xref: /openbmc/linux/fs/xfs/xfs_icache.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25 
26 #include <linux/iversion.h>
27 
28 /*
29  * Allocate and initialise an xfs_inode.
30  */
31 struct xfs_inode *
32 xfs_inode_alloc(
33 	struct xfs_mount	*mp,
34 	xfs_ino_t		ino)
35 {
36 	struct xfs_inode	*ip;
37 
38 	/*
39 	 * if this didn't occur in transactions, we could use
40 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
41 	 * code up to do this anyway.
42 	 */
43 	ip = kmem_zone_alloc(xfs_inode_zone, 0);
44 	if (!ip)
45 		return NULL;
46 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
47 		kmem_cache_free(xfs_inode_zone, ip);
48 		return NULL;
49 	}
50 
51 	/* VFS doesn't initialise i_mode! */
52 	VFS_I(ip)->i_mode = 0;
53 
54 	XFS_STATS_INC(mp, vn_active);
55 	ASSERT(atomic_read(&ip->i_pincount) == 0);
56 	ASSERT(!xfs_isiflocked(ip));
57 	ASSERT(ip->i_ino == 0);
58 
59 	/* initialise the xfs inode */
60 	ip->i_ino = ino;
61 	ip->i_mount = mp;
62 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
63 	ip->i_afp = NULL;
64 	ip->i_cowfp = NULL;
65 	ip->i_cnextents = 0;
66 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
67 	memset(&ip->i_df, 0, sizeof(ip->i_df));
68 	ip->i_flags = 0;
69 	ip->i_delayed_blks = 0;
70 	memset(&ip->i_d, 0, sizeof(ip->i_d));
71 	ip->i_sick = 0;
72 	ip->i_checked = 0;
73 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
74 	INIT_LIST_HEAD(&ip->i_ioend_list);
75 	spin_lock_init(&ip->i_ioend_lock);
76 
77 	return ip;
78 }
79 
80 STATIC void
81 xfs_inode_free_callback(
82 	struct rcu_head		*head)
83 {
84 	struct inode		*inode = container_of(head, struct inode, i_rcu);
85 	struct xfs_inode	*ip = XFS_I(inode);
86 
87 	switch (VFS_I(ip)->i_mode & S_IFMT) {
88 	case S_IFREG:
89 	case S_IFDIR:
90 	case S_IFLNK:
91 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
92 		break;
93 	}
94 
95 	if (ip->i_afp)
96 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
97 	if (ip->i_cowfp)
98 		xfs_idestroy_fork(ip, XFS_COW_FORK);
99 
100 	if (ip->i_itemp) {
101 		ASSERT(!test_bit(XFS_LI_IN_AIL,
102 				 &ip->i_itemp->ili_item.li_flags));
103 		xfs_inode_item_destroy(ip);
104 		ip->i_itemp = NULL;
105 	}
106 
107 	kmem_cache_free(xfs_inode_zone, ip);
108 }
109 
110 static void
111 __xfs_inode_free(
112 	struct xfs_inode	*ip)
113 {
114 	/* asserts to verify all state is correct here */
115 	ASSERT(atomic_read(&ip->i_pincount) == 0);
116 	XFS_STATS_DEC(ip->i_mount, vn_active);
117 
118 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
119 }
120 
121 void
122 xfs_inode_free(
123 	struct xfs_inode	*ip)
124 {
125 	ASSERT(!xfs_isiflocked(ip));
126 
127 	/*
128 	 * Because we use RCU freeing we need to ensure the inode always
129 	 * appears to be reclaimed with an invalid inode number when in the
130 	 * free state. The ip->i_flags_lock provides the barrier against lookup
131 	 * races.
132 	 */
133 	spin_lock(&ip->i_flags_lock);
134 	ip->i_flags = XFS_IRECLAIM;
135 	ip->i_ino = 0;
136 	spin_unlock(&ip->i_flags_lock);
137 
138 	__xfs_inode_free(ip);
139 }
140 
141 /*
142  * Queue a new inode reclaim pass if there are reclaimable inodes and there
143  * isn't a reclaim pass already in progress. By default it runs every 5s based
144  * on the xfs periodic sync default of 30s. Perhaps this should have it's own
145  * tunable, but that can be done if this method proves to be ineffective or too
146  * aggressive.
147  */
148 static void
149 xfs_reclaim_work_queue(
150 	struct xfs_mount        *mp)
151 {
152 
153 	rcu_read_lock();
154 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
155 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
156 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
157 	}
158 	rcu_read_unlock();
159 }
160 
161 /*
162  * This is a fast pass over the inode cache to try to get reclaim moving on as
163  * many inodes as possible in a short period of time. It kicks itself every few
164  * seconds, as well as being kicked by the inode cache shrinker when memory
165  * goes low. It scans as quickly as possible avoiding locked inodes or those
166  * already being flushed, and once done schedules a future pass.
167  */
168 void
169 xfs_reclaim_worker(
170 	struct work_struct *work)
171 {
172 	struct xfs_mount *mp = container_of(to_delayed_work(work),
173 					struct xfs_mount, m_reclaim_work);
174 
175 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
176 	xfs_reclaim_work_queue(mp);
177 }
178 
179 static void
180 xfs_perag_set_reclaim_tag(
181 	struct xfs_perag	*pag)
182 {
183 	struct xfs_mount	*mp = pag->pag_mount;
184 
185 	lockdep_assert_held(&pag->pag_ici_lock);
186 	if (pag->pag_ici_reclaimable++)
187 		return;
188 
189 	/* propagate the reclaim tag up into the perag radix tree */
190 	spin_lock(&mp->m_perag_lock);
191 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
192 			   XFS_ICI_RECLAIM_TAG);
193 	spin_unlock(&mp->m_perag_lock);
194 
195 	/* schedule periodic background inode reclaim */
196 	xfs_reclaim_work_queue(mp);
197 
198 	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
199 }
200 
201 static void
202 xfs_perag_clear_reclaim_tag(
203 	struct xfs_perag	*pag)
204 {
205 	struct xfs_mount	*mp = pag->pag_mount;
206 
207 	lockdep_assert_held(&pag->pag_ici_lock);
208 	if (--pag->pag_ici_reclaimable)
209 		return;
210 
211 	/* clear the reclaim tag from the perag radix tree */
212 	spin_lock(&mp->m_perag_lock);
213 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
214 			     XFS_ICI_RECLAIM_TAG);
215 	spin_unlock(&mp->m_perag_lock);
216 	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
217 }
218 
219 
220 /*
221  * We set the inode flag atomically with the radix tree tag.
222  * Once we get tag lookups on the radix tree, this inode flag
223  * can go away.
224  */
225 void
226 xfs_inode_set_reclaim_tag(
227 	struct xfs_inode	*ip)
228 {
229 	struct xfs_mount	*mp = ip->i_mount;
230 	struct xfs_perag	*pag;
231 
232 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
233 	spin_lock(&pag->pag_ici_lock);
234 	spin_lock(&ip->i_flags_lock);
235 
236 	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
237 			   XFS_ICI_RECLAIM_TAG);
238 	xfs_perag_set_reclaim_tag(pag);
239 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
240 
241 	spin_unlock(&ip->i_flags_lock);
242 	spin_unlock(&pag->pag_ici_lock);
243 	xfs_perag_put(pag);
244 }
245 
246 STATIC void
247 xfs_inode_clear_reclaim_tag(
248 	struct xfs_perag	*pag,
249 	xfs_ino_t		ino)
250 {
251 	radix_tree_tag_clear(&pag->pag_ici_root,
252 			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
253 			     XFS_ICI_RECLAIM_TAG);
254 	xfs_perag_clear_reclaim_tag(pag);
255 }
256 
257 static void
258 xfs_inew_wait(
259 	struct xfs_inode	*ip)
260 {
261 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
262 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
263 
264 	do {
265 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
266 		if (!xfs_iflags_test(ip, XFS_INEW))
267 			break;
268 		schedule();
269 	} while (true);
270 	finish_wait(wq, &wait.wq_entry);
271 }
272 
273 /*
274  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
275  * part of the structure. This is made more complex by the fact we store
276  * information about the on-disk values in the VFS inode and so we can't just
277  * overwrite the values unconditionally. Hence we save the parameters we
278  * need to retain across reinitialisation, and rewrite them into the VFS inode
279  * after reinitialisation even if it fails.
280  */
281 static int
282 xfs_reinit_inode(
283 	struct xfs_mount	*mp,
284 	struct inode		*inode)
285 {
286 	int		error;
287 	uint32_t	nlink = inode->i_nlink;
288 	uint32_t	generation = inode->i_generation;
289 	uint64_t	version = inode_peek_iversion(inode);
290 	umode_t		mode = inode->i_mode;
291 	dev_t		dev = inode->i_rdev;
292 	kuid_t		uid = inode->i_uid;
293 	kgid_t		gid = inode->i_gid;
294 
295 	error = inode_init_always(mp->m_super, inode);
296 
297 	set_nlink(inode, nlink);
298 	inode->i_generation = generation;
299 	inode_set_iversion_queried(inode, version);
300 	inode->i_mode = mode;
301 	inode->i_rdev = dev;
302 	inode->i_uid = uid;
303 	inode->i_gid = gid;
304 	return error;
305 }
306 
307 /*
308  * If we are allocating a new inode, then check what was returned is
309  * actually a free, empty inode. If we are not allocating an inode,
310  * then check we didn't find a free inode.
311  *
312  * Returns:
313  *	0		if the inode free state matches the lookup context
314  *	-ENOENT		if the inode is free and we are not allocating
315  *	-EFSCORRUPTED	if there is any state mismatch at all
316  */
317 static int
318 xfs_iget_check_free_state(
319 	struct xfs_inode	*ip,
320 	int			flags)
321 {
322 	if (flags & XFS_IGET_CREATE) {
323 		/* should be a free inode */
324 		if (VFS_I(ip)->i_mode != 0) {
325 			xfs_warn(ip->i_mount,
326 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
327 				ip->i_ino, VFS_I(ip)->i_mode);
328 			return -EFSCORRUPTED;
329 		}
330 
331 		if (ip->i_d.di_nblocks != 0) {
332 			xfs_warn(ip->i_mount,
333 "Corruption detected! Free inode 0x%llx has blocks allocated!",
334 				ip->i_ino);
335 			return -EFSCORRUPTED;
336 		}
337 		return 0;
338 	}
339 
340 	/* should be an allocated inode */
341 	if (VFS_I(ip)->i_mode == 0)
342 		return -ENOENT;
343 
344 	return 0;
345 }
346 
347 /*
348  * Check the validity of the inode we just found it the cache
349  */
350 static int
351 xfs_iget_cache_hit(
352 	struct xfs_perag	*pag,
353 	struct xfs_inode	*ip,
354 	xfs_ino_t		ino,
355 	int			flags,
356 	int			lock_flags) __releases(RCU)
357 {
358 	struct inode		*inode = VFS_I(ip);
359 	struct xfs_mount	*mp = ip->i_mount;
360 	int			error;
361 
362 	/*
363 	 * check for re-use of an inode within an RCU grace period due to the
364 	 * radix tree nodes not being updated yet. We monitor for this by
365 	 * setting the inode number to zero before freeing the inode structure.
366 	 * If the inode has been reallocated and set up, then the inode number
367 	 * will not match, so check for that, too.
368 	 */
369 	spin_lock(&ip->i_flags_lock);
370 	if (ip->i_ino != ino) {
371 		trace_xfs_iget_skip(ip);
372 		XFS_STATS_INC(mp, xs_ig_frecycle);
373 		error = -EAGAIN;
374 		goto out_error;
375 	}
376 
377 
378 	/*
379 	 * If we are racing with another cache hit that is currently
380 	 * instantiating this inode or currently recycling it out of
381 	 * reclaimabe state, wait for the initialisation to complete
382 	 * before continuing.
383 	 *
384 	 * XXX(hch): eventually we should do something equivalent to
385 	 *	     wait_on_inode to wait for these flags to be cleared
386 	 *	     instead of polling for it.
387 	 */
388 	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
389 		trace_xfs_iget_skip(ip);
390 		XFS_STATS_INC(mp, xs_ig_frecycle);
391 		error = -EAGAIN;
392 		goto out_error;
393 	}
394 
395 	/*
396 	 * Check the inode free state is valid. This also detects lookup
397 	 * racing with unlinks.
398 	 */
399 	error = xfs_iget_check_free_state(ip, flags);
400 	if (error)
401 		goto out_error;
402 
403 	/*
404 	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
405 	 * Need to carefully get it back into useable state.
406 	 */
407 	if (ip->i_flags & XFS_IRECLAIMABLE) {
408 		trace_xfs_iget_reclaim(ip);
409 
410 		if (flags & XFS_IGET_INCORE) {
411 			error = -EAGAIN;
412 			goto out_error;
413 		}
414 
415 		/*
416 		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
417 		 * from stomping over us while we recycle the inode.  We can't
418 		 * clear the radix tree reclaimable tag yet as it requires
419 		 * pag_ici_lock to be held exclusive.
420 		 */
421 		ip->i_flags |= XFS_IRECLAIM;
422 
423 		spin_unlock(&ip->i_flags_lock);
424 		rcu_read_unlock();
425 
426 		error = xfs_reinit_inode(mp, inode);
427 		if (error) {
428 			bool wake;
429 			/*
430 			 * Re-initializing the inode failed, and we are in deep
431 			 * trouble.  Try to re-add it to the reclaim list.
432 			 */
433 			rcu_read_lock();
434 			spin_lock(&ip->i_flags_lock);
435 			wake = !!__xfs_iflags_test(ip, XFS_INEW);
436 			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
437 			if (wake)
438 				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
439 			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
440 			trace_xfs_iget_reclaim_fail(ip);
441 			goto out_error;
442 		}
443 
444 		spin_lock(&pag->pag_ici_lock);
445 		spin_lock(&ip->i_flags_lock);
446 
447 		/*
448 		 * Clear the per-lifetime state in the inode as we are now
449 		 * effectively a new inode and need to return to the initial
450 		 * state before reuse occurs.
451 		 */
452 		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
453 		ip->i_flags |= XFS_INEW;
454 		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
455 		inode->i_state = I_NEW;
456 		ip->i_sick = 0;
457 		ip->i_checked = 0;
458 
459 		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
460 		init_rwsem(&inode->i_rwsem);
461 
462 		spin_unlock(&ip->i_flags_lock);
463 		spin_unlock(&pag->pag_ici_lock);
464 	} else {
465 		/* If the VFS inode is being torn down, pause and try again. */
466 		if (!igrab(inode)) {
467 			trace_xfs_iget_skip(ip);
468 			error = -EAGAIN;
469 			goto out_error;
470 		}
471 
472 		/* We've got a live one. */
473 		spin_unlock(&ip->i_flags_lock);
474 		rcu_read_unlock();
475 		trace_xfs_iget_hit(ip);
476 	}
477 
478 	if (lock_flags != 0)
479 		xfs_ilock(ip, lock_flags);
480 
481 	if (!(flags & XFS_IGET_INCORE))
482 		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
483 	XFS_STATS_INC(mp, xs_ig_found);
484 
485 	return 0;
486 
487 out_error:
488 	spin_unlock(&ip->i_flags_lock);
489 	rcu_read_unlock();
490 	return error;
491 }
492 
493 
494 static int
495 xfs_iget_cache_miss(
496 	struct xfs_mount	*mp,
497 	struct xfs_perag	*pag,
498 	xfs_trans_t		*tp,
499 	xfs_ino_t		ino,
500 	struct xfs_inode	**ipp,
501 	int			flags,
502 	int			lock_flags)
503 {
504 	struct xfs_inode	*ip;
505 	int			error;
506 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
507 	int			iflags;
508 
509 	ip = xfs_inode_alloc(mp, ino);
510 	if (!ip)
511 		return -ENOMEM;
512 
513 	error = xfs_iread(mp, tp, ip, flags);
514 	if (error)
515 		goto out_destroy;
516 
517 	if (!xfs_inode_verify_forks(ip)) {
518 		error = -EFSCORRUPTED;
519 		goto out_destroy;
520 	}
521 
522 	trace_xfs_iget_miss(ip);
523 
524 
525 	/*
526 	 * Check the inode free state is valid. This also detects lookup
527 	 * racing with unlinks.
528 	 */
529 	error = xfs_iget_check_free_state(ip, flags);
530 	if (error)
531 		goto out_destroy;
532 
533 	/*
534 	 * Preload the radix tree so we can insert safely under the
535 	 * write spinlock. Note that we cannot sleep inside the preload
536 	 * region. Since we can be called from transaction context, don't
537 	 * recurse into the file system.
538 	 */
539 	if (radix_tree_preload(GFP_NOFS)) {
540 		error = -EAGAIN;
541 		goto out_destroy;
542 	}
543 
544 	/*
545 	 * Because the inode hasn't been added to the radix-tree yet it can't
546 	 * be found by another thread, so we can do the non-sleeping lock here.
547 	 */
548 	if (lock_flags) {
549 		if (!xfs_ilock_nowait(ip, lock_flags))
550 			BUG();
551 	}
552 
553 	/*
554 	 * These values must be set before inserting the inode into the radix
555 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
556 	 * RCU locking mechanism) can find it and that lookup must see that this
557 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
558 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
559 	 * memory barrier that ensures this detection works correctly at lookup
560 	 * time.
561 	 */
562 	iflags = XFS_INEW;
563 	if (flags & XFS_IGET_DONTCACHE)
564 		iflags |= XFS_IDONTCACHE;
565 	ip->i_udquot = NULL;
566 	ip->i_gdquot = NULL;
567 	ip->i_pdquot = NULL;
568 	xfs_iflags_set(ip, iflags);
569 
570 	/* insert the new inode */
571 	spin_lock(&pag->pag_ici_lock);
572 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
573 	if (unlikely(error)) {
574 		WARN_ON(error != -EEXIST);
575 		XFS_STATS_INC(mp, xs_ig_dup);
576 		error = -EAGAIN;
577 		goto out_preload_end;
578 	}
579 	spin_unlock(&pag->pag_ici_lock);
580 	radix_tree_preload_end();
581 
582 	*ipp = ip;
583 	return 0;
584 
585 out_preload_end:
586 	spin_unlock(&pag->pag_ici_lock);
587 	radix_tree_preload_end();
588 	if (lock_flags)
589 		xfs_iunlock(ip, lock_flags);
590 out_destroy:
591 	__destroy_inode(VFS_I(ip));
592 	xfs_inode_free(ip);
593 	return error;
594 }
595 
596 /*
597  * Look up an inode by number in the given file system.
598  * The inode is looked up in the cache held in each AG.
599  * If the inode is found in the cache, initialise the vfs inode
600  * if necessary.
601  *
602  * If it is not in core, read it in from the file system's device,
603  * add it to the cache and initialise the vfs inode.
604  *
605  * The inode is locked according to the value of the lock_flags parameter.
606  * This flag parameter indicates how and if the inode's IO lock and inode lock
607  * should be taken.
608  *
609  * mp -- the mount point structure for the current file system.  It points
610  *       to the inode hash table.
611  * tp -- a pointer to the current transaction if there is one.  This is
612  *       simply passed through to the xfs_iread() call.
613  * ino -- the number of the inode desired.  This is the unique identifier
614  *        within the file system for the inode being requested.
615  * lock_flags -- flags indicating how to lock the inode.  See the comment
616  *		 for xfs_ilock() for a list of valid values.
617  */
618 int
619 xfs_iget(
620 	xfs_mount_t	*mp,
621 	xfs_trans_t	*tp,
622 	xfs_ino_t	ino,
623 	uint		flags,
624 	uint		lock_flags,
625 	xfs_inode_t	**ipp)
626 {
627 	xfs_inode_t	*ip;
628 	int		error;
629 	xfs_perag_t	*pag;
630 	xfs_agino_t	agino;
631 
632 	/*
633 	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
634 	 * doesn't get freed while it's being referenced during a
635 	 * radix tree traversal here.  It assumes this function
636 	 * aqcuires only the ILOCK (and therefore it has no need to
637 	 * involve the IOLOCK in this synchronization).
638 	 */
639 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
640 
641 	/* reject inode numbers outside existing AGs */
642 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
643 		return -EINVAL;
644 
645 	XFS_STATS_INC(mp, xs_ig_attempts);
646 
647 	/* get the perag structure and ensure that it's inode capable */
648 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
649 	agino = XFS_INO_TO_AGINO(mp, ino);
650 
651 again:
652 	error = 0;
653 	rcu_read_lock();
654 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
655 
656 	if (ip) {
657 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
658 		if (error)
659 			goto out_error_or_again;
660 	} else {
661 		rcu_read_unlock();
662 		if (flags & XFS_IGET_INCORE) {
663 			error = -ENODATA;
664 			goto out_error_or_again;
665 		}
666 		XFS_STATS_INC(mp, xs_ig_missed);
667 
668 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
669 							flags, lock_flags);
670 		if (error)
671 			goto out_error_or_again;
672 	}
673 	xfs_perag_put(pag);
674 
675 	*ipp = ip;
676 
677 	/*
678 	 * If we have a real type for an on-disk inode, we can setup the inode
679 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
680 	 */
681 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
682 		xfs_setup_existing_inode(ip);
683 	return 0;
684 
685 out_error_or_again:
686 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
687 		delay(1);
688 		goto again;
689 	}
690 	xfs_perag_put(pag);
691 	return error;
692 }
693 
694 /*
695  * "Is this a cached inode that's also allocated?"
696  *
697  * Look up an inode by number in the given file system.  If the inode is
698  * in cache and isn't in purgatory, return 1 if the inode is allocated
699  * and 0 if it is not.  For all other cases (not in cache, being torn
700  * down, etc.), return a negative error code.
701  *
702  * The caller has to prevent inode allocation and freeing activity,
703  * presumably by locking the AGI buffer.   This is to ensure that an
704  * inode cannot transition from allocated to freed until the caller is
705  * ready to allow that.  If the inode is in an intermediate state (new,
706  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
707  * inode is not in the cache, -ENOENT will be returned.  The caller must
708  * deal with these scenarios appropriately.
709  *
710  * This is a specialized use case for the online scrubber; if you're
711  * reading this, you probably want xfs_iget.
712  */
713 int
714 xfs_icache_inode_is_allocated(
715 	struct xfs_mount	*mp,
716 	struct xfs_trans	*tp,
717 	xfs_ino_t		ino,
718 	bool			*inuse)
719 {
720 	struct xfs_inode	*ip;
721 	int			error;
722 
723 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
724 	if (error)
725 		return error;
726 
727 	*inuse = !!(VFS_I(ip)->i_mode);
728 	xfs_irele(ip);
729 	return 0;
730 }
731 
732 /*
733  * The inode lookup is done in batches to keep the amount of lock traffic and
734  * radix tree lookups to a minimum. The batch size is a trade off between
735  * lookup reduction and stack usage. This is in the reclaim path, so we can't
736  * be too greedy.
737  */
738 #define XFS_LOOKUP_BATCH	32
739 
740 STATIC int
741 xfs_inode_ag_walk_grab(
742 	struct xfs_inode	*ip,
743 	int			flags)
744 {
745 	struct inode		*inode = VFS_I(ip);
746 	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
747 
748 	ASSERT(rcu_read_lock_held());
749 
750 	/*
751 	 * check for stale RCU freed inode
752 	 *
753 	 * If the inode has been reallocated, it doesn't matter if it's not in
754 	 * the AG we are walking - we are walking for writeback, so if it
755 	 * passes all the "valid inode" checks and is dirty, then we'll write
756 	 * it back anyway.  If it has been reallocated and still being
757 	 * initialised, the XFS_INEW check below will catch it.
758 	 */
759 	spin_lock(&ip->i_flags_lock);
760 	if (!ip->i_ino)
761 		goto out_unlock_noent;
762 
763 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
764 	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
765 	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
766 		goto out_unlock_noent;
767 	spin_unlock(&ip->i_flags_lock);
768 
769 	/* nothing to sync during shutdown */
770 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
771 		return -EFSCORRUPTED;
772 
773 	/* If we can't grab the inode, it must on it's way to reclaim. */
774 	if (!igrab(inode))
775 		return -ENOENT;
776 
777 	/* inode is valid */
778 	return 0;
779 
780 out_unlock_noent:
781 	spin_unlock(&ip->i_flags_lock);
782 	return -ENOENT;
783 }
784 
785 STATIC int
786 xfs_inode_ag_walk(
787 	struct xfs_mount	*mp,
788 	struct xfs_perag	*pag,
789 	int			(*execute)(struct xfs_inode *ip, int flags,
790 					   void *args),
791 	int			flags,
792 	void			*args,
793 	int			tag,
794 	int			iter_flags)
795 {
796 	uint32_t		first_index;
797 	int			last_error = 0;
798 	int			skipped;
799 	int			done;
800 	int			nr_found;
801 
802 restart:
803 	done = 0;
804 	skipped = 0;
805 	first_index = 0;
806 	nr_found = 0;
807 	do {
808 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
809 		int		error = 0;
810 		int		i;
811 
812 		rcu_read_lock();
813 
814 		if (tag == -1)
815 			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
816 					(void **)batch, first_index,
817 					XFS_LOOKUP_BATCH);
818 		else
819 			nr_found = radix_tree_gang_lookup_tag(
820 					&pag->pag_ici_root,
821 					(void **) batch, first_index,
822 					XFS_LOOKUP_BATCH, tag);
823 
824 		if (!nr_found) {
825 			rcu_read_unlock();
826 			break;
827 		}
828 
829 		/*
830 		 * Grab the inodes before we drop the lock. if we found
831 		 * nothing, nr == 0 and the loop will be skipped.
832 		 */
833 		for (i = 0; i < nr_found; i++) {
834 			struct xfs_inode *ip = batch[i];
835 
836 			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
837 				batch[i] = NULL;
838 
839 			/*
840 			 * Update the index for the next lookup. Catch
841 			 * overflows into the next AG range which can occur if
842 			 * we have inodes in the last block of the AG and we
843 			 * are currently pointing to the last inode.
844 			 *
845 			 * Because we may see inodes that are from the wrong AG
846 			 * due to RCU freeing and reallocation, only update the
847 			 * index if it lies in this AG. It was a race that lead
848 			 * us to see this inode, so another lookup from the
849 			 * same index will not find it again.
850 			 */
851 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
852 				continue;
853 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
854 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
855 				done = 1;
856 		}
857 
858 		/* unlock now we've grabbed the inodes. */
859 		rcu_read_unlock();
860 
861 		for (i = 0; i < nr_found; i++) {
862 			if (!batch[i])
863 				continue;
864 			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
865 			    xfs_iflags_test(batch[i], XFS_INEW))
866 				xfs_inew_wait(batch[i]);
867 			error = execute(batch[i], flags, args);
868 			xfs_irele(batch[i]);
869 			if (error == -EAGAIN) {
870 				skipped++;
871 				continue;
872 			}
873 			if (error && last_error != -EFSCORRUPTED)
874 				last_error = error;
875 		}
876 
877 		/* bail out if the filesystem is corrupted.  */
878 		if (error == -EFSCORRUPTED)
879 			break;
880 
881 		cond_resched();
882 
883 	} while (nr_found && !done);
884 
885 	if (skipped) {
886 		delay(1);
887 		goto restart;
888 	}
889 	return last_error;
890 }
891 
892 /*
893  * Background scanning to trim post-EOF preallocated space. This is queued
894  * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
895  */
896 void
897 xfs_queue_eofblocks(
898 	struct xfs_mount *mp)
899 {
900 	rcu_read_lock();
901 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
902 		queue_delayed_work(mp->m_eofblocks_workqueue,
903 				   &mp->m_eofblocks_work,
904 				   msecs_to_jiffies(xfs_eofb_secs * 1000));
905 	rcu_read_unlock();
906 }
907 
908 void
909 xfs_eofblocks_worker(
910 	struct work_struct *work)
911 {
912 	struct xfs_mount *mp = container_of(to_delayed_work(work),
913 				struct xfs_mount, m_eofblocks_work);
914 
915 	if (!sb_start_write_trylock(mp->m_super))
916 		return;
917 	xfs_icache_free_eofblocks(mp, NULL);
918 	sb_end_write(mp->m_super);
919 
920 	xfs_queue_eofblocks(mp);
921 }
922 
923 /*
924  * Background scanning to trim preallocated CoW space. This is queued
925  * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
926  * (We'll just piggyback on the post-EOF prealloc space workqueue.)
927  */
928 void
929 xfs_queue_cowblocks(
930 	struct xfs_mount *mp)
931 {
932 	rcu_read_lock();
933 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
934 		queue_delayed_work(mp->m_eofblocks_workqueue,
935 				   &mp->m_cowblocks_work,
936 				   msecs_to_jiffies(xfs_cowb_secs * 1000));
937 	rcu_read_unlock();
938 }
939 
940 void
941 xfs_cowblocks_worker(
942 	struct work_struct *work)
943 {
944 	struct xfs_mount *mp = container_of(to_delayed_work(work),
945 				struct xfs_mount, m_cowblocks_work);
946 
947 	if (!sb_start_write_trylock(mp->m_super))
948 		return;
949 	xfs_icache_free_cowblocks(mp, NULL);
950 	sb_end_write(mp->m_super);
951 
952 	xfs_queue_cowblocks(mp);
953 }
954 
955 int
956 xfs_inode_ag_iterator_flags(
957 	struct xfs_mount	*mp,
958 	int			(*execute)(struct xfs_inode *ip, int flags,
959 					   void *args),
960 	int			flags,
961 	void			*args,
962 	int			iter_flags)
963 {
964 	struct xfs_perag	*pag;
965 	int			error = 0;
966 	int			last_error = 0;
967 	xfs_agnumber_t		ag;
968 
969 	ag = 0;
970 	while ((pag = xfs_perag_get(mp, ag))) {
971 		ag = pag->pag_agno + 1;
972 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
973 					  iter_flags);
974 		xfs_perag_put(pag);
975 		if (error) {
976 			last_error = error;
977 			if (error == -EFSCORRUPTED)
978 				break;
979 		}
980 	}
981 	return last_error;
982 }
983 
984 int
985 xfs_inode_ag_iterator(
986 	struct xfs_mount	*mp,
987 	int			(*execute)(struct xfs_inode *ip, int flags,
988 					   void *args),
989 	int			flags,
990 	void			*args)
991 {
992 	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
993 }
994 
995 int
996 xfs_inode_ag_iterator_tag(
997 	struct xfs_mount	*mp,
998 	int			(*execute)(struct xfs_inode *ip, int flags,
999 					   void *args),
1000 	int			flags,
1001 	void			*args,
1002 	int			tag)
1003 {
1004 	struct xfs_perag	*pag;
1005 	int			error = 0;
1006 	int			last_error = 0;
1007 	xfs_agnumber_t		ag;
1008 
1009 	ag = 0;
1010 	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
1011 		ag = pag->pag_agno + 1;
1012 		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
1013 					  0);
1014 		xfs_perag_put(pag);
1015 		if (error) {
1016 			last_error = error;
1017 			if (error == -EFSCORRUPTED)
1018 				break;
1019 		}
1020 	}
1021 	return last_error;
1022 }
1023 
1024 /*
1025  * Grab the inode for reclaim exclusively.
1026  * Return 0 if we grabbed it, non-zero otherwise.
1027  */
1028 STATIC int
1029 xfs_reclaim_inode_grab(
1030 	struct xfs_inode	*ip,
1031 	int			flags)
1032 {
1033 	ASSERT(rcu_read_lock_held());
1034 
1035 	/* quick check for stale RCU freed inode */
1036 	if (!ip->i_ino)
1037 		return 1;
1038 
1039 	/*
1040 	 * If we are asked for non-blocking operation, do unlocked checks to
1041 	 * see if the inode already is being flushed or in reclaim to avoid
1042 	 * lock traffic.
1043 	 */
1044 	if ((flags & SYNC_TRYLOCK) &&
1045 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1046 		return 1;
1047 
1048 	/*
1049 	 * The radix tree lock here protects a thread in xfs_iget from racing
1050 	 * with us starting reclaim on the inode.  Once we have the
1051 	 * XFS_IRECLAIM flag set it will not touch us.
1052 	 *
1053 	 * Due to RCU lookup, we may find inodes that have been freed and only
1054 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1055 	 * aren't candidates for reclaim at all, so we must check the
1056 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1057 	 */
1058 	spin_lock(&ip->i_flags_lock);
1059 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1060 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1061 		/* not a reclaim candidate. */
1062 		spin_unlock(&ip->i_flags_lock);
1063 		return 1;
1064 	}
1065 	__xfs_iflags_set(ip, XFS_IRECLAIM);
1066 	spin_unlock(&ip->i_flags_lock);
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Inodes in different states need to be treated differently. The following
1072  * table lists the inode states and the reclaim actions necessary:
1073  *
1074  *	inode state	     iflush ret		required action
1075  *      ---------------      ----------         ---------------
1076  *	bad			-		reclaim
1077  *	shutdown		EIO		unpin and reclaim
1078  *	clean, unpinned		0		reclaim
1079  *	stale, unpinned		0		reclaim
1080  *	clean, pinned(*)	0		requeue
1081  *	stale, pinned		EAGAIN		requeue
1082  *	dirty, async		-		requeue
1083  *	dirty, sync		0		reclaim
1084  *
1085  * (*) dgc: I don't think the clean, pinned state is possible but it gets
1086  * handled anyway given the order of checks implemented.
1087  *
1088  * Also, because we get the flush lock first, we know that any inode that has
1089  * been flushed delwri has had the flush completed by the time we check that
1090  * the inode is clean.
1091  *
1092  * Note that because the inode is flushed delayed write by AIL pushing, the
1093  * flush lock may already be held here and waiting on it can result in very
1094  * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1095  * the caller should push the AIL first before trying to reclaim inodes to
1096  * minimise the amount of time spent waiting.  For background relaim, we only
1097  * bother to reclaim clean inodes anyway.
1098  *
1099  * Hence the order of actions after gaining the locks should be:
1100  *	bad		=> reclaim
1101  *	shutdown	=> unpin and reclaim
1102  *	pinned, async	=> requeue
1103  *	pinned, sync	=> unpin
1104  *	stale		=> reclaim
1105  *	clean		=> reclaim
1106  *	dirty, async	=> requeue
1107  *	dirty, sync	=> flush, wait and reclaim
1108  */
1109 STATIC int
1110 xfs_reclaim_inode(
1111 	struct xfs_inode	*ip,
1112 	struct xfs_perag	*pag,
1113 	int			sync_mode)
1114 {
1115 	struct xfs_buf		*bp = NULL;
1116 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1117 	int			error;
1118 
1119 restart:
1120 	error = 0;
1121 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1122 	if (!xfs_iflock_nowait(ip)) {
1123 		if (!(sync_mode & SYNC_WAIT))
1124 			goto out;
1125 		xfs_iflock(ip);
1126 	}
1127 
1128 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1129 		xfs_iunpin_wait(ip);
1130 		/* xfs_iflush_abort() drops the flush lock */
1131 		xfs_iflush_abort(ip, false);
1132 		goto reclaim;
1133 	}
1134 	if (xfs_ipincount(ip)) {
1135 		if (!(sync_mode & SYNC_WAIT))
1136 			goto out_ifunlock;
1137 		xfs_iunpin_wait(ip);
1138 	}
1139 	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1140 		xfs_ifunlock(ip);
1141 		goto reclaim;
1142 	}
1143 
1144 	/*
1145 	 * Never flush out dirty data during non-blocking reclaim, as it would
1146 	 * just contend with AIL pushing trying to do the same job.
1147 	 */
1148 	if (!(sync_mode & SYNC_WAIT))
1149 		goto out_ifunlock;
1150 
1151 	/*
1152 	 * Now we have an inode that needs flushing.
1153 	 *
1154 	 * Note that xfs_iflush will never block on the inode buffer lock, as
1155 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1156 	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1157 	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1158 	 * result in an ABBA deadlock with xfs_ifree_cluster().
1159 	 *
1160 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1161 	 * cache to mark them stale, if we hit this case we don't actually want
1162 	 * to do IO here - we want the inode marked stale so we can simply
1163 	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1164 	 * inode, back off and try again.  Hopefully the next pass through will
1165 	 * see the stale flag set on the inode.
1166 	 */
1167 	error = xfs_iflush(ip, &bp);
1168 	if (error == -EAGAIN) {
1169 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1170 		/* backoff longer than in xfs_ifree_cluster */
1171 		delay(2);
1172 		goto restart;
1173 	}
1174 
1175 	if (!error) {
1176 		error = xfs_bwrite(bp);
1177 		xfs_buf_relse(bp);
1178 	}
1179 
1180 reclaim:
1181 	ASSERT(!xfs_isiflocked(ip));
1182 
1183 	/*
1184 	 * Because we use RCU freeing we need to ensure the inode always appears
1185 	 * to be reclaimed with an invalid inode number when in the free state.
1186 	 * We do this as early as possible under the ILOCK so that
1187 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1188 	 * detect races with us here. By doing this, we guarantee that once
1189 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1190 	 * it will see either a valid inode that will serialise correctly, or it
1191 	 * will see an invalid inode that it can skip.
1192 	 */
1193 	spin_lock(&ip->i_flags_lock);
1194 	ip->i_flags = XFS_IRECLAIM;
1195 	ip->i_ino = 0;
1196 	spin_unlock(&ip->i_flags_lock);
1197 
1198 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1199 
1200 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1201 	/*
1202 	 * Remove the inode from the per-AG radix tree.
1203 	 *
1204 	 * Because radix_tree_delete won't complain even if the item was never
1205 	 * added to the tree assert that it's been there before to catch
1206 	 * problems with the inode life time early on.
1207 	 */
1208 	spin_lock(&pag->pag_ici_lock);
1209 	if (!radix_tree_delete(&pag->pag_ici_root,
1210 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1211 		ASSERT(0);
1212 	xfs_perag_clear_reclaim_tag(pag);
1213 	spin_unlock(&pag->pag_ici_lock);
1214 
1215 	/*
1216 	 * Here we do an (almost) spurious inode lock in order to coordinate
1217 	 * with inode cache radix tree lookups.  This is because the lookup
1218 	 * can reference the inodes in the cache without taking references.
1219 	 *
1220 	 * We make that OK here by ensuring that we wait until the inode is
1221 	 * unlocked after the lookup before we go ahead and free it.
1222 	 */
1223 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1224 	xfs_qm_dqdetach(ip);
1225 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1226 
1227 	__xfs_inode_free(ip);
1228 	return error;
1229 
1230 out_ifunlock:
1231 	xfs_ifunlock(ip);
1232 out:
1233 	xfs_iflags_clear(ip, XFS_IRECLAIM);
1234 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1235 	/*
1236 	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1237 	 * a short while. However, this just burns CPU time scanning the tree
1238 	 * waiting for IO to complete and the reclaim work never goes back to
1239 	 * the idle state. Instead, return 0 to let the next scheduled
1240 	 * background reclaim attempt to reclaim the inode again.
1241 	 */
1242 	return 0;
1243 }
1244 
1245 /*
1246  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1247  * corrupted, we still want to try to reclaim all the inodes. If we don't,
1248  * then a shut down during filesystem unmount reclaim walk leak all the
1249  * unreclaimed inodes.
1250  */
1251 STATIC int
1252 xfs_reclaim_inodes_ag(
1253 	struct xfs_mount	*mp,
1254 	int			flags,
1255 	int			*nr_to_scan)
1256 {
1257 	struct xfs_perag	*pag;
1258 	int			error = 0;
1259 	int			last_error = 0;
1260 	xfs_agnumber_t		ag;
1261 	int			trylock = flags & SYNC_TRYLOCK;
1262 	int			skipped;
1263 
1264 restart:
1265 	ag = 0;
1266 	skipped = 0;
1267 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1268 		unsigned long	first_index = 0;
1269 		int		done = 0;
1270 		int		nr_found = 0;
1271 
1272 		ag = pag->pag_agno + 1;
1273 
1274 		if (trylock) {
1275 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1276 				skipped++;
1277 				xfs_perag_put(pag);
1278 				continue;
1279 			}
1280 			first_index = pag->pag_ici_reclaim_cursor;
1281 		} else
1282 			mutex_lock(&pag->pag_ici_reclaim_lock);
1283 
1284 		do {
1285 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1286 			int	i;
1287 
1288 			rcu_read_lock();
1289 			nr_found = radix_tree_gang_lookup_tag(
1290 					&pag->pag_ici_root,
1291 					(void **)batch, first_index,
1292 					XFS_LOOKUP_BATCH,
1293 					XFS_ICI_RECLAIM_TAG);
1294 			if (!nr_found) {
1295 				done = 1;
1296 				rcu_read_unlock();
1297 				break;
1298 			}
1299 
1300 			/*
1301 			 * Grab the inodes before we drop the lock. if we found
1302 			 * nothing, nr == 0 and the loop will be skipped.
1303 			 */
1304 			for (i = 0; i < nr_found; i++) {
1305 				struct xfs_inode *ip = batch[i];
1306 
1307 				if (done || xfs_reclaim_inode_grab(ip, flags))
1308 					batch[i] = NULL;
1309 
1310 				/*
1311 				 * Update the index for the next lookup. Catch
1312 				 * overflows into the next AG range which can
1313 				 * occur if we have inodes in the last block of
1314 				 * the AG and we are currently pointing to the
1315 				 * last inode.
1316 				 *
1317 				 * Because we may see inodes that are from the
1318 				 * wrong AG due to RCU freeing and
1319 				 * reallocation, only update the index if it
1320 				 * lies in this AG. It was a race that lead us
1321 				 * to see this inode, so another lookup from
1322 				 * the same index will not find it again.
1323 				 */
1324 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1325 								pag->pag_agno)
1326 					continue;
1327 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1328 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1329 					done = 1;
1330 			}
1331 
1332 			/* unlock now we've grabbed the inodes. */
1333 			rcu_read_unlock();
1334 
1335 			for (i = 0; i < nr_found; i++) {
1336 				if (!batch[i])
1337 					continue;
1338 				error = xfs_reclaim_inode(batch[i], pag, flags);
1339 				if (error && last_error != -EFSCORRUPTED)
1340 					last_error = error;
1341 			}
1342 
1343 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1344 
1345 			cond_resched();
1346 
1347 		} while (nr_found && !done && *nr_to_scan > 0);
1348 
1349 		if (trylock && !done)
1350 			pag->pag_ici_reclaim_cursor = first_index;
1351 		else
1352 			pag->pag_ici_reclaim_cursor = 0;
1353 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1354 		xfs_perag_put(pag);
1355 	}
1356 
1357 	/*
1358 	 * if we skipped any AG, and we still have scan count remaining, do
1359 	 * another pass this time using blocking reclaim semantics (i.e
1360 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1361 	 * ensure that when we get more reclaimers than AGs we block rather
1362 	 * than spin trying to execute reclaim.
1363 	 */
1364 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1365 		trylock = 0;
1366 		goto restart;
1367 	}
1368 	return last_error;
1369 }
1370 
1371 int
1372 xfs_reclaim_inodes(
1373 	xfs_mount_t	*mp,
1374 	int		mode)
1375 {
1376 	int		nr_to_scan = INT_MAX;
1377 
1378 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1379 }
1380 
1381 /*
1382  * Scan a certain number of inodes for reclaim.
1383  *
1384  * When called we make sure that there is a background (fast) inode reclaim in
1385  * progress, while we will throttle the speed of reclaim via doing synchronous
1386  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1387  * them to be cleaned, which we hope will not be very long due to the
1388  * background walker having already kicked the IO off on those dirty inodes.
1389  */
1390 long
1391 xfs_reclaim_inodes_nr(
1392 	struct xfs_mount	*mp,
1393 	int			nr_to_scan)
1394 {
1395 	/* kick background reclaimer and push the AIL */
1396 	xfs_reclaim_work_queue(mp);
1397 	xfs_ail_push_all(mp->m_ail);
1398 
1399 	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1400 }
1401 
1402 /*
1403  * Return the number of reclaimable inodes in the filesystem for
1404  * the shrinker to determine how much to reclaim.
1405  */
1406 int
1407 xfs_reclaim_inodes_count(
1408 	struct xfs_mount	*mp)
1409 {
1410 	struct xfs_perag	*pag;
1411 	xfs_agnumber_t		ag = 0;
1412 	int			reclaimable = 0;
1413 
1414 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1415 		ag = pag->pag_agno + 1;
1416 		reclaimable += pag->pag_ici_reclaimable;
1417 		xfs_perag_put(pag);
1418 	}
1419 	return reclaimable;
1420 }
1421 
1422 STATIC int
1423 xfs_inode_match_id(
1424 	struct xfs_inode	*ip,
1425 	struct xfs_eofblocks	*eofb)
1426 {
1427 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1428 	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1429 		return 0;
1430 
1431 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1432 	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1433 		return 0;
1434 
1435 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1436 	    ip->i_d.di_projid != eofb->eof_prid)
1437 		return 0;
1438 
1439 	return 1;
1440 }
1441 
1442 /*
1443  * A union-based inode filtering algorithm. Process the inode if any of the
1444  * criteria match. This is for global/internal scans only.
1445  */
1446 STATIC int
1447 xfs_inode_match_id_union(
1448 	struct xfs_inode	*ip,
1449 	struct xfs_eofblocks	*eofb)
1450 {
1451 	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1452 	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1453 		return 1;
1454 
1455 	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1456 	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1457 		return 1;
1458 
1459 	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1460 	    ip->i_d.di_projid == eofb->eof_prid)
1461 		return 1;
1462 
1463 	return 0;
1464 }
1465 
1466 STATIC int
1467 xfs_inode_free_eofblocks(
1468 	struct xfs_inode	*ip,
1469 	int			flags,
1470 	void			*args)
1471 {
1472 	int ret = 0;
1473 	struct xfs_eofblocks *eofb = args;
1474 	int match;
1475 
1476 	if (!xfs_can_free_eofblocks(ip, false)) {
1477 		/* inode could be preallocated or append-only */
1478 		trace_xfs_inode_free_eofblocks_invalid(ip);
1479 		xfs_inode_clear_eofblocks_tag(ip);
1480 		return 0;
1481 	}
1482 
1483 	/*
1484 	 * If the mapping is dirty the operation can block and wait for some
1485 	 * time. Unless we are waiting, skip it.
1486 	 */
1487 	if (!(flags & SYNC_WAIT) &&
1488 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1489 		return 0;
1490 
1491 	if (eofb) {
1492 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1493 			match = xfs_inode_match_id_union(ip, eofb);
1494 		else
1495 			match = xfs_inode_match_id(ip, eofb);
1496 		if (!match)
1497 			return 0;
1498 
1499 		/* skip the inode if the file size is too small */
1500 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1501 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1502 			return 0;
1503 	}
1504 
1505 	/*
1506 	 * If the caller is waiting, return -EAGAIN to keep the background
1507 	 * scanner moving and revisit the inode in a subsequent pass.
1508 	 */
1509 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1510 		if (flags & SYNC_WAIT)
1511 			ret = -EAGAIN;
1512 		return ret;
1513 	}
1514 	ret = xfs_free_eofblocks(ip);
1515 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1516 
1517 	return ret;
1518 }
1519 
1520 static int
1521 __xfs_icache_free_eofblocks(
1522 	struct xfs_mount	*mp,
1523 	struct xfs_eofblocks	*eofb,
1524 	int			(*execute)(struct xfs_inode *ip, int flags,
1525 					   void *args),
1526 	int			tag)
1527 {
1528 	int flags = SYNC_TRYLOCK;
1529 
1530 	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1531 		flags = SYNC_WAIT;
1532 
1533 	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1534 					 eofb, tag);
1535 }
1536 
1537 int
1538 xfs_icache_free_eofblocks(
1539 	struct xfs_mount	*mp,
1540 	struct xfs_eofblocks	*eofb)
1541 {
1542 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1543 			XFS_ICI_EOFBLOCKS_TAG);
1544 }
1545 
1546 /*
1547  * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1548  * multiple quotas, we don't know exactly which quota caused an allocation
1549  * failure. We make a best effort by including each quota under low free space
1550  * conditions (less than 1% free space) in the scan.
1551  */
1552 static int
1553 __xfs_inode_free_quota_eofblocks(
1554 	struct xfs_inode	*ip,
1555 	int			(*execute)(struct xfs_mount *mp,
1556 					   struct xfs_eofblocks	*eofb))
1557 {
1558 	int scan = 0;
1559 	struct xfs_eofblocks eofb = {0};
1560 	struct xfs_dquot *dq;
1561 
1562 	/*
1563 	 * Run a sync scan to increase effectiveness and use the union filter to
1564 	 * cover all applicable quotas in a single scan.
1565 	 */
1566 	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1567 
1568 	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1569 		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1570 		if (dq && xfs_dquot_lowsp(dq)) {
1571 			eofb.eof_uid = VFS_I(ip)->i_uid;
1572 			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1573 			scan = 1;
1574 		}
1575 	}
1576 
1577 	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1578 		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1579 		if (dq && xfs_dquot_lowsp(dq)) {
1580 			eofb.eof_gid = VFS_I(ip)->i_gid;
1581 			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1582 			scan = 1;
1583 		}
1584 	}
1585 
1586 	if (scan)
1587 		execute(ip->i_mount, &eofb);
1588 
1589 	return scan;
1590 }
1591 
1592 int
1593 xfs_inode_free_quota_eofblocks(
1594 	struct xfs_inode *ip)
1595 {
1596 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1597 }
1598 
1599 static inline unsigned long
1600 xfs_iflag_for_tag(
1601 	int		tag)
1602 {
1603 	switch (tag) {
1604 	case XFS_ICI_EOFBLOCKS_TAG:
1605 		return XFS_IEOFBLOCKS;
1606 	case XFS_ICI_COWBLOCKS_TAG:
1607 		return XFS_ICOWBLOCKS;
1608 	default:
1609 		ASSERT(0);
1610 		return 0;
1611 	}
1612 }
1613 
1614 static void
1615 __xfs_inode_set_blocks_tag(
1616 	xfs_inode_t	*ip,
1617 	void		(*execute)(struct xfs_mount *mp),
1618 	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1619 				  int error, unsigned long caller_ip),
1620 	int		tag)
1621 {
1622 	struct xfs_mount *mp = ip->i_mount;
1623 	struct xfs_perag *pag;
1624 	int tagged;
1625 
1626 	/*
1627 	 * Don't bother locking the AG and looking up in the radix trees
1628 	 * if we already know that we have the tag set.
1629 	 */
1630 	if (ip->i_flags & xfs_iflag_for_tag(tag))
1631 		return;
1632 	spin_lock(&ip->i_flags_lock);
1633 	ip->i_flags |= xfs_iflag_for_tag(tag);
1634 	spin_unlock(&ip->i_flags_lock);
1635 
1636 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1637 	spin_lock(&pag->pag_ici_lock);
1638 
1639 	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1640 	radix_tree_tag_set(&pag->pag_ici_root,
1641 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1642 	if (!tagged) {
1643 		/* propagate the eofblocks tag up into the perag radix tree */
1644 		spin_lock(&ip->i_mount->m_perag_lock);
1645 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1646 				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1647 				   tag);
1648 		spin_unlock(&ip->i_mount->m_perag_lock);
1649 
1650 		/* kick off background trimming */
1651 		execute(ip->i_mount);
1652 
1653 		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1654 	}
1655 
1656 	spin_unlock(&pag->pag_ici_lock);
1657 	xfs_perag_put(pag);
1658 }
1659 
1660 void
1661 xfs_inode_set_eofblocks_tag(
1662 	xfs_inode_t	*ip)
1663 {
1664 	trace_xfs_inode_set_eofblocks_tag(ip);
1665 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1666 			trace_xfs_perag_set_eofblocks,
1667 			XFS_ICI_EOFBLOCKS_TAG);
1668 }
1669 
1670 static void
1671 __xfs_inode_clear_blocks_tag(
1672 	xfs_inode_t	*ip,
1673 	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1674 				    int error, unsigned long caller_ip),
1675 	int		tag)
1676 {
1677 	struct xfs_mount *mp = ip->i_mount;
1678 	struct xfs_perag *pag;
1679 
1680 	spin_lock(&ip->i_flags_lock);
1681 	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1682 	spin_unlock(&ip->i_flags_lock);
1683 
1684 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1685 	spin_lock(&pag->pag_ici_lock);
1686 
1687 	radix_tree_tag_clear(&pag->pag_ici_root,
1688 			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1689 	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1690 		/* clear the eofblocks tag from the perag radix tree */
1691 		spin_lock(&ip->i_mount->m_perag_lock);
1692 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1693 				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1694 				     tag);
1695 		spin_unlock(&ip->i_mount->m_perag_lock);
1696 		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1697 	}
1698 
1699 	spin_unlock(&pag->pag_ici_lock);
1700 	xfs_perag_put(pag);
1701 }
1702 
1703 void
1704 xfs_inode_clear_eofblocks_tag(
1705 	xfs_inode_t	*ip)
1706 {
1707 	trace_xfs_inode_clear_eofblocks_tag(ip);
1708 	return __xfs_inode_clear_blocks_tag(ip,
1709 			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1710 }
1711 
1712 /*
1713  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1714  * then we can bail out quickly, but otherwise we must back off if the file
1715  * is undergoing some kind of write.
1716  */
1717 static bool
1718 xfs_prep_free_cowblocks(
1719 	struct xfs_inode	*ip)
1720 {
1721 	/*
1722 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1723 	 * possible the inode was fully unshared since it was originally tagged.
1724 	 */
1725 	if (!xfs_inode_has_cow_data(ip)) {
1726 		trace_xfs_inode_free_cowblocks_invalid(ip);
1727 		xfs_inode_clear_cowblocks_tag(ip);
1728 		return false;
1729 	}
1730 
1731 	/*
1732 	 * If the mapping is dirty or under writeback we cannot touch the
1733 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1734 	 */
1735 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1736 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1737 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1738 	    atomic_read(&VFS_I(ip)->i_dio_count))
1739 		return false;
1740 
1741 	return true;
1742 }
1743 
1744 /*
1745  * Automatic CoW Reservation Freeing
1746  *
1747  * These functions automatically garbage collect leftover CoW reservations
1748  * that were made on behalf of a cowextsize hint when we start to run out
1749  * of quota or when the reservations sit around for too long.  If the file
1750  * has dirty pages or is undergoing writeback, its CoW reservations will
1751  * be retained.
1752  *
1753  * The actual garbage collection piggybacks off the same code that runs
1754  * the speculative EOF preallocation garbage collector.
1755  */
1756 STATIC int
1757 xfs_inode_free_cowblocks(
1758 	struct xfs_inode	*ip,
1759 	int			flags,
1760 	void			*args)
1761 {
1762 	struct xfs_eofblocks	*eofb = args;
1763 	int			match;
1764 	int			ret = 0;
1765 
1766 	if (!xfs_prep_free_cowblocks(ip))
1767 		return 0;
1768 
1769 	if (eofb) {
1770 		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1771 			match = xfs_inode_match_id_union(ip, eofb);
1772 		else
1773 			match = xfs_inode_match_id(ip, eofb);
1774 		if (!match)
1775 			return 0;
1776 
1777 		/* skip the inode if the file size is too small */
1778 		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1779 		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1780 			return 0;
1781 	}
1782 
1783 	/* Free the CoW blocks */
1784 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1785 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1786 
1787 	/*
1788 	 * Check again, nobody else should be able to dirty blocks or change
1789 	 * the reflink iflag now that we have the first two locks held.
1790 	 */
1791 	if (xfs_prep_free_cowblocks(ip))
1792 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1793 
1794 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1795 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1796 
1797 	return ret;
1798 }
1799 
1800 int
1801 xfs_icache_free_cowblocks(
1802 	struct xfs_mount	*mp,
1803 	struct xfs_eofblocks	*eofb)
1804 {
1805 	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1806 			XFS_ICI_COWBLOCKS_TAG);
1807 }
1808 
1809 int
1810 xfs_inode_free_quota_cowblocks(
1811 	struct xfs_inode *ip)
1812 {
1813 	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1814 }
1815 
1816 void
1817 xfs_inode_set_cowblocks_tag(
1818 	xfs_inode_t	*ip)
1819 {
1820 	trace_xfs_inode_set_cowblocks_tag(ip);
1821 	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1822 			trace_xfs_perag_set_cowblocks,
1823 			XFS_ICI_COWBLOCKS_TAG);
1824 }
1825 
1826 void
1827 xfs_inode_clear_cowblocks_tag(
1828 	xfs_inode_t	*ip)
1829 {
1830 	trace_xfs_inode_clear_cowblocks_tag(ip);
1831 	return __xfs_inode_clear_blocks_tag(ip,
1832 			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1833 }
1834 
1835 /* Disable post-EOF and CoW block auto-reclamation. */
1836 void
1837 xfs_stop_block_reaping(
1838 	struct xfs_mount	*mp)
1839 {
1840 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1841 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1842 }
1843 
1844 /* Enable post-EOF and CoW block auto-reclamation. */
1845 void
1846 xfs_start_block_reaping(
1847 	struct xfs_mount	*mp)
1848 {
1849 	xfs_queue_eofblocks(mp);
1850 	xfs_queue_cowblocks(mp);
1851 }
1852