1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_quota.h" 19 #include "xfs_trace.h" 20 #include "xfs_icache.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_dquot_item.h" 23 #include "xfs_dquot.h" 24 #include "xfs_reflink.h" 25 26 #include <linux/iversion.h> 27 28 /* 29 * Allocate and initialise an xfs_inode. 30 */ 31 struct xfs_inode * 32 xfs_inode_alloc( 33 struct xfs_mount *mp, 34 xfs_ino_t ino) 35 { 36 struct xfs_inode *ip; 37 38 /* 39 * if this didn't occur in transactions, we could use 40 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 41 * code up to do this anyway. 42 */ 43 ip = kmem_zone_alloc(xfs_inode_zone, 0); 44 if (!ip) 45 return NULL; 46 if (inode_init_always(mp->m_super, VFS_I(ip))) { 47 kmem_cache_free(xfs_inode_zone, ip); 48 return NULL; 49 } 50 51 /* VFS doesn't initialise i_mode! */ 52 VFS_I(ip)->i_mode = 0; 53 54 XFS_STATS_INC(mp, vn_active); 55 ASSERT(atomic_read(&ip->i_pincount) == 0); 56 ASSERT(!xfs_isiflocked(ip)); 57 ASSERT(ip->i_ino == 0); 58 59 /* initialise the xfs inode */ 60 ip->i_ino = ino; 61 ip->i_mount = mp; 62 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 63 ip->i_afp = NULL; 64 ip->i_cowfp = NULL; 65 ip->i_cnextents = 0; 66 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 67 memset(&ip->i_df, 0, sizeof(ip->i_df)); 68 ip->i_flags = 0; 69 ip->i_delayed_blks = 0; 70 memset(&ip->i_d, 0, sizeof(ip->i_d)); 71 ip->i_sick = 0; 72 ip->i_checked = 0; 73 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 74 INIT_LIST_HEAD(&ip->i_ioend_list); 75 spin_lock_init(&ip->i_ioend_lock); 76 77 return ip; 78 } 79 80 STATIC void 81 xfs_inode_free_callback( 82 struct rcu_head *head) 83 { 84 struct inode *inode = container_of(head, struct inode, i_rcu); 85 struct xfs_inode *ip = XFS_I(inode); 86 87 switch (VFS_I(ip)->i_mode & S_IFMT) { 88 case S_IFREG: 89 case S_IFDIR: 90 case S_IFLNK: 91 xfs_idestroy_fork(ip, XFS_DATA_FORK); 92 break; 93 } 94 95 if (ip->i_afp) 96 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 97 if (ip->i_cowfp) 98 xfs_idestroy_fork(ip, XFS_COW_FORK); 99 100 if (ip->i_itemp) { 101 ASSERT(!test_bit(XFS_LI_IN_AIL, 102 &ip->i_itemp->ili_item.li_flags)); 103 xfs_inode_item_destroy(ip); 104 ip->i_itemp = NULL; 105 } 106 107 kmem_cache_free(xfs_inode_zone, ip); 108 } 109 110 static void 111 __xfs_inode_free( 112 struct xfs_inode *ip) 113 { 114 /* asserts to verify all state is correct here */ 115 ASSERT(atomic_read(&ip->i_pincount) == 0); 116 XFS_STATS_DEC(ip->i_mount, vn_active); 117 118 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 119 } 120 121 void 122 xfs_inode_free( 123 struct xfs_inode *ip) 124 { 125 ASSERT(!xfs_isiflocked(ip)); 126 127 /* 128 * Because we use RCU freeing we need to ensure the inode always 129 * appears to be reclaimed with an invalid inode number when in the 130 * free state. The ip->i_flags_lock provides the barrier against lookup 131 * races. 132 */ 133 spin_lock(&ip->i_flags_lock); 134 ip->i_flags = XFS_IRECLAIM; 135 ip->i_ino = 0; 136 spin_unlock(&ip->i_flags_lock); 137 138 __xfs_inode_free(ip); 139 } 140 141 /* 142 * Queue a new inode reclaim pass if there are reclaimable inodes and there 143 * isn't a reclaim pass already in progress. By default it runs every 5s based 144 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 145 * tunable, but that can be done if this method proves to be ineffective or too 146 * aggressive. 147 */ 148 static void 149 xfs_reclaim_work_queue( 150 struct xfs_mount *mp) 151 { 152 153 rcu_read_lock(); 154 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 155 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 156 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 157 } 158 rcu_read_unlock(); 159 } 160 161 /* 162 * This is a fast pass over the inode cache to try to get reclaim moving on as 163 * many inodes as possible in a short period of time. It kicks itself every few 164 * seconds, as well as being kicked by the inode cache shrinker when memory 165 * goes low. It scans as quickly as possible avoiding locked inodes or those 166 * already being flushed, and once done schedules a future pass. 167 */ 168 void 169 xfs_reclaim_worker( 170 struct work_struct *work) 171 { 172 struct xfs_mount *mp = container_of(to_delayed_work(work), 173 struct xfs_mount, m_reclaim_work); 174 175 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 176 xfs_reclaim_work_queue(mp); 177 } 178 179 static void 180 xfs_perag_set_reclaim_tag( 181 struct xfs_perag *pag) 182 { 183 struct xfs_mount *mp = pag->pag_mount; 184 185 lockdep_assert_held(&pag->pag_ici_lock); 186 if (pag->pag_ici_reclaimable++) 187 return; 188 189 /* propagate the reclaim tag up into the perag radix tree */ 190 spin_lock(&mp->m_perag_lock); 191 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, 192 XFS_ICI_RECLAIM_TAG); 193 spin_unlock(&mp->m_perag_lock); 194 195 /* schedule periodic background inode reclaim */ 196 xfs_reclaim_work_queue(mp); 197 198 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 199 } 200 201 static void 202 xfs_perag_clear_reclaim_tag( 203 struct xfs_perag *pag) 204 { 205 struct xfs_mount *mp = pag->pag_mount; 206 207 lockdep_assert_held(&pag->pag_ici_lock); 208 if (--pag->pag_ici_reclaimable) 209 return; 210 211 /* clear the reclaim tag from the perag radix tree */ 212 spin_lock(&mp->m_perag_lock); 213 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, 214 XFS_ICI_RECLAIM_TAG); 215 spin_unlock(&mp->m_perag_lock); 216 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); 217 } 218 219 220 /* 221 * We set the inode flag atomically with the radix tree tag. 222 * Once we get tag lookups on the radix tree, this inode flag 223 * can go away. 224 */ 225 void 226 xfs_inode_set_reclaim_tag( 227 struct xfs_inode *ip) 228 { 229 struct xfs_mount *mp = ip->i_mount; 230 struct xfs_perag *pag; 231 232 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 233 spin_lock(&pag->pag_ici_lock); 234 spin_lock(&ip->i_flags_lock); 235 236 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), 237 XFS_ICI_RECLAIM_TAG); 238 xfs_perag_set_reclaim_tag(pag); 239 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 240 241 spin_unlock(&ip->i_flags_lock); 242 spin_unlock(&pag->pag_ici_lock); 243 xfs_perag_put(pag); 244 } 245 246 STATIC void 247 xfs_inode_clear_reclaim_tag( 248 struct xfs_perag *pag, 249 xfs_ino_t ino) 250 { 251 radix_tree_tag_clear(&pag->pag_ici_root, 252 XFS_INO_TO_AGINO(pag->pag_mount, ino), 253 XFS_ICI_RECLAIM_TAG); 254 xfs_perag_clear_reclaim_tag(pag); 255 } 256 257 static void 258 xfs_inew_wait( 259 struct xfs_inode *ip) 260 { 261 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); 262 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); 263 264 do { 265 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 266 if (!xfs_iflags_test(ip, XFS_INEW)) 267 break; 268 schedule(); 269 } while (true); 270 finish_wait(wq, &wait.wq_entry); 271 } 272 273 /* 274 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 275 * part of the structure. This is made more complex by the fact we store 276 * information about the on-disk values in the VFS inode and so we can't just 277 * overwrite the values unconditionally. Hence we save the parameters we 278 * need to retain across reinitialisation, and rewrite them into the VFS inode 279 * after reinitialisation even if it fails. 280 */ 281 static int 282 xfs_reinit_inode( 283 struct xfs_mount *mp, 284 struct inode *inode) 285 { 286 int error; 287 uint32_t nlink = inode->i_nlink; 288 uint32_t generation = inode->i_generation; 289 uint64_t version = inode_peek_iversion(inode); 290 umode_t mode = inode->i_mode; 291 dev_t dev = inode->i_rdev; 292 kuid_t uid = inode->i_uid; 293 kgid_t gid = inode->i_gid; 294 295 error = inode_init_always(mp->m_super, inode); 296 297 set_nlink(inode, nlink); 298 inode->i_generation = generation; 299 inode_set_iversion_queried(inode, version); 300 inode->i_mode = mode; 301 inode->i_rdev = dev; 302 inode->i_uid = uid; 303 inode->i_gid = gid; 304 return error; 305 } 306 307 /* 308 * If we are allocating a new inode, then check what was returned is 309 * actually a free, empty inode. If we are not allocating an inode, 310 * then check we didn't find a free inode. 311 * 312 * Returns: 313 * 0 if the inode free state matches the lookup context 314 * -ENOENT if the inode is free and we are not allocating 315 * -EFSCORRUPTED if there is any state mismatch at all 316 */ 317 static int 318 xfs_iget_check_free_state( 319 struct xfs_inode *ip, 320 int flags) 321 { 322 if (flags & XFS_IGET_CREATE) { 323 /* should be a free inode */ 324 if (VFS_I(ip)->i_mode != 0) { 325 xfs_warn(ip->i_mount, 326 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 327 ip->i_ino, VFS_I(ip)->i_mode); 328 return -EFSCORRUPTED; 329 } 330 331 if (ip->i_d.di_nblocks != 0) { 332 xfs_warn(ip->i_mount, 333 "Corruption detected! Free inode 0x%llx has blocks allocated!", 334 ip->i_ino); 335 return -EFSCORRUPTED; 336 } 337 return 0; 338 } 339 340 /* should be an allocated inode */ 341 if (VFS_I(ip)->i_mode == 0) 342 return -ENOENT; 343 344 return 0; 345 } 346 347 /* 348 * Check the validity of the inode we just found it the cache 349 */ 350 static int 351 xfs_iget_cache_hit( 352 struct xfs_perag *pag, 353 struct xfs_inode *ip, 354 xfs_ino_t ino, 355 int flags, 356 int lock_flags) __releases(RCU) 357 { 358 struct inode *inode = VFS_I(ip); 359 struct xfs_mount *mp = ip->i_mount; 360 int error; 361 362 /* 363 * check for re-use of an inode within an RCU grace period due to the 364 * radix tree nodes not being updated yet. We monitor for this by 365 * setting the inode number to zero before freeing the inode structure. 366 * If the inode has been reallocated and set up, then the inode number 367 * will not match, so check for that, too. 368 */ 369 spin_lock(&ip->i_flags_lock); 370 if (ip->i_ino != ino) { 371 trace_xfs_iget_skip(ip); 372 XFS_STATS_INC(mp, xs_ig_frecycle); 373 error = -EAGAIN; 374 goto out_error; 375 } 376 377 378 /* 379 * If we are racing with another cache hit that is currently 380 * instantiating this inode or currently recycling it out of 381 * reclaimabe state, wait for the initialisation to complete 382 * before continuing. 383 * 384 * XXX(hch): eventually we should do something equivalent to 385 * wait_on_inode to wait for these flags to be cleared 386 * instead of polling for it. 387 */ 388 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 389 trace_xfs_iget_skip(ip); 390 XFS_STATS_INC(mp, xs_ig_frecycle); 391 error = -EAGAIN; 392 goto out_error; 393 } 394 395 /* 396 * Check the inode free state is valid. This also detects lookup 397 * racing with unlinks. 398 */ 399 error = xfs_iget_check_free_state(ip, flags); 400 if (error) 401 goto out_error; 402 403 /* 404 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 405 * Need to carefully get it back into useable state. 406 */ 407 if (ip->i_flags & XFS_IRECLAIMABLE) { 408 trace_xfs_iget_reclaim(ip); 409 410 if (flags & XFS_IGET_INCORE) { 411 error = -EAGAIN; 412 goto out_error; 413 } 414 415 /* 416 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 417 * from stomping over us while we recycle the inode. We can't 418 * clear the radix tree reclaimable tag yet as it requires 419 * pag_ici_lock to be held exclusive. 420 */ 421 ip->i_flags |= XFS_IRECLAIM; 422 423 spin_unlock(&ip->i_flags_lock); 424 rcu_read_unlock(); 425 426 error = xfs_reinit_inode(mp, inode); 427 if (error) { 428 bool wake; 429 /* 430 * Re-initializing the inode failed, and we are in deep 431 * trouble. Try to re-add it to the reclaim list. 432 */ 433 rcu_read_lock(); 434 spin_lock(&ip->i_flags_lock); 435 wake = !!__xfs_iflags_test(ip, XFS_INEW); 436 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 437 if (wake) 438 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); 439 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 440 trace_xfs_iget_reclaim_fail(ip); 441 goto out_error; 442 } 443 444 spin_lock(&pag->pag_ici_lock); 445 spin_lock(&ip->i_flags_lock); 446 447 /* 448 * Clear the per-lifetime state in the inode as we are now 449 * effectively a new inode and need to return to the initial 450 * state before reuse occurs. 451 */ 452 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 453 ip->i_flags |= XFS_INEW; 454 xfs_inode_clear_reclaim_tag(pag, ip->i_ino); 455 inode->i_state = I_NEW; 456 ip->i_sick = 0; 457 ip->i_checked = 0; 458 459 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 460 init_rwsem(&inode->i_rwsem); 461 462 spin_unlock(&ip->i_flags_lock); 463 spin_unlock(&pag->pag_ici_lock); 464 } else { 465 /* If the VFS inode is being torn down, pause and try again. */ 466 if (!igrab(inode)) { 467 trace_xfs_iget_skip(ip); 468 error = -EAGAIN; 469 goto out_error; 470 } 471 472 /* We've got a live one. */ 473 spin_unlock(&ip->i_flags_lock); 474 rcu_read_unlock(); 475 trace_xfs_iget_hit(ip); 476 } 477 478 if (lock_flags != 0) 479 xfs_ilock(ip, lock_flags); 480 481 if (!(flags & XFS_IGET_INCORE)) 482 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 483 XFS_STATS_INC(mp, xs_ig_found); 484 485 return 0; 486 487 out_error: 488 spin_unlock(&ip->i_flags_lock); 489 rcu_read_unlock(); 490 return error; 491 } 492 493 494 static int 495 xfs_iget_cache_miss( 496 struct xfs_mount *mp, 497 struct xfs_perag *pag, 498 xfs_trans_t *tp, 499 xfs_ino_t ino, 500 struct xfs_inode **ipp, 501 int flags, 502 int lock_flags) 503 { 504 struct xfs_inode *ip; 505 int error; 506 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 507 int iflags; 508 509 ip = xfs_inode_alloc(mp, ino); 510 if (!ip) 511 return -ENOMEM; 512 513 error = xfs_iread(mp, tp, ip, flags); 514 if (error) 515 goto out_destroy; 516 517 if (!xfs_inode_verify_forks(ip)) { 518 error = -EFSCORRUPTED; 519 goto out_destroy; 520 } 521 522 trace_xfs_iget_miss(ip); 523 524 525 /* 526 * Check the inode free state is valid. This also detects lookup 527 * racing with unlinks. 528 */ 529 error = xfs_iget_check_free_state(ip, flags); 530 if (error) 531 goto out_destroy; 532 533 /* 534 * Preload the radix tree so we can insert safely under the 535 * write spinlock. Note that we cannot sleep inside the preload 536 * region. Since we can be called from transaction context, don't 537 * recurse into the file system. 538 */ 539 if (radix_tree_preload(GFP_NOFS)) { 540 error = -EAGAIN; 541 goto out_destroy; 542 } 543 544 /* 545 * Because the inode hasn't been added to the radix-tree yet it can't 546 * be found by another thread, so we can do the non-sleeping lock here. 547 */ 548 if (lock_flags) { 549 if (!xfs_ilock_nowait(ip, lock_flags)) 550 BUG(); 551 } 552 553 /* 554 * These values must be set before inserting the inode into the radix 555 * tree as the moment it is inserted a concurrent lookup (allowed by the 556 * RCU locking mechanism) can find it and that lookup must see that this 557 * is an inode currently under construction (i.e. that XFS_INEW is set). 558 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 559 * memory barrier that ensures this detection works correctly at lookup 560 * time. 561 */ 562 iflags = XFS_INEW; 563 if (flags & XFS_IGET_DONTCACHE) 564 iflags |= XFS_IDONTCACHE; 565 ip->i_udquot = NULL; 566 ip->i_gdquot = NULL; 567 ip->i_pdquot = NULL; 568 xfs_iflags_set(ip, iflags); 569 570 /* insert the new inode */ 571 spin_lock(&pag->pag_ici_lock); 572 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 573 if (unlikely(error)) { 574 WARN_ON(error != -EEXIST); 575 XFS_STATS_INC(mp, xs_ig_dup); 576 error = -EAGAIN; 577 goto out_preload_end; 578 } 579 spin_unlock(&pag->pag_ici_lock); 580 radix_tree_preload_end(); 581 582 *ipp = ip; 583 return 0; 584 585 out_preload_end: 586 spin_unlock(&pag->pag_ici_lock); 587 radix_tree_preload_end(); 588 if (lock_flags) 589 xfs_iunlock(ip, lock_flags); 590 out_destroy: 591 __destroy_inode(VFS_I(ip)); 592 xfs_inode_free(ip); 593 return error; 594 } 595 596 /* 597 * Look up an inode by number in the given file system. 598 * The inode is looked up in the cache held in each AG. 599 * If the inode is found in the cache, initialise the vfs inode 600 * if necessary. 601 * 602 * If it is not in core, read it in from the file system's device, 603 * add it to the cache and initialise the vfs inode. 604 * 605 * The inode is locked according to the value of the lock_flags parameter. 606 * This flag parameter indicates how and if the inode's IO lock and inode lock 607 * should be taken. 608 * 609 * mp -- the mount point structure for the current file system. It points 610 * to the inode hash table. 611 * tp -- a pointer to the current transaction if there is one. This is 612 * simply passed through to the xfs_iread() call. 613 * ino -- the number of the inode desired. This is the unique identifier 614 * within the file system for the inode being requested. 615 * lock_flags -- flags indicating how to lock the inode. See the comment 616 * for xfs_ilock() for a list of valid values. 617 */ 618 int 619 xfs_iget( 620 xfs_mount_t *mp, 621 xfs_trans_t *tp, 622 xfs_ino_t ino, 623 uint flags, 624 uint lock_flags, 625 xfs_inode_t **ipp) 626 { 627 xfs_inode_t *ip; 628 int error; 629 xfs_perag_t *pag; 630 xfs_agino_t agino; 631 632 /* 633 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 634 * doesn't get freed while it's being referenced during a 635 * radix tree traversal here. It assumes this function 636 * aqcuires only the ILOCK (and therefore it has no need to 637 * involve the IOLOCK in this synchronization). 638 */ 639 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 640 641 /* reject inode numbers outside existing AGs */ 642 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 643 return -EINVAL; 644 645 XFS_STATS_INC(mp, xs_ig_attempts); 646 647 /* get the perag structure and ensure that it's inode capable */ 648 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 649 agino = XFS_INO_TO_AGINO(mp, ino); 650 651 again: 652 error = 0; 653 rcu_read_lock(); 654 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 655 656 if (ip) { 657 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 658 if (error) 659 goto out_error_or_again; 660 } else { 661 rcu_read_unlock(); 662 if (flags & XFS_IGET_INCORE) { 663 error = -ENODATA; 664 goto out_error_or_again; 665 } 666 XFS_STATS_INC(mp, xs_ig_missed); 667 668 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 669 flags, lock_flags); 670 if (error) 671 goto out_error_or_again; 672 } 673 xfs_perag_put(pag); 674 675 *ipp = ip; 676 677 /* 678 * If we have a real type for an on-disk inode, we can setup the inode 679 * now. If it's a new inode being created, xfs_ialloc will handle it. 680 */ 681 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 682 xfs_setup_existing_inode(ip); 683 return 0; 684 685 out_error_or_again: 686 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { 687 delay(1); 688 goto again; 689 } 690 xfs_perag_put(pag); 691 return error; 692 } 693 694 /* 695 * "Is this a cached inode that's also allocated?" 696 * 697 * Look up an inode by number in the given file system. If the inode is 698 * in cache and isn't in purgatory, return 1 if the inode is allocated 699 * and 0 if it is not. For all other cases (not in cache, being torn 700 * down, etc.), return a negative error code. 701 * 702 * The caller has to prevent inode allocation and freeing activity, 703 * presumably by locking the AGI buffer. This is to ensure that an 704 * inode cannot transition from allocated to freed until the caller is 705 * ready to allow that. If the inode is in an intermediate state (new, 706 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the 707 * inode is not in the cache, -ENOENT will be returned. The caller must 708 * deal with these scenarios appropriately. 709 * 710 * This is a specialized use case for the online scrubber; if you're 711 * reading this, you probably want xfs_iget. 712 */ 713 int 714 xfs_icache_inode_is_allocated( 715 struct xfs_mount *mp, 716 struct xfs_trans *tp, 717 xfs_ino_t ino, 718 bool *inuse) 719 { 720 struct xfs_inode *ip; 721 int error; 722 723 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); 724 if (error) 725 return error; 726 727 *inuse = !!(VFS_I(ip)->i_mode); 728 xfs_irele(ip); 729 return 0; 730 } 731 732 /* 733 * The inode lookup is done in batches to keep the amount of lock traffic and 734 * radix tree lookups to a minimum. The batch size is a trade off between 735 * lookup reduction and stack usage. This is in the reclaim path, so we can't 736 * be too greedy. 737 */ 738 #define XFS_LOOKUP_BATCH 32 739 740 STATIC int 741 xfs_inode_ag_walk_grab( 742 struct xfs_inode *ip, 743 int flags) 744 { 745 struct inode *inode = VFS_I(ip); 746 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT); 747 748 ASSERT(rcu_read_lock_held()); 749 750 /* 751 * check for stale RCU freed inode 752 * 753 * If the inode has been reallocated, it doesn't matter if it's not in 754 * the AG we are walking - we are walking for writeback, so if it 755 * passes all the "valid inode" checks and is dirty, then we'll write 756 * it back anyway. If it has been reallocated and still being 757 * initialised, the XFS_INEW check below will catch it. 758 */ 759 spin_lock(&ip->i_flags_lock); 760 if (!ip->i_ino) 761 goto out_unlock_noent; 762 763 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 764 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || 765 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) 766 goto out_unlock_noent; 767 spin_unlock(&ip->i_flags_lock); 768 769 /* nothing to sync during shutdown */ 770 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 771 return -EFSCORRUPTED; 772 773 /* If we can't grab the inode, it must on it's way to reclaim. */ 774 if (!igrab(inode)) 775 return -ENOENT; 776 777 /* inode is valid */ 778 return 0; 779 780 out_unlock_noent: 781 spin_unlock(&ip->i_flags_lock); 782 return -ENOENT; 783 } 784 785 STATIC int 786 xfs_inode_ag_walk( 787 struct xfs_mount *mp, 788 struct xfs_perag *pag, 789 int (*execute)(struct xfs_inode *ip, int flags, 790 void *args), 791 int flags, 792 void *args, 793 int tag, 794 int iter_flags) 795 { 796 uint32_t first_index; 797 int last_error = 0; 798 int skipped; 799 int done; 800 int nr_found; 801 802 restart: 803 done = 0; 804 skipped = 0; 805 first_index = 0; 806 nr_found = 0; 807 do { 808 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 809 int error = 0; 810 int i; 811 812 rcu_read_lock(); 813 814 if (tag == -1) 815 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 816 (void **)batch, first_index, 817 XFS_LOOKUP_BATCH); 818 else 819 nr_found = radix_tree_gang_lookup_tag( 820 &pag->pag_ici_root, 821 (void **) batch, first_index, 822 XFS_LOOKUP_BATCH, tag); 823 824 if (!nr_found) { 825 rcu_read_unlock(); 826 break; 827 } 828 829 /* 830 * Grab the inodes before we drop the lock. if we found 831 * nothing, nr == 0 and the loop will be skipped. 832 */ 833 for (i = 0; i < nr_found; i++) { 834 struct xfs_inode *ip = batch[i]; 835 836 if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) 837 batch[i] = NULL; 838 839 /* 840 * Update the index for the next lookup. Catch 841 * overflows into the next AG range which can occur if 842 * we have inodes in the last block of the AG and we 843 * are currently pointing to the last inode. 844 * 845 * Because we may see inodes that are from the wrong AG 846 * due to RCU freeing and reallocation, only update the 847 * index if it lies in this AG. It was a race that lead 848 * us to see this inode, so another lookup from the 849 * same index will not find it again. 850 */ 851 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 852 continue; 853 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 854 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 855 done = 1; 856 } 857 858 /* unlock now we've grabbed the inodes. */ 859 rcu_read_unlock(); 860 861 for (i = 0; i < nr_found; i++) { 862 if (!batch[i]) 863 continue; 864 if ((iter_flags & XFS_AGITER_INEW_WAIT) && 865 xfs_iflags_test(batch[i], XFS_INEW)) 866 xfs_inew_wait(batch[i]); 867 error = execute(batch[i], flags, args); 868 xfs_irele(batch[i]); 869 if (error == -EAGAIN) { 870 skipped++; 871 continue; 872 } 873 if (error && last_error != -EFSCORRUPTED) 874 last_error = error; 875 } 876 877 /* bail out if the filesystem is corrupted. */ 878 if (error == -EFSCORRUPTED) 879 break; 880 881 cond_resched(); 882 883 } while (nr_found && !done); 884 885 if (skipped) { 886 delay(1); 887 goto restart; 888 } 889 return last_error; 890 } 891 892 /* 893 * Background scanning to trim post-EOF preallocated space. This is queued 894 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 895 */ 896 void 897 xfs_queue_eofblocks( 898 struct xfs_mount *mp) 899 { 900 rcu_read_lock(); 901 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 902 queue_delayed_work(mp->m_eofblocks_workqueue, 903 &mp->m_eofblocks_work, 904 msecs_to_jiffies(xfs_eofb_secs * 1000)); 905 rcu_read_unlock(); 906 } 907 908 void 909 xfs_eofblocks_worker( 910 struct work_struct *work) 911 { 912 struct xfs_mount *mp = container_of(to_delayed_work(work), 913 struct xfs_mount, m_eofblocks_work); 914 915 if (!sb_start_write_trylock(mp->m_super)) 916 return; 917 xfs_icache_free_eofblocks(mp, NULL); 918 sb_end_write(mp->m_super); 919 920 xfs_queue_eofblocks(mp); 921 } 922 923 /* 924 * Background scanning to trim preallocated CoW space. This is queued 925 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). 926 * (We'll just piggyback on the post-EOF prealloc space workqueue.) 927 */ 928 void 929 xfs_queue_cowblocks( 930 struct xfs_mount *mp) 931 { 932 rcu_read_lock(); 933 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) 934 queue_delayed_work(mp->m_eofblocks_workqueue, 935 &mp->m_cowblocks_work, 936 msecs_to_jiffies(xfs_cowb_secs * 1000)); 937 rcu_read_unlock(); 938 } 939 940 void 941 xfs_cowblocks_worker( 942 struct work_struct *work) 943 { 944 struct xfs_mount *mp = container_of(to_delayed_work(work), 945 struct xfs_mount, m_cowblocks_work); 946 947 if (!sb_start_write_trylock(mp->m_super)) 948 return; 949 xfs_icache_free_cowblocks(mp, NULL); 950 sb_end_write(mp->m_super); 951 952 xfs_queue_cowblocks(mp); 953 } 954 955 int 956 xfs_inode_ag_iterator_flags( 957 struct xfs_mount *mp, 958 int (*execute)(struct xfs_inode *ip, int flags, 959 void *args), 960 int flags, 961 void *args, 962 int iter_flags) 963 { 964 struct xfs_perag *pag; 965 int error = 0; 966 int last_error = 0; 967 xfs_agnumber_t ag; 968 969 ag = 0; 970 while ((pag = xfs_perag_get(mp, ag))) { 971 ag = pag->pag_agno + 1; 972 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, 973 iter_flags); 974 xfs_perag_put(pag); 975 if (error) { 976 last_error = error; 977 if (error == -EFSCORRUPTED) 978 break; 979 } 980 } 981 return last_error; 982 } 983 984 int 985 xfs_inode_ag_iterator( 986 struct xfs_mount *mp, 987 int (*execute)(struct xfs_inode *ip, int flags, 988 void *args), 989 int flags, 990 void *args) 991 { 992 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); 993 } 994 995 int 996 xfs_inode_ag_iterator_tag( 997 struct xfs_mount *mp, 998 int (*execute)(struct xfs_inode *ip, int flags, 999 void *args), 1000 int flags, 1001 void *args, 1002 int tag) 1003 { 1004 struct xfs_perag *pag; 1005 int error = 0; 1006 int last_error = 0; 1007 xfs_agnumber_t ag; 1008 1009 ag = 0; 1010 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 1011 ag = pag->pag_agno + 1; 1012 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, 1013 0); 1014 xfs_perag_put(pag); 1015 if (error) { 1016 last_error = error; 1017 if (error == -EFSCORRUPTED) 1018 break; 1019 } 1020 } 1021 return last_error; 1022 } 1023 1024 /* 1025 * Grab the inode for reclaim exclusively. 1026 * Return 0 if we grabbed it, non-zero otherwise. 1027 */ 1028 STATIC int 1029 xfs_reclaim_inode_grab( 1030 struct xfs_inode *ip, 1031 int flags) 1032 { 1033 ASSERT(rcu_read_lock_held()); 1034 1035 /* quick check for stale RCU freed inode */ 1036 if (!ip->i_ino) 1037 return 1; 1038 1039 /* 1040 * If we are asked for non-blocking operation, do unlocked checks to 1041 * see if the inode already is being flushed or in reclaim to avoid 1042 * lock traffic. 1043 */ 1044 if ((flags & SYNC_TRYLOCK) && 1045 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 1046 return 1; 1047 1048 /* 1049 * The radix tree lock here protects a thread in xfs_iget from racing 1050 * with us starting reclaim on the inode. Once we have the 1051 * XFS_IRECLAIM flag set it will not touch us. 1052 * 1053 * Due to RCU lookup, we may find inodes that have been freed and only 1054 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 1055 * aren't candidates for reclaim at all, so we must check the 1056 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 1057 */ 1058 spin_lock(&ip->i_flags_lock); 1059 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 1060 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 1061 /* not a reclaim candidate. */ 1062 spin_unlock(&ip->i_flags_lock); 1063 return 1; 1064 } 1065 __xfs_iflags_set(ip, XFS_IRECLAIM); 1066 spin_unlock(&ip->i_flags_lock); 1067 return 0; 1068 } 1069 1070 /* 1071 * Inodes in different states need to be treated differently. The following 1072 * table lists the inode states and the reclaim actions necessary: 1073 * 1074 * inode state iflush ret required action 1075 * --------------- ---------- --------------- 1076 * bad - reclaim 1077 * shutdown EIO unpin and reclaim 1078 * clean, unpinned 0 reclaim 1079 * stale, unpinned 0 reclaim 1080 * clean, pinned(*) 0 requeue 1081 * stale, pinned EAGAIN requeue 1082 * dirty, async - requeue 1083 * dirty, sync 0 reclaim 1084 * 1085 * (*) dgc: I don't think the clean, pinned state is possible but it gets 1086 * handled anyway given the order of checks implemented. 1087 * 1088 * Also, because we get the flush lock first, we know that any inode that has 1089 * been flushed delwri has had the flush completed by the time we check that 1090 * the inode is clean. 1091 * 1092 * Note that because the inode is flushed delayed write by AIL pushing, the 1093 * flush lock may already be held here and waiting on it can result in very 1094 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 1095 * the caller should push the AIL first before trying to reclaim inodes to 1096 * minimise the amount of time spent waiting. For background relaim, we only 1097 * bother to reclaim clean inodes anyway. 1098 * 1099 * Hence the order of actions after gaining the locks should be: 1100 * bad => reclaim 1101 * shutdown => unpin and reclaim 1102 * pinned, async => requeue 1103 * pinned, sync => unpin 1104 * stale => reclaim 1105 * clean => reclaim 1106 * dirty, async => requeue 1107 * dirty, sync => flush, wait and reclaim 1108 */ 1109 STATIC int 1110 xfs_reclaim_inode( 1111 struct xfs_inode *ip, 1112 struct xfs_perag *pag, 1113 int sync_mode) 1114 { 1115 struct xfs_buf *bp = NULL; 1116 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 1117 int error; 1118 1119 restart: 1120 error = 0; 1121 xfs_ilock(ip, XFS_ILOCK_EXCL); 1122 if (!xfs_iflock_nowait(ip)) { 1123 if (!(sync_mode & SYNC_WAIT)) 1124 goto out; 1125 xfs_iflock(ip); 1126 } 1127 1128 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1129 xfs_iunpin_wait(ip); 1130 /* xfs_iflush_abort() drops the flush lock */ 1131 xfs_iflush_abort(ip, false); 1132 goto reclaim; 1133 } 1134 if (xfs_ipincount(ip)) { 1135 if (!(sync_mode & SYNC_WAIT)) 1136 goto out_ifunlock; 1137 xfs_iunpin_wait(ip); 1138 } 1139 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { 1140 xfs_ifunlock(ip); 1141 goto reclaim; 1142 } 1143 1144 /* 1145 * Never flush out dirty data during non-blocking reclaim, as it would 1146 * just contend with AIL pushing trying to do the same job. 1147 */ 1148 if (!(sync_mode & SYNC_WAIT)) 1149 goto out_ifunlock; 1150 1151 /* 1152 * Now we have an inode that needs flushing. 1153 * 1154 * Note that xfs_iflush will never block on the inode buffer lock, as 1155 * xfs_ifree_cluster() can lock the inode buffer before it locks the 1156 * ip->i_lock, and we are doing the exact opposite here. As a result, 1157 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 1158 * result in an ABBA deadlock with xfs_ifree_cluster(). 1159 * 1160 * As xfs_ifree_cluser() must gather all inodes that are active in the 1161 * cache to mark them stale, if we hit this case we don't actually want 1162 * to do IO here - we want the inode marked stale so we can simply 1163 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 1164 * inode, back off and try again. Hopefully the next pass through will 1165 * see the stale flag set on the inode. 1166 */ 1167 error = xfs_iflush(ip, &bp); 1168 if (error == -EAGAIN) { 1169 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1170 /* backoff longer than in xfs_ifree_cluster */ 1171 delay(2); 1172 goto restart; 1173 } 1174 1175 if (!error) { 1176 error = xfs_bwrite(bp); 1177 xfs_buf_relse(bp); 1178 } 1179 1180 reclaim: 1181 ASSERT(!xfs_isiflocked(ip)); 1182 1183 /* 1184 * Because we use RCU freeing we need to ensure the inode always appears 1185 * to be reclaimed with an invalid inode number when in the free state. 1186 * We do this as early as possible under the ILOCK so that 1187 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 1188 * detect races with us here. By doing this, we guarantee that once 1189 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 1190 * it will see either a valid inode that will serialise correctly, or it 1191 * will see an invalid inode that it can skip. 1192 */ 1193 spin_lock(&ip->i_flags_lock); 1194 ip->i_flags = XFS_IRECLAIM; 1195 ip->i_ino = 0; 1196 spin_unlock(&ip->i_flags_lock); 1197 1198 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1199 1200 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 1201 /* 1202 * Remove the inode from the per-AG radix tree. 1203 * 1204 * Because radix_tree_delete won't complain even if the item was never 1205 * added to the tree assert that it's been there before to catch 1206 * problems with the inode life time early on. 1207 */ 1208 spin_lock(&pag->pag_ici_lock); 1209 if (!radix_tree_delete(&pag->pag_ici_root, 1210 XFS_INO_TO_AGINO(ip->i_mount, ino))) 1211 ASSERT(0); 1212 xfs_perag_clear_reclaim_tag(pag); 1213 spin_unlock(&pag->pag_ici_lock); 1214 1215 /* 1216 * Here we do an (almost) spurious inode lock in order to coordinate 1217 * with inode cache radix tree lookups. This is because the lookup 1218 * can reference the inodes in the cache without taking references. 1219 * 1220 * We make that OK here by ensuring that we wait until the inode is 1221 * unlocked after the lookup before we go ahead and free it. 1222 */ 1223 xfs_ilock(ip, XFS_ILOCK_EXCL); 1224 xfs_qm_dqdetach(ip); 1225 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1226 1227 __xfs_inode_free(ip); 1228 return error; 1229 1230 out_ifunlock: 1231 xfs_ifunlock(ip); 1232 out: 1233 xfs_iflags_clear(ip, XFS_IRECLAIM); 1234 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1235 /* 1236 * We could return -EAGAIN here to make reclaim rescan the inode tree in 1237 * a short while. However, this just burns CPU time scanning the tree 1238 * waiting for IO to complete and the reclaim work never goes back to 1239 * the idle state. Instead, return 0 to let the next scheduled 1240 * background reclaim attempt to reclaim the inode again. 1241 */ 1242 return 0; 1243 } 1244 1245 /* 1246 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1247 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1248 * then a shut down during filesystem unmount reclaim walk leak all the 1249 * unreclaimed inodes. 1250 */ 1251 STATIC int 1252 xfs_reclaim_inodes_ag( 1253 struct xfs_mount *mp, 1254 int flags, 1255 int *nr_to_scan) 1256 { 1257 struct xfs_perag *pag; 1258 int error = 0; 1259 int last_error = 0; 1260 xfs_agnumber_t ag; 1261 int trylock = flags & SYNC_TRYLOCK; 1262 int skipped; 1263 1264 restart: 1265 ag = 0; 1266 skipped = 0; 1267 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1268 unsigned long first_index = 0; 1269 int done = 0; 1270 int nr_found = 0; 1271 1272 ag = pag->pag_agno + 1; 1273 1274 if (trylock) { 1275 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1276 skipped++; 1277 xfs_perag_put(pag); 1278 continue; 1279 } 1280 first_index = pag->pag_ici_reclaim_cursor; 1281 } else 1282 mutex_lock(&pag->pag_ici_reclaim_lock); 1283 1284 do { 1285 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1286 int i; 1287 1288 rcu_read_lock(); 1289 nr_found = radix_tree_gang_lookup_tag( 1290 &pag->pag_ici_root, 1291 (void **)batch, first_index, 1292 XFS_LOOKUP_BATCH, 1293 XFS_ICI_RECLAIM_TAG); 1294 if (!nr_found) { 1295 done = 1; 1296 rcu_read_unlock(); 1297 break; 1298 } 1299 1300 /* 1301 * Grab the inodes before we drop the lock. if we found 1302 * nothing, nr == 0 and the loop will be skipped. 1303 */ 1304 for (i = 0; i < nr_found; i++) { 1305 struct xfs_inode *ip = batch[i]; 1306 1307 if (done || xfs_reclaim_inode_grab(ip, flags)) 1308 batch[i] = NULL; 1309 1310 /* 1311 * Update the index for the next lookup. Catch 1312 * overflows into the next AG range which can 1313 * occur if we have inodes in the last block of 1314 * the AG and we are currently pointing to the 1315 * last inode. 1316 * 1317 * Because we may see inodes that are from the 1318 * wrong AG due to RCU freeing and 1319 * reallocation, only update the index if it 1320 * lies in this AG. It was a race that lead us 1321 * to see this inode, so another lookup from 1322 * the same index will not find it again. 1323 */ 1324 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1325 pag->pag_agno) 1326 continue; 1327 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1328 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1329 done = 1; 1330 } 1331 1332 /* unlock now we've grabbed the inodes. */ 1333 rcu_read_unlock(); 1334 1335 for (i = 0; i < nr_found; i++) { 1336 if (!batch[i]) 1337 continue; 1338 error = xfs_reclaim_inode(batch[i], pag, flags); 1339 if (error && last_error != -EFSCORRUPTED) 1340 last_error = error; 1341 } 1342 1343 *nr_to_scan -= XFS_LOOKUP_BATCH; 1344 1345 cond_resched(); 1346 1347 } while (nr_found && !done && *nr_to_scan > 0); 1348 1349 if (trylock && !done) 1350 pag->pag_ici_reclaim_cursor = first_index; 1351 else 1352 pag->pag_ici_reclaim_cursor = 0; 1353 mutex_unlock(&pag->pag_ici_reclaim_lock); 1354 xfs_perag_put(pag); 1355 } 1356 1357 /* 1358 * if we skipped any AG, and we still have scan count remaining, do 1359 * another pass this time using blocking reclaim semantics (i.e 1360 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1361 * ensure that when we get more reclaimers than AGs we block rather 1362 * than spin trying to execute reclaim. 1363 */ 1364 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1365 trylock = 0; 1366 goto restart; 1367 } 1368 return last_error; 1369 } 1370 1371 int 1372 xfs_reclaim_inodes( 1373 xfs_mount_t *mp, 1374 int mode) 1375 { 1376 int nr_to_scan = INT_MAX; 1377 1378 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1379 } 1380 1381 /* 1382 * Scan a certain number of inodes for reclaim. 1383 * 1384 * When called we make sure that there is a background (fast) inode reclaim in 1385 * progress, while we will throttle the speed of reclaim via doing synchronous 1386 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1387 * them to be cleaned, which we hope will not be very long due to the 1388 * background walker having already kicked the IO off on those dirty inodes. 1389 */ 1390 long 1391 xfs_reclaim_inodes_nr( 1392 struct xfs_mount *mp, 1393 int nr_to_scan) 1394 { 1395 /* kick background reclaimer and push the AIL */ 1396 xfs_reclaim_work_queue(mp); 1397 xfs_ail_push_all(mp->m_ail); 1398 1399 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1400 } 1401 1402 /* 1403 * Return the number of reclaimable inodes in the filesystem for 1404 * the shrinker to determine how much to reclaim. 1405 */ 1406 int 1407 xfs_reclaim_inodes_count( 1408 struct xfs_mount *mp) 1409 { 1410 struct xfs_perag *pag; 1411 xfs_agnumber_t ag = 0; 1412 int reclaimable = 0; 1413 1414 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1415 ag = pag->pag_agno + 1; 1416 reclaimable += pag->pag_ici_reclaimable; 1417 xfs_perag_put(pag); 1418 } 1419 return reclaimable; 1420 } 1421 1422 STATIC int 1423 xfs_inode_match_id( 1424 struct xfs_inode *ip, 1425 struct xfs_eofblocks *eofb) 1426 { 1427 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1428 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1429 return 0; 1430 1431 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1432 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1433 return 0; 1434 1435 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1436 ip->i_d.di_projid != eofb->eof_prid) 1437 return 0; 1438 1439 return 1; 1440 } 1441 1442 /* 1443 * A union-based inode filtering algorithm. Process the inode if any of the 1444 * criteria match. This is for global/internal scans only. 1445 */ 1446 STATIC int 1447 xfs_inode_match_id_union( 1448 struct xfs_inode *ip, 1449 struct xfs_eofblocks *eofb) 1450 { 1451 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1452 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1453 return 1; 1454 1455 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1456 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1457 return 1; 1458 1459 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1460 ip->i_d.di_projid == eofb->eof_prid) 1461 return 1; 1462 1463 return 0; 1464 } 1465 1466 STATIC int 1467 xfs_inode_free_eofblocks( 1468 struct xfs_inode *ip, 1469 int flags, 1470 void *args) 1471 { 1472 int ret = 0; 1473 struct xfs_eofblocks *eofb = args; 1474 int match; 1475 1476 if (!xfs_can_free_eofblocks(ip, false)) { 1477 /* inode could be preallocated or append-only */ 1478 trace_xfs_inode_free_eofblocks_invalid(ip); 1479 xfs_inode_clear_eofblocks_tag(ip); 1480 return 0; 1481 } 1482 1483 /* 1484 * If the mapping is dirty the operation can block and wait for some 1485 * time. Unless we are waiting, skip it. 1486 */ 1487 if (!(flags & SYNC_WAIT) && 1488 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1489 return 0; 1490 1491 if (eofb) { 1492 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1493 match = xfs_inode_match_id_union(ip, eofb); 1494 else 1495 match = xfs_inode_match_id(ip, eofb); 1496 if (!match) 1497 return 0; 1498 1499 /* skip the inode if the file size is too small */ 1500 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1501 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1502 return 0; 1503 } 1504 1505 /* 1506 * If the caller is waiting, return -EAGAIN to keep the background 1507 * scanner moving and revisit the inode in a subsequent pass. 1508 */ 1509 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1510 if (flags & SYNC_WAIT) 1511 ret = -EAGAIN; 1512 return ret; 1513 } 1514 ret = xfs_free_eofblocks(ip); 1515 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1516 1517 return ret; 1518 } 1519 1520 static int 1521 __xfs_icache_free_eofblocks( 1522 struct xfs_mount *mp, 1523 struct xfs_eofblocks *eofb, 1524 int (*execute)(struct xfs_inode *ip, int flags, 1525 void *args), 1526 int tag) 1527 { 1528 int flags = SYNC_TRYLOCK; 1529 1530 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1531 flags = SYNC_WAIT; 1532 1533 return xfs_inode_ag_iterator_tag(mp, execute, flags, 1534 eofb, tag); 1535 } 1536 1537 int 1538 xfs_icache_free_eofblocks( 1539 struct xfs_mount *mp, 1540 struct xfs_eofblocks *eofb) 1541 { 1542 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, 1543 XFS_ICI_EOFBLOCKS_TAG); 1544 } 1545 1546 /* 1547 * Run eofblocks scans on the quotas applicable to the inode. For inodes with 1548 * multiple quotas, we don't know exactly which quota caused an allocation 1549 * failure. We make a best effort by including each quota under low free space 1550 * conditions (less than 1% free space) in the scan. 1551 */ 1552 static int 1553 __xfs_inode_free_quota_eofblocks( 1554 struct xfs_inode *ip, 1555 int (*execute)(struct xfs_mount *mp, 1556 struct xfs_eofblocks *eofb)) 1557 { 1558 int scan = 0; 1559 struct xfs_eofblocks eofb = {0}; 1560 struct xfs_dquot *dq; 1561 1562 /* 1563 * Run a sync scan to increase effectiveness and use the union filter to 1564 * cover all applicable quotas in a single scan. 1565 */ 1566 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; 1567 1568 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { 1569 dq = xfs_inode_dquot(ip, XFS_DQ_USER); 1570 if (dq && xfs_dquot_lowsp(dq)) { 1571 eofb.eof_uid = VFS_I(ip)->i_uid; 1572 eofb.eof_flags |= XFS_EOF_FLAGS_UID; 1573 scan = 1; 1574 } 1575 } 1576 1577 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { 1578 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); 1579 if (dq && xfs_dquot_lowsp(dq)) { 1580 eofb.eof_gid = VFS_I(ip)->i_gid; 1581 eofb.eof_flags |= XFS_EOF_FLAGS_GID; 1582 scan = 1; 1583 } 1584 } 1585 1586 if (scan) 1587 execute(ip->i_mount, &eofb); 1588 1589 return scan; 1590 } 1591 1592 int 1593 xfs_inode_free_quota_eofblocks( 1594 struct xfs_inode *ip) 1595 { 1596 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); 1597 } 1598 1599 static inline unsigned long 1600 xfs_iflag_for_tag( 1601 int tag) 1602 { 1603 switch (tag) { 1604 case XFS_ICI_EOFBLOCKS_TAG: 1605 return XFS_IEOFBLOCKS; 1606 case XFS_ICI_COWBLOCKS_TAG: 1607 return XFS_ICOWBLOCKS; 1608 default: 1609 ASSERT(0); 1610 return 0; 1611 } 1612 } 1613 1614 static void 1615 __xfs_inode_set_blocks_tag( 1616 xfs_inode_t *ip, 1617 void (*execute)(struct xfs_mount *mp), 1618 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1619 int error, unsigned long caller_ip), 1620 int tag) 1621 { 1622 struct xfs_mount *mp = ip->i_mount; 1623 struct xfs_perag *pag; 1624 int tagged; 1625 1626 /* 1627 * Don't bother locking the AG and looking up in the radix trees 1628 * if we already know that we have the tag set. 1629 */ 1630 if (ip->i_flags & xfs_iflag_for_tag(tag)) 1631 return; 1632 spin_lock(&ip->i_flags_lock); 1633 ip->i_flags |= xfs_iflag_for_tag(tag); 1634 spin_unlock(&ip->i_flags_lock); 1635 1636 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1637 spin_lock(&pag->pag_ici_lock); 1638 1639 tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 1640 radix_tree_tag_set(&pag->pag_ici_root, 1641 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1642 if (!tagged) { 1643 /* propagate the eofblocks tag up into the perag radix tree */ 1644 spin_lock(&ip->i_mount->m_perag_lock); 1645 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1646 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1647 tag); 1648 spin_unlock(&ip->i_mount->m_perag_lock); 1649 1650 /* kick off background trimming */ 1651 execute(ip->i_mount); 1652 1653 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1654 } 1655 1656 spin_unlock(&pag->pag_ici_lock); 1657 xfs_perag_put(pag); 1658 } 1659 1660 void 1661 xfs_inode_set_eofblocks_tag( 1662 xfs_inode_t *ip) 1663 { 1664 trace_xfs_inode_set_eofblocks_tag(ip); 1665 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, 1666 trace_xfs_perag_set_eofblocks, 1667 XFS_ICI_EOFBLOCKS_TAG); 1668 } 1669 1670 static void 1671 __xfs_inode_clear_blocks_tag( 1672 xfs_inode_t *ip, 1673 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, 1674 int error, unsigned long caller_ip), 1675 int tag) 1676 { 1677 struct xfs_mount *mp = ip->i_mount; 1678 struct xfs_perag *pag; 1679 1680 spin_lock(&ip->i_flags_lock); 1681 ip->i_flags &= ~xfs_iflag_for_tag(tag); 1682 spin_unlock(&ip->i_flags_lock); 1683 1684 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1685 spin_lock(&pag->pag_ici_lock); 1686 1687 radix_tree_tag_clear(&pag->pag_ici_root, 1688 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); 1689 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { 1690 /* clear the eofblocks tag from the perag radix tree */ 1691 spin_lock(&ip->i_mount->m_perag_lock); 1692 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1693 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1694 tag); 1695 spin_unlock(&ip->i_mount->m_perag_lock); 1696 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); 1697 } 1698 1699 spin_unlock(&pag->pag_ici_lock); 1700 xfs_perag_put(pag); 1701 } 1702 1703 void 1704 xfs_inode_clear_eofblocks_tag( 1705 xfs_inode_t *ip) 1706 { 1707 trace_xfs_inode_clear_eofblocks_tag(ip); 1708 return __xfs_inode_clear_blocks_tag(ip, 1709 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); 1710 } 1711 1712 /* 1713 * Set ourselves up to free CoW blocks from this file. If it's already clean 1714 * then we can bail out quickly, but otherwise we must back off if the file 1715 * is undergoing some kind of write. 1716 */ 1717 static bool 1718 xfs_prep_free_cowblocks( 1719 struct xfs_inode *ip) 1720 { 1721 /* 1722 * Just clear the tag if we have an empty cow fork or none at all. It's 1723 * possible the inode was fully unshared since it was originally tagged. 1724 */ 1725 if (!xfs_inode_has_cow_data(ip)) { 1726 trace_xfs_inode_free_cowblocks_invalid(ip); 1727 xfs_inode_clear_cowblocks_tag(ip); 1728 return false; 1729 } 1730 1731 /* 1732 * If the mapping is dirty or under writeback we cannot touch the 1733 * CoW fork. Leave it alone if we're in the midst of a directio. 1734 */ 1735 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1736 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1737 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1738 atomic_read(&VFS_I(ip)->i_dio_count)) 1739 return false; 1740 1741 return true; 1742 } 1743 1744 /* 1745 * Automatic CoW Reservation Freeing 1746 * 1747 * These functions automatically garbage collect leftover CoW reservations 1748 * that were made on behalf of a cowextsize hint when we start to run out 1749 * of quota or when the reservations sit around for too long. If the file 1750 * has dirty pages or is undergoing writeback, its CoW reservations will 1751 * be retained. 1752 * 1753 * The actual garbage collection piggybacks off the same code that runs 1754 * the speculative EOF preallocation garbage collector. 1755 */ 1756 STATIC int 1757 xfs_inode_free_cowblocks( 1758 struct xfs_inode *ip, 1759 int flags, 1760 void *args) 1761 { 1762 struct xfs_eofblocks *eofb = args; 1763 int match; 1764 int ret = 0; 1765 1766 if (!xfs_prep_free_cowblocks(ip)) 1767 return 0; 1768 1769 if (eofb) { 1770 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) 1771 match = xfs_inode_match_id_union(ip, eofb); 1772 else 1773 match = xfs_inode_match_id(ip, eofb); 1774 if (!match) 1775 return 0; 1776 1777 /* skip the inode if the file size is too small */ 1778 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1779 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1780 return 0; 1781 } 1782 1783 /* Free the CoW blocks */ 1784 xfs_ilock(ip, XFS_IOLOCK_EXCL); 1785 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1786 1787 /* 1788 * Check again, nobody else should be able to dirty blocks or change 1789 * the reflink iflag now that we have the first two locks held. 1790 */ 1791 if (xfs_prep_free_cowblocks(ip)) 1792 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1793 1794 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1795 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1796 1797 return ret; 1798 } 1799 1800 int 1801 xfs_icache_free_cowblocks( 1802 struct xfs_mount *mp, 1803 struct xfs_eofblocks *eofb) 1804 { 1805 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, 1806 XFS_ICI_COWBLOCKS_TAG); 1807 } 1808 1809 int 1810 xfs_inode_free_quota_cowblocks( 1811 struct xfs_inode *ip) 1812 { 1813 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); 1814 } 1815 1816 void 1817 xfs_inode_set_cowblocks_tag( 1818 xfs_inode_t *ip) 1819 { 1820 trace_xfs_inode_set_cowblocks_tag(ip); 1821 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, 1822 trace_xfs_perag_set_cowblocks, 1823 XFS_ICI_COWBLOCKS_TAG); 1824 } 1825 1826 void 1827 xfs_inode_clear_cowblocks_tag( 1828 xfs_inode_t *ip) 1829 { 1830 trace_xfs_inode_clear_cowblocks_tag(ip); 1831 return __xfs_inode_clear_blocks_tag(ip, 1832 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); 1833 } 1834 1835 /* Disable post-EOF and CoW block auto-reclamation. */ 1836 void 1837 xfs_stop_block_reaping( 1838 struct xfs_mount *mp) 1839 { 1840 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1841 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1842 } 1843 1844 /* Enable post-EOF and CoW block auto-reclamation. */ 1845 void 1846 xfs_start_block_reaping( 1847 struct xfs_mount *mp) 1848 { 1849 xfs_queue_eofblocks(mp); 1850 xfs_queue_cowblocks(mp); 1851 } 1852