1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_types.h" 22 #include "xfs_log.h" 23 #include "xfs_log_priv.h" 24 #include "xfs_inum.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_inode.h" 32 #include "xfs_dinode.h" 33 #include "xfs_error.h" 34 #include "xfs_filestream.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_quota.h" 37 #include "xfs_trace.h" 38 #include "xfs_fsops.h" 39 #include "xfs_icache.h" 40 #include "xfs_bmap_util.h" 41 42 #include <linux/kthread.h> 43 #include <linux/freezer.h> 44 45 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, 46 struct xfs_perag *pag, struct xfs_inode *ip); 47 48 /* 49 * Allocate and initialise an xfs_inode. 50 */ 51 struct xfs_inode * 52 xfs_inode_alloc( 53 struct xfs_mount *mp, 54 xfs_ino_t ino) 55 { 56 struct xfs_inode *ip; 57 58 /* 59 * if this didn't occur in transactions, we could use 60 * KM_MAYFAIL and return NULL here on ENOMEM. Set the 61 * code up to do this anyway. 62 */ 63 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); 64 if (!ip) 65 return NULL; 66 if (inode_init_always(mp->m_super, VFS_I(ip))) { 67 kmem_zone_free(xfs_inode_zone, ip); 68 return NULL; 69 } 70 71 ASSERT(atomic_read(&ip->i_pincount) == 0); 72 ASSERT(!spin_is_locked(&ip->i_flags_lock)); 73 ASSERT(!xfs_isiflocked(ip)); 74 ASSERT(ip->i_ino == 0); 75 76 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 77 78 /* initialise the xfs inode */ 79 ip->i_ino = ino; 80 ip->i_mount = mp; 81 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 82 ip->i_afp = NULL; 83 memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); 84 ip->i_flags = 0; 85 ip->i_delayed_blks = 0; 86 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); 87 88 return ip; 89 } 90 91 STATIC void 92 xfs_inode_free_callback( 93 struct rcu_head *head) 94 { 95 struct inode *inode = container_of(head, struct inode, i_rcu); 96 struct xfs_inode *ip = XFS_I(inode); 97 98 kmem_zone_free(xfs_inode_zone, ip); 99 } 100 101 void 102 xfs_inode_free( 103 struct xfs_inode *ip) 104 { 105 switch (ip->i_d.di_mode & S_IFMT) { 106 case S_IFREG: 107 case S_IFDIR: 108 case S_IFLNK: 109 xfs_idestroy_fork(ip, XFS_DATA_FORK); 110 break; 111 } 112 113 if (ip->i_afp) 114 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 115 116 if (ip->i_itemp) { 117 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); 118 xfs_inode_item_destroy(ip); 119 ip->i_itemp = NULL; 120 } 121 122 /* 123 * Because we use RCU freeing we need to ensure the inode always 124 * appears to be reclaimed with an invalid inode number when in the 125 * free state. The ip->i_flags_lock provides the barrier against lookup 126 * races. 127 */ 128 spin_lock(&ip->i_flags_lock); 129 ip->i_flags = XFS_IRECLAIM; 130 ip->i_ino = 0; 131 spin_unlock(&ip->i_flags_lock); 132 133 /* asserts to verify all state is correct here */ 134 ASSERT(atomic_read(&ip->i_pincount) == 0); 135 ASSERT(!xfs_isiflocked(ip)); 136 137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 138 } 139 140 /* 141 * Check the validity of the inode we just found it the cache 142 */ 143 static int 144 xfs_iget_cache_hit( 145 struct xfs_perag *pag, 146 struct xfs_inode *ip, 147 xfs_ino_t ino, 148 int flags, 149 int lock_flags) __releases(RCU) 150 { 151 struct inode *inode = VFS_I(ip); 152 struct xfs_mount *mp = ip->i_mount; 153 int error; 154 155 /* 156 * check for re-use of an inode within an RCU grace period due to the 157 * radix tree nodes not being updated yet. We monitor for this by 158 * setting the inode number to zero before freeing the inode structure. 159 * If the inode has been reallocated and set up, then the inode number 160 * will not match, so check for that, too. 161 */ 162 spin_lock(&ip->i_flags_lock); 163 if (ip->i_ino != ino) { 164 trace_xfs_iget_skip(ip); 165 XFS_STATS_INC(xs_ig_frecycle); 166 error = EAGAIN; 167 goto out_error; 168 } 169 170 171 /* 172 * If we are racing with another cache hit that is currently 173 * instantiating this inode or currently recycling it out of 174 * reclaimabe state, wait for the initialisation to complete 175 * before continuing. 176 * 177 * XXX(hch): eventually we should do something equivalent to 178 * wait_on_inode to wait for these flags to be cleared 179 * instead of polling for it. 180 */ 181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { 182 trace_xfs_iget_skip(ip); 183 XFS_STATS_INC(xs_ig_frecycle); 184 error = EAGAIN; 185 goto out_error; 186 } 187 188 /* 189 * If lookup is racing with unlink return an error immediately. 190 */ 191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { 192 error = ENOENT; 193 goto out_error; 194 } 195 196 /* 197 * If IRECLAIMABLE is set, we've torn down the VFS inode already. 198 * Need to carefully get it back into useable state. 199 */ 200 if (ip->i_flags & XFS_IRECLAIMABLE) { 201 trace_xfs_iget_reclaim(ip); 202 203 /* 204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode 205 * from stomping over us while we recycle the inode. We can't 206 * clear the radix tree reclaimable tag yet as it requires 207 * pag_ici_lock to be held exclusive. 208 */ 209 ip->i_flags |= XFS_IRECLAIM; 210 211 spin_unlock(&ip->i_flags_lock); 212 rcu_read_unlock(); 213 214 error = -inode_init_always(mp->m_super, inode); 215 if (error) { 216 /* 217 * Re-initializing the inode failed, and we are in deep 218 * trouble. Try to re-add it to the reclaim list. 219 */ 220 rcu_read_lock(); 221 spin_lock(&ip->i_flags_lock); 222 223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 225 trace_xfs_iget_reclaim_fail(ip); 226 goto out_error; 227 } 228 229 spin_lock(&pag->pag_ici_lock); 230 spin_lock(&ip->i_flags_lock); 231 232 /* 233 * Clear the per-lifetime state in the inode as we are now 234 * effectively a new inode and need to return to the initial 235 * state before reuse occurs. 236 */ 237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 238 ip->i_flags |= XFS_INEW; 239 __xfs_inode_clear_reclaim_tag(mp, pag, ip); 240 inode->i_state = I_NEW; 241 242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); 243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); 244 245 spin_unlock(&ip->i_flags_lock); 246 spin_unlock(&pag->pag_ici_lock); 247 } else { 248 /* If the VFS inode is being torn down, pause and try again. */ 249 if (!igrab(inode)) { 250 trace_xfs_iget_skip(ip); 251 error = EAGAIN; 252 goto out_error; 253 } 254 255 /* We've got a live one. */ 256 spin_unlock(&ip->i_flags_lock); 257 rcu_read_unlock(); 258 trace_xfs_iget_hit(ip); 259 } 260 261 if (lock_flags != 0) 262 xfs_ilock(ip, lock_flags); 263 264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); 265 XFS_STATS_INC(xs_ig_found); 266 267 return 0; 268 269 out_error: 270 spin_unlock(&ip->i_flags_lock); 271 rcu_read_unlock(); 272 return error; 273 } 274 275 276 static int 277 xfs_iget_cache_miss( 278 struct xfs_mount *mp, 279 struct xfs_perag *pag, 280 xfs_trans_t *tp, 281 xfs_ino_t ino, 282 struct xfs_inode **ipp, 283 int flags, 284 int lock_flags) 285 { 286 struct xfs_inode *ip; 287 int error; 288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 289 int iflags; 290 291 ip = xfs_inode_alloc(mp, ino); 292 if (!ip) 293 return ENOMEM; 294 295 error = xfs_iread(mp, tp, ip, flags); 296 if (error) 297 goto out_destroy; 298 299 trace_xfs_iget_miss(ip); 300 301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { 302 error = ENOENT; 303 goto out_destroy; 304 } 305 306 /* 307 * Preload the radix tree so we can insert safely under the 308 * write spinlock. Note that we cannot sleep inside the preload 309 * region. Since we can be called from transaction context, don't 310 * recurse into the file system. 311 */ 312 if (radix_tree_preload(GFP_NOFS)) { 313 error = EAGAIN; 314 goto out_destroy; 315 } 316 317 /* 318 * Because the inode hasn't been added to the radix-tree yet it can't 319 * be found by another thread, so we can do the non-sleeping lock here. 320 */ 321 if (lock_flags) { 322 if (!xfs_ilock_nowait(ip, lock_flags)) 323 BUG(); 324 } 325 326 /* 327 * These values must be set before inserting the inode into the radix 328 * tree as the moment it is inserted a concurrent lookup (allowed by the 329 * RCU locking mechanism) can find it and that lookup must see that this 330 * is an inode currently under construction (i.e. that XFS_INEW is set). 331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 332 * memory barrier that ensures this detection works correctly at lookup 333 * time. 334 */ 335 iflags = XFS_INEW; 336 if (flags & XFS_IGET_DONTCACHE) 337 iflags |= XFS_IDONTCACHE; 338 ip->i_udquot = NULL; 339 ip->i_gdquot = NULL; 340 ip->i_pdquot = NULL; 341 xfs_iflags_set(ip, iflags); 342 343 /* insert the new inode */ 344 spin_lock(&pag->pag_ici_lock); 345 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 346 if (unlikely(error)) { 347 WARN_ON(error != -EEXIST); 348 XFS_STATS_INC(xs_ig_dup); 349 error = EAGAIN; 350 goto out_preload_end; 351 } 352 spin_unlock(&pag->pag_ici_lock); 353 radix_tree_preload_end(); 354 355 *ipp = ip; 356 return 0; 357 358 out_preload_end: 359 spin_unlock(&pag->pag_ici_lock); 360 radix_tree_preload_end(); 361 if (lock_flags) 362 xfs_iunlock(ip, lock_flags); 363 out_destroy: 364 __destroy_inode(VFS_I(ip)); 365 xfs_inode_free(ip); 366 return error; 367 } 368 369 /* 370 * Look up an inode by number in the given file system. 371 * The inode is looked up in the cache held in each AG. 372 * If the inode is found in the cache, initialise the vfs inode 373 * if necessary. 374 * 375 * If it is not in core, read it in from the file system's device, 376 * add it to the cache and initialise the vfs inode. 377 * 378 * The inode is locked according to the value of the lock_flags parameter. 379 * This flag parameter indicates how and if the inode's IO lock and inode lock 380 * should be taken. 381 * 382 * mp -- the mount point structure for the current file system. It points 383 * to the inode hash table. 384 * tp -- a pointer to the current transaction if there is one. This is 385 * simply passed through to the xfs_iread() call. 386 * ino -- the number of the inode desired. This is the unique identifier 387 * within the file system for the inode being requested. 388 * lock_flags -- flags indicating how to lock the inode. See the comment 389 * for xfs_ilock() for a list of valid values. 390 */ 391 int 392 xfs_iget( 393 xfs_mount_t *mp, 394 xfs_trans_t *tp, 395 xfs_ino_t ino, 396 uint flags, 397 uint lock_flags, 398 xfs_inode_t **ipp) 399 { 400 xfs_inode_t *ip; 401 int error; 402 xfs_perag_t *pag; 403 xfs_agino_t agino; 404 405 /* 406 * xfs_reclaim_inode() uses the ILOCK to ensure an inode 407 * doesn't get freed while it's being referenced during a 408 * radix tree traversal here. It assumes this function 409 * aqcuires only the ILOCK (and therefore it has no need to 410 * involve the IOLOCK in this synchronization). 411 */ 412 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 413 414 /* reject inode numbers outside existing AGs */ 415 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 416 return EINVAL; 417 418 /* get the perag structure and ensure that it's inode capable */ 419 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 420 agino = XFS_INO_TO_AGINO(mp, ino); 421 422 again: 423 error = 0; 424 rcu_read_lock(); 425 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 426 427 if (ip) { 428 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 429 if (error) 430 goto out_error_or_again; 431 } else { 432 rcu_read_unlock(); 433 XFS_STATS_INC(xs_ig_missed); 434 435 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 436 flags, lock_flags); 437 if (error) 438 goto out_error_or_again; 439 } 440 xfs_perag_put(pag); 441 442 *ipp = ip; 443 444 /* 445 * If we have a real type for an on-disk inode, we can set ops(&unlock) 446 * now. If it's a new inode being created, xfs_ialloc will handle it. 447 */ 448 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) 449 xfs_setup_inode(ip); 450 return 0; 451 452 out_error_or_again: 453 if (error == EAGAIN) { 454 delay(1); 455 goto again; 456 } 457 xfs_perag_put(pag); 458 return error; 459 } 460 461 /* 462 * The inode lookup is done in batches to keep the amount of lock traffic and 463 * radix tree lookups to a minimum. The batch size is a trade off between 464 * lookup reduction and stack usage. This is in the reclaim path, so we can't 465 * be too greedy. 466 */ 467 #define XFS_LOOKUP_BATCH 32 468 469 STATIC int 470 xfs_inode_ag_walk_grab( 471 struct xfs_inode *ip) 472 { 473 struct inode *inode = VFS_I(ip); 474 475 ASSERT(rcu_read_lock_held()); 476 477 /* 478 * check for stale RCU freed inode 479 * 480 * If the inode has been reallocated, it doesn't matter if it's not in 481 * the AG we are walking - we are walking for writeback, so if it 482 * passes all the "valid inode" checks and is dirty, then we'll write 483 * it back anyway. If it has been reallocated and still being 484 * initialised, the XFS_INEW check below will catch it. 485 */ 486 spin_lock(&ip->i_flags_lock); 487 if (!ip->i_ino) 488 goto out_unlock_noent; 489 490 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ 491 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) 492 goto out_unlock_noent; 493 spin_unlock(&ip->i_flags_lock); 494 495 /* nothing to sync during shutdown */ 496 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 497 return EFSCORRUPTED; 498 499 /* If we can't grab the inode, it must on it's way to reclaim. */ 500 if (!igrab(inode)) 501 return ENOENT; 502 503 if (is_bad_inode(inode)) { 504 IRELE(ip); 505 return ENOENT; 506 } 507 508 /* inode is valid */ 509 return 0; 510 511 out_unlock_noent: 512 spin_unlock(&ip->i_flags_lock); 513 return ENOENT; 514 } 515 516 STATIC int 517 xfs_inode_ag_walk( 518 struct xfs_mount *mp, 519 struct xfs_perag *pag, 520 int (*execute)(struct xfs_inode *ip, 521 struct xfs_perag *pag, int flags, 522 void *args), 523 int flags, 524 void *args, 525 int tag) 526 { 527 uint32_t first_index; 528 int last_error = 0; 529 int skipped; 530 int done; 531 int nr_found; 532 533 restart: 534 done = 0; 535 skipped = 0; 536 first_index = 0; 537 nr_found = 0; 538 do { 539 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 540 int error = 0; 541 int i; 542 543 rcu_read_lock(); 544 545 if (tag == -1) 546 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 547 (void **)batch, first_index, 548 XFS_LOOKUP_BATCH); 549 else 550 nr_found = radix_tree_gang_lookup_tag( 551 &pag->pag_ici_root, 552 (void **) batch, first_index, 553 XFS_LOOKUP_BATCH, tag); 554 555 if (!nr_found) { 556 rcu_read_unlock(); 557 break; 558 } 559 560 /* 561 * Grab the inodes before we drop the lock. if we found 562 * nothing, nr == 0 and the loop will be skipped. 563 */ 564 for (i = 0; i < nr_found; i++) { 565 struct xfs_inode *ip = batch[i]; 566 567 if (done || xfs_inode_ag_walk_grab(ip)) 568 batch[i] = NULL; 569 570 /* 571 * Update the index for the next lookup. Catch 572 * overflows into the next AG range which can occur if 573 * we have inodes in the last block of the AG and we 574 * are currently pointing to the last inode. 575 * 576 * Because we may see inodes that are from the wrong AG 577 * due to RCU freeing and reallocation, only update the 578 * index if it lies in this AG. It was a race that lead 579 * us to see this inode, so another lookup from the 580 * same index will not find it again. 581 */ 582 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 583 continue; 584 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 585 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 586 done = 1; 587 } 588 589 /* unlock now we've grabbed the inodes. */ 590 rcu_read_unlock(); 591 592 for (i = 0; i < nr_found; i++) { 593 if (!batch[i]) 594 continue; 595 error = execute(batch[i], pag, flags, args); 596 IRELE(batch[i]); 597 if (error == EAGAIN) { 598 skipped++; 599 continue; 600 } 601 if (error && last_error != EFSCORRUPTED) 602 last_error = error; 603 } 604 605 /* bail out if the filesystem is corrupted. */ 606 if (error == EFSCORRUPTED) 607 break; 608 609 cond_resched(); 610 611 } while (nr_found && !done); 612 613 if (skipped) { 614 delay(1); 615 goto restart; 616 } 617 return last_error; 618 } 619 620 /* 621 * Background scanning to trim post-EOF preallocated space. This is queued 622 * based on the 'speculative_prealloc_lifetime' tunable (5m by default). 623 */ 624 STATIC void 625 xfs_queue_eofblocks( 626 struct xfs_mount *mp) 627 { 628 rcu_read_lock(); 629 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) 630 queue_delayed_work(mp->m_eofblocks_workqueue, 631 &mp->m_eofblocks_work, 632 msecs_to_jiffies(xfs_eofb_secs * 1000)); 633 rcu_read_unlock(); 634 } 635 636 void 637 xfs_eofblocks_worker( 638 struct work_struct *work) 639 { 640 struct xfs_mount *mp = container_of(to_delayed_work(work), 641 struct xfs_mount, m_eofblocks_work); 642 xfs_icache_free_eofblocks(mp, NULL); 643 xfs_queue_eofblocks(mp); 644 } 645 646 int 647 xfs_inode_ag_iterator( 648 struct xfs_mount *mp, 649 int (*execute)(struct xfs_inode *ip, 650 struct xfs_perag *pag, int flags, 651 void *args), 652 int flags, 653 void *args) 654 { 655 struct xfs_perag *pag; 656 int error = 0; 657 int last_error = 0; 658 xfs_agnumber_t ag; 659 660 ag = 0; 661 while ((pag = xfs_perag_get(mp, ag))) { 662 ag = pag->pag_agno + 1; 663 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); 664 xfs_perag_put(pag); 665 if (error) { 666 last_error = error; 667 if (error == EFSCORRUPTED) 668 break; 669 } 670 } 671 return XFS_ERROR(last_error); 672 } 673 674 int 675 xfs_inode_ag_iterator_tag( 676 struct xfs_mount *mp, 677 int (*execute)(struct xfs_inode *ip, 678 struct xfs_perag *pag, int flags, 679 void *args), 680 int flags, 681 void *args, 682 int tag) 683 { 684 struct xfs_perag *pag; 685 int error = 0; 686 int last_error = 0; 687 xfs_agnumber_t ag; 688 689 ag = 0; 690 while ((pag = xfs_perag_get_tag(mp, ag, tag))) { 691 ag = pag->pag_agno + 1; 692 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); 693 xfs_perag_put(pag); 694 if (error) { 695 last_error = error; 696 if (error == EFSCORRUPTED) 697 break; 698 } 699 } 700 return XFS_ERROR(last_error); 701 } 702 703 /* 704 * Queue a new inode reclaim pass if there are reclaimable inodes and there 705 * isn't a reclaim pass already in progress. By default it runs every 5s based 706 * on the xfs periodic sync default of 30s. Perhaps this should have it's own 707 * tunable, but that can be done if this method proves to be ineffective or too 708 * aggressive. 709 */ 710 static void 711 xfs_reclaim_work_queue( 712 struct xfs_mount *mp) 713 { 714 715 rcu_read_lock(); 716 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 717 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 718 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 719 } 720 rcu_read_unlock(); 721 } 722 723 /* 724 * This is a fast pass over the inode cache to try to get reclaim moving on as 725 * many inodes as possible in a short period of time. It kicks itself every few 726 * seconds, as well as being kicked by the inode cache shrinker when memory 727 * goes low. It scans as quickly as possible avoiding locked inodes or those 728 * already being flushed, and once done schedules a future pass. 729 */ 730 void 731 xfs_reclaim_worker( 732 struct work_struct *work) 733 { 734 struct xfs_mount *mp = container_of(to_delayed_work(work), 735 struct xfs_mount, m_reclaim_work); 736 737 xfs_reclaim_inodes(mp, SYNC_TRYLOCK); 738 xfs_reclaim_work_queue(mp); 739 } 740 741 static void 742 __xfs_inode_set_reclaim_tag( 743 struct xfs_perag *pag, 744 struct xfs_inode *ip) 745 { 746 radix_tree_tag_set(&pag->pag_ici_root, 747 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 748 XFS_ICI_RECLAIM_TAG); 749 750 if (!pag->pag_ici_reclaimable) { 751 /* propagate the reclaim tag up into the perag radix tree */ 752 spin_lock(&ip->i_mount->m_perag_lock); 753 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 754 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 755 XFS_ICI_RECLAIM_TAG); 756 spin_unlock(&ip->i_mount->m_perag_lock); 757 758 /* schedule periodic background inode reclaim */ 759 xfs_reclaim_work_queue(ip->i_mount); 760 761 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, 762 -1, _RET_IP_); 763 } 764 pag->pag_ici_reclaimable++; 765 } 766 767 /* 768 * We set the inode flag atomically with the radix tree tag. 769 * Once we get tag lookups on the radix tree, this inode flag 770 * can go away. 771 */ 772 void 773 xfs_inode_set_reclaim_tag( 774 xfs_inode_t *ip) 775 { 776 struct xfs_mount *mp = ip->i_mount; 777 struct xfs_perag *pag; 778 779 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 780 spin_lock(&pag->pag_ici_lock); 781 spin_lock(&ip->i_flags_lock); 782 __xfs_inode_set_reclaim_tag(pag, ip); 783 __xfs_iflags_set(ip, XFS_IRECLAIMABLE); 784 spin_unlock(&ip->i_flags_lock); 785 spin_unlock(&pag->pag_ici_lock); 786 xfs_perag_put(pag); 787 } 788 789 STATIC void 790 __xfs_inode_clear_reclaim( 791 xfs_perag_t *pag, 792 xfs_inode_t *ip) 793 { 794 pag->pag_ici_reclaimable--; 795 if (!pag->pag_ici_reclaimable) { 796 /* clear the reclaim tag from the perag radix tree */ 797 spin_lock(&ip->i_mount->m_perag_lock); 798 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 799 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 800 XFS_ICI_RECLAIM_TAG); 801 spin_unlock(&ip->i_mount->m_perag_lock); 802 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, 803 -1, _RET_IP_); 804 } 805 } 806 807 STATIC void 808 __xfs_inode_clear_reclaim_tag( 809 xfs_mount_t *mp, 810 xfs_perag_t *pag, 811 xfs_inode_t *ip) 812 { 813 radix_tree_tag_clear(&pag->pag_ici_root, 814 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); 815 __xfs_inode_clear_reclaim(pag, ip); 816 } 817 818 /* 819 * Grab the inode for reclaim exclusively. 820 * Return 0 if we grabbed it, non-zero otherwise. 821 */ 822 STATIC int 823 xfs_reclaim_inode_grab( 824 struct xfs_inode *ip, 825 int flags) 826 { 827 ASSERT(rcu_read_lock_held()); 828 829 /* quick check for stale RCU freed inode */ 830 if (!ip->i_ino) 831 return 1; 832 833 /* 834 * If we are asked for non-blocking operation, do unlocked checks to 835 * see if the inode already is being flushed or in reclaim to avoid 836 * lock traffic. 837 */ 838 if ((flags & SYNC_TRYLOCK) && 839 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) 840 return 1; 841 842 /* 843 * The radix tree lock here protects a thread in xfs_iget from racing 844 * with us starting reclaim on the inode. Once we have the 845 * XFS_IRECLAIM flag set it will not touch us. 846 * 847 * Due to RCU lookup, we may find inodes that have been freed and only 848 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that 849 * aren't candidates for reclaim at all, so we must check the 850 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. 851 */ 852 spin_lock(&ip->i_flags_lock); 853 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 854 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 855 /* not a reclaim candidate. */ 856 spin_unlock(&ip->i_flags_lock); 857 return 1; 858 } 859 __xfs_iflags_set(ip, XFS_IRECLAIM); 860 spin_unlock(&ip->i_flags_lock); 861 return 0; 862 } 863 864 /* 865 * Inodes in different states need to be treated differently. The following 866 * table lists the inode states and the reclaim actions necessary: 867 * 868 * inode state iflush ret required action 869 * --------------- ---------- --------------- 870 * bad - reclaim 871 * shutdown EIO unpin and reclaim 872 * clean, unpinned 0 reclaim 873 * stale, unpinned 0 reclaim 874 * clean, pinned(*) 0 requeue 875 * stale, pinned EAGAIN requeue 876 * dirty, async - requeue 877 * dirty, sync 0 reclaim 878 * 879 * (*) dgc: I don't think the clean, pinned state is possible but it gets 880 * handled anyway given the order of checks implemented. 881 * 882 * Also, because we get the flush lock first, we know that any inode that has 883 * been flushed delwri has had the flush completed by the time we check that 884 * the inode is clean. 885 * 886 * Note that because the inode is flushed delayed write by AIL pushing, the 887 * flush lock may already be held here and waiting on it can result in very 888 * long latencies. Hence for sync reclaims, where we wait on the flush lock, 889 * the caller should push the AIL first before trying to reclaim inodes to 890 * minimise the amount of time spent waiting. For background relaim, we only 891 * bother to reclaim clean inodes anyway. 892 * 893 * Hence the order of actions after gaining the locks should be: 894 * bad => reclaim 895 * shutdown => unpin and reclaim 896 * pinned, async => requeue 897 * pinned, sync => unpin 898 * stale => reclaim 899 * clean => reclaim 900 * dirty, async => requeue 901 * dirty, sync => flush, wait and reclaim 902 */ 903 STATIC int 904 xfs_reclaim_inode( 905 struct xfs_inode *ip, 906 struct xfs_perag *pag, 907 int sync_mode) 908 { 909 struct xfs_buf *bp = NULL; 910 int error; 911 912 restart: 913 error = 0; 914 xfs_ilock(ip, XFS_ILOCK_EXCL); 915 if (!xfs_iflock_nowait(ip)) { 916 if (!(sync_mode & SYNC_WAIT)) 917 goto out; 918 xfs_iflock(ip); 919 } 920 921 if (is_bad_inode(VFS_I(ip))) 922 goto reclaim; 923 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 924 xfs_iunpin_wait(ip); 925 xfs_iflush_abort(ip, false); 926 goto reclaim; 927 } 928 if (xfs_ipincount(ip)) { 929 if (!(sync_mode & SYNC_WAIT)) 930 goto out_ifunlock; 931 xfs_iunpin_wait(ip); 932 } 933 if (xfs_iflags_test(ip, XFS_ISTALE)) 934 goto reclaim; 935 if (xfs_inode_clean(ip)) 936 goto reclaim; 937 938 /* 939 * Never flush out dirty data during non-blocking reclaim, as it would 940 * just contend with AIL pushing trying to do the same job. 941 */ 942 if (!(sync_mode & SYNC_WAIT)) 943 goto out_ifunlock; 944 945 /* 946 * Now we have an inode that needs flushing. 947 * 948 * Note that xfs_iflush will never block on the inode buffer lock, as 949 * xfs_ifree_cluster() can lock the inode buffer before it locks the 950 * ip->i_lock, and we are doing the exact opposite here. As a result, 951 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would 952 * result in an ABBA deadlock with xfs_ifree_cluster(). 953 * 954 * As xfs_ifree_cluser() must gather all inodes that are active in the 955 * cache to mark them stale, if we hit this case we don't actually want 956 * to do IO here - we want the inode marked stale so we can simply 957 * reclaim it. Hence if we get an EAGAIN error here, just unlock the 958 * inode, back off and try again. Hopefully the next pass through will 959 * see the stale flag set on the inode. 960 */ 961 error = xfs_iflush(ip, &bp); 962 if (error == EAGAIN) { 963 xfs_iunlock(ip, XFS_ILOCK_EXCL); 964 /* backoff longer than in xfs_ifree_cluster */ 965 delay(2); 966 goto restart; 967 } 968 969 if (!error) { 970 error = xfs_bwrite(bp); 971 xfs_buf_relse(bp); 972 } 973 974 xfs_iflock(ip); 975 reclaim: 976 xfs_ifunlock(ip); 977 xfs_iunlock(ip, XFS_ILOCK_EXCL); 978 979 XFS_STATS_INC(xs_ig_reclaims); 980 /* 981 * Remove the inode from the per-AG radix tree. 982 * 983 * Because radix_tree_delete won't complain even if the item was never 984 * added to the tree assert that it's been there before to catch 985 * problems with the inode life time early on. 986 */ 987 spin_lock(&pag->pag_ici_lock); 988 if (!radix_tree_delete(&pag->pag_ici_root, 989 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) 990 ASSERT(0); 991 __xfs_inode_clear_reclaim(pag, ip); 992 spin_unlock(&pag->pag_ici_lock); 993 994 /* 995 * Here we do an (almost) spurious inode lock in order to coordinate 996 * with inode cache radix tree lookups. This is because the lookup 997 * can reference the inodes in the cache without taking references. 998 * 999 * We make that OK here by ensuring that we wait until the inode is 1000 * unlocked after the lookup before we go ahead and free it. 1001 */ 1002 xfs_ilock(ip, XFS_ILOCK_EXCL); 1003 xfs_qm_dqdetach(ip); 1004 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1005 1006 xfs_inode_free(ip); 1007 return error; 1008 1009 out_ifunlock: 1010 xfs_ifunlock(ip); 1011 out: 1012 xfs_iflags_clear(ip, XFS_IRECLAIM); 1013 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1014 /* 1015 * We could return EAGAIN here to make reclaim rescan the inode tree in 1016 * a short while. However, this just burns CPU time scanning the tree 1017 * waiting for IO to complete and the reclaim work never goes back to 1018 * the idle state. Instead, return 0 to let the next scheduled 1019 * background reclaim attempt to reclaim the inode again. 1020 */ 1021 return 0; 1022 } 1023 1024 /* 1025 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is 1026 * corrupted, we still want to try to reclaim all the inodes. If we don't, 1027 * then a shut down during filesystem unmount reclaim walk leak all the 1028 * unreclaimed inodes. 1029 */ 1030 STATIC int 1031 xfs_reclaim_inodes_ag( 1032 struct xfs_mount *mp, 1033 int flags, 1034 int *nr_to_scan) 1035 { 1036 struct xfs_perag *pag; 1037 int error = 0; 1038 int last_error = 0; 1039 xfs_agnumber_t ag; 1040 int trylock = flags & SYNC_TRYLOCK; 1041 int skipped; 1042 1043 restart: 1044 ag = 0; 1045 skipped = 0; 1046 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1047 unsigned long first_index = 0; 1048 int done = 0; 1049 int nr_found = 0; 1050 1051 ag = pag->pag_agno + 1; 1052 1053 if (trylock) { 1054 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { 1055 skipped++; 1056 xfs_perag_put(pag); 1057 continue; 1058 } 1059 first_index = pag->pag_ici_reclaim_cursor; 1060 } else 1061 mutex_lock(&pag->pag_ici_reclaim_lock); 1062 1063 do { 1064 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1065 int i; 1066 1067 rcu_read_lock(); 1068 nr_found = radix_tree_gang_lookup_tag( 1069 &pag->pag_ici_root, 1070 (void **)batch, first_index, 1071 XFS_LOOKUP_BATCH, 1072 XFS_ICI_RECLAIM_TAG); 1073 if (!nr_found) { 1074 done = 1; 1075 rcu_read_unlock(); 1076 break; 1077 } 1078 1079 /* 1080 * Grab the inodes before we drop the lock. if we found 1081 * nothing, nr == 0 and the loop will be skipped. 1082 */ 1083 for (i = 0; i < nr_found; i++) { 1084 struct xfs_inode *ip = batch[i]; 1085 1086 if (done || xfs_reclaim_inode_grab(ip, flags)) 1087 batch[i] = NULL; 1088 1089 /* 1090 * Update the index for the next lookup. Catch 1091 * overflows into the next AG range which can 1092 * occur if we have inodes in the last block of 1093 * the AG and we are currently pointing to the 1094 * last inode. 1095 * 1096 * Because we may see inodes that are from the 1097 * wrong AG due to RCU freeing and 1098 * reallocation, only update the index if it 1099 * lies in this AG. It was a race that lead us 1100 * to see this inode, so another lookup from 1101 * the same index will not find it again. 1102 */ 1103 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != 1104 pag->pag_agno) 1105 continue; 1106 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1107 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1108 done = 1; 1109 } 1110 1111 /* unlock now we've grabbed the inodes. */ 1112 rcu_read_unlock(); 1113 1114 for (i = 0; i < nr_found; i++) { 1115 if (!batch[i]) 1116 continue; 1117 error = xfs_reclaim_inode(batch[i], pag, flags); 1118 if (error && last_error != EFSCORRUPTED) 1119 last_error = error; 1120 } 1121 1122 *nr_to_scan -= XFS_LOOKUP_BATCH; 1123 1124 cond_resched(); 1125 1126 } while (nr_found && !done && *nr_to_scan > 0); 1127 1128 if (trylock && !done) 1129 pag->pag_ici_reclaim_cursor = first_index; 1130 else 1131 pag->pag_ici_reclaim_cursor = 0; 1132 mutex_unlock(&pag->pag_ici_reclaim_lock); 1133 xfs_perag_put(pag); 1134 } 1135 1136 /* 1137 * if we skipped any AG, and we still have scan count remaining, do 1138 * another pass this time using blocking reclaim semantics (i.e 1139 * waiting on the reclaim locks and ignoring the reclaim cursors). This 1140 * ensure that when we get more reclaimers than AGs we block rather 1141 * than spin trying to execute reclaim. 1142 */ 1143 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { 1144 trylock = 0; 1145 goto restart; 1146 } 1147 return XFS_ERROR(last_error); 1148 } 1149 1150 int 1151 xfs_reclaim_inodes( 1152 xfs_mount_t *mp, 1153 int mode) 1154 { 1155 int nr_to_scan = INT_MAX; 1156 1157 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); 1158 } 1159 1160 /* 1161 * Scan a certain number of inodes for reclaim. 1162 * 1163 * When called we make sure that there is a background (fast) inode reclaim in 1164 * progress, while we will throttle the speed of reclaim via doing synchronous 1165 * reclaim of inodes. That means if we come across dirty inodes, we wait for 1166 * them to be cleaned, which we hope will not be very long due to the 1167 * background walker having already kicked the IO off on those dirty inodes. 1168 */ 1169 long 1170 xfs_reclaim_inodes_nr( 1171 struct xfs_mount *mp, 1172 int nr_to_scan) 1173 { 1174 /* kick background reclaimer and push the AIL */ 1175 xfs_reclaim_work_queue(mp); 1176 xfs_ail_push_all(mp->m_ail); 1177 1178 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); 1179 } 1180 1181 /* 1182 * Return the number of reclaimable inodes in the filesystem for 1183 * the shrinker to determine how much to reclaim. 1184 */ 1185 int 1186 xfs_reclaim_inodes_count( 1187 struct xfs_mount *mp) 1188 { 1189 struct xfs_perag *pag; 1190 xfs_agnumber_t ag = 0; 1191 int reclaimable = 0; 1192 1193 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1194 ag = pag->pag_agno + 1; 1195 reclaimable += pag->pag_ici_reclaimable; 1196 xfs_perag_put(pag); 1197 } 1198 return reclaimable; 1199 } 1200 1201 STATIC int 1202 xfs_inode_match_id( 1203 struct xfs_inode *ip, 1204 struct xfs_eofblocks *eofb) 1205 { 1206 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && 1207 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) 1208 return 0; 1209 1210 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && 1211 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) 1212 return 0; 1213 1214 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && 1215 xfs_get_projid(ip) != eofb->eof_prid) 1216 return 0; 1217 1218 return 1; 1219 } 1220 1221 STATIC int 1222 xfs_inode_free_eofblocks( 1223 struct xfs_inode *ip, 1224 struct xfs_perag *pag, 1225 int flags, 1226 void *args) 1227 { 1228 int ret; 1229 struct xfs_eofblocks *eofb = args; 1230 1231 if (!xfs_can_free_eofblocks(ip, false)) { 1232 /* inode could be preallocated or append-only */ 1233 trace_xfs_inode_free_eofblocks_invalid(ip); 1234 xfs_inode_clear_eofblocks_tag(ip); 1235 return 0; 1236 } 1237 1238 /* 1239 * If the mapping is dirty the operation can block and wait for some 1240 * time. Unless we are waiting, skip it. 1241 */ 1242 if (!(flags & SYNC_WAIT) && 1243 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1244 return 0; 1245 1246 if (eofb) { 1247 if (!xfs_inode_match_id(ip, eofb)) 1248 return 0; 1249 1250 /* skip the inode if the file size is too small */ 1251 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && 1252 XFS_ISIZE(ip) < eofb->eof_min_file_size) 1253 return 0; 1254 } 1255 1256 ret = xfs_free_eofblocks(ip->i_mount, ip, true); 1257 1258 /* don't revisit the inode if we're not waiting */ 1259 if (ret == EAGAIN && !(flags & SYNC_WAIT)) 1260 ret = 0; 1261 1262 return ret; 1263 } 1264 1265 int 1266 xfs_icache_free_eofblocks( 1267 struct xfs_mount *mp, 1268 struct xfs_eofblocks *eofb) 1269 { 1270 int flags = SYNC_TRYLOCK; 1271 1272 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) 1273 flags = SYNC_WAIT; 1274 1275 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, 1276 eofb, XFS_ICI_EOFBLOCKS_TAG); 1277 } 1278 1279 void 1280 xfs_inode_set_eofblocks_tag( 1281 xfs_inode_t *ip) 1282 { 1283 struct xfs_mount *mp = ip->i_mount; 1284 struct xfs_perag *pag; 1285 int tagged; 1286 1287 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1288 spin_lock(&pag->pag_ici_lock); 1289 trace_xfs_inode_set_eofblocks_tag(ip); 1290 1291 tagged = radix_tree_tagged(&pag->pag_ici_root, 1292 XFS_ICI_EOFBLOCKS_TAG); 1293 radix_tree_tag_set(&pag->pag_ici_root, 1294 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1295 XFS_ICI_EOFBLOCKS_TAG); 1296 if (!tagged) { 1297 /* propagate the eofblocks tag up into the perag radix tree */ 1298 spin_lock(&ip->i_mount->m_perag_lock); 1299 radix_tree_tag_set(&ip->i_mount->m_perag_tree, 1300 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1301 XFS_ICI_EOFBLOCKS_TAG); 1302 spin_unlock(&ip->i_mount->m_perag_lock); 1303 1304 /* kick off background trimming */ 1305 xfs_queue_eofblocks(ip->i_mount); 1306 1307 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, 1308 -1, _RET_IP_); 1309 } 1310 1311 spin_unlock(&pag->pag_ici_lock); 1312 xfs_perag_put(pag); 1313 } 1314 1315 void 1316 xfs_inode_clear_eofblocks_tag( 1317 xfs_inode_t *ip) 1318 { 1319 struct xfs_mount *mp = ip->i_mount; 1320 struct xfs_perag *pag; 1321 1322 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1323 spin_lock(&pag->pag_ici_lock); 1324 trace_xfs_inode_clear_eofblocks_tag(ip); 1325 1326 radix_tree_tag_clear(&pag->pag_ici_root, 1327 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), 1328 XFS_ICI_EOFBLOCKS_TAG); 1329 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { 1330 /* clear the eofblocks tag from the perag radix tree */ 1331 spin_lock(&ip->i_mount->m_perag_lock); 1332 radix_tree_tag_clear(&ip->i_mount->m_perag_tree, 1333 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 1334 XFS_ICI_EOFBLOCKS_TAG); 1335 spin_unlock(&ip->i_mount->m_perag_lock); 1336 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, 1337 -1, _RET_IP_); 1338 } 1339 1340 spin_unlock(&pag->pag_ici_lock); 1341 xfs_perag_put(pag); 1342 } 1343 1344