xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 23c2b932)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
39 
40 /*
41  * Allocate and initialise an xfs_inode.
42  */
43 struct xfs_inode *
44 xfs_inode_alloc(
45 	struct xfs_mount	*mp,
46 	xfs_ino_t		ino)
47 {
48 	struct xfs_inode	*ip;
49 
50 	/*
51 	 * if this didn't occur in transactions, we could use
52 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
53 	 * code up to do this anyway.
54 	 */
55 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
56 	if (!ip)
57 		return NULL;
58 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
59 		kmem_zone_free(xfs_inode_zone, ip);
60 		return NULL;
61 	}
62 
63 	/* VFS doesn't initialise i_mode! */
64 	VFS_I(ip)->i_mode = 0;
65 
66 	XFS_STATS_INC(mp, vn_active);
67 	ASSERT(atomic_read(&ip->i_pincount) == 0);
68 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
69 	ASSERT(!xfs_isiflocked(ip));
70 	ASSERT(ip->i_ino == 0);
71 
72 	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
73 
74 	/* initialise the xfs inode */
75 	ip->i_ino = ino;
76 	ip->i_mount = mp;
77 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
78 	ip->i_afp = NULL;
79 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
80 	ip->i_flags = 0;
81 	ip->i_delayed_blks = 0;
82 	memset(&ip->i_d, 0, sizeof(ip->i_d));
83 
84 	return ip;
85 }
86 
87 STATIC void
88 xfs_inode_free_callback(
89 	struct rcu_head		*head)
90 {
91 	struct inode		*inode = container_of(head, struct inode, i_rcu);
92 	struct xfs_inode	*ip = XFS_I(inode);
93 
94 	switch (VFS_I(ip)->i_mode & S_IFMT) {
95 	case S_IFREG:
96 	case S_IFDIR:
97 	case S_IFLNK:
98 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
99 		break;
100 	}
101 
102 	if (ip->i_afp)
103 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
104 
105 	if (ip->i_itemp) {
106 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
107 		xfs_inode_item_destroy(ip);
108 		ip->i_itemp = NULL;
109 	}
110 
111 	kmem_zone_free(xfs_inode_zone, ip);
112 }
113 
114 static void
115 __xfs_inode_free(
116 	struct xfs_inode	*ip)
117 {
118 	/* asserts to verify all state is correct here */
119 	ASSERT(atomic_read(&ip->i_pincount) == 0);
120 	ASSERT(!xfs_isiflocked(ip));
121 	XFS_STATS_DEC(ip->i_mount, vn_active);
122 
123 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
124 }
125 
126 void
127 xfs_inode_free(
128 	struct xfs_inode	*ip)
129 {
130 	/*
131 	 * Because we use RCU freeing we need to ensure the inode always
132 	 * appears to be reclaimed with an invalid inode number when in the
133 	 * free state. The ip->i_flags_lock provides the barrier against lookup
134 	 * races.
135 	 */
136 	spin_lock(&ip->i_flags_lock);
137 	ip->i_flags = XFS_IRECLAIM;
138 	ip->i_ino = 0;
139 	spin_unlock(&ip->i_flags_lock);
140 
141 	__xfs_inode_free(ip);
142 }
143 
144 /*
145  * Queue a new inode reclaim pass if there are reclaimable inodes and there
146  * isn't a reclaim pass already in progress. By default it runs every 5s based
147  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
148  * tunable, but that can be done if this method proves to be ineffective or too
149  * aggressive.
150  */
151 static void
152 xfs_reclaim_work_queue(
153 	struct xfs_mount        *mp)
154 {
155 
156 	rcu_read_lock();
157 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
158 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
159 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
160 	}
161 	rcu_read_unlock();
162 }
163 
164 /*
165  * This is a fast pass over the inode cache to try to get reclaim moving on as
166  * many inodes as possible in a short period of time. It kicks itself every few
167  * seconds, as well as being kicked by the inode cache shrinker when memory
168  * goes low. It scans as quickly as possible avoiding locked inodes or those
169  * already being flushed, and once done schedules a future pass.
170  */
171 void
172 xfs_reclaim_worker(
173 	struct work_struct *work)
174 {
175 	struct xfs_mount *mp = container_of(to_delayed_work(work),
176 					struct xfs_mount, m_reclaim_work);
177 
178 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
179 	xfs_reclaim_work_queue(mp);
180 }
181 
182 static void
183 xfs_perag_set_reclaim_tag(
184 	struct xfs_perag	*pag)
185 {
186 	struct xfs_mount	*mp = pag->pag_mount;
187 
188 	ASSERT(spin_is_locked(&pag->pag_ici_lock));
189 	if (pag->pag_ici_reclaimable++)
190 		return;
191 
192 	/* propagate the reclaim tag up into the perag radix tree */
193 	spin_lock(&mp->m_perag_lock);
194 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
195 			   XFS_ICI_RECLAIM_TAG);
196 	spin_unlock(&mp->m_perag_lock);
197 
198 	/* schedule periodic background inode reclaim */
199 	xfs_reclaim_work_queue(mp);
200 
201 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
202 }
203 
204 static void
205 xfs_perag_clear_reclaim_tag(
206 	struct xfs_perag	*pag)
207 {
208 	struct xfs_mount	*mp = pag->pag_mount;
209 
210 	ASSERT(spin_is_locked(&pag->pag_ici_lock));
211 	if (--pag->pag_ici_reclaimable)
212 		return;
213 
214 	/* clear the reclaim tag from the perag radix tree */
215 	spin_lock(&mp->m_perag_lock);
216 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
217 			     XFS_ICI_RECLAIM_TAG);
218 	spin_unlock(&mp->m_perag_lock);
219 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
220 }
221 
222 
223 /*
224  * We set the inode flag atomically with the radix tree tag.
225  * Once we get tag lookups on the radix tree, this inode flag
226  * can go away.
227  */
228 void
229 xfs_inode_set_reclaim_tag(
230 	struct xfs_inode	*ip)
231 {
232 	struct xfs_mount	*mp = ip->i_mount;
233 	struct xfs_perag	*pag;
234 
235 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
236 	spin_lock(&pag->pag_ici_lock);
237 	spin_lock(&ip->i_flags_lock);
238 
239 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
240 			   XFS_ICI_RECLAIM_TAG);
241 	xfs_perag_set_reclaim_tag(pag);
242 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
243 
244 	spin_unlock(&ip->i_flags_lock);
245 	spin_unlock(&pag->pag_ici_lock);
246 	xfs_perag_put(pag);
247 }
248 
249 STATIC void
250 xfs_inode_clear_reclaim_tag(
251 	struct xfs_perag	*pag,
252 	xfs_ino_t		ino)
253 {
254 	radix_tree_tag_clear(&pag->pag_ici_root,
255 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
256 			     XFS_ICI_RECLAIM_TAG);
257 	xfs_perag_clear_reclaim_tag(pag);
258 }
259 
260 /*
261  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
262  * part of the structure. This is made more complex by the fact we store
263  * information about the on-disk values in the VFS inode and so we can't just
264  * overwrite the values unconditionally. Hence we save the parameters we
265  * need to retain across reinitialisation, and rewrite them into the VFS inode
266  * after reinitialisation even if it fails.
267  */
268 static int
269 xfs_reinit_inode(
270 	struct xfs_mount	*mp,
271 	struct inode		*inode)
272 {
273 	int		error;
274 	uint32_t	nlink = inode->i_nlink;
275 	uint32_t	generation = inode->i_generation;
276 	uint64_t	version = inode->i_version;
277 	umode_t		mode = inode->i_mode;
278 
279 	error = inode_init_always(mp->m_super, inode);
280 
281 	set_nlink(inode, nlink);
282 	inode->i_generation = generation;
283 	inode->i_version = version;
284 	inode->i_mode = mode;
285 	return error;
286 }
287 
288 /*
289  * Check the validity of the inode we just found it the cache
290  */
291 static int
292 xfs_iget_cache_hit(
293 	struct xfs_perag	*pag,
294 	struct xfs_inode	*ip,
295 	xfs_ino_t		ino,
296 	int			flags,
297 	int			lock_flags) __releases(RCU)
298 {
299 	struct inode		*inode = VFS_I(ip);
300 	struct xfs_mount	*mp = ip->i_mount;
301 	int			error;
302 
303 	/*
304 	 * check for re-use of an inode within an RCU grace period due to the
305 	 * radix tree nodes not being updated yet. We monitor for this by
306 	 * setting the inode number to zero before freeing the inode structure.
307 	 * If the inode has been reallocated and set up, then the inode number
308 	 * will not match, so check for that, too.
309 	 */
310 	spin_lock(&ip->i_flags_lock);
311 	if (ip->i_ino != ino) {
312 		trace_xfs_iget_skip(ip);
313 		XFS_STATS_INC(mp, xs_ig_frecycle);
314 		error = -EAGAIN;
315 		goto out_error;
316 	}
317 
318 
319 	/*
320 	 * If we are racing with another cache hit that is currently
321 	 * instantiating this inode or currently recycling it out of
322 	 * reclaimabe state, wait for the initialisation to complete
323 	 * before continuing.
324 	 *
325 	 * XXX(hch): eventually we should do something equivalent to
326 	 *	     wait_on_inode to wait for these flags to be cleared
327 	 *	     instead of polling for it.
328 	 */
329 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
330 		trace_xfs_iget_skip(ip);
331 		XFS_STATS_INC(mp, xs_ig_frecycle);
332 		error = -EAGAIN;
333 		goto out_error;
334 	}
335 
336 	/*
337 	 * If lookup is racing with unlink return an error immediately.
338 	 */
339 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
340 		error = -ENOENT;
341 		goto out_error;
342 	}
343 
344 	/*
345 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
346 	 * Need to carefully get it back into useable state.
347 	 */
348 	if (ip->i_flags & XFS_IRECLAIMABLE) {
349 		trace_xfs_iget_reclaim(ip);
350 
351 		/*
352 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
353 		 * from stomping over us while we recycle the inode.  We can't
354 		 * clear the radix tree reclaimable tag yet as it requires
355 		 * pag_ici_lock to be held exclusive.
356 		 */
357 		ip->i_flags |= XFS_IRECLAIM;
358 
359 		spin_unlock(&ip->i_flags_lock);
360 		rcu_read_unlock();
361 
362 		error = xfs_reinit_inode(mp, inode);
363 		if (error) {
364 			/*
365 			 * Re-initializing the inode failed, and we are in deep
366 			 * trouble.  Try to re-add it to the reclaim list.
367 			 */
368 			rcu_read_lock();
369 			spin_lock(&ip->i_flags_lock);
370 
371 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
372 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
373 			trace_xfs_iget_reclaim_fail(ip);
374 			goto out_error;
375 		}
376 
377 		spin_lock(&pag->pag_ici_lock);
378 		spin_lock(&ip->i_flags_lock);
379 
380 		/*
381 		 * Clear the per-lifetime state in the inode as we are now
382 		 * effectively a new inode and need to return to the initial
383 		 * state before reuse occurs.
384 		 */
385 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
386 		ip->i_flags |= XFS_INEW;
387 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
388 		inode->i_state = I_NEW;
389 
390 		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
391 		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
392 
393 		spin_unlock(&ip->i_flags_lock);
394 		spin_unlock(&pag->pag_ici_lock);
395 	} else {
396 		/* If the VFS inode is being torn down, pause and try again. */
397 		if (!igrab(inode)) {
398 			trace_xfs_iget_skip(ip);
399 			error = -EAGAIN;
400 			goto out_error;
401 		}
402 
403 		/* We've got a live one. */
404 		spin_unlock(&ip->i_flags_lock);
405 		rcu_read_unlock();
406 		trace_xfs_iget_hit(ip);
407 	}
408 
409 	if (lock_flags != 0)
410 		xfs_ilock(ip, lock_flags);
411 
412 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
413 	XFS_STATS_INC(mp, xs_ig_found);
414 
415 	return 0;
416 
417 out_error:
418 	spin_unlock(&ip->i_flags_lock);
419 	rcu_read_unlock();
420 	return error;
421 }
422 
423 
424 static int
425 xfs_iget_cache_miss(
426 	struct xfs_mount	*mp,
427 	struct xfs_perag	*pag,
428 	xfs_trans_t		*tp,
429 	xfs_ino_t		ino,
430 	struct xfs_inode	**ipp,
431 	int			flags,
432 	int			lock_flags)
433 {
434 	struct xfs_inode	*ip;
435 	int			error;
436 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
437 	int			iflags;
438 
439 	ip = xfs_inode_alloc(mp, ino);
440 	if (!ip)
441 		return -ENOMEM;
442 
443 	error = xfs_iread(mp, tp, ip, flags);
444 	if (error)
445 		goto out_destroy;
446 
447 	trace_xfs_iget_miss(ip);
448 
449 	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
450 		error = -ENOENT;
451 		goto out_destroy;
452 	}
453 
454 	/*
455 	 * Preload the radix tree so we can insert safely under the
456 	 * write spinlock. Note that we cannot sleep inside the preload
457 	 * region. Since we can be called from transaction context, don't
458 	 * recurse into the file system.
459 	 */
460 	if (radix_tree_preload(GFP_NOFS)) {
461 		error = -EAGAIN;
462 		goto out_destroy;
463 	}
464 
465 	/*
466 	 * Because the inode hasn't been added to the radix-tree yet it can't
467 	 * be found by another thread, so we can do the non-sleeping lock here.
468 	 */
469 	if (lock_flags) {
470 		if (!xfs_ilock_nowait(ip, lock_flags))
471 			BUG();
472 	}
473 
474 	/*
475 	 * These values must be set before inserting the inode into the radix
476 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
477 	 * RCU locking mechanism) can find it and that lookup must see that this
478 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
479 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
480 	 * memory barrier that ensures this detection works correctly at lookup
481 	 * time.
482 	 */
483 	iflags = XFS_INEW;
484 	if (flags & XFS_IGET_DONTCACHE)
485 		iflags |= XFS_IDONTCACHE;
486 	ip->i_udquot = NULL;
487 	ip->i_gdquot = NULL;
488 	ip->i_pdquot = NULL;
489 	xfs_iflags_set(ip, iflags);
490 
491 	/* insert the new inode */
492 	spin_lock(&pag->pag_ici_lock);
493 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
494 	if (unlikely(error)) {
495 		WARN_ON(error != -EEXIST);
496 		XFS_STATS_INC(mp, xs_ig_dup);
497 		error = -EAGAIN;
498 		goto out_preload_end;
499 	}
500 	spin_unlock(&pag->pag_ici_lock);
501 	radix_tree_preload_end();
502 
503 	*ipp = ip;
504 	return 0;
505 
506 out_preload_end:
507 	spin_unlock(&pag->pag_ici_lock);
508 	radix_tree_preload_end();
509 	if (lock_flags)
510 		xfs_iunlock(ip, lock_flags);
511 out_destroy:
512 	__destroy_inode(VFS_I(ip));
513 	xfs_inode_free(ip);
514 	return error;
515 }
516 
517 /*
518  * Look up an inode by number in the given file system.
519  * The inode is looked up in the cache held in each AG.
520  * If the inode is found in the cache, initialise the vfs inode
521  * if necessary.
522  *
523  * If it is not in core, read it in from the file system's device,
524  * add it to the cache and initialise the vfs inode.
525  *
526  * The inode is locked according to the value of the lock_flags parameter.
527  * This flag parameter indicates how and if the inode's IO lock and inode lock
528  * should be taken.
529  *
530  * mp -- the mount point structure for the current file system.  It points
531  *       to the inode hash table.
532  * tp -- a pointer to the current transaction if there is one.  This is
533  *       simply passed through to the xfs_iread() call.
534  * ino -- the number of the inode desired.  This is the unique identifier
535  *        within the file system for the inode being requested.
536  * lock_flags -- flags indicating how to lock the inode.  See the comment
537  *		 for xfs_ilock() for a list of valid values.
538  */
539 int
540 xfs_iget(
541 	xfs_mount_t	*mp,
542 	xfs_trans_t	*tp,
543 	xfs_ino_t	ino,
544 	uint		flags,
545 	uint		lock_flags,
546 	xfs_inode_t	**ipp)
547 {
548 	xfs_inode_t	*ip;
549 	int		error;
550 	xfs_perag_t	*pag;
551 	xfs_agino_t	agino;
552 
553 	/*
554 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
555 	 * doesn't get freed while it's being referenced during a
556 	 * radix tree traversal here.  It assumes this function
557 	 * aqcuires only the ILOCK (and therefore it has no need to
558 	 * involve the IOLOCK in this synchronization).
559 	 */
560 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
561 
562 	/* reject inode numbers outside existing AGs */
563 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
564 		return -EINVAL;
565 
566 	XFS_STATS_INC(mp, xs_ig_attempts);
567 
568 	/* get the perag structure and ensure that it's inode capable */
569 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
570 	agino = XFS_INO_TO_AGINO(mp, ino);
571 
572 again:
573 	error = 0;
574 	rcu_read_lock();
575 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
576 
577 	if (ip) {
578 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
579 		if (error)
580 			goto out_error_or_again;
581 	} else {
582 		rcu_read_unlock();
583 		XFS_STATS_INC(mp, xs_ig_missed);
584 
585 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
586 							flags, lock_flags);
587 		if (error)
588 			goto out_error_or_again;
589 	}
590 	xfs_perag_put(pag);
591 
592 	*ipp = ip;
593 
594 	/*
595 	 * If we have a real type for an on-disk inode, we can setup the inode
596 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
597 	 */
598 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
599 		xfs_setup_existing_inode(ip);
600 	return 0;
601 
602 out_error_or_again:
603 	if (error == -EAGAIN) {
604 		delay(1);
605 		goto again;
606 	}
607 	xfs_perag_put(pag);
608 	return error;
609 }
610 
611 /*
612  * The inode lookup is done in batches to keep the amount of lock traffic and
613  * radix tree lookups to a minimum. The batch size is a trade off between
614  * lookup reduction and stack usage. This is in the reclaim path, so we can't
615  * be too greedy.
616  */
617 #define XFS_LOOKUP_BATCH	32
618 
619 STATIC int
620 xfs_inode_ag_walk_grab(
621 	struct xfs_inode	*ip)
622 {
623 	struct inode		*inode = VFS_I(ip);
624 
625 	ASSERT(rcu_read_lock_held());
626 
627 	/*
628 	 * check for stale RCU freed inode
629 	 *
630 	 * If the inode has been reallocated, it doesn't matter if it's not in
631 	 * the AG we are walking - we are walking for writeback, so if it
632 	 * passes all the "valid inode" checks and is dirty, then we'll write
633 	 * it back anyway.  If it has been reallocated and still being
634 	 * initialised, the XFS_INEW check below will catch it.
635 	 */
636 	spin_lock(&ip->i_flags_lock);
637 	if (!ip->i_ino)
638 		goto out_unlock_noent;
639 
640 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
641 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
642 		goto out_unlock_noent;
643 	spin_unlock(&ip->i_flags_lock);
644 
645 	/* nothing to sync during shutdown */
646 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
647 		return -EFSCORRUPTED;
648 
649 	/* If we can't grab the inode, it must on it's way to reclaim. */
650 	if (!igrab(inode))
651 		return -ENOENT;
652 
653 	/* inode is valid */
654 	return 0;
655 
656 out_unlock_noent:
657 	spin_unlock(&ip->i_flags_lock);
658 	return -ENOENT;
659 }
660 
661 STATIC int
662 xfs_inode_ag_walk(
663 	struct xfs_mount	*mp,
664 	struct xfs_perag	*pag,
665 	int			(*execute)(struct xfs_inode *ip, int flags,
666 					   void *args),
667 	int			flags,
668 	void			*args,
669 	int			tag)
670 {
671 	uint32_t		first_index;
672 	int			last_error = 0;
673 	int			skipped;
674 	int			done;
675 	int			nr_found;
676 
677 restart:
678 	done = 0;
679 	skipped = 0;
680 	first_index = 0;
681 	nr_found = 0;
682 	do {
683 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
684 		int		error = 0;
685 		int		i;
686 
687 		rcu_read_lock();
688 
689 		if (tag == -1)
690 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
691 					(void **)batch, first_index,
692 					XFS_LOOKUP_BATCH);
693 		else
694 			nr_found = radix_tree_gang_lookup_tag(
695 					&pag->pag_ici_root,
696 					(void **) batch, first_index,
697 					XFS_LOOKUP_BATCH, tag);
698 
699 		if (!nr_found) {
700 			rcu_read_unlock();
701 			break;
702 		}
703 
704 		/*
705 		 * Grab the inodes before we drop the lock. if we found
706 		 * nothing, nr == 0 and the loop will be skipped.
707 		 */
708 		for (i = 0; i < nr_found; i++) {
709 			struct xfs_inode *ip = batch[i];
710 
711 			if (done || xfs_inode_ag_walk_grab(ip))
712 				batch[i] = NULL;
713 
714 			/*
715 			 * Update the index for the next lookup. Catch
716 			 * overflows into the next AG range which can occur if
717 			 * we have inodes in the last block of the AG and we
718 			 * are currently pointing to the last inode.
719 			 *
720 			 * Because we may see inodes that are from the wrong AG
721 			 * due to RCU freeing and reallocation, only update the
722 			 * index if it lies in this AG. It was a race that lead
723 			 * us to see this inode, so another lookup from the
724 			 * same index will not find it again.
725 			 */
726 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
727 				continue;
728 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
729 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
730 				done = 1;
731 		}
732 
733 		/* unlock now we've grabbed the inodes. */
734 		rcu_read_unlock();
735 
736 		for (i = 0; i < nr_found; i++) {
737 			if (!batch[i])
738 				continue;
739 			error = execute(batch[i], flags, args);
740 			IRELE(batch[i]);
741 			if (error == -EAGAIN) {
742 				skipped++;
743 				continue;
744 			}
745 			if (error && last_error != -EFSCORRUPTED)
746 				last_error = error;
747 		}
748 
749 		/* bail out if the filesystem is corrupted.  */
750 		if (error == -EFSCORRUPTED)
751 			break;
752 
753 		cond_resched();
754 
755 	} while (nr_found && !done);
756 
757 	if (skipped) {
758 		delay(1);
759 		goto restart;
760 	}
761 	return last_error;
762 }
763 
764 /*
765  * Background scanning to trim post-EOF preallocated space. This is queued
766  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
767  */
768 STATIC void
769 xfs_queue_eofblocks(
770 	struct xfs_mount *mp)
771 {
772 	rcu_read_lock();
773 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
774 		queue_delayed_work(mp->m_eofblocks_workqueue,
775 				   &mp->m_eofblocks_work,
776 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
777 	rcu_read_unlock();
778 }
779 
780 void
781 xfs_eofblocks_worker(
782 	struct work_struct *work)
783 {
784 	struct xfs_mount *mp = container_of(to_delayed_work(work),
785 				struct xfs_mount, m_eofblocks_work);
786 	xfs_icache_free_eofblocks(mp, NULL);
787 	xfs_queue_eofblocks(mp);
788 }
789 
790 int
791 xfs_inode_ag_iterator(
792 	struct xfs_mount	*mp,
793 	int			(*execute)(struct xfs_inode *ip, int flags,
794 					   void *args),
795 	int			flags,
796 	void			*args)
797 {
798 	struct xfs_perag	*pag;
799 	int			error = 0;
800 	int			last_error = 0;
801 	xfs_agnumber_t		ag;
802 
803 	ag = 0;
804 	while ((pag = xfs_perag_get(mp, ag))) {
805 		ag = pag->pag_agno + 1;
806 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
807 		xfs_perag_put(pag);
808 		if (error) {
809 			last_error = error;
810 			if (error == -EFSCORRUPTED)
811 				break;
812 		}
813 	}
814 	return last_error;
815 }
816 
817 int
818 xfs_inode_ag_iterator_tag(
819 	struct xfs_mount	*mp,
820 	int			(*execute)(struct xfs_inode *ip, int flags,
821 					   void *args),
822 	int			flags,
823 	void			*args,
824 	int			tag)
825 {
826 	struct xfs_perag	*pag;
827 	int			error = 0;
828 	int			last_error = 0;
829 	xfs_agnumber_t		ag;
830 
831 	ag = 0;
832 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
833 		ag = pag->pag_agno + 1;
834 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
835 		xfs_perag_put(pag);
836 		if (error) {
837 			last_error = error;
838 			if (error == -EFSCORRUPTED)
839 				break;
840 		}
841 	}
842 	return last_error;
843 }
844 
845 /*
846  * Grab the inode for reclaim exclusively.
847  * Return 0 if we grabbed it, non-zero otherwise.
848  */
849 STATIC int
850 xfs_reclaim_inode_grab(
851 	struct xfs_inode	*ip,
852 	int			flags)
853 {
854 	ASSERT(rcu_read_lock_held());
855 
856 	/* quick check for stale RCU freed inode */
857 	if (!ip->i_ino)
858 		return 1;
859 
860 	/*
861 	 * If we are asked for non-blocking operation, do unlocked checks to
862 	 * see if the inode already is being flushed or in reclaim to avoid
863 	 * lock traffic.
864 	 */
865 	if ((flags & SYNC_TRYLOCK) &&
866 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
867 		return 1;
868 
869 	/*
870 	 * The radix tree lock here protects a thread in xfs_iget from racing
871 	 * with us starting reclaim on the inode.  Once we have the
872 	 * XFS_IRECLAIM flag set it will not touch us.
873 	 *
874 	 * Due to RCU lookup, we may find inodes that have been freed and only
875 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
876 	 * aren't candidates for reclaim at all, so we must check the
877 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
878 	 */
879 	spin_lock(&ip->i_flags_lock);
880 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
881 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
882 		/* not a reclaim candidate. */
883 		spin_unlock(&ip->i_flags_lock);
884 		return 1;
885 	}
886 	__xfs_iflags_set(ip, XFS_IRECLAIM);
887 	spin_unlock(&ip->i_flags_lock);
888 	return 0;
889 }
890 
891 /*
892  * Inodes in different states need to be treated differently. The following
893  * table lists the inode states and the reclaim actions necessary:
894  *
895  *	inode state	     iflush ret		required action
896  *      ---------------      ----------         ---------------
897  *	bad			-		reclaim
898  *	shutdown		EIO		unpin and reclaim
899  *	clean, unpinned		0		reclaim
900  *	stale, unpinned		0		reclaim
901  *	clean, pinned(*)	0		requeue
902  *	stale, pinned		EAGAIN		requeue
903  *	dirty, async		-		requeue
904  *	dirty, sync		0		reclaim
905  *
906  * (*) dgc: I don't think the clean, pinned state is possible but it gets
907  * handled anyway given the order of checks implemented.
908  *
909  * Also, because we get the flush lock first, we know that any inode that has
910  * been flushed delwri has had the flush completed by the time we check that
911  * the inode is clean.
912  *
913  * Note that because the inode is flushed delayed write by AIL pushing, the
914  * flush lock may already be held here and waiting on it can result in very
915  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
916  * the caller should push the AIL first before trying to reclaim inodes to
917  * minimise the amount of time spent waiting.  For background relaim, we only
918  * bother to reclaim clean inodes anyway.
919  *
920  * Hence the order of actions after gaining the locks should be:
921  *	bad		=> reclaim
922  *	shutdown	=> unpin and reclaim
923  *	pinned, async	=> requeue
924  *	pinned, sync	=> unpin
925  *	stale		=> reclaim
926  *	clean		=> reclaim
927  *	dirty, async	=> requeue
928  *	dirty, sync	=> flush, wait and reclaim
929  */
930 STATIC int
931 xfs_reclaim_inode(
932 	struct xfs_inode	*ip,
933 	struct xfs_perag	*pag,
934 	int			sync_mode)
935 {
936 	struct xfs_buf		*bp = NULL;
937 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
938 	int			error;
939 
940 restart:
941 	error = 0;
942 	xfs_ilock(ip, XFS_ILOCK_EXCL);
943 	if (!xfs_iflock_nowait(ip)) {
944 		if (!(sync_mode & SYNC_WAIT))
945 			goto out;
946 		xfs_iflock(ip);
947 	}
948 
949 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
950 		xfs_iunpin_wait(ip);
951 		xfs_iflush_abort(ip, false);
952 		goto reclaim;
953 	}
954 	if (xfs_ipincount(ip)) {
955 		if (!(sync_mode & SYNC_WAIT))
956 			goto out_ifunlock;
957 		xfs_iunpin_wait(ip);
958 	}
959 	if (xfs_iflags_test(ip, XFS_ISTALE))
960 		goto reclaim;
961 	if (xfs_inode_clean(ip))
962 		goto reclaim;
963 
964 	/*
965 	 * Never flush out dirty data during non-blocking reclaim, as it would
966 	 * just contend with AIL pushing trying to do the same job.
967 	 */
968 	if (!(sync_mode & SYNC_WAIT))
969 		goto out_ifunlock;
970 
971 	/*
972 	 * Now we have an inode that needs flushing.
973 	 *
974 	 * Note that xfs_iflush will never block on the inode buffer lock, as
975 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
976 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
977 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
978 	 * result in an ABBA deadlock with xfs_ifree_cluster().
979 	 *
980 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
981 	 * cache to mark them stale, if we hit this case we don't actually want
982 	 * to do IO here - we want the inode marked stale so we can simply
983 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
984 	 * inode, back off and try again.  Hopefully the next pass through will
985 	 * see the stale flag set on the inode.
986 	 */
987 	error = xfs_iflush(ip, &bp);
988 	if (error == -EAGAIN) {
989 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
990 		/* backoff longer than in xfs_ifree_cluster */
991 		delay(2);
992 		goto restart;
993 	}
994 
995 	if (!error) {
996 		error = xfs_bwrite(bp);
997 		xfs_buf_relse(bp);
998 	}
999 
1000 	xfs_iflock(ip);
1001 reclaim:
1002 	/*
1003 	 * Because we use RCU freeing we need to ensure the inode always appears
1004 	 * to be reclaimed with an invalid inode number when in the free state.
1005 	 * We do this as early as possible under the ILOCK and flush lock so
1006 	 * that xfs_iflush_cluster() can be guaranteed to detect races with us
1007 	 * here. By doing this, we guarantee that once xfs_iflush_cluster has
1008 	 * locked both the XFS_ILOCK and the flush lock that it will see either
1009 	 * a valid, flushable inode that will serialise correctly against the
1010 	 * locks below, or it will see a clean (and invalid) inode that it can
1011 	 * skip.
1012 	 */
1013 	spin_lock(&ip->i_flags_lock);
1014 	ip->i_flags = XFS_IRECLAIM;
1015 	ip->i_ino = 0;
1016 	spin_unlock(&ip->i_flags_lock);
1017 
1018 	xfs_ifunlock(ip);
1019 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1020 
1021 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1022 	/*
1023 	 * Remove the inode from the per-AG radix tree.
1024 	 *
1025 	 * Because radix_tree_delete won't complain even if the item was never
1026 	 * added to the tree assert that it's been there before to catch
1027 	 * problems with the inode life time early on.
1028 	 */
1029 	spin_lock(&pag->pag_ici_lock);
1030 	if (!radix_tree_delete(&pag->pag_ici_root,
1031 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1032 		ASSERT(0);
1033 	xfs_perag_clear_reclaim_tag(pag);
1034 	spin_unlock(&pag->pag_ici_lock);
1035 
1036 	/*
1037 	 * Here we do an (almost) spurious inode lock in order to coordinate
1038 	 * with inode cache radix tree lookups.  This is because the lookup
1039 	 * can reference the inodes in the cache without taking references.
1040 	 *
1041 	 * We make that OK here by ensuring that we wait until the inode is
1042 	 * unlocked after the lookup before we go ahead and free it.
1043 	 */
1044 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1045 	xfs_qm_dqdetach(ip);
1046 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1047 
1048 	__xfs_inode_free(ip);
1049 	return error;
1050 
1051 out_ifunlock:
1052 	xfs_ifunlock(ip);
1053 out:
1054 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1055 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1056 	/*
1057 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1058 	 * a short while. However, this just burns CPU time scanning the tree
1059 	 * waiting for IO to complete and the reclaim work never goes back to
1060 	 * the idle state. Instead, return 0 to let the next scheduled
1061 	 * background reclaim attempt to reclaim the inode again.
1062 	 */
1063 	return 0;
1064 }
1065 
1066 /*
1067  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1068  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1069  * then a shut down during filesystem unmount reclaim walk leak all the
1070  * unreclaimed inodes.
1071  */
1072 STATIC int
1073 xfs_reclaim_inodes_ag(
1074 	struct xfs_mount	*mp,
1075 	int			flags,
1076 	int			*nr_to_scan)
1077 {
1078 	struct xfs_perag	*pag;
1079 	int			error = 0;
1080 	int			last_error = 0;
1081 	xfs_agnumber_t		ag;
1082 	int			trylock = flags & SYNC_TRYLOCK;
1083 	int			skipped;
1084 
1085 restart:
1086 	ag = 0;
1087 	skipped = 0;
1088 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1089 		unsigned long	first_index = 0;
1090 		int		done = 0;
1091 		int		nr_found = 0;
1092 
1093 		ag = pag->pag_agno + 1;
1094 
1095 		if (trylock) {
1096 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1097 				skipped++;
1098 				xfs_perag_put(pag);
1099 				continue;
1100 			}
1101 			first_index = pag->pag_ici_reclaim_cursor;
1102 		} else
1103 			mutex_lock(&pag->pag_ici_reclaim_lock);
1104 
1105 		do {
1106 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1107 			int	i;
1108 
1109 			rcu_read_lock();
1110 			nr_found = radix_tree_gang_lookup_tag(
1111 					&pag->pag_ici_root,
1112 					(void **)batch, first_index,
1113 					XFS_LOOKUP_BATCH,
1114 					XFS_ICI_RECLAIM_TAG);
1115 			if (!nr_found) {
1116 				done = 1;
1117 				rcu_read_unlock();
1118 				break;
1119 			}
1120 
1121 			/*
1122 			 * Grab the inodes before we drop the lock. if we found
1123 			 * nothing, nr == 0 and the loop will be skipped.
1124 			 */
1125 			for (i = 0; i < nr_found; i++) {
1126 				struct xfs_inode *ip = batch[i];
1127 
1128 				if (done || xfs_reclaim_inode_grab(ip, flags))
1129 					batch[i] = NULL;
1130 
1131 				/*
1132 				 * Update the index for the next lookup. Catch
1133 				 * overflows into the next AG range which can
1134 				 * occur if we have inodes in the last block of
1135 				 * the AG and we are currently pointing to the
1136 				 * last inode.
1137 				 *
1138 				 * Because we may see inodes that are from the
1139 				 * wrong AG due to RCU freeing and
1140 				 * reallocation, only update the index if it
1141 				 * lies in this AG. It was a race that lead us
1142 				 * to see this inode, so another lookup from
1143 				 * the same index will not find it again.
1144 				 */
1145 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1146 								pag->pag_agno)
1147 					continue;
1148 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1149 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1150 					done = 1;
1151 			}
1152 
1153 			/* unlock now we've grabbed the inodes. */
1154 			rcu_read_unlock();
1155 
1156 			for (i = 0; i < nr_found; i++) {
1157 				if (!batch[i])
1158 					continue;
1159 				error = xfs_reclaim_inode(batch[i], pag, flags);
1160 				if (error && last_error != -EFSCORRUPTED)
1161 					last_error = error;
1162 			}
1163 
1164 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1165 
1166 			cond_resched();
1167 
1168 		} while (nr_found && !done && *nr_to_scan > 0);
1169 
1170 		if (trylock && !done)
1171 			pag->pag_ici_reclaim_cursor = first_index;
1172 		else
1173 			pag->pag_ici_reclaim_cursor = 0;
1174 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1175 		xfs_perag_put(pag);
1176 	}
1177 
1178 	/*
1179 	 * if we skipped any AG, and we still have scan count remaining, do
1180 	 * another pass this time using blocking reclaim semantics (i.e
1181 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1182 	 * ensure that when we get more reclaimers than AGs we block rather
1183 	 * than spin trying to execute reclaim.
1184 	 */
1185 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1186 		trylock = 0;
1187 		goto restart;
1188 	}
1189 	return last_error;
1190 }
1191 
1192 int
1193 xfs_reclaim_inodes(
1194 	xfs_mount_t	*mp,
1195 	int		mode)
1196 {
1197 	int		nr_to_scan = INT_MAX;
1198 
1199 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1200 }
1201 
1202 /*
1203  * Scan a certain number of inodes for reclaim.
1204  *
1205  * When called we make sure that there is a background (fast) inode reclaim in
1206  * progress, while we will throttle the speed of reclaim via doing synchronous
1207  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1208  * them to be cleaned, which we hope will not be very long due to the
1209  * background walker having already kicked the IO off on those dirty inodes.
1210  */
1211 long
1212 xfs_reclaim_inodes_nr(
1213 	struct xfs_mount	*mp,
1214 	int			nr_to_scan)
1215 {
1216 	/* kick background reclaimer and push the AIL */
1217 	xfs_reclaim_work_queue(mp);
1218 	xfs_ail_push_all(mp->m_ail);
1219 
1220 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1221 }
1222 
1223 /*
1224  * Return the number of reclaimable inodes in the filesystem for
1225  * the shrinker to determine how much to reclaim.
1226  */
1227 int
1228 xfs_reclaim_inodes_count(
1229 	struct xfs_mount	*mp)
1230 {
1231 	struct xfs_perag	*pag;
1232 	xfs_agnumber_t		ag = 0;
1233 	int			reclaimable = 0;
1234 
1235 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1236 		ag = pag->pag_agno + 1;
1237 		reclaimable += pag->pag_ici_reclaimable;
1238 		xfs_perag_put(pag);
1239 	}
1240 	return reclaimable;
1241 }
1242 
1243 STATIC int
1244 xfs_inode_match_id(
1245 	struct xfs_inode	*ip,
1246 	struct xfs_eofblocks	*eofb)
1247 {
1248 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1249 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1250 		return 0;
1251 
1252 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1253 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1254 		return 0;
1255 
1256 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1257 	    xfs_get_projid(ip) != eofb->eof_prid)
1258 		return 0;
1259 
1260 	return 1;
1261 }
1262 
1263 /*
1264  * A union-based inode filtering algorithm. Process the inode if any of the
1265  * criteria match. This is for global/internal scans only.
1266  */
1267 STATIC int
1268 xfs_inode_match_id_union(
1269 	struct xfs_inode	*ip,
1270 	struct xfs_eofblocks	*eofb)
1271 {
1272 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1273 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1274 		return 1;
1275 
1276 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1277 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1278 		return 1;
1279 
1280 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1281 	    xfs_get_projid(ip) == eofb->eof_prid)
1282 		return 1;
1283 
1284 	return 0;
1285 }
1286 
1287 STATIC int
1288 xfs_inode_free_eofblocks(
1289 	struct xfs_inode	*ip,
1290 	int			flags,
1291 	void			*args)
1292 {
1293 	int ret;
1294 	struct xfs_eofblocks *eofb = args;
1295 	bool need_iolock = true;
1296 	int match;
1297 
1298 	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1299 
1300 	if (!xfs_can_free_eofblocks(ip, false)) {
1301 		/* inode could be preallocated or append-only */
1302 		trace_xfs_inode_free_eofblocks_invalid(ip);
1303 		xfs_inode_clear_eofblocks_tag(ip);
1304 		return 0;
1305 	}
1306 
1307 	/*
1308 	 * If the mapping is dirty the operation can block and wait for some
1309 	 * time. Unless we are waiting, skip it.
1310 	 */
1311 	if (!(flags & SYNC_WAIT) &&
1312 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1313 		return 0;
1314 
1315 	if (eofb) {
1316 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1317 			match = xfs_inode_match_id_union(ip, eofb);
1318 		else
1319 			match = xfs_inode_match_id(ip, eofb);
1320 		if (!match)
1321 			return 0;
1322 
1323 		/* skip the inode if the file size is too small */
1324 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1325 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1326 			return 0;
1327 
1328 		/*
1329 		 * A scan owner implies we already hold the iolock. Skip it in
1330 		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1331 		 * the possibility of EAGAIN being returned.
1332 		 */
1333 		if (eofb->eof_scan_owner == ip->i_ino)
1334 			need_iolock = false;
1335 	}
1336 
1337 	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1338 
1339 	/* don't revisit the inode if we're not waiting */
1340 	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1341 		ret = 0;
1342 
1343 	return ret;
1344 }
1345 
1346 int
1347 xfs_icache_free_eofblocks(
1348 	struct xfs_mount	*mp,
1349 	struct xfs_eofblocks	*eofb)
1350 {
1351 	int flags = SYNC_TRYLOCK;
1352 
1353 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1354 		flags = SYNC_WAIT;
1355 
1356 	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1357 					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1358 }
1359 
1360 /*
1361  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1362  * multiple quotas, we don't know exactly which quota caused an allocation
1363  * failure. We make a best effort by including each quota under low free space
1364  * conditions (less than 1% free space) in the scan.
1365  */
1366 int
1367 xfs_inode_free_quota_eofblocks(
1368 	struct xfs_inode *ip)
1369 {
1370 	int scan = 0;
1371 	struct xfs_eofblocks eofb = {0};
1372 	struct xfs_dquot *dq;
1373 
1374 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1375 
1376 	/*
1377 	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1378 	 * can repeatedly trylock on the inode we're currently processing. We
1379 	 * run a sync scan to increase effectiveness and use the union filter to
1380 	 * cover all applicable quotas in a single scan.
1381 	 */
1382 	eofb.eof_scan_owner = ip->i_ino;
1383 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1384 
1385 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1386 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1387 		if (dq && xfs_dquot_lowsp(dq)) {
1388 			eofb.eof_uid = VFS_I(ip)->i_uid;
1389 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1390 			scan = 1;
1391 		}
1392 	}
1393 
1394 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1395 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1396 		if (dq && xfs_dquot_lowsp(dq)) {
1397 			eofb.eof_gid = VFS_I(ip)->i_gid;
1398 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1399 			scan = 1;
1400 		}
1401 	}
1402 
1403 	if (scan)
1404 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1405 
1406 	return scan;
1407 }
1408 
1409 void
1410 xfs_inode_set_eofblocks_tag(
1411 	xfs_inode_t	*ip)
1412 {
1413 	struct xfs_mount *mp = ip->i_mount;
1414 	struct xfs_perag *pag;
1415 	int tagged;
1416 
1417 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1418 	spin_lock(&pag->pag_ici_lock);
1419 	trace_xfs_inode_set_eofblocks_tag(ip);
1420 
1421 	tagged = radix_tree_tagged(&pag->pag_ici_root,
1422 				   XFS_ICI_EOFBLOCKS_TAG);
1423 	radix_tree_tag_set(&pag->pag_ici_root,
1424 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1425 			   XFS_ICI_EOFBLOCKS_TAG);
1426 	if (!tagged) {
1427 		/* propagate the eofblocks tag up into the perag radix tree */
1428 		spin_lock(&ip->i_mount->m_perag_lock);
1429 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1430 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1431 				   XFS_ICI_EOFBLOCKS_TAG);
1432 		spin_unlock(&ip->i_mount->m_perag_lock);
1433 
1434 		/* kick off background trimming */
1435 		xfs_queue_eofblocks(ip->i_mount);
1436 
1437 		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1438 					      -1, _RET_IP_);
1439 	}
1440 
1441 	spin_unlock(&pag->pag_ici_lock);
1442 	xfs_perag_put(pag);
1443 }
1444 
1445 void
1446 xfs_inode_clear_eofblocks_tag(
1447 	xfs_inode_t	*ip)
1448 {
1449 	struct xfs_mount *mp = ip->i_mount;
1450 	struct xfs_perag *pag;
1451 
1452 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1453 	spin_lock(&pag->pag_ici_lock);
1454 	trace_xfs_inode_clear_eofblocks_tag(ip);
1455 
1456 	radix_tree_tag_clear(&pag->pag_ici_root,
1457 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1458 			     XFS_ICI_EOFBLOCKS_TAG);
1459 	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1460 		/* clear the eofblocks tag from the perag radix tree */
1461 		spin_lock(&ip->i_mount->m_perag_lock);
1462 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1463 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1464 				     XFS_ICI_EOFBLOCKS_TAG);
1465 		spin_unlock(&ip->i_mount->m_perag_lock);
1466 		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1467 					       -1, _RET_IP_);
1468 	}
1469 
1470 	spin_unlock(&pag->pag_ici_lock);
1471 	xfs_perag_put(pag);
1472 }
1473 
1474