1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 28 #include <linux/iversion.h> 29 30 /* Radix tree tags for incore inode tree. */ 31 32 /* inode is to be reclaimed */ 33 #define XFS_ICI_RECLAIM_TAG 0 34 /* Inode has speculative preallocations (posteof or cow) to clean. */ 35 #define XFS_ICI_BLOCKGC_TAG 1 36 37 /* 38 * The goal for walking incore inodes. These can correspond with incore inode 39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 40 */ 41 enum xfs_icwalk_goal { 42 /* Goals directly associated with tagged inodes. */ 43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 45 }; 46 47 static int xfs_icwalk(struct xfs_mount *mp, 48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 49 static int xfs_icwalk_ag(struct xfs_perag *pag, 50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 51 52 /* 53 * Private inode cache walk flags for struct xfs_icwalk. Must not 54 * coincide with XFS_ICWALK_FLAGS_VALID. 55 */ 56 57 /* Stop scanning after icw_scan_limit inodes. */ 58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 59 60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 62 63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 64 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 65 XFS_ICWALK_FLAG_UNION) 66 67 /* 68 * Allocate and initialise an xfs_inode. 69 */ 70 struct xfs_inode * 71 xfs_inode_alloc( 72 struct xfs_mount *mp, 73 xfs_ino_t ino) 74 { 75 struct xfs_inode *ip; 76 77 /* 78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 79 * and return NULL here on ENOMEM. 80 */ 81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 82 83 if (inode_init_always(mp->m_super, VFS_I(ip))) { 84 kmem_cache_free(xfs_inode_cache, ip); 85 return NULL; 86 } 87 88 /* VFS doesn't initialise i_mode or i_state! */ 89 VFS_I(ip)->i_mode = 0; 90 VFS_I(ip)->i_state = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_cowfp = NULL; 102 memset(&ip->i_af, 0, sizeof(ip->i_af)); 103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 104 memset(&ip->i_df, 0, sizeof(ip->i_df)); 105 ip->i_flags = 0; 106 ip->i_delayed_blks = 0; 107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 108 ip->i_nblocks = 0; 109 ip->i_forkoff = 0; 110 ip->i_sick = 0; 111 ip->i_checked = 0; 112 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 113 INIT_LIST_HEAD(&ip->i_ioend_list); 114 spin_lock_init(&ip->i_ioend_lock); 115 ip->i_next_unlinked = NULLAGINO; 116 ip->i_prev_unlinked = NULLAGINO; 117 118 return ip; 119 } 120 121 STATIC void 122 xfs_inode_free_callback( 123 struct rcu_head *head) 124 { 125 struct inode *inode = container_of(head, struct inode, i_rcu); 126 struct xfs_inode *ip = XFS_I(inode); 127 128 switch (VFS_I(ip)->i_mode & S_IFMT) { 129 case S_IFREG: 130 case S_IFDIR: 131 case S_IFLNK: 132 xfs_idestroy_fork(&ip->i_df); 133 break; 134 } 135 136 xfs_ifork_zap_attr(ip); 137 138 if (ip->i_cowfp) { 139 xfs_idestroy_fork(ip->i_cowfp); 140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 141 } 142 if (ip->i_itemp) { 143 ASSERT(!test_bit(XFS_LI_IN_AIL, 144 &ip->i_itemp->ili_item.li_flags)); 145 xfs_inode_item_destroy(ip); 146 ip->i_itemp = NULL; 147 } 148 149 kmem_cache_free(xfs_inode_cache, ip); 150 } 151 152 static void 153 __xfs_inode_free( 154 struct xfs_inode *ip) 155 { 156 /* asserts to verify all state is correct here */ 157 ASSERT(atomic_read(&ip->i_pincount) == 0); 158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 159 XFS_STATS_DEC(ip->i_mount, vn_active); 160 161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 162 } 163 164 void 165 xfs_inode_free( 166 struct xfs_inode *ip) 167 { 168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 169 170 /* 171 * Because we use RCU freeing we need to ensure the inode always 172 * appears to be reclaimed with an invalid inode number when in the 173 * free state. The ip->i_flags_lock provides the barrier against lookup 174 * races. 175 */ 176 spin_lock(&ip->i_flags_lock); 177 ip->i_flags = XFS_IRECLAIM; 178 ip->i_ino = 0; 179 spin_unlock(&ip->i_flags_lock); 180 181 __xfs_inode_free(ip); 182 } 183 184 /* 185 * Queue background inode reclaim work if there are reclaimable inodes and there 186 * isn't reclaim work already scheduled or in progress. 187 */ 188 static void 189 xfs_reclaim_work_queue( 190 struct xfs_mount *mp) 191 { 192 193 rcu_read_lock(); 194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 197 } 198 rcu_read_unlock(); 199 } 200 201 /* 202 * Background scanning to trim preallocated space. This is queued based on the 203 * 'speculative_prealloc_lifetime' tunable (5m by default). 204 */ 205 static inline void 206 xfs_blockgc_queue( 207 struct xfs_perag *pag) 208 { 209 struct xfs_mount *mp = pag->pag_mount; 210 211 if (!xfs_is_blockgc_enabled(mp)) 212 return; 213 214 rcu_read_lock(); 215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 216 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 217 &pag->pag_blockgc_work, 218 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 219 rcu_read_unlock(); 220 } 221 222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 223 static void 224 xfs_perag_set_inode_tag( 225 struct xfs_perag *pag, 226 xfs_agino_t agino, 227 unsigned int tag) 228 { 229 struct xfs_mount *mp = pag->pag_mount; 230 bool was_tagged; 231 232 lockdep_assert_held(&pag->pag_ici_lock); 233 234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 236 237 if (tag == XFS_ICI_RECLAIM_TAG) 238 pag->pag_ici_reclaimable++; 239 240 if (was_tagged) 241 return; 242 243 /* propagate the tag up into the perag radix tree */ 244 spin_lock(&mp->m_perag_lock); 245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 246 spin_unlock(&mp->m_perag_lock); 247 248 /* start background work */ 249 switch (tag) { 250 case XFS_ICI_RECLAIM_TAG: 251 xfs_reclaim_work_queue(mp); 252 break; 253 case XFS_ICI_BLOCKGC_TAG: 254 xfs_blockgc_queue(pag); 255 break; 256 } 257 258 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 259 } 260 261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 262 static void 263 xfs_perag_clear_inode_tag( 264 struct xfs_perag *pag, 265 xfs_agino_t agino, 266 unsigned int tag) 267 { 268 struct xfs_mount *mp = pag->pag_mount; 269 270 lockdep_assert_held(&pag->pag_ici_lock); 271 272 /* 273 * Reclaim can signal (with a null agino) that it cleared its own tag 274 * by removing the inode from the radix tree. 275 */ 276 if (agino != NULLAGINO) 277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 278 else 279 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 280 281 if (tag == XFS_ICI_RECLAIM_TAG) 282 pag->pag_ici_reclaimable--; 283 284 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 285 return; 286 287 /* clear the tag from the perag radix tree */ 288 spin_lock(&mp->m_perag_lock); 289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 290 spin_unlock(&mp->m_perag_lock); 291 292 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_); 293 } 294 295 /* 296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 297 * part of the structure. This is made more complex by the fact we store 298 * information about the on-disk values in the VFS inode and so we can't just 299 * overwrite the values unconditionally. Hence we save the parameters we 300 * need to retain across reinitialisation, and rewrite them into the VFS inode 301 * after reinitialisation even if it fails. 302 */ 303 static int 304 xfs_reinit_inode( 305 struct xfs_mount *mp, 306 struct inode *inode) 307 { 308 int error; 309 uint32_t nlink = inode->i_nlink; 310 uint32_t generation = inode->i_generation; 311 uint64_t version = inode_peek_iversion(inode); 312 umode_t mode = inode->i_mode; 313 dev_t dev = inode->i_rdev; 314 kuid_t uid = inode->i_uid; 315 kgid_t gid = inode->i_gid; 316 317 error = inode_init_always(mp->m_super, inode); 318 319 set_nlink(inode, nlink); 320 inode->i_generation = generation; 321 inode_set_iversion_queried(inode, version); 322 inode->i_mode = mode; 323 inode->i_rdev = dev; 324 inode->i_uid = uid; 325 inode->i_gid = gid; 326 mapping_set_large_folios(inode->i_mapping); 327 return error; 328 } 329 330 /* 331 * Carefully nudge an inode whose VFS state has been torn down back into a 332 * usable state. Drops the i_flags_lock and the rcu read lock. 333 */ 334 static int 335 xfs_iget_recycle( 336 struct xfs_perag *pag, 337 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 338 { 339 struct xfs_mount *mp = ip->i_mount; 340 struct inode *inode = VFS_I(ip); 341 int error; 342 343 trace_xfs_iget_recycle(ip); 344 345 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 346 return -EAGAIN; 347 348 /* 349 * We need to make it look like the inode is being reclaimed to prevent 350 * the actual reclaim workers from stomping over us while we recycle 351 * the inode. We can't clear the radix tree tag yet as it requires 352 * pag_ici_lock to be held exclusive. 353 */ 354 ip->i_flags |= XFS_IRECLAIM; 355 356 spin_unlock(&ip->i_flags_lock); 357 rcu_read_unlock(); 358 359 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 360 error = xfs_reinit_inode(mp, inode); 361 xfs_iunlock(ip, XFS_ILOCK_EXCL); 362 if (error) { 363 /* 364 * Re-initializing the inode failed, and we are in deep 365 * trouble. Try to re-add it to the reclaim list. 366 */ 367 rcu_read_lock(); 368 spin_lock(&ip->i_flags_lock); 369 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 370 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 371 spin_unlock(&ip->i_flags_lock); 372 rcu_read_unlock(); 373 374 trace_xfs_iget_recycle_fail(ip); 375 return error; 376 } 377 378 spin_lock(&pag->pag_ici_lock); 379 spin_lock(&ip->i_flags_lock); 380 381 /* 382 * Clear the per-lifetime state in the inode as we are now effectively 383 * a new inode and need to return to the initial state before reuse 384 * occurs. 385 */ 386 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 387 ip->i_flags |= XFS_INEW; 388 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 389 XFS_ICI_RECLAIM_TAG); 390 inode->i_state = I_NEW; 391 spin_unlock(&ip->i_flags_lock); 392 spin_unlock(&pag->pag_ici_lock); 393 394 return 0; 395 } 396 397 /* 398 * If we are allocating a new inode, then check what was returned is 399 * actually a free, empty inode. If we are not allocating an inode, 400 * then check we didn't find a free inode. 401 * 402 * Returns: 403 * 0 if the inode free state matches the lookup context 404 * -ENOENT if the inode is free and we are not allocating 405 * -EFSCORRUPTED if there is any state mismatch at all 406 */ 407 static int 408 xfs_iget_check_free_state( 409 struct xfs_inode *ip, 410 int flags) 411 { 412 if (flags & XFS_IGET_CREATE) { 413 /* should be a free inode */ 414 if (VFS_I(ip)->i_mode != 0) { 415 xfs_warn(ip->i_mount, 416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 417 ip->i_ino, VFS_I(ip)->i_mode); 418 return -EFSCORRUPTED; 419 } 420 421 if (ip->i_nblocks != 0) { 422 xfs_warn(ip->i_mount, 423 "Corruption detected! Free inode 0x%llx has blocks allocated!", 424 ip->i_ino); 425 return -EFSCORRUPTED; 426 } 427 return 0; 428 } 429 430 /* should be an allocated inode */ 431 if (VFS_I(ip)->i_mode == 0) 432 return -ENOENT; 433 434 return 0; 435 } 436 437 /* Make all pending inactivation work start immediately. */ 438 static void 439 xfs_inodegc_queue_all( 440 struct xfs_mount *mp) 441 { 442 struct xfs_inodegc *gc; 443 int cpu; 444 445 for_each_online_cpu(cpu) { 446 gc = per_cpu_ptr(mp->m_inodegc, cpu); 447 if (!llist_empty(&gc->list)) 448 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 449 } 450 } 451 452 /* 453 * Check the validity of the inode we just found it the cache 454 */ 455 static int 456 xfs_iget_cache_hit( 457 struct xfs_perag *pag, 458 struct xfs_inode *ip, 459 xfs_ino_t ino, 460 int flags, 461 int lock_flags) __releases(RCU) 462 { 463 struct inode *inode = VFS_I(ip); 464 struct xfs_mount *mp = ip->i_mount; 465 int error; 466 467 /* 468 * check for re-use of an inode within an RCU grace period due to the 469 * radix tree nodes not being updated yet. We monitor for this by 470 * setting the inode number to zero before freeing the inode structure. 471 * If the inode has been reallocated and set up, then the inode number 472 * will not match, so check for that, too. 473 */ 474 spin_lock(&ip->i_flags_lock); 475 if (ip->i_ino != ino) 476 goto out_skip; 477 478 /* 479 * If we are racing with another cache hit that is currently 480 * instantiating this inode or currently recycling it out of 481 * reclaimable state, wait for the initialisation to complete 482 * before continuing. 483 * 484 * If we're racing with the inactivation worker we also want to wait. 485 * If we're creating a new file, it's possible that the worker 486 * previously marked the inode as free on disk but hasn't finished 487 * updating the incore state yet. The AGI buffer will be dirty and 488 * locked to the icreate transaction, so a synchronous push of the 489 * inodegc workers would result in deadlock. For a regular iget, the 490 * worker is running already, so we might as well wait. 491 * 492 * XXX(hch): eventually we should do something equivalent to 493 * wait_on_inode to wait for these flags to be cleared 494 * instead of polling for it. 495 */ 496 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 497 goto out_skip; 498 499 if (ip->i_flags & XFS_NEED_INACTIVE) { 500 /* Unlinked inodes cannot be re-grabbed. */ 501 if (VFS_I(ip)->i_nlink == 0) { 502 error = -ENOENT; 503 goto out_error; 504 } 505 goto out_inodegc_flush; 506 } 507 508 /* 509 * Check the inode free state is valid. This also detects lookup 510 * racing with unlinks. 511 */ 512 error = xfs_iget_check_free_state(ip, flags); 513 if (error) 514 goto out_error; 515 516 /* Skip inodes that have no vfs state. */ 517 if ((flags & XFS_IGET_INCORE) && 518 (ip->i_flags & XFS_IRECLAIMABLE)) 519 goto out_skip; 520 521 /* The inode fits the selection criteria; process it. */ 522 if (ip->i_flags & XFS_IRECLAIMABLE) { 523 /* Drops i_flags_lock and RCU read lock. */ 524 error = xfs_iget_recycle(pag, ip); 525 if (error == -EAGAIN) 526 goto out_skip; 527 if (error) 528 return error; 529 } else { 530 /* If the VFS inode is being torn down, pause and try again. */ 531 if (!igrab(inode)) 532 goto out_skip; 533 534 /* We've got a live one. */ 535 spin_unlock(&ip->i_flags_lock); 536 rcu_read_unlock(); 537 trace_xfs_iget_hit(ip); 538 } 539 540 if (lock_flags != 0) 541 xfs_ilock(ip, lock_flags); 542 543 if (!(flags & XFS_IGET_INCORE)) 544 xfs_iflags_clear(ip, XFS_ISTALE); 545 XFS_STATS_INC(mp, xs_ig_found); 546 547 return 0; 548 549 out_skip: 550 trace_xfs_iget_skip(ip); 551 XFS_STATS_INC(mp, xs_ig_frecycle); 552 error = -EAGAIN; 553 out_error: 554 spin_unlock(&ip->i_flags_lock); 555 rcu_read_unlock(); 556 return error; 557 558 out_inodegc_flush: 559 spin_unlock(&ip->i_flags_lock); 560 rcu_read_unlock(); 561 /* 562 * Do not wait for the workers, because the caller could hold an AGI 563 * buffer lock. We're just going to sleep in a loop anyway. 564 */ 565 if (xfs_is_inodegc_enabled(mp)) 566 xfs_inodegc_queue_all(mp); 567 return -EAGAIN; 568 } 569 570 static int 571 xfs_iget_cache_miss( 572 struct xfs_mount *mp, 573 struct xfs_perag *pag, 574 xfs_trans_t *tp, 575 xfs_ino_t ino, 576 struct xfs_inode **ipp, 577 int flags, 578 int lock_flags) 579 { 580 struct xfs_inode *ip; 581 int error; 582 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 583 int iflags; 584 585 ip = xfs_inode_alloc(mp, ino); 586 if (!ip) 587 return -ENOMEM; 588 589 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags); 590 if (error) 591 goto out_destroy; 592 593 /* 594 * For version 5 superblocks, if we are initialising a new inode and we 595 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 596 * simply build the new inode core with a random generation number. 597 * 598 * For version 4 (and older) superblocks, log recovery is dependent on 599 * the i_flushiter field being initialised from the current on-disk 600 * value and hence we must also read the inode off disk even when 601 * initializing new inodes. 602 */ 603 if (xfs_has_v3inodes(mp) && 604 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 605 VFS_I(ip)->i_generation = get_random_u32(); 606 } else { 607 struct xfs_buf *bp; 608 609 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 610 if (error) 611 goto out_destroy; 612 613 error = xfs_inode_from_disk(ip, 614 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 615 if (!error) 616 xfs_buf_set_ref(bp, XFS_INO_REF); 617 xfs_trans_brelse(tp, bp); 618 619 if (error) 620 goto out_destroy; 621 } 622 623 trace_xfs_iget_miss(ip); 624 625 /* 626 * Check the inode free state is valid. This also detects lookup 627 * racing with unlinks. 628 */ 629 error = xfs_iget_check_free_state(ip, flags); 630 if (error) 631 goto out_destroy; 632 633 /* 634 * Preload the radix tree so we can insert safely under the 635 * write spinlock. Note that we cannot sleep inside the preload 636 * region. Since we can be called from transaction context, don't 637 * recurse into the file system. 638 */ 639 if (radix_tree_preload(GFP_NOFS)) { 640 error = -EAGAIN; 641 goto out_destroy; 642 } 643 644 /* 645 * Because the inode hasn't been added to the radix-tree yet it can't 646 * be found by another thread, so we can do the non-sleeping lock here. 647 */ 648 if (lock_flags) { 649 if (!xfs_ilock_nowait(ip, lock_flags)) 650 BUG(); 651 } 652 653 /* 654 * These values must be set before inserting the inode into the radix 655 * tree as the moment it is inserted a concurrent lookup (allowed by the 656 * RCU locking mechanism) can find it and that lookup must see that this 657 * is an inode currently under construction (i.e. that XFS_INEW is set). 658 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 659 * memory barrier that ensures this detection works correctly at lookup 660 * time. 661 */ 662 iflags = XFS_INEW; 663 if (flags & XFS_IGET_DONTCACHE) 664 d_mark_dontcache(VFS_I(ip)); 665 ip->i_udquot = NULL; 666 ip->i_gdquot = NULL; 667 ip->i_pdquot = NULL; 668 xfs_iflags_set(ip, iflags); 669 670 /* insert the new inode */ 671 spin_lock(&pag->pag_ici_lock); 672 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 673 if (unlikely(error)) { 674 WARN_ON(error != -EEXIST); 675 XFS_STATS_INC(mp, xs_ig_dup); 676 error = -EAGAIN; 677 goto out_preload_end; 678 } 679 spin_unlock(&pag->pag_ici_lock); 680 radix_tree_preload_end(); 681 682 *ipp = ip; 683 return 0; 684 685 out_preload_end: 686 spin_unlock(&pag->pag_ici_lock); 687 radix_tree_preload_end(); 688 if (lock_flags) 689 xfs_iunlock(ip, lock_flags); 690 out_destroy: 691 __destroy_inode(VFS_I(ip)); 692 xfs_inode_free(ip); 693 return error; 694 } 695 696 /* 697 * Look up an inode by number in the given file system. The inode is looked up 698 * in the cache held in each AG. If the inode is found in the cache, initialise 699 * the vfs inode if necessary. 700 * 701 * If it is not in core, read it in from the file system's device, add it to the 702 * cache and initialise the vfs inode. 703 * 704 * The inode is locked according to the value of the lock_flags parameter. 705 * Inode lookup is only done during metadata operations and not as part of the 706 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 707 */ 708 int 709 xfs_iget( 710 struct xfs_mount *mp, 711 struct xfs_trans *tp, 712 xfs_ino_t ino, 713 uint flags, 714 uint lock_flags, 715 struct xfs_inode **ipp) 716 { 717 struct xfs_inode *ip; 718 struct xfs_perag *pag; 719 xfs_agino_t agino; 720 int error; 721 722 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 723 724 /* reject inode numbers outside existing AGs */ 725 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 726 return -EINVAL; 727 728 XFS_STATS_INC(mp, xs_ig_attempts); 729 730 /* get the perag structure and ensure that it's inode capable */ 731 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 732 agino = XFS_INO_TO_AGINO(mp, ino); 733 734 again: 735 error = 0; 736 rcu_read_lock(); 737 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 738 739 if (ip) { 740 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 741 if (error) 742 goto out_error_or_again; 743 } else { 744 rcu_read_unlock(); 745 if (flags & XFS_IGET_INCORE) { 746 error = -ENODATA; 747 goto out_error_or_again; 748 } 749 XFS_STATS_INC(mp, xs_ig_missed); 750 751 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 752 flags, lock_flags); 753 if (error) 754 goto out_error_or_again; 755 } 756 xfs_perag_put(pag); 757 758 *ipp = ip; 759 760 /* 761 * If we have a real type for an on-disk inode, we can setup the inode 762 * now. If it's a new inode being created, xfs_init_new_inode will 763 * handle it. 764 */ 765 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 766 xfs_setup_existing_inode(ip); 767 return 0; 768 769 out_error_or_again: 770 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 771 delay(1); 772 goto again; 773 } 774 xfs_perag_put(pag); 775 return error; 776 } 777 778 /* 779 * "Is this a cached inode that's also allocated?" 780 * 781 * Look up an inode by number in the given file system. If the inode is 782 * in cache and isn't in purgatory, return 1 if the inode is allocated 783 * and 0 if it is not. For all other cases (not in cache, being torn 784 * down, etc.), return a negative error code. 785 * 786 * The caller has to prevent inode allocation and freeing activity, 787 * presumably by locking the AGI buffer. This is to ensure that an 788 * inode cannot transition from allocated to freed until the caller is 789 * ready to allow that. If the inode is in an intermediate state (new, 790 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 791 * inode is not in the cache, -ENOENT will be returned. The caller must 792 * deal with these scenarios appropriately. 793 * 794 * This is a specialized use case for the online scrubber; if you're 795 * reading this, you probably want xfs_iget. 796 */ 797 int 798 xfs_icache_inode_is_allocated( 799 struct xfs_mount *mp, 800 struct xfs_trans *tp, 801 xfs_ino_t ino, 802 bool *inuse) 803 { 804 struct xfs_inode *ip; 805 int error; 806 807 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 808 if (error) 809 return error; 810 811 *inuse = !!(VFS_I(ip)->i_mode); 812 xfs_irele(ip); 813 return 0; 814 } 815 816 /* 817 * Grab the inode for reclaim exclusively. 818 * 819 * We have found this inode via a lookup under RCU, so the inode may have 820 * already been freed, or it may be in the process of being recycled by 821 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 822 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 823 * will not be set. Hence we need to check for both these flag conditions to 824 * avoid inodes that are no longer reclaim candidates. 825 * 826 * Note: checking for other state flags here, under the i_flags_lock or not, is 827 * racy and should be avoided. Those races should be resolved only after we have 828 * ensured that we are able to reclaim this inode and the world can see that we 829 * are going to reclaim it. 830 * 831 * Return true if we grabbed it, false otherwise. 832 */ 833 static bool 834 xfs_reclaim_igrab( 835 struct xfs_inode *ip, 836 struct xfs_icwalk *icw) 837 { 838 ASSERT(rcu_read_lock_held()); 839 840 spin_lock(&ip->i_flags_lock); 841 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 842 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 843 /* not a reclaim candidate. */ 844 spin_unlock(&ip->i_flags_lock); 845 return false; 846 } 847 848 /* Don't reclaim a sick inode unless the caller asked for it. */ 849 if (ip->i_sick && 850 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 851 spin_unlock(&ip->i_flags_lock); 852 return false; 853 } 854 855 __xfs_iflags_set(ip, XFS_IRECLAIM); 856 spin_unlock(&ip->i_flags_lock); 857 return true; 858 } 859 860 /* 861 * Inode reclaim is non-blocking, so the default action if progress cannot be 862 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 863 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 864 * blocking anymore and hence we can wait for the inode to be able to reclaim 865 * it. 866 * 867 * We do no IO here - if callers require inodes to be cleaned they must push the 868 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 869 * done in the background in a non-blocking manner, and enables memory reclaim 870 * to make progress without blocking. 871 */ 872 static void 873 xfs_reclaim_inode( 874 struct xfs_inode *ip, 875 struct xfs_perag *pag) 876 { 877 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 878 879 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 880 goto out; 881 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 882 goto out_iunlock; 883 884 /* 885 * Check for log shutdown because aborting the inode can move the log 886 * tail and corrupt in memory state. This is fine if the log is shut 887 * down, but if the log is still active and only the mount is shut down 888 * then the in-memory log tail movement caused by the abort can be 889 * incorrectly propagated to disk. 890 */ 891 if (xlog_is_shutdown(ip->i_mount->m_log)) { 892 xfs_iunpin_wait(ip); 893 xfs_iflush_shutdown_abort(ip); 894 goto reclaim; 895 } 896 if (xfs_ipincount(ip)) 897 goto out_clear_flush; 898 if (!xfs_inode_clean(ip)) 899 goto out_clear_flush; 900 901 xfs_iflags_clear(ip, XFS_IFLUSHING); 902 reclaim: 903 trace_xfs_inode_reclaiming(ip); 904 905 /* 906 * Because we use RCU freeing we need to ensure the inode always appears 907 * to be reclaimed with an invalid inode number when in the free state. 908 * We do this as early as possible under the ILOCK so that 909 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 910 * detect races with us here. By doing this, we guarantee that once 911 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 912 * it will see either a valid inode that will serialise correctly, or it 913 * will see an invalid inode that it can skip. 914 */ 915 spin_lock(&ip->i_flags_lock); 916 ip->i_flags = XFS_IRECLAIM; 917 ip->i_ino = 0; 918 ip->i_sick = 0; 919 ip->i_checked = 0; 920 spin_unlock(&ip->i_flags_lock); 921 922 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 923 xfs_iunlock(ip, XFS_ILOCK_EXCL); 924 925 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 926 /* 927 * Remove the inode from the per-AG radix tree. 928 * 929 * Because radix_tree_delete won't complain even if the item was never 930 * added to the tree assert that it's been there before to catch 931 * problems with the inode life time early on. 932 */ 933 spin_lock(&pag->pag_ici_lock); 934 if (!radix_tree_delete(&pag->pag_ici_root, 935 XFS_INO_TO_AGINO(ip->i_mount, ino))) 936 ASSERT(0); 937 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 938 spin_unlock(&pag->pag_ici_lock); 939 940 /* 941 * Here we do an (almost) spurious inode lock in order to coordinate 942 * with inode cache radix tree lookups. This is because the lookup 943 * can reference the inodes in the cache without taking references. 944 * 945 * We make that OK here by ensuring that we wait until the inode is 946 * unlocked after the lookup before we go ahead and free it. 947 */ 948 xfs_ilock(ip, XFS_ILOCK_EXCL); 949 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 950 xfs_iunlock(ip, XFS_ILOCK_EXCL); 951 ASSERT(xfs_inode_clean(ip)); 952 953 __xfs_inode_free(ip); 954 return; 955 956 out_clear_flush: 957 xfs_iflags_clear(ip, XFS_IFLUSHING); 958 out_iunlock: 959 xfs_iunlock(ip, XFS_ILOCK_EXCL); 960 out: 961 xfs_iflags_clear(ip, XFS_IRECLAIM); 962 } 963 964 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 965 static inline bool 966 xfs_want_reclaim_sick( 967 struct xfs_mount *mp) 968 { 969 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 970 xfs_is_shutdown(mp); 971 } 972 973 void 974 xfs_reclaim_inodes( 975 struct xfs_mount *mp) 976 { 977 struct xfs_icwalk icw = { 978 .icw_flags = 0, 979 }; 980 981 if (xfs_want_reclaim_sick(mp)) 982 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 983 984 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 985 xfs_ail_push_all_sync(mp->m_ail); 986 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 987 } 988 } 989 990 /* 991 * The shrinker infrastructure determines how many inodes we should scan for 992 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 993 * push the AIL here. We also want to proactively free up memory if we can to 994 * minimise the amount of work memory reclaim has to do so we kick the 995 * background reclaim if it isn't already scheduled. 996 */ 997 long 998 xfs_reclaim_inodes_nr( 999 struct xfs_mount *mp, 1000 unsigned long nr_to_scan) 1001 { 1002 struct xfs_icwalk icw = { 1003 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1004 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1005 }; 1006 1007 if (xfs_want_reclaim_sick(mp)) 1008 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1009 1010 /* kick background reclaimer and push the AIL */ 1011 xfs_reclaim_work_queue(mp); 1012 xfs_ail_push_all(mp->m_ail); 1013 1014 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1015 return 0; 1016 } 1017 1018 /* 1019 * Return the number of reclaimable inodes in the filesystem for 1020 * the shrinker to determine how much to reclaim. 1021 */ 1022 long 1023 xfs_reclaim_inodes_count( 1024 struct xfs_mount *mp) 1025 { 1026 struct xfs_perag *pag; 1027 xfs_agnumber_t ag = 0; 1028 long reclaimable = 0; 1029 1030 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1031 ag = pag->pag_agno + 1; 1032 reclaimable += pag->pag_ici_reclaimable; 1033 xfs_perag_put(pag); 1034 } 1035 return reclaimable; 1036 } 1037 1038 STATIC bool 1039 xfs_icwalk_match_id( 1040 struct xfs_inode *ip, 1041 struct xfs_icwalk *icw) 1042 { 1043 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1044 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1045 return false; 1046 1047 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1048 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1049 return false; 1050 1051 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1052 ip->i_projid != icw->icw_prid) 1053 return false; 1054 1055 return true; 1056 } 1057 1058 /* 1059 * A union-based inode filtering algorithm. Process the inode if any of the 1060 * criteria match. This is for global/internal scans only. 1061 */ 1062 STATIC bool 1063 xfs_icwalk_match_id_union( 1064 struct xfs_inode *ip, 1065 struct xfs_icwalk *icw) 1066 { 1067 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1068 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1069 return true; 1070 1071 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1072 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1073 return true; 1074 1075 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1076 ip->i_projid == icw->icw_prid) 1077 return true; 1078 1079 return false; 1080 } 1081 1082 /* 1083 * Is this inode @ip eligible for eof/cow block reclamation, given some 1084 * filtering parameters @icw? The inode is eligible if @icw is null or 1085 * if the predicate functions match. 1086 */ 1087 static bool 1088 xfs_icwalk_match( 1089 struct xfs_inode *ip, 1090 struct xfs_icwalk *icw) 1091 { 1092 bool match; 1093 1094 if (!icw) 1095 return true; 1096 1097 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1098 match = xfs_icwalk_match_id_union(ip, icw); 1099 else 1100 match = xfs_icwalk_match_id(ip, icw); 1101 if (!match) 1102 return false; 1103 1104 /* skip the inode if the file size is too small */ 1105 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1106 XFS_ISIZE(ip) < icw->icw_min_file_size) 1107 return false; 1108 1109 return true; 1110 } 1111 1112 /* 1113 * This is a fast pass over the inode cache to try to get reclaim moving on as 1114 * many inodes as possible in a short period of time. It kicks itself every few 1115 * seconds, as well as being kicked by the inode cache shrinker when memory 1116 * goes low. 1117 */ 1118 void 1119 xfs_reclaim_worker( 1120 struct work_struct *work) 1121 { 1122 struct xfs_mount *mp = container_of(to_delayed_work(work), 1123 struct xfs_mount, m_reclaim_work); 1124 1125 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1126 xfs_reclaim_work_queue(mp); 1127 } 1128 1129 STATIC int 1130 xfs_inode_free_eofblocks( 1131 struct xfs_inode *ip, 1132 struct xfs_icwalk *icw, 1133 unsigned int *lockflags) 1134 { 1135 bool wait; 1136 1137 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1138 1139 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1140 return 0; 1141 1142 /* 1143 * If the mapping is dirty the operation can block and wait for some 1144 * time. Unless we are waiting, skip it. 1145 */ 1146 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1147 return 0; 1148 1149 if (!xfs_icwalk_match(ip, icw)) 1150 return 0; 1151 1152 /* 1153 * If the caller is waiting, return -EAGAIN to keep the background 1154 * scanner moving and revisit the inode in a subsequent pass. 1155 */ 1156 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1157 if (wait) 1158 return -EAGAIN; 1159 return 0; 1160 } 1161 *lockflags |= XFS_IOLOCK_EXCL; 1162 1163 if (xfs_can_free_eofblocks(ip, false)) 1164 return xfs_free_eofblocks(ip); 1165 1166 /* inode could be preallocated or append-only */ 1167 trace_xfs_inode_free_eofblocks_invalid(ip); 1168 xfs_inode_clear_eofblocks_tag(ip); 1169 return 0; 1170 } 1171 1172 static void 1173 xfs_blockgc_set_iflag( 1174 struct xfs_inode *ip, 1175 unsigned long iflag) 1176 { 1177 struct xfs_mount *mp = ip->i_mount; 1178 struct xfs_perag *pag; 1179 1180 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1181 1182 /* 1183 * Don't bother locking the AG and looking up in the radix trees 1184 * if we already know that we have the tag set. 1185 */ 1186 if (ip->i_flags & iflag) 1187 return; 1188 spin_lock(&ip->i_flags_lock); 1189 ip->i_flags |= iflag; 1190 spin_unlock(&ip->i_flags_lock); 1191 1192 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1193 spin_lock(&pag->pag_ici_lock); 1194 1195 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1196 XFS_ICI_BLOCKGC_TAG); 1197 1198 spin_unlock(&pag->pag_ici_lock); 1199 xfs_perag_put(pag); 1200 } 1201 1202 void 1203 xfs_inode_set_eofblocks_tag( 1204 xfs_inode_t *ip) 1205 { 1206 trace_xfs_inode_set_eofblocks_tag(ip); 1207 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1208 } 1209 1210 static void 1211 xfs_blockgc_clear_iflag( 1212 struct xfs_inode *ip, 1213 unsigned long iflag) 1214 { 1215 struct xfs_mount *mp = ip->i_mount; 1216 struct xfs_perag *pag; 1217 bool clear_tag; 1218 1219 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1220 1221 spin_lock(&ip->i_flags_lock); 1222 ip->i_flags &= ~iflag; 1223 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1224 spin_unlock(&ip->i_flags_lock); 1225 1226 if (!clear_tag) 1227 return; 1228 1229 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1230 spin_lock(&pag->pag_ici_lock); 1231 1232 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1233 XFS_ICI_BLOCKGC_TAG); 1234 1235 spin_unlock(&pag->pag_ici_lock); 1236 xfs_perag_put(pag); 1237 } 1238 1239 void 1240 xfs_inode_clear_eofblocks_tag( 1241 xfs_inode_t *ip) 1242 { 1243 trace_xfs_inode_clear_eofblocks_tag(ip); 1244 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1245 } 1246 1247 /* 1248 * Set ourselves up to free CoW blocks from this file. If it's already clean 1249 * then we can bail out quickly, but otherwise we must back off if the file 1250 * is undergoing some kind of write. 1251 */ 1252 static bool 1253 xfs_prep_free_cowblocks( 1254 struct xfs_inode *ip) 1255 { 1256 /* 1257 * Just clear the tag if we have an empty cow fork or none at all. It's 1258 * possible the inode was fully unshared since it was originally tagged. 1259 */ 1260 if (!xfs_inode_has_cow_data(ip)) { 1261 trace_xfs_inode_free_cowblocks_invalid(ip); 1262 xfs_inode_clear_cowblocks_tag(ip); 1263 return false; 1264 } 1265 1266 /* 1267 * If the mapping is dirty or under writeback we cannot touch the 1268 * CoW fork. Leave it alone if we're in the midst of a directio. 1269 */ 1270 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1271 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1272 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1273 atomic_read(&VFS_I(ip)->i_dio_count)) 1274 return false; 1275 1276 return true; 1277 } 1278 1279 /* 1280 * Automatic CoW Reservation Freeing 1281 * 1282 * These functions automatically garbage collect leftover CoW reservations 1283 * that were made on behalf of a cowextsize hint when we start to run out 1284 * of quota or when the reservations sit around for too long. If the file 1285 * has dirty pages or is undergoing writeback, its CoW reservations will 1286 * be retained. 1287 * 1288 * The actual garbage collection piggybacks off the same code that runs 1289 * the speculative EOF preallocation garbage collector. 1290 */ 1291 STATIC int 1292 xfs_inode_free_cowblocks( 1293 struct xfs_inode *ip, 1294 struct xfs_icwalk *icw, 1295 unsigned int *lockflags) 1296 { 1297 bool wait; 1298 int ret = 0; 1299 1300 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1301 1302 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1303 return 0; 1304 1305 if (!xfs_prep_free_cowblocks(ip)) 1306 return 0; 1307 1308 if (!xfs_icwalk_match(ip, icw)) 1309 return 0; 1310 1311 /* 1312 * If the caller is waiting, return -EAGAIN to keep the background 1313 * scanner moving and revisit the inode in a subsequent pass. 1314 */ 1315 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1316 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1317 if (wait) 1318 return -EAGAIN; 1319 return 0; 1320 } 1321 *lockflags |= XFS_IOLOCK_EXCL; 1322 1323 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1324 if (wait) 1325 return -EAGAIN; 1326 return 0; 1327 } 1328 *lockflags |= XFS_MMAPLOCK_EXCL; 1329 1330 /* 1331 * Check again, nobody else should be able to dirty blocks or change 1332 * the reflink iflag now that we have the first two locks held. 1333 */ 1334 if (xfs_prep_free_cowblocks(ip)) 1335 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1336 return ret; 1337 } 1338 1339 void 1340 xfs_inode_set_cowblocks_tag( 1341 xfs_inode_t *ip) 1342 { 1343 trace_xfs_inode_set_cowblocks_tag(ip); 1344 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1345 } 1346 1347 void 1348 xfs_inode_clear_cowblocks_tag( 1349 xfs_inode_t *ip) 1350 { 1351 trace_xfs_inode_clear_cowblocks_tag(ip); 1352 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1353 } 1354 1355 /* Disable post-EOF and CoW block auto-reclamation. */ 1356 void 1357 xfs_blockgc_stop( 1358 struct xfs_mount *mp) 1359 { 1360 struct xfs_perag *pag; 1361 xfs_agnumber_t agno; 1362 1363 if (!xfs_clear_blockgc_enabled(mp)) 1364 return; 1365 1366 for_each_perag(mp, agno, pag) 1367 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1368 trace_xfs_blockgc_stop(mp, __return_address); 1369 } 1370 1371 /* Enable post-EOF and CoW block auto-reclamation. */ 1372 void 1373 xfs_blockgc_start( 1374 struct xfs_mount *mp) 1375 { 1376 struct xfs_perag *pag; 1377 xfs_agnumber_t agno; 1378 1379 if (xfs_set_blockgc_enabled(mp)) 1380 return; 1381 1382 trace_xfs_blockgc_start(mp, __return_address); 1383 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1384 xfs_blockgc_queue(pag); 1385 } 1386 1387 /* Don't try to run block gc on an inode that's in any of these states. */ 1388 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1389 XFS_NEED_INACTIVE | \ 1390 XFS_INACTIVATING | \ 1391 XFS_IRECLAIMABLE | \ 1392 XFS_IRECLAIM) 1393 /* 1394 * Decide if the given @ip is eligible for garbage collection of speculative 1395 * preallocations, and grab it if so. Returns true if it's ready to go or 1396 * false if we should just ignore it. 1397 */ 1398 static bool 1399 xfs_blockgc_igrab( 1400 struct xfs_inode *ip) 1401 { 1402 struct inode *inode = VFS_I(ip); 1403 1404 ASSERT(rcu_read_lock_held()); 1405 1406 /* Check for stale RCU freed inode */ 1407 spin_lock(&ip->i_flags_lock); 1408 if (!ip->i_ino) 1409 goto out_unlock_noent; 1410 1411 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1412 goto out_unlock_noent; 1413 spin_unlock(&ip->i_flags_lock); 1414 1415 /* nothing to sync during shutdown */ 1416 if (xfs_is_shutdown(ip->i_mount)) 1417 return false; 1418 1419 /* If we can't grab the inode, it must on it's way to reclaim. */ 1420 if (!igrab(inode)) 1421 return false; 1422 1423 /* inode is valid */ 1424 return true; 1425 1426 out_unlock_noent: 1427 spin_unlock(&ip->i_flags_lock); 1428 return false; 1429 } 1430 1431 /* Scan one incore inode for block preallocations that we can remove. */ 1432 static int 1433 xfs_blockgc_scan_inode( 1434 struct xfs_inode *ip, 1435 struct xfs_icwalk *icw) 1436 { 1437 unsigned int lockflags = 0; 1438 int error; 1439 1440 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1441 if (error) 1442 goto unlock; 1443 1444 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1445 unlock: 1446 if (lockflags) 1447 xfs_iunlock(ip, lockflags); 1448 xfs_irele(ip); 1449 return error; 1450 } 1451 1452 /* Background worker that trims preallocated space. */ 1453 void 1454 xfs_blockgc_worker( 1455 struct work_struct *work) 1456 { 1457 struct xfs_perag *pag = container_of(to_delayed_work(work), 1458 struct xfs_perag, pag_blockgc_work); 1459 struct xfs_mount *mp = pag->pag_mount; 1460 int error; 1461 1462 trace_xfs_blockgc_worker(mp, __return_address); 1463 1464 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1465 if (error) 1466 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1467 pag->pag_agno, error); 1468 xfs_blockgc_queue(pag); 1469 } 1470 1471 /* 1472 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1473 * and cowblocks. 1474 */ 1475 int 1476 xfs_blockgc_free_space( 1477 struct xfs_mount *mp, 1478 struct xfs_icwalk *icw) 1479 { 1480 int error; 1481 1482 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1483 1484 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1485 if (error) 1486 return error; 1487 1488 xfs_inodegc_flush(mp); 1489 return 0; 1490 } 1491 1492 /* 1493 * Reclaim all the free space that we can by scheduling the background blockgc 1494 * and inodegc workers immediately and waiting for them all to clear. 1495 */ 1496 void 1497 xfs_blockgc_flush_all( 1498 struct xfs_mount *mp) 1499 { 1500 struct xfs_perag *pag; 1501 xfs_agnumber_t agno; 1502 1503 trace_xfs_blockgc_flush_all(mp, __return_address); 1504 1505 /* 1506 * For each blockgc worker, move its queue time up to now. If it 1507 * wasn't queued, it will not be requeued. Then flush whatever's 1508 * left. 1509 */ 1510 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1511 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1512 &pag->pag_blockgc_work, 0); 1513 1514 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1515 flush_delayed_work(&pag->pag_blockgc_work); 1516 1517 xfs_inodegc_flush(mp); 1518 } 1519 1520 /* 1521 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1522 * quota caused an allocation failure, so we make a best effort by including 1523 * each quota under low free space conditions (less than 1% free space) in the 1524 * scan. 1525 * 1526 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1527 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1528 * MMAPLOCK. 1529 */ 1530 int 1531 xfs_blockgc_free_dquots( 1532 struct xfs_mount *mp, 1533 struct xfs_dquot *udqp, 1534 struct xfs_dquot *gdqp, 1535 struct xfs_dquot *pdqp, 1536 unsigned int iwalk_flags) 1537 { 1538 struct xfs_icwalk icw = {0}; 1539 bool do_work = false; 1540 1541 if (!udqp && !gdqp && !pdqp) 1542 return 0; 1543 1544 /* 1545 * Run a scan to free blocks using the union filter to cover all 1546 * applicable quotas in a single scan. 1547 */ 1548 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1549 1550 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1551 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1552 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1553 do_work = true; 1554 } 1555 1556 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1557 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1558 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1559 do_work = true; 1560 } 1561 1562 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1563 icw.icw_prid = pdqp->q_id; 1564 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1565 do_work = true; 1566 } 1567 1568 if (!do_work) 1569 return 0; 1570 1571 return xfs_blockgc_free_space(mp, &icw); 1572 } 1573 1574 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1575 int 1576 xfs_blockgc_free_quota( 1577 struct xfs_inode *ip, 1578 unsigned int iwalk_flags) 1579 { 1580 return xfs_blockgc_free_dquots(ip->i_mount, 1581 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1582 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1583 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1584 } 1585 1586 /* XFS Inode Cache Walking Code */ 1587 1588 /* 1589 * The inode lookup is done in batches to keep the amount of lock traffic and 1590 * radix tree lookups to a minimum. The batch size is a trade off between 1591 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1592 * be too greedy. 1593 */ 1594 #define XFS_LOOKUP_BATCH 32 1595 1596 1597 /* 1598 * Decide if we want to grab this inode in anticipation of doing work towards 1599 * the goal. 1600 */ 1601 static inline bool 1602 xfs_icwalk_igrab( 1603 enum xfs_icwalk_goal goal, 1604 struct xfs_inode *ip, 1605 struct xfs_icwalk *icw) 1606 { 1607 switch (goal) { 1608 case XFS_ICWALK_BLOCKGC: 1609 return xfs_blockgc_igrab(ip); 1610 case XFS_ICWALK_RECLAIM: 1611 return xfs_reclaim_igrab(ip, icw); 1612 default: 1613 return false; 1614 } 1615 } 1616 1617 /* 1618 * Process an inode. Each processing function must handle any state changes 1619 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1620 */ 1621 static inline int 1622 xfs_icwalk_process_inode( 1623 enum xfs_icwalk_goal goal, 1624 struct xfs_inode *ip, 1625 struct xfs_perag *pag, 1626 struct xfs_icwalk *icw) 1627 { 1628 int error = 0; 1629 1630 switch (goal) { 1631 case XFS_ICWALK_BLOCKGC: 1632 error = xfs_blockgc_scan_inode(ip, icw); 1633 break; 1634 case XFS_ICWALK_RECLAIM: 1635 xfs_reclaim_inode(ip, pag); 1636 break; 1637 } 1638 return error; 1639 } 1640 1641 /* 1642 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1643 * process them in some manner. 1644 */ 1645 static int 1646 xfs_icwalk_ag( 1647 struct xfs_perag *pag, 1648 enum xfs_icwalk_goal goal, 1649 struct xfs_icwalk *icw) 1650 { 1651 struct xfs_mount *mp = pag->pag_mount; 1652 uint32_t first_index; 1653 int last_error = 0; 1654 int skipped; 1655 bool done; 1656 int nr_found; 1657 1658 restart: 1659 done = false; 1660 skipped = 0; 1661 if (goal == XFS_ICWALK_RECLAIM) 1662 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1663 else 1664 first_index = 0; 1665 nr_found = 0; 1666 do { 1667 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1668 int error = 0; 1669 int i; 1670 1671 rcu_read_lock(); 1672 1673 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1674 (void **) batch, first_index, 1675 XFS_LOOKUP_BATCH, goal); 1676 if (!nr_found) { 1677 done = true; 1678 rcu_read_unlock(); 1679 break; 1680 } 1681 1682 /* 1683 * Grab the inodes before we drop the lock. if we found 1684 * nothing, nr == 0 and the loop will be skipped. 1685 */ 1686 for (i = 0; i < nr_found; i++) { 1687 struct xfs_inode *ip = batch[i]; 1688 1689 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1690 batch[i] = NULL; 1691 1692 /* 1693 * Update the index for the next lookup. Catch 1694 * overflows into the next AG range which can occur if 1695 * we have inodes in the last block of the AG and we 1696 * are currently pointing to the last inode. 1697 * 1698 * Because we may see inodes that are from the wrong AG 1699 * due to RCU freeing and reallocation, only update the 1700 * index if it lies in this AG. It was a race that lead 1701 * us to see this inode, so another lookup from the 1702 * same index will not find it again. 1703 */ 1704 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1705 continue; 1706 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1707 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1708 done = true; 1709 } 1710 1711 /* unlock now we've grabbed the inodes. */ 1712 rcu_read_unlock(); 1713 1714 for (i = 0; i < nr_found; i++) { 1715 if (!batch[i]) 1716 continue; 1717 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1718 icw); 1719 if (error == -EAGAIN) { 1720 skipped++; 1721 continue; 1722 } 1723 if (error && last_error != -EFSCORRUPTED) 1724 last_error = error; 1725 } 1726 1727 /* bail out if the filesystem is corrupted. */ 1728 if (error == -EFSCORRUPTED) 1729 break; 1730 1731 cond_resched(); 1732 1733 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1734 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1735 if (icw->icw_scan_limit <= 0) 1736 break; 1737 } 1738 } while (nr_found && !done); 1739 1740 if (goal == XFS_ICWALK_RECLAIM) { 1741 if (done) 1742 first_index = 0; 1743 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1744 } 1745 1746 if (skipped) { 1747 delay(1); 1748 goto restart; 1749 } 1750 return last_error; 1751 } 1752 1753 /* Walk all incore inodes to achieve a given goal. */ 1754 static int 1755 xfs_icwalk( 1756 struct xfs_mount *mp, 1757 enum xfs_icwalk_goal goal, 1758 struct xfs_icwalk *icw) 1759 { 1760 struct xfs_perag *pag; 1761 int error = 0; 1762 int last_error = 0; 1763 xfs_agnumber_t agno; 1764 1765 for_each_perag_tag(mp, agno, pag, goal) { 1766 error = xfs_icwalk_ag(pag, goal, icw); 1767 if (error) { 1768 last_error = error; 1769 if (error == -EFSCORRUPTED) { 1770 xfs_perag_put(pag); 1771 break; 1772 } 1773 } 1774 } 1775 return last_error; 1776 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1777 } 1778 1779 #ifdef DEBUG 1780 static void 1781 xfs_check_delalloc( 1782 struct xfs_inode *ip, 1783 int whichfork) 1784 { 1785 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1786 struct xfs_bmbt_irec got; 1787 struct xfs_iext_cursor icur; 1788 1789 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1790 return; 1791 do { 1792 if (isnullstartblock(got.br_startblock)) { 1793 xfs_warn(ip->i_mount, 1794 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1795 ip->i_ino, 1796 whichfork == XFS_DATA_FORK ? "data" : "cow", 1797 got.br_startoff, got.br_blockcount); 1798 } 1799 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1800 } 1801 #else 1802 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1803 #endif 1804 1805 /* Schedule the inode for reclaim. */ 1806 static void 1807 xfs_inodegc_set_reclaimable( 1808 struct xfs_inode *ip) 1809 { 1810 struct xfs_mount *mp = ip->i_mount; 1811 struct xfs_perag *pag; 1812 1813 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1814 xfs_check_delalloc(ip, XFS_DATA_FORK); 1815 xfs_check_delalloc(ip, XFS_COW_FORK); 1816 ASSERT(0); 1817 } 1818 1819 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1820 spin_lock(&pag->pag_ici_lock); 1821 spin_lock(&ip->i_flags_lock); 1822 1823 trace_xfs_inode_set_reclaimable(ip); 1824 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1825 ip->i_flags |= XFS_IRECLAIMABLE; 1826 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1827 XFS_ICI_RECLAIM_TAG); 1828 1829 spin_unlock(&ip->i_flags_lock); 1830 spin_unlock(&pag->pag_ici_lock); 1831 xfs_perag_put(pag); 1832 } 1833 1834 /* 1835 * Free all speculative preallocations and possibly even the inode itself. 1836 * This is the last chance to make changes to an otherwise unreferenced file 1837 * before incore reclamation happens. 1838 */ 1839 static void 1840 xfs_inodegc_inactivate( 1841 struct xfs_inode *ip) 1842 { 1843 trace_xfs_inode_inactivating(ip); 1844 xfs_inactive(ip); 1845 xfs_inodegc_set_reclaimable(ip); 1846 } 1847 1848 void 1849 xfs_inodegc_worker( 1850 struct work_struct *work) 1851 { 1852 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1853 struct xfs_inodegc, work); 1854 struct llist_node *node = llist_del_all(&gc->list); 1855 struct xfs_inode *ip, *n; 1856 unsigned int nofs_flag; 1857 1858 WRITE_ONCE(gc->items, 0); 1859 1860 if (!node) 1861 return; 1862 1863 /* 1864 * We can allocate memory here while doing writeback on behalf of 1865 * memory reclaim. To avoid memory allocation deadlocks set the 1866 * task-wide nofs context for the following operations. 1867 */ 1868 nofs_flag = memalloc_nofs_save(); 1869 1870 ip = llist_entry(node, struct xfs_inode, i_gclist); 1871 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits)); 1872 1873 WRITE_ONCE(gc->shrinker_hits, 0); 1874 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1875 xfs_iflags_set(ip, XFS_INACTIVATING); 1876 xfs_inodegc_inactivate(ip); 1877 } 1878 1879 memalloc_nofs_restore(nofs_flag); 1880 } 1881 1882 /* 1883 * Expedite all pending inodegc work to run immediately. This does not wait for 1884 * completion of the work. 1885 */ 1886 void 1887 xfs_inodegc_push( 1888 struct xfs_mount *mp) 1889 { 1890 if (!xfs_is_inodegc_enabled(mp)) 1891 return; 1892 trace_xfs_inodegc_push(mp, __return_address); 1893 xfs_inodegc_queue_all(mp); 1894 } 1895 1896 /* 1897 * Force all currently queued inode inactivation work to run immediately and 1898 * wait for the work to finish. 1899 */ 1900 void 1901 xfs_inodegc_flush( 1902 struct xfs_mount *mp) 1903 { 1904 xfs_inodegc_push(mp); 1905 trace_xfs_inodegc_flush(mp, __return_address); 1906 flush_workqueue(mp->m_inodegc_wq); 1907 } 1908 1909 /* 1910 * Flush all the pending work and then disable the inode inactivation background 1911 * workers and wait for them to stop. 1912 */ 1913 void 1914 xfs_inodegc_stop( 1915 struct xfs_mount *mp) 1916 { 1917 if (!xfs_clear_inodegc_enabled(mp)) 1918 return; 1919 1920 xfs_inodegc_queue_all(mp); 1921 drain_workqueue(mp->m_inodegc_wq); 1922 1923 trace_xfs_inodegc_stop(mp, __return_address); 1924 } 1925 1926 /* 1927 * Enable the inode inactivation background workers and schedule deferred inode 1928 * inactivation work if there is any. 1929 */ 1930 void 1931 xfs_inodegc_start( 1932 struct xfs_mount *mp) 1933 { 1934 if (xfs_set_inodegc_enabled(mp)) 1935 return; 1936 1937 trace_xfs_inodegc_start(mp, __return_address); 1938 xfs_inodegc_queue_all(mp); 1939 } 1940 1941 #ifdef CONFIG_XFS_RT 1942 static inline bool 1943 xfs_inodegc_want_queue_rt_file( 1944 struct xfs_inode *ip) 1945 { 1946 struct xfs_mount *mp = ip->i_mount; 1947 1948 if (!XFS_IS_REALTIME_INODE(ip)) 1949 return false; 1950 1951 if (__percpu_counter_compare(&mp->m_frextents, 1952 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 1953 XFS_FDBLOCKS_BATCH) < 0) 1954 return true; 1955 1956 return false; 1957 } 1958 #else 1959 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1960 #endif /* CONFIG_XFS_RT */ 1961 1962 /* 1963 * Schedule the inactivation worker when: 1964 * 1965 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1966 * - There is less than 5% free space left. 1967 * - Any of the quotas for this inode are near an enforcement limit. 1968 */ 1969 static inline bool 1970 xfs_inodegc_want_queue_work( 1971 struct xfs_inode *ip, 1972 unsigned int items) 1973 { 1974 struct xfs_mount *mp = ip->i_mount; 1975 1976 if (items > mp->m_ino_geo.inodes_per_cluster) 1977 return true; 1978 1979 if (__percpu_counter_compare(&mp->m_fdblocks, 1980 mp->m_low_space[XFS_LOWSP_5_PCNT], 1981 XFS_FDBLOCKS_BATCH) < 0) 1982 return true; 1983 1984 if (xfs_inodegc_want_queue_rt_file(ip)) 1985 return true; 1986 1987 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 1988 return true; 1989 1990 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 1991 return true; 1992 1993 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 1994 return true; 1995 1996 return false; 1997 } 1998 1999 /* 2000 * Upper bound on the number of inodes in each AG that can be queued for 2001 * inactivation at any given time, to avoid monopolizing the workqueue. 2002 */ 2003 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2004 2005 /* 2006 * Make the frontend wait for inactivations when: 2007 * 2008 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2009 * - The queue depth exceeds the maximum allowable percpu backlog. 2010 * 2011 * Note: If the current thread is running a transaction, we don't ever want to 2012 * wait for other transactions because that could introduce a deadlock. 2013 */ 2014 static inline bool 2015 xfs_inodegc_want_flush_work( 2016 struct xfs_inode *ip, 2017 unsigned int items, 2018 unsigned int shrinker_hits) 2019 { 2020 if (current->journal_info) 2021 return false; 2022 2023 if (shrinker_hits > 0) 2024 return true; 2025 2026 if (items > XFS_INODEGC_MAX_BACKLOG) 2027 return true; 2028 2029 return false; 2030 } 2031 2032 /* 2033 * Queue a background inactivation worker if there are inodes that need to be 2034 * inactivated and higher level xfs code hasn't disabled the background 2035 * workers. 2036 */ 2037 static void 2038 xfs_inodegc_queue( 2039 struct xfs_inode *ip) 2040 { 2041 struct xfs_mount *mp = ip->i_mount; 2042 struct xfs_inodegc *gc; 2043 int items; 2044 unsigned int shrinker_hits; 2045 unsigned long queue_delay = 1; 2046 2047 trace_xfs_inode_set_need_inactive(ip); 2048 spin_lock(&ip->i_flags_lock); 2049 ip->i_flags |= XFS_NEED_INACTIVE; 2050 spin_unlock(&ip->i_flags_lock); 2051 2052 gc = get_cpu_ptr(mp->m_inodegc); 2053 llist_add(&ip->i_gclist, &gc->list); 2054 items = READ_ONCE(gc->items); 2055 WRITE_ONCE(gc->items, items + 1); 2056 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2057 2058 /* 2059 * We queue the work while holding the current CPU so that the work 2060 * is scheduled to run on this CPU. 2061 */ 2062 if (!xfs_is_inodegc_enabled(mp)) { 2063 put_cpu_ptr(gc); 2064 return; 2065 } 2066 2067 if (xfs_inodegc_want_queue_work(ip, items)) 2068 queue_delay = 0; 2069 2070 trace_xfs_inodegc_queue(mp, __return_address); 2071 mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay); 2072 put_cpu_ptr(gc); 2073 2074 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2075 trace_xfs_inodegc_throttle(mp, __return_address); 2076 flush_delayed_work(&gc->work); 2077 } 2078 } 2079 2080 /* 2081 * Fold the dead CPU inodegc queue into the current CPUs queue. 2082 */ 2083 void 2084 xfs_inodegc_cpu_dead( 2085 struct xfs_mount *mp, 2086 unsigned int dead_cpu) 2087 { 2088 struct xfs_inodegc *dead_gc, *gc; 2089 struct llist_node *first, *last; 2090 unsigned int count = 0; 2091 2092 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu); 2093 cancel_delayed_work_sync(&dead_gc->work); 2094 2095 if (llist_empty(&dead_gc->list)) 2096 return; 2097 2098 first = dead_gc->list.first; 2099 last = first; 2100 while (last->next) { 2101 last = last->next; 2102 count++; 2103 } 2104 dead_gc->list.first = NULL; 2105 dead_gc->items = 0; 2106 2107 /* Add pending work to current CPU */ 2108 gc = get_cpu_ptr(mp->m_inodegc); 2109 llist_add_batch(first, last, &gc->list); 2110 count += READ_ONCE(gc->items); 2111 WRITE_ONCE(gc->items, count); 2112 2113 if (xfs_is_inodegc_enabled(mp)) { 2114 trace_xfs_inodegc_queue(mp, __return_address); 2115 mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0); 2116 } 2117 put_cpu_ptr(gc); 2118 } 2119 2120 /* 2121 * We set the inode flag atomically with the radix tree tag. Once we get tag 2122 * lookups on the radix tree, this inode flag can go away. 2123 * 2124 * We always use background reclaim here because even if the inode is clean, it 2125 * still may be under IO and hence we have wait for IO completion to occur 2126 * before we can reclaim the inode. The background reclaim path handles this 2127 * more efficiently than we can here, so simply let background reclaim tear down 2128 * all inodes. 2129 */ 2130 void 2131 xfs_inode_mark_reclaimable( 2132 struct xfs_inode *ip) 2133 { 2134 struct xfs_mount *mp = ip->i_mount; 2135 bool need_inactive; 2136 2137 XFS_STATS_INC(mp, vn_reclaim); 2138 2139 /* 2140 * We should never get here with any of the reclaim flags already set. 2141 */ 2142 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2143 2144 need_inactive = xfs_inode_needs_inactive(ip); 2145 if (need_inactive) { 2146 xfs_inodegc_queue(ip); 2147 return; 2148 } 2149 2150 /* Going straight to reclaim, so drop the dquots. */ 2151 xfs_qm_dqdetach(ip); 2152 xfs_inodegc_set_reclaimable(ip); 2153 } 2154 2155 /* 2156 * Register a phony shrinker so that we can run background inodegc sooner when 2157 * there's memory pressure. Inactivation does not itself free any memory but 2158 * it does make inodes reclaimable, which eventually frees memory. 2159 * 2160 * The count function, seek value, and batch value are crafted to trigger the 2161 * scan function during the second round of scanning. Hopefully this means 2162 * that we reclaimed enough memory that initiating metadata transactions won't 2163 * make things worse. 2164 */ 2165 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2166 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2167 2168 static unsigned long 2169 xfs_inodegc_shrinker_count( 2170 struct shrinker *shrink, 2171 struct shrink_control *sc) 2172 { 2173 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2174 m_inodegc_shrinker); 2175 struct xfs_inodegc *gc; 2176 int cpu; 2177 2178 if (!xfs_is_inodegc_enabled(mp)) 2179 return 0; 2180 2181 for_each_online_cpu(cpu) { 2182 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2183 if (!llist_empty(&gc->list)) 2184 return XFS_INODEGC_SHRINKER_COUNT; 2185 } 2186 2187 return 0; 2188 } 2189 2190 static unsigned long 2191 xfs_inodegc_shrinker_scan( 2192 struct shrinker *shrink, 2193 struct shrink_control *sc) 2194 { 2195 struct xfs_mount *mp = container_of(shrink, struct xfs_mount, 2196 m_inodegc_shrinker); 2197 struct xfs_inodegc *gc; 2198 int cpu; 2199 bool no_items = true; 2200 2201 if (!xfs_is_inodegc_enabled(mp)) 2202 return SHRINK_STOP; 2203 2204 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2205 2206 for_each_online_cpu(cpu) { 2207 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2208 if (!llist_empty(&gc->list)) { 2209 unsigned int h = READ_ONCE(gc->shrinker_hits); 2210 2211 WRITE_ONCE(gc->shrinker_hits, h + 1); 2212 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2213 no_items = false; 2214 } 2215 } 2216 2217 /* 2218 * If there are no inodes to inactivate, we don't want the shrinker 2219 * to think there's deferred work to call us back about. 2220 */ 2221 if (no_items) 2222 return LONG_MAX; 2223 2224 return SHRINK_STOP; 2225 } 2226 2227 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2228 int 2229 xfs_inodegc_register_shrinker( 2230 struct xfs_mount *mp) 2231 { 2232 struct shrinker *shrink = &mp->m_inodegc_shrinker; 2233 2234 shrink->count_objects = xfs_inodegc_shrinker_count; 2235 shrink->scan_objects = xfs_inodegc_shrinker_scan; 2236 shrink->seeks = 0; 2237 shrink->flags = SHRINKER_NONSLAB; 2238 shrink->batch = XFS_INODEGC_SHRINKER_BATCH; 2239 2240 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id); 2241 } 2242