1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_error.h" 27 #include "xfs_trans.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_quota.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_dquot_item.h" 35 #include "xfs_dquot.h" 36 #include "xfs_reflink.h" 37 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 41 /* 42 * Allocate and initialise an xfs_inode. 43 */ 44 struct xfs_inode * 45 xfs_inode_alloc( 46 struct xfs_mount *mp, 47 xfs_ino_t ino) 48 { 49 struct xfs_inode *ip; 50 51 /* 52 * if this didn't occur in transactions, we could use 53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 54 * code up to do this anyway. 55 */ 56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 57 if (!ip) 58 return NULL; 59 if (inode_init_always(mp->m_super, VFS_I(ip))) { 60 kmem_zone_free(xfs_inode_zone, ip); 61 return NULL; 62 } 63 64 /* VFS doesn't initialise i_mode! */ 65 VFS_I(ip)->i_mode = 0; 66 67 XFS_STATS_INC(mp, vn_active); 68 ASSERT(atomic_read(&ip->i_pincount) == 0); 69 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 70 ASSERT(!xfs_isiflocked(ip)); 71 ASSERT(ip->i_ino == 0); 72 73 /* initialise the xfs inode */ 74 ip->i_ino = ino; 75 ip->i_mount = mp; 76 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 77 ip->i_afp = NULL; 78 ip->i_cowfp = NULL; 79 ip->i_cnextents = 0; 80 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 81 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 82 ip->i_flags = 0; 83 ip->i_delayed_blks = 0; 84 memset(&ip->i_d, 0, sizeof(ip->i_d)); 85 86 return ip; 87 } 88 89 STATIC void 90 xfs_inode_free_callback( 91 struct rcu_head *head) 92 { 93 struct inode *inode = container_of(head, struct inode, i_rcu); 94 struct xfs_inode *ip = XFS_I(inode); 95 96 switch (VFS_I(ip)->i_mode & S_IFMT) { 97 case S_IFREG: 98 case S_IFDIR: 99 case S_IFLNK: 100 xfs_idestroy_fork(ip, XFS_DATA_FORK); 101 break; 102 } 103 104 if (ip->i_afp) 105 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 106 if (ip->i_cowfp) 107 xfs_idestroy_fork(ip, XFS_COW_FORK); 108 109 if (ip->i_itemp) { 110 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 111 xfs_inode_item_destroy(ip); 112 ip->i_itemp = NULL; 113 } 114 115 kmem_zone_free(xfs_inode_zone, ip); 116 } 117 118 static void 119 __xfs_inode_free( 120 struct xfs_inode *ip) 121 { 122 /* asserts to verify all state is correct here */ 123 ASSERT(atomic_read(&ip->i_pincount) == 0); 124 XFS_STATS_DEC(ip->i_mount, vn_active); 125 126 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 127 } 128 129 void 130 xfs_inode_free( 131 struct xfs_inode *ip) 132 { 133 ASSERT(!xfs_isiflocked(ip)); 134 135 /* 136 * Because we use RCU freeing we need to ensure the inode always 137 * appears to be reclaimed with an invalid inode number when in the 138 * free state. The ip->i_flags_lock provides the barrier against lookup 139 * races. 140 */ 141 spin_lock(&ip->i_flags_lock); 142 ip->i_flags = XFS_IRECLAIM; 143 ip->i_ino = 0; 144 spin_unlock(&ip->i_flags_lock); 145 146 __xfs_inode_free(ip); 147 } 148 149 /* 150 * Queue a new inode reclaim pass if there are reclaimable inodes and there 151 * isn't a reclaim pass already in progress. By default it runs every 5s based 152 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 153 * tunable, but that can be done if this method proves to be ineffective or too 154 * aggressive. 155 */ 156 static void 157 xfs_reclaim_work_queue( 158 struct xfs_mount *mp) 159 { 160 161 rcu_read_lock(); 162 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 163 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 164 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 165 } 166 rcu_read_unlock(); 167 } 168 169 /* 170 * This is a fast pass over the inode cache to try to get reclaim moving on as 171 * many inodes as possible in a short period of time. It kicks itself every few 172 * seconds, as well as being kicked by the inode cache shrinker when memory 173 * goes low. It scans as quickly as possible avoiding locked inodes or those 174 * already being flushed, and once done schedules a future pass. 175 */ 176 void 177 xfs_reclaim_worker( 178 struct work_struct *work) 179 { 180 struct xfs_mount *mp = container_of(to_delayed_work(work), 181 struct xfs_mount, m_reclaim_work); 182 183 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 184 xfs_reclaim_work_queue(mp); 185 } 186 187 static void 188 xfs_perag_set_reclaim_tag( 189 struct xfs_perag *pag) 190 { 191 struct xfs_mount *mp = pag->pag_mount; 192 193 ASSERT(spin_is_locked(&pag->pag_ici_lock)); 194 if (pag->pag_ici_reclaimable++) 195 return; 196 197 /* propagate the reclaim tag up into the perag radix tree */ 198 spin_lock(&mp->m_perag_lock); 199 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 200 XFS_ICI_RECLAIM_TAG); 201 spin_unlock(&mp->m_perag_lock); 202 203 /* schedule periodic background inode reclaim */ 204 xfs_reclaim_work_queue(mp); 205 206 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 207 } 208 209 static void 210 xfs_perag_clear_reclaim_tag( 211 struct xfs_perag *pag) 212 { 213 struct xfs_mount *mp = pag->pag_mount; 214 215 ASSERT(spin_is_locked(&pag->pag_ici_lock)); 216 if (--pag->pag_ici_reclaimable) 217 return; 218 219 /* clear the reclaim tag from the perag radix tree */ 220 spin_lock(&mp->m_perag_lock); 221 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 222 XFS_ICI_RECLAIM_TAG); 223 spin_unlock(&mp->m_perag_lock); 224 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 225 } 226 227 228 /* 229 * We set the inode flag atomically with the radix tree tag. 230 * Once we get tag lookups on the radix tree, this inode flag 231 * can go away. 232 */ 233 void 234 xfs_inode_set_reclaim_tag( 235 struct xfs_inode *ip) 236 { 237 struct xfs_mount *mp = ip->i_mount; 238 struct xfs_perag *pag; 239 240 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 241 spin_lock(&pag->pag_ici_lock); 242 spin_lock(&ip->i_flags_lock); 243 244 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 245 XFS_ICI_RECLAIM_TAG); 246 xfs_perag_set_reclaim_tag(pag); 247 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 248 249 spin_unlock(&ip->i_flags_lock); 250 spin_unlock(&pag->pag_ici_lock); 251 xfs_perag_put(pag); 252 } 253 254 STATIC void 255 xfs_inode_clear_reclaim_tag( 256 struct xfs_perag *pag, 257 xfs_ino_t ino) 258 { 259 radix_tree_tag_clear(&pag->pag_ici_root, 260 XFS_INO_TO_AGINO(pag->pag_mount, ino), 261 XFS_ICI_RECLAIM_TAG); 262 xfs_perag_clear_reclaim_tag(pag); 263 } 264 265 static void 266 xfs_inew_wait( 267 struct xfs_inode *ip) 268 { 269 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 270 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 271 272 do { 273 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 274 if (!xfs_iflags_test(ip, XFS_INEW)) 275 break; 276 schedule(); 277 } while (true); 278 finish_wait(wq, &wait.wait); 279 } 280 281 /* 282 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 283 * part of the structure. This is made more complex by the fact we store 284 * information about the on-disk values in the VFS inode and so we can't just 285 * overwrite the values unconditionally. Hence we save the parameters we 286 * need to retain across reinitialisation, and rewrite them into the VFS inode 287 * after reinitialisation even if it fails. 288 */ 289 static int 290 xfs_reinit_inode( 291 struct xfs_mount *mp, 292 struct inode *inode) 293 { 294 int error; 295 uint32_t nlink = inode->i_nlink; 296 uint32_t generation = inode->i_generation; 297 uint64_t version = inode->i_version; 298 umode_t mode = inode->i_mode; 299 300 error = inode_init_always(mp->m_super, inode); 301 302 set_nlink(inode, nlink); 303 inode->i_generation = generation; 304 inode->i_version = version; 305 inode->i_mode = mode; 306 return error; 307 } 308 309 /* 310 * Check the validity of the inode we just found it the cache 311 */ 312 static int 313 xfs_iget_cache_hit( 314 struct xfs_perag *pag, 315 struct xfs_inode *ip, 316 xfs_ino_t ino, 317 int flags, 318 int lock_flags) __releases(RCU) 319 { 320 struct inode *inode = VFS_I(ip); 321 struct xfs_mount *mp = ip->i_mount; 322 int error; 323 324 /* 325 * check for re-use of an inode within an RCU grace period due to the 326 * radix tree nodes not being updated yet. We monitor for this by 327 * setting the inode number to zero before freeing the inode structure. 328 * If the inode has been reallocated and set up, then the inode number 329 * will not match, so check for that, too. 330 */ 331 spin_lock(&ip->i_flags_lock); 332 if (ip->i_ino != ino) { 333 trace_xfs_iget_skip(ip); 334 XFS_STATS_INC(mp, xs_ig_frecycle); 335 error = -EAGAIN; 336 goto out_error; 337 } 338 339 340 /* 341 * If we are racing with another cache hit that is currently 342 * instantiating this inode or currently recycling it out of 343 * reclaimabe state, wait for the initialisation to complete 344 * before continuing. 345 * 346 * XXX(hch): eventually we should do something equivalent to 347 * wait_on_inode to wait for these flags to be cleared 348 * instead of polling for it. 349 */ 350 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 351 trace_xfs_iget_skip(ip); 352 XFS_STATS_INC(mp, xs_ig_frecycle); 353 error = -EAGAIN; 354 goto out_error; 355 } 356 357 /* 358 * If lookup is racing with unlink return an error immediately. 359 */ 360 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) { 361 error = -ENOENT; 362 goto out_error; 363 } 364 365 /* 366 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 367 * Need to carefully get it back into useable state. 368 */ 369 if (ip->i_flags & XFS_IRECLAIMABLE) { 370 trace_xfs_iget_reclaim(ip); 371 372 /* 373 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 374 * from stomping over us while we recycle the inode. We can't 375 * clear the radix tree reclaimable tag yet as it requires 376 * pag_ici_lock to be held exclusive. 377 */ 378 ip->i_flags |= XFS_IRECLAIM; 379 380 spin_unlock(&ip->i_flags_lock); 381 rcu_read_unlock(); 382 383 error = xfs_reinit_inode(mp, inode); 384 if (error) { 385 bool wake; 386 /* 387 * Re-initializing the inode failed, and we are in deep 388 * trouble. Try to re-add it to the reclaim list. 389 */ 390 rcu_read_lock(); 391 spin_lock(&ip->i_flags_lock); 392 wake = !!__xfs_iflags_test(ip, XFS_INEW); 393 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 394 if (wake) 395 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 396 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 397 trace_xfs_iget_reclaim_fail(ip); 398 goto out_error; 399 } 400 401 spin_lock(&pag->pag_ici_lock); 402 spin_lock(&ip->i_flags_lock); 403 404 /* 405 * Clear the per-lifetime state in the inode as we are now 406 * effectively a new inode and need to return to the initial 407 * state before reuse occurs. 408 */ 409 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 410 ip->i_flags |= XFS_INEW; 411 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 412 inode->i_state = I_NEW; 413 414 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 415 init_rwsem(&inode->i_rwsem); 416 417 spin_unlock(&ip->i_flags_lock); 418 spin_unlock(&pag->pag_ici_lock); 419 } else { 420 /* If the VFS inode is being torn down, pause and try again. */ 421 if (!igrab(inode)) { 422 trace_xfs_iget_skip(ip); 423 error = -EAGAIN; 424 goto out_error; 425 } 426 427 /* We've got a live one. */ 428 spin_unlock(&ip->i_flags_lock); 429 rcu_read_unlock(); 430 trace_xfs_iget_hit(ip); 431 } 432 433 if (lock_flags != 0) 434 xfs_ilock(ip, lock_flags); 435 436 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 437 XFS_STATS_INC(mp, xs_ig_found); 438 439 return 0; 440 441 out_error: 442 spin_unlock(&ip->i_flags_lock); 443 rcu_read_unlock(); 444 return error; 445 } 446 447 448 static int 449 xfs_iget_cache_miss( 450 struct xfs_mount *mp, 451 struct xfs_perag *pag, 452 xfs_trans_t *tp, 453 xfs_ino_t ino, 454 struct xfs_inode **ipp, 455 int flags, 456 int lock_flags) 457 { 458 struct xfs_inode *ip; 459 int error; 460 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 461 int iflags; 462 463 ip = xfs_inode_alloc(mp, ino); 464 if (!ip) 465 return -ENOMEM; 466 467 error = xfs_iread(mp, tp, ip, flags); 468 if (error) 469 goto out_destroy; 470 471 trace_xfs_iget_miss(ip); 472 473 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) { 474 error = -ENOENT; 475 goto out_destroy; 476 } 477 478 /* 479 * Preload the radix tree so we can insert safely under the 480 * write spinlock. Note that we cannot sleep inside the preload 481 * region. Since we can be called from transaction context, don't 482 * recurse into the file system. 483 */ 484 if (radix_tree_preload(GFP_NOFS)) { 485 error = -EAGAIN; 486 goto out_destroy; 487 } 488 489 /* 490 * Because the inode hasn't been added to the radix-tree yet it can't 491 * be found by another thread, so we can do the non-sleeping lock here. 492 */ 493 if (lock_flags) { 494 if (!xfs_ilock_nowait(ip, lock_flags)) 495 BUG(); 496 } 497 498 /* 499 * These values must be set before inserting the inode into the radix 500 * tree as the moment it is inserted a concurrent lookup (allowed by the 501 * RCU locking mechanism) can find it and that lookup must see that this 502 * is an inode currently under construction (i.e. that XFS_INEW is set). 503 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 504 * memory barrier that ensures this detection works correctly at lookup 505 * time. 506 */ 507 iflags = XFS_INEW; 508 if (flags & XFS_IGET_DONTCACHE) 509 iflags |= XFS_IDONTCACHE; 510 ip->i_udquot = NULL; 511 ip->i_gdquot = NULL; 512 ip->i_pdquot = NULL; 513 xfs_iflags_set(ip, iflags); 514 515 /* insert the new inode */ 516 spin_lock(&pag->pag_ici_lock); 517 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 518 if (unlikely(error)) { 519 WARN_ON(error != -EEXIST); 520 XFS_STATS_INC(mp, xs_ig_dup); 521 error = -EAGAIN; 522 goto out_preload_end; 523 } 524 spin_unlock(&pag->pag_ici_lock); 525 radix_tree_preload_end(); 526 527 *ipp = ip; 528 return 0; 529 530 out_preload_end: 531 spin_unlock(&pag->pag_ici_lock); 532 radix_tree_preload_end(); 533 if (lock_flags) 534 xfs_iunlock(ip, lock_flags); 535 out_destroy: 536 __destroy_inode(VFS_I(ip)); 537 xfs_inode_free(ip); 538 return error; 539 } 540 541 /* 542 * Look up an inode by number in the given file system. 543 * The inode is looked up in the cache held in each AG. 544 * If the inode is found in the cache, initialise the vfs inode 545 * if necessary. 546 * 547 * If it is not in core, read it in from the file system's device, 548 * add it to the cache and initialise the vfs inode. 549 * 550 * The inode is locked according to the value of the lock_flags parameter. 551 * This flag parameter indicates how and if the inode's IO lock and inode lock 552 * should be taken. 553 * 554 * mp -- the mount point structure for the current file system. It points 555 * to the inode hash table. 556 * tp -- a pointer to the current transaction if there is one. This is 557 * simply passed through to the xfs_iread() call. 558 * ino -- the number of the inode desired. This is the unique identifier 559 * within the file system for the inode being requested. 560 * lock_flags -- flags indicating how to lock the inode. See the comment 561 * for xfs_ilock() for a list of valid values. 562 */ 563 int 564 xfs_iget( 565 xfs_mount_t *mp, 566 xfs_trans_t *tp, 567 xfs_ino_t ino, 568 uint flags, 569 uint lock_flags, 570 xfs_inode_t **ipp) 571 { 572 xfs_inode_t *ip; 573 int error; 574 xfs_perag_t *pag; 575 xfs_agino_t agino; 576 577 /* 578 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 579 * doesn't get freed while it's being referenced during a 580 * radix tree traversal here. It assumes this function 581 * aqcuires only the ILOCK (and therefore it has no need to 582 * involve the IOLOCK in this synchronization). 583 */ 584 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 585 586 /* reject inode numbers outside existing AGs */ 587 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 588 return -EINVAL; 589 590 XFS_STATS_INC(mp, xs_ig_attempts); 591 592 /* get the perag structure and ensure that it's inode capable */ 593 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 594 agino = XFS_INO_TO_AGINO(mp, ino); 595 596 again: 597 error = 0; 598 rcu_read_lock(); 599 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 600 601 if (ip) { 602 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 603 if (error) 604 goto out_error_or_again; 605 } else { 606 rcu_read_unlock(); 607 XFS_STATS_INC(mp, xs_ig_missed); 608 609 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 610 flags, lock_flags); 611 if (error) 612 goto out_error_or_again; 613 } 614 xfs_perag_put(pag); 615 616 *ipp = ip; 617 618 /* 619 * If we have a real type for an on-disk inode, we can setup the inode 620 * now. If it's a new inode being created, xfs_ialloc will handle it. 621 */ 622 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 623 xfs_setup_existing_inode(ip); 624 return 0; 625 626 out_error_or_again: 627 if (error == -EAGAIN) { 628 delay(1); 629 goto again; 630 } 631 xfs_perag_put(pag); 632 return error; 633 } 634 635 /* 636 * The inode lookup is done in batches to keep the amount of lock traffic and 637 * radix tree lookups to a minimum. The batch size is a trade off between 638 * lookup reduction and stack usage. This is in the reclaim path, so we can't 639 * be too greedy. 640 */ 641 #define XFS_LOOKUP_BATCH 32 642 643 STATIC int 644 xfs_inode_ag_walk_grab( 645 struct xfs_inode *ip, 646 int flags) 647 { 648 struct inode *inode = VFS_I(ip); 649 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT); 650 651 ASSERT(rcu_read_lock_held()); 652 653 /* 654 * check for stale RCU freed inode 655 * 656 * If the inode has been reallocated, it doesn't matter if it's not in 657 * the AG we are walking - we are walking for writeback, so if it 658 * passes all the "valid inode" checks and is dirty, then we'll write 659 * it back anyway. If it has been reallocated and still being 660 * initialised, the XFS_INEW check below will catch it. 661 */ 662 spin_lock(&ip->i_flags_lock); 663 if (!ip->i_ino) 664 goto out_unlock_noent; 665 666 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 667 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || 668 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) 669 goto out_unlock_noent; 670 spin_unlock(&ip->i_flags_lock); 671 672 /* nothing to sync during shutdown */ 673 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 674 return -EFSCORRUPTED; 675 676 /* If we can't grab the inode, it must on it's way to reclaim. */ 677 if (!igrab(inode)) 678 return -ENOENT; 679 680 /* inode is valid */ 681 return 0; 682 683 out_unlock_noent: 684 spin_unlock(&ip->i_flags_lock); 685 return -ENOENT; 686 } 687 688 STATIC int 689 xfs_inode_ag_walk( 690 struct xfs_mount *mp, 691 struct xfs_perag *pag, 692 int (*execute)(struct xfs_inode *ip, int flags, 693 void *args), 694 int flags, 695 void *args, 696 int tag, 697 int iter_flags) 698 { 699 uint32_t first_index; 700 int last_error = 0; 701 int skipped; 702 int done; 703 int nr_found; 704 705 restart: 706 done = 0; 707 skipped = 0; 708 first_index = 0; 709 nr_found = 0; 710 do { 711 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 712 int error = 0; 713 int i; 714 715 rcu_read_lock(); 716 717 if (tag == -1) 718 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 719 (void **)batch, first_index, 720 XFS_LOOKUP_BATCH); 721 else 722 nr_found = radix_tree_gang_lookup_tag( 723 &pag->pag_ici_root, 724 (void **) batch, first_index, 725 XFS_LOOKUP_BATCH, tag); 726 727 if (!nr_found) { 728 rcu_read_unlock(); 729 break; 730 } 731 732 /* 733 * Grab the inodes before we drop the lock. if we found 734 * nothing, nr == 0 and the loop will be skipped. 735 */ 736 for (i = 0; i < nr_found; i++) { 737 struct xfs_inode *ip = batch[i]; 738 739 if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) 740 batch[i] = NULL; 741 742 /* 743 * Update the index for the next lookup. Catch 744 * overflows into the next AG range which can occur if 745 * we have inodes in the last block of the AG and we 746 * are currently pointing to the last inode. 747 * 748 * Because we may see inodes that are from the wrong AG 749 * due to RCU freeing and reallocation, only update the 750 * index if it lies in this AG. It was a race that lead 751 * us to see this inode, so another lookup from the 752 * same index will not find it again. 753 */ 754 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 755 continue; 756 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 757 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 758 done = 1; 759 } 760 761 /* unlock now we've grabbed the inodes. */ 762 rcu_read_unlock(); 763 764 for (i = 0; i < nr_found; i++) { 765 if (!batch[i]) 766 continue; 767 if ((iter_flags & XFS_AGITER_INEW_WAIT) && 768 xfs_iflags_test(batch[i], XFS_INEW)) 769 xfs_inew_wait(batch[i]); 770 error = execute(batch[i], flags, args); 771 IRELE(batch[i]); 772 if (error == -EAGAIN) { 773 skipped++; 774 continue; 775 } 776 if (error && last_error != -EFSCORRUPTED) 777 last_error = error; 778 } 779 780 /* bail out if the filesystem is corrupted. */ 781 if (error == -EFSCORRUPTED) 782 break; 783 784 cond_resched(); 785 786 } while (nr_found && !done); 787 788 if (skipped) { 789 delay(1); 790 goto restart; 791 } 792 return last_error; 793 } 794 795 /* 796 * Background scanning to trim post-EOF preallocated space. This is queued 797 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 798 */ 799 void 800 xfs_queue_eofblocks( 801 struct xfs_mount *mp) 802 { 803 rcu_read_lock(); 804 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 805 queue_delayed_work(mp->m_eofblocks_workqueue, 806 &mp->m_eofblocks_work, 807 msecs_to_jiffies(xfs_eofb_secs * 1000)); 808 rcu_read_unlock(); 809 } 810 811 void 812 xfs_eofblocks_worker( 813 struct work_struct *work) 814 { 815 struct xfs_mount *mp = container_of(to_delayed_work(work), 816 struct xfs_mount, m_eofblocks_work); 817 xfs_icache_free_eofblocks(mp, NULL); 818 xfs_queue_eofblocks(mp); 819 } 820 821 /* 822 * Background scanning to trim preallocated CoW space. This is queued 823 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). 824 * (We'll just piggyback on the post-EOF prealloc space workqueue.) 825 */ 826 STATIC void 827 xfs_queue_cowblocks( 828 struct xfs_mount *mp) 829 { 830 rcu_read_lock(); 831 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) 832 queue_delayed_work(mp->m_eofblocks_workqueue, 833 &mp->m_cowblocks_work, 834 msecs_to_jiffies(xfs_cowb_secs * 1000)); 835 rcu_read_unlock(); 836 } 837 838 void 839 xfs_cowblocks_worker( 840 struct work_struct *work) 841 { 842 struct xfs_mount *mp = container_of(to_delayed_work(work), 843 struct xfs_mount, m_cowblocks_work); 844 xfs_icache_free_cowblocks(mp, NULL); 845 xfs_queue_cowblocks(mp); 846 } 847 848 int 849 xfs_inode_ag_iterator_flags( 850 struct xfs_mount *mp, 851 int (*execute)(struct xfs_inode *ip, int flags, 852 void *args), 853 int flags, 854 void *args, 855 int iter_flags) 856 { 857 struct xfs_perag *pag; 858 int error = 0; 859 int last_error = 0; 860 xfs_agnumber_t ag; 861 862 ag = 0; 863 while ((pag = xfs_perag_get(mp, ag))) { 864 ag = pag->pag_agno + 1; 865 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, 866 iter_flags); 867 xfs_perag_put(pag); 868 if (error) { 869 last_error = error; 870 if (error == -EFSCORRUPTED) 871 break; 872 } 873 } 874 return last_error; 875 } 876 877 int 878 xfs_inode_ag_iterator( 879 struct xfs_mount *mp, 880 int (*execute)(struct xfs_inode *ip, int flags, 881 void *args), 882 int flags, 883 void *args) 884 { 885 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); 886 } 887 888 int 889 xfs_inode_ag_iterator_tag( 890 struct xfs_mount *mp, 891 int (*execute)(struct xfs_inode *ip, int flags, 892 void *args), 893 int flags, 894 void *args, 895 int tag) 896 { 897 struct xfs_perag *pag; 898 int error = 0; 899 int last_error = 0; 900 xfs_agnumber_t ag; 901 902 ag = 0; 903 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 904 ag = pag->pag_agno + 1; 905 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, 906 0); 907 xfs_perag_put(pag); 908 if (error) { 909 last_error = error; 910 if (error == -EFSCORRUPTED) 911 break; 912 } 913 } 914 return last_error; 915 } 916 917 /* 918 * Grab the inode for reclaim exclusively. 919 * Return 0 if we grabbed it, non-zero otherwise. 920 */ 921 STATIC int 922 xfs_reclaim_inode_grab( 923 struct xfs_inode *ip, 924 int flags) 925 { 926 ASSERT(rcu_read_lock_held()); 927 928 /* quick check for stale RCU freed inode */ 929 if (!ip->i_ino) 930 return 1; 931 932 /* 933 * If we are asked for non-blocking operation, do unlocked checks to 934 * see if the inode already is being flushed or in reclaim to avoid 935 * lock traffic. 936 */ 937 if ((flags & SYNC_TRYLOCK) && 938 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 939 return 1; 940 941 /* 942 * The radix tree lock here protects a thread in xfs_iget from racing 943 * with us starting reclaim on the inode. Once we have the 944 * XFS_IRECLAIM flag set it will not touch us. 945 * 946 * Due to RCU lookup, we may find inodes that have been freed and only 947 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 948 * aren't candidates for reclaim at all, so we must check the 949 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 950 */ 951 spin_lock(&ip->i_flags_lock); 952 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 953 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 954 /* not a reclaim candidate. */ 955 spin_unlock(&ip->i_flags_lock); 956 return 1; 957 } 958 __xfs_iflags_set(ip, XFS_IRECLAIM); 959 spin_unlock(&ip->i_flags_lock); 960 return 0; 961 } 962 963 /* 964 * Inodes in different states need to be treated differently. The following 965 * table lists the inode states and the reclaim actions necessary: 966 * 967 * inode state iflush ret required action 968 * --------------- ---------- --------------- 969 * bad - reclaim 970 * shutdown EIO unpin and reclaim 971 * clean, unpinned 0 reclaim 972 * stale, unpinned 0 reclaim 973 * clean, pinned(*) 0 requeue 974 * stale, pinned EAGAIN requeue 975 * dirty, async - requeue 976 * dirty, sync 0 reclaim 977 * 978 * (*) dgc: I don't think the clean, pinned state is possible but it gets 979 * handled anyway given the order of checks implemented. 980 * 981 * Also, because we get the flush lock first, we know that any inode that has 982 * been flushed delwri has had the flush completed by the time we check that 983 * the inode is clean. 984 * 985 * Note that because the inode is flushed delayed write by AIL pushing, the 986 * flush lock may already be held here and waiting on it can result in very 987 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 988 * the caller should push the AIL first before trying to reclaim inodes to 989 * minimise the amount of time spent waiting. For background relaim, we only 990 * bother to reclaim clean inodes anyway. 991 * 992 * Hence the order of actions after gaining the locks should be: 993 * bad => reclaim 994 * shutdown => unpin and reclaim 995 * pinned, async => requeue 996 * pinned, sync => unpin 997 * stale => reclaim 998 * clean => reclaim 999 * dirty, async => requeue 1000 * dirty, sync => flush, wait and reclaim 1001 */ 1002 STATIC int 1003 xfs_reclaim_inode( 1004 struct xfs_inode *ip, 1005 struct xfs_perag *pag, 1006 int sync_mode) 1007 { 1008 struct xfs_buf *bp = NULL; 1009 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 1010 int error; 1011 1012 restart: 1013 error = 0; 1014 xfs_ilock(ip, XFS_ILOCK_EXCL); 1015 if (!xfs_iflock_nowait(ip)) { 1016 if (!(sync_mode & SYNC_WAIT)) 1017 goto out; 1018 xfs_iflock(ip); 1019 } 1020 1021 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1022 xfs_iunpin_wait(ip); 1023 /* xfs_iflush_abort() drops the flush lock */ 1024 xfs_iflush_abort(ip, false); 1025 goto reclaim; 1026 } 1027 if (xfs_ipincount(ip)) { 1028 if (!(sync_mode & SYNC_WAIT)) 1029 goto out_ifunlock; 1030 xfs_iunpin_wait(ip); 1031 } 1032 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { 1033 xfs_ifunlock(ip); 1034 goto reclaim; 1035 } 1036 1037 /* 1038 * Never flush out dirty data during non-blocking reclaim, as it would 1039 * just contend with AIL pushing trying to do the same job. 1040 */ 1041 if (!(sync_mode & SYNC_WAIT)) 1042 goto out_ifunlock; 1043 1044 /* 1045 * Now we have an inode that needs flushing. 1046 * 1047 * Note that xfs_iflush will never block on the inode buffer lock, as 1048 * xfs_ifree_cluster() can lock the inode buffer before it locks the 1049 * ip->i_lock, and we are doing the exact opposite here. As a result, 1050 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 1051 * result in an ABBA deadlock with xfs_ifree_cluster(). 1052 * 1053 * As xfs_ifree_cluser() must gather all inodes that are active in the 1054 * cache to mark them stale, if we hit this case we don't actually want 1055 * to do IO here - we want the inode marked stale so we can simply 1056 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 1057 * inode, back off and try again. Hopefully the next pass through will 1058 * see the stale flag set on the inode. 1059 */ 1060 error = xfs_iflush(ip, &bp); 1061 if (error == -EAGAIN) { 1062 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1063 /* backoff longer than in xfs_ifree_cluster */ 1064 delay(2); 1065 goto restart; 1066 } 1067 1068 if (!error) { 1069 error = xfs_bwrite(bp); 1070 xfs_buf_relse(bp); 1071 } 1072 1073 reclaim: 1074 ASSERT(!xfs_isiflocked(ip)); 1075 1076 /* 1077 * Because we use RCU freeing we need to ensure the inode always appears 1078 * to be reclaimed with an invalid inode number when in the free state. 1079 * We do this as early as possible under the ILOCK so that 1080 * xfs_iflush_cluster() can be guaranteed to detect races with us here. 1081 * By doing this, we guarantee that once xfs_iflush_cluster has locked 1082 * XFS_ILOCK that it will see either a valid, flushable inode that will 1083 * serialise correctly, or it will see a clean (and invalid) inode that 1084 * it can skip. 1085 */ 1086 spin_lock(&ip->i_flags_lock); 1087 ip->i_flags = XFS_IRECLAIM; 1088 ip->i_ino = 0; 1089 spin_unlock(&ip->i_flags_lock); 1090 1091 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1092 1093 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1094 /* 1095 * Remove the inode from the per-AG radix tree. 1096 * 1097 * Because radix_tree_delete won't complain even if the item was never 1098 * added to the tree assert that it's been there before to catch 1099 * problems with the inode life time early on. 1100 */ 1101 spin_lock(&pag->pag_ici_lock); 1102 if (!radix_tree_delete(&pag->pag_ici_root, 1103 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1104 ASSERT(0); 1105 xfs_perag_clear_reclaim_tag(pag); 1106 spin_unlock(&pag->pag_ici_lock); 1107 1108 /* 1109 * Here we do an (almost) spurious inode lock in order to coordinate 1110 * with inode cache radix tree lookups. This is because the lookup 1111 * can reference the inodes in the cache without taking references. 1112 * 1113 * We make that OK here by ensuring that we wait until the inode is 1114 * unlocked after the lookup before we go ahead and free it. 1115 */ 1116 xfs_ilock(ip, XFS_ILOCK_EXCL); 1117 xfs_qm_dqdetach(ip); 1118 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1119 1120 __xfs_inode_free(ip); 1121 return error; 1122 1123 out_ifunlock: 1124 xfs_ifunlock(ip); 1125 out: 1126 xfs_iflags_clear(ip, XFS_IRECLAIM); 1127 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1128 /* 1129 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1130 * a short while. However, this just burns CPU time scanning the tree 1131 * waiting for IO to complete and the reclaim work never goes back to 1132 * the idle state. Instead, return 0 to let the next scheduled 1133 * background reclaim attempt to reclaim the inode again. 1134 */ 1135 return 0; 1136 } 1137 1138 /* 1139 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1140 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1141 * then a shut down during filesystem unmount reclaim walk leak all the 1142 * unreclaimed inodes. 1143 */ 1144 STATIC int 1145 xfs_reclaim_inodes_ag( 1146 struct xfs_mount *mp, 1147 int flags, 1148 int *nr_to_scan) 1149 { 1150 struct xfs_perag *pag; 1151 int error = 0; 1152 int last_error = 0; 1153 xfs_agnumber_t ag; 1154 int trylock = flags & SYNC_TRYLOCK; 1155 int skipped; 1156 1157 restart: 1158 ag = 0; 1159 skipped = 0; 1160 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1161 unsigned long first_index = 0; 1162 int done = 0; 1163 int nr_found = 0; 1164 1165 ag = pag->pag_agno + 1; 1166 1167 if (trylock) { 1168 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1169 skipped++; 1170 xfs_perag_put(pag); 1171 continue; 1172 } 1173 first_index = pag->pag_ici_reclaim_cursor; 1174 } else 1175 mutex_lock(&pag->pag_ici_reclaim_lock); 1176 1177 do { 1178 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1179 int i; 1180 1181 rcu_read_lock(); 1182 nr_found = radix_tree_gang_lookup_tag( 1183 &pag->pag_ici_root, 1184 (void **)batch, first_index, 1185 XFS_LOOKUP_BATCH, 1186 XFS_ICI_RECLAIM_TAG); 1187 if (!nr_found) { 1188 done = 1; 1189 rcu_read_unlock(); 1190 break; 1191 } 1192 1193 /* 1194 * Grab the inodes before we drop the lock. if we found 1195 * nothing, nr == 0 and the loop will be skipped. 1196 */ 1197 for (i = 0; i < nr_found; i++) { 1198 struct xfs_inode *ip = batch[i]; 1199 1200 if (done || xfs_reclaim_inode_grab(ip, flags)) 1201 batch[i] = NULL; 1202 1203 /* 1204 * Update the index for the next lookup. Catch 1205 * overflows into the next AG range which can 1206 * occur if we have inodes in the last block of 1207 * the AG and we are currently pointing to the 1208 * last inode. 1209 * 1210 * Because we may see inodes that are from the 1211 * wrong AG due to RCU freeing and 1212 * reallocation, only update the index if it 1213 * lies in this AG. It was a race that lead us 1214 * to see this inode, so another lookup from 1215 * the same index will not find it again. 1216 */ 1217 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1218 pag->pag_agno) 1219 continue; 1220 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1221 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1222 done = 1; 1223 } 1224 1225 /* unlock now we've grabbed the inodes. */ 1226 rcu_read_unlock(); 1227 1228 for (i = 0; i < nr_found; i++) { 1229 if (!batch[i]) 1230 continue; 1231 error = xfs_reclaim_inode(batch[i], pag, flags); 1232 if (error && last_error != -EFSCORRUPTED) 1233 last_error = error; 1234 } 1235 1236 *nr_to_scan -= XFS_LOOKUP_BATCH; 1237 1238 cond_resched(); 1239 1240 } while (nr_found && !done && *nr_to_scan > 0); 1241 1242 if (trylock && !done) 1243 pag->pag_ici_reclaim_cursor = first_index; 1244 else 1245 pag->pag_ici_reclaim_cursor = 0; 1246 mutex_unlock(&pag->pag_ici_reclaim_lock); 1247 xfs_perag_put(pag); 1248 } 1249 1250 /* 1251 * if we skipped any AG, and we still have scan count remaining, do 1252 * another pass this time using blocking reclaim semantics (i.e 1253 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1254 * ensure that when we get more reclaimers than AGs we block rather 1255 * than spin trying to execute reclaim. 1256 */ 1257 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1258 trylock = 0; 1259 goto restart; 1260 } 1261 return last_error; 1262 } 1263 1264 int 1265 xfs_reclaim_inodes( 1266 xfs_mount_t *mp, 1267 int mode) 1268 { 1269 int nr_to_scan = INT_MAX; 1270 1271 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1272 } 1273 1274 /* 1275 * Scan a certain number of inodes for reclaim. 1276 * 1277 * When called we make sure that there is a background (fast) inode reclaim in 1278 * progress, while we will throttle the speed of reclaim via doing synchronous 1279 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1280 * them to be cleaned, which we hope will not be very long due to the 1281 * background walker having already kicked the IO off on those dirty inodes. 1282 */ 1283 long 1284 xfs_reclaim_inodes_nr( 1285 struct xfs_mount *mp, 1286 int nr_to_scan) 1287 { 1288 /* kick background reclaimer and push the AIL */ 1289 xfs_reclaim_work_queue(mp); 1290 xfs_ail_push_all(mp->m_ail); 1291 1292 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1293 } 1294 1295 /* 1296 * Return the number of reclaimable inodes in the filesystem for 1297 * the shrinker to determine how much to reclaim. 1298 */ 1299 int 1300 xfs_reclaim_inodes_count( 1301 struct xfs_mount *mp) 1302 { 1303 struct xfs_perag *pag; 1304 xfs_agnumber_t ag = 0; 1305 int reclaimable = 0; 1306 1307 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1308 ag = pag->pag_agno + 1; 1309 reclaimable += pag->pag_ici_reclaimable; 1310 xfs_perag_put(pag); 1311 } 1312 return reclaimable; 1313 } 1314 1315 STATIC int 1316 xfs_inode_match_id( 1317 struct xfs_inode *ip, 1318 struct xfs_eofblocks *eofb) 1319 { 1320 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1321 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1322 return 0; 1323 1324 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1325 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1326 return 0; 1327 1328 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1329 xfs_get_projid(ip) != eofb->eof_prid) 1330 return 0; 1331 1332 return 1; 1333 } 1334 1335 /* 1336 * A union-based inode filtering algorithm. Process the inode if any of the 1337 * criteria match. This is for global/internal scans only. 1338 */ 1339 STATIC int 1340 xfs_inode_match_id_union( 1341 struct xfs_inode *ip, 1342 struct xfs_eofblocks *eofb) 1343 { 1344 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1345 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1346 return 1; 1347 1348 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1349 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1350 return 1; 1351 1352 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1353 xfs_get_projid(ip) == eofb->eof_prid) 1354 return 1; 1355 1356 return 0; 1357 } 1358 1359 STATIC int 1360 xfs_inode_free_eofblocks( 1361 struct xfs_inode *ip, 1362 int flags, 1363 void *args) 1364 { 1365 int ret = 0; 1366 struct xfs_eofblocks *eofb = args; 1367 int match; 1368 1369 if (!xfs_can_free_eofblocks(ip, false)) { 1370 /* inode could be preallocated or append-only */ 1371 trace_xfs_inode_free_eofblocks_invalid(ip); 1372 xfs_inode_clear_eofblocks_tag(ip); 1373 return 0; 1374 } 1375 1376 /* 1377 * If the mapping is dirty the operation can block and wait for some 1378 * time. Unless we are waiting, skip it. 1379 */ 1380 if (!(flags & SYNC_WAIT) && 1381 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1382 return 0; 1383 1384 if (eofb) { 1385 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1386 match = xfs_inode_match_id_union(ip, eofb); 1387 else 1388 match = xfs_inode_match_id(ip, eofb); 1389 if (!match) 1390 return 0; 1391 1392 /* skip the inode if the file size is too small */ 1393 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1394 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1395 return 0; 1396 } 1397 1398 /* 1399 * If the caller is waiting, return -EAGAIN to keep the background 1400 * scanner moving and revisit the inode in a subsequent pass. 1401 */ 1402 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1403 if (flags & SYNC_WAIT) 1404 ret = -EAGAIN; 1405 return ret; 1406 } 1407 ret = xfs_free_eofblocks(ip); 1408 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1409 1410 return ret; 1411 } 1412 1413 static int 1414 __xfs_icache_free_eofblocks( 1415 struct xfs_mount *mp, 1416 struct xfs_eofblocks *eofb, 1417 int (*execute)(struct xfs_inode *ip, int flags, 1418 void *args), 1419 int tag) 1420 { 1421 int flags = SYNC_TRYLOCK; 1422 1423 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1424 flags = SYNC_WAIT; 1425 1426 return xfs_inode_ag_iterator_tag(mp, execute, flags, 1427 eofb, tag); 1428 } 1429 1430 int 1431 xfs_icache_free_eofblocks( 1432 struct xfs_mount *mp, 1433 struct xfs_eofblocks *eofb) 1434 { 1435 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, 1436 XFS_ICI_EOFBLOCKS_TAG); 1437 } 1438 1439 /* 1440 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1441 * multiple quotas, we don't know exactly which quota caused an allocation 1442 * failure. We make a best effort by including each quota under low free space 1443 * conditions (less than 1% free space) in the scan. 1444 */ 1445 static int 1446 __xfs_inode_free_quota_eofblocks( 1447 struct xfs_inode *ip, 1448 int (*execute)(struct xfs_mount *mp, 1449 struct xfs_eofblocks *eofb)) 1450 { 1451 int scan = 0; 1452 struct xfs_eofblocks eofb = {0}; 1453 struct xfs_dquot *dq; 1454 1455 /* 1456 * Run a sync scan to increase effectiveness and use the union filter to 1457 * cover all applicable quotas in a single scan. 1458 */ 1459 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1460 1461 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1462 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1463 if (dq && xfs_dquot_lowsp(dq)) { 1464 eofb.eof_uid = VFS_I(ip)->i_uid; 1465 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1466 scan = 1; 1467 } 1468 } 1469 1470 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1471 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1472 if (dq && xfs_dquot_lowsp(dq)) { 1473 eofb.eof_gid = VFS_I(ip)->i_gid; 1474 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1475 scan = 1; 1476 } 1477 } 1478 1479 if (scan) 1480 execute(ip->i_mount, &eofb); 1481 1482 return scan; 1483 } 1484 1485 int 1486 xfs_inode_free_quota_eofblocks( 1487 struct xfs_inode *ip) 1488 { 1489 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); 1490 } 1491 1492 static void 1493 __xfs_inode_set_eofblocks_tag( 1494 xfs_inode_t *ip, 1495 void (*execute)(struct xfs_mount *mp), 1496 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1497 int error, unsigned long caller_ip), 1498 int tag) 1499 { 1500 struct xfs_mount *mp = ip->i_mount; 1501 struct xfs_perag *pag; 1502 int tagged; 1503 1504 /* 1505 * Don't bother locking the AG and looking up in the radix trees 1506 * if we already know that we have the tag set. 1507 */ 1508 if (ip->i_flags & XFS_IEOFBLOCKS) 1509 return; 1510 spin_lock(&ip->i_flags_lock); 1511 ip->i_flags |= XFS_IEOFBLOCKS; 1512 spin_unlock(&ip->i_flags_lock); 1513 1514 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1515 spin_lock(&pag->pag_ici_lock); 1516 1517 tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 1518 radix_tree_tag_set(&pag->pag_ici_root, 1519 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1520 if (!tagged) { 1521 /* propagate the eofblocks tag up into the perag radix tree */ 1522 spin_lock(&ip->i_mount->m_perag_lock); 1523 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1524 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1525 tag); 1526 spin_unlock(&ip->i_mount->m_perag_lock); 1527 1528 /* kick off background trimming */ 1529 execute(ip->i_mount); 1530 1531 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1532 } 1533 1534 spin_unlock(&pag->pag_ici_lock); 1535 xfs_perag_put(pag); 1536 } 1537 1538 void 1539 xfs_inode_set_eofblocks_tag( 1540 xfs_inode_t *ip) 1541 { 1542 trace_xfs_inode_set_eofblocks_tag(ip); 1543 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks, 1544 trace_xfs_perag_set_eofblocks, 1545 XFS_ICI_EOFBLOCKS_TAG); 1546 } 1547 1548 static void 1549 __xfs_inode_clear_eofblocks_tag( 1550 xfs_inode_t *ip, 1551 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1552 int error, unsigned long caller_ip), 1553 int tag) 1554 { 1555 struct xfs_mount *mp = ip->i_mount; 1556 struct xfs_perag *pag; 1557 1558 spin_lock(&ip->i_flags_lock); 1559 ip->i_flags &= ~XFS_IEOFBLOCKS; 1560 spin_unlock(&ip->i_flags_lock); 1561 1562 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1563 spin_lock(&pag->pag_ici_lock); 1564 1565 radix_tree_tag_clear(&pag->pag_ici_root, 1566 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1567 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { 1568 /* clear the eofblocks tag from the perag radix tree */ 1569 spin_lock(&ip->i_mount->m_perag_lock); 1570 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1571 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1572 tag); 1573 spin_unlock(&ip->i_mount->m_perag_lock); 1574 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1575 } 1576 1577 spin_unlock(&pag->pag_ici_lock); 1578 xfs_perag_put(pag); 1579 } 1580 1581 void 1582 xfs_inode_clear_eofblocks_tag( 1583 xfs_inode_t *ip) 1584 { 1585 trace_xfs_inode_clear_eofblocks_tag(ip); 1586 return __xfs_inode_clear_eofblocks_tag(ip, 1587 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); 1588 } 1589 1590 /* 1591 * Automatic CoW Reservation Freeing 1592 * 1593 * These functions automatically garbage collect leftover CoW reservations 1594 * that were made on behalf of a cowextsize hint when we start to run out 1595 * of quota or when the reservations sit around for too long. If the file 1596 * has dirty pages or is undergoing writeback, its CoW reservations will 1597 * be retained. 1598 * 1599 * The actual garbage collection piggybacks off the same code that runs 1600 * the speculative EOF preallocation garbage collector. 1601 */ 1602 STATIC int 1603 xfs_inode_free_cowblocks( 1604 struct xfs_inode *ip, 1605 int flags, 1606 void *args) 1607 { 1608 int ret; 1609 struct xfs_eofblocks *eofb = args; 1610 int match; 1611 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1612 1613 /* 1614 * Just clear the tag if we have an empty cow fork or none at all. It's 1615 * possible the inode was fully unshared since it was originally tagged. 1616 */ 1617 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) { 1618 trace_xfs_inode_free_cowblocks_invalid(ip); 1619 xfs_inode_clear_cowblocks_tag(ip); 1620 return 0; 1621 } 1622 1623 /* 1624 * If the mapping is dirty or under writeback we cannot touch the 1625 * CoW fork. Leave it alone if we're in the midst of a directio. 1626 */ 1627 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1628 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1629 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1630 atomic_read(&VFS_I(ip)->i_dio_count)) 1631 return 0; 1632 1633 if (eofb) { 1634 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1635 match = xfs_inode_match_id_union(ip, eofb); 1636 else 1637 match = xfs_inode_match_id(ip, eofb); 1638 if (!match) 1639 return 0; 1640 1641 /* skip the inode if the file size is too small */ 1642 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1643 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1644 return 0; 1645 } 1646 1647 /* Free the CoW blocks */ 1648 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1649 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1650 1651 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1652 1653 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1654 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1655 1656 return ret; 1657 } 1658 1659 int 1660 xfs_icache_free_cowblocks( 1661 struct xfs_mount *mp, 1662 struct xfs_eofblocks *eofb) 1663 { 1664 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, 1665 XFS_ICI_COWBLOCKS_TAG); 1666 } 1667 1668 int 1669 xfs_inode_free_quota_cowblocks( 1670 struct xfs_inode *ip) 1671 { 1672 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); 1673 } 1674 1675 void 1676 xfs_inode_set_cowblocks_tag( 1677 xfs_inode_t *ip) 1678 { 1679 trace_xfs_inode_set_cowblocks_tag(ip); 1680 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks, 1681 trace_xfs_perag_set_cowblocks, 1682 XFS_ICI_COWBLOCKS_TAG); 1683 } 1684 1685 void 1686 xfs_inode_clear_cowblocks_tag( 1687 xfs_inode_t *ip) 1688 { 1689 trace_xfs_inode_clear_cowblocks_tag(ip); 1690 return __xfs_inode_clear_eofblocks_tag(ip, 1691 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); 1692 } 1693