1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_inum.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_error.h" 29 #include "xfs_trans.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_quota.h" 33 #include "xfs_trace.h" 34 #include "xfs_icache.h" 35 #include "xfs_bmap_util.h" 36 #include "xfs_quota.h" 37 #include "xfs_dquot_item.h" 38 #include "xfs_dquot.h" 39 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 43 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 44 struct xfs_perag *pag, struct xfs_inode *ip); 45 46 /* 47 * Allocate and initialise an xfs_inode. 48 */ 49 struct xfs_inode * 50 xfs_inode_alloc( 51 struct xfs_mount *mp, 52 xfs_ino_t ino) 53 { 54 struct xfs_inode *ip; 55 56 /* 57 * if this didn't occur in transactions, we could use 58 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 59 * code up to do this anyway. 60 */ 61 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 62 if (!ip) 63 return NULL; 64 if (inode_init_always(mp->m_super, VFS_I(ip))) { 65 kmem_zone_free(xfs_inode_zone, ip); 66 return NULL; 67 } 68 69 ASSERT(atomic_read(&ip->i_pincount) == 0); 70 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 71 ASSERT(!xfs_isiflocked(ip)); 72 ASSERT(ip->i_ino == 0); 73 74 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 75 76 /* initialise the xfs inode */ 77 ip->i_ino = ino; 78 ip->i_mount = mp; 79 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 80 ip->i_afp = NULL; 81 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 82 ip->i_flags = 0; 83 ip->i_delayed_blks = 0; 84 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 85 86 return ip; 87 } 88 89 STATIC void 90 xfs_inode_free_callback( 91 struct rcu_head *head) 92 { 93 struct inode *inode = container_of(head, struct inode, i_rcu); 94 struct xfs_inode *ip = XFS_I(inode); 95 96 kmem_zone_free(xfs_inode_zone, ip); 97 } 98 99 void 100 xfs_inode_free( 101 struct xfs_inode *ip) 102 { 103 switch (ip->i_d.di_mode & S_IFMT) { 104 case S_IFREG: 105 case S_IFDIR: 106 case S_IFLNK: 107 xfs_idestroy_fork(ip, XFS_DATA_FORK); 108 break; 109 } 110 111 if (ip->i_afp) 112 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 113 114 if (ip->i_itemp) { 115 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 116 xfs_inode_item_destroy(ip); 117 ip->i_itemp = NULL; 118 } 119 120 /* 121 * Because we use RCU freeing we need to ensure the inode always 122 * appears to be reclaimed with an invalid inode number when in the 123 * free state. The ip->i_flags_lock provides the barrier against lookup 124 * races. 125 */ 126 spin_lock(&ip->i_flags_lock); 127 ip->i_flags = XFS_IRECLAIM; 128 ip->i_ino = 0; 129 spin_unlock(&ip->i_flags_lock); 130 131 /* asserts to verify all state is correct here */ 132 ASSERT(atomic_read(&ip->i_pincount) == 0); 133 ASSERT(!xfs_isiflocked(ip)); 134 135 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 136 } 137 138 /* 139 * Check the validity of the inode we just found it the cache 140 */ 141 static int 142 xfs_iget_cache_hit( 143 struct xfs_perag *pag, 144 struct xfs_inode *ip, 145 xfs_ino_t ino, 146 int flags, 147 int lock_flags) __releases(RCU) 148 { 149 struct inode *inode = VFS_I(ip); 150 struct xfs_mount *mp = ip->i_mount; 151 int error; 152 153 /* 154 * check for re-use of an inode within an RCU grace period due to the 155 * radix tree nodes not being updated yet. We monitor for this by 156 * setting the inode number to zero before freeing the inode structure. 157 * If the inode has been reallocated and set up, then the inode number 158 * will not match, so check for that, too. 159 */ 160 spin_lock(&ip->i_flags_lock); 161 if (ip->i_ino != ino) { 162 trace_xfs_iget_skip(ip); 163 XFS_STATS_INC(xs_ig_frecycle); 164 error = -EAGAIN; 165 goto out_error; 166 } 167 168 169 /* 170 * If we are racing with another cache hit that is currently 171 * instantiating this inode or currently recycling it out of 172 * reclaimabe state, wait for the initialisation to complete 173 * before continuing. 174 * 175 * XXX(hch): eventually we should do something equivalent to 176 * wait_on_inode to wait for these flags to be cleared 177 * instead of polling for it. 178 */ 179 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 180 trace_xfs_iget_skip(ip); 181 XFS_STATS_INC(xs_ig_frecycle); 182 error = -EAGAIN; 183 goto out_error; 184 } 185 186 /* 187 * If lookup is racing with unlink return an error immediately. 188 */ 189 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 190 error = -ENOENT; 191 goto out_error; 192 } 193 194 /* 195 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 196 * Need to carefully get it back into useable state. 197 */ 198 if (ip->i_flags & XFS_IRECLAIMABLE) { 199 trace_xfs_iget_reclaim(ip); 200 201 /* 202 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 203 * from stomping over us while we recycle the inode. We can't 204 * clear the radix tree reclaimable tag yet as it requires 205 * pag_ici_lock to be held exclusive. 206 */ 207 ip->i_flags |= XFS_IRECLAIM; 208 209 spin_unlock(&ip->i_flags_lock); 210 rcu_read_unlock(); 211 212 error = inode_init_always(mp->m_super, inode); 213 if (error) { 214 /* 215 * Re-initializing the inode failed, and we are in deep 216 * trouble. Try to re-add it to the reclaim list. 217 */ 218 rcu_read_lock(); 219 spin_lock(&ip->i_flags_lock); 220 221 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 222 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 223 trace_xfs_iget_reclaim_fail(ip); 224 goto out_error; 225 } 226 227 spin_lock(&pag->pag_ici_lock); 228 spin_lock(&ip->i_flags_lock); 229 230 /* 231 * Clear the per-lifetime state in the inode as we are now 232 * effectively a new inode and need to return to the initial 233 * state before reuse occurs. 234 */ 235 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 236 ip->i_flags |= XFS_INEW; 237 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 238 inode->i_state = I_NEW; 239 240 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 241 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 242 243 spin_unlock(&ip->i_flags_lock); 244 spin_unlock(&pag->pag_ici_lock); 245 } else { 246 /* If the VFS inode is being torn down, pause and try again. */ 247 if (!igrab(inode)) { 248 trace_xfs_iget_skip(ip); 249 error = -EAGAIN; 250 goto out_error; 251 } 252 253 /* We've got a live one. */ 254 spin_unlock(&ip->i_flags_lock); 255 rcu_read_unlock(); 256 trace_xfs_iget_hit(ip); 257 } 258 259 if (lock_flags != 0) 260 xfs_ilock(ip, lock_flags); 261 262 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 263 XFS_STATS_INC(xs_ig_found); 264 265 return 0; 266 267 out_error: 268 spin_unlock(&ip->i_flags_lock); 269 rcu_read_unlock(); 270 return error; 271 } 272 273 274 static int 275 xfs_iget_cache_miss( 276 struct xfs_mount *mp, 277 struct xfs_perag *pag, 278 xfs_trans_t *tp, 279 xfs_ino_t ino, 280 struct xfs_inode **ipp, 281 int flags, 282 int lock_flags) 283 { 284 struct xfs_inode *ip; 285 int error; 286 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 287 int iflags; 288 289 ip = xfs_inode_alloc(mp, ino); 290 if (!ip) 291 return -ENOMEM; 292 293 error = xfs_iread(mp, tp, ip, flags); 294 if (error) 295 goto out_destroy; 296 297 trace_xfs_iget_miss(ip); 298 299 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 300 error = -ENOENT; 301 goto out_destroy; 302 } 303 304 /* 305 * Preload the radix tree so we can insert safely under the 306 * write spinlock. Note that we cannot sleep inside the preload 307 * region. Since we can be called from transaction context, don't 308 * recurse into the file system. 309 */ 310 if (radix_tree_preload(GFP_NOFS)) { 311 error = -EAGAIN; 312 goto out_destroy; 313 } 314 315 /* 316 * Because the inode hasn't been added to the radix-tree yet it can't 317 * be found by another thread, so we can do the non-sleeping lock here. 318 */ 319 if (lock_flags) { 320 if (!xfs_ilock_nowait(ip, lock_flags)) 321 BUG(); 322 } 323 324 /* 325 * These values must be set before inserting the inode into the radix 326 * tree as the moment it is inserted a concurrent lookup (allowed by the 327 * RCU locking mechanism) can find it and that lookup must see that this 328 * is an inode currently under construction (i.e. that XFS_INEW is set). 329 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 330 * memory barrier that ensures this detection works correctly at lookup 331 * time. 332 */ 333 iflags = XFS_INEW; 334 if (flags & XFS_IGET_DONTCACHE) 335 iflags |= XFS_IDONTCACHE; 336 ip->i_udquot = NULL; 337 ip->i_gdquot = NULL; 338 ip->i_pdquot = NULL; 339 xfs_iflags_set(ip, iflags); 340 341 /* insert the new inode */ 342 spin_lock(&pag->pag_ici_lock); 343 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 344 if (unlikely(error)) { 345 WARN_ON(error != -EEXIST); 346 XFS_STATS_INC(xs_ig_dup); 347 error = -EAGAIN; 348 goto out_preload_end; 349 } 350 spin_unlock(&pag->pag_ici_lock); 351 radix_tree_preload_end(); 352 353 *ipp = ip; 354 return 0; 355 356 out_preload_end: 357 spin_unlock(&pag->pag_ici_lock); 358 radix_tree_preload_end(); 359 if (lock_flags) 360 xfs_iunlock(ip, lock_flags); 361 out_destroy: 362 __destroy_inode(VFS_I(ip)); 363 xfs_inode_free(ip); 364 return error; 365 } 366 367 /* 368 * Look up an inode by number in the given file system. 369 * The inode is looked up in the cache held in each AG. 370 * If the inode is found in the cache, initialise the vfs inode 371 * if necessary. 372 * 373 * If it is not in core, read it in from the file system's device, 374 * add it to the cache and initialise the vfs inode. 375 * 376 * The inode is locked according to the value of the lock_flags parameter. 377 * This flag parameter indicates how and if the inode's IO lock and inode lock 378 * should be taken. 379 * 380 * mp -- the mount point structure for the current file system. It points 381 * to the inode hash table. 382 * tp -- a pointer to the current transaction if there is one. This is 383 * simply passed through to the xfs_iread() call. 384 * ino -- the number of the inode desired. This is the unique identifier 385 * within the file system for the inode being requested. 386 * lock_flags -- flags indicating how to lock the inode. See the comment 387 * for xfs_ilock() for a list of valid values. 388 */ 389 int 390 xfs_iget( 391 xfs_mount_t *mp, 392 xfs_trans_t *tp, 393 xfs_ino_t ino, 394 uint flags, 395 uint lock_flags, 396 xfs_inode_t **ipp) 397 { 398 xfs_inode_t *ip; 399 int error; 400 xfs_perag_t *pag; 401 xfs_agino_t agino; 402 403 /* 404 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 405 * doesn't get freed while it's being referenced during a 406 * radix tree traversal here. It assumes this function 407 * aqcuires only the ILOCK (and therefore it has no need to 408 * involve the IOLOCK in this synchronization). 409 */ 410 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 411 412 /* reject inode numbers outside existing AGs */ 413 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 414 return -EINVAL; 415 416 /* get the perag structure and ensure that it's inode capable */ 417 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 418 agino = XFS_INO_TO_AGINO(mp, ino); 419 420 again: 421 error = 0; 422 rcu_read_lock(); 423 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 424 425 if (ip) { 426 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 427 if (error) 428 goto out_error_or_again; 429 } else { 430 rcu_read_unlock(); 431 XFS_STATS_INC(xs_ig_missed); 432 433 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 434 flags, lock_flags); 435 if (error) 436 goto out_error_or_again; 437 } 438 xfs_perag_put(pag); 439 440 *ipp = ip; 441 442 /* 443 * If we have a real type for an on-disk inode, we can set ops(&unlock) 444 * now. If it's a new inode being created, xfs_ialloc will handle it. 445 */ 446 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 447 xfs_setup_inode(ip); 448 return 0; 449 450 out_error_or_again: 451 if (error == -EAGAIN) { 452 delay(1); 453 goto again; 454 } 455 xfs_perag_put(pag); 456 return error; 457 } 458 459 /* 460 * The inode lookup is done in batches to keep the amount of lock traffic and 461 * radix tree lookups to a minimum. The batch size is a trade off between 462 * lookup reduction and stack usage. This is in the reclaim path, so we can't 463 * be too greedy. 464 */ 465 #define XFS_LOOKUP_BATCH 32 466 467 STATIC int 468 xfs_inode_ag_walk_grab( 469 struct xfs_inode *ip) 470 { 471 struct inode *inode = VFS_I(ip); 472 473 ASSERT(rcu_read_lock_held()); 474 475 /* 476 * check for stale RCU freed inode 477 * 478 * If the inode has been reallocated, it doesn't matter if it's not in 479 * the AG we are walking - we are walking for writeback, so if it 480 * passes all the "valid inode" checks and is dirty, then we'll write 481 * it back anyway. If it has been reallocated and still being 482 * initialised, the XFS_INEW check below will catch it. 483 */ 484 spin_lock(&ip->i_flags_lock); 485 if (!ip->i_ino) 486 goto out_unlock_noent; 487 488 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 489 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 490 goto out_unlock_noent; 491 spin_unlock(&ip->i_flags_lock); 492 493 /* nothing to sync during shutdown */ 494 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 495 return -EFSCORRUPTED; 496 497 /* If we can't grab the inode, it must on it's way to reclaim. */ 498 if (!igrab(inode)) 499 return -ENOENT; 500 501 /* inode is valid */ 502 return 0; 503 504 out_unlock_noent: 505 spin_unlock(&ip->i_flags_lock); 506 return -ENOENT; 507 } 508 509 STATIC int 510 xfs_inode_ag_walk( 511 struct xfs_mount *mp, 512 struct xfs_perag *pag, 513 int (*execute)(struct xfs_inode *ip, int flags, 514 void *args), 515 int flags, 516 void *args, 517 int tag) 518 { 519 uint32_t first_index; 520 int last_error = 0; 521 int skipped; 522 int done; 523 int nr_found; 524 525 restart: 526 done = 0; 527 skipped = 0; 528 first_index = 0; 529 nr_found = 0; 530 do { 531 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 532 int error = 0; 533 int i; 534 535 rcu_read_lock(); 536 537 if (tag == -1) 538 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 539 (void **)batch, first_index, 540 XFS_LOOKUP_BATCH); 541 else 542 nr_found = radix_tree_gang_lookup_tag( 543 &pag->pag_ici_root, 544 (void **) batch, first_index, 545 XFS_LOOKUP_BATCH, tag); 546 547 if (!nr_found) { 548 rcu_read_unlock(); 549 break; 550 } 551 552 /* 553 * Grab the inodes before we drop the lock. if we found 554 * nothing, nr == 0 and the loop will be skipped. 555 */ 556 for (i = 0; i < nr_found; i++) { 557 struct xfs_inode *ip = batch[i]; 558 559 if (done || xfs_inode_ag_walk_grab(ip)) 560 batch[i] = NULL; 561 562 /* 563 * Update the index for the next lookup. Catch 564 * overflows into the next AG range which can occur if 565 * we have inodes in the last block of the AG and we 566 * are currently pointing to the last inode. 567 * 568 * Because we may see inodes that are from the wrong AG 569 * due to RCU freeing and reallocation, only update the 570 * index if it lies in this AG. It was a race that lead 571 * us to see this inode, so another lookup from the 572 * same index will not find it again. 573 */ 574 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 575 continue; 576 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 577 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 578 done = 1; 579 } 580 581 /* unlock now we've grabbed the inodes. */ 582 rcu_read_unlock(); 583 584 for (i = 0; i < nr_found; i++) { 585 if (!batch[i]) 586 continue; 587 error = execute(batch[i], flags, args); 588 IRELE(batch[i]); 589 if (error == -EAGAIN) { 590 skipped++; 591 continue; 592 } 593 if (error && last_error != -EFSCORRUPTED) 594 last_error = error; 595 } 596 597 /* bail out if the filesystem is corrupted. */ 598 if (error == -EFSCORRUPTED) 599 break; 600 601 cond_resched(); 602 603 } while (nr_found && !done); 604 605 if (skipped) { 606 delay(1); 607 goto restart; 608 } 609 return last_error; 610 } 611 612 /* 613 * Background scanning to trim post-EOF preallocated space. This is queued 614 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 615 */ 616 STATIC void 617 xfs_queue_eofblocks( 618 struct xfs_mount *mp) 619 { 620 rcu_read_lock(); 621 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 622 queue_delayed_work(mp->m_eofblocks_workqueue, 623 &mp->m_eofblocks_work, 624 msecs_to_jiffies(xfs_eofb_secs * 1000)); 625 rcu_read_unlock(); 626 } 627 628 void 629 xfs_eofblocks_worker( 630 struct work_struct *work) 631 { 632 struct xfs_mount *mp = container_of(to_delayed_work(work), 633 struct xfs_mount, m_eofblocks_work); 634 xfs_icache_free_eofblocks(mp, NULL); 635 xfs_queue_eofblocks(mp); 636 } 637 638 int 639 xfs_inode_ag_iterator( 640 struct xfs_mount *mp, 641 int (*execute)(struct xfs_inode *ip, int flags, 642 void *args), 643 int flags, 644 void *args) 645 { 646 struct xfs_perag *pag; 647 int error = 0; 648 int last_error = 0; 649 xfs_agnumber_t ag; 650 651 ag = 0; 652 while ((pag = xfs_perag_get(mp, ag))) { 653 ag = pag->pag_agno + 1; 654 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 655 xfs_perag_put(pag); 656 if (error) { 657 last_error = error; 658 if (error == -EFSCORRUPTED) 659 break; 660 } 661 } 662 return last_error; 663 } 664 665 int 666 xfs_inode_ag_iterator_tag( 667 struct xfs_mount *mp, 668 int (*execute)(struct xfs_inode *ip, int flags, 669 void *args), 670 int flags, 671 void *args, 672 int tag) 673 { 674 struct xfs_perag *pag; 675 int error = 0; 676 int last_error = 0; 677 xfs_agnumber_t ag; 678 679 ag = 0; 680 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 681 ag = pag->pag_agno + 1; 682 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 683 xfs_perag_put(pag); 684 if (error) { 685 last_error = error; 686 if (error == -EFSCORRUPTED) 687 break; 688 } 689 } 690 return last_error; 691 } 692 693 /* 694 * Queue a new inode reclaim pass if there are reclaimable inodes and there 695 * isn't a reclaim pass already in progress. By default it runs every 5s based 696 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 697 * tunable, but that can be done if this method proves to be ineffective or too 698 * aggressive. 699 */ 700 static void 701 xfs_reclaim_work_queue( 702 struct xfs_mount *mp) 703 { 704 705 rcu_read_lock(); 706 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 707 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 708 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 709 } 710 rcu_read_unlock(); 711 } 712 713 /* 714 * This is a fast pass over the inode cache to try to get reclaim moving on as 715 * many inodes as possible in a short period of time. It kicks itself every few 716 * seconds, as well as being kicked by the inode cache shrinker when memory 717 * goes low. It scans as quickly as possible avoiding locked inodes or those 718 * already being flushed, and once done schedules a future pass. 719 */ 720 void 721 xfs_reclaim_worker( 722 struct work_struct *work) 723 { 724 struct xfs_mount *mp = container_of(to_delayed_work(work), 725 struct xfs_mount, m_reclaim_work); 726 727 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 728 xfs_reclaim_work_queue(mp); 729 } 730 731 static void 732 __xfs_inode_set_reclaim_tag( 733 struct xfs_perag *pag, 734 struct xfs_inode *ip) 735 { 736 radix_tree_tag_set(&pag->pag_ici_root, 737 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 738 XFS_ICI_RECLAIM_TAG); 739 740 if (!pag->pag_ici_reclaimable) { 741 /* propagate the reclaim tag up into the perag radix tree */ 742 spin_lock(&ip->i_mount->m_perag_lock); 743 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 744 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 745 XFS_ICI_RECLAIM_TAG); 746 spin_unlock(&ip->i_mount->m_perag_lock); 747 748 /* schedule periodic background inode reclaim */ 749 xfs_reclaim_work_queue(ip->i_mount); 750 751 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 752 -1, _RET_IP_); 753 } 754 pag->pag_ici_reclaimable++; 755 } 756 757 /* 758 * We set the inode flag atomically with the radix tree tag. 759 * Once we get tag lookups on the radix tree, this inode flag 760 * can go away. 761 */ 762 void 763 xfs_inode_set_reclaim_tag( 764 xfs_inode_t *ip) 765 { 766 struct xfs_mount *mp = ip->i_mount; 767 struct xfs_perag *pag; 768 769 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 770 spin_lock(&pag->pag_ici_lock); 771 spin_lock(&ip->i_flags_lock); 772 __xfs_inode_set_reclaim_tag(pag, ip); 773 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 774 spin_unlock(&ip->i_flags_lock); 775 spin_unlock(&pag->pag_ici_lock); 776 xfs_perag_put(pag); 777 } 778 779 STATIC void 780 __xfs_inode_clear_reclaim( 781 xfs_perag_t *pag, 782 xfs_inode_t *ip) 783 { 784 pag->pag_ici_reclaimable--; 785 if (!pag->pag_ici_reclaimable) { 786 /* clear the reclaim tag from the perag radix tree */ 787 spin_lock(&ip->i_mount->m_perag_lock); 788 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 789 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 790 XFS_ICI_RECLAIM_TAG); 791 spin_unlock(&ip->i_mount->m_perag_lock); 792 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 793 -1, _RET_IP_); 794 } 795 } 796 797 STATIC void 798 __xfs_inode_clear_reclaim_tag( 799 xfs_mount_t *mp, 800 xfs_perag_t *pag, 801 xfs_inode_t *ip) 802 { 803 radix_tree_tag_clear(&pag->pag_ici_root, 804 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 805 __xfs_inode_clear_reclaim(pag, ip); 806 } 807 808 /* 809 * Grab the inode for reclaim exclusively. 810 * Return 0 if we grabbed it, non-zero otherwise. 811 */ 812 STATIC int 813 xfs_reclaim_inode_grab( 814 struct xfs_inode *ip, 815 int flags) 816 { 817 ASSERT(rcu_read_lock_held()); 818 819 /* quick check for stale RCU freed inode */ 820 if (!ip->i_ino) 821 return 1; 822 823 /* 824 * If we are asked for non-blocking operation, do unlocked checks to 825 * see if the inode already is being flushed or in reclaim to avoid 826 * lock traffic. 827 */ 828 if ((flags & SYNC_TRYLOCK) && 829 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 830 return 1; 831 832 /* 833 * The radix tree lock here protects a thread in xfs_iget from racing 834 * with us starting reclaim on the inode. Once we have the 835 * XFS_IRECLAIM flag set it will not touch us. 836 * 837 * Due to RCU lookup, we may find inodes that have been freed and only 838 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 839 * aren't candidates for reclaim at all, so we must check the 840 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 841 */ 842 spin_lock(&ip->i_flags_lock); 843 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 844 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 845 /* not a reclaim candidate. */ 846 spin_unlock(&ip->i_flags_lock); 847 return 1; 848 } 849 __xfs_iflags_set(ip, XFS_IRECLAIM); 850 spin_unlock(&ip->i_flags_lock); 851 return 0; 852 } 853 854 /* 855 * Inodes in different states need to be treated differently. The following 856 * table lists the inode states and the reclaim actions necessary: 857 * 858 * inode state iflush ret required action 859 * --------------- ---------- --------------- 860 * bad - reclaim 861 * shutdown EIO unpin and reclaim 862 * clean, unpinned 0 reclaim 863 * stale, unpinned 0 reclaim 864 * clean, pinned(*) 0 requeue 865 * stale, pinned EAGAIN requeue 866 * dirty, async - requeue 867 * dirty, sync 0 reclaim 868 * 869 * (*) dgc: I don't think the clean, pinned state is possible but it gets 870 * handled anyway given the order of checks implemented. 871 * 872 * Also, because we get the flush lock first, we know that any inode that has 873 * been flushed delwri has had the flush completed by the time we check that 874 * the inode is clean. 875 * 876 * Note that because the inode is flushed delayed write by AIL pushing, the 877 * flush lock may already be held here and waiting on it can result in very 878 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 879 * the caller should push the AIL first before trying to reclaim inodes to 880 * minimise the amount of time spent waiting. For background relaim, we only 881 * bother to reclaim clean inodes anyway. 882 * 883 * Hence the order of actions after gaining the locks should be: 884 * bad => reclaim 885 * shutdown => unpin and reclaim 886 * pinned, async => requeue 887 * pinned, sync => unpin 888 * stale => reclaim 889 * clean => reclaim 890 * dirty, async => requeue 891 * dirty, sync => flush, wait and reclaim 892 */ 893 STATIC int 894 xfs_reclaim_inode( 895 struct xfs_inode *ip, 896 struct xfs_perag *pag, 897 int sync_mode) 898 { 899 struct xfs_buf *bp = NULL; 900 int error; 901 902 restart: 903 error = 0; 904 xfs_ilock(ip, XFS_ILOCK_EXCL); 905 if (!xfs_iflock_nowait(ip)) { 906 if (!(sync_mode & SYNC_WAIT)) 907 goto out; 908 xfs_iflock(ip); 909 } 910 911 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 912 xfs_iunpin_wait(ip); 913 xfs_iflush_abort(ip, false); 914 goto reclaim; 915 } 916 if (xfs_ipincount(ip)) { 917 if (!(sync_mode & SYNC_WAIT)) 918 goto out_ifunlock; 919 xfs_iunpin_wait(ip); 920 } 921 if (xfs_iflags_test(ip, XFS_ISTALE)) 922 goto reclaim; 923 if (xfs_inode_clean(ip)) 924 goto reclaim; 925 926 /* 927 * Never flush out dirty data during non-blocking reclaim, as it would 928 * just contend with AIL pushing trying to do the same job. 929 */ 930 if (!(sync_mode & SYNC_WAIT)) 931 goto out_ifunlock; 932 933 /* 934 * Now we have an inode that needs flushing. 935 * 936 * Note that xfs_iflush will never block on the inode buffer lock, as 937 * xfs_ifree_cluster() can lock the inode buffer before it locks the 938 * ip->i_lock, and we are doing the exact opposite here. As a result, 939 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 940 * result in an ABBA deadlock with xfs_ifree_cluster(). 941 * 942 * As xfs_ifree_cluser() must gather all inodes that are active in the 943 * cache to mark them stale, if we hit this case we don't actually want 944 * to do IO here - we want the inode marked stale so we can simply 945 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 946 * inode, back off and try again. Hopefully the next pass through will 947 * see the stale flag set on the inode. 948 */ 949 error = xfs_iflush(ip, &bp); 950 if (error == -EAGAIN) { 951 xfs_iunlock(ip, XFS_ILOCK_EXCL); 952 /* backoff longer than in xfs_ifree_cluster */ 953 delay(2); 954 goto restart; 955 } 956 957 if (!error) { 958 error = xfs_bwrite(bp); 959 xfs_buf_relse(bp); 960 } 961 962 xfs_iflock(ip); 963 reclaim: 964 xfs_ifunlock(ip); 965 xfs_iunlock(ip, XFS_ILOCK_EXCL); 966 967 XFS_STATS_INC(xs_ig_reclaims); 968 /* 969 * Remove the inode from the per-AG radix tree. 970 * 971 * Because radix_tree_delete won't complain even if the item was never 972 * added to the tree assert that it's been there before to catch 973 * problems with the inode life time early on. 974 */ 975 spin_lock(&pag->pag_ici_lock); 976 if (!radix_tree_delete(&pag->pag_ici_root, 977 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 978 ASSERT(0); 979 __xfs_inode_clear_reclaim(pag, ip); 980 spin_unlock(&pag->pag_ici_lock); 981 982 /* 983 * Here we do an (almost) spurious inode lock in order to coordinate 984 * with inode cache radix tree lookups. This is because the lookup 985 * can reference the inodes in the cache without taking references. 986 * 987 * We make that OK here by ensuring that we wait until the inode is 988 * unlocked after the lookup before we go ahead and free it. 989 */ 990 xfs_ilock(ip, XFS_ILOCK_EXCL); 991 xfs_qm_dqdetach(ip); 992 xfs_iunlock(ip, XFS_ILOCK_EXCL); 993 994 xfs_inode_free(ip); 995 return error; 996 997 out_ifunlock: 998 xfs_ifunlock(ip); 999 out: 1000 xfs_iflags_clear(ip, XFS_IRECLAIM); 1001 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1002 /* 1003 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1004 * a short while. However, this just burns CPU time scanning the tree 1005 * waiting for IO to complete and the reclaim work never goes back to 1006 * the idle state. Instead, return 0 to let the next scheduled 1007 * background reclaim attempt to reclaim the inode again. 1008 */ 1009 return 0; 1010 } 1011 1012 /* 1013 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1014 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1015 * then a shut down during filesystem unmount reclaim walk leak all the 1016 * unreclaimed inodes. 1017 */ 1018 STATIC int 1019 xfs_reclaim_inodes_ag( 1020 struct xfs_mount *mp, 1021 int flags, 1022 int *nr_to_scan) 1023 { 1024 struct xfs_perag *pag; 1025 int error = 0; 1026 int last_error = 0; 1027 xfs_agnumber_t ag; 1028 int trylock = flags & SYNC_TRYLOCK; 1029 int skipped; 1030 1031 restart: 1032 ag = 0; 1033 skipped = 0; 1034 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1035 unsigned long first_index = 0; 1036 int done = 0; 1037 int nr_found = 0; 1038 1039 ag = pag->pag_agno + 1; 1040 1041 if (trylock) { 1042 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1043 skipped++; 1044 xfs_perag_put(pag); 1045 continue; 1046 } 1047 first_index = pag->pag_ici_reclaim_cursor; 1048 } else 1049 mutex_lock(&pag->pag_ici_reclaim_lock); 1050 1051 do { 1052 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1053 int i; 1054 1055 rcu_read_lock(); 1056 nr_found = radix_tree_gang_lookup_tag( 1057 &pag->pag_ici_root, 1058 (void **)batch, first_index, 1059 XFS_LOOKUP_BATCH, 1060 XFS_ICI_RECLAIM_TAG); 1061 if (!nr_found) { 1062 done = 1; 1063 rcu_read_unlock(); 1064 break; 1065 } 1066 1067 /* 1068 * Grab the inodes before we drop the lock. if we found 1069 * nothing, nr == 0 and the loop will be skipped. 1070 */ 1071 for (i = 0; i < nr_found; i++) { 1072 struct xfs_inode *ip = batch[i]; 1073 1074 if (done || xfs_reclaim_inode_grab(ip, flags)) 1075 batch[i] = NULL; 1076 1077 /* 1078 * Update the index for the next lookup. Catch 1079 * overflows into the next AG range which can 1080 * occur if we have inodes in the last block of 1081 * the AG and we are currently pointing to the 1082 * last inode. 1083 * 1084 * Because we may see inodes that are from the 1085 * wrong AG due to RCU freeing and 1086 * reallocation, only update the index if it 1087 * lies in this AG. It was a race that lead us 1088 * to see this inode, so another lookup from 1089 * the same index will not find it again. 1090 */ 1091 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1092 pag->pag_agno) 1093 continue; 1094 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1095 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1096 done = 1; 1097 } 1098 1099 /* unlock now we've grabbed the inodes. */ 1100 rcu_read_unlock(); 1101 1102 for (i = 0; i < nr_found; i++) { 1103 if (!batch[i]) 1104 continue; 1105 error = xfs_reclaim_inode(batch[i], pag, flags); 1106 if (error && last_error != -EFSCORRUPTED) 1107 last_error = error; 1108 } 1109 1110 *nr_to_scan -= XFS_LOOKUP_BATCH; 1111 1112 cond_resched(); 1113 1114 } while (nr_found && !done && *nr_to_scan > 0); 1115 1116 if (trylock && !done) 1117 pag->pag_ici_reclaim_cursor = first_index; 1118 else 1119 pag->pag_ici_reclaim_cursor = 0; 1120 mutex_unlock(&pag->pag_ici_reclaim_lock); 1121 xfs_perag_put(pag); 1122 } 1123 1124 /* 1125 * if we skipped any AG, and we still have scan count remaining, do 1126 * another pass this time using blocking reclaim semantics (i.e 1127 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1128 * ensure that when we get more reclaimers than AGs we block rather 1129 * than spin trying to execute reclaim. 1130 */ 1131 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1132 trylock = 0; 1133 goto restart; 1134 } 1135 return last_error; 1136 } 1137 1138 int 1139 xfs_reclaim_inodes( 1140 xfs_mount_t *mp, 1141 int mode) 1142 { 1143 int nr_to_scan = INT_MAX; 1144 1145 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1146 } 1147 1148 /* 1149 * Scan a certain number of inodes for reclaim. 1150 * 1151 * When called we make sure that there is a background (fast) inode reclaim in 1152 * progress, while we will throttle the speed of reclaim via doing synchronous 1153 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1154 * them to be cleaned, which we hope will not be very long due to the 1155 * background walker having already kicked the IO off on those dirty inodes. 1156 */ 1157 long 1158 xfs_reclaim_inodes_nr( 1159 struct xfs_mount *mp, 1160 int nr_to_scan) 1161 { 1162 /* kick background reclaimer and push the AIL */ 1163 xfs_reclaim_work_queue(mp); 1164 xfs_ail_push_all(mp->m_ail); 1165 1166 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1167 } 1168 1169 /* 1170 * Return the number of reclaimable inodes in the filesystem for 1171 * the shrinker to determine how much to reclaim. 1172 */ 1173 int 1174 xfs_reclaim_inodes_count( 1175 struct xfs_mount *mp) 1176 { 1177 struct xfs_perag *pag; 1178 xfs_agnumber_t ag = 0; 1179 int reclaimable = 0; 1180 1181 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1182 ag = pag->pag_agno + 1; 1183 reclaimable += pag->pag_ici_reclaimable; 1184 xfs_perag_put(pag); 1185 } 1186 return reclaimable; 1187 } 1188 1189 STATIC int 1190 xfs_inode_match_id( 1191 struct xfs_inode *ip, 1192 struct xfs_eofblocks *eofb) 1193 { 1194 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1195 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1196 return 0; 1197 1198 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1199 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1200 return 0; 1201 1202 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1203 xfs_get_projid(ip) != eofb->eof_prid) 1204 return 0; 1205 1206 return 1; 1207 } 1208 1209 /* 1210 * A union-based inode filtering algorithm. Process the inode if any of the 1211 * criteria match. This is for global/internal scans only. 1212 */ 1213 STATIC int 1214 xfs_inode_match_id_union( 1215 struct xfs_inode *ip, 1216 struct xfs_eofblocks *eofb) 1217 { 1218 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1219 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1220 return 1; 1221 1222 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1223 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1224 return 1; 1225 1226 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1227 xfs_get_projid(ip) == eofb->eof_prid) 1228 return 1; 1229 1230 return 0; 1231 } 1232 1233 STATIC int 1234 xfs_inode_free_eofblocks( 1235 struct xfs_inode *ip, 1236 int flags, 1237 void *args) 1238 { 1239 int ret; 1240 struct xfs_eofblocks *eofb = args; 1241 bool need_iolock = true; 1242 int match; 1243 1244 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0)); 1245 1246 if (!xfs_can_free_eofblocks(ip, false)) { 1247 /* inode could be preallocated or append-only */ 1248 trace_xfs_inode_free_eofblocks_invalid(ip); 1249 xfs_inode_clear_eofblocks_tag(ip); 1250 return 0; 1251 } 1252 1253 /* 1254 * If the mapping is dirty the operation can block and wait for some 1255 * time. Unless we are waiting, skip it. 1256 */ 1257 if (!(flags & SYNC_WAIT) && 1258 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1259 return 0; 1260 1261 if (eofb) { 1262 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1263 match = xfs_inode_match_id_union(ip, eofb); 1264 else 1265 match = xfs_inode_match_id(ip, eofb); 1266 if (!match) 1267 return 0; 1268 1269 /* skip the inode if the file size is too small */ 1270 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1271 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1272 return 0; 1273 1274 /* 1275 * A scan owner implies we already hold the iolock. Skip it in 1276 * xfs_free_eofblocks() to avoid deadlock. This also eliminates 1277 * the possibility of EAGAIN being returned. 1278 */ 1279 if (eofb->eof_scan_owner == ip->i_ino) 1280 need_iolock = false; 1281 } 1282 1283 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock); 1284 1285 /* don't revisit the inode if we're not waiting */ 1286 if (ret == -EAGAIN && !(flags & SYNC_WAIT)) 1287 ret = 0; 1288 1289 return ret; 1290 } 1291 1292 int 1293 xfs_icache_free_eofblocks( 1294 struct xfs_mount *mp, 1295 struct xfs_eofblocks *eofb) 1296 { 1297 int flags = SYNC_TRYLOCK; 1298 1299 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1300 flags = SYNC_WAIT; 1301 1302 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, 1303 eofb, XFS_ICI_EOFBLOCKS_TAG); 1304 } 1305 1306 /* 1307 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1308 * multiple quotas, we don't know exactly which quota caused an allocation 1309 * failure. We make a best effort by including each quota under low free space 1310 * conditions (less than 1% free space) in the scan. 1311 */ 1312 int 1313 xfs_inode_free_quota_eofblocks( 1314 struct xfs_inode *ip) 1315 { 1316 int scan = 0; 1317 struct xfs_eofblocks eofb = {0}; 1318 struct xfs_dquot *dq; 1319 1320 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1321 1322 /* 1323 * Set the scan owner to avoid a potential livelock. Otherwise, the scan 1324 * can repeatedly trylock on the inode we're currently processing. We 1325 * run a sync scan to increase effectiveness and use the union filter to 1326 * cover all applicable quotas in a single scan. 1327 */ 1328 eofb.eof_scan_owner = ip->i_ino; 1329 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1330 1331 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1332 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1333 if (dq && xfs_dquot_lowsp(dq)) { 1334 eofb.eof_uid = VFS_I(ip)->i_uid; 1335 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1336 scan = 1; 1337 } 1338 } 1339 1340 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1341 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1342 if (dq && xfs_dquot_lowsp(dq)) { 1343 eofb.eof_gid = VFS_I(ip)->i_gid; 1344 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1345 scan = 1; 1346 } 1347 } 1348 1349 if (scan) 1350 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 1351 1352 return scan; 1353 } 1354 1355 void 1356 xfs_inode_set_eofblocks_tag( 1357 xfs_inode_t *ip) 1358 { 1359 struct xfs_mount *mp = ip->i_mount; 1360 struct xfs_perag *pag; 1361 int tagged; 1362 1363 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1364 spin_lock(&pag->pag_ici_lock); 1365 trace_xfs_inode_set_eofblocks_tag(ip); 1366 1367 tagged = radix_tree_tagged(&pag->pag_ici_root, 1368 XFS_ICI_EOFBLOCKS_TAG); 1369 radix_tree_tag_set(&pag->pag_ici_root, 1370 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1371 XFS_ICI_EOFBLOCKS_TAG); 1372 if (!tagged) { 1373 /* propagate the eofblocks tag up into the perag radix tree */ 1374 spin_lock(&ip->i_mount->m_perag_lock); 1375 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1376 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1377 XFS_ICI_EOFBLOCKS_TAG); 1378 spin_unlock(&ip->i_mount->m_perag_lock); 1379 1380 /* kick off background trimming */ 1381 xfs_queue_eofblocks(ip->i_mount); 1382 1383 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, 1384 -1, _RET_IP_); 1385 } 1386 1387 spin_unlock(&pag->pag_ici_lock); 1388 xfs_perag_put(pag); 1389 } 1390 1391 void 1392 xfs_inode_clear_eofblocks_tag( 1393 xfs_inode_t *ip) 1394 { 1395 struct xfs_mount *mp = ip->i_mount; 1396 struct xfs_perag *pag; 1397 1398 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1399 spin_lock(&pag->pag_ici_lock); 1400 trace_xfs_inode_clear_eofblocks_tag(ip); 1401 1402 radix_tree_tag_clear(&pag->pag_ici_root, 1403 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1404 XFS_ICI_EOFBLOCKS_TAG); 1405 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { 1406 /* clear the eofblocks tag from the perag radix tree */ 1407 spin_lock(&ip->i_mount->m_perag_lock); 1408 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1409 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1410 XFS_ICI_EOFBLOCKS_TAG); 1411 spin_unlock(&ip->i_mount->m_perag_lock); 1412 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, 1413 -1, _RET_IP_); 1414 } 1415 1416 spin_unlock(&pag->pag_ici_lock); 1417 xfs_perag_put(pag); 1418 } 1419 1420