xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 239480ab)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37 
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 
41 /*
42  * Allocate and initialise an xfs_inode.
43  */
44 struct xfs_inode *
45 xfs_inode_alloc(
46 	struct xfs_mount	*mp,
47 	xfs_ino_t		ino)
48 {
49 	struct xfs_inode	*ip;
50 
51 	/*
52 	 * if this didn't occur in transactions, we could use
53 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 	 * code up to do this anyway.
55 	 */
56 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 	if (!ip)
58 		return NULL;
59 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 		kmem_zone_free(xfs_inode_zone, ip);
61 		return NULL;
62 	}
63 
64 	/* VFS doesn't initialise i_mode! */
65 	VFS_I(ip)->i_mode = 0;
66 
67 	XFS_STATS_INC(mp, vn_active);
68 	ASSERT(atomic_read(&ip->i_pincount) == 0);
69 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
70 	ASSERT(!xfs_isiflocked(ip));
71 	ASSERT(ip->i_ino == 0);
72 
73 	/* initialise the xfs inode */
74 	ip->i_ino = ino;
75 	ip->i_mount = mp;
76 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 	ip->i_afp = NULL;
78 	ip->i_cowfp = NULL;
79 	ip->i_cnextents = 0;
80 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
81 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 	ip->i_flags = 0;
83 	ip->i_delayed_blks = 0;
84 	memset(&ip->i_d, 0, sizeof(ip->i_d));
85 
86 	return ip;
87 }
88 
89 STATIC void
90 xfs_inode_free_callback(
91 	struct rcu_head		*head)
92 {
93 	struct inode		*inode = container_of(head, struct inode, i_rcu);
94 	struct xfs_inode	*ip = XFS_I(inode);
95 
96 	switch (VFS_I(ip)->i_mode & S_IFMT) {
97 	case S_IFREG:
98 	case S_IFDIR:
99 	case S_IFLNK:
100 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 		break;
102 	}
103 
104 	if (ip->i_afp)
105 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
106 	if (ip->i_cowfp)
107 		xfs_idestroy_fork(ip, XFS_COW_FORK);
108 
109 	if (ip->i_itemp) {
110 		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
111 		xfs_inode_item_destroy(ip);
112 		ip->i_itemp = NULL;
113 	}
114 
115 	kmem_zone_free(xfs_inode_zone, ip);
116 }
117 
118 static void
119 __xfs_inode_free(
120 	struct xfs_inode	*ip)
121 {
122 	/* asserts to verify all state is correct here */
123 	ASSERT(atomic_read(&ip->i_pincount) == 0);
124 	XFS_STATS_DEC(ip->i_mount, vn_active);
125 
126 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
127 }
128 
129 void
130 xfs_inode_free(
131 	struct xfs_inode	*ip)
132 {
133 	ASSERT(!xfs_isiflocked(ip));
134 
135 	/*
136 	 * Because we use RCU freeing we need to ensure the inode always
137 	 * appears to be reclaimed with an invalid inode number when in the
138 	 * free state. The ip->i_flags_lock provides the barrier against lookup
139 	 * races.
140 	 */
141 	spin_lock(&ip->i_flags_lock);
142 	ip->i_flags = XFS_IRECLAIM;
143 	ip->i_ino = 0;
144 	spin_unlock(&ip->i_flags_lock);
145 
146 	__xfs_inode_free(ip);
147 }
148 
149 /*
150  * Queue a new inode reclaim pass if there are reclaimable inodes and there
151  * isn't a reclaim pass already in progress. By default it runs every 5s based
152  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153  * tunable, but that can be done if this method proves to be ineffective or too
154  * aggressive.
155  */
156 static void
157 xfs_reclaim_work_queue(
158 	struct xfs_mount        *mp)
159 {
160 
161 	rcu_read_lock();
162 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
163 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
164 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
165 	}
166 	rcu_read_unlock();
167 }
168 
169 /*
170  * This is a fast pass over the inode cache to try to get reclaim moving on as
171  * many inodes as possible in a short period of time. It kicks itself every few
172  * seconds, as well as being kicked by the inode cache shrinker when memory
173  * goes low. It scans as quickly as possible avoiding locked inodes or those
174  * already being flushed, and once done schedules a future pass.
175  */
176 void
177 xfs_reclaim_worker(
178 	struct work_struct *work)
179 {
180 	struct xfs_mount *mp = container_of(to_delayed_work(work),
181 					struct xfs_mount, m_reclaim_work);
182 
183 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
184 	xfs_reclaim_work_queue(mp);
185 }
186 
187 static void
188 xfs_perag_set_reclaim_tag(
189 	struct xfs_perag	*pag)
190 {
191 	struct xfs_mount	*mp = pag->pag_mount;
192 
193 	ASSERT(spin_is_locked(&pag->pag_ici_lock));
194 	if (pag->pag_ici_reclaimable++)
195 		return;
196 
197 	/* propagate the reclaim tag up into the perag radix tree */
198 	spin_lock(&mp->m_perag_lock);
199 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
200 			   XFS_ICI_RECLAIM_TAG);
201 	spin_unlock(&mp->m_perag_lock);
202 
203 	/* schedule periodic background inode reclaim */
204 	xfs_reclaim_work_queue(mp);
205 
206 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
207 }
208 
209 static void
210 xfs_perag_clear_reclaim_tag(
211 	struct xfs_perag	*pag)
212 {
213 	struct xfs_mount	*mp = pag->pag_mount;
214 
215 	ASSERT(spin_is_locked(&pag->pag_ici_lock));
216 	if (--pag->pag_ici_reclaimable)
217 		return;
218 
219 	/* clear the reclaim tag from the perag radix tree */
220 	spin_lock(&mp->m_perag_lock);
221 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
222 			     XFS_ICI_RECLAIM_TAG);
223 	spin_unlock(&mp->m_perag_lock);
224 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
225 }
226 
227 
228 /*
229  * We set the inode flag atomically with the radix tree tag.
230  * Once we get tag lookups on the radix tree, this inode flag
231  * can go away.
232  */
233 void
234 xfs_inode_set_reclaim_tag(
235 	struct xfs_inode	*ip)
236 {
237 	struct xfs_mount	*mp = ip->i_mount;
238 	struct xfs_perag	*pag;
239 
240 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
241 	spin_lock(&pag->pag_ici_lock);
242 	spin_lock(&ip->i_flags_lock);
243 
244 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
245 			   XFS_ICI_RECLAIM_TAG);
246 	xfs_perag_set_reclaim_tag(pag);
247 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
248 
249 	spin_unlock(&ip->i_flags_lock);
250 	spin_unlock(&pag->pag_ici_lock);
251 	xfs_perag_put(pag);
252 }
253 
254 STATIC void
255 xfs_inode_clear_reclaim_tag(
256 	struct xfs_perag	*pag,
257 	xfs_ino_t		ino)
258 {
259 	radix_tree_tag_clear(&pag->pag_ici_root,
260 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
261 			     XFS_ICI_RECLAIM_TAG);
262 	xfs_perag_clear_reclaim_tag(pag);
263 }
264 
265 static void
266 xfs_inew_wait(
267 	struct xfs_inode	*ip)
268 {
269 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
270 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
271 
272 	do {
273 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
274 		if (!xfs_iflags_test(ip, XFS_INEW))
275 			break;
276 		schedule();
277 	} while (true);
278 	finish_wait(wq, &wait.wait);
279 }
280 
281 /*
282  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
283  * part of the structure. This is made more complex by the fact we store
284  * information about the on-disk values in the VFS inode and so we can't just
285  * overwrite the values unconditionally. Hence we save the parameters we
286  * need to retain across reinitialisation, and rewrite them into the VFS inode
287  * after reinitialisation even if it fails.
288  */
289 static int
290 xfs_reinit_inode(
291 	struct xfs_mount	*mp,
292 	struct inode		*inode)
293 {
294 	int		error;
295 	uint32_t	nlink = inode->i_nlink;
296 	uint32_t	generation = inode->i_generation;
297 	uint64_t	version = inode->i_version;
298 	umode_t		mode = inode->i_mode;
299 
300 	error = inode_init_always(mp->m_super, inode);
301 
302 	set_nlink(inode, nlink);
303 	inode->i_generation = generation;
304 	inode->i_version = version;
305 	inode->i_mode = mode;
306 	return error;
307 }
308 
309 /*
310  * Check the validity of the inode we just found it the cache
311  */
312 static int
313 xfs_iget_cache_hit(
314 	struct xfs_perag	*pag,
315 	struct xfs_inode	*ip,
316 	xfs_ino_t		ino,
317 	int			flags,
318 	int			lock_flags) __releases(RCU)
319 {
320 	struct inode		*inode = VFS_I(ip);
321 	struct xfs_mount	*mp = ip->i_mount;
322 	int			error;
323 
324 	/*
325 	 * check for re-use of an inode within an RCU grace period due to the
326 	 * radix tree nodes not being updated yet. We monitor for this by
327 	 * setting the inode number to zero before freeing the inode structure.
328 	 * If the inode has been reallocated and set up, then the inode number
329 	 * will not match, so check for that, too.
330 	 */
331 	spin_lock(&ip->i_flags_lock);
332 	if (ip->i_ino != ino) {
333 		trace_xfs_iget_skip(ip);
334 		XFS_STATS_INC(mp, xs_ig_frecycle);
335 		error = -EAGAIN;
336 		goto out_error;
337 	}
338 
339 
340 	/*
341 	 * If we are racing with another cache hit that is currently
342 	 * instantiating this inode or currently recycling it out of
343 	 * reclaimabe state, wait for the initialisation to complete
344 	 * before continuing.
345 	 *
346 	 * XXX(hch): eventually we should do something equivalent to
347 	 *	     wait_on_inode to wait for these flags to be cleared
348 	 *	     instead of polling for it.
349 	 */
350 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
351 		trace_xfs_iget_skip(ip);
352 		XFS_STATS_INC(mp, xs_ig_frecycle);
353 		error = -EAGAIN;
354 		goto out_error;
355 	}
356 
357 	/*
358 	 * If lookup is racing with unlink return an error immediately.
359 	 */
360 	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
361 		error = -ENOENT;
362 		goto out_error;
363 	}
364 
365 	/*
366 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
367 	 * Need to carefully get it back into useable state.
368 	 */
369 	if (ip->i_flags & XFS_IRECLAIMABLE) {
370 		trace_xfs_iget_reclaim(ip);
371 
372 		/*
373 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
374 		 * from stomping over us while we recycle the inode.  We can't
375 		 * clear the radix tree reclaimable tag yet as it requires
376 		 * pag_ici_lock to be held exclusive.
377 		 */
378 		ip->i_flags |= XFS_IRECLAIM;
379 
380 		spin_unlock(&ip->i_flags_lock);
381 		rcu_read_unlock();
382 
383 		error = xfs_reinit_inode(mp, inode);
384 		if (error) {
385 			bool wake;
386 			/*
387 			 * Re-initializing the inode failed, and we are in deep
388 			 * trouble.  Try to re-add it to the reclaim list.
389 			 */
390 			rcu_read_lock();
391 			spin_lock(&ip->i_flags_lock);
392 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
393 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
394 			if (wake)
395 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
396 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
397 			trace_xfs_iget_reclaim_fail(ip);
398 			goto out_error;
399 		}
400 
401 		spin_lock(&pag->pag_ici_lock);
402 		spin_lock(&ip->i_flags_lock);
403 
404 		/*
405 		 * Clear the per-lifetime state in the inode as we are now
406 		 * effectively a new inode and need to return to the initial
407 		 * state before reuse occurs.
408 		 */
409 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
410 		ip->i_flags |= XFS_INEW;
411 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
412 		inode->i_state = I_NEW;
413 
414 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
415 		init_rwsem(&inode->i_rwsem);
416 
417 		spin_unlock(&ip->i_flags_lock);
418 		spin_unlock(&pag->pag_ici_lock);
419 	} else {
420 		/* If the VFS inode is being torn down, pause and try again. */
421 		if (!igrab(inode)) {
422 			trace_xfs_iget_skip(ip);
423 			error = -EAGAIN;
424 			goto out_error;
425 		}
426 
427 		/* We've got a live one. */
428 		spin_unlock(&ip->i_flags_lock);
429 		rcu_read_unlock();
430 		trace_xfs_iget_hit(ip);
431 	}
432 
433 	if (lock_flags != 0)
434 		xfs_ilock(ip, lock_flags);
435 
436 	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
437 	XFS_STATS_INC(mp, xs_ig_found);
438 
439 	return 0;
440 
441 out_error:
442 	spin_unlock(&ip->i_flags_lock);
443 	rcu_read_unlock();
444 	return error;
445 }
446 
447 
448 static int
449 xfs_iget_cache_miss(
450 	struct xfs_mount	*mp,
451 	struct xfs_perag	*pag,
452 	xfs_trans_t		*tp,
453 	xfs_ino_t		ino,
454 	struct xfs_inode	**ipp,
455 	int			flags,
456 	int			lock_flags)
457 {
458 	struct xfs_inode	*ip;
459 	int			error;
460 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
461 	int			iflags;
462 
463 	ip = xfs_inode_alloc(mp, ino);
464 	if (!ip)
465 		return -ENOMEM;
466 
467 	error = xfs_iread(mp, tp, ip, flags);
468 	if (error)
469 		goto out_destroy;
470 
471 	trace_xfs_iget_miss(ip);
472 
473 	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
474 		error = -ENOENT;
475 		goto out_destroy;
476 	}
477 
478 	/*
479 	 * Preload the radix tree so we can insert safely under the
480 	 * write spinlock. Note that we cannot sleep inside the preload
481 	 * region. Since we can be called from transaction context, don't
482 	 * recurse into the file system.
483 	 */
484 	if (radix_tree_preload(GFP_NOFS)) {
485 		error = -EAGAIN;
486 		goto out_destroy;
487 	}
488 
489 	/*
490 	 * Because the inode hasn't been added to the radix-tree yet it can't
491 	 * be found by another thread, so we can do the non-sleeping lock here.
492 	 */
493 	if (lock_flags) {
494 		if (!xfs_ilock_nowait(ip, lock_flags))
495 			BUG();
496 	}
497 
498 	/*
499 	 * These values must be set before inserting the inode into the radix
500 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
501 	 * RCU locking mechanism) can find it and that lookup must see that this
502 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
503 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
504 	 * memory barrier that ensures this detection works correctly at lookup
505 	 * time.
506 	 */
507 	iflags = XFS_INEW;
508 	if (flags & XFS_IGET_DONTCACHE)
509 		iflags |= XFS_IDONTCACHE;
510 	ip->i_udquot = NULL;
511 	ip->i_gdquot = NULL;
512 	ip->i_pdquot = NULL;
513 	xfs_iflags_set(ip, iflags);
514 
515 	/* insert the new inode */
516 	spin_lock(&pag->pag_ici_lock);
517 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
518 	if (unlikely(error)) {
519 		WARN_ON(error != -EEXIST);
520 		XFS_STATS_INC(mp, xs_ig_dup);
521 		error = -EAGAIN;
522 		goto out_preload_end;
523 	}
524 	spin_unlock(&pag->pag_ici_lock);
525 	radix_tree_preload_end();
526 
527 	*ipp = ip;
528 	return 0;
529 
530 out_preload_end:
531 	spin_unlock(&pag->pag_ici_lock);
532 	radix_tree_preload_end();
533 	if (lock_flags)
534 		xfs_iunlock(ip, lock_flags);
535 out_destroy:
536 	__destroy_inode(VFS_I(ip));
537 	xfs_inode_free(ip);
538 	return error;
539 }
540 
541 /*
542  * Look up an inode by number in the given file system.
543  * The inode is looked up in the cache held in each AG.
544  * If the inode is found in the cache, initialise the vfs inode
545  * if necessary.
546  *
547  * If it is not in core, read it in from the file system's device,
548  * add it to the cache and initialise the vfs inode.
549  *
550  * The inode is locked according to the value of the lock_flags parameter.
551  * This flag parameter indicates how and if the inode's IO lock and inode lock
552  * should be taken.
553  *
554  * mp -- the mount point structure for the current file system.  It points
555  *       to the inode hash table.
556  * tp -- a pointer to the current transaction if there is one.  This is
557  *       simply passed through to the xfs_iread() call.
558  * ino -- the number of the inode desired.  This is the unique identifier
559  *        within the file system for the inode being requested.
560  * lock_flags -- flags indicating how to lock the inode.  See the comment
561  *		 for xfs_ilock() for a list of valid values.
562  */
563 int
564 xfs_iget(
565 	xfs_mount_t	*mp,
566 	xfs_trans_t	*tp,
567 	xfs_ino_t	ino,
568 	uint		flags,
569 	uint		lock_flags,
570 	xfs_inode_t	**ipp)
571 {
572 	xfs_inode_t	*ip;
573 	int		error;
574 	xfs_perag_t	*pag;
575 	xfs_agino_t	agino;
576 
577 	/*
578 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
579 	 * doesn't get freed while it's being referenced during a
580 	 * radix tree traversal here.  It assumes this function
581 	 * aqcuires only the ILOCK (and therefore it has no need to
582 	 * involve the IOLOCK in this synchronization).
583 	 */
584 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
585 
586 	/* reject inode numbers outside existing AGs */
587 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
588 		return -EINVAL;
589 
590 	XFS_STATS_INC(mp, xs_ig_attempts);
591 
592 	/* get the perag structure and ensure that it's inode capable */
593 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
594 	agino = XFS_INO_TO_AGINO(mp, ino);
595 
596 again:
597 	error = 0;
598 	rcu_read_lock();
599 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
600 
601 	if (ip) {
602 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
603 		if (error)
604 			goto out_error_or_again;
605 	} else {
606 		rcu_read_unlock();
607 		XFS_STATS_INC(mp, xs_ig_missed);
608 
609 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
610 							flags, lock_flags);
611 		if (error)
612 			goto out_error_or_again;
613 	}
614 	xfs_perag_put(pag);
615 
616 	*ipp = ip;
617 
618 	/*
619 	 * If we have a real type for an on-disk inode, we can setup the inode
620 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
621 	 */
622 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
623 		xfs_setup_existing_inode(ip);
624 	return 0;
625 
626 out_error_or_again:
627 	if (error == -EAGAIN) {
628 		delay(1);
629 		goto again;
630 	}
631 	xfs_perag_put(pag);
632 	return error;
633 }
634 
635 /*
636  * The inode lookup is done in batches to keep the amount of lock traffic and
637  * radix tree lookups to a minimum. The batch size is a trade off between
638  * lookup reduction and stack usage. This is in the reclaim path, so we can't
639  * be too greedy.
640  */
641 #define XFS_LOOKUP_BATCH	32
642 
643 STATIC int
644 xfs_inode_ag_walk_grab(
645 	struct xfs_inode	*ip,
646 	int			flags)
647 {
648 	struct inode		*inode = VFS_I(ip);
649 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
650 
651 	ASSERT(rcu_read_lock_held());
652 
653 	/*
654 	 * check for stale RCU freed inode
655 	 *
656 	 * If the inode has been reallocated, it doesn't matter if it's not in
657 	 * the AG we are walking - we are walking for writeback, so if it
658 	 * passes all the "valid inode" checks and is dirty, then we'll write
659 	 * it back anyway.  If it has been reallocated and still being
660 	 * initialised, the XFS_INEW check below will catch it.
661 	 */
662 	spin_lock(&ip->i_flags_lock);
663 	if (!ip->i_ino)
664 		goto out_unlock_noent;
665 
666 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
667 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
668 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
669 		goto out_unlock_noent;
670 	spin_unlock(&ip->i_flags_lock);
671 
672 	/* nothing to sync during shutdown */
673 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
674 		return -EFSCORRUPTED;
675 
676 	/* If we can't grab the inode, it must on it's way to reclaim. */
677 	if (!igrab(inode))
678 		return -ENOENT;
679 
680 	/* inode is valid */
681 	return 0;
682 
683 out_unlock_noent:
684 	spin_unlock(&ip->i_flags_lock);
685 	return -ENOENT;
686 }
687 
688 STATIC int
689 xfs_inode_ag_walk(
690 	struct xfs_mount	*mp,
691 	struct xfs_perag	*pag,
692 	int			(*execute)(struct xfs_inode *ip, int flags,
693 					   void *args),
694 	int			flags,
695 	void			*args,
696 	int			tag,
697 	int			iter_flags)
698 {
699 	uint32_t		first_index;
700 	int			last_error = 0;
701 	int			skipped;
702 	int			done;
703 	int			nr_found;
704 
705 restart:
706 	done = 0;
707 	skipped = 0;
708 	first_index = 0;
709 	nr_found = 0;
710 	do {
711 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
712 		int		error = 0;
713 		int		i;
714 
715 		rcu_read_lock();
716 
717 		if (tag == -1)
718 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
719 					(void **)batch, first_index,
720 					XFS_LOOKUP_BATCH);
721 		else
722 			nr_found = radix_tree_gang_lookup_tag(
723 					&pag->pag_ici_root,
724 					(void **) batch, first_index,
725 					XFS_LOOKUP_BATCH, tag);
726 
727 		if (!nr_found) {
728 			rcu_read_unlock();
729 			break;
730 		}
731 
732 		/*
733 		 * Grab the inodes before we drop the lock. if we found
734 		 * nothing, nr == 0 and the loop will be skipped.
735 		 */
736 		for (i = 0; i < nr_found; i++) {
737 			struct xfs_inode *ip = batch[i];
738 
739 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
740 				batch[i] = NULL;
741 
742 			/*
743 			 * Update the index for the next lookup. Catch
744 			 * overflows into the next AG range which can occur if
745 			 * we have inodes in the last block of the AG and we
746 			 * are currently pointing to the last inode.
747 			 *
748 			 * Because we may see inodes that are from the wrong AG
749 			 * due to RCU freeing and reallocation, only update the
750 			 * index if it lies in this AG. It was a race that lead
751 			 * us to see this inode, so another lookup from the
752 			 * same index will not find it again.
753 			 */
754 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
755 				continue;
756 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
757 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
758 				done = 1;
759 		}
760 
761 		/* unlock now we've grabbed the inodes. */
762 		rcu_read_unlock();
763 
764 		for (i = 0; i < nr_found; i++) {
765 			if (!batch[i])
766 				continue;
767 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
768 			    xfs_iflags_test(batch[i], XFS_INEW))
769 				xfs_inew_wait(batch[i]);
770 			error = execute(batch[i], flags, args);
771 			IRELE(batch[i]);
772 			if (error == -EAGAIN) {
773 				skipped++;
774 				continue;
775 			}
776 			if (error && last_error != -EFSCORRUPTED)
777 				last_error = error;
778 		}
779 
780 		/* bail out if the filesystem is corrupted.  */
781 		if (error == -EFSCORRUPTED)
782 			break;
783 
784 		cond_resched();
785 
786 	} while (nr_found && !done);
787 
788 	if (skipped) {
789 		delay(1);
790 		goto restart;
791 	}
792 	return last_error;
793 }
794 
795 /*
796  * Background scanning to trim post-EOF preallocated space. This is queued
797  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
798  */
799 void
800 xfs_queue_eofblocks(
801 	struct xfs_mount *mp)
802 {
803 	rcu_read_lock();
804 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
805 		queue_delayed_work(mp->m_eofblocks_workqueue,
806 				   &mp->m_eofblocks_work,
807 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
808 	rcu_read_unlock();
809 }
810 
811 void
812 xfs_eofblocks_worker(
813 	struct work_struct *work)
814 {
815 	struct xfs_mount *mp = container_of(to_delayed_work(work),
816 				struct xfs_mount, m_eofblocks_work);
817 	xfs_icache_free_eofblocks(mp, NULL);
818 	xfs_queue_eofblocks(mp);
819 }
820 
821 /*
822  * Background scanning to trim preallocated CoW space. This is queued
823  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
824  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
825  */
826 STATIC void
827 xfs_queue_cowblocks(
828 	struct xfs_mount *mp)
829 {
830 	rcu_read_lock();
831 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
832 		queue_delayed_work(mp->m_eofblocks_workqueue,
833 				   &mp->m_cowblocks_work,
834 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
835 	rcu_read_unlock();
836 }
837 
838 void
839 xfs_cowblocks_worker(
840 	struct work_struct *work)
841 {
842 	struct xfs_mount *mp = container_of(to_delayed_work(work),
843 				struct xfs_mount, m_cowblocks_work);
844 	xfs_icache_free_cowblocks(mp, NULL);
845 	xfs_queue_cowblocks(mp);
846 }
847 
848 int
849 xfs_inode_ag_iterator_flags(
850 	struct xfs_mount	*mp,
851 	int			(*execute)(struct xfs_inode *ip, int flags,
852 					   void *args),
853 	int			flags,
854 	void			*args,
855 	int			iter_flags)
856 {
857 	struct xfs_perag	*pag;
858 	int			error = 0;
859 	int			last_error = 0;
860 	xfs_agnumber_t		ag;
861 
862 	ag = 0;
863 	while ((pag = xfs_perag_get(mp, ag))) {
864 		ag = pag->pag_agno + 1;
865 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
866 					  iter_flags);
867 		xfs_perag_put(pag);
868 		if (error) {
869 			last_error = error;
870 			if (error == -EFSCORRUPTED)
871 				break;
872 		}
873 	}
874 	return last_error;
875 }
876 
877 int
878 xfs_inode_ag_iterator(
879 	struct xfs_mount	*mp,
880 	int			(*execute)(struct xfs_inode *ip, int flags,
881 					   void *args),
882 	int			flags,
883 	void			*args)
884 {
885 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
886 }
887 
888 int
889 xfs_inode_ag_iterator_tag(
890 	struct xfs_mount	*mp,
891 	int			(*execute)(struct xfs_inode *ip, int flags,
892 					   void *args),
893 	int			flags,
894 	void			*args,
895 	int			tag)
896 {
897 	struct xfs_perag	*pag;
898 	int			error = 0;
899 	int			last_error = 0;
900 	xfs_agnumber_t		ag;
901 
902 	ag = 0;
903 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
904 		ag = pag->pag_agno + 1;
905 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
906 					  0);
907 		xfs_perag_put(pag);
908 		if (error) {
909 			last_error = error;
910 			if (error == -EFSCORRUPTED)
911 				break;
912 		}
913 	}
914 	return last_error;
915 }
916 
917 /*
918  * Grab the inode for reclaim exclusively.
919  * Return 0 if we grabbed it, non-zero otherwise.
920  */
921 STATIC int
922 xfs_reclaim_inode_grab(
923 	struct xfs_inode	*ip,
924 	int			flags)
925 {
926 	ASSERT(rcu_read_lock_held());
927 
928 	/* quick check for stale RCU freed inode */
929 	if (!ip->i_ino)
930 		return 1;
931 
932 	/*
933 	 * If we are asked for non-blocking operation, do unlocked checks to
934 	 * see if the inode already is being flushed or in reclaim to avoid
935 	 * lock traffic.
936 	 */
937 	if ((flags & SYNC_TRYLOCK) &&
938 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
939 		return 1;
940 
941 	/*
942 	 * The radix tree lock here protects a thread in xfs_iget from racing
943 	 * with us starting reclaim on the inode.  Once we have the
944 	 * XFS_IRECLAIM flag set it will not touch us.
945 	 *
946 	 * Due to RCU lookup, we may find inodes that have been freed and only
947 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
948 	 * aren't candidates for reclaim at all, so we must check the
949 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
950 	 */
951 	spin_lock(&ip->i_flags_lock);
952 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
953 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
954 		/* not a reclaim candidate. */
955 		spin_unlock(&ip->i_flags_lock);
956 		return 1;
957 	}
958 	__xfs_iflags_set(ip, XFS_IRECLAIM);
959 	spin_unlock(&ip->i_flags_lock);
960 	return 0;
961 }
962 
963 /*
964  * Inodes in different states need to be treated differently. The following
965  * table lists the inode states and the reclaim actions necessary:
966  *
967  *	inode state	     iflush ret		required action
968  *      ---------------      ----------         ---------------
969  *	bad			-		reclaim
970  *	shutdown		EIO		unpin and reclaim
971  *	clean, unpinned		0		reclaim
972  *	stale, unpinned		0		reclaim
973  *	clean, pinned(*)	0		requeue
974  *	stale, pinned		EAGAIN		requeue
975  *	dirty, async		-		requeue
976  *	dirty, sync		0		reclaim
977  *
978  * (*) dgc: I don't think the clean, pinned state is possible but it gets
979  * handled anyway given the order of checks implemented.
980  *
981  * Also, because we get the flush lock first, we know that any inode that has
982  * been flushed delwri has had the flush completed by the time we check that
983  * the inode is clean.
984  *
985  * Note that because the inode is flushed delayed write by AIL pushing, the
986  * flush lock may already be held here and waiting on it can result in very
987  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
988  * the caller should push the AIL first before trying to reclaim inodes to
989  * minimise the amount of time spent waiting.  For background relaim, we only
990  * bother to reclaim clean inodes anyway.
991  *
992  * Hence the order of actions after gaining the locks should be:
993  *	bad		=> reclaim
994  *	shutdown	=> unpin and reclaim
995  *	pinned, async	=> requeue
996  *	pinned, sync	=> unpin
997  *	stale		=> reclaim
998  *	clean		=> reclaim
999  *	dirty, async	=> requeue
1000  *	dirty, sync	=> flush, wait and reclaim
1001  */
1002 STATIC int
1003 xfs_reclaim_inode(
1004 	struct xfs_inode	*ip,
1005 	struct xfs_perag	*pag,
1006 	int			sync_mode)
1007 {
1008 	struct xfs_buf		*bp = NULL;
1009 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1010 	int			error;
1011 
1012 restart:
1013 	error = 0;
1014 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1015 	if (!xfs_iflock_nowait(ip)) {
1016 		if (!(sync_mode & SYNC_WAIT))
1017 			goto out;
1018 		xfs_iflock(ip);
1019 	}
1020 
1021 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1022 		xfs_iunpin_wait(ip);
1023 		/* xfs_iflush_abort() drops the flush lock */
1024 		xfs_iflush_abort(ip, false);
1025 		goto reclaim;
1026 	}
1027 	if (xfs_ipincount(ip)) {
1028 		if (!(sync_mode & SYNC_WAIT))
1029 			goto out_ifunlock;
1030 		xfs_iunpin_wait(ip);
1031 	}
1032 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1033 		xfs_ifunlock(ip);
1034 		goto reclaim;
1035 	}
1036 
1037 	/*
1038 	 * Never flush out dirty data during non-blocking reclaim, as it would
1039 	 * just contend with AIL pushing trying to do the same job.
1040 	 */
1041 	if (!(sync_mode & SYNC_WAIT))
1042 		goto out_ifunlock;
1043 
1044 	/*
1045 	 * Now we have an inode that needs flushing.
1046 	 *
1047 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1048 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1049 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1050 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1051 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1052 	 *
1053 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1054 	 * cache to mark them stale, if we hit this case we don't actually want
1055 	 * to do IO here - we want the inode marked stale so we can simply
1056 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1057 	 * inode, back off and try again.  Hopefully the next pass through will
1058 	 * see the stale flag set on the inode.
1059 	 */
1060 	error = xfs_iflush(ip, &bp);
1061 	if (error == -EAGAIN) {
1062 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1063 		/* backoff longer than in xfs_ifree_cluster */
1064 		delay(2);
1065 		goto restart;
1066 	}
1067 
1068 	if (!error) {
1069 		error = xfs_bwrite(bp);
1070 		xfs_buf_relse(bp);
1071 	}
1072 
1073 reclaim:
1074 	ASSERT(!xfs_isiflocked(ip));
1075 
1076 	/*
1077 	 * Because we use RCU freeing we need to ensure the inode always appears
1078 	 * to be reclaimed with an invalid inode number when in the free state.
1079 	 * We do this as early as possible under the ILOCK so that
1080 	 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
1081 	 * By doing this, we guarantee that once xfs_iflush_cluster has locked
1082 	 * XFS_ILOCK that it will see either a valid, flushable inode that will
1083 	 * serialise correctly, or it will see a clean (and invalid) inode that
1084 	 * it can skip.
1085 	 */
1086 	spin_lock(&ip->i_flags_lock);
1087 	ip->i_flags = XFS_IRECLAIM;
1088 	ip->i_ino = 0;
1089 	spin_unlock(&ip->i_flags_lock);
1090 
1091 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1092 
1093 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1094 	/*
1095 	 * Remove the inode from the per-AG radix tree.
1096 	 *
1097 	 * Because radix_tree_delete won't complain even if the item was never
1098 	 * added to the tree assert that it's been there before to catch
1099 	 * problems with the inode life time early on.
1100 	 */
1101 	spin_lock(&pag->pag_ici_lock);
1102 	if (!radix_tree_delete(&pag->pag_ici_root,
1103 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1104 		ASSERT(0);
1105 	xfs_perag_clear_reclaim_tag(pag);
1106 	spin_unlock(&pag->pag_ici_lock);
1107 
1108 	/*
1109 	 * Here we do an (almost) spurious inode lock in order to coordinate
1110 	 * with inode cache radix tree lookups.  This is because the lookup
1111 	 * can reference the inodes in the cache without taking references.
1112 	 *
1113 	 * We make that OK here by ensuring that we wait until the inode is
1114 	 * unlocked after the lookup before we go ahead and free it.
1115 	 */
1116 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1117 	xfs_qm_dqdetach(ip);
1118 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1119 
1120 	__xfs_inode_free(ip);
1121 	return error;
1122 
1123 out_ifunlock:
1124 	xfs_ifunlock(ip);
1125 out:
1126 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1127 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1128 	/*
1129 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1130 	 * a short while. However, this just burns CPU time scanning the tree
1131 	 * waiting for IO to complete and the reclaim work never goes back to
1132 	 * the idle state. Instead, return 0 to let the next scheduled
1133 	 * background reclaim attempt to reclaim the inode again.
1134 	 */
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1140  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1141  * then a shut down during filesystem unmount reclaim walk leak all the
1142  * unreclaimed inodes.
1143  */
1144 STATIC int
1145 xfs_reclaim_inodes_ag(
1146 	struct xfs_mount	*mp,
1147 	int			flags,
1148 	int			*nr_to_scan)
1149 {
1150 	struct xfs_perag	*pag;
1151 	int			error = 0;
1152 	int			last_error = 0;
1153 	xfs_agnumber_t		ag;
1154 	int			trylock = flags & SYNC_TRYLOCK;
1155 	int			skipped;
1156 
1157 restart:
1158 	ag = 0;
1159 	skipped = 0;
1160 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1161 		unsigned long	first_index = 0;
1162 		int		done = 0;
1163 		int		nr_found = 0;
1164 
1165 		ag = pag->pag_agno + 1;
1166 
1167 		if (trylock) {
1168 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1169 				skipped++;
1170 				xfs_perag_put(pag);
1171 				continue;
1172 			}
1173 			first_index = pag->pag_ici_reclaim_cursor;
1174 		} else
1175 			mutex_lock(&pag->pag_ici_reclaim_lock);
1176 
1177 		do {
1178 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1179 			int	i;
1180 
1181 			rcu_read_lock();
1182 			nr_found = radix_tree_gang_lookup_tag(
1183 					&pag->pag_ici_root,
1184 					(void **)batch, first_index,
1185 					XFS_LOOKUP_BATCH,
1186 					XFS_ICI_RECLAIM_TAG);
1187 			if (!nr_found) {
1188 				done = 1;
1189 				rcu_read_unlock();
1190 				break;
1191 			}
1192 
1193 			/*
1194 			 * Grab the inodes before we drop the lock. if we found
1195 			 * nothing, nr == 0 and the loop will be skipped.
1196 			 */
1197 			for (i = 0; i < nr_found; i++) {
1198 				struct xfs_inode *ip = batch[i];
1199 
1200 				if (done || xfs_reclaim_inode_grab(ip, flags))
1201 					batch[i] = NULL;
1202 
1203 				/*
1204 				 * Update the index for the next lookup. Catch
1205 				 * overflows into the next AG range which can
1206 				 * occur if we have inodes in the last block of
1207 				 * the AG and we are currently pointing to the
1208 				 * last inode.
1209 				 *
1210 				 * Because we may see inodes that are from the
1211 				 * wrong AG due to RCU freeing and
1212 				 * reallocation, only update the index if it
1213 				 * lies in this AG. It was a race that lead us
1214 				 * to see this inode, so another lookup from
1215 				 * the same index will not find it again.
1216 				 */
1217 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1218 								pag->pag_agno)
1219 					continue;
1220 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1221 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1222 					done = 1;
1223 			}
1224 
1225 			/* unlock now we've grabbed the inodes. */
1226 			rcu_read_unlock();
1227 
1228 			for (i = 0; i < nr_found; i++) {
1229 				if (!batch[i])
1230 					continue;
1231 				error = xfs_reclaim_inode(batch[i], pag, flags);
1232 				if (error && last_error != -EFSCORRUPTED)
1233 					last_error = error;
1234 			}
1235 
1236 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1237 
1238 			cond_resched();
1239 
1240 		} while (nr_found && !done && *nr_to_scan > 0);
1241 
1242 		if (trylock && !done)
1243 			pag->pag_ici_reclaim_cursor = first_index;
1244 		else
1245 			pag->pag_ici_reclaim_cursor = 0;
1246 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1247 		xfs_perag_put(pag);
1248 	}
1249 
1250 	/*
1251 	 * if we skipped any AG, and we still have scan count remaining, do
1252 	 * another pass this time using blocking reclaim semantics (i.e
1253 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1254 	 * ensure that when we get more reclaimers than AGs we block rather
1255 	 * than spin trying to execute reclaim.
1256 	 */
1257 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1258 		trylock = 0;
1259 		goto restart;
1260 	}
1261 	return last_error;
1262 }
1263 
1264 int
1265 xfs_reclaim_inodes(
1266 	xfs_mount_t	*mp,
1267 	int		mode)
1268 {
1269 	int		nr_to_scan = INT_MAX;
1270 
1271 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1272 }
1273 
1274 /*
1275  * Scan a certain number of inodes for reclaim.
1276  *
1277  * When called we make sure that there is a background (fast) inode reclaim in
1278  * progress, while we will throttle the speed of reclaim via doing synchronous
1279  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1280  * them to be cleaned, which we hope will not be very long due to the
1281  * background walker having already kicked the IO off on those dirty inodes.
1282  */
1283 long
1284 xfs_reclaim_inodes_nr(
1285 	struct xfs_mount	*mp,
1286 	int			nr_to_scan)
1287 {
1288 	/* kick background reclaimer and push the AIL */
1289 	xfs_reclaim_work_queue(mp);
1290 	xfs_ail_push_all(mp->m_ail);
1291 
1292 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1293 }
1294 
1295 /*
1296  * Return the number of reclaimable inodes in the filesystem for
1297  * the shrinker to determine how much to reclaim.
1298  */
1299 int
1300 xfs_reclaim_inodes_count(
1301 	struct xfs_mount	*mp)
1302 {
1303 	struct xfs_perag	*pag;
1304 	xfs_agnumber_t		ag = 0;
1305 	int			reclaimable = 0;
1306 
1307 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1308 		ag = pag->pag_agno + 1;
1309 		reclaimable += pag->pag_ici_reclaimable;
1310 		xfs_perag_put(pag);
1311 	}
1312 	return reclaimable;
1313 }
1314 
1315 STATIC int
1316 xfs_inode_match_id(
1317 	struct xfs_inode	*ip,
1318 	struct xfs_eofblocks	*eofb)
1319 {
1320 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1321 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1322 		return 0;
1323 
1324 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1325 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1326 		return 0;
1327 
1328 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1329 	    xfs_get_projid(ip) != eofb->eof_prid)
1330 		return 0;
1331 
1332 	return 1;
1333 }
1334 
1335 /*
1336  * A union-based inode filtering algorithm. Process the inode if any of the
1337  * criteria match. This is for global/internal scans only.
1338  */
1339 STATIC int
1340 xfs_inode_match_id_union(
1341 	struct xfs_inode	*ip,
1342 	struct xfs_eofblocks	*eofb)
1343 {
1344 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1345 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1346 		return 1;
1347 
1348 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1349 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1350 		return 1;
1351 
1352 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1353 	    xfs_get_projid(ip) == eofb->eof_prid)
1354 		return 1;
1355 
1356 	return 0;
1357 }
1358 
1359 STATIC int
1360 xfs_inode_free_eofblocks(
1361 	struct xfs_inode	*ip,
1362 	int			flags,
1363 	void			*args)
1364 {
1365 	int ret = 0;
1366 	struct xfs_eofblocks *eofb = args;
1367 	int match;
1368 
1369 	if (!xfs_can_free_eofblocks(ip, false)) {
1370 		/* inode could be preallocated or append-only */
1371 		trace_xfs_inode_free_eofblocks_invalid(ip);
1372 		xfs_inode_clear_eofblocks_tag(ip);
1373 		return 0;
1374 	}
1375 
1376 	/*
1377 	 * If the mapping is dirty the operation can block and wait for some
1378 	 * time. Unless we are waiting, skip it.
1379 	 */
1380 	if (!(flags & SYNC_WAIT) &&
1381 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1382 		return 0;
1383 
1384 	if (eofb) {
1385 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1386 			match = xfs_inode_match_id_union(ip, eofb);
1387 		else
1388 			match = xfs_inode_match_id(ip, eofb);
1389 		if (!match)
1390 			return 0;
1391 
1392 		/* skip the inode if the file size is too small */
1393 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1394 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1395 			return 0;
1396 	}
1397 
1398 	/*
1399 	 * If the caller is waiting, return -EAGAIN to keep the background
1400 	 * scanner moving and revisit the inode in a subsequent pass.
1401 	 */
1402 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1403 		if (flags & SYNC_WAIT)
1404 			ret = -EAGAIN;
1405 		return ret;
1406 	}
1407 	ret = xfs_free_eofblocks(ip);
1408 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1409 
1410 	return ret;
1411 }
1412 
1413 static int
1414 __xfs_icache_free_eofblocks(
1415 	struct xfs_mount	*mp,
1416 	struct xfs_eofblocks	*eofb,
1417 	int			(*execute)(struct xfs_inode *ip, int flags,
1418 					   void *args),
1419 	int			tag)
1420 {
1421 	int flags = SYNC_TRYLOCK;
1422 
1423 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1424 		flags = SYNC_WAIT;
1425 
1426 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1427 					 eofb, tag);
1428 }
1429 
1430 int
1431 xfs_icache_free_eofblocks(
1432 	struct xfs_mount	*mp,
1433 	struct xfs_eofblocks	*eofb)
1434 {
1435 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1436 			XFS_ICI_EOFBLOCKS_TAG);
1437 }
1438 
1439 /*
1440  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1441  * multiple quotas, we don't know exactly which quota caused an allocation
1442  * failure. We make a best effort by including each quota under low free space
1443  * conditions (less than 1% free space) in the scan.
1444  */
1445 static int
1446 __xfs_inode_free_quota_eofblocks(
1447 	struct xfs_inode	*ip,
1448 	int			(*execute)(struct xfs_mount *mp,
1449 					   struct xfs_eofblocks	*eofb))
1450 {
1451 	int scan = 0;
1452 	struct xfs_eofblocks eofb = {0};
1453 	struct xfs_dquot *dq;
1454 
1455 	/*
1456 	 * Run a sync scan to increase effectiveness and use the union filter to
1457 	 * cover all applicable quotas in a single scan.
1458 	 */
1459 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1460 
1461 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1462 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1463 		if (dq && xfs_dquot_lowsp(dq)) {
1464 			eofb.eof_uid = VFS_I(ip)->i_uid;
1465 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1466 			scan = 1;
1467 		}
1468 	}
1469 
1470 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1471 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1472 		if (dq && xfs_dquot_lowsp(dq)) {
1473 			eofb.eof_gid = VFS_I(ip)->i_gid;
1474 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1475 			scan = 1;
1476 		}
1477 	}
1478 
1479 	if (scan)
1480 		execute(ip->i_mount, &eofb);
1481 
1482 	return scan;
1483 }
1484 
1485 int
1486 xfs_inode_free_quota_eofblocks(
1487 	struct xfs_inode *ip)
1488 {
1489 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1490 }
1491 
1492 static void
1493 __xfs_inode_set_eofblocks_tag(
1494 	xfs_inode_t	*ip,
1495 	void		(*execute)(struct xfs_mount *mp),
1496 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1497 				  int error, unsigned long caller_ip),
1498 	int		tag)
1499 {
1500 	struct xfs_mount *mp = ip->i_mount;
1501 	struct xfs_perag *pag;
1502 	int tagged;
1503 
1504 	/*
1505 	 * Don't bother locking the AG and looking up in the radix trees
1506 	 * if we already know that we have the tag set.
1507 	 */
1508 	if (ip->i_flags & XFS_IEOFBLOCKS)
1509 		return;
1510 	spin_lock(&ip->i_flags_lock);
1511 	ip->i_flags |= XFS_IEOFBLOCKS;
1512 	spin_unlock(&ip->i_flags_lock);
1513 
1514 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1515 	spin_lock(&pag->pag_ici_lock);
1516 
1517 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1518 	radix_tree_tag_set(&pag->pag_ici_root,
1519 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1520 	if (!tagged) {
1521 		/* propagate the eofblocks tag up into the perag radix tree */
1522 		spin_lock(&ip->i_mount->m_perag_lock);
1523 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1524 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1525 				   tag);
1526 		spin_unlock(&ip->i_mount->m_perag_lock);
1527 
1528 		/* kick off background trimming */
1529 		execute(ip->i_mount);
1530 
1531 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1532 	}
1533 
1534 	spin_unlock(&pag->pag_ici_lock);
1535 	xfs_perag_put(pag);
1536 }
1537 
1538 void
1539 xfs_inode_set_eofblocks_tag(
1540 	xfs_inode_t	*ip)
1541 {
1542 	trace_xfs_inode_set_eofblocks_tag(ip);
1543 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1544 			trace_xfs_perag_set_eofblocks,
1545 			XFS_ICI_EOFBLOCKS_TAG);
1546 }
1547 
1548 static void
1549 __xfs_inode_clear_eofblocks_tag(
1550 	xfs_inode_t	*ip,
1551 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1552 				    int error, unsigned long caller_ip),
1553 	int		tag)
1554 {
1555 	struct xfs_mount *mp = ip->i_mount;
1556 	struct xfs_perag *pag;
1557 
1558 	spin_lock(&ip->i_flags_lock);
1559 	ip->i_flags &= ~XFS_IEOFBLOCKS;
1560 	spin_unlock(&ip->i_flags_lock);
1561 
1562 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1563 	spin_lock(&pag->pag_ici_lock);
1564 
1565 	radix_tree_tag_clear(&pag->pag_ici_root,
1566 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1567 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1568 		/* clear the eofblocks tag from the perag radix tree */
1569 		spin_lock(&ip->i_mount->m_perag_lock);
1570 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1571 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1572 				     tag);
1573 		spin_unlock(&ip->i_mount->m_perag_lock);
1574 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1575 	}
1576 
1577 	spin_unlock(&pag->pag_ici_lock);
1578 	xfs_perag_put(pag);
1579 }
1580 
1581 void
1582 xfs_inode_clear_eofblocks_tag(
1583 	xfs_inode_t	*ip)
1584 {
1585 	trace_xfs_inode_clear_eofblocks_tag(ip);
1586 	return __xfs_inode_clear_eofblocks_tag(ip,
1587 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1588 }
1589 
1590 /*
1591  * Automatic CoW Reservation Freeing
1592  *
1593  * These functions automatically garbage collect leftover CoW reservations
1594  * that were made on behalf of a cowextsize hint when we start to run out
1595  * of quota or when the reservations sit around for too long.  If the file
1596  * has dirty pages or is undergoing writeback, its CoW reservations will
1597  * be retained.
1598  *
1599  * The actual garbage collection piggybacks off the same code that runs
1600  * the speculative EOF preallocation garbage collector.
1601  */
1602 STATIC int
1603 xfs_inode_free_cowblocks(
1604 	struct xfs_inode	*ip,
1605 	int			flags,
1606 	void			*args)
1607 {
1608 	int ret;
1609 	struct xfs_eofblocks *eofb = args;
1610 	int match;
1611 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1612 
1613 	/*
1614 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1615 	 * possible the inode was fully unshared since it was originally tagged.
1616 	 */
1617 	if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1618 		trace_xfs_inode_free_cowblocks_invalid(ip);
1619 		xfs_inode_clear_cowblocks_tag(ip);
1620 		return 0;
1621 	}
1622 
1623 	/*
1624 	 * If the mapping is dirty or under writeback we cannot touch the
1625 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1626 	 */
1627 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1628 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1629 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1630 	    atomic_read(&VFS_I(ip)->i_dio_count))
1631 		return 0;
1632 
1633 	if (eofb) {
1634 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1635 			match = xfs_inode_match_id_union(ip, eofb);
1636 		else
1637 			match = xfs_inode_match_id(ip, eofb);
1638 		if (!match)
1639 			return 0;
1640 
1641 		/* skip the inode if the file size is too small */
1642 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1643 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1644 			return 0;
1645 	}
1646 
1647 	/* Free the CoW blocks */
1648 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1649 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1650 
1651 	ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1652 
1653 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1654 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1655 
1656 	return ret;
1657 }
1658 
1659 int
1660 xfs_icache_free_cowblocks(
1661 	struct xfs_mount	*mp,
1662 	struct xfs_eofblocks	*eofb)
1663 {
1664 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1665 			XFS_ICI_COWBLOCKS_TAG);
1666 }
1667 
1668 int
1669 xfs_inode_free_quota_cowblocks(
1670 	struct xfs_inode *ip)
1671 {
1672 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1673 }
1674 
1675 void
1676 xfs_inode_set_cowblocks_tag(
1677 	xfs_inode_t	*ip)
1678 {
1679 	trace_xfs_inode_set_cowblocks_tag(ip);
1680 	return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1681 			trace_xfs_perag_set_cowblocks,
1682 			XFS_ICI_COWBLOCKS_TAG);
1683 }
1684 
1685 void
1686 xfs_inode_clear_cowblocks_tag(
1687 	xfs_inode_t	*ip)
1688 {
1689 	trace_xfs_inode_clear_cowblocks_tag(ip);
1690 	return __xfs_inode_clear_eofblocks_tag(ip,
1691 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1692 }
1693