1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2017 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap_btree.h" 17 #include "xfs_trace.h" 18 #include "xfs_rmap.h" 19 #include "xfs_alloc.h" 20 #include "xfs_bit.h" 21 #include <linux/fsmap.h> 22 #include "xfs_fsmap.h" 23 #include "xfs_refcount.h" 24 #include "xfs_refcount_btree.h" 25 #include "xfs_alloc_btree.h" 26 #include "xfs_rtalloc.h" 27 28 /* Convert an xfs_fsmap to an fsmap. */ 29 static void 30 xfs_fsmap_from_internal( 31 struct fsmap *dest, 32 struct xfs_fsmap *src) 33 { 34 dest->fmr_device = src->fmr_device; 35 dest->fmr_flags = src->fmr_flags; 36 dest->fmr_physical = BBTOB(src->fmr_physical); 37 dest->fmr_owner = src->fmr_owner; 38 dest->fmr_offset = BBTOB(src->fmr_offset); 39 dest->fmr_length = BBTOB(src->fmr_length); 40 dest->fmr_reserved[0] = 0; 41 dest->fmr_reserved[1] = 0; 42 dest->fmr_reserved[2] = 0; 43 } 44 45 /* Convert an fsmap to an xfs_fsmap. */ 46 void 47 xfs_fsmap_to_internal( 48 struct xfs_fsmap *dest, 49 struct fsmap *src) 50 { 51 dest->fmr_device = src->fmr_device; 52 dest->fmr_flags = src->fmr_flags; 53 dest->fmr_physical = BTOBBT(src->fmr_physical); 54 dest->fmr_owner = src->fmr_owner; 55 dest->fmr_offset = BTOBBT(src->fmr_offset); 56 dest->fmr_length = BTOBBT(src->fmr_length); 57 } 58 59 /* Convert an fsmap owner into an rmapbt owner. */ 60 static int 61 xfs_fsmap_owner_to_rmap( 62 struct xfs_rmap_irec *dest, 63 struct xfs_fsmap *src) 64 { 65 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { 66 dest->rm_owner = src->fmr_owner; 67 return 0; 68 } 69 70 switch (src->fmr_owner) { 71 case 0: /* "lowest owner id possible" */ 72 case -1ULL: /* "highest owner id possible" */ 73 dest->rm_owner = 0; 74 break; 75 case XFS_FMR_OWN_FREE: 76 dest->rm_owner = XFS_RMAP_OWN_NULL; 77 break; 78 case XFS_FMR_OWN_UNKNOWN: 79 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; 80 break; 81 case XFS_FMR_OWN_FS: 82 dest->rm_owner = XFS_RMAP_OWN_FS; 83 break; 84 case XFS_FMR_OWN_LOG: 85 dest->rm_owner = XFS_RMAP_OWN_LOG; 86 break; 87 case XFS_FMR_OWN_AG: 88 dest->rm_owner = XFS_RMAP_OWN_AG; 89 break; 90 case XFS_FMR_OWN_INOBT: 91 dest->rm_owner = XFS_RMAP_OWN_INOBT; 92 break; 93 case XFS_FMR_OWN_INODES: 94 dest->rm_owner = XFS_RMAP_OWN_INODES; 95 break; 96 case XFS_FMR_OWN_REFC: 97 dest->rm_owner = XFS_RMAP_OWN_REFC; 98 break; 99 case XFS_FMR_OWN_COW: 100 dest->rm_owner = XFS_RMAP_OWN_COW; 101 break; 102 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ 103 /* fall through */ 104 default: 105 return -EINVAL; 106 } 107 return 0; 108 } 109 110 /* Convert an rmapbt owner into an fsmap owner. */ 111 static int 112 xfs_fsmap_owner_from_rmap( 113 struct xfs_fsmap *dest, 114 struct xfs_rmap_irec *src) 115 { 116 dest->fmr_flags = 0; 117 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { 118 dest->fmr_owner = src->rm_owner; 119 return 0; 120 } 121 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; 122 123 switch (src->rm_owner) { 124 case XFS_RMAP_OWN_FS: 125 dest->fmr_owner = XFS_FMR_OWN_FS; 126 break; 127 case XFS_RMAP_OWN_LOG: 128 dest->fmr_owner = XFS_FMR_OWN_LOG; 129 break; 130 case XFS_RMAP_OWN_AG: 131 dest->fmr_owner = XFS_FMR_OWN_AG; 132 break; 133 case XFS_RMAP_OWN_INOBT: 134 dest->fmr_owner = XFS_FMR_OWN_INOBT; 135 break; 136 case XFS_RMAP_OWN_INODES: 137 dest->fmr_owner = XFS_FMR_OWN_INODES; 138 break; 139 case XFS_RMAP_OWN_REFC: 140 dest->fmr_owner = XFS_FMR_OWN_REFC; 141 break; 142 case XFS_RMAP_OWN_COW: 143 dest->fmr_owner = XFS_FMR_OWN_COW; 144 break; 145 case XFS_RMAP_OWN_NULL: /* "free" */ 146 dest->fmr_owner = XFS_FMR_OWN_FREE; 147 break; 148 default: 149 ASSERT(0); 150 return -EFSCORRUPTED; 151 } 152 return 0; 153 } 154 155 /* getfsmap query state */ 156 struct xfs_getfsmap_info { 157 struct xfs_fsmap_head *head; 158 struct fsmap *fsmap_recs; /* mapping records */ 159 struct xfs_buf *agf_bp; /* AGF, for refcount queries */ 160 xfs_daddr_t next_daddr; /* next daddr we expect */ 161 u64 missing_owner; /* owner of holes */ 162 u32 dev; /* device id */ 163 xfs_agnumber_t agno; /* AG number, if applicable */ 164 struct xfs_rmap_irec low; /* low rmap key */ 165 struct xfs_rmap_irec high; /* high rmap key */ 166 bool last; /* last extent? */ 167 }; 168 169 /* Associate a device with a getfsmap handler. */ 170 struct xfs_getfsmap_dev { 171 u32 dev; 172 int (*fn)(struct xfs_trans *tp, 173 struct xfs_fsmap *keys, 174 struct xfs_getfsmap_info *info); 175 }; 176 177 /* Compare two getfsmap device handlers. */ 178 static int 179 xfs_getfsmap_dev_compare( 180 const void *p1, 181 const void *p2) 182 { 183 const struct xfs_getfsmap_dev *d1 = p1; 184 const struct xfs_getfsmap_dev *d2 = p2; 185 186 return d1->dev - d2->dev; 187 } 188 189 /* Decide if this mapping is shared. */ 190 STATIC int 191 xfs_getfsmap_is_shared( 192 struct xfs_trans *tp, 193 struct xfs_getfsmap_info *info, 194 struct xfs_rmap_irec *rec, 195 bool *stat) 196 { 197 struct xfs_mount *mp = tp->t_mountp; 198 struct xfs_btree_cur *cur; 199 xfs_agblock_t fbno; 200 xfs_extlen_t flen; 201 int error; 202 203 *stat = false; 204 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 205 return 0; 206 /* rt files will have agno set to NULLAGNUMBER */ 207 if (info->agno == NULLAGNUMBER) 208 return 0; 209 210 /* Are there any shared blocks here? */ 211 flen = 0; 212 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, 213 info->agno); 214 215 error = xfs_refcount_find_shared(cur, rec->rm_startblock, 216 rec->rm_blockcount, &fbno, &flen, false); 217 218 xfs_btree_del_cursor(cur, error); 219 if (error) 220 return error; 221 222 *stat = flen > 0; 223 return 0; 224 } 225 226 static inline void 227 xfs_getfsmap_format( 228 struct xfs_mount *mp, 229 struct xfs_fsmap *xfm, 230 struct xfs_getfsmap_info *info) 231 { 232 struct fsmap *rec; 233 234 trace_xfs_getfsmap_mapping(mp, xfm); 235 236 rec = &info->fsmap_recs[info->head->fmh_entries++]; 237 xfs_fsmap_from_internal(rec, xfm); 238 } 239 240 /* 241 * Format a reverse mapping for getfsmap, having translated rm_startblock 242 * into the appropriate daddr units. 243 */ 244 STATIC int 245 xfs_getfsmap_helper( 246 struct xfs_trans *tp, 247 struct xfs_getfsmap_info *info, 248 struct xfs_rmap_irec *rec, 249 xfs_daddr_t rec_daddr) 250 { 251 struct xfs_fsmap fmr; 252 struct xfs_mount *mp = tp->t_mountp; 253 bool shared; 254 int error; 255 256 if (fatal_signal_pending(current)) 257 return -EINTR; 258 259 /* 260 * Filter out records that start before our startpoint, if the 261 * caller requested that. 262 */ 263 if (xfs_rmap_compare(rec, &info->low) < 0) { 264 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 265 if (info->next_daddr < rec_daddr) 266 info->next_daddr = rec_daddr; 267 return 0; 268 } 269 270 /* Are we just counting mappings? */ 271 if (info->head->fmh_count == 0) { 272 if (info->head->fmh_entries == UINT_MAX) 273 return -ECANCELED; 274 275 if (rec_daddr > info->next_daddr) 276 info->head->fmh_entries++; 277 278 if (info->last) 279 return 0; 280 281 info->head->fmh_entries++; 282 283 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 284 if (info->next_daddr < rec_daddr) 285 info->next_daddr = rec_daddr; 286 return 0; 287 } 288 289 /* 290 * If the record starts past the last physical block we saw, 291 * then we've found a gap. Report the gap as being owned by 292 * whatever the caller specified is the missing owner. 293 */ 294 if (rec_daddr > info->next_daddr) { 295 if (info->head->fmh_entries >= info->head->fmh_count) 296 return -ECANCELED; 297 298 fmr.fmr_device = info->dev; 299 fmr.fmr_physical = info->next_daddr; 300 fmr.fmr_owner = info->missing_owner; 301 fmr.fmr_offset = 0; 302 fmr.fmr_length = rec_daddr - info->next_daddr; 303 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; 304 xfs_getfsmap_format(mp, &fmr, info); 305 } 306 307 if (info->last) 308 goto out; 309 310 /* Fill out the extent we found */ 311 if (info->head->fmh_entries >= info->head->fmh_count) 312 return -ECANCELED; 313 314 trace_xfs_fsmap_mapping(mp, info->dev, info->agno, rec); 315 316 fmr.fmr_device = info->dev; 317 fmr.fmr_physical = rec_daddr; 318 error = xfs_fsmap_owner_from_rmap(&fmr, rec); 319 if (error) 320 return error; 321 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); 322 fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount); 323 if (rec->rm_flags & XFS_RMAP_UNWRITTEN) 324 fmr.fmr_flags |= FMR_OF_PREALLOC; 325 if (rec->rm_flags & XFS_RMAP_ATTR_FORK) 326 fmr.fmr_flags |= FMR_OF_ATTR_FORK; 327 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) 328 fmr.fmr_flags |= FMR_OF_EXTENT_MAP; 329 if (fmr.fmr_flags == 0) { 330 error = xfs_getfsmap_is_shared(tp, info, rec, &shared); 331 if (error) 332 return error; 333 if (shared) 334 fmr.fmr_flags |= FMR_OF_SHARED; 335 } 336 337 xfs_getfsmap_format(mp, &fmr, info); 338 out: 339 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 340 if (info->next_daddr < rec_daddr) 341 info->next_daddr = rec_daddr; 342 return 0; 343 } 344 345 /* Transform a rmapbt irec into a fsmap */ 346 STATIC int 347 xfs_getfsmap_datadev_helper( 348 struct xfs_btree_cur *cur, 349 struct xfs_rmap_irec *rec, 350 void *priv) 351 { 352 struct xfs_mount *mp = cur->bc_mp; 353 struct xfs_getfsmap_info *info = priv; 354 xfs_fsblock_t fsb; 355 xfs_daddr_t rec_daddr; 356 357 fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.agno, rec->rm_startblock); 358 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); 359 360 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr); 361 } 362 363 /* Transform a bnobt irec into a fsmap */ 364 STATIC int 365 xfs_getfsmap_datadev_bnobt_helper( 366 struct xfs_btree_cur *cur, 367 struct xfs_alloc_rec_incore *rec, 368 void *priv) 369 { 370 struct xfs_mount *mp = cur->bc_mp; 371 struct xfs_getfsmap_info *info = priv; 372 struct xfs_rmap_irec irec; 373 xfs_daddr_t rec_daddr; 374 375 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.agno, 376 rec->ar_startblock); 377 378 irec.rm_startblock = rec->ar_startblock; 379 irec.rm_blockcount = rec->ar_blockcount; 380 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 381 irec.rm_offset = 0; 382 irec.rm_flags = 0; 383 384 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr); 385 } 386 387 /* Set rmap flags based on the getfsmap flags */ 388 static void 389 xfs_getfsmap_set_irec_flags( 390 struct xfs_rmap_irec *irec, 391 struct xfs_fsmap *fmr) 392 { 393 irec->rm_flags = 0; 394 if (fmr->fmr_flags & FMR_OF_ATTR_FORK) 395 irec->rm_flags |= XFS_RMAP_ATTR_FORK; 396 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) 397 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; 398 if (fmr->fmr_flags & FMR_OF_PREALLOC) 399 irec->rm_flags |= XFS_RMAP_UNWRITTEN; 400 } 401 402 /* Execute a getfsmap query against the log device. */ 403 STATIC int 404 xfs_getfsmap_logdev( 405 struct xfs_trans *tp, 406 struct xfs_fsmap *keys, 407 struct xfs_getfsmap_info *info) 408 { 409 struct xfs_mount *mp = tp->t_mountp; 410 struct xfs_rmap_irec rmap; 411 int error; 412 413 /* Set up search keys */ 414 info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 415 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 416 error = xfs_fsmap_owner_to_rmap(&info->low, keys); 417 if (error) 418 return error; 419 info->low.rm_blockcount = 0; 420 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 421 422 error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1); 423 if (error) 424 return error; 425 info->high.rm_startblock = -1U; 426 info->high.rm_owner = ULLONG_MAX; 427 info->high.rm_offset = ULLONG_MAX; 428 info->high.rm_blockcount = 0; 429 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 430 info->missing_owner = XFS_FMR_OWN_FREE; 431 432 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 433 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 434 435 if (keys[0].fmr_physical > 0) 436 return 0; 437 438 /* Fabricate an rmap entry for the external log device. */ 439 rmap.rm_startblock = 0; 440 rmap.rm_blockcount = mp->m_sb.sb_logblocks; 441 rmap.rm_owner = XFS_RMAP_OWN_LOG; 442 rmap.rm_offset = 0; 443 rmap.rm_flags = 0; 444 445 return xfs_getfsmap_helper(tp, info, &rmap, 0); 446 } 447 448 #ifdef CONFIG_XFS_RT 449 /* Transform a rtbitmap "record" into a fsmap */ 450 STATIC int 451 xfs_getfsmap_rtdev_rtbitmap_helper( 452 struct xfs_trans *tp, 453 struct xfs_rtalloc_rec *rec, 454 void *priv) 455 { 456 struct xfs_mount *mp = tp->t_mountp; 457 struct xfs_getfsmap_info *info = priv; 458 struct xfs_rmap_irec irec; 459 xfs_daddr_t rec_daddr; 460 461 irec.rm_startblock = rec->ar_startext * mp->m_sb.sb_rextsize; 462 rec_daddr = XFS_FSB_TO_BB(mp, irec.rm_startblock); 463 irec.rm_blockcount = rec->ar_extcount * mp->m_sb.sb_rextsize; 464 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 465 irec.rm_offset = 0; 466 irec.rm_flags = 0; 467 468 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr); 469 } 470 471 /* Execute a getfsmap query against the realtime device. */ 472 STATIC int 473 __xfs_getfsmap_rtdev( 474 struct xfs_trans *tp, 475 struct xfs_fsmap *keys, 476 int (*query_fn)(struct xfs_trans *, 477 struct xfs_getfsmap_info *), 478 struct xfs_getfsmap_info *info) 479 { 480 struct xfs_mount *mp = tp->t_mountp; 481 xfs_fsblock_t start_fsb; 482 xfs_fsblock_t end_fsb; 483 xfs_daddr_t eofs; 484 int error = 0; 485 486 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); 487 if (keys[0].fmr_physical >= eofs) 488 return 0; 489 if (keys[1].fmr_physical >= eofs) 490 keys[1].fmr_physical = eofs - 1; 491 start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 492 end_fsb = XFS_BB_TO_FSB(mp, keys[1].fmr_physical); 493 494 /* Set up search keys */ 495 info->low.rm_startblock = start_fsb; 496 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 497 if (error) 498 return error; 499 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 500 info->low.rm_blockcount = 0; 501 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 502 503 info->high.rm_startblock = end_fsb; 504 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 505 if (error) 506 return error; 507 info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset); 508 info->high.rm_blockcount = 0; 509 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 510 511 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 512 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 513 514 return query_fn(tp, info); 515 } 516 517 /* Actually query the realtime bitmap. */ 518 STATIC int 519 xfs_getfsmap_rtdev_rtbitmap_query( 520 struct xfs_trans *tp, 521 struct xfs_getfsmap_info *info) 522 { 523 struct xfs_rtalloc_rec alow = { 0 }; 524 struct xfs_rtalloc_rec ahigh = { 0 }; 525 int error; 526 527 xfs_ilock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 528 529 alow.ar_startext = info->low.rm_startblock; 530 ahigh.ar_startext = info->high.rm_startblock; 531 do_div(alow.ar_startext, tp->t_mountp->m_sb.sb_rextsize); 532 if (do_div(ahigh.ar_startext, tp->t_mountp->m_sb.sb_rextsize)) 533 ahigh.ar_startext++; 534 error = xfs_rtalloc_query_range(tp, &alow, &ahigh, 535 xfs_getfsmap_rtdev_rtbitmap_helper, info); 536 if (error) 537 goto err; 538 539 /* Report any gaps at the end of the rtbitmap */ 540 info->last = true; 541 error = xfs_getfsmap_rtdev_rtbitmap_helper(tp, &ahigh, info); 542 if (error) 543 goto err; 544 err: 545 xfs_iunlock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 546 return error; 547 } 548 549 /* Execute a getfsmap query against the realtime device rtbitmap. */ 550 STATIC int 551 xfs_getfsmap_rtdev_rtbitmap( 552 struct xfs_trans *tp, 553 struct xfs_fsmap *keys, 554 struct xfs_getfsmap_info *info) 555 { 556 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 557 return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query, 558 info); 559 } 560 #endif /* CONFIG_XFS_RT */ 561 562 /* Execute a getfsmap query against the regular data device. */ 563 STATIC int 564 __xfs_getfsmap_datadev( 565 struct xfs_trans *tp, 566 struct xfs_fsmap *keys, 567 struct xfs_getfsmap_info *info, 568 int (*query_fn)(struct xfs_trans *, 569 struct xfs_getfsmap_info *, 570 struct xfs_btree_cur **, 571 void *), 572 void *priv) 573 { 574 struct xfs_mount *mp = tp->t_mountp; 575 struct xfs_btree_cur *bt_cur = NULL; 576 xfs_fsblock_t start_fsb; 577 xfs_fsblock_t end_fsb; 578 xfs_agnumber_t start_ag; 579 xfs_agnumber_t end_ag; 580 xfs_daddr_t eofs; 581 int error = 0; 582 583 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 584 if (keys[0].fmr_physical >= eofs) 585 return 0; 586 if (keys[1].fmr_physical >= eofs) 587 keys[1].fmr_physical = eofs - 1; 588 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); 589 end_fsb = XFS_DADDR_TO_FSB(mp, keys[1].fmr_physical); 590 591 /* 592 * Convert the fsmap low/high keys to AG based keys. Initialize 593 * low to the fsmap low key and max out the high key to the end 594 * of the AG. 595 */ 596 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); 597 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 598 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 599 if (error) 600 return error; 601 info->low.rm_blockcount = 0; 602 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 603 604 info->high.rm_startblock = -1U; 605 info->high.rm_owner = ULLONG_MAX; 606 info->high.rm_offset = ULLONG_MAX; 607 info->high.rm_blockcount = 0; 608 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 609 610 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); 611 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); 612 613 /* Query each AG */ 614 for (info->agno = start_ag; info->agno <= end_ag; info->agno++) { 615 /* 616 * Set the AG high key from the fsmap high key if this 617 * is the last AG that we're querying. 618 */ 619 if (info->agno == end_ag) { 620 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, 621 end_fsb); 622 info->high.rm_offset = XFS_BB_TO_FSBT(mp, 623 keys[1].fmr_offset); 624 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 625 if (error) 626 goto err; 627 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 628 } 629 630 if (bt_cur) { 631 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); 632 bt_cur = NULL; 633 xfs_trans_brelse(tp, info->agf_bp); 634 info->agf_bp = NULL; 635 } 636 637 error = xfs_alloc_read_agf(mp, tp, info->agno, 0, 638 &info->agf_bp); 639 if (error) 640 goto err; 641 642 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 643 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, 644 &info->high); 645 646 error = query_fn(tp, info, &bt_cur, priv); 647 if (error) 648 goto err; 649 650 /* 651 * Set the AG low key to the start of the AG prior to 652 * moving on to the next AG. 653 */ 654 if (info->agno == start_ag) { 655 info->low.rm_startblock = 0; 656 info->low.rm_owner = 0; 657 info->low.rm_offset = 0; 658 info->low.rm_flags = 0; 659 } 660 } 661 662 /* Report any gap at the end of the AG */ 663 info->last = true; 664 error = query_fn(tp, info, &bt_cur, priv); 665 if (error) 666 goto err; 667 668 err: 669 if (bt_cur) 670 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : 671 XFS_BTREE_NOERROR); 672 if (info->agf_bp) { 673 xfs_trans_brelse(tp, info->agf_bp); 674 info->agf_bp = NULL; 675 } 676 677 return error; 678 } 679 680 /* Actually query the rmap btree. */ 681 STATIC int 682 xfs_getfsmap_datadev_rmapbt_query( 683 struct xfs_trans *tp, 684 struct xfs_getfsmap_info *info, 685 struct xfs_btree_cur **curpp, 686 void *priv) 687 { 688 /* Report any gap at the end of the last AG. */ 689 if (info->last) 690 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); 691 692 /* Allocate cursor for this AG and query_range it. */ 693 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 694 info->agno); 695 return xfs_rmap_query_range(*curpp, &info->low, &info->high, 696 xfs_getfsmap_datadev_helper, info); 697 } 698 699 /* Execute a getfsmap query against the regular data device rmapbt. */ 700 STATIC int 701 xfs_getfsmap_datadev_rmapbt( 702 struct xfs_trans *tp, 703 struct xfs_fsmap *keys, 704 struct xfs_getfsmap_info *info) 705 { 706 info->missing_owner = XFS_FMR_OWN_FREE; 707 return __xfs_getfsmap_datadev(tp, keys, info, 708 xfs_getfsmap_datadev_rmapbt_query, NULL); 709 } 710 711 /* Actually query the bno btree. */ 712 STATIC int 713 xfs_getfsmap_datadev_bnobt_query( 714 struct xfs_trans *tp, 715 struct xfs_getfsmap_info *info, 716 struct xfs_btree_cur **curpp, 717 void *priv) 718 { 719 struct xfs_alloc_rec_incore *key = priv; 720 721 /* Report any gap at the end of the last AG. */ 722 if (info->last) 723 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); 724 725 /* Allocate cursor for this AG and query_range it. */ 726 *curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 727 info->agno, XFS_BTNUM_BNO); 728 key->ar_startblock = info->low.rm_startblock; 729 key[1].ar_startblock = info->high.rm_startblock; 730 return xfs_alloc_query_range(*curpp, key, &key[1], 731 xfs_getfsmap_datadev_bnobt_helper, info); 732 } 733 734 /* Execute a getfsmap query against the regular data device's bnobt. */ 735 STATIC int 736 xfs_getfsmap_datadev_bnobt( 737 struct xfs_trans *tp, 738 struct xfs_fsmap *keys, 739 struct xfs_getfsmap_info *info) 740 { 741 struct xfs_alloc_rec_incore akeys[2]; 742 743 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 744 return __xfs_getfsmap_datadev(tp, keys, info, 745 xfs_getfsmap_datadev_bnobt_query, &akeys[0]); 746 } 747 748 /* Do we recognize the device? */ 749 STATIC bool 750 xfs_getfsmap_is_valid_device( 751 struct xfs_mount *mp, 752 struct xfs_fsmap *fm) 753 { 754 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || 755 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) 756 return true; 757 if (mp->m_logdev_targp && 758 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) 759 return true; 760 if (mp->m_rtdev_targp && 761 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev)) 762 return true; 763 return false; 764 } 765 766 /* Ensure that the low key is less than the high key. */ 767 STATIC bool 768 xfs_getfsmap_check_keys( 769 struct xfs_fsmap *low_key, 770 struct xfs_fsmap *high_key) 771 { 772 if (low_key->fmr_device > high_key->fmr_device) 773 return false; 774 if (low_key->fmr_device < high_key->fmr_device) 775 return true; 776 777 if (low_key->fmr_physical > high_key->fmr_physical) 778 return false; 779 if (low_key->fmr_physical < high_key->fmr_physical) 780 return true; 781 782 if (low_key->fmr_owner > high_key->fmr_owner) 783 return false; 784 if (low_key->fmr_owner < high_key->fmr_owner) 785 return true; 786 787 if (low_key->fmr_offset > high_key->fmr_offset) 788 return false; 789 if (low_key->fmr_offset < high_key->fmr_offset) 790 return true; 791 792 return false; 793 } 794 795 /* 796 * There are only two devices if we didn't configure RT devices at build time. 797 */ 798 #ifdef CONFIG_XFS_RT 799 #define XFS_GETFSMAP_DEVS 3 800 #else 801 #define XFS_GETFSMAP_DEVS 2 802 #endif /* CONFIG_XFS_RT */ 803 804 /* 805 * Get filesystem's extents as described in head, and format for output. Fills 806 * in the supplied records array until there are no more reverse mappings to 807 * return or head.fmh_entries == head.fmh_count. In the second case, this 808 * function returns -ECANCELED to indicate that more records would have been 809 * returned. 810 * 811 * Key to Confusion 812 * ---------------- 813 * There are multiple levels of keys and counters at work here: 814 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; 815 * these reflect fs-wide sector addrs. 816 * dkeys -- fmh_keys used to query each device; 817 * these are fmh_keys but w/ the low key 818 * bumped up by fmr_length. 819 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this 820 * is how we detect gaps in the fsmap 821 records and report them. 822 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from 823 * dkeys; used to query the metadata. 824 */ 825 int 826 xfs_getfsmap( 827 struct xfs_mount *mp, 828 struct xfs_fsmap_head *head, 829 struct fsmap *fsmap_recs) 830 { 831 struct xfs_trans *tp = NULL; 832 struct xfs_fsmap dkeys[2]; /* per-dev keys */ 833 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; 834 struct xfs_getfsmap_info info = { NULL }; 835 bool use_rmap; 836 int i; 837 int error = 0; 838 839 if (head->fmh_iflags & ~FMH_IF_VALID) 840 return -EINVAL; 841 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || 842 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) 843 return -EINVAL; 844 845 use_rmap = capable(CAP_SYS_ADMIN) && 846 xfs_sb_version_hasrmapbt(&mp->m_sb); 847 head->fmh_entries = 0; 848 849 /* Set up our device handlers. */ 850 memset(handlers, 0, sizeof(handlers)); 851 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); 852 if (use_rmap) 853 handlers[0].fn = xfs_getfsmap_datadev_rmapbt; 854 else 855 handlers[0].fn = xfs_getfsmap_datadev_bnobt; 856 if (mp->m_logdev_targp != mp->m_ddev_targp) { 857 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); 858 handlers[1].fn = xfs_getfsmap_logdev; 859 } 860 #ifdef CONFIG_XFS_RT 861 if (mp->m_rtdev_targp) { 862 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev); 863 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; 864 } 865 #endif /* CONFIG_XFS_RT */ 866 867 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), 868 xfs_getfsmap_dev_compare); 869 870 /* 871 * To continue where we left off, we allow userspace to use the 872 * last mapping from a previous call as the low key of the next. 873 * This is identified by a non-zero length in the low key. We 874 * have to increment the low key in this scenario to ensure we 875 * don't return the same mapping again, and instead return the 876 * very next mapping. 877 * 878 * If the low key mapping refers to file data, the same physical 879 * blocks could be mapped to several other files/offsets. 880 * According to rmapbt record ordering, the minimal next 881 * possible record for the block range is the next starting 882 * offset in the same inode. Therefore, bump the file offset to 883 * continue the search appropriately. For all other low key 884 * mapping types (attr blocks, metadata), bump the physical 885 * offset as there can be no other mapping for the same physical 886 * block range. 887 */ 888 dkeys[0] = head->fmh_keys[0]; 889 if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { 890 dkeys[0].fmr_physical += dkeys[0].fmr_length; 891 dkeys[0].fmr_owner = 0; 892 if (dkeys[0].fmr_offset) 893 return -EINVAL; 894 } else 895 dkeys[0].fmr_offset += dkeys[0].fmr_length; 896 dkeys[0].fmr_length = 0; 897 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); 898 899 if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1])) 900 return -EINVAL; 901 902 info.next_daddr = head->fmh_keys[0].fmr_physical + 903 head->fmh_keys[0].fmr_length; 904 info.fsmap_recs = fsmap_recs; 905 info.head = head; 906 907 /* For each device we support... */ 908 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { 909 /* Is this device within the range the user asked for? */ 910 if (!handlers[i].fn) 911 continue; 912 if (head->fmh_keys[0].fmr_device > handlers[i].dev) 913 continue; 914 if (head->fmh_keys[1].fmr_device < handlers[i].dev) 915 break; 916 917 /* 918 * If this device number matches the high key, we have 919 * to pass the high key to the handler to limit the 920 * query results. If the device number exceeds the 921 * low key, zero out the low key so that we get 922 * everything from the beginning. 923 */ 924 if (handlers[i].dev == head->fmh_keys[1].fmr_device) 925 dkeys[1] = head->fmh_keys[1]; 926 if (handlers[i].dev > head->fmh_keys[0].fmr_device) 927 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); 928 929 /* 930 * Grab an empty transaction so that we can use its recursive 931 * buffer locking abilities to detect cycles in the rmapbt 932 * without deadlocking. 933 */ 934 error = xfs_trans_alloc_empty(mp, &tp); 935 if (error) 936 break; 937 938 info.dev = handlers[i].dev; 939 info.last = false; 940 info.agno = NULLAGNUMBER; 941 error = handlers[i].fn(tp, dkeys, &info); 942 if (error) 943 break; 944 xfs_trans_cancel(tp); 945 tp = NULL; 946 info.next_daddr = 0; 947 } 948 949 if (tp) 950 xfs_trans_cancel(tp); 951 head->fmh_oflags = FMH_OF_DEV_T; 952 return error; 953 } 954