xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 1a340825)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 
28 #include <linux/iversion.h>
29 
30 /* Radix tree tags for incore inode tree. */
31 
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG	0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG	1
36 
37 /*
38  * The goal for walking incore inodes.  These can correspond with incore inode
39  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
40  */
41 enum xfs_icwalk_goal {
42 	/* Goals directly associated with tagged inodes. */
43 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
44 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
45 };
46 
47 static int xfs_icwalk(struct xfs_mount *mp,
48 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51 
52 /*
53  * Private inode cache walk flags for struct xfs_icwalk.  Must not
54  * coincide with XFS_ICWALK_FLAGS_VALID.
55  */
56 
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
59 
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
61 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
62 
63 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 					 XFS_ICWALK_FLAG_UNION)
66 
67 /*
68  * Allocate and initialise an xfs_inode.
69  */
70 struct xfs_inode *
71 xfs_inode_alloc(
72 	struct xfs_mount	*mp,
73 	xfs_ino_t		ino)
74 {
75 	struct xfs_inode	*ip;
76 
77 	/*
78 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 	 * and return NULL here on ENOMEM.
80 	 */
81 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82 
83 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 		kmem_cache_free(xfs_inode_cache, ip);
85 		return NULL;
86 	}
87 
88 	/* VFS doesn't initialise i_mode or i_state! */
89 	VFS_I(ip)->i_mode = 0;
90 	VFS_I(ip)->i_state = 0;
91 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92 
93 	XFS_STATS_INC(mp, vn_active);
94 	ASSERT(atomic_read(&ip->i_pincount) == 0);
95 	ASSERT(ip->i_ino == 0);
96 
97 	/* initialise the xfs inode */
98 	ip->i_ino = ino;
99 	ip->i_mount = mp;
100 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 	ip->i_afp = NULL;
102 	ip->i_cowfp = NULL;
103 	memset(&ip->i_df, 0, sizeof(ip->i_df));
104 	ip->i_flags = 0;
105 	ip->i_delayed_blks = 0;
106 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
107 	ip->i_nblocks = 0;
108 	ip->i_forkoff = 0;
109 	ip->i_sick = 0;
110 	ip->i_checked = 0;
111 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
112 	INIT_LIST_HEAD(&ip->i_ioend_list);
113 	spin_lock_init(&ip->i_ioend_lock);
114 
115 	return ip;
116 }
117 
118 STATIC void
119 xfs_inode_free_callback(
120 	struct rcu_head		*head)
121 {
122 	struct inode		*inode = container_of(head, struct inode, i_rcu);
123 	struct xfs_inode	*ip = XFS_I(inode);
124 
125 	switch (VFS_I(ip)->i_mode & S_IFMT) {
126 	case S_IFREG:
127 	case S_IFDIR:
128 	case S_IFLNK:
129 		xfs_idestroy_fork(&ip->i_df);
130 		break;
131 	}
132 
133 	if (ip->i_afp) {
134 		xfs_idestroy_fork(ip->i_afp);
135 		kmem_cache_free(xfs_ifork_cache, ip->i_afp);
136 	}
137 	if (ip->i_cowfp) {
138 		xfs_idestroy_fork(ip->i_cowfp);
139 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
140 	}
141 	if (ip->i_itemp) {
142 		ASSERT(!test_bit(XFS_LI_IN_AIL,
143 				 &ip->i_itemp->ili_item.li_flags));
144 		xfs_inode_item_destroy(ip);
145 		ip->i_itemp = NULL;
146 	}
147 
148 	kmem_cache_free(xfs_inode_cache, ip);
149 }
150 
151 static void
152 __xfs_inode_free(
153 	struct xfs_inode	*ip)
154 {
155 	/* asserts to verify all state is correct here */
156 	ASSERT(atomic_read(&ip->i_pincount) == 0);
157 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
158 	XFS_STATS_DEC(ip->i_mount, vn_active);
159 
160 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
161 }
162 
163 void
164 xfs_inode_free(
165 	struct xfs_inode	*ip)
166 {
167 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
168 
169 	/*
170 	 * Because we use RCU freeing we need to ensure the inode always
171 	 * appears to be reclaimed with an invalid inode number when in the
172 	 * free state. The ip->i_flags_lock provides the barrier against lookup
173 	 * races.
174 	 */
175 	spin_lock(&ip->i_flags_lock);
176 	ip->i_flags = XFS_IRECLAIM;
177 	ip->i_ino = 0;
178 	spin_unlock(&ip->i_flags_lock);
179 
180 	__xfs_inode_free(ip);
181 }
182 
183 /*
184  * Queue background inode reclaim work if there are reclaimable inodes and there
185  * isn't reclaim work already scheduled or in progress.
186  */
187 static void
188 xfs_reclaim_work_queue(
189 	struct xfs_mount        *mp)
190 {
191 
192 	rcu_read_lock();
193 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
194 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
195 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
196 	}
197 	rcu_read_unlock();
198 }
199 
200 /*
201  * Background scanning to trim preallocated space. This is queued based on the
202  * 'speculative_prealloc_lifetime' tunable (5m by default).
203  */
204 static inline void
205 xfs_blockgc_queue(
206 	struct xfs_perag	*pag)
207 {
208 	struct xfs_mount	*mp = pag->pag_mount;
209 
210 	if (!xfs_is_blockgc_enabled(mp))
211 		return;
212 
213 	rcu_read_lock();
214 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
215 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
216 				   &pag->pag_blockgc_work,
217 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
218 	rcu_read_unlock();
219 }
220 
221 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
222 static void
223 xfs_perag_set_inode_tag(
224 	struct xfs_perag	*pag,
225 	xfs_agino_t		agino,
226 	unsigned int		tag)
227 {
228 	struct xfs_mount	*mp = pag->pag_mount;
229 	bool			was_tagged;
230 
231 	lockdep_assert_held(&pag->pag_ici_lock);
232 
233 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
234 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
235 
236 	if (tag == XFS_ICI_RECLAIM_TAG)
237 		pag->pag_ici_reclaimable++;
238 
239 	if (was_tagged)
240 		return;
241 
242 	/* propagate the tag up into the perag radix tree */
243 	spin_lock(&mp->m_perag_lock);
244 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
245 	spin_unlock(&mp->m_perag_lock);
246 
247 	/* start background work */
248 	switch (tag) {
249 	case XFS_ICI_RECLAIM_TAG:
250 		xfs_reclaim_work_queue(mp);
251 		break;
252 	case XFS_ICI_BLOCKGC_TAG:
253 		xfs_blockgc_queue(pag);
254 		break;
255 	}
256 
257 	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
258 }
259 
260 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
261 static void
262 xfs_perag_clear_inode_tag(
263 	struct xfs_perag	*pag,
264 	xfs_agino_t		agino,
265 	unsigned int		tag)
266 {
267 	struct xfs_mount	*mp = pag->pag_mount;
268 
269 	lockdep_assert_held(&pag->pag_ici_lock);
270 
271 	/*
272 	 * Reclaim can signal (with a null agino) that it cleared its own tag
273 	 * by removing the inode from the radix tree.
274 	 */
275 	if (agino != NULLAGINO)
276 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
277 	else
278 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
279 
280 	if (tag == XFS_ICI_RECLAIM_TAG)
281 		pag->pag_ici_reclaimable--;
282 
283 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
284 		return;
285 
286 	/* clear the tag from the perag radix tree */
287 	spin_lock(&mp->m_perag_lock);
288 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
289 	spin_unlock(&mp->m_perag_lock);
290 
291 	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
292 }
293 
294 /*
295  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
296  * part of the structure. This is made more complex by the fact we store
297  * information about the on-disk values in the VFS inode and so we can't just
298  * overwrite the values unconditionally. Hence we save the parameters we
299  * need to retain across reinitialisation, and rewrite them into the VFS inode
300  * after reinitialisation even if it fails.
301  */
302 static int
303 xfs_reinit_inode(
304 	struct xfs_mount	*mp,
305 	struct inode		*inode)
306 {
307 	int			error;
308 	uint32_t		nlink = inode->i_nlink;
309 	uint32_t		generation = inode->i_generation;
310 	uint64_t		version = inode_peek_iversion(inode);
311 	umode_t			mode = inode->i_mode;
312 	dev_t			dev = inode->i_rdev;
313 	kuid_t			uid = inode->i_uid;
314 	kgid_t			gid = inode->i_gid;
315 
316 	error = inode_init_always(mp->m_super, inode);
317 
318 	set_nlink(inode, nlink);
319 	inode->i_generation = generation;
320 	inode_set_iversion_queried(inode, version);
321 	inode->i_mode = mode;
322 	inode->i_rdev = dev;
323 	inode->i_uid = uid;
324 	inode->i_gid = gid;
325 	mapping_set_large_folios(inode->i_mapping);
326 	return error;
327 }
328 
329 /*
330  * Carefully nudge an inode whose VFS state has been torn down back into a
331  * usable state.  Drops the i_flags_lock and the rcu read lock.
332  */
333 static int
334 xfs_iget_recycle(
335 	struct xfs_perag	*pag,
336 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
337 {
338 	struct xfs_mount	*mp = ip->i_mount;
339 	struct inode		*inode = VFS_I(ip);
340 	int			error;
341 
342 	trace_xfs_iget_recycle(ip);
343 
344 	/*
345 	 * We need to make it look like the inode is being reclaimed to prevent
346 	 * the actual reclaim workers from stomping over us while we recycle
347 	 * the inode.  We can't clear the radix tree tag yet as it requires
348 	 * pag_ici_lock to be held exclusive.
349 	 */
350 	ip->i_flags |= XFS_IRECLAIM;
351 
352 	spin_unlock(&ip->i_flags_lock);
353 	rcu_read_unlock();
354 
355 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
356 	error = xfs_reinit_inode(mp, inode);
357 	if (error) {
358 		/*
359 		 * Re-initializing the inode failed, and we are in deep
360 		 * trouble.  Try to re-add it to the reclaim list.
361 		 */
362 		rcu_read_lock();
363 		spin_lock(&ip->i_flags_lock);
364 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
365 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
366 		spin_unlock(&ip->i_flags_lock);
367 		rcu_read_unlock();
368 
369 		trace_xfs_iget_recycle_fail(ip);
370 		return error;
371 	}
372 
373 	spin_lock(&pag->pag_ici_lock);
374 	spin_lock(&ip->i_flags_lock);
375 
376 	/*
377 	 * Clear the per-lifetime state in the inode as we are now effectively
378 	 * a new inode and need to return to the initial state before reuse
379 	 * occurs.
380 	 */
381 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
382 	ip->i_flags |= XFS_INEW;
383 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
384 			XFS_ICI_RECLAIM_TAG);
385 	inode->i_state = I_NEW;
386 	spin_unlock(&ip->i_flags_lock);
387 	spin_unlock(&pag->pag_ici_lock);
388 
389 	return 0;
390 }
391 
392 /*
393  * If we are allocating a new inode, then check what was returned is
394  * actually a free, empty inode. If we are not allocating an inode,
395  * then check we didn't find a free inode.
396  *
397  * Returns:
398  *	0		if the inode free state matches the lookup context
399  *	-ENOENT		if the inode is free and we are not allocating
400  *	-EFSCORRUPTED	if there is any state mismatch at all
401  */
402 static int
403 xfs_iget_check_free_state(
404 	struct xfs_inode	*ip,
405 	int			flags)
406 {
407 	if (flags & XFS_IGET_CREATE) {
408 		/* should be a free inode */
409 		if (VFS_I(ip)->i_mode != 0) {
410 			xfs_warn(ip->i_mount,
411 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
412 				ip->i_ino, VFS_I(ip)->i_mode);
413 			return -EFSCORRUPTED;
414 		}
415 
416 		if (ip->i_nblocks != 0) {
417 			xfs_warn(ip->i_mount,
418 "Corruption detected! Free inode 0x%llx has blocks allocated!",
419 				ip->i_ino);
420 			return -EFSCORRUPTED;
421 		}
422 		return 0;
423 	}
424 
425 	/* should be an allocated inode */
426 	if (VFS_I(ip)->i_mode == 0)
427 		return -ENOENT;
428 
429 	return 0;
430 }
431 
432 /* Make all pending inactivation work start immediately. */
433 static void
434 xfs_inodegc_queue_all(
435 	struct xfs_mount	*mp)
436 {
437 	struct xfs_inodegc	*gc;
438 	int			cpu;
439 
440 	for_each_online_cpu(cpu) {
441 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
442 		if (!llist_empty(&gc->list))
443 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
444 	}
445 }
446 
447 /*
448  * Check the validity of the inode we just found it the cache
449  */
450 static int
451 xfs_iget_cache_hit(
452 	struct xfs_perag	*pag,
453 	struct xfs_inode	*ip,
454 	xfs_ino_t		ino,
455 	int			flags,
456 	int			lock_flags) __releases(RCU)
457 {
458 	struct inode		*inode = VFS_I(ip);
459 	struct xfs_mount	*mp = ip->i_mount;
460 	int			error;
461 
462 	/*
463 	 * check for re-use of an inode within an RCU grace period due to the
464 	 * radix tree nodes not being updated yet. We monitor for this by
465 	 * setting the inode number to zero before freeing the inode structure.
466 	 * If the inode has been reallocated and set up, then the inode number
467 	 * will not match, so check for that, too.
468 	 */
469 	spin_lock(&ip->i_flags_lock);
470 	if (ip->i_ino != ino)
471 		goto out_skip;
472 
473 	/*
474 	 * If we are racing with another cache hit that is currently
475 	 * instantiating this inode or currently recycling it out of
476 	 * reclaimable state, wait for the initialisation to complete
477 	 * before continuing.
478 	 *
479 	 * If we're racing with the inactivation worker we also want to wait.
480 	 * If we're creating a new file, it's possible that the worker
481 	 * previously marked the inode as free on disk but hasn't finished
482 	 * updating the incore state yet.  The AGI buffer will be dirty and
483 	 * locked to the icreate transaction, so a synchronous push of the
484 	 * inodegc workers would result in deadlock.  For a regular iget, the
485 	 * worker is running already, so we might as well wait.
486 	 *
487 	 * XXX(hch): eventually we should do something equivalent to
488 	 *	     wait_on_inode to wait for these flags to be cleared
489 	 *	     instead of polling for it.
490 	 */
491 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
492 		goto out_skip;
493 
494 	if (ip->i_flags & XFS_NEED_INACTIVE) {
495 		/* Unlinked inodes cannot be re-grabbed. */
496 		if (VFS_I(ip)->i_nlink == 0) {
497 			error = -ENOENT;
498 			goto out_error;
499 		}
500 		goto out_inodegc_flush;
501 	}
502 
503 	/*
504 	 * Check the inode free state is valid. This also detects lookup
505 	 * racing with unlinks.
506 	 */
507 	error = xfs_iget_check_free_state(ip, flags);
508 	if (error)
509 		goto out_error;
510 
511 	/* Skip inodes that have no vfs state. */
512 	if ((flags & XFS_IGET_INCORE) &&
513 	    (ip->i_flags & XFS_IRECLAIMABLE))
514 		goto out_skip;
515 
516 	/* The inode fits the selection criteria; process it. */
517 	if (ip->i_flags & XFS_IRECLAIMABLE) {
518 		/* Drops i_flags_lock and RCU read lock. */
519 		error = xfs_iget_recycle(pag, ip);
520 		if (error)
521 			return error;
522 	} else {
523 		/* If the VFS inode is being torn down, pause and try again. */
524 		if (!igrab(inode))
525 			goto out_skip;
526 
527 		/* We've got a live one. */
528 		spin_unlock(&ip->i_flags_lock);
529 		rcu_read_unlock();
530 		trace_xfs_iget_hit(ip);
531 	}
532 
533 	if (lock_flags != 0)
534 		xfs_ilock(ip, lock_flags);
535 
536 	if (!(flags & XFS_IGET_INCORE))
537 		xfs_iflags_clear(ip, XFS_ISTALE);
538 	XFS_STATS_INC(mp, xs_ig_found);
539 
540 	return 0;
541 
542 out_skip:
543 	trace_xfs_iget_skip(ip);
544 	XFS_STATS_INC(mp, xs_ig_frecycle);
545 	error = -EAGAIN;
546 out_error:
547 	spin_unlock(&ip->i_flags_lock);
548 	rcu_read_unlock();
549 	return error;
550 
551 out_inodegc_flush:
552 	spin_unlock(&ip->i_flags_lock);
553 	rcu_read_unlock();
554 	/*
555 	 * Do not wait for the workers, because the caller could hold an AGI
556 	 * buffer lock.  We're just going to sleep in a loop anyway.
557 	 */
558 	if (xfs_is_inodegc_enabled(mp))
559 		xfs_inodegc_queue_all(mp);
560 	return -EAGAIN;
561 }
562 
563 static int
564 xfs_iget_cache_miss(
565 	struct xfs_mount	*mp,
566 	struct xfs_perag	*pag,
567 	xfs_trans_t		*tp,
568 	xfs_ino_t		ino,
569 	struct xfs_inode	**ipp,
570 	int			flags,
571 	int			lock_flags)
572 {
573 	struct xfs_inode	*ip;
574 	int			error;
575 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
576 	int			iflags;
577 
578 	ip = xfs_inode_alloc(mp, ino);
579 	if (!ip)
580 		return -ENOMEM;
581 
582 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
583 	if (error)
584 		goto out_destroy;
585 
586 	/*
587 	 * For version 5 superblocks, if we are initialising a new inode and we
588 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
589 	 * simply build the new inode core with a random generation number.
590 	 *
591 	 * For version 4 (and older) superblocks, log recovery is dependent on
592 	 * the i_flushiter field being initialised from the current on-disk
593 	 * value and hence we must also read the inode off disk even when
594 	 * initializing new inodes.
595 	 */
596 	if (xfs_has_v3inodes(mp) &&
597 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
598 		VFS_I(ip)->i_generation = prandom_u32();
599 	} else {
600 		struct xfs_buf		*bp;
601 
602 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
603 		if (error)
604 			goto out_destroy;
605 
606 		error = xfs_inode_from_disk(ip,
607 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
608 		if (!error)
609 			xfs_buf_set_ref(bp, XFS_INO_REF);
610 		xfs_trans_brelse(tp, bp);
611 
612 		if (error)
613 			goto out_destroy;
614 	}
615 
616 	trace_xfs_iget_miss(ip);
617 
618 	/*
619 	 * Check the inode free state is valid. This also detects lookup
620 	 * racing with unlinks.
621 	 */
622 	error = xfs_iget_check_free_state(ip, flags);
623 	if (error)
624 		goto out_destroy;
625 
626 	/*
627 	 * Preload the radix tree so we can insert safely under the
628 	 * write spinlock. Note that we cannot sleep inside the preload
629 	 * region. Since we can be called from transaction context, don't
630 	 * recurse into the file system.
631 	 */
632 	if (radix_tree_preload(GFP_NOFS)) {
633 		error = -EAGAIN;
634 		goto out_destroy;
635 	}
636 
637 	/*
638 	 * Because the inode hasn't been added to the radix-tree yet it can't
639 	 * be found by another thread, so we can do the non-sleeping lock here.
640 	 */
641 	if (lock_flags) {
642 		if (!xfs_ilock_nowait(ip, lock_flags))
643 			BUG();
644 	}
645 
646 	/*
647 	 * These values must be set before inserting the inode into the radix
648 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
649 	 * RCU locking mechanism) can find it and that lookup must see that this
650 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
651 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
652 	 * memory barrier that ensures this detection works correctly at lookup
653 	 * time.
654 	 */
655 	iflags = XFS_INEW;
656 	if (flags & XFS_IGET_DONTCACHE)
657 		d_mark_dontcache(VFS_I(ip));
658 	ip->i_udquot = NULL;
659 	ip->i_gdquot = NULL;
660 	ip->i_pdquot = NULL;
661 	xfs_iflags_set(ip, iflags);
662 
663 	/* insert the new inode */
664 	spin_lock(&pag->pag_ici_lock);
665 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
666 	if (unlikely(error)) {
667 		WARN_ON(error != -EEXIST);
668 		XFS_STATS_INC(mp, xs_ig_dup);
669 		error = -EAGAIN;
670 		goto out_preload_end;
671 	}
672 	spin_unlock(&pag->pag_ici_lock);
673 	radix_tree_preload_end();
674 
675 	*ipp = ip;
676 	return 0;
677 
678 out_preload_end:
679 	spin_unlock(&pag->pag_ici_lock);
680 	radix_tree_preload_end();
681 	if (lock_flags)
682 		xfs_iunlock(ip, lock_flags);
683 out_destroy:
684 	__destroy_inode(VFS_I(ip));
685 	xfs_inode_free(ip);
686 	return error;
687 }
688 
689 /*
690  * Look up an inode by number in the given file system.  The inode is looked up
691  * in the cache held in each AG.  If the inode is found in the cache, initialise
692  * the vfs inode if necessary.
693  *
694  * If it is not in core, read it in from the file system's device, add it to the
695  * cache and initialise the vfs inode.
696  *
697  * The inode is locked according to the value of the lock_flags parameter.
698  * Inode lookup is only done during metadata operations and not as part of the
699  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
700  */
701 int
702 xfs_iget(
703 	struct xfs_mount	*mp,
704 	struct xfs_trans	*tp,
705 	xfs_ino_t		ino,
706 	uint			flags,
707 	uint			lock_flags,
708 	struct xfs_inode	**ipp)
709 {
710 	struct xfs_inode	*ip;
711 	struct xfs_perag	*pag;
712 	xfs_agino_t		agino;
713 	int			error;
714 
715 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
716 
717 	/* reject inode numbers outside existing AGs */
718 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
719 		return -EINVAL;
720 
721 	XFS_STATS_INC(mp, xs_ig_attempts);
722 
723 	/* get the perag structure and ensure that it's inode capable */
724 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
725 	agino = XFS_INO_TO_AGINO(mp, ino);
726 
727 again:
728 	error = 0;
729 	rcu_read_lock();
730 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
731 
732 	if (ip) {
733 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
734 		if (error)
735 			goto out_error_or_again;
736 	} else {
737 		rcu_read_unlock();
738 		if (flags & XFS_IGET_INCORE) {
739 			error = -ENODATA;
740 			goto out_error_or_again;
741 		}
742 		XFS_STATS_INC(mp, xs_ig_missed);
743 
744 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
745 							flags, lock_flags);
746 		if (error)
747 			goto out_error_or_again;
748 	}
749 	xfs_perag_put(pag);
750 
751 	*ipp = ip;
752 
753 	/*
754 	 * If we have a real type for an on-disk inode, we can setup the inode
755 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
756 	 * handle it.
757 	 */
758 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
759 		xfs_setup_existing_inode(ip);
760 	return 0;
761 
762 out_error_or_again:
763 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
764 		delay(1);
765 		goto again;
766 	}
767 	xfs_perag_put(pag);
768 	return error;
769 }
770 
771 /*
772  * "Is this a cached inode that's also allocated?"
773  *
774  * Look up an inode by number in the given file system.  If the inode is
775  * in cache and isn't in purgatory, return 1 if the inode is allocated
776  * and 0 if it is not.  For all other cases (not in cache, being torn
777  * down, etc.), return a negative error code.
778  *
779  * The caller has to prevent inode allocation and freeing activity,
780  * presumably by locking the AGI buffer.   This is to ensure that an
781  * inode cannot transition from allocated to freed until the caller is
782  * ready to allow that.  If the inode is in an intermediate state (new,
783  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
784  * inode is not in the cache, -ENOENT will be returned.  The caller must
785  * deal with these scenarios appropriately.
786  *
787  * This is a specialized use case for the online scrubber; if you're
788  * reading this, you probably want xfs_iget.
789  */
790 int
791 xfs_icache_inode_is_allocated(
792 	struct xfs_mount	*mp,
793 	struct xfs_trans	*tp,
794 	xfs_ino_t		ino,
795 	bool			*inuse)
796 {
797 	struct xfs_inode	*ip;
798 	int			error;
799 
800 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
801 	if (error)
802 		return error;
803 
804 	*inuse = !!(VFS_I(ip)->i_mode);
805 	xfs_irele(ip);
806 	return 0;
807 }
808 
809 /*
810  * Grab the inode for reclaim exclusively.
811  *
812  * We have found this inode via a lookup under RCU, so the inode may have
813  * already been freed, or it may be in the process of being recycled by
814  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
815  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
816  * will not be set. Hence we need to check for both these flag conditions to
817  * avoid inodes that are no longer reclaim candidates.
818  *
819  * Note: checking for other state flags here, under the i_flags_lock or not, is
820  * racy and should be avoided. Those races should be resolved only after we have
821  * ensured that we are able to reclaim this inode and the world can see that we
822  * are going to reclaim it.
823  *
824  * Return true if we grabbed it, false otherwise.
825  */
826 static bool
827 xfs_reclaim_igrab(
828 	struct xfs_inode	*ip,
829 	struct xfs_icwalk	*icw)
830 {
831 	ASSERT(rcu_read_lock_held());
832 
833 	spin_lock(&ip->i_flags_lock);
834 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
835 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
836 		/* not a reclaim candidate. */
837 		spin_unlock(&ip->i_flags_lock);
838 		return false;
839 	}
840 
841 	/* Don't reclaim a sick inode unless the caller asked for it. */
842 	if (ip->i_sick &&
843 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
844 		spin_unlock(&ip->i_flags_lock);
845 		return false;
846 	}
847 
848 	__xfs_iflags_set(ip, XFS_IRECLAIM);
849 	spin_unlock(&ip->i_flags_lock);
850 	return true;
851 }
852 
853 /*
854  * Inode reclaim is non-blocking, so the default action if progress cannot be
855  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
856  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
857  * blocking anymore and hence we can wait for the inode to be able to reclaim
858  * it.
859  *
860  * We do no IO here - if callers require inodes to be cleaned they must push the
861  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
862  * done in the background in a non-blocking manner, and enables memory reclaim
863  * to make progress without blocking.
864  */
865 static void
866 xfs_reclaim_inode(
867 	struct xfs_inode	*ip,
868 	struct xfs_perag	*pag)
869 {
870 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
871 
872 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
873 		goto out;
874 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
875 		goto out_iunlock;
876 
877 	/*
878 	 * Check for log shutdown because aborting the inode can move the log
879 	 * tail and corrupt in memory state. This is fine if the log is shut
880 	 * down, but if the log is still active and only the mount is shut down
881 	 * then the in-memory log tail movement caused by the abort can be
882 	 * incorrectly propagated to disk.
883 	 */
884 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
885 		xfs_iunpin_wait(ip);
886 		xfs_iflush_shutdown_abort(ip);
887 		goto reclaim;
888 	}
889 	if (xfs_ipincount(ip))
890 		goto out_clear_flush;
891 	if (!xfs_inode_clean(ip))
892 		goto out_clear_flush;
893 
894 	xfs_iflags_clear(ip, XFS_IFLUSHING);
895 reclaim:
896 	trace_xfs_inode_reclaiming(ip);
897 
898 	/*
899 	 * Because we use RCU freeing we need to ensure the inode always appears
900 	 * to be reclaimed with an invalid inode number when in the free state.
901 	 * We do this as early as possible under the ILOCK so that
902 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
903 	 * detect races with us here. By doing this, we guarantee that once
904 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
905 	 * it will see either a valid inode that will serialise correctly, or it
906 	 * will see an invalid inode that it can skip.
907 	 */
908 	spin_lock(&ip->i_flags_lock);
909 	ip->i_flags = XFS_IRECLAIM;
910 	ip->i_ino = 0;
911 	ip->i_sick = 0;
912 	ip->i_checked = 0;
913 	spin_unlock(&ip->i_flags_lock);
914 
915 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
916 
917 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
918 	/*
919 	 * Remove the inode from the per-AG radix tree.
920 	 *
921 	 * Because radix_tree_delete won't complain even if the item was never
922 	 * added to the tree assert that it's been there before to catch
923 	 * problems with the inode life time early on.
924 	 */
925 	spin_lock(&pag->pag_ici_lock);
926 	if (!radix_tree_delete(&pag->pag_ici_root,
927 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
928 		ASSERT(0);
929 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
930 	spin_unlock(&pag->pag_ici_lock);
931 
932 	/*
933 	 * Here we do an (almost) spurious inode lock in order to coordinate
934 	 * with inode cache radix tree lookups.  This is because the lookup
935 	 * can reference the inodes in the cache without taking references.
936 	 *
937 	 * We make that OK here by ensuring that we wait until the inode is
938 	 * unlocked after the lookup before we go ahead and free it.
939 	 */
940 	xfs_ilock(ip, XFS_ILOCK_EXCL);
941 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
942 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
943 	ASSERT(xfs_inode_clean(ip));
944 
945 	__xfs_inode_free(ip);
946 	return;
947 
948 out_clear_flush:
949 	xfs_iflags_clear(ip, XFS_IFLUSHING);
950 out_iunlock:
951 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
952 out:
953 	xfs_iflags_clear(ip, XFS_IRECLAIM);
954 }
955 
956 /* Reclaim sick inodes if we're unmounting or the fs went down. */
957 static inline bool
958 xfs_want_reclaim_sick(
959 	struct xfs_mount	*mp)
960 {
961 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
962 	       xfs_is_shutdown(mp);
963 }
964 
965 void
966 xfs_reclaim_inodes(
967 	struct xfs_mount	*mp)
968 {
969 	struct xfs_icwalk	icw = {
970 		.icw_flags	= 0,
971 	};
972 
973 	if (xfs_want_reclaim_sick(mp))
974 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
975 
976 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
977 		xfs_ail_push_all_sync(mp->m_ail);
978 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
979 	}
980 }
981 
982 /*
983  * The shrinker infrastructure determines how many inodes we should scan for
984  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
985  * push the AIL here. We also want to proactively free up memory if we can to
986  * minimise the amount of work memory reclaim has to do so we kick the
987  * background reclaim if it isn't already scheduled.
988  */
989 long
990 xfs_reclaim_inodes_nr(
991 	struct xfs_mount	*mp,
992 	unsigned long		nr_to_scan)
993 {
994 	struct xfs_icwalk	icw = {
995 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
996 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
997 	};
998 
999 	if (xfs_want_reclaim_sick(mp))
1000 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1001 
1002 	/* kick background reclaimer and push the AIL */
1003 	xfs_reclaim_work_queue(mp);
1004 	xfs_ail_push_all(mp->m_ail);
1005 
1006 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1007 	return 0;
1008 }
1009 
1010 /*
1011  * Return the number of reclaimable inodes in the filesystem for
1012  * the shrinker to determine how much to reclaim.
1013  */
1014 long
1015 xfs_reclaim_inodes_count(
1016 	struct xfs_mount	*mp)
1017 {
1018 	struct xfs_perag	*pag;
1019 	xfs_agnumber_t		ag = 0;
1020 	long			reclaimable = 0;
1021 
1022 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1023 		ag = pag->pag_agno + 1;
1024 		reclaimable += pag->pag_ici_reclaimable;
1025 		xfs_perag_put(pag);
1026 	}
1027 	return reclaimable;
1028 }
1029 
1030 STATIC bool
1031 xfs_icwalk_match_id(
1032 	struct xfs_inode	*ip,
1033 	struct xfs_icwalk	*icw)
1034 {
1035 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1036 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1037 		return false;
1038 
1039 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1040 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1041 		return false;
1042 
1043 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1044 	    ip->i_projid != icw->icw_prid)
1045 		return false;
1046 
1047 	return true;
1048 }
1049 
1050 /*
1051  * A union-based inode filtering algorithm. Process the inode if any of the
1052  * criteria match. This is for global/internal scans only.
1053  */
1054 STATIC bool
1055 xfs_icwalk_match_id_union(
1056 	struct xfs_inode	*ip,
1057 	struct xfs_icwalk	*icw)
1058 {
1059 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1060 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1061 		return true;
1062 
1063 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1064 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1065 		return true;
1066 
1067 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1068 	    ip->i_projid == icw->icw_prid)
1069 		return true;
1070 
1071 	return false;
1072 }
1073 
1074 /*
1075  * Is this inode @ip eligible for eof/cow block reclamation, given some
1076  * filtering parameters @icw?  The inode is eligible if @icw is null or
1077  * if the predicate functions match.
1078  */
1079 static bool
1080 xfs_icwalk_match(
1081 	struct xfs_inode	*ip,
1082 	struct xfs_icwalk	*icw)
1083 {
1084 	bool			match;
1085 
1086 	if (!icw)
1087 		return true;
1088 
1089 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1090 		match = xfs_icwalk_match_id_union(ip, icw);
1091 	else
1092 		match = xfs_icwalk_match_id(ip, icw);
1093 	if (!match)
1094 		return false;
1095 
1096 	/* skip the inode if the file size is too small */
1097 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1098 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1099 		return false;
1100 
1101 	return true;
1102 }
1103 
1104 /*
1105  * This is a fast pass over the inode cache to try to get reclaim moving on as
1106  * many inodes as possible in a short period of time. It kicks itself every few
1107  * seconds, as well as being kicked by the inode cache shrinker when memory
1108  * goes low.
1109  */
1110 void
1111 xfs_reclaim_worker(
1112 	struct work_struct *work)
1113 {
1114 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1115 					struct xfs_mount, m_reclaim_work);
1116 
1117 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1118 	xfs_reclaim_work_queue(mp);
1119 }
1120 
1121 STATIC int
1122 xfs_inode_free_eofblocks(
1123 	struct xfs_inode	*ip,
1124 	struct xfs_icwalk	*icw,
1125 	unsigned int		*lockflags)
1126 {
1127 	bool			wait;
1128 
1129 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1130 
1131 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1132 		return 0;
1133 
1134 	/*
1135 	 * If the mapping is dirty the operation can block and wait for some
1136 	 * time. Unless we are waiting, skip it.
1137 	 */
1138 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1139 		return 0;
1140 
1141 	if (!xfs_icwalk_match(ip, icw))
1142 		return 0;
1143 
1144 	/*
1145 	 * If the caller is waiting, return -EAGAIN to keep the background
1146 	 * scanner moving and revisit the inode in a subsequent pass.
1147 	 */
1148 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1149 		if (wait)
1150 			return -EAGAIN;
1151 		return 0;
1152 	}
1153 	*lockflags |= XFS_IOLOCK_EXCL;
1154 
1155 	if (xfs_can_free_eofblocks(ip, false))
1156 		return xfs_free_eofblocks(ip);
1157 
1158 	/* inode could be preallocated or append-only */
1159 	trace_xfs_inode_free_eofblocks_invalid(ip);
1160 	xfs_inode_clear_eofblocks_tag(ip);
1161 	return 0;
1162 }
1163 
1164 static void
1165 xfs_blockgc_set_iflag(
1166 	struct xfs_inode	*ip,
1167 	unsigned long		iflag)
1168 {
1169 	struct xfs_mount	*mp = ip->i_mount;
1170 	struct xfs_perag	*pag;
1171 
1172 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1173 
1174 	/*
1175 	 * Don't bother locking the AG and looking up in the radix trees
1176 	 * if we already know that we have the tag set.
1177 	 */
1178 	if (ip->i_flags & iflag)
1179 		return;
1180 	spin_lock(&ip->i_flags_lock);
1181 	ip->i_flags |= iflag;
1182 	spin_unlock(&ip->i_flags_lock);
1183 
1184 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1185 	spin_lock(&pag->pag_ici_lock);
1186 
1187 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1188 			XFS_ICI_BLOCKGC_TAG);
1189 
1190 	spin_unlock(&pag->pag_ici_lock);
1191 	xfs_perag_put(pag);
1192 }
1193 
1194 void
1195 xfs_inode_set_eofblocks_tag(
1196 	xfs_inode_t	*ip)
1197 {
1198 	trace_xfs_inode_set_eofblocks_tag(ip);
1199 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1200 }
1201 
1202 static void
1203 xfs_blockgc_clear_iflag(
1204 	struct xfs_inode	*ip,
1205 	unsigned long		iflag)
1206 {
1207 	struct xfs_mount	*mp = ip->i_mount;
1208 	struct xfs_perag	*pag;
1209 	bool			clear_tag;
1210 
1211 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1212 
1213 	spin_lock(&ip->i_flags_lock);
1214 	ip->i_flags &= ~iflag;
1215 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1216 	spin_unlock(&ip->i_flags_lock);
1217 
1218 	if (!clear_tag)
1219 		return;
1220 
1221 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1222 	spin_lock(&pag->pag_ici_lock);
1223 
1224 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1225 			XFS_ICI_BLOCKGC_TAG);
1226 
1227 	spin_unlock(&pag->pag_ici_lock);
1228 	xfs_perag_put(pag);
1229 }
1230 
1231 void
1232 xfs_inode_clear_eofblocks_tag(
1233 	xfs_inode_t	*ip)
1234 {
1235 	trace_xfs_inode_clear_eofblocks_tag(ip);
1236 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1237 }
1238 
1239 /*
1240  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1241  * then we can bail out quickly, but otherwise we must back off if the file
1242  * is undergoing some kind of write.
1243  */
1244 static bool
1245 xfs_prep_free_cowblocks(
1246 	struct xfs_inode	*ip)
1247 {
1248 	/*
1249 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1250 	 * possible the inode was fully unshared since it was originally tagged.
1251 	 */
1252 	if (!xfs_inode_has_cow_data(ip)) {
1253 		trace_xfs_inode_free_cowblocks_invalid(ip);
1254 		xfs_inode_clear_cowblocks_tag(ip);
1255 		return false;
1256 	}
1257 
1258 	/*
1259 	 * If the mapping is dirty or under writeback we cannot touch the
1260 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1261 	 */
1262 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1263 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1264 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1265 	    atomic_read(&VFS_I(ip)->i_dio_count))
1266 		return false;
1267 
1268 	return true;
1269 }
1270 
1271 /*
1272  * Automatic CoW Reservation Freeing
1273  *
1274  * These functions automatically garbage collect leftover CoW reservations
1275  * that were made on behalf of a cowextsize hint when we start to run out
1276  * of quota or when the reservations sit around for too long.  If the file
1277  * has dirty pages or is undergoing writeback, its CoW reservations will
1278  * be retained.
1279  *
1280  * The actual garbage collection piggybacks off the same code that runs
1281  * the speculative EOF preallocation garbage collector.
1282  */
1283 STATIC int
1284 xfs_inode_free_cowblocks(
1285 	struct xfs_inode	*ip,
1286 	struct xfs_icwalk	*icw,
1287 	unsigned int		*lockflags)
1288 {
1289 	bool			wait;
1290 	int			ret = 0;
1291 
1292 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1293 
1294 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1295 		return 0;
1296 
1297 	if (!xfs_prep_free_cowblocks(ip))
1298 		return 0;
1299 
1300 	if (!xfs_icwalk_match(ip, icw))
1301 		return 0;
1302 
1303 	/*
1304 	 * If the caller is waiting, return -EAGAIN to keep the background
1305 	 * scanner moving and revisit the inode in a subsequent pass.
1306 	 */
1307 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1308 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1309 		if (wait)
1310 			return -EAGAIN;
1311 		return 0;
1312 	}
1313 	*lockflags |= XFS_IOLOCK_EXCL;
1314 
1315 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1316 		if (wait)
1317 			return -EAGAIN;
1318 		return 0;
1319 	}
1320 	*lockflags |= XFS_MMAPLOCK_EXCL;
1321 
1322 	/*
1323 	 * Check again, nobody else should be able to dirty blocks or change
1324 	 * the reflink iflag now that we have the first two locks held.
1325 	 */
1326 	if (xfs_prep_free_cowblocks(ip))
1327 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1328 	return ret;
1329 }
1330 
1331 void
1332 xfs_inode_set_cowblocks_tag(
1333 	xfs_inode_t	*ip)
1334 {
1335 	trace_xfs_inode_set_cowblocks_tag(ip);
1336 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1337 }
1338 
1339 void
1340 xfs_inode_clear_cowblocks_tag(
1341 	xfs_inode_t	*ip)
1342 {
1343 	trace_xfs_inode_clear_cowblocks_tag(ip);
1344 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1345 }
1346 
1347 /* Disable post-EOF and CoW block auto-reclamation. */
1348 void
1349 xfs_blockgc_stop(
1350 	struct xfs_mount	*mp)
1351 {
1352 	struct xfs_perag	*pag;
1353 	xfs_agnumber_t		agno;
1354 
1355 	if (!xfs_clear_blockgc_enabled(mp))
1356 		return;
1357 
1358 	for_each_perag(mp, agno, pag)
1359 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1360 	trace_xfs_blockgc_stop(mp, __return_address);
1361 }
1362 
1363 /* Enable post-EOF and CoW block auto-reclamation. */
1364 void
1365 xfs_blockgc_start(
1366 	struct xfs_mount	*mp)
1367 {
1368 	struct xfs_perag	*pag;
1369 	xfs_agnumber_t		agno;
1370 
1371 	if (xfs_set_blockgc_enabled(mp))
1372 		return;
1373 
1374 	trace_xfs_blockgc_start(mp, __return_address);
1375 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1376 		xfs_blockgc_queue(pag);
1377 }
1378 
1379 /* Don't try to run block gc on an inode that's in any of these states. */
1380 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1381 					 XFS_NEED_INACTIVE | \
1382 					 XFS_INACTIVATING | \
1383 					 XFS_IRECLAIMABLE | \
1384 					 XFS_IRECLAIM)
1385 /*
1386  * Decide if the given @ip is eligible for garbage collection of speculative
1387  * preallocations, and grab it if so.  Returns true if it's ready to go or
1388  * false if we should just ignore it.
1389  */
1390 static bool
1391 xfs_blockgc_igrab(
1392 	struct xfs_inode	*ip)
1393 {
1394 	struct inode		*inode = VFS_I(ip);
1395 
1396 	ASSERT(rcu_read_lock_held());
1397 
1398 	/* Check for stale RCU freed inode */
1399 	spin_lock(&ip->i_flags_lock);
1400 	if (!ip->i_ino)
1401 		goto out_unlock_noent;
1402 
1403 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1404 		goto out_unlock_noent;
1405 	spin_unlock(&ip->i_flags_lock);
1406 
1407 	/* nothing to sync during shutdown */
1408 	if (xfs_is_shutdown(ip->i_mount))
1409 		return false;
1410 
1411 	/* If we can't grab the inode, it must on it's way to reclaim. */
1412 	if (!igrab(inode))
1413 		return false;
1414 
1415 	/* inode is valid */
1416 	return true;
1417 
1418 out_unlock_noent:
1419 	spin_unlock(&ip->i_flags_lock);
1420 	return false;
1421 }
1422 
1423 /* Scan one incore inode for block preallocations that we can remove. */
1424 static int
1425 xfs_blockgc_scan_inode(
1426 	struct xfs_inode	*ip,
1427 	struct xfs_icwalk	*icw)
1428 {
1429 	unsigned int		lockflags = 0;
1430 	int			error;
1431 
1432 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1433 	if (error)
1434 		goto unlock;
1435 
1436 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1437 unlock:
1438 	if (lockflags)
1439 		xfs_iunlock(ip, lockflags);
1440 	xfs_irele(ip);
1441 	return error;
1442 }
1443 
1444 /* Background worker that trims preallocated space. */
1445 void
1446 xfs_blockgc_worker(
1447 	struct work_struct	*work)
1448 {
1449 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1450 					struct xfs_perag, pag_blockgc_work);
1451 	struct xfs_mount	*mp = pag->pag_mount;
1452 	int			error;
1453 
1454 	trace_xfs_blockgc_worker(mp, __return_address);
1455 
1456 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1457 	if (error)
1458 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1459 				pag->pag_agno, error);
1460 	xfs_blockgc_queue(pag);
1461 }
1462 
1463 /*
1464  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1465  * and cowblocks.
1466  */
1467 int
1468 xfs_blockgc_free_space(
1469 	struct xfs_mount	*mp,
1470 	struct xfs_icwalk	*icw)
1471 {
1472 	int			error;
1473 
1474 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1475 
1476 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1477 	if (error)
1478 		return error;
1479 
1480 	xfs_inodegc_flush(mp);
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Reclaim all the free space that we can by scheduling the background blockgc
1486  * and inodegc workers immediately and waiting for them all to clear.
1487  */
1488 void
1489 xfs_blockgc_flush_all(
1490 	struct xfs_mount	*mp)
1491 {
1492 	struct xfs_perag	*pag;
1493 	xfs_agnumber_t		agno;
1494 
1495 	trace_xfs_blockgc_flush_all(mp, __return_address);
1496 
1497 	/*
1498 	 * For each blockgc worker, move its queue time up to now.  If it
1499 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1500 	 * left.
1501 	 */
1502 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1503 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1504 				&pag->pag_blockgc_work, 0);
1505 
1506 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1507 		flush_delayed_work(&pag->pag_blockgc_work);
1508 
1509 	xfs_inodegc_flush(mp);
1510 }
1511 
1512 /*
1513  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1514  * quota caused an allocation failure, so we make a best effort by including
1515  * each quota under low free space conditions (less than 1% free space) in the
1516  * scan.
1517  *
1518  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1519  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1520  * MMAPLOCK.
1521  */
1522 int
1523 xfs_blockgc_free_dquots(
1524 	struct xfs_mount	*mp,
1525 	struct xfs_dquot	*udqp,
1526 	struct xfs_dquot	*gdqp,
1527 	struct xfs_dquot	*pdqp,
1528 	unsigned int		iwalk_flags)
1529 {
1530 	struct xfs_icwalk	icw = {0};
1531 	bool			do_work = false;
1532 
1533 	if (!udqp && !gdqp && !pdqp)
1534 		return 0;
1535 
1536 	/*
1537 	 * Run a scan to free blocks using the union filter to cover all
1538 	 * applicable quotas in a single scan.
1539 	 */
1540 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1541 
1542 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1543 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1544 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1545 		do_work = true;
1546 	}
1547 
1548 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1549 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1550 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1551 		do_work = true;
1552 	}
1553 
1554 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1555 		icw.icw_prid = pdqp->q_id;
1556 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1557 		do_work = true;
1558 	}
1559 
1560 	if (!do_work)
1561 		return 0;
1562 
1563 	return xfs_blockgc_free_space(mp, &icw);
1564 }
1565 
1566 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1567 int
1568 xfs_blockgc_free_quota(
1569 	struct xfs_inode	*ip,
1570 	unsigned int		iwalk_flags)
1571 {
1572 	return xfs_blockgc_free_dquots(ip->i_mount,
1573 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1574 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1575 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1576 }
1577 
1578 /* XFS Inode Cache Walking Code */
1579 
1580 /*
1581  * The inode lookup is done in batches to keep the amount of lock traffic and
1582  * radix tree lookups to a minimum. The batch size is a trade off between
1583  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1584  * be too greedy.
1585  */
1586 #define XFS_LOOKUP_BATCH	32
1587 
1588 
1589 /*
1590  * Decide if we want to grab this inode in anticipation of doing work towards
1591  * the goal.
1592  */
1593 static inline bool
1594 xfs_icwalk_igrab(
1595 	enum xfs_icwalk_goal	goal,
1596 	struct xfs_inode	*ip,
1597 	struct xfs_icwalk	*icw)
1598 {
1599 	switch (goal) {
1600 	case XFS_ICWALK_BLOCKGC:
1601 		return xfs_blockgc_igrab(ip);
1602 	case XFS_ICWALK_RECLAIM:
1603 		return xfs_reclaim_igrab(ip, icw);
1604 	default:
1605 		return false;
1606 	}
1607 }
1608 
1609 /*
1610  * Process an inode.  Each processing function must handle any state changes
1611  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1612  */
1613 static inline int
1614 xfs_icwalk_process_inode(
1615 	enum xfs_icwalk_goal	goal,
1616 	struct xfs_inode	*ip,
1617 	struct xfs_perag	*pag,
1618 	struct xfs_icwalk	*icw)
1619 {
1620 	int			error = 0;
1621 
1622 	switch (goal) {
1623 	case XFS_ICWALK_BLOCKGC:
1624 		error = xfs_blockgc_scan_inode(ip, icw);
1625 		break;
1626 	case XFS_ICWALK_RECLAIM:
1627 		xfs_reclaim_inode(ip, pag);
1628 		break;
1629 	}
1630 	return error;
1631 }
1632 
1633 /*
1634  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1635  * process them in some manner.
1636  */
1637 static int
1638 xfs_icwalk_ag(
1639 	struct xfs_perag	*pag,
1640 	enum xfs_icwalk_goal	goal,
1641 	struct xfs_icwalk	*icw)
1642 {
1643 	struct xfs_mount	*mp = pag->pag_mount;
1644 	uint32_t		first_index;
1645 	int			last_error = 0;
1646 	int			skipped;
1647 	bool			done;
1648 	int			nr_found;
1649 
1650 restart:
1651 	done = false;
1652 	skipped = 0;
1653 	if (goal == XFS_ICWALK_RECLAIM)
1654 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1655 	else
1656 		first_index = 0;
1657 	nr_found = 0;
1658 	do {
1659 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1660 		int		error = 0;
1661 		int		i;
1662 
1663 		rcu_read_lock();
1664 
1665 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1666 				(void **) batch, first_index,
1667 				XFS_LOOKUP_BATCH, goal);
1668 		if (!nr_found) {
1669 			done = true;
1670 			rcu_read_unlock();
1671 			break;
1672 		}
1673 
1674 		/*
1675 		 * Grab the inodes before we drop the lock. if we found
1676 		 * nothing, nr == 0 and the loop will be skipped.
1677 		 */
1678 		for (i = 0; i < nr_found; i++) {
1679 			struct xfs_inode *ip = batch[i];
1680 
1681 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1682 				batch[i] = NULL;
1683 
1684 			/*
1685 			 * Update the index for the next lookup. Catch
1686 			 * overflows into the next AG range which can occur if
1687 			 * we have inodes in the last block of the AG and we
1688 			 * are currently pointing to the last inode.
1689 			 *
1690 			 * Because we may see inodes that are from the wrong AG
1691 			 * due to RCU freeing and reallocation, only update the
1692 			 * index if it lies in this AG. It was a race that lead
1693 			 * us to see this inode, so another lookup from the
1694 			 * same index will not find it again.
1695 			 */
1696 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1697 				continue;
1698 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1699 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1700 				done = true;
1701 		}
1702 
1703 		/* unlock now we've grabbed the inodes. */
1704 		rcu_read_unlock();
1705 
1706 		for (i = 0; i < nr_found; i++) {
1707 			if (!batch[i])
1708 				continue;
1709 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1710 					icw);
1711 			if (error == -EAGAIN) {
1712 				skipped++;
1713 				continue;
1714 			}
1715 			if (error && last_error != -EFSCORRUPTED)
1716 				last_error = error;
1717 		}
1718 
1719 		/* bail out if the filesystem is corrupted.  */
1720 		if (error == -EFSCORRUPTED)
1721 			break;
1722 
1723 		cond_resched();
1724 
1725 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1726 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1727 			if (icw->icw_scan_limit <= 0)
1728 				break;
1729 		}
1730 	} while (nr_found && !done);
1731 
1732 	if (goal == XFS_ICWALK_RECLAIM) {
1733 		if (done)
1734 			first_index = 0;
1735 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1736 	}
1737 
1738 	if (skipped) {
1739 		delay(1);
1740 		goto restart;
1741 	}
1742 	return last_error;
1743 }
1744 
1745 /* Walk all incore inodes to achieve a given goal. */
1746 static int
1747 xfs_icwalk(
1748 	struct xfs_mount	*mp,
1749 	enum xfs_icwalk_goal	goal,
1750 	struct xfs_icwalk	*icw)
1751 {
1752 	struct xfs_perag	*pag;
1753 	int			error = 0;
1754 	int			last_error = 0;
1755 	xfs_agnumber_t		agno;
1756 
1757 	for_each_perag_tag(mp, agno, pag, goal) {
1758 		error = xfs_icwalk_ag(pag, goal, icw);
1759 		if (error) {
1760 			last_error = error;
1761 			if (error == -EFSCORRUPTED) {
1762 				xfs_perag_put(pag);
1763 				break;
1764 			}
1765 		}
1766 	}
1767 	return last_error;
1768 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1769 }
1770 
1771 #ifdef DEBUG
1772 static void
1773 xfs_check_delalloc(
1774 	struct xfs_inode	*ip,
1775 	int			whichfork)
1776 {
1777 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
1778 	struct xfs_bmbt_irec	got;
1779 	struct xfs_iext_cursor	icur;
1780 
1781 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1782 		return;
1783 	do {
1784 		if (isnullstartblock(got.br_startblock)) {
1785 			xfs_warn(ip->i_mount,
1786 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1787 				ip->i_ino,
1788 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1789 				got.br_startoff, got.br_blockcount);
1790 		}
1791 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1792 }
1793 #else
1794 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1795 #endif
1796 
1797 /* Schedule the inode for reclaim. */
1798 static void
1799 xfs_inodegc_set_reclaimable(
1800 	struct xfs_inode	*ip)
1801 {
1802 	struct xfs_mount	*mp = ip->i_mount;
1803 	struct xfs_perag	*pag;
1804 
1805 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1806 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1807 		xfs_check_delalloc(ip, XFS_COW_FORK);
1808 		ASSERT(0);
1809 	}
1810 
1811 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1812 	spin_lock(&pag->pag_ici_lock);
1813 	spin_lock(&ip->i_flags_lock);
1814 
1815 	trace_xfs_inode_set_reclaimable(ip);
1816 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1817 	ip->i_flags |= XFS_IRECLAIMABLE;
1818 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1819 			XFS_ICI_RECLAIM_TAG);
1820 
1821 	spin_unlock(&ip->i_flags_lock);
1822 	spin_unlock(&pag->pag_ici_lock);
1823 	xfs_perag_put(pag);
1824 }
1825 
1826 /*
1827  * Free all speculative preallocations and possibly even the inode itself.
1828  * This is the last chance to make changes to an otherwise unreferenced file
1829  * before incore reclamation happens.
1830  */
1831 static void
1832 xfs_inodegc_inactivate(
1833 	struct xfs_inode	*ip)
1834 {
1835 	trace_xfs_inode_inactivating(ip);
1836 	xfs_inactive(ip);
1837 	xfs_inodegc_set_reclaimable(ip);
1838 }
1839 
1840 void
1841 xfs_inodegc_worker(
1842 	struct work_struct	*work)
1843 {
1844 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1845 						struct xfs_inodegc, work);
1846 	struct llist_node	*node = llist_del_all(&gc->list);
1847 	struct xfs_inode	*ip, *n;
1848 
1849 	WRITE_ONCE(gc->items, 0);
1850 
1851 	if (!node)
1852 		return;
1853 
1854 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1855 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1856 
1857 	WRITE_ONCE(gc->shrinker_hits, 0);
1858 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1859 		xfs_iflags_set(ip, XFS_INACTIVATING);
1860 		xfs_inodegc_inactivate(ip);
1861 	}
1862 }
1863 
1864 /*
1865  * Expedite all pending inodegc work to run immediately. This does not wait for
1866  * completion of the work.
1867  */
1868 void
1869 xfs_inodegc_push(
1870 	struct xfs_mount	*mp)
1871 {
1872 	if (!xfs_is_inodegc_enabled(mp))
1873 		return;
1874 	trace_xfs_inodegc_push(mp, __return_address);
1875 	xfs_inodegc_queue_all(mp);
1876 }
1877 
1878 /*
1879  * Force all currently queued inode inactivation work to run immediately and
1880  * wait for the work to finish.
1881  */
1882 void
1883 xfs_inodegc_flush(
1884 	struct xfs_mount	*mp)
1885 {
1886 	xfs_inodegc_push(mp);
1887 	trace_xfs_inodegc_flush(mp, __return_address);
1888 	flush_workqueue(mp->m_inodegc_wq);
1889 }
1890 
1891 /*
1892  * Flush all the pending work and then disable the inode inactivation background
1893  * workers and wait for them to stop.
1894  */
1895 void
1896 xfs_inodegc_stop(
1897 	struct xfs_mount	*mp)
1898 {
1899 	if (!xfs_clear_inodegc_enabled(mp))
1900 		return;
1901 
1902 	xfs_inodegc_queue_all(mp);
1903 	drain_workqueue(mp->m_inodegc_wq);
1904 
1905 	trace_xfs_inodegc_stop(mp, __return_address);
1906 }
1907 
1908 /*
1909  * Enable the inode inactivation background workers and schedule deferred inode
1910  * inactivation work if there is any.
1911  */
1912 void
1913 xfs_inodegc_start(
1914 	struct xfs_mount	*mp)
1915 {
1916 	if (xfs_set_inodegc_enabled(mp))
1917 		return;
1918 
1919 	trace_xfs_inodegc_start(mp, __return_address);
1920 	xfs_inodegc_queue_all(mp);
1921 }
1922 
1923 #ifdef CONFIG_XFS_RT
1924 static inline bool
1925 xfs_inodegc_want_queue_rt_file(
1926 	struct xfs_inode	*ip)
1927 {
1928 	struct xfs_mount	*mp = ip->i_mount;
1929 
1930 	if (!XFS_IS_REALTIME_INODE(ip))
1931 		return false;
1932 
1933 	if (__percpu_counter_compare(&mp->m_frextents,
1934 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1935 				XFS_FDBLOCKS_BATCH) < 0)
1936 		return true;
1937 
1938 	return false;
1939 }
1940 #else
1941 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1942 #endif /* CONFIG_XFS_RT */
1943 
1944 /*
1945  * Schedule the inactivation worker when:
1946  *
1947  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1948  *  - There is less than 5% free space left.
1949  *  - Any of the quotas for this inode are near an enforcement limit.
1950  */
1951 static inline bool
1952 xfs_inodegc_want_queue_work(
1953 	struct xfs_inode	*ip,
1954 	unsigned int		items)
1955 {
1956 	struct xfs_mount	*mp = ip->i_mount;
1957 
1958 	if (items > mp->m_ino_geo.inodes_per_cluster)
1959 		return true;
1960 
1961 	if (__percpu_counter_compare(&mp->m_fdblocks,
1962 				mp->m_low_space[XFS_LOWSP_5_PCNT],
1963 				XFS_FDBLOCKS_BATCH) < 0)
1964 		return true;
1965 
1966 	if (xfs_inodegc_want_queue_rt_file(ip))
1967 		return true;
1968 
1969 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1970 		return true;
1971 
1972 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1973 		return true;
1974 
1975 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
1976 		return true;
1977 
1978 	return false;
1979 }
1980 
1981 /*
1982  * Upper bound on the number of inodes in each AG that can be queued for
1983  * inactivation at any given time, to avoid monopolizing the workqueue.
1984  */
1985 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
1986 
1987 /*
1988  * Make the frontend wait for inactivations when:
1989  *
1990  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
1991  *  - The queue depth exceeds the maximum allowable percpu backlog.
1992  *
1993  * Note: If the current thread is running a transaction, we don't ever want to
1994  * wait for other transactions because that could introduce a deadlock.
1995  */
1996 static inline bool
1997 xfs_inodegc_want_flush_work(
1998 	struct xfs_inode	*ip,
1999 	unsigned int		items,
2000 	unsigned int		shrinker_hits)
2001 {
2002 	if (current->journal_info)
2003 		return false;
2004 
2005 	if (shrinker_hits > 0)
2006 		return true;
2007 
2008 	if (items > XFS_INODEGC_MAX_BACKLOG)
2009 		return true;
2010 
2011 	return false;
2012 }
2013 
2014 /*
2015  * Queue a background inactivation worker if there are inodes that need to be
2016  * inactivated and higher level xfs code hasn't disabled the background
2017  * workers.
2018  */
2019 static void
2020 xfs_inodegc_queue(
2021 	struct xfs_inode	*ip)
2022 {
2023 	struct xfs_mount	*mp = ip->i_mount;
2024 	struct xfs_inodegc	*gc;
2025 	int			items;
2026 	unsigned int		shrinker_hits;
2027 	unsigned long		queue_delay = 1;
2028 
2029 	trace_xfs_inode_set_need_inactive(ip);
2030 	spin_lock(&ip->i_flags_lock);
2031 	ip->i_flags |= XFS_NEED_INACTIVE;
2032 	spin_unlock(&ip->i_flags_lock);
2033 
2034 	gc = get_cpu_ptr(mp->m_inodegc);
2035 	llist_add(&ip->i_gclist, &gc->list);
2036 	items = READ_ONCE(gc->items);
2037 	WRITE_ONCE(gc->items, items + 1);
2038 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2039 
2040 	/*
2041 	 * We queue the work while holding the current CPU so that the work
2042 	 * is scheduled to run on this CPU.
2043 	 */
2044 	if (!xfs_is_inodegc_enabled(mp)) {
2045 		put_cpu_ptr(gc);
2046 		return;
2047 	}
2048 
2049 	if (xfs_inodegc_want_queue_work(ip, items))
2050 		queue_delay = 0;
2051 
2052 	trace_xfs_inodegc_queue(mp, __return_address);
2053 	mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay);
2054 	put_cpu_ptr(gc);
2055 
2056 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2057 		trace_xfs_inodegc_throttle(mp, __return_address);
2058 		flush_delayed_work(&gc->work);
2059 	}
2060 }
2061 
2062 /*
2063  * Fold the dead CPU inodegc queue into the current CPUs queue.
2064  */
2065 void
2066 xfs_inodegc_cpu_dead(
2067 	struct xfs_mount	*mp,
2068 	unsigned int		dead_cpu)
2069 {
2070 	struct xfs_inodegc	*dead_gc, *gc;
2071 	struct llist_node	*first, *last;
2072 	unsigned int		count = 0;
2073 
2074 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2075 	cancel_delayed_work_sync(&dead_gc->work);
2076 
2077 	if (llist_empty(&dead_gc->list))
2078 		return;
2079 
2080 	first = dead_gc->list.first;
2081 	last = first;
2082 	while (last->next) {
2083 		last = last->next;
2084 		count++;
2085 	}
2086 	dead_gc->list.first = NULL;
2087 	dead_gc->items = 0;
2088 
2089 	/* Add pending work to current CPU */
2090 	gc = get_cpu_ptr(mp->m_inodegc);
2091 	llist_add_batch(first, last, &gc->list);
2092 	count += READ_ONCE(gc->items);
2093 	WRITE_ONCE(gc->items, count);
2094 
2095 	if (xfs_is_inodegc_enabled(mp)) {
2096 		trace_xfs_inodegc_queue(mp, __return_address);
2097 		mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0);
2098 	}
2099 	put_cpu_ptr(gc);
2100 }
2101 
2102 /*
2103  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2104  * lookups on the radix tree, this inode flag can go away.
2105  *
2106  * We always use background reclaim here because even if the inode is clean, it
2107  * still may be under IO and hence we have wait for IO completion to occur
2108  * before we can reclaim the inode. The background reclaim path handles this
2109  * more efficiently than we can here, so simply let background reclaim tear down
2110  * all inodes.
2111  */
2112 void
2113 xfs_inode_mark_reclaimable(
2114 	struct xfs_inode	*ip)
2115 {
2116 	struct xfs_mount	*mp = ip->i_mount;
2117 	bool			need_inactive;
2118 
2119 	XFS_STATS_INC(mp, vn_reclaim);
2120 
2121 	/*
2122 	 * We should never get here with any of the reclaim flags already set.
2123 	 */
2124 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2125 
2126 	need_inactive = xfs_inode_needs_inactive(ip);
2127 	if (need_inactive) {
2128 		xfs_inodegc_queue(ip);
2129 		return;
2130 	}
2131 
2132 	/* Going straight to reclaim, so drop the dquots. */
2133 	xfs_qm_dqdetach(ip);
2134 	xfs_inodegc_set_reclaimable(ip);
2135 }
2136 
2137 /*
2138  * Register a phony shrinker so that we can run background inodegc sooner when
2139  * there's memory pressure.  Inactivation does not itself free any memory but
2140  * it does make inodes reclaimable, which eventually frees memory.
2141  *
2142  * The count function, seek value, and batch value are crafted to trigger the
2143  * scan function during the second round of scanning.  Hopefully this means
2144  * that we reclaimed enough memory that initiating metadata transactions won't
2145  * make things worse.
2146  */
2147 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2148 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2149 
2150 static unsigned long
2151 xfs_inodegc_shrinker_count(
2152 	struct shrinker		*shrink,
2153 	struct shrink_control	*sc)
2154 {
2155 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2156 						   m_inodegc_shrinker);
2157 	struct xfs_inodegc	*gc;
2158 	int			cpu;
2159 
2160 	if (!xfs_is_inodegc_enabled(mp))
2161 		return 0;
2162 
2163 	for_each_online_cpu(cpu) {
2164 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2165 		if (!llist_empty(&gc->list))
2166 			return XFS_INODEGC_SHRINKER_COUNT;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static unsigned long
2173 xfs_inodegc_shrinker_scan(
2174 	struct shrinker		*shrink,
2175 	struct shrink_control	*sc)
2176 {
2177 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2178 						   m_inodegc_shrinker);
2179 	struct xfs_inodegc	*gc;
2180 	int			cpu;
2181 	bool			no_items = true;
2182 
2183 	if (!xfs_is_inodegc_enabled(mp))
2184 		return SHRINK_STOP;
2185 
2186 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2187 
2188 	for_each_online_cpu(cpu) {
2189 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2190 		if (!llist_empty(&gc->list)) {
2191 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2192 
2193 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2194 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2195 			no_items = false;
2196 		}
2197 	}
2198 
2199 	/*
2200 	 * If there are no inodes to inactivate, we don't want the shrinker
2201 	 * to think there's deferred work to call us back about.
2202 	 */
2203 	if (no_items)
2204 		return LONG_MAX;
2205 
2206 	return SHRINK_STOP;
2207 }
2208 
2209 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2210 int
2211 xfs_inodegc_register_shrinker(
2212 	struct xfs_mount	*mp)
2213 {
2214 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2215 
2216 	shrink->count_objects = xfs_inodegc_shrinker_count;
2217 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2218 	shrink->seeks = 0;
2219 	shrink->flags = SHRINKER_NONSLAB;
2220 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2221 
2222 	return register_shrinker(shrink);
2223 }
2224