trace_xfs_inode_set_reclaimable(ip);
1812 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1813 	ip->i_flags |= XFS_IRECLAIMABLE;
1814 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1815 			XFS_ICI_RECLAIM_TAG);
1816 
1817 	spin_unlock(&ip->i_flags_lock);
1818 	spin_unlock(&pag->pag_ici_lock);
1819 	xfs_perag_put(pag);
1820 }
1821 
1822 /*
1823  * Free all speculative preallocations and possibly even the inode itself.
1824  * This is the last chance to make changes to an otherwise unreferenced file
1825  * before incore reclamation happens.
1826  */
1827 static int
1828 xfs_inodegc_inactivate(
1829 	struct xfs_inode	*ip)
1830 {
1831 	int			error;
1832 
1833 	trace_xfs_inode_inactivating(ip);
1834 	error = xfs_inactive(ip);
1835 	xfs_inodegc_set_reclaimable(ip);
1836 	return error;
1837 
1838 }
1839 
1840 void
1841 xfs_inodegc_worker(
1842 	struct work_struct	*work)
1843 {
1844 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1845 						struct xfs_inodegc, work);
1846 	struct llist_node	*node = llist_del_all(&gc->list);
1847 	struct xfs_inode	*ip, *n;
1848 	struct xfs_mount	*mp = gc->mp;
1849 	unsigned int		nofs_flag;
1850 
1851 	/*
1852 	 * Clear the cpu mask bit and ensure that we have seen the latest
1853 	 * update of the gc structure associated with this CPU. This matches
1854 	 * with the release semantics used when setting the cpumask bit in
1855 	 * xfs_inodegc_queue.
1856 	 */
1857 	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1858 	smp_mb__after_atomic();
1859 
1860 	WRITE_ONCE(gc->items, 0);
1861 
1862 	if (!node)
1863 		return;
1864 
1865 	/*
1866 	 * We can allocate memory here while doing writeback on behalf of
1867 	 * memory reclaim.  To avoid memory allocation deadlocks set the
1868 	 * task-wide nofs context for the following operations.
1869 	 */
1870 	nofs_flag = memalloc_nofs_save();
1871 
1872 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1873 	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1874 
1875 	WRITE_ONCE(gc->shrinker_hits, 0);
1876 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1877 		int	error;
1878 
1879 		xfs_iflags_set(ip, XFS_INACTIVATING);
1880 		error = xfs_inodegc_inactivate(ip);
1881 		if (error && !gc->error)
1882 			gc->error = error;
1883 	}
1884 
1885 	memalloc_nofs_restore(nofs_flag);
1886 }
1887 
1888 /*
1889  * Expedite all pending inodegc work to run immediately. This does not wait for
1890  * completion of the work.
1891  */
1892 void
1893 xfs_inodegc_push(
1894 	struct xfs_mount	*mp)
1895 {
1896 	if (!xfs_is_inodegc_enabled(mp))
1897 		return;
1898 	trace_xfs_inodegc_push(mp, __return_address);
1899 	xfs_inodegc_queue_all(mp);
1900 }
1901 
1902 /*
1903  * Force all currently queued inode inactivation work to run immediately and
1904  * wait for the work to finish.
1905  */
1906 int
1907 xfs_inodegc_flush(
1908 	struct xfs_mount	*mp)
1909 {
1910 	xfs_inodegc_push(mp);
1911 	trace_xfs_inodegc_flush(mp, __return_address);
1912 	return xfs_inodegc_wait_all(mp);
1913 }
1914 
1915 /*
1916  * Flush all the pending work and then disable the inode inactivation background
1917  * workers and wait for them to stop.  Caller must hold sb->s_umount to
1918  * coordinate changes in the inodegc_enabled state.
1919  */
1920 void
1921 xfs_inodegc_stop(
1922 	struct xfs_mount	*mp)
1923 {
1924 	bool			rerun;
1925 
1926 	if (!xfs_clear_inodegc_enabled(mp))
1927 		return;
1928 
1929 	/*
1930 	 * Drain all pending inodegc work, including inodes that could be
1931 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1932 	 * threads that sample the inodegc state just prior to us clearing it.
1933 	 * The inodegc flag state prevents new threads from queuing more
1934 	 * inodes, so we queue pending work items and flush the workqueue until
1935 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1936 	 * here because it does not allow other unserialized mechanisms to
1937 	 * reschedule inodegc work while this draining is in progress.
1938 	 */
1939 	xfs_inodegc_queue_all(mp);
1940 	do {
1941 		flush_workqueue(mp->m_inodegc_wq);
1942 		rerun = xfs_inodegc_queue_all(mp);
1943 	} while (rerun);
1944 
1945 	trace_xfs_inodegc_stop(mp, __return_address);
1946 }
1947 
1948 /*
1949  * Enable the inode inactivation background workers and schedule deferred inode
1950  * inactivation work if there is any.  Caller must hold sb->s_umount to
1951  * coordinate changes in the inodegc_enabled state.
1952  */
1953 void
1954 xfs_inodegc_start(
1955 	struct xfs_mount	*mp)
1956 {
1957 	if (xfs_set_inodegc_enabled(mp))
1958 		return;
1959 
1960 	trace_xfs_inodegc_start(mp, __return_address);
1961 	xfs_inodegc_queue_all(mp);
1962 }
1963 
1964 #ifdef CONFIG_XFS_RT
1965 static inline bool
1966 xfs_inodegc_want_queue_rt_file(
1967 	struct xfs_inode	*ip)
1968 {
1969 	struct xfs_mount	*mp = ip->i_mount;
1970 
1971 	if (!XFS_IS_REALTIME_INODE(ip))
1972 		return false;
1973 
1974 	if (__percpu_counter_compare(&mp->m_frextents,
1975 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1976 				XFS_FDBLOCKS_BATCH) < 0)
1977 		return true;
1978 
1979 	return false;
1980 }
1981 #else
1982 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1983 #endif /* CONFIG_XFS_RT */
1984 
1985 /*
1986  * Schedule the inactivation worker when:
1987  *
1988  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1989  *  - There is less than 5% free space left.
1990  *  - Any of the quotas for this inode are near an enforcement limit.
1991  */
1992 static inline bool
1993 xfs_inodegc_want_queue_work(
1994 	struct xfs_inode	*ip,
1995 	unsigned int		items)
1996 {
1997 	struct xfs_mount	*mp = ip->i_mount;
1998 
1999 	if (items > mp->m_ino_geo.inodes_per_cluster)
2000 		return true;
2001 
2002 	if (__percpu_counter_compare(&mp->m_fdblocks,
2003 				mp->m_low_space[XFS_LOWSP_5_PCNT],
2004 				XFS_FDBLOCKS_BATCH) < 0)
2005 		return true;
2006 
2007 	if (xfs_inodegc_want_queue_rt_file(ip))
2008 		return true;
2009 
2010 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2011 		return true;
2012 
2013 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2014 		return true;
2015 
2016 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2017 		return true;
2018 
2019 	return false;
2020 }
2021 
2022 /*
2023  * Upper bound on the number of inodes in each AG that can be queued for
2024  * inactivation at any given time, to avoid monopolizing the workqueue.
2025  */
2026 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2027 
2028 /*
2029  * Make the frontend wait for inactivations when:
2030  *
2031  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2032  *  - The queue depth exceeds the maximum allowable percpu backlog.
2033  *
2034  * Note: If the current thread is running a transaction, we don't ever want to
2035  * wait for other transactions because that could introduce a deadlock.
2036  */
2037 static inline bool
2038 xfs_inodegc_want_flush_work(
2039 	struct xfs_inode	*ip,
2040 	unsigned int		items,
2041 	unsigned int		shrinker_hits)
2042 {
2043 	if (current->journal_info)
2044 		return false;
2045 
2046 	if (shrinker_hits > 0)
2047 		return true;
2048 
2049 	if (items > XFS_INODEGC_MAX_BACKLOG)
2050 		return true;
2051 
2052 	return false;
2053 }
2054 
2055 /*
2056  * Queue a background inactivation worker if there are inodes that need to be
2057  * inactivated and higher level xfs code hasn't disabled the background
2058  * workers.
2059  */
2060 static void
2061 xfs_inodegc_queue(
2062 	struct xfs_inode	*ip)
2063 {
2064 	struct xfs_mount	*mp = ip->i_mount;
2065 	struct xfs_inodegc	*gc;
2066 	int			items;
2067 	unsigned int		shrinker_hits;
2068 	unsigned int		cpu_nr;
2069 	unsigned long		queue_delay = 1;
2070 
2071 	trace_xfs_inode_set_need_inactive(ip);
2072 	spin_lock(&ip->i_flags_lock);
2073 	ip->i_flags |= XFS_NEED_INACTIVE;
2074 	spin_unlock(&ip->i_flags_lock);
2075 
2076 	cpu_nr = get_cpu();
2077 	gc = this_cpu_ptr(mp->m_inodegc);
2078 	llist_add(&ip->i_gclist, &gc->list);
2079 	items = READ_ONCE(gc->items);
2080 	WRITE_ONCE(gc->items, items + 1);
2081 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2082 
2083 	/*
2084 	 * Ensure the list add is always seen by anyone who finds the cpumask
2085 	 * bit set. This effectively gives the cpumask bit set operation
2086 	 * release ordering semantics.
2087 	 */
2088 	smp_mb__before_atomic();
2089 	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2090 		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2091 
2092 	/*
2093 	 * We queue the work while holding the current CPU so that the work
2094 	 * is scheduled to run on this CPU.
2095 	 */
2096 	if (!xfs_is_inodegc_enabled(mp)) {
2097 		put_cpu();
2098 		return;
2099 	}
2100 
2101 	if (xfs_inodegc_want_queue_work(ip, items))
2102 		queue_delay = 0;
2103 
2104 	trace_xfs_inodegc_queue(mp, __return_address);
2105 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2106 			queue_delay);
2107 	put_cpu();
2108 
2109 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2110 		trace_xfs_inodegc_throttle(mp, __return_address);
2111 		flush_delayed_work(&gc->work);
2112 	}
2113 }
2114 
2115 /*
2116  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2117  * lookups on the radix tree, this inode flag can go away.
2118  *
2119  * We always use background reclaim here because even if the inode is clean, it
2120  * still may be under IO and hence we have wait for IO completion to occur
2121  * before we can reclaim the inode. The background reclaim path handles this
2122  * more efficiently than we can here, so simply let background reclaim tear down
2123  * all inodes.
2124  */
2125 void
2126 xfs_inode_mark_reclaimable(
2127 	struct xfs_inode	*ip)
2128 {
2129 	struct xfs_mount	*mp = ip->i_mount;
2130 	bool			need_inactive;
2131 
2132 	XFS_STATS_INC(mp, vn_reclaim);
2133 
2134 	/*
2135 	 * We should never get here with any of the reclaim flags already set.
2136 	 */
2137 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2138 
2139 	need_inactive = xfs_inode_needs_inactive(ip);
2140 	if (need_inactive) {
2141 		xfs_inodegc_queue(ip);
2142 		return;
2143 	}
2144 
2145 	/* Going straight to reclaim, so drop the dquots. */
2146 	xfs_qm_dqdetach(ip);
2147 	xfs_inodegc_set_reclaimable(ip);
2148 }
2149 
2150 /*
2151  * Register a phony shrinker so that we can run background inodegc sooner when
2152  * there's memory pressure.  Inactivation does not itself free any memory but
2153  * it does make inodes reclaimable, which eventually frees memory.
2154  *
2155  * The count function, seek value, and batch value are crafted to trigger the
2156  * scan function during the second round of scanning.  Hopefully this means
2157  * that we reclaimed enough memory that initiating metadata transactions won't
2158  * make things worse.
2159  */
2160 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2161 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2162 
2163 static unsigned long
2164 xfs_inodegc_shrinker_count(
2165 	struct shrinker		*shrink,
2166 	struct shrink_control	*sc)
2167 {
2168 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2169 						   m_inodegc_shrinker);
2170 	struct xfs_inodegc	*gc;
2171 	int			cpu;
2172 
2173 	if (!xfs_is_inodegc_enabled(mp))
2174 		return 0;
2175 
2176 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2177 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2178 		if (!llist_empty(&gc->list))
2179 			return XFS_INODEGC_SHRINKER_COUNT;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 static unsigned long
2186 xfs_inodegc_shrinker_scan(
2187 	struct shrinker		*shrink,
2188 	struct shrink_control	*sc)
2189 {
2190 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2191 						   m_inodegc_shrinker);
2192 	struct xfs_inodegc	*gc;
2193 	int			cpu;
2194 	bool			no_items = true;
2195 
2196 	if (!xfs_is_inodegc_enabled(mp))
2197 		return SHRINK_STOP;
2198 
2199 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2200 
2201 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2202 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2203 		if (!llist_empty(&gc->list)) {
2204 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2205 
2206 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2207 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2208 			no_items = false;
2209 		}
2210 	}
2211 
2212 	/*
2213 	 * If there are no inodes to inactivate, we don't want the shrinker
2214 	 * to think there's deferred work to call us back about.
2215 	 */
2216 	if (no_items)
2217 		return LONG_MAX;
2218 
2219 	return SHRINK_STOP;
2220 }
2221 
2222 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2223 int
2224 xfs_inodegc_register_shrinker(
2225 	struct xfs_mount	*mp)
2226 {
2227 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2228 
2229 	shrink->count_objects = xfs_inodegc_shrinker_count;
2230 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2231 	shrink->seeks = 0;
2232 	shrink->flags = SHRINKER_NONSLAB;
2233 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2234 
2235 	return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2236 }
2237